Net Auto-Solver: A formal approach for automatic
resolution of OpenFlow anomalies

Ramtin Aryan*', Anis Yazidif, Adel Bouhoula® and Paal Einar Engelstad*f
*Department of Technology Systems, University of Oslo, Oslo, Norway
TDepartment of Computer Science, OsloMet — Oslo Metropolitan University, Oslo, Norway
¥ College of Graduate Studies, Arabian Gulf University, P.O. Box 26671, Kingdom of Bahrain
Email: ramtina@ifi.uio.no, anisy @oslomet.no, a.bouhoula@agu.edu.bh, paal.engelstad@its.uio.no

Abstract—Policy anomalies are frequent in nowadays’s com-
puter networks due to their increasing configuration complexity.
Resolving policy anomalies usually requires network adminis-
trator intervention, which is a time-intensive and error-prone
process. In this paper, we present Net Auto-Solver, a formal
approach for automatic resolution of OpenFlow anomalies. The
approach resorts to the concept of high-level policies to not only
detect policy violations but also correct them on-the-fly. Our
approach is fully automated and does not require interaction
with the network administrator. Although there is a multitude
of research works on detecting anomalies in SDN, research to
correct those anomalies in an automatic manner is extremely
scarce. At the heart of our approach, we propose two inference
systems to perform corrective actions to the policy. We provide
some experimental results involving real-life network configura-
tions to show the performance of our approach. The first results
are very promising.

Index Terms—OpenFLow Anomaly, Auto-correct, Resolving
Anomaly, Conflicts, Violation, SDN.

I. INTRODUCTION

SDN anomalies were shown in the literature to be responsi-
ble for various network policy violations such data breaches,
segmentation violations, and complex loops. It is not practical
neither efficient to delegate the correction task to network
administrators in SDN networks since human-based correction
is a time-intensive process that is prone to error.

There is a handful number of works that try to automati-
cally correct the anomalies and not only detect them. Yazidi
and Bouhoula [1] suggested a semi-automated method for
solving part of anomalies between firewall rules where for
some anomalies automatic correction actions are performed
without human interaction while for others a feedback from the
network administrator is needed. Later Yazidi and Bouhoula
[2] extend the latter work to a fully automated correction
method for firewall anomalies by presenting the so-called
Firewall Policy Query Engine (FPQE). However, the latter
work is limited to non-distributed firewalls.

In addition, Zhou et al. [3] proposed an auto-correct tool,
called NEAt to resolve policy conflicts before they occur as a
side effect of a newly installed rule. NEAt uses a formalism
for expressing high-level policies. Then NEAt tries to map
and compare the network rule and configuration with the
high-level policy model. As a correction action, NEAt tries to
remove the policies leading the anomalies or loops. However,
the proposed method for modeling the policies and conflict

solving is complex and difficult for the network administrators
to understand.

This paper aims to propose an automatic correction method
to detect and solve the conflicts between policies. To this
end, we will start first by categorizing the anomalies in data
layer that cause segmentation violations or loops. Then via
formal methods, we provide an inference system for resolving
each anomaly category. Resolving the anomalies may cause
some side effects and policy violations. So the resolution
actions must be validated via the high-level policies. High-
level policies describe the main constraints that the rules
in the data layer should follow it, and it is assumed to be
conflict-free. The conflict-freedom property can be guaranteed
by the same methods as PGA [4]. By virtue of using inference
systems, our method is simple and easy to comprehend by
network administrators. Furthermore, we show that we can
also prove its correctness.

The reminder of the paper is organized as follows. In
Section II, we provide an overview over the state-of-the-
art on detecting and resolving anomalies in SDN networks.
Section III describes the root causes of anomalies and the
correction method is discussed in Section IV. Finally, Sec-
tion V we provide an implementation of our approach that
demonstrates that it is applicable and check its performance.

II. RELATED WORK

Anomaly detection and correction are of utmost importance
for the network administrators. There is not many research
that has focused on this problem in the context of SDN. In
this section, we review some of the main research in this area.

Zhou et al. [3] present an auto-correction method that is
called NEAt. NEAt controls the new rule to be updated or
installed for the aim to detect eventual conflicts with the
high-level policy. NEAt operates using two different correc-
tion modes: pass-through and interactive. In the pass-through
mode, NEAt detects and corrects the conflict automatically.
Depending on the configured mode, NEAt either suggests a
solution or solves the conflict automatically on-the-fly and
installs the corrected rule on the switch.

Yazidi and Bouhoula [1] present a method for correcting
the anomalies within firewall rules. They use the anomaly
classification defined by [5].

Kheradmand [6] presents a method that is called Anime
which suggests an alternative route for bridging the forwarding
gap. It introduces objective measures to apply the data mining
method to the forwarding policies.

Fan et al. [7] introduce an algorithm that is called NSOA.
The algorithm aims to detect an optimum alternative route
after a failure occurs on a switch. NSOA tries to keep most of
the network configuration unchanged and updates the affected
switches.

Saddaoui et al. [8] presented a firewall anomaly resolution
tool that is called FARE. The proposed method aims to detect
and correct the anomalies in single firewalls. Moreover, a new
classification of anomalies across multi-firewalls is introduced.

III. ANOMALY DEFINITION

Anomalies in this paper refer to conflicts that lead to the
fact that a set of packets do not follow their expected route
and ending into an unintended destination. These anomalies
may cause loops or other types of anomalies such as network
slicing violations. In this section, we use the specific notations
for the switches and rules that play an important role in the
anomaly categorization and repairing process.

A. Overlap Anomaly

According to the high-level policy, the overlap anomaly
occurs if a specific set of packet headers has the access
permission to both expected and unwanted nodes. Moreover,
the faulty switch has permission for forwarding the specific
packet header. Equation 1 presents the formal expression of
the condition of the overlap anomaly. The anomaly takes place
if a set of packets (Ph_List) does not follow the expected
path. Moreover, according to the high-level policies, the set of
packets can reach the expected switch (S*P%) and unwanted
switch (S“"%*) and the set of packets can be forwarded from
the faulty switch (S7).

Reach(Ph_List, St A
Reach(Ph_List, S¢“PY)A (1)
Forward(Ph_List, ST)

overlapanomaly =

B. Misordered Anomaly

According to the high-level policy, the misordered anomaly
occurs if a specific set of packet headers has the access
permission to the expected node while the faulty switch
has permission for forwarding the specific packet header.
Equation 2 presents the formal expression of the misordered
anomaly condition. It shows that if a set of packets (Ph_List)
does not follow the expected path, which the Sf, Gunwt
and S¢*P! are true, and the set of packets can reach the
Serpt and cannot reach the S“"*!. Moreover, the set of
packet can be forwarded from the S/. Then the misordered
anomaly happens. We call this type of anomaly misordered
since there is no conflict with the high-level policy. However,
the corresponding rules have the wrong priorities.

misorderedanomaly = (! Reach(Ph_List, S“"%)) A
Reach(Ph_List, S¢*P*) A Forward(Ph_List, ST)
2

IV. REPAIRING THE ANOMALIES

This section, discusses four inference systems for repairing
the three types of anomaly.

A. Adding a New Rule

This solution is designed for repairing a group of rules
with overlap anomaly. For solving this type of anomaly, a
new rule (riwf) is added to the flow table of the faulty
switch (sw’). This rule should have a priority higher than
the unwanted rule (rj“’) and the target rule (rswf) The
condition field of the new rule contains the overlap of the
condltlon of the unwanted rule and condition of target rule
(C‘“" (C“" C;w). However, the union between the
action of the unwanted rule and the tal;get rule creates the
action field of the new rule (ag“’ = (a$v Uag“’). The Fig. 1
presents a formal expression of the addlng a new rule.

Inference System for Adding a New Rule:

Init T her C' = The list of all distinct pair of rules in R
(& R) WIETEA\R = The set of rules of the switch sw
ciNe; #0
if P = Reach (¢;, sw™?) A Reach (¢, sw*™*) A Forward(c;, swl)
Add - “7'2":”:: C.{r,.’f'J}VJRJ :(7 Ci,a;)
(C", RU{ry, 7, 7}) j = (4.¢,05)
:(z cif(eiNe;),a;)
where v —(.f ¢;/(cines), aj)
= = modify ((. [(r',‘r;) s (711])])
e = (min (i,5) — 1, (c; Nej), (a; Uaj))
Skip : () 2 C B ir g other rule apply to the (r;,7;)
((R.)
i O.R,
Suceess : { %)
R
Fig. 1

The inference system is initiated by the list of candidates C'

and the set of rules R that contains all rules in the network.
Then the condition of the Add inference rule is checked for
the each candidate ¢. The condition will be true, if there is an
overlap anomaly in the pair of candidate rules. Without loss
of generality, we refer to pair of candidate rules as candidate.
the Then the new rule will be created and added to the rule
list and the target rule 7; and the unwanted rule r; will be
modified.
If the candidate does not match with inference rule Add,
the condition of the Skip inference rule will be checked.
Skip inference rule is applied for the candidate that has no
anomalies. This inference rule will remove the candidate from
the list. So, this step demonstrates that the length of the
candidate list will be decreased and system in finite system.
When the list of candidates is empty the system will be
terminated successfully.

B. Swapping Rules

This solution is useful for repairing group of rules with mis-
ordered anomaly. In this method, the priority of the unwanted
rule (r;) and the target rule (r;) are swapped. This solution
can guarantee the criteria of the high-level policy. The formal
expression of the swapping solution is presented in the Fig. 2.

Inference System for Swapping Rules:

Init : ——- 3. [C = Thelist of all distinct pair of rules in R
(C.R) where {R = The set of rules of the switch sw
if cNe; #0
P |= Reach (ci, sw™?) Al Reach (¢, sw*™?) A Forward(c;, swl)
Add - ((ri,r5) = C {ri,ry}UR,) ri = (2,¢i.a4)
(C,RU{r;,r}}) 7"!:(7' cj.aj)
where { T = (J: ¢i, a;)
r;= (i.cj.aj)
C = modif /((Hr, rz) R (r‘JA J']—)D
Skip: (0273 2 CR) o other rule apply to the (ri, ;)
(C.R)
2. R
Success : @.7)

R
Fig. 2

The inference system is initiated by list of candidates C,
which are pairs of rules, and set of rules of all switches in
the network. If the condition of the Add rule is correct for a
candidate c, then it means there is misordered anomaly in the
pair of rules. So in this step, the two rules are swapped in
the rule table and the candidate is removed from C. If there
is no anomaly in the pair of rules, the Skip rule is called.
Skip rule removes the pair from the C' and keep the rule table
without change. At the end, if the list is empty it means there
is no misordered anomalies among the rules and the system
terminated successfully via the Success rule. As explained,
length of the candidate list will be decreased and it means
that the system is finite.

V. EVALUATION

In this section, we evaluate the practical value of the
proposed method by implementing the inference systems and
testing them. The implementation uses C++ and for simulating
the real-life scenario we use a topology based on a real ISP
configuration from Rocketfuel dataset [9]. The test topology
contains 25 switches, and each switch has 500 rules. Five
different scenarios are designed for assessment and each
scenario has 1, 5, 10, 15, and 20 distinct faulty rules (target
rules), respectively.

A. Evaluation Metrics

We consider the processing time of creating a new rule,
swapping rules, and finding the alternative route as metrics
for assessing the performance of the implemented inference
systems. Moreover, since the overlap and misordered anoma-
lies take place on a single switch, there is a possibility to
apply a multi-thread approach for correcting the anomalies of

separate switches. Therefore, the processing time of single-
thread approach is compared with the parallel approach as an
evaluation metric.

B. Evaluation Results

In this section, the effect of rule number and network size
on different inference systems is presented. The performance
evaluation of each inference system is discussed.

1) Adding a new rule: As mentioned in Section III, if
two rules have an overlap anomaly then the system should
calculate the overlap section. As a next step, it creates a new
rule based on the intersect part and inserts it to the flow
table with a higher priority. The processing time of adding
multiple rules are evaluated for both single-thread and multi-
thread approaches. The result is sketched in Fig. 3.

Adding new rule processing time

=
~

e Single-Thread

-

Multi-Thread

Detection

Processing Time (s)
o o
o =

o
IS

o
o

Number of added rules

Fig. 3: Adding a new rule inference system processing time

According to Fig. 3, the processing time for single-thread
approach is longer that the multi-thread approach and has
almost linear behavior. However, since there is some overhead
process in multi-thread method, its processing time does not
follow the linear pattern.

2) Swapping two rules: The swapping action is applied if
a pair of rules with a misordered anomaly. In this section, the
performance of the swapping of multiple rules is evaluated for
both single-thread and multi-thread approaches. The result of
the assessment is presented as Fig. 4.

According to Fig. 4, the swapping process is not time-

Swapping rules processing time

I
o

——Single-Thread

Multi-Thread === Detection

-

e
o

Processing Time (s)
° o
> o

e
[N

IS

Number of swapped rules

Fig. 4: Swapping rules inference system processing time

intensive. For this reason, there is not a significant difference
between the single-thread and multi-thread approaches.

VI. CONCLUSION

There is a significant number of works for detecting policy
conflicts in firewall rules and recently in forwarding devices in
SDN. However, there is a handful number of works aspiring
to correct those anomalies without human intervention.

This paper proposes the Net Auto-Solver method to resolve
policy conflicts automatically without the need of network
administrator intervention, in contrast to classical approaches
that depend on prompting the network administrator for choos-
ing corrective actions. The Net Auto-Solver uses a formal
expression for modeling the high-level policy. Furthermore, via
defining inference systems, our approach detects and corrects
the anomalies automatically by resorting to the high-level
policies. Notably, inference systems possess the advantage
of being easy to comprehend by network administrators. To
evaluate the performance of the Net Auto-Solver, we design
a real-life scenario. Both a single-thread and multi-thread
implementation of Net Auto-Solver are assessed, and the
results are promising.

As future work, we would like to apply an incremental
approach [10] to improve the performance of the correction
process in Net Auto-Solver. Since the data plane rules are
updated frequently, the correction performance is an essential
factor in the efficiency of the method and thus the need for an
incremental approach.

REFERENCES

[1] A. Yazidi and A. Bouhoula, “On assisted packet filter conflicts resolu-
tion: An iterative relaxed approach,” in 2016 IEEE 41st Conference on

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

Local Computer Networks (LCN), 2016, pp. 35-42.

A. Bouhoula and A. Yazidi, “A security policy query engine for
fully automated resolution of anomalies in firewall configurations,” in
2016 IEEE 15th International Symposium on Network Computing and
Applications (NCA). 1EEE, 2016, pp. 76-80.

W. Zhou, J. Croft, B. Liu, E. Ang, and M. Caesar, “Automatically
correcting networks with neat,” in 15th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 18), 2018, pp.
595-608.

C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “Pga: Using graphs to
express and automatically reconcile network policies,” ACM SIGCOMM
Computer Communication Review, vol. 45, no. 4, pp. 29-42, 2015.

E. S. Al-Shaer and H. H. Hamed, “Firewall policy advisor for anomaly
discovery and rule editing,” in Integrated Network Management, 2003.
IFIP/IEEE Eighth International Symposium on. 1EEE, 2003, pp. 17-30.

A. Kheradmand, “Automatic inference of high-level network intents by
mining forwarding patterns,” in Proceedings of the Symposium on SDN
Research, 2020, pp. 27-33.

Z. Fan, H. Wu, J. Xu, and Y. Tang, “An optimization algorithm for spatial
information network self-healing based on software defined network,” in
2017 12th International Conference on Computer Science and Education
(ICCSE). IEEE, 2017, pp. 369-374.

A. Saddaoui, N. B. Y. B. Souayeh, and A. Bouhoula, “Fare: Fdd-based
firewall anomalies resolution tool,” Journal of computational science,
vol. 23, pp. 181-191, 2017.

“Rocketfuel:,” http://research.cs.washington.edu/networking/rocketfuel//,
accessed: 2019-11-01.

R. Aryan, A. Yazidi, and P. E. Engelstad, “An incremental approach for
swift openflow anomaly detection,” in 2018 IEEE 43rd Conference on
Local Computer Networks (LCN). 1EEE, 2018, pp. 502-510.

