
1

A Novel Method for Circuits of Perfect Electric
Conductors in Unstructured Particle–In–Cell

Plasma–Object Interaction Simulations
Sigvald Marholm∗, Diako Darian†, Mikael Mortensen†, Richard Marchand‡, and Wojciech J. Miloch∗

∗Department of Physics, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo, Norway †Department of
Mathematics, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo, Norway ‡Department of Physics,

University of Alberta, Edmonton AB, Canada

Abstract—A novel numerical method has been developed that
incorporates electrically conducting objects into Particle–In–Cell
simulations of electrostatic plasma. The method allows multiple
objects connected by voltage and current sources in an arbitrary
circuit topology. Moreover, by means of an unstructured mesh,
the objects can have arbitrary shape. The electric potential of
the objects are solved self-consistently by incorporating charge
constraints into the finite element discretization of the Poisson
equation.

This method has been implemented in a new code, PUNC,
suitable for rapid prototyping. The flexibility of this code has
proven convenient to survey various methods, and an issue of
reduced convergence rate of todays unstructured plasma–object
interaction codes is highlighted. The results for a conducting
sphere immersed in Maxwellian plasma are in good agreement
with previous studies.

I. INTRODUCTION

Numerical simulations of objects interacting with plasma is
one of the main challenges in plasma simulation techniques,
which are now becoming more feasible with increasing com-
putational power. This includes studies of spacecrafts and their
instruments in the upper atmosphere, which are often modelled
as electric conductors. Understanding how they influence the
surrounding plasma is crucial in the interpretation of their
measurements. In order to study kinetic phenomena such as
electric charging from the collection of background plasma
particles, the approach of choice is to use kinetic simulation
models such as the fully self-consistent Particle–In–Cell (PIC)
method.

Several PIC models have been implemented for studies of
plasma-object interactions, each with its own strengths, for
instance DiP3D [1], EMSES [2], MUSCAT [3], PDP2 [4],
Nascap-2k [5], CPIC [6], SPIS [7] and PTetra [8]. Of these,
DiP3D, EMSES, MUSCAT and PDP2 all use uniform Cartesian
structured grids. This is restrictive in the sense that objects
must be approximated by staircased geometries, and because
the mesh cannot be made finer near the object than far away.
On the other hand, when using an unstructured mesh such
as the one depicted in Fig. 1, objects of arbitrary geometry
can be approximated by piecewise linear facets (faces in 3D
or edges in 2D). SPIS and PTetra use the Finite Element
Method (FEM) on such meshes. It should be mentioned that

Corresponding author: S. Marholm (email: sigvaldm@fys.uio.no).

Fig. 1. Example of a mesh on a 2D simulation domain Ω with exterior
boundary Γe and two objects delimited by two interior boundaries Γ1 and
Γ2. The normal vector n̂ on the boundaries points away from the simulation
domain (and thus into the objects). The mesh is created using Gmsh [9].

Nascap-2k and CPIC also fit the mesh to the object, but using
different techniques. Nascap-2k uses the Boundary Element
Method on an unstructured surface mesh for the spacecraft
charging part, but for self-consistent calculation of particle
trajectories in its external field Nascap-2k still uses a Cartesian
mesh, although with nested refinements. Finally, CPIC uses a
curvilinear structured mesh that it boundary-fits to the object’s
geometry, and which it transforms to a logical space where the
mesh is uniform and Cartesian. While such a mesh certainly
has its merits in a PIC code, it is not as flexible and generally
applicable as unstructured meshes.

It is also desirable to arrange the conducting parts in circuits.
Spacecrafts and rockets can have many instruments, and parts
of the instruments often consists of exposed metals that are
electrically connected to the spacecraft [10], [11], [12]. This
makes support for generic circuits, as well as unstructured
meshes desirable. RLC circuits have already been treated
in [4], [13]. However, this treatment does not allow for a
generic circuit topology, since circuits are always considered
between an object/electrode and a reference electrode (system
ground). In addition, the derivation assumes a Cartesian mesh.
A more generic topology which involves voltage sources is
considered in MUSCAT [3]. It uses the capacitance matrix
method to enforce interior boundary conditions, which requires
solving the Poisson equation twice per time-step. This method
is not necessary for unstructured meshes, where interior
boundaries are easily generated. Generic support for circuits on

2

unstructured meshes is offered by SPIS [7], which introduces
an ad-hoc circuit solver. This solver needs the capacitance of
the spacecraft, which is computed from the last time-step. This
limits the method to first-order temporal accuracy. PTetra [8]
also implements a generic topology with voltage sources, by
using a linear decomposition of the Poisson equation to achieve
easily enforced Dirichlet boundaries. Such decompositions
require two solutions of the Poisson equation per time-step,
or alternatively, storing as many field quantities as there are
conducting parts in the spacecraft or geometry to be simulated.

We present a new method for circuits of arbitrary topology
in PIC simulations. It includes voltage and current sources,
and can be extended to include other components through
voltage-dependent current sources. It is not limited to first-order
accuracy, and it still only requires one solution of the Poisson
equation per time-step, with no additional storage. The method
is derived for continuous fields and thus independent of the
mesh, but requires implementation of new boundary conditions
in the field solver. We present how these boundary conditions
can be implemented for the finite element method, in a new
open source code called PUNC (Particles-in-Unstructured-
Cells).

While insulating objects are also of great practical impor-
tance, they are considered outside the scope of the present
paper. In so far as their effect can be modelled by conducting
objects and circuits, the methods herein may be applicable.
Marchand also describes a method of partitioning the surface
of an insulating object into several conducting segments, in
order to approximate insulating objects [8], and SPIS shows an
example of how to treat an insulating coating on an object. The
more accurate representations of dielectric objects, however,
allow for charge re-distribution throughout the object (for non-
perfect insulators), and a non-uniform potential in the object,
see, e.g., [4]. This requires a mesh in the interior of the object,
which is in contrast with our treatment.

PUNC has been developed as a rapid prototyping tool to
study various methods, including the new object method. It
is implemented in Python and centered around FEniCS [14],
[15], a modern and efficient environment for solving variational
problems, including the assembly of matrices stemming from
the FEM method as well as iterative solutions through one of
several efficient third-party libraries. The flexibility inherited
from both Python and FEniCS makes it easy to test new
concepts, and to add custom diagnostics. The usefulness
of such a tool should be evident from the variety of cases
considered herein, such as a comparison study of different
methods for obtaining the electric field, and the easy transition
between different finite element spaces.

The layout of the paper is as follows: in Sec. II we briefly
present background material on the PIC method. Then, in
Sec. III we describe the methods related to particle quantities,
including a novel method for sampling new particle velocities.
The new circuit method is presented in Sec. IV, and the
implementation of the resulting boundary conditions in Sec. V.
Subsequently, the interaction between the mesh and particles
are explained in Sec. VI, before numerical experiments on
convergence and correctness are presented in Sec. VII. A
discussion and conclusion are given in Sec. VIII and Sec. IX,

respectively.

II. BACKGROUND

We shall begin by giving an overview of the PIC method.
The basic idea behind the method is well established [16],
but we choose to provide it here for completeness. Knowing
the forces acting on a particle p (and its initial conditions),
its position xp can be obtained at any time by numerically
integrating its equations of motion. However, if we were to add
up the electric forces between each pair of NP particles, known
as a particle–particle approach, the computational complexity
per time-step would be O(N2

P) [17, pp. 18–20]. To reduce
this complexity, the PIC method uses a combined particle–
mesh approach, where field(s) are introduced, and the force
experienced by the particles are derived from these. More
specifically, a particle in an electric field E and magnetic flux
density B is governed by the equations of motion:

dxp
dt

= vp,
dvp
dt

=
qp
mp

(E + vp ×B), (1)

where qp, mp and vp is, respectively, the charge, mass and
velocity of the particle, and t is time. The chief feature of a
plasma, as opposed to charged particles in externally imposed
fields, is the collective forces the particles exerts on one another.
We shall assume the electrostatic approximation, where any
collective magnetic force are considered negligible, but allow
a constant, homogeneous magnetic flux density B0 to be
specified by the user. This can for instance be the magnetic flux
density of the Earth. The electric field E, however, depends
on contributions from all particles, and is given by Poisson’s
equation, along with the definition of the electric potential φ:

−∇2φ =
ρ

ε0
, E = −∇φ. (2)

Here, ρ is the charge density and ε0 is the permittivity of
vacuum. To obtain the charge density, space must be discretized
onto a mesh, and the charge of each particle needs to be
assigned to nodes in this mesh by some weighting scheme.
When equations (2) are solved, another weighting scheme is
used to interpolate the electric field back to the particles, such
that their positions can be advanced one time step. Since this
again alters the charge density, the electric field must be re-
computed before the next position update, and we have what
is commonly referred to as the PIC cycle. See Fig. 2.

The operations count of one PIC cycle is O(NP) + β(NG)
where NG is the number of nodes in the grid and β is some
function depending on the mesh solver [17, p. 21], typically
O(NG logNG) or even O(NG) when multigrid methods are
used [18, p. 137]. Usually it is necessary to have many particles
per cell, in the order of tens, to keep the statistical noise
sufficiently low, hence NP � NG. Clearly, the computational
complexity is significantly lower than in the particle–particle
approach. Further details on the PIC method can be found in
[16], [17], [19], [20].

A. Simulation Particles

The number of particles in a simulation volume is often
very high. For instance, the electron density is in the order

3

Collect charge

Qnα, I
n+ 1

2
α,i → Q̃n+1

α

Initial Conditions
x0
p,v

0
p, Q

0
α

Pusher

xnp ,E(xnp)→ xn+1
p , I

n+ 1
2

α,i

Weighting
xnp → ρn

Poisson Solver
ρn, Q̃nα → φn

Correct charge
φn → Qnα

Gradient
φn → En

Weighting
En → En(xnp)

n := 0

n := n+ 1

Particle Methods Mesh Methods

Fig. 2. Overview of the PIC cycle as used in PUNC. Each step indicates
new quantities computed from previous quantities. Subscripts p and α are
particle and object indices, respectively, and computations with these indices
must be performed for all particles/objects. Quantities without subscripts are
field-quantities. The time-step of each quantity is indicated as a superscript.

of 1010–1012 m−3 in the ionosphere [21, p. 161]. Integrating
the trajectory of such vast numbers of particles is impractical
both in terms of speed and memory, even for the particle–mesh
approach. Therefore, it is customary to use simulation particles
[16], each corresponding to ws physical particles, as specified
by the user. The charge, mass and density, respectively, of
simulation particles of a species s is then,

q′s = wsqs, m′s = wsms, n′s =
ns
ws
. (3)

ns is the density of physical particles. The velocity distribution
is the same for the simulation particles as for the physical
particles. It is then easily verified that physical characteristic
scales, such as the (angular) plasma frequency ωps, the Debye
length λDs and the thermal speed vth,s [22],

ωps =

√
q2
sns
ε0ms

, λDs =

√
ε0kBTs
q2
sns

, vth,s =

√
kBTs
ms

, (4)

are invariant under this transformation. Here, kB is the
Boltzmann constant and Ts is the temperature (beware that
the temperature of the simulation particles is not the same as
for the physical particles). The reduced number of particles
will of course increase the relative statistical noise, which is
proportional to (n′s)

−1/2 [20], [23, p. 98].

III. PARTICLE METHODS

In principle any correct numerical integration of (1) can be
used to update the position of the particles, but PUNC uses the
Boris method for its numerical efficiency, long-term stability
and second order accuracy [17, p. 97], [24]. Let a superscript
n indicate that a quantity is approximated at time t = n∆t,
∆t being the time-step. The Boris method uses a staggered
temporal grid where the position is stored at integer time-steps,

xnp , while the velocity is stored at half-integer time-steps, vn+ 1
2

p .
To offset the velocity by half a time-step, a normal forward
Euler step [25, p. 317] is used the first time. In addition to
position and velocity, each particle has its own charge qp and
mass mp. This is more flexible than dividing the particles into
different species, although also a bit more memory demanding.

Particles are organized such that each cell in the mesh has
one list of particles residing in that cell. This allows us to
perform the weighting described in Sec. VI for all particles
in a cell as a batch. After updating the particle positions one
must therefore also update which cell they belong to. This is
done following the approach in PTetra [8], described in the
following.

Let n̂f be the outwards-pointing unit normal vector of a
facet f of the old host cell, and xf any arbitrary point on
that facet, for instance one of the vertices. Further, let xp,f =
(xp − xf) · n̂f . Then the particle remains in the old cell if
xp,f ≤ 0 for all facets of that cell. If not, it is likely that the
new host cell is adjacent to the facet with the largest xp,f .
However, since the particle may have travelled beyond this
cell, the algorithm is applied recursively until a cell is found
with xp,f ≤ 0 for all f . Note that this requires pre-computing
and storing which cell is adjacent to every facet of every cell
in the mesh. If a facet has no adjacent cell, i.e., it is part of a
boundary, we instead store which boundary it is part of so we
can easily identify which boundary the particles cross.

The recursion depth, and hence the speed of this algorithm, is
directly related to vp∆t/hp of the average particle, where hp is
the mesh resolution (cell diameter) in the vicinity of the particle.
If, on average, vp∆t � hp, most particles will cross many
cells per time-step and the algorithm will be slow. However,
in this case the mesh is either needlessly fine, or ∆t too large,
because the particle trajectories are not able to resolve the mesh.
It is therefore customary to choose ∆t such that vp∆t/hp . 1
for the majority of the particles at any region of the domain.
Many particles, however, will reside in areas of a coarser mesh,
and travel at slower speeds (especially ions). Consequentially,
the average vp∆t/hp is usually significantly smaller than one,
resulting in far fewer than one cell crossing per particle per
time-step. The algorithm then only requires a few arithmetic
operations per particle, and is usually comparable to the cost
of advancing the particles’ positions.

The algorithm is not suitable for newly inserted particles,
however. Not only would it lead to deep and costly recursion,
but if the domain is non-convex, e.g., it has objects, starting
the recursion on the opposite side of an object of where the
particle actually is would lead to deletion of the particle. To
locate the host cell of newly inserted particles we instead use
an axis-aligned bounding box tree1.

A. Random Number Sampling

One of the components of the PIC method is to efficiently
sample random particle positions and velocities for particle
loading and injection of new particles into to the simulation
domain. Depending on the given probability density function

1Axis-aligned bounding box trees and adjacency information comes out-of-
the-box in FEniCS.

4

(pdf) there exists several different methods [26] to sample
random numbers from the distribution function. One of the
distributions often used in plasma simulations is the D-
dimensional shifted-Maxwellian distribution [8],

pdfM(v;vd, vth) =

(
1√

2πvth

)D
exp

(
−‖v − vd‖2

2v2
th

)
, (5)

of the velocity v, where vd is the drift velocity. There exists
several algorithms [27] to generate random numbers from the
shifted-Maxwellian distribution. One of these methods, which
is implemented in PUNC, is the inverse transform sampling
method [26], [28].

However, the particle velocity distributions in space plasmas,
as confirmed by spacecraft measurements [29], [30], are mostly
non-Maxwellian. It is, therefore, also desirable to simulate
plasma conditions where the velocity pdf is neither the
shifted-Maxwellian distribution, nor separable, and the inverse
transform sampling method may no longer be applicable. For
this purpose, in the following, we present a new and optimized
rejection sampling method to generate random velocities from
effectively any pdf with any form. Our method is based on the
standard rejection sampling method [31], which is a standard
Monte Carlo technique that uses a simpler proposal distribution,
ppdf , to generate samples. A sample v is then accepted with
probability pdf(v)/ ppdf(v), or discarded otherwise. This
process is repeated until a sample is accepted. The easiest
possible proposal distribution is a uniform distribution, see
Fig. 3. However, the main issue with this choice of ppdf , is that
many of the generated samples may be rejected. An improved
method is presented in [32]. However, this method is limited to
one-dimensional and log-concave distribution functions. Instead,
to decrease the number of rejected samples, and hence, increase
the efficiency of generating random velocities, we divide the
velocity domain into subdomains or bins. In each bin, a function
which approximates the target pdf will be constructed. The set
of all of these piece-wise functions constitutes the proposal
pdf. Below, we describe a simple way of constructing such a
proposal pdf, which is both efficient and it is easy to generate
random samples from. With random velocities generated from
the proposal pdf, the standard rejection sampling method will be
employed in order to accept those velocities whose distribution
is the target pdf.

Let pdf(v) be the target distribution, with v ∈ RD. Due to
numerical considerations, it is customary to introduce upper
and lower velocity cutoffs, such that v ∈ Ξ ⊂ RD. The
computational velocity domain Ξ, is partitioned into NB
disjoint (non-overlapping) bins {Bj}NB1 . Although there is
no restriction on how the velocity bins are constructed, for
simplicity, we have used a non-uniform Cartesian mesh. An
illustration of the partitioning of the velocity domain for D = 1
is given in Fig. 3.

The next step is to build the proposal pdf, which approxi-
mates pdf(v) in each bin Bj , and it is easy to sample from.
The simplest choice is a piece-wise constant function with
value

ξj = max
v∈Bj

pdf(v) (6)

ppdf(v)

ξ1

ξ2

ξ3 ξ4

ξ5

ξ6

B1 B2 B3 B4 B5 B6

v

pdf(v)

Fig. 3. Illustration of partitioning of velocity domain into disjoint bins, and
the corresponding proposal distributions in each bin for D = 1. The proposal
distribution ppdf(v), used in standard rejection sampling, is also shown.

in bin Bj . We have evaluated (6) by taking the maximum
of pdf(v) in the corners of Bj . This assumes that the pdf is
monotonous in each bin, see Fig. 3. The discrete (unnormalized)
cdf of the proposal pdf is then obtained by

ξ̄0 = 0, (7)

ξ̄k =

k∑

j=1

ξj Vol(Bj), k = 1, . . . , NB , (8)

where Vol(Bj) is the volume of bin Bj . Note that although
the pdf is D-dimensional, the discrete cdf is considered one-
dimensionally.

Once the proposal pdf and its cdf are constructed, random
velocities are generated by the following three steps:

1) Inverse transform step: Draw a uniformly distributed
random number r0 in (0, ξ̄NB). Find index k such that

ξ̄k−1 ≤ r0 < ξ̄k. (9)

The index k corresponds to bin Bk. Since ξ̄k is in
ascending order, a binary search makes this very fast.

2) Sampling step: Sample a random velocity uniformly
within Bk, i.e., vp ∼ U(Bk), and a uniformly distributed
random number r1 ∼ U(0, 1).

3) Rejection step: If

r1 ≤
pdf(vp)

ξk
,

then accept vp. Otherwise, reject vp and go back to step
1.

With this method, owing to close tightness between the
proposal and target pdfs, the majority of sampled velocities
are accepted. Another possible way of constructing a proposal
pdf would be using piece-wise linear hyperplanes tangent to
pdf(v), but this will not be considered here.

B. Initial Conditions

For each species the simulation domain Ω is initially
populated with a prespecified number of simulation particles.
By default, a uniform probability distribution U(Ω), is used to
generate a random position for each particle in the simulation

5

a1

a2
a3

n̂f

v⊥n̂f
v‖

v

Fig. 4. Illustration of tangential and normal components of a velocity vector.
Here, n̂f is the outward-pointing (out of Ω) unit normal vector, and v⊥ =
v · n̂f .

domain. However, PUNC offers the user to specify the initial
probability distribution function for the position of particles
of each species. Given a probability distribution other than
the uniform distribution, the standard rejection sampling
method [31] is used to generate random particle positions.
In order to assign initial velocities to simulation particles, a
velocity probability distribution function must be specified for
each species. For the special case of a shifted-Maxwellian
distribution function the inverse transform sampling method is
implemented. For other types of velocity distribution functions
the optimized rejection sampling method in Sec. III-A can be
used.

C. Exterior Boundary Conditions

The exterior boundaries of the simulation domain are
assumed to be open. They are placed far away in terms of
Debye lengths from any object inside the domain, such that
any plasma disturbances caused by the presence of the objects
do not perturb the velocity distribution function of the ambient
plasma at the boundaries. Since the boundaries are open, plasma
particles may leave the domain, and new particles from each
species must be injected into the domain in accordance with
the velocity distribution function of the ambient plasma. We
note, however, that in some cases, such as a supersonic flow
around an object, acceptable results are attained even when the
velocity distribution is perturbed at the boundary [33]. Long
extending perturbations of the wake in supersonic flows can
lead to a local error at the downstream boundary, but it is
being carried out of the domain with the flow and does not
propagate upstream more than a few Debye lengths.

The injection process consists of first finding the number
of particles to be injected through each exterior boundary
facet, and then assigning a random position and velocity to
each particle. Let pdf(v) be the velocity distribution (with∫
RD pdf(v) dv = 1) for a given ambient plasma species with

particle number density n′. The flow of particles creates a flux
through the facet f per time ∆t and facet area ∆Sf , given by

Φf = ∆t∆Sfn
′v⊥, (10)

where, with reference to Fig. 4, v⊥ = v·n̂f . It is clear that only
particles that have v⊥ < 0 can enter the simulation domain.
Thus, the total number of particles entering the simulation

domain through the facet f with area ∆Sf , during a time-step
∆t can be found by taking the expectation value of (10), i.e.,

Np,f = ∆t∆Sfn
′
∫

RD−1

0∫

−∞

v⊥ pdf(v) dv⊥ dv‖, (11)

where v‖, as illustrated in Fig. 4, is the particle velocity tangent
to the facet.

For the shifted-Maxwellian velocity distribution, (11) evalu-
ates to an analytical expression [8], however, for other types
of distributions, if an analytical expression is not attainable,
Np,f must be obtained by numerically evaluating (11).

For each of the Np,f particles of each species, a uniformly
distributed random position on the facet must be generated.
In 2D, the exterior facet element is a straight line, and in 3D,
it is a triangle. Detailed descriptions of generating uniformly
distributed random points on a straight line or a triangle can
be found in, e.g., [8], [34].

Each generated particle must be given a random velocity
based on the velocity distribution function pdf(v), of the
corresponding ambient plasma species, before it is injected into
the simulation domain. The probability distribution function
for the particle flux through the exterior boundary facet f is
given by

pdff (v) =

{
−v⊥ pdf(v), if v⊥ < 0,

0, otherwise,
(12)

where v⊥ is the velocity component normal to the facet.
The optimized rejection sampling method, described in the
Sec. III-A, is then utilized to generate random velocities.

Once the random position xp and velocity vp for each
particle are generated, the particles must be injected through
the exterior facet and placed inside the simulation domain.
There exist different injection methods with different order
of accuracy [27], [35]. In the simplest (first-order accurate)
injection method, which ignores any forces acting on the
particles, the generated particles are placed inside the domain at
xp + rp∆tvp, where rp ∼ U (0, 1), to make sure the injection
is as continuous as possible by taking into account that particles
may have entered the domain during the entire last time-step
with a uniform probability in the range [xp −∆tvp,xp]. This
method is a good approximation if the plasma disturbances due
to the presence of objects inside the domain are negligible at the
exterior boundaries. In the presence of a uniform background
magnetic flux density, a more accurate (second-order) particle
injection can be obtained by using a Boris push [27]. For
general spatially and temporally varying electric field and
magnetic flux density, a third-order injection method has also
been suggested [27]. Because we assume that perturbations
do not reach the boundary, we have only implemented the
simplest method.

IV. CIRCUIT METHODS

In this section we present a general framework for circuits
between perfectly conducting objects in PIC codes, where
objects can be connected in an aribtrary circuit topology
through voltage and current sources. An example is shown

6

1

2

I12

3

4

5

6

V13

V46

V1

Fig. 5. Example of a simulation of three circuits consisting of six objects
(squares). Objects 2, 4, 5 and 6 have unknown potentials, whereas objects 1 and
3 have known potentials, the potential of object 3 obviously being V1 + V13.
The unknown potentials are solved self-consistently using accumulated charges.
The charges in the objects are collected from the surrounding plasma, as well as
being delivered through the sources. Note: For drifting plasma with background
magnetic flux density the outer boundary is not zero as indicated here, but
still Dirichlet.

in Fig. 5. Other components, such as resistors, inductors and
capacitors, can be implemented as voltage-dependent current
sources. Circuits in PIC codes have already been extensively
studied, although with less general support for circuit topologies.
Verboncoeur et al. [13] considered a series RLC-circuit between
the left and right boundary of a one-dimensional code. The right
boundary was grounded with a fixed zero potential. Vahedi et
al. [4] extended this to include objects represented as interior
boundaries in a two-dimensional domain. However, the circuits
were still limited to be between an object and a grounded node,
and not, for instance, between two floating objects. Especially
the case of an ideal voltage source between two objects poses
new challenges. The papers about SPIS [7], MUSCAT [3]
and PTetra [8] describe the problem of a satellite at a floating
potential, where parts of the satellite may be biased with respect
to the main body of the satellite. These support fairly generic
circuits.

There are also fundamental differences in the way circuits
are implemented. SPIS introduces a fairly generic ad-hoc
circuit solver in addition to the Poisson solver, that in essence
integrates the current collected by the plasma, Ic = CsatdV/dt,
to yield the potential at every time-step. This requires some
means of determining the satelite’s capacitance Csat. In SPIS
it can either be specified by the user, or can alternatively be
computed by evaluating Gauss’ integral equation for electric
charge at every time-step (the capacitance may vary due to
the plasma)2. Since Csat from the last time-step is used, the
temporal integration can only be first-order accurate. While this
can be sufficient in many cases, we choose to focus on methods
where solving the unknown potential is an integral part of the
field solver, and which therefore do not have this inherent
limitation. Structured, rectangular methods also use special
techniques for enforcing interior boundaries. Verboncoeur uses
a boolean masking of grid nodes on the boundary, whereas
MUSCAT uses the capacitance matrix method by Hockney

2In addition to the scientific publications, the official SPIS documentation
is available on http://spis.org.

and Eastwood [17]. These techniques are not necessary on
unstructured methods, and are therefore considered outside the
scope of this paper. Other differences are highlighted throughout
the text, but we mention already now that our method is the
only one modelling circuits of arbitrary topology, in multiple
dimensions, entierly through enforcing the right boundary
conditions on a single solution of the Poisson equation instead
of relying upon linear decomposition. In the following we
derive these boundary conditions from first principles, in
continuous form, such as not to depend on any specific field
solver.

Objects in the plasma are represented on the mesh as a set
of interior boundaries {Γα} where α ∈ S = {1, 2, ...} is the
indexing of the objects. Implementation-wise, the circuitry is
specified by a list of voltage sources, and a list of current
sources, e.g., for the circuitry in Fig. 5:

vsources = [[0, 1, V1],
[1, 3, V13],
[4, 6, V46]]

isources = [[1, 2, I12]]

Each source consists of two numbers specifying which ob-
jects it is connected to, and a third number specifying the
voltage/current (which can be made to vary from time-step
to time-step, if desirable). A zero indicates that the source is
connected to system ground.

For a perfect electric conductor at rest3, electromagnetic
theory provides us boundary conditions for the tangential and
normal components of the electric field [36, p. 103]. These
can be written, respectively, in terms of the potential as:

∇φ× n̂ = 0, ∇φ · n̂ =
σ

ε0
, (13)

where σ is the surface charge density. Note that the unit normal
vector n̂ by our definition points into the object.

The first condition implies that the objects’ surface potential
is constant:

φ = Vα on Γα. (14)

However, in general, Vα is unknown. This leaves as many
unknowns as there are objects, and we need one constraint
for each of them in order to close the system of equations.
The simplest constraint is to fix the voltage of the objects to
a known voltage Vα. In this case (14) is a standard Dirichlet
boundary condition, and the Poisson equation can easily be
solved. If, on the other hand, Vα is not known a-priori, the
second condition in (13) must also be used. Integrating it over
the surface of the object reveals the Gauss equation in integral
form:

ε0

∮

Γα

∇φ · n̂ds = Qα. (15)

If Qα is known, this closes the system of equations. Notice
that in this case the boundary condition is no longer a Dirichlet
boundary condition, since Dirichlet boundary conditions require

3For a conductor not at rest, the electric field will not be zero inside the
conductor, but −v ×B, where v is the velocity of the conductor and B the
magnetic flux density. Consequently, there will be a tangential electric field
on the surface of the object, and the voltage will not be constant.

7

the solution to be known on the boundary [37, p. 311], [38,
p. 558].

Methods for circuits in PIC simulations differ on how they
compute Qα, as well as on how they impose (15). For one-
dimensional problems, (15) reduces to a Neumann boundary
condition and can be solved using standard techniques. This
is done by Verboncoeur et al. [13]. Vahedi et al. [4] (in their
method “without decomposition”) solve the Poisson equation
multiple times with Dirichlet boundary conditions, refining
the boundary value at each step. When (15) is discretized it
contains values of φ on the boundary, as well as inside the
domain. Using previous values of φ inside the domain they
compute a refined value of φ on the boundary to use in the
next iteration. Perhaps the most common approach, however,
is to decompose the potential,

φ = φ0 +
∑

α

Vαφα, (16)

and use the linearity of the Poisson equation. Here, φ0 is
the solution of the Poisson equation with φ0 = 0 on the
objects’ boundaries, while φα is the solution with φα = 1 on
object α’s boundary, φα = 0 on the other boundaries, and
ρ = 0. Since φ0 and φα have Dirichlet boundary conditions,
they can be solved using standard techniques. φα needs only
be solved during initialization, whereas φ0 must be solved
each time-step. Substitution of (16) into (15) yields a matrix
equation that can be used to compute Vα from φ0. φ can
then be obtained either by performing the summation in (16)
[4], or by solving the Poisson equation again with the correct
values on the boundaries [8]. The former is obviously faster,
but requires storing φα for all objects in memory, which
may be prohibitive for large meshes and complex geometries.
Spacecraft simulations, for instance, may consist of tens of
objects. We recognize (14) and (15) as a different kind of
boundary condition than Dirichlet or Neumann, and in Sec. V
we implement this for the finite element method.

To obtain Qα, we integrate the current Iα = dQα/dt into
the object to second-order accuracy:

Qn+1
α = Qnα + ∆tI

n+ 1
2

α , (17)

Notice that Iα is the sum of all currents into the object, includ-
ing charges collected from the plasma. Various contributors to
this current are discussed in the following subsections.

A. Current Collected from Plasma

A particle is deleted from the simulation when the cell-
crossing algorithm described in Sec. III finds that it has crossed
the boundary of an object. Moreover, the particles collected by
object α between timesteps n and n+ 1 add a charge ∆Q

n+ 1
2

c,α

to the object equal to that of all collected particles (the subscript
c stands for collection). Hence, the current collected from the
plasma is In+ 1

2
c,α = ∆Q

n+ 1
2

c,α /∆t.

B. Ideal Current Source

Current sources have a prescribed current which is readily
added to the collected current. For instance, object 2 in Fig. 5

Fig. 6. More complex circuits such as a voltage-driven RLC circuit (top) can
be represented as a voltage-dependent current source (bottom).

has a total current consisting of both the collected current and
that due to the current source: In+ 1

2
2 = I

n+ 1
2

c,2 + I
n+ 1

2
12 . Current

sources of course contribute with an equal current to both
objects they are attached to (unless one end is grounded), but
with opposite sign.

C. Voltage-Driven Series RLC Circuit

Ideal current sources are more generic than what they may at
first appear, since other circuit components can be considered
to be voltage-dependent current sources. As an example, we
shall demonstrate how a voltage-driven series RLC circuit
between two objects α and β can be replaced by an equivalent
voltage-dependent current source as depicted in Fig. 6.

The circuit is described by the following ordinary differential
equation [39, p. 355]:

L
d2Iαβ

dt2
+R

dIαβ
dt

+
Iαβ
C

=
dVα
dt
− dVβ

dt
− dVs

dt
. (18)

R, L and C are the resistance, inductance and capacitance in
the circuit, respectively, and Vs is the driving voltage. By using
appropriate finite differences centered around n− 1

2 this can
be discretized as,

L
I
n+ 1

2

αβ − 2I
n− 1

2

αβ + I
n− 3

2

αβ

∆t2
+R

I
n+ 1

2

αβ − In−
3
2

αβ

2∆t

+
I
n+ 1

2

αβ + I
n− 3

2

αβ

2C
=
V nα − V n−1

α

∆t

−
V nβ − V n−1

β

∆t
− dVs

dt

∣∣∣∣
n− 1

2

+O(∆t2). (19)

By rearranging this, In+ 1
2

αβ can be computed from previous
voltages at integer time-steps and currents at half-integer time-
steps. The derivative of the voltage source Vs may either have
an analytic expression which can be evaluated at n − 1

2 , or
the same discretization as for the other voltages can be used.
If the circuit is connected between an object α and system
ground instead of between two objects, Vβ = 0.

The numerical stability of the scheme is investigated using
von Neumann analysis [37, pp. 47–57]. Let Inαβ = I0

αβζ
n

where the superscript on ζ is an exponent and not an index.
Substituting this into (19) and omitting the source terms on

8

the right hand side results in a quadratic equation with the
following roots:

ζ =
1±

√
1− (1 + τ1 + τ2

2)(1− τ1 + τ2
2)

1 + τ1 + τ2
2

(20)

where

τ1 =
∆t

2

R

L
, τ2 =

∆t√
2LC

. (21)

|ζ| ≤ 1 for all real, positive τ1 and τ2 which means the scheme
is unconditionally stable. If the third term in (18) had been
discretized as In−

1
2

αβ /C instead of using the average of two
currents the scheme would have been unstable.

The resistor, inductor or capacitor can be removed (short-
circuited) from this circuit simply by setting R = 0, L = 0 or
C →∞, respectively. However, if all three are removed such
that only the voltage source is left, there is no longer any time
constant in the circuit, and the scheme breaks down. In fact,
whichever charge needs to move from object α to object β in
order to maintain the voltage of the voltage source should flow
instantaneously.

Another scheme for voltage-driven series RLC-circuits is
considered in Verboncoeur et al. [13]. That scheme directly
discretizes the charge instead of considering the circuit as a
current source, but have otherwise similar properties. That
scheme also breaks down when all circuit components are
short circuited. Finally, parallel circuits, e.g., a parallel RLC
circuit, can be obtained simply by summing over the currents
from each branch.

D. Ideal Voltage Source

We have seen that schemes for series RLC-circuits such
as the ones presented in Sec. IV-C and in Verboncoeur et al.
[13] break down when the components are short circuited and
we are left with only a voltage source. Vahedi et al. [4] also
present a scheme with a voltage source. In that case the voltage
source is in series with a capacitor, but again, it breaks down
when C →∞. This suggests using a separate method for ideal
voltage sources that are not in series with other components.

An object α has an a-priori known potential Vα when it is
connected to ground through a voltage source. Likewise, Vα is
known when the object is connected through a voltage source
to another object with known potential. This is the case for
objects 1 and 3 in Fig. 5, object 1 having the potential V1 and
object 3 the potential V3 = V1 + V13. For these objects (14)
reduces to a Dirichlet boundary condition, which can be solved
using standard techniques. Indeed, this is how for instance
Verboncoeur et al. [13] deal with a short-circuited RLC circuit,
since in their case, the circuit is always between an electrode
and ground. It is not so simple, however, when a voltage source
connects two objects with unknown potentials, such as objects
4 and 6 in Fig. 5. This could for instance represent a spacecraft
at an unknown floating potential, and a Langmuir probe with
fixed bias voltage with respect to the spacecraft. As such it is
a highly relevant practical problem. PTetra and MUSCAT are
able to solve such problems using linear decomposition of the
Poisson equation and solving it twice per time-step. We present

another method which formulates correct boundary conditions
to the Poisson equation directly, and which therefore can obtain
the solution in one step. To our knowledge there is no other
method that can do it.

We first observe that since currents flow instantaneously
through ideal voltage sources, Qα cannot be determined
(a-priori) for objects connected to voltage sources. As a
consequence, (15) cannot be used as a constraint to close
the system, and a modification of the method is needed. Let
SK be the set of (indices of) objects whose potential is known
a-priori, and SU be all other objects. We further partition SU
into Nz disjoint (non-overlapping) sets {SUz } where the objects
within each subset SUz are connected to one another through
ideal voltage sources. To be precise, an object in SUz cannot be
connected through an ideal voltage source to an object in SUy
where y 6= z, and the subsets should be as small as possible.
To consider a specific example, for Fig. 5, the partition would
be:

SU1 = {2},
SU2 = {4, 6},
SU3 = {5}. (22)

In PUNC this is represented similarly,

groups = [[2], [4,6], [5]]

and it is automatically derived from vsources by following
edges in a graph where nodes represent the objects and edges
the voltage sources. If a subset contains zero (ground) it is
removed from the list since this will be the set SK and not a
subset of SU .

A voltage source can instantaneously deliver an arbitrary
current to an object in SUz in order to maintain the prescribed
voltage difference. However, this current must also be drawn
from another object in the same set and thus does not affect
the total charge in the set. SUz is a charge-sharing set. We can
use this to form Nz constraints by taking the sum of (15) over
SUz :

ε0

∑

α∈SUz

∮

Γα

∇φ · n̂ds =
∑

α∈SUz

Qα, z = 1, ..., Nz. (23)

Implementation-wise the charge of each object is computed
separately using (17), ignoring the voltage sources. This causes
no error in the above expression. Once a solution φ has been
computed, (15) can be evaluated to obtain the correct charge
of each individual object. Currents through voltage sources can
also be inferred, should they be of interest.

Voltage sources also impose constraints. A voltage source
w constraints the voltage between two objects αw and βw to
be Vw. For Nw voltage sources:

Vβw − Vαw = Vw, w = 1, ..., Nw. (24)

Recall that Vαw is just φ on Γαw , and likewise for Vβw , so
this is indeed a constraint of φ. For a voltage source connected
between an object βw and system ground, Vαw = 0.

All together, there are equally many constraints of form (23)
or (24) as there are objects, and these provide closure for the

9

unknowns Vα. For simplicity, we shall write the constraints
generically as

gz(φ) = 0, z = 1, ..., |S| (25)

where for z = 1, ..., Nz these are the charge constraints (23),
and for z = Nz + 1, ..., |S| these are the potential constraints
(24). | · | denotes the number of elements in the set.

To summarize, the circuit method consists of 1) updating
the charge of each object every time-step using (17), taking
into account all currents except due to ideal voltage sources, 2)
solving the Poisson equation (2) with boundary conditions on
the objects given by equipotentiality (14), along with the con-
straints (25). The boundary condition on the exterior boundary
is not dictated by the circuit method. Finally, 3) correct the
charge on the objects by evaluating (15). This provides a general
framework for circuits that can in principle be used for any field
solver. However, equipotential boundary conditions with charge
and voltage constraints must be implemented specifically for
the method at hand. In Sec. V we develop these for the finite
element method.

V. MESH METHODS

To complete the boundary value problem we also need an
exterior boundary condition. This is independent of the circuit
method, and our choice is described below. The problem is
then discretized using the finite element method [18], [40],
taking into account the special boundary conditions outlined
in Sec. IV.

A. Exterior Boundary Conditions

In deriving open exterior boundary conditions, we consider
a decomposition of the plasma into a constant, homogeneous
background, plus local perturbations due to objects. If the
exterior boundary is sufficiently far away from any object, the
local perturbations in the electric potential can be considered
negligible at the boundary, and we only need to take into
account the background. This is a suitable boundary condition
for instance for studying spacecraft charging phenomena, where
the goal is a non-oscillatory, steady-state solution, possibly
with a background magnetic flux density due to the Earth.
Phenomena which are not local in nature, such as plane
wave propagation, would require a different treatment at the
boundary.

For the general case of a Maxwellian plasma with a
homogeneous background magnetic flux density B0 and a
constant drift velocity vd there must be a homogeneous
background electric field E0 consistent with the E×B drift
velocity:

vd =
E0 ×B0

‖B0‖2
. (26)

This implies that the component of E0 which is perpendicular
to B0 must equal −vd ×B0. Any parallel component of E0

must be zero; otherwise all particles in the domain would
be accelerated along this component and not maintain the
constant drift velocity of the background. There may of course
still be local variations in the electric field and bulk velocity,

for instance due to the acceleration caused by charged objects,
but not near the boundary where only the background plasma
is assumed to be important. Assuming the exterior boundary Γe
(see Fig. 1) to be sufficiently far away from any perturbations
in the fields, the potential at Γe can therefore be approximated
by the following Dirichlet boundary condition [8]:

φ = φ0
def
= (vd ×B0) · x on Γe, (27)

where x is the position on Γe and the integration constant is
arbitrarily set to zero (the forces only depend on the gradient of
φ anyway). Another approximation in this boundary condition
is the neglected particle noise which would have caused the
background potential to deviate from (27) at the boundary.
However, since the differential operator ∇2 in (2) smooths out
the particle noise in φ, this noise is of lesser concern, especially
for large numbers of simulation particles.

It is also worth mentioning that by transforming the reference
frame by a velocity −vd, i.e., to the frame of the plasma, the
outer boundary simply becomes zero. However, this leads to a
gradient −vd×B0 in the potential of the objects, which would
complicate the description of multiple, connected objects.

Were we to use (only) Neumann or periodic outer boundaries
instead of Dirichlet boundaries, a voltage source could be used
to prescribe the voltage on one of the objects, since otherwise,
the solution would not be unique.

B. Discretization

Assuming ρ ∈ L2(Ω) and that the boundaries are sufficiently
smooth, the solution φ is in the Sobolev space H1(Ω) [18,
p. 92]. More specifically, for our problem with objects and
circuits, it is in a subspace H1

V (Ω) ⊂ H1(Ω) constructed to
fulfill the exterior boundary condition, equipotentiality, charge
constraints and potential constraints:

H1
V (Ω) = {φ ∈ H1(Ω) :φ = φ0 on Γe,

φ = const on Γα, ∀α ∈ S,
gz(φ) = 0, z = 1, ..., |S|}. (28)

Using standard techniques [18, pp. 26–30], the boundary value
problem can then equivalently be stated as the variational
problem of finding φ ∈ H1

V (Ω) such that

a(φ, ψ) = 〈ρ, ψ〉, ∀ψ ∈ H1
0 (Ω), (29)

where,

a(φ, ψ) = ε0

∫

Ω

∇φ · ∇ψ dx, 〈ρ, ψ〉 =

∫

Ω

ρψ dx, (30)

and,

H1
0 (Ω) = {φ ∈ H1(Ω) : φ = 0 on ∂Ω}. (31)

To solve this, the domain is first partitioned into an unstruc-
tured mesh using, e.g., Gmsh [9]. H1(Ω) is then discretized
into a finite dimensional space with basis functions {ψj(x)}
such that members of this space can be written in terms of
their coefficients {φj} as

φ(x) =
∑

φjψj(x). (32)

10

We use the Lagrange finite element spaces CGr of continu-
ous, piecewise polynomials of order r. The mesh nodes xi and
basis functions ψj of this space are such that ψj(xi) = δij ,
where δij is the Kroneker delta, and varying polynomially of
order r within each cell. Substituting this into (29) and using
the linearity of a reveals a discretized version of the variational
problem:

∑

j∈J
Aijφj = bi, ∀i ∈ I, (33)

where

Aij = a(ψj , ψi), bi = 〈ρ, ψi〉, ∀i ∈ I, ∀j ∈ J . (34)

Here, J is the set of (indices of) all basis functions, and I is the
subset being zero on the boundaries, i.e., those corresponding to
H1

0 (Ω). Since the latter set is smaller, the system of equations
is as of now underdetermined. We shall constrain the solution
space in subsequent sections by strongly imposing the boundary
conditions, and thereby close the system of equations.

C. Exterior Boundary Condition
The exterior Dirichlet boundary condition is imposed in the

standard way [40, pp. 201–203]. For CGr elements we have
that on a boundary node xi, φ(xi) = φi, and since φ = φ0

on Γe we set φi = φ0(xi). In the system of equations this
means:

Aij = δij , bi = φ0(xi), ∀i ∈ Ie, ∀j ∈ J , (35)

where Ie is the subset of basis functions being non-zero on
Γe.

D. Interior Boundary Conditions – Equipotentiality
Equipotentiality on an interior boundary Γα means that φi

are equal for all nodes on Γα. We propose the following method
to achieve this: Let nodes i and j be neighbors if they are
nodes on a common cell. Let Ni be the set of all neighbors
of node i also on Γα. We would like to set φi to the average
of all its surrounding boundary nodes, i.e.,

φi =
1

|Ni|
∑

j∈Ni
φj , (36)

for all φi on Γα except one. To omit one is crucial, since
otherwise the equations would be linearly dependent. In matrix
terms this means,

Aij =





|Ni|, j = i

−1, j ∈ Ni
0, otherwise

, bi = 0, (37)

∀i ∈ Iα,∀j ∈ J ,∀α ∈ S, where Iα is the set of all basis
functions being non-zero on Γα except one. We shall denote
the index of the remaining one by iα for later. A more naïve
approach would be to set one boundary node equal to another,
and so forth. However, it would be cumbersome to make sure all
equations are linearly independent, and that any equation only
consists of neighboring nodes. With the proposed method, the
sparsity pattern normally used in finite element discretization is
preserved. Moreover, the method is agnostic of dimensionality
and the order r of the CGr space.

E. Interior Boundary Conditions – Charge Constraints

Finally, there is one row iα missing in the matrix equation for
each object α, and these are the charge and potential constraints.
We shall take the charge constraints as the first Nz of these
rows. They are found by substituting (32) into (23):

Aij = ε0

∑

α∈SUz

∮

Γα

∇ψj · n̂ds, bi =
∑

α∈SUz

Qα, (38)

i = iz, z = 1, ..., Nz,∀j ∈ J .

F. Interior Boundary Conditions – Potential Constraints

To impose the Nw potential constraints in (24), we pick a
node kw on Γβw and another node lw on Γαw , and require
φkw − φlw = Vw, for each voltage source w. The coefficients
of these equations go into rows iα, with α-indices succeeding
those of the charge constraints:

Aij =





1, j = kw

−1, j = lw

0, otherwise
, bi = Vw (39)

i = iNz+w, w = 1, ..., Nw,∀j ∈ J . For a voltage source
between βw and ground, −1 is replaced by 0. The charge and
potential constraints unfortunately do not preserve the sparsity
pattern of a common Dirichlet problem. Nevertheless, we have
had success in solving this matrix equation using various linear
algebra solvers as presented in Sec. VII.

Since the stiffness matrix A remains unaltered between time-
steps, its assembly and the computation of the preconditioning
matrix are done only before the first time-step. Moreover, since
the potential is assumed to change only by a small amount
during ∆t, the solution from the previous time-step is used as
an initial guess to speed up computations.

G. Electric Field

Once φ is determined, the electric field E = −∇φ can be
obtained. We note that with φ ∈ H1(Ω), the electric field will
naturally be found in [L2(Ω)]D. There are different methods
to compute the electric field. In Sec. VII-B, we shall do a
comparison study of five different methods, all available in
PUNC. They are briefly described below:

1) The electric potential is approximated using continuous
linear Lagrange elements of order one, i.e., φ ∈ CG1(Ω).
In this case the gradient is computed naturally using
discontinuous Lagrange elements of order zero, and
we use E ∈ [DG0(Ω)]D. The gradient is found by L2-
projection [14, pp. 19–21]: find E ∈ [DG0(Ω)]D, such
that∫

Ω

E ·Ψ dx =

∫

Ω

−∇φ ·Ψ dx, ∀Ψ ∈ [DG0(Ω)]D.

(40)
This is equivalent to evaluating (−∇φ)T in each cell T ,
which makes it computationally cheap.

2) In order to have a continuous electric field in the
entire domain, we choose instead E ∈ [CG1(Ω)]D. The
gradient is again found by L2-projection, but with E

11

and Ψ in [CG1(Ω)]D. In this case one must solve the
variational form of the projection, which is more costly.

3) To obtain higher accuracy when computing the electric
field, we may solve Poisson’s equation (2) using second
order continuous Lagrange elements, i.e., φ ∈ CG2(Ω).
The electric field can then be obtained by projecting −∇φ
onto [CG1(Ω)]D. Again one must solve the variational
form, exactly as the method above, only now with φ
from a higher order space.

4) We choose again E ∈ [CG1(Ω)]D and φ ∈ CG1(Ω).
However, we now divert from the projection method and
use interpolation instead. For each mesh node xj , and
the set of all cells sharing the vertex xj , i.e., Mj =⋃ {T ∈ Ω;xj ∈ T}, calculate the arithmetic mean (AM)
of the constant electric fields in each cell of Mj [28]

E(xj) =
1

|Mj |
∑

T∈Mj

(−∇φ)T . (41)

Here the right hand side −∇φ ∈ [DG0(Ω)]D is the
piecewise constant electric field, and |Mj | is the number
of cells in Mj . This method is also used by PTetra.

5) Another method which is commonly used for inter-
polating non-smooth and discontinuous functions with
continuous and piece-wise linear elements is the Clément-
interpolation (CI) [41]. Like the previous case, the
interpolation is done locally for each patch Mj in the
domain, and we still want to find E ∈ [CG1(Ω)]D.
However, to find the degrees of freedom in this space, i.e.,
E(xj) for all vertices j in the mesh, we now compute
local L2-projections of the electric field to the local
macroelements composed of Mj . Mathematically, for
each macroelement Mj we have exactly D degrees of
freedom and find E(xj) ∈ [DG0(Mj)]

D, such that for
all Ψ ∈ [DG0(Mj)]

D

∫

Mj

E ·Ψ dx =

∫

Mj

−∇φ ·Ψ dx. (42)

As such, the Clément-interpolation corresponds to a
weighted average

E(xj) =
1

Vol(Mj)

∑

T∈Mj

(−∇φ)TVol(T). (43)

VI. PARTICLE-MESH INTERACTION

As is mentioned in Sec. II, the volume charge density must
be determined from the position of particles relative to nearest
mesh nodes. In traditional structured PIC methods based on
finite differences, the charge of each particle inside a given grid
cell is distributed to the grid vertices by using some weighting
scheme. Using the finite element method, however, the charge
density must be expressed in one of the finite element spaces,
and is not necessarily defined at the mesh vertices.

In the following, we describe how the electric field is
obtained at the position of each particle and discuss several
weighting schemes, which may be utilized to determine the
volume charge density.

A. Force weighting

In finding the Lorentz force at the position xp of a given
particle, the electric field E needs to be interpolated using
the finite element representation [40, pp. 62]. For a simulation
particle at position xp, the electric field is obtained with regular
finite element interpolation:

Ei(xp) =
∑

j∈J
Ei(xj)ψj(xp), ∀i ∈ 1, . . . , D, (44)

where ψj are the finite element basis functions. To evaluate
this expression one must know which cell hosts the particle,
and the sum is then taken only across the basis functions being
non-zero in that cell. Note that the expression above is valid
for any finite element space, e.g., DG0, CG1 or CG2.

B. Charge density assignment

In general, given any appropriate basis function ψj associated
with the element node xj , the following weighting scheme can
be used to obtain the volume charge density at each element
node [42, p. 68]:

ρj =
1

Vj
∑

p

q′pψj(xp), Vj =

∫

Ω

ψj(x) dx, (45)

where Vj is simply a weighted volume of the cells surrounding
node xj . This also coincides with the scheme considered for
curvilinear coordinates in [43] but with finite element basis
functions as weight functions.

As a first step, a finite element function space must be
specified. The choice of the function space depends on the
desired numerical accuracy and efficiency. The simplest finite
element space for expressing the volume charge density is DG0,
where a single constant value is assigned to ρ in each cell
element, and it is discountinuous from cell to cell. The error of
this method is O(h), which will naturally put restrictions on
the accuracy of the electric potential, and hence, the electric
field. Among the Lagrangian family of continuous elements,
only first order Lagrangian basis functions are appropriate
for weighting of particle charges to the element nodes. This
is simply due to the fact that higher order Lagrangian basis
functions might be negative in some regions of the cell elements.
Expressing ρ in the CG1 function space results in an error
of O(h2). To obtain higher order weighting, one may utilize
Bernstein basis functions, which have the desired property
of being non-negative and form a partition of unity [44]. In
PUNC, the user can choose to express ρ in either DG0 or CG1.
Bernstein elements are not implemented in PUNC and are not
considered further.

For CG1, the weighted volume can also be easily computed
as [42, p. 69]

Vj =
1

D + 1

∑

T∈Mj

Vol(T). (46)

This also happens to be an approximation of the volume of the
Voronoi cell centered at node xj , provided the mesh is nearly
regular [45], [42]. This point of view is taken in [8].

12

−6 −3 0 3 6
−3

0

3

Γ1 Γ2

x

y

Fig. 7. Domain with two unit-radii circles (actually inscribed polygons) used
for validation of the Poisson solver.

VII. NUMERICAL EXPERIMENTS

Three numerical experiments are performed using PUNC.
First, convergence of finite element Poisson solvers taking
into account objects is studied. Second, different methods of
computing the electric fields are compared. And finally, a
validation of a full PIC simulation of a spherical probe at
its floating potential. Throughout these examples we change
solvers, preconditioners, dimensionality and order of discretiza-
tion with ease. This demonstrates the unique flexibility in
PUNC compared to other PIC codes, much of which is inherited
from Python and FEniCS.

A. Multi-Object Poisson Problems

In order to study accuracy and convergence of the method
of solving Poisson’s equation with objects and various types
of constraints, we consider a 2D test case with two circular
objects and a rectangular outer boundary like the one depicted
in Fig. 7. The source term is inhomogeneous, ρ/ε0 = 100y,
to properly test that the solution is indeed constant on the
object boundaries. Since analytical solutions are generally not
available for such exotic configurations, a numerical reference
solution φr ∈ CG3(Ω) was made on a fine mesh using standard
Dirichlet boundary conditions on all boundaries: V1 = 1 V
on the left object, V2 = 2 V on the right object, and 0 V
on the outer boundary. Then, the charges Q1 and Q2 of the
objects were determined by numerical evaluation of (15). We
emphasize that this reference solution only employs standard
FEM techniques. With the charges computed from the reference
solution, we are able to formulate an equivalent problem. In
the equivalent problem, there is a voltage source V12 = 1 V
between the objects, and the objects are co-floating with a
known total charge of Q1 + Q2. This problem tests both
charge and voltage constraints (implementation-wise we put the
whole charge on object 1 to make sure the voltage constraint
is actually applied). To summarize, we have two equivalent
problems, a standard Dirichlet problem (fixed potential), and a
floating potential problem using our method with both voltage
and charge constraints. To test our method we solve φ for
the floating potential problem on CG1(Ω) and CG2(Ω) for

increasingly fine meshes, and compute the L2 error norm [40,
pp. 17]:

‖φ− φr‖L2
=

(∫

Ω

(φ− φr)2 dx

) 1
2

. (47)

For evaluation of this integral φr is interpolated onto the same
mesh as φ, although still of third order. For comparison, we
also solve the standard Dirichlet problem on CG1 and CG2 for
increasingly fine meshes. The solutions in this experiment
were obtained using Incomplete LU (ILU) preconditioned
Bicongjugate Gradient Stabilized (BiCGSTAB) linear algebra
solver.

A couple of remarks should be made concerning the
mesh refinements. First, replacing a curved boundary by line
segments is a first order approximation and this will limit the
solution to first order regardless of which finite element space
is used on the mesh [18, p. 239]. To avoid this restriction,
the objects considered are not actually circles, but regular
convex polygons with the same number of segments on every
refinement of the mesh as on the reference solution. Second,
every mesh but the coarsest is made by bisecting the edges of
the next coarser mesh (uniform refinement). This ensures that
the mesh gets refined throughout the domain. Simply changing
the resolution and regenerating the mesh will not suffice, since
the cell size close to the object may be limited by the object’s
geometry, rather than desired resolution.

Since it is instructive to consider what happens to the
convergence as varying number of segments are used in the
polygons, we consider both 5-, 20- and 70-gons, which leads
to 226, 282 and 642 cells in the coarsest mesh, respectively.
This mesh is refined 4 times (each quadrupling the cell count)
and the reference solution is computed on the 6th refinement.
It is important that the reference solution is on a much finer
mesh, since otherwise the computed charge may not be accurate
enough to properly demonstrate convergence. The resulting
convergence plots are seen in Fig. 8.

Overall, the solutions seem more accurate for finer meshes,
but admittedly, the error is not necessarily O(h2) for CG1

and O(h3) for CG2 which might have been anticipated. It is
interesting to observe that this reduced rate of convergence is
not exclusive to our method, but is in fact present even for the
standard Dirichlet FEM method (fixed potential)! Notice for
instance that no solution has even quite O(h2) for 5 segments.
Increasing the number of segments to 20 appears to be good
enough to achieve O(h2) accuracy, whereas 70 segments are
needed for O(h3).

We offer an explanation of this behavior. If order P elements
are used to solve a Poisson problem with Dirichlet boundary
conditions, it can be shown that the error is O(hP+1) if
the exact solution is in HP (Ω) [18, pp. 90–92]. For smooth
boundaries or convex polygonal boundaries, the exact solution
can be proved to be in H2(Ω) when the source term ρ/ε0

is in L2(Ω) [18, pp. 92–93]. Hence O(h2) or O(h3) can be
achieved using first or second order elements, respectively.
However, as Johnson points out, when the boundary Ω has
corners with angles greater than 180°, e.g. when the domain
has holes, this is not generally the case [18, pp. 92–93].
Since we have no guarantee of the regularity of the exact

13

10−1

h

10−5

10−3

10−1

101

||φ
−
φ
r
|| L

2 O(h2)

O(h3)
CG1, floating

CG1, fixed

CG2, floating

CG2, fixed

a) 5 segments (252° angles)

10−1

h

10−5

10−3

10−1

101

||φ
−
φ
r
|| L

2 O(h2)

O(h3) CG1, floating

CG1, fixed

CG2, floating

CG2, fixed

b) 20 segments (198° angles)

10−2 10−1

h

10−5

10−3

10−1

101

||φ
−
φ
r
|| L

2 O(h2)

O(h3)
CG1, floating

CG1, fixed

CG2, floating

CG2, fixed

c) 70 segments (185° angles)

Fig. 8. Rate of convergence of the solution φ of the Poisson equation on a
domain with holes for our method (floating) and the standard Dirichlet FEM
problem (fixed).

solution, we have no guarantee of the rate of convergence.
This limitation is important, because it applies to all PIC codes
using (conventional) finite element methods with objects inside
the domain, thereby being non-convex. This includes codes
such as SPIS [7] and PTetra [8].

Intuitively, one might expect that as the angles of the interior
boundaries decrease towards 180°, the numerical solution
should become more accurate. From Fig. 8 this appears to
be the case; the more segments, the less the angles on the
object boundaries will overshoot 180°, and the better the
rate of convergence. We remark that this is only one case
study, and that convergence may depend on other simulation
parameters as well. Nevertheless, it demonstrates that up to
O(h3) convergence is achievable under the right circumstances,
but that generally, convergence will take place at a reduced rate.
We also point out that in the cases of reduced convergence, i.e.,
when CG1 or CG2 are used on 5 segments or when CG2 are
used on 20 segments, it is not clear which method is actually
closer to the truth, since the standard Dirichlet method is used
as reference.

We suggest further studies to resolve the reduced conver-
gence of plasma–object interaction simulations using FEM-PIC
methods. Meanwhile, when the reduced rate of convergence
can be tolerated and compensated for by a finer mesh, FEM-
PIC codes can still produce valuable results and be the method
of choice. Indeed, SPIS and PTetra have already proven useful
in a variety of applications requiring great flexibility in mesh
geometry, and a full PIC simulation demonstrating the validity
of PUNC is presented in Sec. VII-C. For better convergence,
smoother object boundaries is advisable.

B. Comparison of E-field Methods

To compare the order of accuracy of the electric field
obtained by the methods introduced in Sec. V-G, we will
in the following consider the simple case of a closed system
of two electrically conducting concentric spheres, where the
analytical solution is easy to obtain. The inner sphere has a
radius a = 0.1 m, and the outer sphere a radius b = 1.0 m.
The space between the spheres is assumed to be empty, and
the potential on the spheres is set to Va = 1 V and Vb = 0 V,
respectively. The analytical solution of the electric field is given
by [46]

Ee =
(Va − Vb)abr

(b− a)r3
, (48)

where r = ‖r‖ is the radial distance measured from origin. In
order to compare the convergence of the different methods,
the problem is solved on a sequence of five meshes with
increasing number of cells. The error field used here is defined
as e = Ee−Eh, where Ee and Eh are the exact and numerical
solution of the electric field, respectively. The error is measured
using the L2 norm, which is defined by [40, p. 17]

‖e‖L2
=

(∫

Ω

e · edx

) 1
2

. (49)

The L2 error norms ‖e‖L2 versus minimum edge-length h for
the different methods are displayed in Fig. 9. As expected,
using a piecewise constant electric field (DG0) is the least

14

accurate, with approximately a first-order rate of convergence.
All other methods have a continuous, piece-wise linear electric
field. However, the methods of using the arithmetic mean (AM),
Clément-interpolation (CI) and L2-projection from CG1 to CG1

are still only first-order accurate. This is to be expected, since
φ is only second-order accurate, and its gradient can at most
be one degree lower [18, pp. 90–92]. The same is true for
finite difference methods, where the error of φ is divided by
the step-size when taking the gradient. As a consequence, the
acceleration of particles is spatially only first-order accurate in
PIC codes with second-order accurate Poisson solvers, which
includes most electrostatic PIC codes. To have second-order
spatial accuracy in all quantities, the code must therefore have a
third-order accurate Poisson solver. Indeed, when φ is solved to
third-order accuracy on CG2, the electric field can be computed
to second-order accuracy for instance by L2-projection. We
remark that again the domain is non-convex, but having a
smooth interior boundary, proper accuracy is achieved.

The DG0 method is the cheapest, followed closely by the
AM and CI methods. L2-projection from CG1 to CG1 is about
twice as time-consuming, but does not lead to better results
than AM or CI. L2-projection from CG2 to CG1 was actually
found to be somewhat more efficient than from CG1 to CG1,
but at the same time, it requires solving Poisson equation on
CG2, which makes the Poisson solver roughly four times as
time-consuming. To conclude, the AM method is recommended
for most use cases due to its simplicity and improved accuracy
at negligible cost compared to DG0. When a higher order of
accuracy is required the potential must be third-order accurate
and an L2-projection to CG1 can be used. If discontinuous
electric fields can be accepted, L2-projection to DG1 would
likely be faster, although not investigated here.

C. Floating Potential of Spherical Probe

Laframboise [47] gives the relationship between applied
voltage w.r.t. the background plasma and collected current
for spherical probes with a significant radius compared to
the electron Debye length λDe. In this test we consider a
spherical probe of radius ri = λDe. We choose the outer
boundary to ro = 10λDe to make sure the outer boundary
is sufficiently far away from any perturbations in the plasma,
since this is an assumption of the boundary condition. The
mesh (generated using Gmsh) consists of 37 510 tetrahedral
cells, and has a resolution of 0.2λDe at the probe and 2λDe at
the outer boundary. Moreover, we use CG1 for both ρ, φ and
E, using the L2-projection for E. φ is solved using Algebraic
Multigrid (AMG) preconditioned Generalized Minimum Resid-
ual (GMRES) linear algebra solver. The simulation is initialized
with 300 000 simulation particles of each species (electrons
and protons) using the inverse transform sampling, and in
subsequent time-steps particles are injected using the optimized
rejection sampling. The particles are Maxwellian distributed
without drift, and the species are of equal temperature. The
time step is taken to be 0.05ω−1

pe where ωpe is the electron
plasma frequency.

With this setup, we demonstrate good agreement with the
results of Laframboise [47]. We do this in two different ways:

10−2

h

10−4

10−3

10−2

10−1

||e
|| L

2

O(h)

O(h2)

DG0

CI

AM

CG1 → CG1

CG2 → CG1

Fig. 9. The L2 error norm versus minimum edge-length h, of the electric
field computed by the methods outlined in section Sec. V-G. The mesh was
generated by Gmsh (version 3.0.5) with five different resolutions on the outer
sphere, {1/5, 1/10, 1/20, 1/40, 1/80}, and the inner sphere, {1/30, 1/60,
1/120, 1/240, 1/480}, resulting in the following number of tetrahedral cells:
{7 463, 48 852, 340 714, 2 708 950, 20 877 296}.

First, we fix the potential of the probe to 2kBTe/e using a
voltage source. Here, e and Te are the elementary charge and the
electron temperature, respectively. According to Laframboise
this should yield a collected current of I = −2.945I0 in
steady-state where I0 = ene

√
8πkBTe/me. me and ne are

the electron mass and density, respectively. Fig. 10 shows the
result of this simulation (gray) along with the current predicted
by Laframboise (dashed black). As mentioned in Sec. II-A the
reduced number of particles in simulations enhances the noise,
which is clearly the case in this simulation. Nonetheless, by
employing an exponential moving average filter with relaxation
time of 10ω−1

pe (blue) we are able to see that the result is
indeed in good agreement with Laframboise. For reference,
the algorithm updating the host cells of the particles (Sec. III)
counted on average 0.154 cell crossings per particle per time-
step for this simulation. This is indeed a very low mean
recursion depth.

Second, instead of fixing the potential, the potential is left
floating and a current of I = −2.945I0 is pulled from the
probe using a current source. At steady state, one expects the
probe to collect the same current from the surrounding plasma
(otherwise charge would build up). By observing the collected
current in Fig. 11, it is evident that this is the case. Then,
according to Laframboise [47], one expects the potential to
settle at 2kBTe/e. The simulation result in Fig. 12 agrees well
with this. The methods described herein are thus capable of

15

0 100 200 300 400 500 600

Time
[
ω−1
pe

]

−5

−4

−3

−2

−1

0
C

u
rr

en
t

[I
0
]

Fig. 10. Current collected by object connected to voltage source. Both raw
(gray line) and smoothed data (blue line) are shown. Horizontal dashed line
indicates a theoretical expectation.

producing correct kinetic results in plasma physics, including
when the floating potential is self-consistently determined using
charge constraints.

VIII. DISCUSSION

The numerical experiments demonstrate the validity of the
method, as well as a limitation. Namely, it is capable of
reproducing kinetic results in plasma physics, but it does so
at a reduced order of accuracy for simulations of objects with
too sharp edges. This is necessarily also the case for other
FEM-PIC codes suitable for plasma–object interaction studies.
While this can be remedied using smoother objects, or one
can accept the reduction of accuracy, we do propose further
investigation into this topic to improve future plasma–object
interaction simulations.

It is also worthwhile to revisit some established results about
PIC simulations in the context of unstructured simulations
with objects. Let us start with temporal stability criteria.
Stability of the time-integration schemes used in the PIC
cycle is often studied using the von Neumann analysis or
an amplification matrix [17, pp. 96–106]. According to such
analyses, the leapfrog and Boris methods commonly used to
advance particle positions are stable when ω∆t < 2 for any
angular frequency ω present in the system [17, pp. 111–114].
Moreover, the RLC circuit schemes presented both in Sec. IV-C
and in Verboncoeur [13] are unconditionally stable by the von
Neumann analysis. These analyses, however, only considers the
time-integration separately, and do not take into account that
the driving (non-homogeneous) term is, in a PIC simulation,
indirectly dependent on the solution at previous time-steps.
This creates a feedback which may affect stability. Indeed,
Birdsall et al. found that the leapfrog scheme became unstable
due to collective effects when ωpe∆t > 1.62 [16, pp. 183–196],
despite the von Neumann stability criteria being fulfilled. This
derivation assumed a Maxwellian plasma. In the vicinity of
strongly attracting or repelling objects, however, the velocity
distribution is usually far from Maxwellian. The authors are

0 100 200 300 400 500 600

Time
[
ω−1
pe

]

−4

−3

−2

−1

0

C
u

rr
en

t
[I

0
]

Fig. 11. Current collected by object connected to current source. Both raw
(gray line) and smoothed data (blue line) are shown. Horizontal dashed line
indicates a theoretical expectation.

0 100 200 300 400 500 600

Time
[
ω−1
pe

]

0.5

1.0

1.5

2.0

V
o
lt

a
g
e
[k

B
T
e

e

]

Fig. 12. Potential of object connected to current source. Both raw (gray line)
and smoothed data (blue line) are shown. Horizontal dashed line indicates a
theoretical expectation.

not aware of any rigorously obtained criteria that guarantee
stability in the presence of objects.

Let us also consider effects due to the mesh. Birdsall et
al. derived the dispersion relation for a simulation plasma,
which incorporates a structured mesh. It turns out that the
mesh causes coupling between different wave modes (aliasing),
which results in a strong increase in kinetic energy (numerical
heating) when the mesh do not properly resolve the Debye
length [17, pp. 231–241], [16, pp. 175–181]. The heating causes
the Debye length to increase, until it is resolved by the mesh,
at which point the heating more or less stops. This effect
is also verified by others [48], [49], [50]. Accordingly, these
references suggest that the spatial step-size should be no more
than roughly 3 Debye lengths to avoid mesh instabilities, the
exact figure depending on the reference and the case considered.
We emphasize that all of these studies assumed a uniform,
structured, rectangular mesh and not an unstructured one. These
results should therefore not be applied naïvely to the methods
presented herein. Furthermore, the studies assumed cold or
Maxwellian plasmas. As already stated, the plasma is non-
Maxwellian close to objects.

16

To summarize, neither spatial or temporal criteria previously
established are, strictly speaking, applicable. This does not
necessarily mean that FEM-PIC simulations of plasma–object
interactions should be avoided, but that care should be exercised
to verify that the simulations produce physically meaningful
results. As a starting point, we recommend cell diameters of
roughly 1–2 electron Debye lengths, or a fifth of the radius
of curvature of the geometry, whichever is smaller. As for the
time-step, we recommend it to be small enough that particle
orbits (on average) have comparable spatial resolution as the
mesh, taking into account that particles may be accelerated
near objects. It should also be small compared to the plasma
period, say, a tenth. The simulations in Sec. VII-C are along
these guidelines, and have sound physical results. Finally, we
remark that even when the Debye length is sufficiently resolved,
randomly directed errors in the electric field causes a random
walk process, which means that some numerical heating always
occurs [17, pp. 316–318].

IX. CONCLUSION

We have created a finite element based particle-in-cell
method for plasma–object interaction simulations. This method
supports an arbitrary number of objects that can be connected in
arbitrary circuit topologies with voltage sources, current sources,
resistors, inductors and capacitors. The algorithm automatically
formulates mathematical constraints and embeds these into the
finite element stiffness matrix. In addition, this new method
does not rely on decomposing the Poisson equation, which
would require solving the Poisson equation twice per time-step,
or storing large amounts of field data in case of many objects.

The methods are implemented in PUNC. Whereas for
instance SPIS is a mature, high performance program with
a graphical user interface, PUNC is an experimental code,
intended for rapid prototyping and research on methods.
Being implemented using Python and FEniCS, it comes with
great flexibility, which is apparent from the wide range of
solvers, preconditioners, etc. considered herein. In particular a
comparison of methods for obtaining the electric field revealed
that the arithmetic mean method is as accurate as more costly
methods, if fist-order spatial accuracy is deemed sufficient. The
method is also agnostic of the polynomial order of the finite
elements, although we note that FEM-PIC codes in general
suffer from reduced order of accuracy when coarse objects are
present. Future efforts to improve this are recommended.

X. ACKNOWLEDGMENT

We acknowledge support from the 4DSpace Strategic Re-
search Initiative at the University of Oslo, and the Natural
Sciences and Engineering Research Council of Canada. Diako
Darian gratefully thanks Miroslav Kuchta for his help with
general finite element theory and details of FEniCS implemen-
tations throughout the course of this work.

REFERENCES

[1] W. J. Miloch, “Wake effects and mach cones behind objects,” Plasma
Physics and Controlled Fusion, vol. 52, no. 12, p. 124004, nov 2010.
[Online]. Available: https://doi.org/10.1088/0741-3335/52/12/124004

[2] Y. Miyake and H. Usui, “New electromagnetic particle simulation
code for the analysis of spacecraft-plasma interactions,” Physics
of Plasmas, vol. 16, no. 6, p. 062904, 2009. [Online]. Available:
https://doi.org/10.1063/1.3147922

[3] T. Muranaka, S. Hosoda, J. H. Kim, S. Hatta, K. Ikeda, T. Hamanaga,
M. Cho, H. Usui, H. O. Ueda, K. Koga, and T. Goka, “Development
of multi-utility spacecraft charging analysis tool (muscat),” IEEE
Transactions on Plasma Science, vol. 36, no. 5, pp. 2336–2349, Oct
2008.

[4] V. Vahedi and G. DiPeso, “Simultaneous potential and circuit solution
for two-dimensional bounded plasma simulation codes,” Journal of
Computational Physics, vol. 131, no. 1, pp. 149–163, 1997.

[5] M. J. Mandell, V. A. Davis, D. L. Cooke, A. T. Wheelock, and C. J. Roth,
“Nascap-2k spacecraft charging code overview,” IEEE Transactions on
Plasma Science, vol. 34, no. 5, pp. 2084–2093, Oct 2006.

[6] G. L. Delzanno, E. Camporeale, J. D. Moulton, J. E. Borovsky, E. A.
MacDonald, and M. F. Thomsen, “Cpic: A curvilinear particle-in-cell
code for plasma material interaction studies,” IEEE Transactions on
Plasma Science, vol. 41, no. 12, pp. 3577–3587, Dec 2013.

[7] J. F. Roussel, F. Rogier, G. Dufour, J. C. Mateo-Velez, J. Forest,
A. Hilgers, D. Rodgers, L. Girard, and D. Payan, “Spis open-source code:
Methods, capabilities, achievements, and prospects,” IEEE Transactions
on Plasma Science, vol. 36, no. 5, pp. 2360–2368, Oct 2008.

[8] R. Marchand, “PTetra, a tool to simulate low orbit satellite–plasma
interaction,” IEEE Transactions On Plasma Science, 2012.

[9] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-d finite element mesh
generator with built-in pre- and post-processing facilities,” International
Journal for Numerical Methods in Engineering, vol. 79, no. 11, pp. 1309–
1331, 2009. [Online]. Available: http://dx.doi.org/10.1002/nme.2579

[10] M. Rapp and I. Strelnikova, “Measurements of meteor smoke particles
during the ecoma-2006 campaign: 1. particle detection by active
photoionization,” Journal of Atmospheric and Solar-Terrestrial Physics,
vol. 71, no. 3, pp. 477 – 485, 2009, global Perspectives on the Aeronomy
of the Summer Mesopause Region.

[11] T. A. Bekkeng, E. S. Helgeby, A. Pedersen, E. Trondsen, T. Lindem, and
J. I. Moen, “Multi-needle langmuir probe system for electron density
measurements and active spacecraft potential control on cubesats,” IEEE
Transactions on Aerospace and Electronic Systems, pp. 1–1, 2019.

[12] T. A. Bekkeng, A. Barjatya, U.-P. Hoppe, A. Pedersen, J. I. Moen,
M. Friedrich, and M. Rapp, “Payload charging events in the mesosphere
and their impact on langmuir type electric probes,” Annales Geophysicae,
vol. 31, pp. 187–196, 02 2013.

[13] J. Verboncoeur, M. Alves, V. Vahedi, and C. Birdsall, “Simultaneous
potential and circuit solution for 1d bounded plasma particle simulation
codes,” Journal of Computational Physics, vol. 104, no. 2, pp. 321–328,
1993.

[14] A. Logg, K.-A. Mardal, G. N. Wells et al., Automated Solution of
Differential Equations by the Finite Element Method. Springer, 2012.

[15] M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg,
C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells, “The fenics
project version 1.5,” Archive of Numerical Software, vol. 3, no. 100,
2015.

[16] C. K. Birdsall and A. B. Langdon, Plasma Physics Via Computer
Simulation. Taylor & Francis Group, 2005.

[17] R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles.
Taylor & Francis Group, 1988.

[18] C. Johnson, Numerical solution of partial differential equations by the
finite element method. Studentlitteratur, 1987.

[19] G. Lapenta, “Particle simulations of space weather,” Journal of Compu-
tational Physics, 2012.

[20] J. P. Verboncoeur, “Particle simulation of plasmas: review and advances,”
Plasma Physics and Controlled Fusion, vol. 47, no. 5A, pp. A231–A260,
apr 2005. [Online]. Available: https://doi.org/10.1088/0741-3335/47/5a/
017

[21] G. W. Prölss, Physics of the Earth’s Space Environment: An Introduction.
Springer, 2004.

[22] H. L. Pécseli, Waves and Oscillations in Plasmas. CRC Press, 2012.
[23] ——, Fluctuations in Physical Systems, 1st ed. Cambridge

University Press, 8 2000. [Online]. Available: http://amazon.com/o/
ASIN/0521655927/

[24] H. Qin, S. Zhang, J. Xiao, J. Liu, Y. Sun, and W. M. Tang, “Why is
boris algorithm so good?” Physics of Plasmas, vol. 20, no. 8, p. 084503,
2013. [Online]. Available: https://doi.org/10.1063/1.4818428

[25] E. Süli and D. F. Mayers, An Introduction to Numerical Analysis, 1st ed.
Cambridge University Press, 9 2003.

17

[26] J. E. Gentle, “Transformations of uniform deviates: General methods,”
in Random number generation and Monte Carlo methods. Springer
Science & Business Media, 2013, ch. 4, pp. 101–109.

[27] K. Cartwright, J. Verboncoeur, and C. Birdsall, “Loading and injection
of maxwellian distributions in particle simulations,” Journal of Compu-
tational Physics, vol. 162, no. 2, pp. 483–513, 2000.

[28] R. Marchand and P. A. R. Lira, “Kinetic simulation of spacecraft–
environment interaction,” IEEE Transactions on Plasma Science, vol. 45,
no. 4, pp. 535–554, 2017.

[29] V. M. Vasyliunas, “A survey of low-energy electrons in the evening sector
of the magnetosphere with ogo 1 and ogo 3,” Journal of Geophysical
Research, vol. 73, no. 9, pp. 2839–2884, 1968.

[30] A. Lui and S. Krimigis, “Energetic ion beam in the earth’s magnetotail
lobe,” Geophysical Research Letters, vol. 10, no. 1, pp. 13–16, 1983.

[31] J. E. Gentle, “Transformations of uniform deviates: General methods,”
in Random number generation and Monte Carlo methods. Springer
Science & Business Media, 2013, ch. 4, pp. 113–124.

[32] W. R. Gilks and P. Wild, “Adaptive rejection sampling for gibbs sampling,”
Applied Statistics, pp. 337–348, 1992.

[33] D. Darian, W. J. Miloch, M. Mortensen, Y. Miyake, and H. Usui,
“Numerical simulations of a dust grain in a flowing magnetized plasma,”
Physics of Plasmas, vol. 26, no. 4, 2019.

[34] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Shape distri-
butions,” ACM Transactions on Graphics (TOG), vol. 21, no. 4, pp.
807–832, 2002.

[35] H.-C. Kim, Y. Feng, and J. P. Verboncoeur, “Algorithms for accurate
collection, ejection, and loading in particle simulations,” Journal of
Computational Physics, vol. 223, no. 2, pp. 629–642, 2007.

[36] D. K. Cheng, Field and Wave Electromagnetics, 2nd ed. Addison-Wesley,
1989.

[37] J. C. Strikwerda, Finite Difference Schemes and Partial Differential
Equations, 2nd ed. Society for Industrial and Applied Mathematics,
2004.

[38] E. Kreyszig, Advanced Engineering Mathematics, 9th ed. John Wiley
& Sons, Inc., 2006.

[39] J. W. Nilsson and S. A. Riedel, Electric Circuits, 7th ed. Pearson
Prentice Hall, 2005.

[40] A. Quarteroni, Numerical models for differential problems, 3rd ed.
Springer, 2017.

[41] P. Clément, “Approximation by finite element functions using local
regularization,” Revue française d’automatique, informatique, recherche
opérationnelle. Analyse numérique, vol. 9, no. R2, pp. 77–84, 1975.

[42] Y. N. Grigoryev, V. A. Vshivkov, and M. P. Fedoruk, Numerical" particle-
in-cell" Methods: Theory and Applications. Walter de Gruyter, 2002.

[43] J. Verboncoeur, “Symmetric spline weighting for charge and current
density in particle simulation,” Journal of Computational Physics, vol.
174, no. 1, pp. 421–427, 2001.

[44] M. I. Bhatti and P. Bracken, “Solutions of differential equations in
a bernstein polynomial basis,” Journal of Computational and Applied
Mathematics, vol. 205, no. 1, pp. 272–280, 2007.

[45] P. Frey and P. L. George, Mesh Generation: Application to Finite
Elements, 2nd ed. Wiley-ISTE, 4 2008.

[46] D. J. Griffiths, “Electrostatics,” in Introduction to electrodynamics, 3rd ed.
Prentice Hall, 1999, ch. 2, p. 105.

[47] J. G. Laframboise, “Theory of spherical and cylindrical langmuir probes in
a collisionless, maxwellian plasma at rest,” Ph.D. dissertation, University
of Toronto, 1966.

[48] H. Okuda, “Nonphysical noises and instabilities in plasma simulation
due to a spatial grid,” Journal of Computational Physics, vol. 10, no. 3,
pp. 475 – 486, 1972.

[49] C. K. Birdsall and N. Maron, “Plasma self-heating and saturation due
to numerical instabilities,” Journal of Computational Physics, vol. 36,
no. 1, pp. 1 – 19, 1980.

[50] L. Chen, A. B. Langdon, and C. Birdsall, “Reduction of the grid effects
in simulation plasmas,” Journal of Computational Physics, vol. 14, no. 2,
pp. 200 – 222, 1974.

Sigvald Marholm was born in Norway 1987. He
received an MSc in electrical engineering at the
Norwegian University of Science and Technology
(NTNU), Trondheim, Norway in 2012, and is cur-
rently pursuing a PhD in computational plasma
physics at the University of Oslo, Norway.

Diako Darian is a PhD candidate in Mechanics
at the Department of Mathematics, University of
Oslo, Norway. His research interests include scientific
computing, ionospheric plasma, dusty plasmas, and
object-plasma interactions.

Mikael Mortensen is currently working as a profes-
sor at the Department of Mathematics, University
of Oslo, where he is performing research into
several aspects of turbulence and Computational Fluid
Dynamics.

Richard Marchand is currently a Professor of
Physics with the University of Alberta, Edmonton,
AB, Canada, where he carries out research in com-
putational physics, space physics, and spacecraft–
environment interaction.

Wojciech J. Miloch received the M.Sc. degree in
space and plasma physics and the Ph.D. degree
from the University of Oslo, Norway, in 2006 and
2009, respectively. He is currently a professor and
head of 4DSpace Strategic Research Inititative at
the Department of Physics, University of Oslo. His
research interests include space and astrophysical
plasmas, space weather, plasma interactions with
finite sized objects, such as spacecrafts, probes,
or dust grains, complex plasmas and numerical
modeling.

