
Performance of Deep Learning in
Searches for New Physics

Phenomena in Events with Leptons
and Missing Transverse Energy with

the ATLAS Detector at the LHC

Mona Anderssen

Thesis submitted for the degree of
Master in Nuclear and particle physics

60 credits

Department of Physics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2020





Performance of Deep Learning in
Searches for New Physics

Phenomena in Events with
Leptons and Missing Transverse

Energy with the ATLAS
Detector at the LHC

Mona Anderssen



© 2020 Mona Anderssen

Performance of Deep Learning in Searches for New Physics Phenomena in Events with
Leptons and Missing Transverse Energy with the ATLAS Detector at the LHC

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/


Abstract

In this thesis we have searched for new physics phenomena predicted by Supersymmetry

and Dark Matter simplified models. Both traditional cut and count analysis and Machine

Learning(ML) based methods, such as Boosted Decision Trees and Neural Networks, were

performed. The analysed run-2 13 TeV data, corresponding to an integrated luminosity of

139 fb−1, were collected by the ATLAS experiment at the LHC between 2015 and 2018.

The training was performed on different compositions of mass splittings (difference between

the new particles involved in each new physics model) and features (low- and high-level

kinematic variables). To achieve a good performance, we made use of an advanced computing

infrastructure including both CPU’s and GPU’s. The results obtained have shown a better

performance of the ML methods as compared to the more traditional cut and count analysis,

especially in the low mass splitting region which so far has been a challenge for the cut and

count analysis. Slightly better sensitivities were obtained with BDT but neural networks

have so far not yet been fully exploited. Another future challenge.
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Introduction

The Standard Model (SM) [1] is a well known theory of particle physics lately further

confirmed after the Higgs boson was discovered at CERN in 2012 by the ATLAS [2] and

CMS [3] collaborations. The SM can describe all visible matter and contains matter particles,

quarks and leptons, and the fundamental forces acting between them. Even though the SM

can describe all the matter we can see around us, it can’t describe the whole universe. There

are of course many theories which attempt to addvers the shortcomings of the SM, but in

this thesis we mainly focus on Supersymmetry (SUSY) and non-SUSY Dark Matter (DM)

simplified models. SUSY is an extension of the SM which predicts that every particle in the

SM has a supersymmetric partner with equal quantum numbers, except for the spin. One

of the consequences of discovering SUSY may be that it provides a DM candidate, which we

are going to look more into in this thesis.

For many years the standard way to perform an analysis have been to simply apply cuts

kinematical variables, which efficiently discriminate new physics signal from SM background.

The set of cuts define signal regions, which are optimized to lead to the best sensitivity, i.e.

the highest signal over background ratio. However, these methods have limitations when

it comes to discovering and using correlations between variables. Cut and count methods

usually apply cuts evaluating one variable at the time or use so-called rectangular cuts evalu-

ating the correlation between maximum two variables. With computers and new algorithms

constantly being improved and developed, particle physicists have tried to look for other

possibilities to perform searches for new physics, namely by using Machine Learning (ML)

based methods and algorithms. ML methods, in contrast to the cut and count methods, can

investigate multidimensional correlations and place cuts using boundaries in higher dimen-
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sions. ML has therefore become very popular and is widely used in many fields of research.

In this thesis we explore Boosted Decision Trees (BDTs) and Neural Networks (NNs), and

compare the results against each other and with a more traditional cut and count analysis.

In chapter 1 a short introduction to the SM and new physics will be given. Chapter 2

contains a short presentation of the detector and the computing infrastructure to analyze 13

TeV data collected by the ATLAS experiment at the Large Hadron Collider.. We will then

move to the search for new physics with the cut and count method in chapter 3. The next

chapters (4 and 5) introduce Machine Learning algorithms and apply them to the searches

introduced in chapter 3. In the end present our results and compare the traditional and

ML-based methods in chapter 6 and conclude in chapter 7.
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Chapter 1

The Standard Model and

Beyond

Although the Standard Model (SM) of particle physics is one of the greatest triumphs of

modern physics, it cannot describe all physical phenomena observed in nature. There are

several shortcomings of the this model, which implies that we need an extension of the SM

to understand and explain these problems. There are several different suggested theoretical

solutions to these, and one of them is called supersymmetry (SUSY). SUSY introduces

multiple new particles as an extension to the SM particles, but no SUSY particle has so far

been detected. Many supersymmetric theories inlcude a weakly interacting massive particle

(WIMPs) and thus a candidate to explain the dark matter (DM) in our Universe, a brief

overview of which will be provided in this thesis. Before we discuss SUSY and DM, we begin

with a run-through of the SM.

1.1 The Standard Model

The current best description we have of the fundamental constituents of our Universe is the

Standard Model. It includes the elementary particles and the forces acting between them

and can explain all visible matter we have around us (sans gravity).
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The particles in the SM are organized in three generations, as shown in figure 1.1. It consists

of two different types of particles, namely fermions and bosons. Fermions are the matter

particles, and the bosons carry the forces that act between the fermions and are usually

called force particles.

The elementary particles interact via some force if they carry the charge corresponding to

the force. Only particles that are electrically charged interact via the electromagnetic force,

only particles with (weak) isospin interact via the weak force, and only particles with color

charge interact via the strong force.

1.1.1 Standard Model symmetries

Formally, the three interactions in nature are related to three different symmetry groups.

The collective symmetry group of the SM is often represented as

SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (1.1)

where SU(3)C is the symmetry group of the strong force1, SU(2)L is the symmetry group

of the weak force2, and U(1)Y is related to the electromagnetic force3. The Y represents

(weak) hypercharge, which is related to electric charge Q and the third component of the

isospin I3 through Y = 2(Q− I3).

Since SU(2) symmetry transformations are defined in terms of 2 x 2 matrices, they need a

two-dimensional vector to act upon. Analogously, the SU(3) transformations need to act

upon a three-dimensional vector. These vectors are referred to as SU(2) doublets and SU(3)

triplets.

1More precisely quantum chromodynamics (QCD), which is the quantum field theory of the strong
interaction. The C corresponds to color charge being conserved.

2With isospin I as the conserved quantity. The subscript L will be explained later.
3More precisely quantum electrodynamics (QED), which is the quantum field theory of the electromag-

netic interaction.
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Figure 1.1: An overview of the particles in the Standard Model [4].

1.1.2 Fermions

If we look at figure 1.1, we can see that there are 12 different fermions split up in two groups

called quarks and leptons, which again are split up into three generations. The lightest

quarks and leptons are in the first generation, and the most massive quarks are in the third

generation. All of the fermions are 1
2 -spin4 particles and differ by mass and electric charge.

They also obey the Pauli exclusion principle, which means that only one fermion can occupy

a given quantum state for any given set of quantum numbers.

Further, it is well known that parity5 is violated for the weak interaction. This can be

explained by introducing chirality which is, using projection operators PL and PR, defined

as

4Spin is an intrinsic property of all fundamental particles, which can be seen as some kind of internal
angular momentum.

5Parity is spatial inversion.
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PL =
1

2
(1− γ5) and PR =

1

2
(1 + γ5). (1.2)

From this, fermions can be separated into a left-chiral and right-chiral part, where only

the left-chiral part of a fermion is charged under the weak force (corresponding to the L in

equation 1.1). It is thus the left-chiral parts of fermions that are put into SU(2) doublets6.

Quarks

We have six different quarks in the SM, and they differ by mainly mass, but also charge

(both electrical and color charge). All up-type quarks, which are the three quarks in the

first row in figure 1.1, have electric charge +2/3, and all down-type quarks, which is in

the second row in figure 1.1, have electric charge -1/3. Since they carry a non-zero electric

charge, they interact via the electromagnetic force.

They can also interact with the weak force, which allows all possible combinations of quarks

that differ by one unit of charge in doublets:

(
uL
dL

)
,

(
uL
sL

)
,

(
uL
bL

)
,

(
cL
dL

)
,

(
cL
sL

)
,

(
cL
bL

)
,

(
tL
dL

)
,

(
tL
sL

)
,

(
tL
bL

)
. (1.3)

The two quarks in the first generation, namely up (u) and down (d), are the constituents of

the protons (uud) and neutrons (ddu) - which then combine in various ways to form atomic

nuclei. The second and third generation of quarks (charm, strange, top and bottom) are

more massive than the quarks in the first generation. Since the quarks in the second and

third generations are more massive, they need more energy to exist and will therefore decay

to lighter particles very fast.

Quarks also carry color charge, which allows them to couple to different gluons through the

strong interaction in quantum chromodynamics (QCD). Quarks are the only known particles

that interact with all the fundamental forces.

6The right-chiral parts are said to be SU(2) singlets, meaning that they are not affected bt the weak
force.
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Further, quarks can mix between generations, as described by the CKM matrix [1].

Leptons

Leptons are the other six fermions of the SM. Like quarks, they come in three generations

and can be arranged in doublets:

(
νeL
eL

)
,

(
νµL
µL

)
,

(
ντL
τL

)
. (1.4)

They also differ by mass and electric charge where the lower component has charge -1, and

the upper has no charge. Because of that, neutrinos only interact with weak bosons, while

for the electron, muon and, tau, electromagnetic interactions are also possible. In the SM

the neutrinos are assumed to be massless, but we know from neutrino oscillation experiments

that this is not true. However, exactly how the neutrinos acquire mass and why they are so

much lighter than all of the other particles in the SM is not yet understood.

Analogously to quarks, fermion mass and weak eigenstates do not coincide and they are

related by the PMNS matrix [1]. This phenomenon provides an explanation of neutrino

oscillations, where after some distance from the interaction point we measure a different

neutrino flavor.

1.1.3 Bosons

On the right-hand side of figure 1.1, the integer spin particles (spin-0, 1, 2) known as bosons

are shown. Bosons follow Bose-Einstein statistics and contain the force carriers for the

electromagnetic force, the weak force, and the strong force. If gravity was included in the

Standard Model, it would have been through an extra boson, the graviton (G). The graviton

is believed to have spin-2, which together with the Higgs boson that has spin-0 is the only

two bosons that differs in spin from the force carriers with spin-1. Higgs is also so far the

only scalar particle detected.
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The strong nuclear force

The strong nuclear force is mediated by the gluon (g) and couples to the three color charges r

(red), g (green), b (blue). Moreover, as suggested by the name, it has a very strong coupling

to quarks, and it is responsible for the fact that quarks do not appear as free, unbounded

particles. The gluon is massless, and unlike the other forces, it can couple with itself, as you

can see in the Feynman diagrams7 in figure1.2.

Figure 1.2: Feynman diagrams for the strong force vertices, where the curly lines represent
the gluons [5].

The electromagnetic force

The electromagnetic force is mediated by the photon (γ) and couples to all fermions with

electric charge, namely all the quarks and leptons except for the neutrinos. As for the gluon,

it has no mass, but since it is electrical neutral it cannot couple to itself.

7Feynman diagrams are a way to graphically represent interactions between particles.
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Figure 1.3: A Feynman diagram of the electromagnetic vertex, where the wiggly line repre-
sent the photon [6].

The weak nuclear forces

The weak nuclear forces are mediated by the W±-bosons and the Z0-boson. They couple to

all particles in the SM, and unlike the other force particles, they have mass. This feature is

explained in the GWS model [7] through a spontaneous symmetry breaking due to a non-

zero vacuum expectation value that adds an extra degree of freedom to otherwise massless

force carriers. It is also the only interaction known to allow flavor change, which means

that e.g., an up quark can become a down quark or a muon become an electron as shown

in figure1.4.

Figure 1.4: Feynman diagrams of the weak force vertices [8].

Note that the physical bosons γ, Z0,W± are not the mediators associated to the single

symmetry groups, but are instead a linear combination of those states explained by the

9



spontaneous symmetry breaking leading to the electroweak theory.

The Higgs boson

The final piece, the Higgs boson (H), that was missing in the SM was discovered in 2012

at CERN [2, 3]. The discovery gives increased credence to the SM and explains why the

weak force carriers, Z0 and W±, have mass. The fermion masses can also be explained by

couplings to the Higgs boson.

1.2 Beyond the Standard Model

As mentioned earlier, the SM is not enough to explain every phenomena observed in experi-

ments. There are several challenging aspects of the SM; for instance, many of the parameters

in the model are made to fit experimental data and do not come from theoretical principles.

The SM does not offer a solution to unify the framework with gravity. The large difference

between the weak energy scale and the Planck scale, known as the hierarchy problem, is

another shortcoming of the SM. Moreover, the SM does not provide any explanation for the

dark matter observed in our Universe nor does it explain the small, but non-zero, masses of

neutrinos.

Given these shortcomings, various theories have been proposed addressing some of the open

questions. Several extensions of the Standard Model exist, and there are pros and cons to

all of them. Furthermore, even though the search has been going on for years, no concluding

scientific evidence has been found to favor one particular SM extension over another. Below

we detail an outline of one possibility: Supersymmetry, which is often denoted SUSY for

short.

1.2.1 Supersymmetry

One of the most interesting theories is Supersymmetry (SUSY) [9]. Supersymmetry proposes

a symmetry between fermions and bosons. In SUSY, each SM particle has a superpartner

“sparticle”, which only differs from the particle by half a unit of spin. All other quantum
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numbers are the same. An illustration of the particles in SM and their superpartner in

SUSY can be found in figure 1.5.

Figure 1.5: An illustration of the content of particles in the SM and sparticles in SUSY [10].

In SUSY, we do not have to introduce any new gauge groups, which means we do not have

to handle any new fundamental forces. Because of this we can, in a way, say that we can

describe supersymmetry with the help of a supersymmetry operator Q that alters the spin

of the SM particles by 1/2 and commutes with the gauge transformations of the SM:

Q |fermion〉 = |bosons〉 , Q |bosons〉 = |fermions〉 . (1.5)

SUSY possibly provides a solution to the SM’s hierarchy problem, which involves the need

to reconcile the very different scales of electroweak symmetry breaking and the gravitational

Planck scale (MPl). SUSY allows the unification of the electroweak and strong interactions,

proposes dark matter particle candidates, and requires five Higgs bosons (three neutral and

two charged ones). One of these proposed DM particles is the lightest supersymmetric

particle (LSP) and is assumed to be stable. To make the LSP stable, we have constructed a

new quantum number called R-parity such that no SUSY particles can decay into only SM

particles. R-parity is defined as

PR = (−1)3B+L+2s (1.6)
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or

PR = (−1)3(B−L)+2s, (1.7)

where B is the baryon number8, L is the lepton number9 and s is the spin of the particle.

In addition to the LSP, we are going to look at some different SUSY particles in our processes,

namely neutralino and chargino. They are a mixture of the sparticle components photino,

zino, and neutral higgsino, and wino and the charged higgsino, respectively.

1.2.2 Dark matter

We have many unanswered mysteries in physics today, but probably the greatest one is

the nature of dark matter (DM) [11]. In the previous section’s SUSY processes, we have

seen that a ”consequence” of SUSY may give us some viable DM candidates, namely the

LSP neutralino. In this section, we will look at DM particles produced in a more simplified

model; that is, a non-supersymmetry model. In this model, we assume that we have a DM

mediator in addition to the DM particles in the final state. This mediator can be, among

others, a scalar or a vector. This process’s signature consists of detecting a well known SM

particle recoiling against missing energy-momentum carried away by DM particles.

8Baryon number is a conserved quantity in the SM and is defined by 1
3

(nq −nq̄), where nq is the number
of quarks and nq̄ .

9The lepton number tells us the difference between the number of leptons and anti-leptons. This is also
conserved in the SM.
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Chapter 2

LHC and ATLAS

The data used in this thesis comes from the ATLAS experiment at the LHC. In this chapter,

we briefly introduce the experiment and the accelerator as well as the computing infrastruc-

ture used to analyse the data. We will also get a small incite into the organization behind

the experiment and the accelerator, namely CERN.

2.1 CERN

The European organisation for nuclear research, CERN, started as a research facility for

mainly nuclear physics. It was built on the border between France and Switzerland near

Geneva in 1954. CERN has 22 member states, where Norway is one of the founding members,

but it welcomes people from all over the world to take part in the different experiments and

accelerator developments.

CERN quickly became the biggest and leading research centre in particle physics as well,

and the most famous discoveries done at CERN are from high energy particle collisions.

Some of the biggest discoveries at CERN are: the weak neutral currents mediated by the

hypothetical Z-boson in 1973 [12] and of course the discovery of the actual Z- and the

W±-bosons, mediators of the weak force in 1983/84 [13–15]. The most famous and recent

discovery is certainly that of a first scalar boson, the Higgs boson in 2012 by the ATLAS
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and CMS experiments [2,3]. The Higgs boson was the missing piece to confirm the Standard

Model of particle physics.

Throughout the years many different accelerators have been built at CERN. E.g. the Su-

per Proton Synchrotron (SPS), which are still in use, accelerates and collides protons and

antiprotons, and enabled the UA1 and UA2 experiments to discover the Z- and W-bosons.

The Large electron positron collider (LEP) was built in a 27 km long tunnel about 100 m

below ground and was the largest accelerator at the time. LEP allowed important SM preci-

sion measurements, in particular confirming the presence of exactly three low mass neutrino

flavours in the SM and stringent limits on the top and Higgs masses. The last run at LEP

was done in 2000 paving the road for the start of the building of the Large Hadron Collider

(LHC). LHC is the accelerator producing the proton-proton collisions being recorded by the

ATLAS detector and which have been used in the analysis presented in this thesis.

2.2 The Large Hadron Collider

The Large Hadron Collider (LHC) [16] is a 27km long particle accelerator about 100 meters

below ground and is the most powerful of its kind in the world. Since the LHC replaced

the other LEP-collider, the tunnel already existed which made the building a bit less com-

prehensive. The collider consists of superconducting magnets with accelerating structures

to boost the proton velocity close to the speed of light, in an environment cooled down to

1.85K (-271.3oC) to ensure superconductivity. The LHC accelerator is shown in figure 2.1

as part of a complex of CERN accelerators.
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Figure 2.1: An illustration of the accelerator complex at CERN [17]

The protons extracted from a hydrogen bottle go through smaller accelerators to gain more

energy before they, in the end, are injected in opposite directions into the LHC, which is

the biggest circle in figure 2.1. The particles get accelerated to about 99.99% of the speed

of light and a maximum energy of 6.5 TeV. In the end the two beams of protons collide in

the centre of four experiments around LHC, which are marked with yellow dots in figure

2.1, namely ATLAS, ALICE, CMS and LHCb.

The different experiments focus on different research goals. ATLAS (A Toridal LHC Appara-

tuS) and CMS (Compact Muon Solenoid) are multipurpose detectors mainly focusing on SM

measurements and searches for new physics, i.e. discovery of new particles and phenomena,

e.g. Supersymmetry and Dark Matter. The most famous achievement of ATLAS and CMS

is the discovery of the Higgs boson. ALICE (A Large Ion Collider Experiment) focuses on

heavy ion collisions with lead-lead and lead-proton to study the quark-gluon plasma. LHCb

(Large Hadron Collider beaty) focuses on processes related to b-quarks to precisely measure

CP violation and oscillation phenomena.
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At the LHC we focus on proton-proton collisions (and heavy ion collisions) to study various

high energy final states via electroweak and strong interactions with the hope to discover

new phenomena. The internal structure of the proton allows to register a large amount of

events in a single collision and thus collect a large enough statistics for the experiments. The

number of collisions per area per second is defined through the instantaneous luminosity L ,

given by

L = f
n1n2

4πσxσy
, (2.1)

where f is the crossing rate of the proton bunches, ni is the number of colliding particles in

each bunch and σx,y is the spread of the bunch along the x- and y-directions.

Using the integrated luminosity over time we can predict the number of expected events N

produced by the LHC. This is given by

N = σ

∫
L (t)dt, (2.2)

where σ is the cross section for a certain process.

When the instantaneous luminosity increases we get more collisions happening in the de-

tector. This gives us a lot of interactions at the same time, which can introduce further

systematic uncertainties and challenges. This phenomenon is called pile-up. We need to

consider this to know which particles in the final state comes from which interaction. This

is a constantly evolving problem since we are further developing the LHC infrastructures

and apparatus towards higher and higher luminosity, e.g. HL-LHC (High Luminosity LHC).

In this thesis we are looking at data collected by the ATLAS detector from 2015-2018 (full

run 2) at the LHC from proton-proton collisions at 13 TeV center of mass energy with

different pile-up conditions, following the increase of instantaneous luminosity L . The data

corresponds to an integrated luminosity of 139 fb−1, where we have 36.2 fb−1 for 2015-2016,

44.3 fb−1 for 2017 and 58.5 fb−1 for 2018.
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2.3 The ATLAS detector

The ATLAS [18] detector is a massive 44 m long detector, 25 m in diameter and weighing

about the same as the Eiffel tower (∼ 7000 tons). It is designed to handle proton-proton

collisions up to 14 TeV with a luminosity of a few times 1034cm−2s−1. We can see an

illustration of the whole detector in figure 2.2, where the most important components are

marked.

Figure 2.2: An illustration of the ATLAS detector [18].

The detector is built up of three main layers. Two inner tracking layers, that provide

the information about particle trajectories and allow to determine, with good resolution,

the interaction point and secondary vertices1. The inner detector is composed of a pixel

and strip silicon tracker and a transition radiation tracker. A good tracking resolution

is in fact needed for particle track momentum determination and primary and secondary

vertex measurement purposes: the whole inner detector is inserted in a solenoid magnet

that generates a magnetic field along the beam direction. The bending trajectory of charged

particles in magnetic field leads to a determination of momentum and electric charge of the

1Secondary vertices is the interaction vertices for particles that decay after the collision or collide into
decays from other collisions.
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particles.

The tracker is followed by two layers of calorimeters. The innermost is the electromagnetic

calorimeter and consists of alternating layers of lead and liquid argon. The purpose of

the layer is to stop incoming photons, positrons and electrons by inducing electromagnetic

showers that allow to measure the energy of these particles. The outer calorimeter is the

hadronic calorimeter, composed of three different parts. The hadrons produced in the event

interact with the calorimeter material and produce hadronic showers, also called jets, which

lose their whole energy in the hadronic calorimeter.

The outer layer consists of the muon chambers, which surround the whole detector as a

barrel with two end-caps at the edges. Muons are the only detectable particles that are able

to travel through all the other layers, only depositing a minimum ionisation energy in the

detector material along the trajectory.

All the particles we can not track in the detector layers are referred to as missing energy/-

momentum, essentially inferred from energy-momentum conservation and the measurement

of all visible particle energy and momenta Emiss = −
∑
iEi and ~pmiss = −

∑
i ~pi.

A sketch of the sub-detector layers presented above is shown in figure 2.3.
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Figure 2.3: An illustration on how we see the tracks of the different particles in the detector
[19].

2.3.1 Kinematic variables and the ATLAS coordinate system

By combining information from the different sub-detector layers it is possible to calculate

various kinematical variables and identify the different particle species. In the beam direc-

tion, corresponding to the z-axis. We have two protons with opposite momenta p in each

collision and therefore we are interested mostly in the transverse direction, where energy

and momentum is conserved. The energy deposited by the particle is measured by the

calorimeter and combined with the tracking information to have the vector quantities of pT

and ET connected by the invariant mass m of the particle by the relation p2T = E2
T −m2.

As mentioned before we can measure the difference in the transverse energy before and after

the collision, which gives us the missing transverse energy (MET/EmissT ).

It is also useful to introduce the detector coordinates used to describe an event. A sketch

is shown in figure 2.4. The z-coordinate is defined by the beam direction and the x, y-

coordinates define the transverse plane. In addition we have the two angles θ (polar) and
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φ (azimuthal), being the angle between the particle and the z-axis and the particle and

the x-axis, respectively. Note that instead of referring to the coordinate θ it is common to

introduce the pseudorapidity η defined as

η = − ln tan

(
θ

2

)
. (2.3)

Figure 2.4: An illustration of the coordinate system inside the detector [20].

The other variables we are considering in this thesis, where we are interested in final states

with two leptons l+l− and missing transverse momentum and energy, are listed below

• ml+l− is the invariant mass of the lepton pair in the final state, defined as

ml+l− =
√

(El+ + El−)2 − (pl+ + pl−)2. (2.4)

• mT2, transverse mass defined as

mT =
√

2|pT,1| · |pT,2| ·
(
1− cos(∆φ)

)
, (2.5)

where pT,1 and pT,2 are the transverse momentum vectors of the two leptons in the

final state and ∆φ is defined below.
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• mT2 is the stransverse mass [21, 22] and is used to describe the masses of a particle

pair that is assumed to have decayed to one visible and one invisible particle. It is

defined as

mT2(pT,1,pT,2,p
miss
T ) = min

qT,1+qT,2=pmiss
T

{
max

[
mT (pT,1,qT,1),mT (pT,2,qT,2)

]}
,

where mT is the transverse mass defined in equation ?? and qT,1 and qT,2 are vectors

with pmissT = qT,1 + qT,2.

• HT is the scalar sum of the pT of the leptons we have selected and of the jets in the

event.

• ∆φ(~pllT , E
miss
T ) is the difference between the azimuthal angles of the two-lepton system

and the missing transverse energy direction.

• ∆Rll =
√

(∆φll)2 + (∆ηll)2 is the distance between the two leptons in the final (φ, η)

plane.

2.4 Computing infrastructure

The results obtained in this thesis have been very demanding when it comes to computing

power. The reason for this is that the analyses consists of several searches using BDT and

deep learning methods that require both training and optimization by using large data sets.

BDT and deep learning require a lot of CPU-power and memory because of the size of the

data. It has not been possible to run the various codes on a regular computer because of

limited number of CPU’s and memory. Because of these problems we were granted access to

the Experimental Infrastructure for Exploration of Exascale Computing at Simula Research

Laboratory: financed by the research council of Norway and made available to researchers.

This is a computer with two sockets with 8 cores/CPU’s, which again have two threads.

This gives us in all 32 virtual CPU’s (16 physical) because of hyper-threading in each CPU.

It also has 60 GiB2 memory, which have been crucial to handle the data used in the Machine

Learning analysis. With this setup, the import of the data, training and testing have taken

2GiB is Gibibyte instead of regular gigabyte and is simply a unit byte for digital information and means
2 to the power of 10 (kiB), 20 (MiB), 30 (GiB), 40 (TiB) and 50 (PiB).
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approximately 12-13 days, where 7 of these are just for importing the data. All together we

have trained and tested 72 ML models (36 BDTs and 36 NNs) and the data sets we have

been working on have been massive (almost 200 GB). Because of the huge amount of data,

we need that the computer can handle this while training which is why we need the extra

memory.

At the later stage of this thesis we made use of a special server that belongs to the ATLAS

High Energy Particle Physics (HEPP) group at UiO. It is a Supermicro Ultra Server with

both GPU’s and CPU’s, but we have only taken advantage of the CPU’s in this thesis. This

server is a much more powerful computer than the one from Simula. It has two sockets with

128 cores/CPU’s, which also have two threads in each CPU. This gives a total of 256 virtual

CPU’s. It also has 2 TiB memory, which has resulted in that we could import the data in

parallel and be done in around 3 days instead of a week. We have been able to train around

18-20 ML models at the same time instead of 1-2 which was the maximum for the Simula

server.

In this chapter we have introduced the ATLAS detector and the LHC, which collected 13

TeV data between 2015 and 2018, corresponding to 139 fb−1. The data analysis behind the

searches for Supersymmetry and Dark Matter to be presented in this thesis make use of both

traditional and ML-based algorithms, and necessitate a special computing infrastructure

made of powerful CPU’s, and GPU’s.
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Chapter 3

Search for Supersymmetry and

Dark Matter in Events with

Dileptons and Missing Energy

This chapter will introduce the search for new physics through various processes we explain,

how the signal and background samples are produced, and how we perform a traditional

so-called cut and count analysis when searching for new particles or phenomena in LHC

data. We will show the results obtained by the ATLAS collaboration and compare them to

results we otained following a similar strategy as in the publication.

In this thesis we are interested in processes involving superpartners of leptons, gauge bosons,

and the Higgs boson. Besides this, we will look at a dark matter particle candidate, which is

predicted by both SUSY, to be the lightest supersymmetric particle (LSP), and by simplified

non-SUSY DM models requiring a new mediator V. This thesis looks at data from proton-

proton collisions at the LHC in final states of two leptons and missing transverse energy.

The SUSY processes we are looking at are direct slepton production, chargino production

with slepton/sneutrino-mediated-decays and with W-boson-mediated-decays.

Figure 3.1 shows direct slepton production with the sleptons decaying to a final state with
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two leptons and missing transverse energy (MET/EmissT i.e. missing energy in the detector)

from the lightest neutralinos (χ̃0
1). The neutralino is assumed to be stable and not measured

directly by the detector. The energy of the neutralinos is therefore interpreted as MET in

this process. The neutralino is a mixture of the sparticle components photino, zino, and

neutral higgsino. Since it is believed to be 100% stable it constitutes a perfect dark matter

candidate as mentioned above.

Figure 3.1: Direct slepton production pp→ l̃+ l̃− → l+l− + χ̃0
1χ̃

0
1.

In Figures 3.2 and 3.3 chargino production with slepton/sneutrino-mediated-decays and W-

boson-mediated-decays are shown, respectively. Charginos are a mixture of the sparticle

components wino and the charged higgsino. These processes have the same final state as

direct slepton production, but here the neutrinos also contribute to the MET, since they

connot be observed in the detector.

Figure 3.2: Chargino production with slepton/sneutrino-mediated-decays pp → χ̃+
1 χ̃
−
1 →

l̃+ l̃−/ν̃ν̃ → l+l− + νν̄ + χ̃0
1χ̃

0
1.
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Figure 3.3: Chargino production with W-boson-mediated-decays pp→ χ̃+
1 χ̃
−
1 →W+W− →

l+l− + νν̄ + χ̃0
1χ̃

0
1.

The DM process we are looking at in this thesis is the mono-Z process shown in figure 3.4.

Here we have a new mediator V between matter (qq̄) and DM (two particles χ). In addition

we require a Z-boson, radiated from one of the initial state particles1, which subsequently

decays into two leptons. This gives us the same final state as we had for the SUSY processes

above.

Figure 3.4: Mono-Z process pp→ Z +MET → l+l− +MET .

3.1 Monte Carlo simulated events

The data considered is recorded by the ATLAS experiment at the LHC between 2015 and

2018 (Run 2), presented in chapter 2. But, we are also looking at MC simulated SM

backgrounds and new physics signals which will be explained in this section, taken from the

publications from ATLAS, namely [9] for the SUSY signals and [11] for the mono-Z signal.

Tables A.1 - A.12 in section A present an overview of the signal samples that are used.

1Initial state radiation means that one of the incoming particles emits a particle before the annihilation,
e.g. the Z-boson in our process.
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The SUSY signal samples were generated from leading-order (LO) matrix elements with

up to two extra partons using MadGraph5 aMC@NLO 2.6.1 [23] interfaced to Pythia

8.186 [24], with the A14 tune [25], for the modelling of the SUSY decay chain, parton

showering, hadronisation and the description of the underlying event. Parton luminosities

were provided by the NNPDF2.3LO PDF set [26]. Signal cross-sections were calculated to

next-to-leading order (NLO) in αs. The nominal cross-sections and their uncertainties were

taken from an envelope of cross-section predictions using different PDF sets and factorisation

and renormalisation scales, as described in Ref. [27].

The DM signal is modelled with the leading-order MadGraph5 aMC@NLO matrix el-

ement [28] using NNPDF3.0 [29] and showered with Pythia8.186. DM signal events with

an axial-vector2 mediator and fermionic WIMPs (weakly interacting massive particles) are

produced for different mediator and DM masses mV and mχ, both in a range from 10 to

1000 GeV. As recommended in Ref. [30], the DM events are generated by choosing couplings

to quarks gq = 0.25, and to DM gχ = 1, and a minimal mediator width. The A14 [31] pa-

rameter set is used to tune the Pythia8.186 parton-shower for the simulation of the DM

signal.

The different SM backgrounds we consider are diboson, triboson, tt̄, single top, other top

events (tt̄ events with a pair of leptons or boson(s)), Higgs, Drell-Yan, Z+jets and W+jets.

The MC samples are simulated using different generators that are listed in table 3.1. The

goal is to separate these backgrounds from the new physics signal processes discussed earlier

in the chapter.

2An axial-vector is the cross-product of two vector quantities, which will not change sign under parity
transformations because both v1 and v2 do. E.g. angular momentum L = x × p, where x is position and
p is momentum.
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Background sample Generator Parton shower Normalisation

Diboson Sherpa2.2.2 [32–34] Sherpa2.2.2 NLO [35]

Triboson Sherpa2.2.2 Sherpa2.2.2 NLO

Z+jets Sherpa2.2.1 [33, 34,36] Sherpa2.2.1 NNLO [37]

W+jets Powheg-Box v2 [38, 39] Pythia8.186 [24] NLO

Drell-Yan Sherpa2.2.1 Sherpa2.2.1 NNLO

tt̄ Powheg-Box v2 Pythia8.186 NNLO

Single top Powheg-Box v2 Pythia8.186 NLO

topOther MG5 aMC@NLO [23] Pythia8.186 NLO

Higgs Powheg-Box v2 Pyhtia8.186 NLO

Table 3.1: An overview of the different generators used to simulate the MC background
samples.

Before we move to the analysis searching for SUSY and DM signals exploiting machine

learning techniques we need to make sure that our input (i.e data, SM background and new

physics signal MC) looks reasonable. We also need a baseline analysis to check whether or

not the ML analysis perform better than the more standard cut and count analysis, which

will be outlined in the following sections.

3.2 The standard way: cut and count

The first part of the analysis done in this thesis is a traditional cut and count analysis. Cut

and count is probably the most known method used in particle physics and has proved to

be very useful in the discoveries we have done so far. Since the data become more and more

massive and complex, and the processes we are looking at more and more complicated, we

also need to develop further and improve the way we perform the analysis. In this thesis,

we are mainly going to focus on machine learning algorithms. Therefore we have not tried

to improve this standard way to analyze data and have based the cut and count on already

published analyses from ATLAS [9,11].

In cut and count, we select events sensitive to new physics, by reducing as much as pos-
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sible any SM background processes which could mimic the signal. After applying several

cuts, the selection of events we are left with form the so-called signal region. We then see

whether the expected signal is significantly separated from the expected Standard Model

(SM) background in this region. We can calculate an expected significance Z, which will be

explained in section 6.1 later in the thesis, to check if we can expect to claim a discovery in

this region if a particular signal model turns out to be realized in nature. If we are lucky and

have cut away enough background and kept sufficient signal, we can check if the observed

events in data are compatible with the signal+background hypothesis or if they match the

background-only hypothesis (i.e. no signal) instead. Let us consider the case where the data

differ from the background and tends to follow the signal: we know that there is most likely

something interesting in this region.

Of course, there are advantages and disadvantages with every method, and this is also the

case for cut and count. In cut and count, we need a theory or hypothesis as a reference to

know what kind of signals we should look for. We are also only able to do cuts in one or

two dimensions and adjust the different variables to our purposes to a certain complexity.

It is therefore unfortunately limited by the human understanding of what we are looking at.

The lack of human understanding is where Machine Learning (ML) comes to help. The ML

methods are expected to help us better separate the signal from the background and can

look at the data in several dimensions and with more complexity. This is further explained

in the following chapters, where we will look at what the different ML methods do.

3.3 Reproducing the ATLAS publications

The first part of this analysis was done by cut and count and the goal was to reproduce

the results from publications done by ATLAS [9, 11]. Here we will compare our results to

the official results from the ATLAS experiment, and hopefully achieve a good agreement

between the two.

Since the goal is to reproduce the results, we implement more or less the same analysis

procedure as described in the publications. The cuts done for the SUSY processes are listed

in table 3.2 and for the mono-Z process in table 3.4, where both tables are taken from

the publications [9, 11]. All the kinematic variables we cut on are presented in chapter 2,
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except the tagging of b-jets which are jets initiated by bottom quarks. All of the results

are presented with a systematic uncertainty. The first cut we do for both processes is to

demand exactly two leptons with opposite signs in the final state.

Variables Cuts

Two leptons Same flavor (SF) and opposite sign (OS)

njets 0

mll [GeV] 121.2

EmissT [GeV] > 110

EmissT significance > 10

mT2 [GeV] 160

Table 3.2: Cuts added in the cut and count analysis taken from the publication for the
SUSY processes [9].

For the SUSY processes we have applied the cuts in table 3.2, where we, in addition to

having only two leptons with opposite sign in the final state, demand that they have to

have the same flavor as well. Here we get the Z+jets as the dominating background as we

can see in both figure 3.5a and table 3.3. Now we want to reduce all of the background,

especially Z+jets, and we apply the next cut in table 3.2 which is demanding no jets (both

b-tagged and non-b-tagged). As we can see in figure 3.5b, the Z+jets background is still the

dominating background, but if we look at table 3.3, we can see that it is reduced a lot. The

reason for Z+jets is still dominating is that the jet-cut reduced around the same percentage

from all of the different backgrounds.
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Figure 3.5: Plot of different distributions after applying the cuts on 2L, SF, OS (a) and no
jets (b).

The next cut we have applied is on the invariant mass of the two leptons in the final state.

The results are shown in figure 3.6a and as we can see, most of the background is reduced

by a lot. We have also done a cut requiring large missing transverse energy. This is done

because it cuts away more background than signal, which entails obtaining a more significant

separation between the signal and background. By applying this cut, we can see that the

Z+jets are no longer the dominating background and the results are shown in figure 3.6b

and table 3.3.
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Figure 3.6: Plot of different distributions after applying the cuts on the invariant mass (a)
and MET (b).

The last two cuts applied is a cut on the MET significance and mT2. The results after

applying the MET significance cut is shown in figure 3.7 and as we can see, the diboson is

still the dominating background. The last cut that are applied for the SUSY processes are

on the mT2 variable. This is done to get rid of the rest of the tt̄ background and leave us

more or less with only diboson. This is part of our final result and are shown in figure 3.14

later in this section.
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Figure 3.7: Plot of the distribution of mT2 after applying the cuts on MET significance.

As we can see in figure 3.5-3.7 and table 3.3, the signal have been reduced, but not as much

as all of the background contributions. This implies that we have been able to get rid of the

background without affecting the signal too much, which also was our goal by doing this.
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The same procedure was done for the mono-Z process, where we have applied the cuts from

table 3.4 and we can see how much each cut affect the different contributions in table 3.5.

Variables Cuts

Two leptons OS with leading (subleading) pT > 30 (20) GeV

mll 76 < mll < 106 GeV

EmissT > 90 GeV

EmissT /HT > 0.6

∆φ(~pllT , E
miss
T ) > 2.7 radians

∆Rll < 1.8

Fractional pT difference |pllT − p
miss,jets
T |/pllT < 0.2

b-jets 0

Table 3.4: Cuts added in the cut and count analysis taken from the publication for the
mono-Z process [11].

For the DM process, we have applied the cuts in table 3.4, where we, as for the SUSY

processes, demand to only have two leptons with opposite sign in the final state together

with missing transverse energy. In addition to the cut on number of leptons, we cut on the

pT of the leptons, for both the leading and subleading lepton. The cut on the subleading

lepton will not affect anything because it is already done a cut at 25 GeV while handling

the data for this thesis. This is shown in figure 3.8a and table 3.5, where we can see that

the distribution looks very similar as for the SUSY processes earlier in this chapter. We

have demanded to have a Z-boson which we can see the results from in figure 3.8b. For both

these cuts, we can see that Z+jets are the dominating background, where all the different

backgrounds are reduced.
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Figure 3.8: Plot of different distributions after applying the cuts on 2L, OS, pT of the two
leptons (a) and invariant mass (b).

We also do a slightly more gentle cut on the missing transverse energy for this process than

the SUSY processes because we have several other MET dependent variables for mono-Z.

One of these are EmissT /HT . After applying the MET cut, we can see that the Z+jets are

less dominating, but since the MET/HT reduces the tt̄ background, the Z+jets becomes

more dominating again. The results are shown in figure 3.9.
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Figure 3.9: Plot of different distributions after applying the cuts on MET (a) and MET/HT

(b).

The next cut that is applied is ∆φ(~pllT , E
miss
T ), where the two leptons also have to be close to

each other, which can be demanded by ∆Rll. ∆φ is also one of the MET dependent variables

we have used for the mono-Z process. The results after applying these cuts are presented in

figure 3.10 and as we can see, the Z+jets keeps being the dominating background.
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Figure 3.10: Plot of different distributions after applying the cuts on ∆φ (a) and ∆Rll (b).

The last cuts we apply are on the fractional pT difference and a b-jet veto. The results from

adding the pT cut are presented in figure 3.11, while the final results including b-jet veto is

presented in figure 3.14 later in this section. We can also see for both these cases that the

dominating background have become diboson, which is the same as for the SUSY processes.
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Figure 3.11: Plot of the distribution of number of b-tagged jets after applying the cuts on
fractional pT difference.
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For the signals in this case, which is maybe easier to see in table 3.5, we can see that it is

reduced a lot. This is of course not what we want to obtain, but it is also expected after

doing so many cuts as we have done. In the end of this we are going to calculate the expected

significance, where we can see how much sensitivity we actually have to the signal.
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All of the cuts are applied to get fewer background events while we, at the same time, do

not want to cut away too much of the signal events. The publications have applied more

or less the same cuts as listed above in table 3.2 and 3.4, and their results are presented in

figure 3.12.

(a) Stransverse mass for direct slepton produc-
tion, chargino production with l̃/ν̃-mediated de-
cays and with W-boson-mediated decays.

(b) Missing transverse energy for the mono-Z process, where the left plot is the electron channel
and right is the muon channel.

Figure 3.12: Results from the ATLAS publications for the four processes considered in this
thesis.

In figure 3.12a, we can see that the signal is separated from the background for both

the direct slepton production and the chargino production with W-boson-mediated-decay.

However, they have not obtained any significant separation for chargino production with
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slepton/sneutrino-mediated-decay, which means that we should not expect to claim any

discovery for the signal model shown in these plots.

In figure 3.12b, we can see the plots for both electron channel and muon channel for the

mono-Z process. It is not as much separation between signal and background as for the

direct slepton production and the chargino production with W-boson-mediated-decay, but

there is some.

Later in this thesis, we will calculate the expected significance for the different processes we

are looking at with both cut and count and ML. This is not done in the publications we

are looking at, but they have included an exclusion plot which we can use for comparison

later. This is shown in figure 3.13. Here we can see the expected exclusion limit with ±1σ

uncertainty bin together with the observed exclusion limit. The expected exclusion curve in

these plots follow the boundary where the significance is 1.36 (i.e. 95% CL exclusion). We

are not going to reproduce these results in this thesis. However, we have used it to pick out

some benchmark signals around the expected exclusion limit.
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.

(a) Slepton pair production (l̃l̃) [9].

-.

(b) χ+
1 χ

−
1 production via l̃/ν̃ [9].

(c) χ+
1 χ

−
1 production via W-boson [9].

(d) Mono-Z process [11].

Figure 3.13: The observed and expected exclusion limits for both the SUSY simplified models
in 3.13a, 3.13b and 3.13c and for the DM model in 3.13d. The lines drawn in the plot is to
show the mass splittings for each process.

The two black lines in each plot in figure 3.13 shows the division of the signal samples into

different mass splittings in the ML analysis later in the thesis. To compare our ML results

with the cut and count analysis, we have chosen one representative signal sample from each

part of the plots in figure 3.13. This gives us the signal samples listed in table 3.6.

m(̃l, χ̃0
1) m(χ̃±1 , χ̃

0
1) m(χ̃±1 , χ̃

0
1) m(V, χ)

(400, 300) (300, 200) (150, 25) (150, 80)

(600, 300) (800, 400) (350, 100) (400, 150)

(700, 1) (1000, 100) (425, 25) (650, 1)

Table 3.6: An overview of the masses of the signals that are used for this thesis.
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These signal samples are going to follow us through both analysis (cut and count and ML).

They are also shown in figure 3.14 where we have followed the same procedure as the ATLAS

publications. The main difference between the publications and our results is that we have

chosen some other signal samples than the publications. The reason for this is because

we want to have one benchmark signal from each mass splitting made from looking at

figure 3.13. The publications have m(l̃, χ̃0
1) = (400, 200) GeV, m(χ̃±1 , χ̃

0
1) = (300, 50) GeV,

m(χ̃±1 , χ̃
0
1) = (600, 300) GeV and m(V, χ) = (500, 100) GeV. Since we have chosen to look

at different signal samples than the publications [9, 11], we have to see if the backgrounds

for all four processes are compatible.

In figure 3.14 we can see our final results for the same variables as in the publications, from

the cut and count analysis.
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(a) Stransverse mass for direct slepton production.
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(b) Stransverse mass for chargino production via l̃/ν̃.
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(c) Stransverse mass for chargino production via W±.
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(d) Missing transverse energy for mono-Z.

Figure 3.14: Results from the cut and count analysis for all four processes, where we have followed the
same procedure as the publications done by ATLAS.
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In figure 3.14 we can see that for the direct slepton production and for the chargino pro-

duction with slepton/sneutrino-mediated-decay we are able to separate some signal samples

from the background in the high end of the mT2
variable. In 3.14a both the high and

intermediate mass splitting samples are separated from the background and could lead to

detection. In 3.14b only the high mass splitting sample is above the background and could

be possible to detect. While for the chargino production with W-boson-mediated-decay and

mono-Z we have not been able to separate the signal from the background. In comparison

to the results from the publications (shown in figure 3.12), we can see that we have roughly

the same amount of events in the different bins and can therefore conclude with that they

are compatible and we have managed to reproduce the published results.

Now we are going to move on to the ML part, which is the main part of this thesis, and

see if we can do the same analysis with some different tools. In the end we will compare

the results obtained in this chapter to see if ML can do a better separation than we have

managed to do with cut and count. Before presenting the ML results in chapter 5, we first

give an introduction to Machine Learning in chapter 4.
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Chapter 4

Introducing Machine Learning

In this chapter, we will introduce the different Machine Learning algorithms which are used

in the analysis.

The future of scientific experiments faces a problem: on one hand, we collect more data than

we have ever done in the history of science. It opens up a whole new range of possibilities

and increases the potential for new discoveries. On the other hand, the quantity of data

is so vast that no human being, or group of human beings, could hope to sift through and

analyze all the data in a single lifetime. However, it’s not good enough to have a “dumb”

computer algorithm sort through the data, since if the computer cannot adapt and pick out

interesting features, a human would need to double check the results anyway. We need a

technique that is both efficient and “smart”. For this reason, and others, Machine Learning

(ML) is fast becoming the standard way of analyzing data in science, and in high energy

physics in particular.

Indeed, compared to the cut and count method, ML techniques often provide a more efficient

way to perform analyses. It can handle massive datasets and give results in a reasonable time

frame. This is needed since the datasets have become increasingly large after each experi-

mental upgrade at for example the LHC. The ML methods may be better at distinguishing

between background and signal since they have the potential to pick up characteristics in

the data which are difficult for a human to identify (because it might pick out characteris-
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tics in the data that a human would never notice), which we are trying to optimize in our

analysis. The regular cut and count analysis is implemented by a person, and they analyze

the data. For us, however, we will try to separate the signal from the background using ML

algorithms. A discussion of these is presented in the following sections.

Broadly speaking, an ML algorithm can be explained as shown in figure 4.1. We have an

input variable X that we send into an ML model of our choice, and we get the actual output

Y (the ML output) and the predicted output Y’ (the output we expect). Let us say that

we give the ML model a variable with label 1; then the predicted value is 1 and the actual

output will (hopefully) be either 1 or close to 1.

Figure 4.1: A very simple illustration of an ML algorithm [40].

4.1 Machine Learning basics

In this thesis, we are focusing on using ML algorithms to separate the signal from the

background. This is done by the ML algorithms called Boosted Decision Trees (BDT) and

Neural Networks (NN). Before we go into the specifics, we will give a short introduction to

some ML basics.

4.1.1 Training and testing

To obtain our BDT and NN results, we have to split our datasets into training and test

sets. We split the dataset into 2/3 for training and 1/3 for testing. It is common practice
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to divide the train and test set like this, but it is also possible to choose a smaller training

set and a larger test set. The reason for doing this is that we want to check if our model

is learning and is able to classify the background as background and the signal as signal -

before we, in the end, give it actual data.

Validation test

In addition to a standard test set, we need a validation set to avoid overtraining (this is

not used to test whether the model works, but rather to prevent overfitting - see below). A

validation set is a set which hasn’t been used to train the algorithm. We use the validation

set to see when the model cannot do better with calculating a validation loss, which is the

loss for the validation set - and will be explained later in this chapter - for each epoch or

estimator the network or BDT goes through. An epoch is the number of cycles the NN

does the training and estimator is the number of the times we want to boost the tree. If

the validation loss does not become better after e.g., ten steps, another function breaks the

training before it has finished all of the epochs or estimators. This is done by a function

called early stopping, which stops the training. This is very useful for the NN and BDT since

there is one less parameter we have to worry about, namely the epochs or estimators. We

only have to set a value high enough for the model to get far enough through the training.

4.1.2 Overfitting and underfitting

In ML we encounter a very common problem while training our model, namely overfitting

and underfitting. The goal when training a model is to get it to fit the data as well as

possible; but this training can’t be too precise or the model will be useless if your data

doesn’t look exactly the same the next time you are using it. That would lead to loss of

generality and our model would become dataset specific. This is overfitting. Underfitting is

of course the opposite problem: the model is too simple to adapt to slightly more complex

datasets, and the algorithm will simply use a simple function to fit data. These ideas are

very well illustrated in figure 4.2.
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Figure 4.2: An illustration of underfitting and overfitting [41].

The goal in our case is to optimize the ML model so that it efficiently can separate signal

from background. If we overfit, it means that it can only find the signal for which we have

trained on, and if it turns out that the new physics we are looking for is slightly different, our

network will not be able to distinguish it from background. This is particularly important

in our case since we train the network on simplified SUSY/DM models which we know

are not the true realization of new physics in nature, but we believe that they have similar

phenomenology. However, if we overtrain, our ML model will not be able to find any possible

new physics in the data which looks slightly different from what we have trained on.

4.1.3 Evaluating metrics

Accuracy

In ML we have many ways to measure how well or badly our algorithm is performing; one of

them is the accuracy [42]. The accuracy expresses in percentage how accurate your algorithm

is performing and can be calculated as

accuracy =
correct

correct+ incorrect
, (4.1)

50



where correct is all data points that are classified as true positives (TP) and incorrect as

false positives (FP)1. This could be the only metric needed to evaluate a model; it gives a

very basic measure on how, well, accurate - or reliable - the ML model is.

Loss and cost function

Earlier we mentioned the validation loss, which is calculated for the whole training set during

training. The loss is calculated for each estimator (BDT) and epoch (NN). The loss can be

calculated in many different ways and we should choose the one best suited for the problem.

In our case we want to classify the background and signal as two variables, namely 0 and

1. This means that we are looking at a binary classification problem and we can use a

binary classification loss function [43], namely binary cross-entropy. Mathematically it can

be derived as follows. We have a true probability pi and a distribution of the predicted

values qi. The probability to get the outcome y = 1 is given by

qy=1 = ŷ = g(w · x) =
1

1 + e−w·x
, (4.2)

where x is a vector of input features, w is a vector of optimized weights and g(w · x) is a

logistic function.

To find the probability of y = 0 we can write

qy=0 = 1− ŷ. (4.3)

This gives us the notation setup, p ∈ {y, 1 − y} and q ∈ {ŷ, 1 − ŷ} and we can get the

difference between p and q by using the cross-entropy H(p, q), which leads to

H(p, q) = −
∑
i

pi log qi = −ylogŷ − (1− y)log(1− ŷ) (4.4)

1True positives are all the datapoints that are correctly classified as positives, while false positives are
the datapoints which are classified as positive when they actually are negative. The same labeling holds for
the negative classifications (TN/FN).
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While we are training, logistic regression optimizes the log loss J2 which means that we

optimize the cross-entropy in the sample. This is given by

J(w) =
1

N

N∑
n=1

H(pn, qn) = − 1

N

N∑
n=1

[
ynlogŷn + (1− yn)log(1− ŷn)

]
, (4.5)

where ŷn is defined by equation 4.2.

Cross-entropy is the best loss function to use in our case and is the preferred function to use

in similar cases. Ideally, the cross-entropy loss should be 0 during training - this corresponds

to the minimum possible loss. In practice, this does not happen; in fact, a validation loss of

0 normally indicates a different problem - likely overfitting.

ROC-curve and AUC-score

To analyze our results from both ML algorithms, we are going to use the ROC-curve and

the AUC-score, which is short for Receiver Operating Characteristic and Area Under Curve.

AUC refers to the area under a ROC curve, and this curve is a plot of the True Positive

Rate (TPR) against the False Positive Rate(FPR). TPR is the actual positives that are

identified correctly, called signal efficiency, and FPR is the rate between the negative events

categorized as positive and the negative events. In figure 4.3, we can see how this looks.

Figure 4.3: An example of a ROC curve [44].

2Here the loss function is called the cost function J . This might be a bit confusing because the cost
function is defined as the loss function for all training sets, but in our case the loss and cost are the same.
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If we look at the green line in figure 4.3, which is changing from model to model, we can

see it has a smooth curve. If the green line creates a right angle in the top left corner, we

will get an AUC score of 1, meaning the ML algorithm classifies correctly every signal and

background event. In other words, the algorithm picks correctly every time. If the green

line follows the diagonal dashed line, the algorithm is correct approximately 50 % of the

time, which is statistically the same as having the model randomly classify objects. If the

curve goes below the dashed line, the model classifies the background events as signal and

the signal events as background, precisely the opposite of what we are trying to do.

4.2 Boosted Decision Trees

Boosted decision trees (BDT’s) are one of the easiest ways to implement Machine Learning.

It’s typically not very sensitive to its hyperparameters, and is relatively easy to set up. In

this thesis we have used XGBoost [45], which is one specific way to boost a decision tree.

Before we explain boosted DTs however, we have to understand a regular DT.

4.2.1 Decision Tree

A decision tree is something we often do when thinking, even if we don’t refer to the process

as such. When we make a choice, we use a decision tree. Let us say that we have a picture

of a person and we want to figure out if it is a boy or a girl. To make this conclusion we

identify different features like whether the person has long hair, a beard, makeup, and so

on. Then we set up a decision tree that will split our input data, which in this case is our

picture, and make decisions based on the features you give it. Of course, we are not going

to look on gender recognition in this thesis, but in principle decision trees can classify many

things. This was just a small illustration of the simplicity and broad usage of BDT’s.

Our goal is to use these principles to separate the signal from the background events. We

give our decision tree some input data [46], which consists of Monte Carlo (MC) simulated

background and different signal samples (which are also obtained by MC simulations). Our

decision tree will then split our data based on features we provide, e.g. invariant mass and

missing transverse energy.
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Figure 4.4: A sketch of how a decision tree is set up. [47]

If we look at figure 4.4, we can see that we have three layers and three different types of

nodes. The root node is our input node, i.e. our input data, which for the first round is

signal and background samples. Then the decision tree splits up our input data depending

on the features we give it. This part will happen continuously through internal nodes until

we hit the depth of the tree, i.e. the last layer, or only have leaf nodes left. As mentioned

in section 4.1.1, we split our input data into train and test parts where we save some data

to test how well our model is trained. If we are happy with our results, we can test our

pretrained model on real data and potentially extract some signal.

4.2.2 Boosting

Decision trees are weak learners (meaning that they typically perform badly), but if we

ensemble several weak learners, we can get a strong learner. This process gives what it is

called a boosted decision trees. Boosting creates a collection of predictors, which means that

we fit consecutive trees, and at every step, we try to solve for the net error from the prior

tree. If a hypothesis misclassifies the input, its weight will increase, so it would more likely

classify it correctly next time. In figure 4.5, we can see a sketched diagram of a BDT.
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Figure 4.5: Illustration of a BDT [48].

There are many ways to boost a decision tree, but in this thesis we have used a Python

software library called XGBoost [45], which is short for eXtreme Gradient Boosting. This

library uses a gradient descent while boosting the decision trees. The gradient descent is

an algorithm that can optimize the differential loss function, i.e., the next tree will try to

recover the loss from the previous tree. Note that the loss is defined as the difference between

actual and predicted values [49].

XGBoost is optimized to be highly efficient and flexible [45]. It is written in C++, but

offers a user interface in python and other languages. In this thesis we are using a class

in XGBoost called XGBClassifier which, as implied by the name, classifies the data. We

give all our input data a label 0 or 1 for background and signal respectively and train our

model, with the different features, on what should have label 0 or 1 in the end. This is

what we call supervised learning because we help our model by providing a label in the

input. The XGBClassifier takes a lot of arguments, which can be found in the Scikit-Learn

API reference guide [50], but in this thesis we use just the ones that are necessary for our

purpose. The arguments that we have used are mentioned in the analysis chapter.

4.2.3 Feature importance

We are also going to look at the feature importance in the analysis. This is a way to see

which features were important while constructing our BDT. This is an interesting aspect of
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the analysis because this will change from process to process and we will also be able to see

if it matters if we train on different signal samples or not.

4.3 Neural Networks

Neural Networks (NN) are probably the most popular machine learning algorithms that we

use today. This is also what is often used for face and speech recognition by companies

like Google and Apple [51]. NN does basically the same as a BDT, but instead of splitting

the input data into background and signal at each node, each node is trained on different

features.

NN are a collection of nodes, like the ones we have in BDT. 4.2. Instead of many trees with

nodes, we create a network with these nodes as we can see in figure 4.6.

Figure 4.6: Illustration of a neural network [52].

The network consists of one input layer, one hidden layer and one output layer. This is a

very simple NN and is often called a shallow neural network (SNN) since it has only one

hidden layer. If we increase the number of hidden layers to two or more we have a deep

neural network (DNN) as we can see in figure 4.7
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Figure 4.7: Illustration of a deep neural network [52].

In this thesis we have built a NN with a tool called KerasClassifier3 which, as for the

BDT, classifies the data. For our network to be able classify, we have to send in some

pre-labeled data to train it. This is done by simply giving the background label 0 and

signal label 1. Additionally, we have to understand what happens in the NN to know what

parameters we should adjust in order to train and analyse the data.

The NN has many more dependencies than the BDT. It is therefore unfortunately more

sensitive to possible under- and overtraining, but for correct composition of parameters, it

will typically be better trained than a BDT. To achieve the optimal results, we need a lot

of computing power and time to optimize.

There are many advantages and disadvantages with both SNN and DNN but it is in principle

possible to achieve the same results with both. In a SNN you can increase the number of

nodes and get the same results as for a DNN with several layers and fewer nodes in each

layer. The problem with doing it that way is that we get more free parameters by increasing

the number of nodes, which again increases the possibility that our model gets biased and

hence over or underfits.

This is unfortunately not as trivial as for a BDT, but maybe easier to adapt to different

purposes. In our case we are going to use it to distinguish signal from background.

With the basics in place, we can now describe NNs in more detail. Next we provide an

overview of the activation function, how the network evolves, and how it gets better with

3Keras [53] is a NN library for Python.
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training.

4.3.1 Activation functions

To get the output for the different nodes in a layer, we need an activation function. This

output is again used as input for the next layer until you reach the last layer, which then

will give us our final output/results.

Since Machine Learning doesn’t come from a theoretical prediction which is implemented

numerically, the choice of activation function for different problems is found by trial and

error. The activation function will provide a number between 0 and 1 [54], which is sent

into the next nodes in the next layer. Some activation functions provide a number between

-1 and 1 instead, but this depends on how the activation function we choose behaves, as we

can see in figure 4.8. In the next sections we are going to look more closely at the different

activation functions we have used in this thesis. We are also going to consider some other

activation functions that are not used in this thesis but still of very common use in ML.
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Figure 4.8: This is an illustration of the behaviour of three different activation functions. In
(a) we can see the Sigmoid function, in (b) the Tanh function, and in (c) the ReLU function.

Sigmoid

The Sigmoid function, figure 4.8a, is a logistic activation function and is given by equation

4.6 below.

ai =
1

1 + e(−zi)
, (4.6)
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where zi is the output value from the i-th node in the output layer.

As we can see in figure 4.8a, the Sigmoid function gives us a value between 0 and 1. This

makes this activation function a good choice if we have to predict a probability for the

output. A drawback, and the reason we have to use other activation functions sometimes, is

that the Sigmoid can get the NN stuck on its training time because of the calculation time

of the exponential. This is not an optimal activation function to use inside the network, but

in the output layer it is the preferred one. We want our network to classify our output as

signal or background which we have labeled as 1 and 0.

Tanh (Hyperbolic tangent)

In addition to the Sigmoid function we have the tanh function, figure 4.8b, which is shaped

the same way as the Sigmoid function, but it gives values between -1 and 1 instead of

between 0 and 1. This we can see in figure 4.8b and it is given by equation 4.7 below.

ai = tanh(zi) (4.7)

Since we also can get negative numbers from this activation function, it is preferred instead

of the Sigmoid if we have negative numbers in the input. This function returns negative

values as negative unlike e.g. Sigmoid which only returns 0 or 1. Since we don’t care for

negative values in our case, this activation function is not used in this thesis.

ReLU (Rectified Linear Unit)

One of the most popular activation functions is the ReLU function. This function outputs

0 for any negative value, and if the value is positive, the function returns the value as it is.

This is shown in figure 4.8c. Since all data that is below zero becomes zero, it can be hard

do get a good read out of the data because the data may sometimes assume negative values.

The ReLU function is given by equation 4.8.

ai = max(0, zi). (4.8)

Since we’re not interested in negative values we are using this activation function in our
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hidden layers. The Sigmoid function would also be a good choice when we are thinking

about our wanted form of the output. But, as mentioned earlier, it can get stuck in its

training time.

Other activation functions

The three functions mentioned above are not the only activation functions one can use.

Since every problem has different approaches, we have to adjust these functions for our

needs. There are, for example, many different adjustments done with the ReLU function to

get a better activation output in problems that need adjustment to perform optimally. One

of the newest activation functions is called Swish [55], which is simply a modification of the

Sigmoid function given by equation 4.9.

a(x) = x · Sigmoid(x) (4.9)

The developers of the Swish function state that it does overall a better job than the widely

used ReLU function, but until this time there is no evidence in literature supporting this

claim. As such, we will stick with ReLU in this thesis.

4.3.2 Feed forward and back propagation

Every node in the neural network has an activation function connected to itself and if the

node is connected to another node it also has a weight for each node it is connected to. To

create the new node we simply multiply the nodes activation with the weight and sum them

together like so

a1 · w1 + ..+ an · wn = new node (4.10)

This operation is done for every node in every layer, and fed to the next layer until we hit

the the output layer. This is what we call feed forward because we always send the obtained

information forward from input to output layer.
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We also have a method to go back in the network to optimize it, namely back propagation.

What we do is go back to the previous layers to optimize the weights. This is not what

we call an optimizer and should not be confused with that; it’s merely the process of going

backwards. Back propagation is probably the most important step in a NN, because this

optimizes our model and makes sure that our training goes well.

4.3.3 Optimizers

When training a NN, we need to know how well it performs during and after the training.

For this we use a loss function L. There are many different types of functions that are used,

depending on what we want to do with the network.

We want to minimize the loss function to make the prediction error as small as possible, i.e.

optimize the network. And to do this, we use an optimizer.

Stochastic Gradient Descent [56]

The gradient descent method uses the fact that a function F (x), where x = (x1, x2, ..., xn),

will increase fastest in the direction of the gradient of the function, ∇F . We want to move

in the opposite direction of the gradient to make sure that we decrease the loss function.

We then multiply this gradient with a number η called ”the learning rate”, and subtract

this from the current weights wj . In the case of neural networks, F (x) is the loss function

L. This leads to equation 4.11

wj = wj − η
∂L

∂wj
(4.11)

To speed up the training we can also add a stochastic part to the method, which means that

we randomly choose a batch size of the data that we use to approximate the derivative, and

use that to update the weights. This is also called Mini Batch Gradient Descent.

The data that we want to use might be very noisy, so we can use a technique to de-noise the

data [57]. This is done by adding a momentum, which is a moving average of our gradients.
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We now subtract this from the weights. The equations now become

Vi = βVi + (1− β)∇wLwi = wi − ηVi (4.12)

One way to look at this last addition is viewing the movement in parameter space as an

object that moves one step at a time downhill. When we add momentum, it is like giving this

object some physical momentum. Now when the object finds the minimum, it will continue

a little bit back and forth to make sure it has found the minimum. A good reason to add

this is if there are many saddle-points where the optimizer might stop. With momentum, it

will move past, and then continue the descent on the other side without stopping.

Adam [58]

The learning rate is one of the most difficult parameters to optimize, because any change to

its value may have a huge impact on a method’s performance. To circumvent this, we can

use a method that has an adaptive learning rate.

Adam is currently the most popular optimization algorithm today, and the name is derived

from Adaptive Moments. It is an update to another optimization algorithm called RMSProp,

which stands for Root Mean Square Propagation. RMSProp uses the running average of

recent gradient magnitudes, and divides the learning rate by this average. This is done for

every weight in the NN.

Adam takes this a step further. It uses an estimation of the first-order moments of the

gradient as momentum, and also adds a bias correction to both the momentum and the

second-order moments.
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Chapter 5

Machine learning analysis

implementation

In this chapter we are going to look at how the ML algorithms are implemented, trained

and how they perform before we in the end are going to test it on real data.

5.1 Preparations and expectations

For both machine learning algorithms, BDT and NN, we have done a few preselection cuts

on the data before we feed it into our ML classifiers. It is necessary to make the datasets

smaller in order to get a more reasonable training time and to avoid consuming too much

memory when converting the input to dataframes1. The cuts we have applied on the data

are given in table 5.1 below.

1Pandas dataframes [59] is a two-dimensional frame of your data which also includes the corresponding
labels.
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Precuts

Number of leptons = 2

EmissT > 40 GeV

Table 5.1: A table of the precuts we have done before sending the data into the BDT and
NN.

The features included, that is the kinematical variables, in the training of the ML algorithms

have been selected using the different variables available in the MC nTuples2 and are listed

in table 5.2.

Low level features High level features

lep pT1 mll

lep pT2
mt2

lep η1 HT

lep η2 Emiss
T /HT

lep φ1 ∆φ(~pllT , E
miss
T )

lep φ2 ∆Rll

nJet20 Fractional pT difference

nJet30

nb-tagged jets

Emiss
T

Emiss
T significance

Electric charge

Flavor

Table 5.2: List of features chosen for the training of the ML model, where high level features
are more complicated kinematical variables than low.

We have also included different variables to weight each event according to its cross-section,

average number of collision per bunch crossing (pile–up) and other characteristic of the

event. The weights are listed in table 5.3.

2nTuple is the data format used in the high energy physics community to store large amounts of data for
analysis within the framework known as ROOT [60].
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Weights

event weight

pileup weight

b-tag weight

generator weight

jvt weights (jet vertex tagger)

global dilepton trigger SF (same flavor)

Luminosity for MC 2015-2016 = 36.2 fb−1

Luminosity for MC 2017 = 44.3 fb−1

Luminosity for MC 2018 = 58.5 fb−1

Table 5.3: List of weights to weight each event in the dataframes and the luminosity for the
data taken in 2015-2018.

Figure 5.1 shows the distribution of the variables/features for data, the simulated SM back-

ground and some selected new physics signal models. Overall, it seems like there is good

agreement between data and MC, except for some missing MC in the high MET tail (figure

5.1o and 5.1p) and high b-jet multiplicity (figure 5.1l). Since it is overall good agreement

we can trust the data we are putting into the ML.
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(c) The pseudorapidity for lepton 1.
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(d) The pseudorapidity for lepton 2.
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(e) The azimuthal angle for lepton 1.
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(f) The azimuthal angle for lepton 2.
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(g) The scalar sum of the pT of the selected jets and
leptons.
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(j) Distance between the two leptons.
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(m) Jets with pT > 20 GeV.
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(n) Jets with pT > 30 GeV.
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(o) Missing transverse energy.
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(p) Missing transverse energy significance.

2−10

1

210

410

610

810

1010

E
ve

nt
s 

/ 3
0 

G
eV  (650,1) (616.1)χ V

 (425,25) (166.3)
0

1
χ∼ ±

1
χ∼

 (1000,100) (32.8)
0

1
χ∼ ±

1
χ∼

 (700,1) (22.9)
0

1
χ∼ l

~

Data (11045841 Events)
 (11127366.7)SM stat

Z+jets (80.7%)
 (13.1%)tt

Diboson (1.9%)
Higgs (1.5%)
Single top (1.3%)
Low mass DY (1.0%)
Top other (0.2%)
W+jets (0.1%)
Triboson (0.0%)

1−13 TeV, 139.0 fb
ML_cuts
2015-18 data vs. mc16a+d+e

50 100 150 200 250 300 350 400 450 500

) [GeV]llm(

0

0.5

1

1.5

2

D
at

a 
/ S

M

(q) Invariant mass.
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Figure 5.1: Plots of the different variables used as features in the ML algorithms after the preselection
cuts in Table 5.1 have been applied.
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To make our ML analysis code more user friendly and unbiased (give the ML the opportunity

to figure it out), we have used the same precuts for all four processes.

The goal with the ML analysis is to teach the computer to separate the signal from the

background and then calculate the expected significance and compare it with the cut and

count results. Since we are handling a huge amount of data and each step takes some time,

we have separated some of the most time consuming steps to save some time to optimize the

ML part. The first thing we did was to import all the nTuples and put them into pandas

dataframes. Then we did the precuts in table 5.1, giving the dataframes the features in

table 5.2, weighting and scaling up each event to correct luminosity from table 5.3 before we

in the end stored all of the processed dataframes temporarily into HDF5 files 3. To avoid

huge memory issues in the computer, this is done chunk by chunk since importing the whole

dataset in one go is too much for our computers to handle.

Importing the data is the most time consuming step, but luckily we don’t have to do this

every time we do some adjustments which is mainly done in the next step, the ML part. In

the ML part we are training two different algorithms, namely a BDT and a NN.

As mentioned in chapter 4 we have to divide our input data into train and test sets, which

are done by simply taking 1/3 of the input (randomly drawn) and call it the test set. This

data is not going to be touched until we are finished with the training of our model except for

1/10 of the test set which is used as a validation set. To both save some time in the training

and to give the BDT and NN the opportunity to train more on actual signal samples, we

have chosen to train on the same amount of background events as we have for signal. This

gives us the results shown in figure 5.2, which is the raw output from the trained model. The

data sent into the ML are scaled between 0 and 1, where the MC background have gotten

a label 0 and the signal a label 1. This gives us also an output between 0 and 1 which is

the x-axis in 5.2. Looking at the raw output gives us a good indication on how little MC

background we need during training to obtain the results we have in this thesis and have

made the training a lot less time consuming. The reduction of the background does not

have much impact on the results for the BDT except for some reduced training time, but

for the NN the results improves a lot by doing this.

3HDF5 [61] is a file format to store large, complex and heterogeneous data

70



0.0 0.2 0.4 0.6 0.8 1.0
XGBoost output

10
3

10
4

10
5

10
6

10
7

E
n
tr

ie
s

Raw output from training

train
test

bkg
sig

(a) A plot of the raw output from the BDT.
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(b) A plot of the raw output from the NN.

Figure 5.2: Examples on how the raw output from a BDT (left) and NN (right) look after
training and testing. This is obtained by using the signal samples from direct slepton
production with low mass splitting and all level variables. These plots look very similar for
all of the different signal processes and trained model and are therefore only these are shown
here.

Since one signal sample alone is pretty small, we have merged the signal samples into different

mass splittings for each process. The reason for this is that with several samples together

we get a lot more data to train our BDT and NN on and in this way our model will also

handle other datasets much better. The mass splittings are defined by the lines drawn in

figure 3.13 in chapter 3. This gives us the mass splittings as shown in table 5.4 for each

process.

Process Low Intermediate High

Direct slepton production ∆m ≤ 100 GeV 100 < ∆m <450 GeV ∆m ≥ 450 GeV

Chargino production via l̃/ν̃ ∆m < 200 GeV 200 ≤ ∆m <600 GeV ∆m ≥ 600 GeV

Chargino production via W± ∆m < 150 GeV 300 ≤ ∆m <300 GeV ∆m ≥ 300 GeV

Mono-Z ∆m < 100 GeV 100 ≤ ∆m <350 GeV ∆m ≥ 350 GeV

Table 5.4: Table defines the different mass splittings based on figure 3.13 for the different
processes.

When training the ML models we have different means for evaluating how good or bad the
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models are doing. We can for example scale the test set up to be as big as the training set

to see how good the fit between the up-scaled training and testing sample is, shown in figure

5.3a. We can also look at the ROC curve and AUC score, figure 5.3b, to see how well the

model can classify background as background and signal as signal. The goal in figure 5.3a

is that the test set (dotted line) is matching the training set (filled bins) and in figure 5.3b

we want an AUC-score close to 1.
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(a) A plot of the training and test set, where the
test set is scaled up to match the training set.
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(b) A plot of the ROC curve together with the
AUC score.

Figure 5.3: In this figure you can see results from a BDT trained on low mass splittings and
with low level features for the direct slepton production.

Both of the plots in figure 5.3 are merely shown to illustrate what we are judging the training

on. The ROC-curve will not be shown for every trained model, but the AUC-score will be

presented in a table for every trained model. For reference later in the results, we say that

an AUC-score & 0.85 is a good score.

In addition to the ROC-curve and AUC-score, we have plotted the training loss vs the

validation loss and the training accuracy vs the validation accuracy for the NN as shown in

figure 5.4. The loss should go towards zero and the accuracy towards one.
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Figure 5.4: In this figure we can see results from a NN trained on high mass splittings and
with high level variables for the direct slepton production.

As we can see in figure 5.4a, both the training and validation losses goes quickly towards

zero after the NN starts training and does not improve much after ∼ 100 epochs. This

means that we probably could have stopped the training after only 100 epochs and would

still have gotten a fairly good result, but we want the best result as possible and therefore

we let it minimize the loss further. We can also see that the validation loss is completely

flat in the end and would not improve further (continue towards zero), while the training

loss continues down towards zero (this is not that easy to see because of the scale on the

y-axis, but nice to follow during training where you can see the loss for each epoch). Let

us say we have given the NN a patience on 50 epochs instead of 10, we would most likely

see that the validation loss would tend to move away from zero. This is not that easy to

see in this plot, but same point is in the accuracy plot in figure 5.4b, where we can see

this more clearly. It is a bit hard to determine if the validation accuracy tends to go down

again because of the fluctuations4, but it is fairly easy to see that the training accuracy

continue towards one. That the training loss and accuracy continues to improve is often due

to overtraining/overfitting which we want to avoid.

The plots in figure 5.4 for every process will not be presented in this thesis since they are

going to look very similar for every process and ensemble of training compositions. All of

the results that are not included in this thesis or the appendix can be found in the GitHub

4The fluctuations can be avoided by having a bigger validation set, but then you will also have a smaller
test set to test our ML model on.
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repository https://github.com/monaanderssen/MasterML together with the ML code.

5.2 Building, training and testing the BDT

Now we know how a BDT and NN works and we are aware of the results to expect. In this

section we will get an understanding on how the BDT is built up, how we train it and, in

the end, testing how well the training went.

5.2.1 Building

The BDT, as mentioned in chapter 4.2, is built up using an existing python library called

XGBoost. The hyperparameters of the method are listed in table 5.5 below.

Parameter Value

Maximum depth of tree 3

Learning rate 0.1

Number of estimators 10000000

Verbosity 3

Objective binary:logistic

Scale position weight 1

Table 5.5: An overview of the different parameters used during training to obtain the results
for the BDT.

Most of these parameters are self explanatory, but not all of them so we will take a brief

explanation before we move on. The first parameter that is not so intuitive is the verbosity

level, which we set to let the BDT know how much information we want from the tree

during training. This can be set to 0, 1, 2 or 3, where 0 is silent, 3 is debug and 1 and 2

will give us parts of the information. It is nice to see what is going on during the training,

so we have chosen to set it to 3. The next parameter is the objective, which specifies the

learning task we are doing and the learning objective. As we can see in table 5.5, we have

chosen to use something called binary:logistic which simply is a logistic regression for a
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binary classification. And last, we have the scale position weight which controls the balance

between negative and positive weights in the tree. These parameters are chosen by simply

trial and error (especially depth of tree and learning rate), and they are optimized for the

direct slepton production process.

In addition to the parameters that we have to give to the BDT, we have different compo-

sitions of models we are training. As mentioned earlier in this chapter we are training on

three different mass splittings (low, intermediate and high), but we are also training on high

level, low level or all the features we listed up in table 5.2. This is done to see how important

the different features are during the next step, namely the training.

5.2.2 Training

While we train our BDT, we have to be aware of overtraining/overfitting. This can easily

be done by putting in a demand on the loss and stop the training early. This is simply done

by calculating the loss from the validation set and give the BDT a patience parameter of 20

steps which means that it will stop if the loss has not improved in 20 steps, and save the

model made at the best iteration. This is also the reason for the high number of estimators

in table 5.5.

It is not much more we can do while the BDT is training, other than wait to see how the

testing looks. If we are not happy with how the model is trained, we have to go back to the

building of the tree and adjust the parameters in table 5.5 and do the training again until

we are happy with our results.

5.2.3 Testing

The last step of the BDT is to test it on the test set. We have a lot of results from the BDT

to look at since we have trained the model with low, intermediate and high mass splittings

and with high level, low level and all features for four different processes. We are going to

look at all four processes at the same time and see how the results evolves when changing

the features and mass splittings. All the results which are not shown in this chapter can be

found in the appendix B.
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AUC score

The main selection of results is done based on the AUC-score. If the AUC-score is the same

for high level, low level and all features, we have made the selection on looking at which

features that have been important for the trained model. The AUC-scores are listed in table

5.6.

Level ∆m l̃̃l χ̃±1 → l̃/ν̃ χ̃±1 →W± Mono-Z

High

Low 0.91 0.91 0.91 0.95

Intermediate 0.99 0.98 0.94 0.96

High 1.00 1.00 0.96 0.97

Low

Low 0.95 0.93 0.93 0.95

Intermediate 0.99 0.98 0.95 0.97

High 1.00 1.00 0.97 0.97

All

Low 0.97 0.95 0.94 0.96

Intermediate 1.00 0.99 0.96 0.97

High 1.00 1.00 0.98 0.98

Table 5.6: The AUC score for all four processes with different compositions of features and
mass splittings for the BDT.

As we can see in table 5.6, the preferred composition of features is in most cases to use all the

features, except for some few exceptions where all three options have the same AUC-score.

As mentioned above, this is then determined by looking at the feature importance plot that

also are presented in the following sections. The results are presented for each mass splitting

with all the processes together for easier comparison. The signal samples shown here are

the same as we looked at in the cut and count analysis presented in chapter 3.

Low mass splittings

The first results presented is for the BDTs trained on low mass splittings. The preferred

composition of features is all features and in figure 5.5 we can see how these different features

contributes during training.
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(a) Direct slepton production.
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(b) Chargino production via l̃/ν̃.
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(c) Chargino production via W±.
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(d) Mono-Z.

Figure 5.5: Feature importance for low mass splittings for all four processes using all features
during training.

If we now look at the different feature contributions in figure 5.5, we can see that jets

with a pT > 20 GeV is an important feature when the BDT is trained on SUSY processes.

This means that the BDT evaluate this as a powerful variable to distinguish signal from

background. This is in accordance with the cut and count analysis where a cut on jets is

applied. In addition we can see that the jets with a pT > 30 GeV, b-jets, mll and MET

significance have been used a lot. These are the variables we used in the cut and count

analysis, but they do not contribute equally much for every SUSY process. For the mono-Z

process the same features as for the SUSY processes are used, however, MET/HT is regarded

as the second most important one. This again is reflected in the cut and count analysis where

a cut on this variable is applied. For all of the four processes the tree finds the different flavor

and opposite sign variable powerful when trying to separate the signal from background. To
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conclude the feature importance for low mass splittings we can say that there are no big

surprises when comparing with the cuts applied in cut and count analysis.

The next step is to see how well the testing of the model went. This can be seen in figure

5.6 below.
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(a) Direct slepton production.
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(b) Chargino production via l̃/ν̃.
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(c) Chargino production via W±.
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(d) Mono-Z.

Figure 5.6: Test vs train for low mass splittings with all features done with the BDT. Here
the test set is scaled up to match the number of training events.

As we can see in figure 5.6, the test set (dashed line) match the training set pretty well

for all processes. It differs a bit in some places, but overall it is a good fit. We can also

see that the distinction between signal and background is not that good, but it is at least

most signal close to one, which is the value we have labeled the signal with. The relatively

poor separation of signal and background is due to the closer of the masses of the final

states particles from our signal to the masses of the particles in the SM, which makes them
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harder to separate. This is a major challenge in searches for new physics in high energy

particle physics and is something we hope to improve in the future exploiting more advanced

techniques.

Intermediate mass splittings

The next mass splitting we are looking at is the intermediate mass splittings. In figure 5.7

we can see the importance of the different features where all features are used for training.
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(a) Direct slepton production.
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(b) Chargino production via l̃/ν̃.
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(c) Chargino production via W±.
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Figure 5.7: Feature importance for intermediate mass splittings for all four processes using
all features during training.

In figure 5.7 we can see that MET significance is the most important feature for the SUSY

processes and the third most important feature for mono-Z. This might be a bit more
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interesting result than for the low mass splittings, since we, in cut and count, do a very

gentle cut on this variable while the BDT finds it very interesting in the training. For later

work on a similar analysis, this could be interesting to test in the cut and count analysis as

well. The other features the BDT finds interesting, for all four processes, are more or less

the same as for low mass splittings.
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(b) Chargino production via l̃/ν̃.
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(c) Chargino production via W±.
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Figure 5.8: Test vs train for intermediate mass splittings with all features done with the
BDT. Here the test set is scaled up to match the number of training events.

The results from testing the trained model is shown in figure 5.8. As we could see for the

low mass splittings, it is overall a pretty good match except for a couple of bins in figure

5.8a. Here we can see that some of the bins are lacking some background, but the test has

managed to do a pretty good fit anyway. This is a result of limited statistics in the training

set since it should match the amount of signal you have available. Therefore the training set

is subject to statistical fluctuations. In the signal it is a bit more fluctuations and train and
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test does not have that good compliance. We can also see that we have a bit more signal

close to one and a bit less background in this region. This is not that surprising considering

that we are in a region where our final state particles have typical masses larger than the

SM particles.

High mass splittings

The last BDT we have trained is the one on high mass splittings. Figure 5.9 shows some

interesting differences in the importance of the various features compared to the observations

for the other mass splittings.
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(b) Chargino production via l̃/ν̃.
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(c) Chargino production via W±.
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Figure 5.9: Feature importance for high mass splittings for all four processes using all
features during training.
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As we can see in figure 5.9, the momentum for the leading lepton have become a lot more

interesting for the BDT especially for the direct slepton production and chargino produc-

tion with slepton/sneutrino-mediated-decay. In addition the momentum for the subleading

lepton have also gotten interesting for the two processes including sleptons. The rest of the

features seems to be recurring for the processes no matter what mass splitting we look at.
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Figure 5.10: Test vs train for high mass splittings with all features done with the BDT. Here
the test set is scaled up to match the number of training events.

In figure 5.10 we can see the results from testing our BDT. In figure 5.10c and 5.10d the

match is overall pretty good between test and training, while for the processes in figure 5.10a

and 5.10b this does not match that well. It can be many reasons for this e.g. having too little

input data to perform a proper training, the features that are chosen might be less efficient

for the process with a given mass splitting or tendency to over/underfit. Nevertheless, it has

succeeded in correctly classifying the signal and background to some extent. We can see for

82



all four processes that we have more signal in the last bin than in any of the other models

shown earlier in this chapter. This is of course not that surprising since these masses are

outside of the SM masses we already know very well.

5.3 Building, training and testing the Neural Network

In the following sections we are going to look at how the Neural Network (NN) is built up,

trained and tested before we in the end go to the last part of the ML where we are going to

test both trained algorithms on real data.

5.3.1 Building

As for the BDT, the NN uses some already existing libraries. The main parts of the building

is covered in chapter 4.3 and the parameters we us to optimize the NN is presented in table

5.7.

Parameter Value

Number of nodes 300

Number of hidden layers 5

Dropout rate 0

Batch size 32

Epochs 100000

Learning rate 10−5

L1 0

L2 10−3

Table 5.7: An overview of the different parameters used during training to obtain the results
for the NN.

Most of the parameters are self explanatory, but we are going to go through them step by

step so we are sure that we have understood every one of them. The first one is the number

of nodes in each layer (and not the total number in the network). Then we have the number
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of hidden layers which is the number of layers we want inside the network in addition to

the input and output layer. Dropout rate is a number between 0 and 1 and is taken into

consideration if you want to drop a percentage of your input when you start training. As

we can see, we have not used the dropout rate other than telling our NN that it should

not drop any of the input events, so we are not discussing the advantages or disadvantages

in using this here. The next parameter is the batch size which is the number of iterations

we go through the data we give the NN. This can be any value above 1 but it is common

to set it to a number of power of 2. The epochs and learning rate should be clear from

chapter 4.3, where the epochs is not a very interesting parameter due to the early stopping

and the learning rate gets optimized by Adam. The last two parameters we have to take

into consideration are L1 and L2, which is what we call layer weight regularizes. These are

applied to add a penalty on the layers kernel and are simply added as a term in the cost/loss

function in equation 4.5.

In addition to the parameters, we have to give our network an activation function for each

layer in the network. In chapter 4 we looked at different activation functions, where we have

used two of them in our network, namely ReLU and Sigmoid. We have given the hidden

layers ReLU as activation function and Sigmoid is only used for the output layer.

As for the BDT, we have different compositions of mass splittings and features in the different

NNs as well.

5.3.2 Training

The training of the NN is the most time consuming step of all of the ML done in this thesis.

It uses more time on solving the same problem as the BDT, which is one of the disadvantages

of the NN compared to the BDT. The advantage is that the NN can do a better job than

the BDT if we are able to choose the right parameters for training. Since the training of the

NN takes some time, we have chosen to give it a patience of only 10 steps, instead of 20.

After some trial and error during the work with this thesis we have concluded that when

the network has not improved in 10 steps, it will not improve much more after 20 either. So

after 10 steps, the early-stopping will come in and stop the training and save the model at

the best epoch.
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5.3.3 Testing

The next step is to test the NN on our test set. This is again done on the same signal

samples we used in the cut and count analysis. The results are presented with all four

processes together with low, intermediate and high mass splittings and which set of features

(low, high or all) performing best are evaluated by looking at the AUC-scores in table 5.8.

AUC-score

In table 5.8, we can see the AUC-score for each process and all combinations of mass split-

tings and features. There are several scores that are the same for the different features, but

here we don’t have the opportunity to look at the feature importance (because this is not

relevant for NN) to make the decision. Instead we have chosen to show the same compo-

sitions as for the BDTs because the ones with the best score in NN are the same as with

BDTs.

Level ∆m l̃̃l χ̃±1 → l̃/ν̃ χ̃±1 →W± Mono-Z

High

Low 0.91 0.90 0.90 0.94

Intermediate 0.99 0.97 0.93 0.96

High 1.00 1.00 0.96 0.96

Low

Low 0.96 0.93 0.93 0.96

Intermediate 0.99 0.98 0.95 0.97

High 1.00 1.00 0.97 0.97

All

Low 0.97 0.94 0.94 0.96

Intermediate 1.00 0.98 0.96 0.97

High 1.00 1.00 0.97 0.98

Table 5.8: The AUC score for the different processes trained on different compositions of
features and mass splittings for the NN.
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Low mass splittings

The first results from the NN we are going to look at are the ones with low mass splittings

and trained on all features.
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Figure 5.11: Test vs train for low mass splittings with all features done with the NN. Here
the test set is scaled up to match the number of training events.

Figure 5.11 shows a pretty good agreement between the test and training, but we don’t have

much signal for either of the four processes except for the chargino production processes,

where we have been able to get more signal and less background towards 1.
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Intermediate mass splittings

The next results we are going to look at are from the model trained on intermediate mass

splittings and all features, which are shown in figure 5.12.
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(d) Mono-Z.

Figure 5.12: Test vs train for low mass splittings with all features done with the NN. Here
the test set is scaled up to match the number of training events.

As for the BDT there is a good compliance between train and test with some fluctuations.

What might be interesting in these results compared to the results in figure 5.11 for low mass

splittings, is that we actually got less signal towards one for intermediate mass splittings

than we had for low. We would expect that this would be the other way around because of

the bigger mass splittings between these particles.
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High mass splittings

The last trained NN we are looking at is the one trained on high mass splittings and all

features. The results are presented in figure 5.13.
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Figure 5.13: Test vs train for low mass splittings with all features done with the NN. Here
the test set is scaled up to match the number of training events.

For high mass splittings we can see that we have less background in the last bin for all

four processes, which makes sense since it should be easier to separate the signal from the

background at these masses. We still have some fluctuations, especially in the signal test

set, but overall it seems that the test sample is not too much affected of this.
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5.3.4 Summarizing the ML performance

Before we move on to testing the trained ML algorithms on actual collected data from

ATLAS, we are going to summarize the BDT and NN a bit. The BDT and NN in general

perform well even though the separation of background and signal could have been improved.

To discuss some of the problems that have occurred, we can see that some bins are partly or

completely empty for the background training set. We suspect that this can come from the

reduction of the MC set to match the number of signal events, where some of the background

that probably should have been in these bins are taken out before training. The reduction

of the MC set was necessary to train the ML methods to perform well. But, since the test

set overall seems to be unaffected by this, we have chosen to leave it like this.

For the the different mass splittings, we have also experienced that the ML have found it,

in some cases, hard to classify the signal as signal. It is not just the masses of the particles

themselves. As we have mentioned earlier in this chapter, it might have something to do

with the fact that the masses are close to or similar to the SM particle masses. If the mass

differences in the decay are large, more phase space is available in the decay, which typically

give larger momentum to the decay products - in case of SUSY and DM this means more

MET. When the mass splitting approaches the W-mass, it is almost impossible to distinguish

the direct slepton decay and a SM WW event (where each W decays to lepton+neutrino).

That is why mass splittings around and below 100 GeV are extremely difficult since one has

to fight with an almost irreducible background from WW.

5.4 Testing the BDT and NN on real data

In this section we are going to see how the BDT and the NN perform on non-simulated

data, which is an extra test to see how well they are trained. We will look at all three signal

samples for each process together, where the background and data come from the ML model

trained on high mass splittings. This is, of course, tested on the ML models trained on low

and intermediate mass splittings as well. However, exactly which trained model we use for

the comparison of background and data did not have a big impact and therefore we have

chosen to rather show all signals together for a better comparison.
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First we are going to look at the results from the BDT which are presented in figure 5.14,

where we have stacked the different backgrounds to see how much each contribute in different

areas.
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Figure 5.14: The output from the test set together with real data using BDTs trained on
all features. Here the different backgrounds are stacked to see how much they contribute
together with the three benchmark signals for each process.

In figure 5.14, we can see that the data and background have a pretty good compliance with

some minor fluctuations, which might be caused by the weights for each event. Some of the

events have gotten negative weights when we have multiplied them together, but since the

differences are well within ±20%, we have not considered this as a problem. We can also

see that there are some fluctuations in the different background contributions in the bins,

but since we are looking at around 30% of the MC background we have to expect some
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statistical fluctuations. This seems not to affect overall the performance, however, which

means that we can trust the results we have obtained.

It might be a bit difficult to see because of the logarithmic scale, but in the last bin we

have most contribution from dibosons. This is a very good sign because this background is

the one that looks most like the signature in question and suggests that the BDT handles

the different background contributions well. This can also be drawn back to the cut and

count analysis, where the diboson background definitely is the dominating background after

applying all cuts.

We have also tested the NN on data which are presented in figure 5.15.
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(c) Chargino production via W±.
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Figure 5.15: The output from the test set together with real data from the NNs trained on
all features. Here the different backgrounds are stacked to see how much they contribute
together with the three benchmark signals for each process.
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When comparing the results for the BDT and the results for the NN in figure 5.14 and 5.15,

we cannot see much differences except for a couple of fluctuations in the different background

contributions. The data and the MC seem to have a good compliance and diboson is the

dominating background where we expect to have most of our signal.

It looks like our BDT and NN do a good job in separating the signal and background, and

it handled the real data very well as well. The next and last step in this thesis is to check

if our models are sensitive to actually discover new physics and compare the results from

using ML with the results from the cut and count analysis.
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Chapter 6

Machine Learning or Cut and

Count?

Until this point we have looked at how well the different analyses perform on the same

dataset and we are now going to see how sensitive they are to the signal samples we have

chosen. To be able to do this we have to know how we can quantify the sensitivity before

we move on to compare ML to cut and count analysis in searching for Supersymmetry and

Dark Matter.

6.1 Quantifying the sensitivity

The overall goal of the analysis carried out in this thesis is to optimize the sensitivity to

discover new physics and possibly in the end to claim discovery of new particles. To check if

we have succeeded in making our model sensitive to new physics we can check the expected

p-values and significances for the signal regions considered.

Each event in the data will either pass or fail the cuts defining the signal region used in the

analysis. The number of events therefore follows a binomial distribution, and the probability

of finding n events in the signal region is given by equation 6.1.

93



P (n|N, p) =
N !

n!(N − n)!
pn(1− p)N−n, (6.1)

where N is the total number of events and p the probability for the event to pass the cuts.

If the number of total events gets very big and the probability p gets very small, we can

approximate equation 6.1 as a Poisson distribution, which is given by

P (n|ν) =
νn

n!
e−ν , (6.2)

where ν is given by a hypothesis. This equation (eq. 6.2) gives us a probability of n observed

events when the expectation is to observe ν events.

When we talk about hypotheses in this thesis, we mean background-only (b-only) and signal

+ background (s+b) hypotheses. The b-only hypothesis is the SM, which is a well known

theory. We are going to check this against the s+b hypothesis which in our case will be

one of the three SUSY processes or the mono-Z process. This gives us the opportunity

to introduce the p-values. A p-value is a measure to judge the deviation of the observed

number of events from the b-only hypothesis expectations. If we assume that only the SM

processes contribute we can use the p-value to get the probability of observing as many, or

more, events as we can find in the data. With a perfectly known background the p-value

can be found by

p =

∞∑
n=nobs

f(n; b), (6.3)

where f(n; b) is the Poisson distribution given in equation 6.2. It is common to convert the

p-value into an observed significance z with a unit Gaussian Φ. This is given by

z = Φ−1(1− p) (6.4)

and the unit is expressed with a σ as in number of standard deviations from the center

of the Gaussian distribution. To claim discovery of a new particle we need an observed
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significance above 5 σ. We are not going to check the observed significance in this thesis,

but calculate the expected significance to see if there is any hope to discover new physics for

the models we are looking at. The expected significance is the significance associated with

the median number of expected events under the s+b hypothesis. It quantifies how well the

two hypotheses we are looking at are separated. This is given by equation 6.4, where the

p-value now is expressed as a confidence level (CL) given as

CLs+b =

qobs∑
n=0

(s+ b)n

n!
e−(s+b), (6.5)

where qobs is the number of observed events. If the CLs+b is below 5% we exclude that we

can find any new physics with the selection criteria we have applied. Putting equation 6.4

and 6.5 together we get the expression

ZN = Φ−1(1− CLs+b), (6.6)

where ZN is the expected significance. To claim exclusion in the signal region we need a

CLs+b ≤ 5% which corresponds to ZN ≤ 1.64σ. In this thesis the ZN is calculated by

an already existing tool in ROOT called RooStats.NumberCountingUtils.BinomialExpZ

which simply takes the number of events for both background and signal as input together

with a systematic background uncertainty of e.g. 20%.

6.2 Results

In this section the expected significance for all four new physics processes and the three

analysis methods are presented. The significance is calculated as described in the previous

section. For the ML methods we have studied the three benchmark signals (from high,

intermediate and low mass splittings) for each process and optimized the sensitivity by

applying a cut at each bin in figure 5.14 and 5.15. The optimization procedure starts by

calculating the significance when integrating over all the bins (i.e complete distribution of

ML scores from 0 to 1). Then we move to the next bin, integrate up to 1 and compute
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the corresponding significance. This procedure is repeated until only the last bin remains

in the significance calculation. At the end we see which cut in the ML score gave the best

significance and use this to calculate the significance for all signals for the respective mass

splitting. The bin which is used to place the cut for each optimization varies a bit, but is

usually within the last 10% of the bins in figure 5.14 and 5.15. This is expected since we see

that we have a lot more signal in this region of the output than in the first bins.

6.2.1 Direct slepton production

The first results we are going to look at is for the direct slepton production. The results are

presented in figure 6.1, where we have the mass of the slepton on the x-axis and the mass

of the neutralino on the y-axis.
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Figure 6.1: Significance plots for direct slepton production where all features are used during
training the ML models. Since we have an overlap on some of the samples in the lower left
corner, we have zoomed in at this area and added it in a empty area in the upper left corner.

This figure shows the expected significance for cut and count (6.1a), BDT (6.1b) and NN

(6.1c). The color bar is fixed at 3.5 in all plots to make it easier to compare the different

results. Exactly how much greater than 3.5 the significance is is not so interesting since for

these points we already have very good sensitivity (the 95% CL exclusion limit, in figure

3.13, corresponds to a significance of 1.63). Nevertheless, the exact significance value for each

point is shown in the plot for each point. As we can see, the expected significance is greater

for several signal samples for both the BDT and NN compared with the cut and count

method. In particular, signal samples with low mass splittings (∆m ≤ 100 GeV), found

along the diagonal in figure 6.1, show big improvements for both ML methods compared to

cut and count. As stated in section 5.3.4 signals with low mass splittings are particularly
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hard to distinguish from SM background, making these results very interesting. To see how

much better both ML algorithms are performing, we have presented some signal samples

from the lower left corner in figure 6.1 in table 6.1.

m(̃l, χ̃0
1) [GeV] |BDT/C&C| |NN/C&C| |BDT/NN|

(90, 1) 84.29 67.79 1.25

(90, 30) 55.57 52.71 1.05

(100, 1) 90.71 74.71 1.21

(100, 40) 45.57 38.36 1.19

(100, 50) 27.43 25.00 1.10

Table 6.1: Differences in expected significance for a selection of signals in lower left corner
in figure 6.1. This is done to compare how much better the ML performed for low mass
splittings than the cut and count.

From the table we can see that the sensitivity for both ML methods are much better than

for the cut and count. We can also see that the BDT overall have some better sensitivity

than the NN, but there is no doubt that they are both preferable analysis methods in this

area of mass splittings.

6.2.2 Chargino pair with slepton/sneutrino-mediated-decay

The results for the chargino production with slepton/sneutrino-mediated-decays are pre-

sented in figure 6.2. Here are the x-axis the mass of the chargino, while the y-axis remains

the mass of the neutralino.
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(a) Cut and count.
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(b) Boosted Decision Tree.
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(c) Neural Network.

Figure 6.2: Significance plots for chargino production with slepton/sneutrino-mediated-
decay where all features are used during training of the ML models.

Figure 6.2 shows the expected significance for all three analysis methods used in this thesis.

As for the direct slepton production, we can see that the ML have a greater sensitivity than

the cut and count. The ML methods also have a greater sensitivity for low mass splittings

(∆m < 200 GeV) compared to cut and count, which we can easily see in table 6.2.

99



m(χ̃±1 , χ̃
0
1) [GeV] |BDT/C&C| |NN/C&C| |BDT/NN|

(150, 1) 83.57 57.36 1.46

(150, 50) 27.33 22.33 1.22

(200, 50) 68.79 46.50 1.48

(200, 100) 3.50 1.64 2.13

(250, 100) 58.27 41.73 1.40

(300, 100) 3.26 0.08 38.62

Table 6.2: Differences in expected significance for a selection of signals in lower left corner
in figure 6.2. This is done to compare how much better the ML performed for low mass
splittings than the cut and count.

In table 6.2, we have chosen signal samples in the same area of the plot as for the direct

slepton production. As we can both see and expect from figure 6.2, the sensitivity is not that

good for all of the signals presented in 6.2. However, the ML methods, and maybe especially

the BDT, is more prefereable for these mass splittings in the process we are looking at.

6.2.3 Chargino pair with W-boson-mediated-decay

The next results we are going to look at are for the chargino production with W-boson-

mediated-decay, which are presented in figure 6.3. The x- and y-axis are the same as for the

chargino production with slepton/sneutrino-mediated-decay.
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(a) Cut and count.
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(b) Boosted Decision Tree.
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(c) Neural Network.

Figure 6.3: Significance plots for chargino production with W-boson-mediated-decay where
all features are used during training the ML models.

From figure 6.3, we can easily see that the sensitivity are better for most signal samples

for the ML methods compared with the cut and count method. However, the sensitivity

over all is not very good, and we should not expect to make any discoveries at any mass

splitting. This is somewhat expected from the fact that the cross-section for W-mediated

decay is much smaller since we loose quite a lot by ignoring the quark decays of the W

(only 11% of the BR is to leptons). In addition the W-mediated decay is identical to SM

WW production which is a challenging background. More optimization would be needed to

increase the sensitivity in this channel, which also are discussed in the publication [9]. Even

though the sensitivity is not that good for this process, it still interesting to see how much

better the sensitivity is for the ML methods than for the cut and count. Some selections are

presented in table 6.3.
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m(χ̃±1 , χ̃
0
1) [GeV] |BDT/C&C| |NN/C&C| |BDT/NN|

(100, 1) 0.29 4.93 0.06

(125, 1) 14.00 5.21 2.69

(125, 25) 6.50 4.36 1.49

(150, 1) 19.57 5.57 3.51

(150, 25) 13.43 6.21 2.16

Table 6.3: Differences in expected significance for a selection of signals in lower left corner
in figure 6.3. This is done to compare how much better the ML performed for low mass
splittings than the cut and count.

As we can see in table 6.3, we can see that both ML methods have a better sensitivity than

the cut and count. This is also the case for the BDT at m(χ̃±1 , χ̃
0
1) = (100, 1) GeV, even

though it looks like the cut and count have a better sensitivity for this signal. The reason

for this is that the significance for cut and count is negative for this signal and we have

calculated the absolute value of the ratio to avoid negative ratios. However, the NN seem

to have a better sensitivity for this signal, so a combination of BDT and NN would maybe

be beneficial in this process.

6.2.4 Mono-Z

The last results we are going to look at is for the mono-Z process. The results are presented

in figure 6.4, where we have the mass of the mediator on the x-axis and the mass of the DM

particle on the y-axis.
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(a) Cut and count.
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Figure 6.4: Significance plots for the mono-Z process where all features are used during
training the ML models.

The figure shows that the cut and count method is somewhat sensitive to signals with low

mass splittings (∆m < 100 GeV). However, the ML methods are still more sensitive to a

wider range of signals with low mass splittings, which we can have a closer look at in table

6.4.
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m(V, χ) [GeV] |BDT/C&C| |NN/C&C| |BDT/NN|

(1, 5) 4.11 1.67 2.47

(10, 10) 4.64 3.64 1.28

(30, 5) 1.82 1.53 1.19

(50, 1) 2.03 1.96 1.04

(50,30) 31 21 1.48

(80,25) 2.09 2.08 1.01

Table 6.4: Differences in expected significance for a selection of signals in lower left corner
in figure 6.4. This is done to compare how much better the ML performed for low mass
splittings than the cut and count.

The table shows that the BDT is constantly a bit more sensitive than the NN, which have

been the case for almost all signals we have had a closer look at. Both ML methods are

more sensitive than the cut and count in this range of masses, which also is the case for all

four processes.

6.2.5 Summarizing the results

From our studies it seems that overall the ML methods show a better sensitivity compared

to the cut and count method, especially for low mass splittings. Low mass splittings is what

we are most interested in improving with ML techniques since the cut and count analyses

are less sensitive here. This is also the case for the ML methods trained on low level and

high level features, but they are not as good as the ones trained on all features. These

results can be found in appendix D.

The difference between the performance of the BDT and NN are not very noticeable, but it

seems like the BDT is slightly more sensitive overall. But, as mentioned earlier in this thesis,

the NN are much more sensitive to the parameters we give it than the BDT. This means

that with some more time for optimization of the hyperparameters, we would probably be

able to get just as good results as for the BDT or even better.

In this thesis we have not done a full analysis of the cut and count method as is presented
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in chapter 3. We have only used one signal region (for SUSY mT2 > 160 GeV) while in the

publication they do a multi-bin likelihood fit including the control and signal regions. This

is why the exclusion curves from the publications are better than what we have obtained for

the cut and count. Nevertheless, the fact that the ML methods show a better performance

towards low mass splitting is very promising and with more optimization the sensitivity

could be further increased. For direct slepton, especially, it seems like we are able to get a

sensitivity which is better than what was achieved in the publication in the lower left part

of the parameter space.
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Chapter 7

Conclusions and outlook

In this thesis we have been searching for Supersymmetry (SUSY) and Dark Matter (DM)

using two Machine Learning (ML) based algorithms, namely Boosted Decision Trees (BDT)

and Neural Networks (NN). We have also reproduced the results from some published work

by the ATLAS collaboration [9,11], which have searched for the same signal processes using

a simple cut and count method. The results from the cut and count method are used to

evaluate how well the ML methods performed by comparing the expected sensitivity. The

BDT and NN were trained on different compositions of mass splittings (high, intermediate

and low) and features/kinematical variables, and for four different signal processes (three

SUSY and one DM). Both ML methods have overall performed very well and reached AUC-

scores above 0.90 for every trained model. An AUC-score of 0.90 means that the ML methods

are able to classify the signal as signal and background as background 90% of the time.

Looking at the achieved sensitivity of the three analysis methods and comparing them to

each other it is clear that the ML methods overall have more sensitivity for the signals than

the cut and count method,i n particular for low mass splittings, which is the experimentally

challenging because it requires working with low pT leptons and lower EmissT . To achieve

a high sensitivity for low mass splittings is difficult in the cut and count method and it is

therefore very satisfying that the ML perform rather well for these signals. We can, with

these results, conclude that ML may indeed be an efficient and rewarding technique when

performing searches for new physics phenomena.
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For future research using these or similar ML methods, it would be interesting to see what

we could have done to make the performance better. In this thesis we have used a couple of

precuts, which made the ML methods somewhat biased and thus not able to learn everything

from a less selective data input. It would be interesting to see how it would perform without

these precuts and with more features included. However, this would imply more powerful

computing infrastructure and more time to perform our analysis because of the massive

datasets.

It would also be interesting to do a hyper parameter scan to see which parameters are the

best to use for our BDT and NN. However, although this way to perform a ML analysis is

definitely very useful, the most preferable way would have been to make the ML method

independent of a hypothesis. This can be done through a NN where we do a so-called

anomaly detection. Instead of training on MC-samples for both signal and background,

we train only on background before we test with data. The network would then tell us if

there is something interesting to see in the data or not. However, this introduces many

new challenges. One of them is to know what we have actually found because there is no

hypothesis to confirm. Unfortunately, today’s ML algorithms are not complex enough to

handle this problem, but this is going to be a very interesting research to follow in the future.

108



Appendix A

Signal sample tables
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A.1 Direct slepton production

(
m(l̃), m(χ̃0

1)
)

[GeV] ∆m [GeV]
(
m(l̃), m(χ̃0

1)
)

[GeV] ∆m [GeV]

(90, 30) 60 (350, 330) 20

(90, 1) 89 (350, 300) 50

(100, 50) 50 (350, 250) 100

(100, 40) 60 (400, 380) 20

(100, 1) 99 (400, 350) 50

(125, 75) 50 (400, 300) 100

(150, 100) 50 (450, 400) 50

(150, 90) 60 (450, 350) 100

(200, 150) 50 (500, 450) 50

(200, 140) 60 (500, 400) 100

(250, 240) 10 (550, 500) 50

(250, 200) 50 (550, 450) 100

(250, 150) 100 (600, 500) 100

(300, 280) 20 (650, 550) 100

(300, 250) 50 (800, 700) 100

(300, 200) 100

Table A.1: Table of signal samples with low mass splitting (∆m ≤ 100 GeV) for the direct
slepton production.
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(
m(l̃), m(χ̃0

1)
)

[GeV] ∆m [GeV]
(
m(l̃), m(χ̃0

1)
)

[GeV] ∆m [GeV]

(200, 1) 199 (500, 100) 400

(250, 100) 150 (550, 400) 150

(250, 1) 249 (550, 350) 200

(300, 150) 150 (550, 300) 250

(300, 100) 200 (550, 200) 350

(300, 1) 299 (600, 450) 150

(350, 200) 150 (600, 400) 200

(350, 150) 200 (600, 300) 300

(350, 100) 250 (600, 200) 400

(400, 250) 150 (650, 500) 150

(400, 200) 200 (650, 450) 200

(400, 100) 300 (650, 400) 250

(400, 1) 399 (650, 300) 350

(450, 300) 150 (700, 550) 150

(450, 250) 200 (700, 500) 200

(450, 200) 250 (700, 400) 300

(450, 100) 350 (700, 300) 400

(450, 1) 449 (800, 600) 200

(500, 350) 150 (800, 500) 300

(500, 300) 200 (800, 400) 400

(500, 200) 300

Table A.2: Table of signal samples with intermediate mass splitting (100 GeV < ∆m < 450
GeV) for the direct slepton production.
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(
m(l̃), m(χ̃0

1)
)

[GeV] ∆m [GeV]
(
m(l̃), m(χ̃0

1)
)

[GeV] ∆m [GeV]

(500, 1) 499 (700, 200) 500

(550, 100) 450 (700, 100) 600

(550, 1) 549 (700, 1) 699

(600, 100) 500 (800, 300) 500

(600, 1) 599 (800, 200) 600

(650, 200) 450 (800, 100) 700

(650, 100) 550 (800, 1) 799

(650, 1) 649

Table A.3: Table of signal samples with high mass splitting (∆m ≥ 450 GeV) for the direct
slepton production.

A.2 Chargino pair with slepton/sneutrino-mediated-decay

(
m(χ̃±1 ), m(χ̃0

1)
)

[GeV] ∆m [GeV]
(
m(χ̃±1 ), m(χ̃0

1)
)

[GeV] ∆m [GeV]

(150, 1) 149 (300, 250) 50

(150, 50) 50 (350, 250) 100

(200, 50) 150 (400, 250) 150

(200, 100) 100 (400, 300) 100

(200, 150) 50 (450, 350) 100

(250, 100) 150 (500, 400) 100

(250, 150) 100 (550, 450) 100

(300, 150) 150 (600, 500) 100

(300, 200) 100

Table A.4: Table of signal samples with low mass splitting (∆m < 200 GeV) for chargino
production with slepton/sneutrino-mediated-decay.
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(
m(χ̃±1 ), m(χ̃0

1)
)

[GeV] ∆m [GeV]
(
m(χ̃±1 ), m(χ̃0

1)
)

[GeV] ∆m [GeV]

(300, 100) 200 (700, 200) 500

(400, 100) 300 (700, 300) 400

(450, 250) 200 (700, 400) 300

(500, 1) 499 (700, 500) 200

(500, 100) 400 (750, 450) 300

(500, 200) 300 (800, 300) 500

(500, 300) 200 (800, 400) 400

(550, 350) 200 (800, 500) 300

(600, 1) 599 (850, 350) 500

(600, 100) 500 (850, 450) 400

(600, 200) 400 (900, 400) 500

(600, 300) 300 (900, 500) 400

(600, 400) 200 (950, 450) 500

(650, 450) 200 (1000, 500) 500

Table A.5: Table of signal samples with intermediate mass splitting (200 GeV ≤ ∆m < 600
GeV) for chargino production with slepton/sneutrino-mediated-decay.
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(
m(χ̃±1 ), m(χ̃0

1)
)

[GeV] ∆m [GeV]
(
m(χ̃±1 ), m(χ̃0

1)
)

[GeV] ∆m [GeV]

(700, 1) 699 (1000, 300) 700

(700, 100) 600 (1000, 400) 600

(800, 1) 799 (1050, 50) 1000

(800, 100) 700 (1050, 150) 900

(800, 200) 600 (1050, 250) 800

(850, 50) 800 (1050, 350) 750

(850, 150) 700 (1050, 450) 600

(850, 250) 600 (1100, 1) 1099

(900, 1) 899 (1100, 100) 1000

(900, 100) 800 (1100, 200) 900

(900, 200) 700 (1100, 300) 800

(900, 300) 600 (1200, 1) 1199

(950, 50) 900 (1200, 100) 1100

(950, 150) 800 (1200, 200) 1000

(950, 250) 700 (1200, 300) 900

(950, 350) 600 (1300, 1) 1299

(1000, 1) 999 (1300, 100) 1200

(1000, 100) 900 (1300, 200) 1100

(1000, 200) 800 (1300, 300) 1000

Table A.6: Table of signal samples with high mass splitting (∆m ≥ 600 GeV ) for chargino
production with slepton/sneutrino-mediated-decay.
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A.3 Chargino via W-bosons

(
m(χ̃±1 ), m(χ̃0

1)
)

[GeV] ∆m [GeV]
(
m(χ̃±1 ), m(χ̃0

1)
)

[GeV] ∆m [GeV]

(100, 1) 99 (175, 75) 100

(125, 1) 124 (200, 75) 125

(125, 25) 100 (200, 100) 100

(150, 1) 149 (225, 100) 125

(150, 25) 125 (250, 150) 100

(150, 50) 100 (300, 200) 100

(175, 50) 125

Table A.7: Table of signal samples with low mass splitting (∆m < 150 GeV) for chargino
production with W-mediated-decay.

(
m(χ̃±1 ), m(χ̃0

1)
)

[GeV] ∆m [GeV]
(
m(χ̃±1 ), m(χ̃0

1)
)

[GeV] ∆m [GeV]

(175, 1) 174 (275, 25) 250

(175, 25) 150 (275, 50) 225

(200, 1) 199 (275, 100) 175

(200, 25) 175 (300, 1) 299

(200, 50) 150 (300, 25) 275

(225, 1) 224 (300, 50) 250

(225, 25) 200 (300, 75) 225

(225, 50) 175 (300, 100) 200

(225, 75) 150 (300, 125) 175

(250, 1) 249 (300, 150) 150

(250, 25) 225 (325, 50) 275

(250, 50) 200 (325, 100) 225

(250, 75) 175 (350, 75) 275

(250, 100) 150 (350, 100) 250

(275, 1) 274 (400, 150) 250

Table A.8: Table of signal samples with intermediate mass splitting (150 GeV≤ ∆m < 300
GeV) for chargino production with W-mediated-decay.
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(
m(χ̃±1 ), m(χ̃0

1)
)

[GeV] ∆m [GeV]
(
m(χ̃±1 ), m(χ̃0

1)
)

[GeV] ∆m [GeV]

(325, 1) 324 (400, 100) 300

(325, 25) 300 (425, 1) 424

(350, 1) 349 (425, 25) 400

(350, 25) 325 (450, 1) 449

(350, 50) 300 (450, 50) 400

(375, 1) 374 (475, 1) 474

(375, 25) 350 (500, 1) 499

(375, 75) 300 (500, 100) 400

(400, 1) 399

Table A.9: Table of signal samples with high mass splitting (∆m ≥ 300 GeV) for chargino
production with W-mediated-decay.

A.4 Mono-Z

(
m(V ), m(χ)

)
[GeV] ∆m [GeV]

(
m(V ), m(χ)

)
[GeV] ∆m [GeV]

(50, 1) 49 (50, 30) 20

(30, 5) 25 (100, 55) 45

(80, 25) 55 (150, 80) 70

(130, 50) 80 (200, 105) 95

(1, 5) 4 (100, 100) 0

(10, 10) 0

Table A.10: Table of signal samples with low mass splitting (∆m < 100 GeV) for mono-Z
process.
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(
m(V ), m(χ)

)
[GeV] ∆m [GeV]

(
m(V ), m(χ)

)
[GeV] ∆m [GeV]

(150, 1) 149 (600, 305) 295

(200, 1) 199 (400, 250) 150

(380, 175) 205 (400, 75) 325

(480, 225) 255 (400, 150) 250

(580, 275) 305 (630, 300) 330

(400, 205) 195 (650, 330) 320

(500, 255) 245

Table A.11: Table of signal samples with intermediate mass splitting (100 GeV≤ ∆m < 350
GeV) for mono-Z process.

(
m(V ), m(χ)

)
[GeV] ∆m [GeV]

(
m(V ), m(χ)

)
[GeV] ∆m [GeV]

(400, 1) 399 (730, 350) 380

(500, 1) 499 (750, 380) 370

(600, 1) 599 (750, 75) 675

(750, 1) 749 (750, 250) 500

(900, 1) 899 (750, 325) 425

(1050, 1) 1049 (650, 1) 649

Table A.12: Table of signal samples with intermediate mass splitting (∆m ≥ 350 GeV) for
mono-Z process.
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Appendix B

BDT plots
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B.1 Low mass splittings

B.1.1 Low level features
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(a) Direct slepton production.
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(b) Chargino production via l̃/ν̃.
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(c) Chargino production via W±.
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Figure B.1: Feature importance for low mass splittings for all four processes using low level
features during training.
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Figure B.2: Test vs train for low mass splittings done with the BDT using low level features
during training. Here the test set is scaled up to match the number of training events.
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B.1.2 High level features
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Figure B.3: Feature importance for low mass splittings for all four processes using high level
features during training.
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(c) Chargino production via W±.
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Figure B.4: Test vs train for low mass splittings done with the BDT using high level features
during training. Here the test set is scaled up to match the number of training events.
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B.2 Intermediate mass splittings

B.2.1 Low level features
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(c) Chargino production via W±.
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Figure B.5: Feature importance for low mass splittings for all four processes using low level
features during training.
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Figure B.6: Test vs train for low mass splittings done with the BDT using low level features
during training. Here the test set is scaled up to match the number of training events.
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B.2.2 High level features
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Figure B.7: Feature importance for low mass splittings for all four processes using high level
features during training.
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(b) Chargino production via l̃/ν̃.
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(c) Chargino production via W±.
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Figure B.8: Test vs train for low mass splittings done with the BDT using high level features
during training. Here the test set is scaled up to match the number of training events.
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B.3 High mass splittings

B.3.1 Low level features
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(a) Direct slepton production.
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(c) Chargino production via W±.
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Figure B.9: Feature importance for low mass splittings for all four processes using low level
features during training.
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Figure B.10: Test vs train for low mass splittings done with the BDT using low level features
during training. Here the test set is scaled up to match the number of training events.
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B.3.2 High level features
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Figure B.11: Feature importance for low mass splittings for all four processes using high
level features during training.
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Figure B.12: Test vs train for low mass splittings done with the BDT using high level
features during training. Here the test set is scaled up to match the number of training
events.
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B.4 Stacked background with data

B.4.1 Low level features
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(b) Chargino production via l̃/ν̃.
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(c) Chargino production via W±.
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Figure B.13: Test vs train for low mass splittings done with the BDT using low level features
during training. Here the test set is scaled up to match the number of training events.
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B.4.2 High level features

10 1

101

103

105

107

109

Ev
en

ts

Wjets
Triboson
DY
SingleTop
Higgs
TopOther
ttbar

Diboson
Zjets
m(l, 1

0) (700, 1)
m(l, 1

0) (600, 300)
m(l, 1

0) (400, 300)
Data

0.0 0.2 0.4 0.6 0.8 1.0
XGBoost output

0

1

2

Da
ta

/M
C

(a) Direct slepton production.
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(b) Chargino production via l̃/ν̃.
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(c) Chargino production via W±.
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(d) Mono-Z.

Figure B.14: Test vs train for low mass splittings done with the BDT using high level
features during training. Here the test set is scaled up to match the number of training
events.
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Appendix C

NN plots
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C.1 Low mass splittings

C.1.1 Low level features

0.0 0.2 0.4 0.6 0.8 1.0
Neural network output

10 1

100

101

102

103

104

105

106

En
tri

es

m(l, 0
1) (400, 300)  m =  100

train
test

bkg
sig

(a) Direct slepton production.

0.0 0.2 0.4 0.6 0.8 1.0
Neural network output

101

102

103

104

105

106

En
tri

es

m( ±
1 , 0

1) (300, 200)  m =  100

train
test

bkg
sig

(b) Chargino production via l̃/ν̃.

0.0 0.2 0.4 0.6 0.8 1.0
Neural network output

101

102

103

104

105

106

En
tri

es

m( ±
1 , 0

1) (150, 25)  m =  125

train
test

bkg
sig

(c) Chargino production via W±.

0.0 0.2 0.4 0.6 0.8 1.0
Neural network output

100

101

102

103

104

105

106

En
tri

es

m(V, ) (200, 105)  m =  95

train
test

bkg
sig

(d) Mono-Z.

Figure C.1: Test vs train for low mass splittings done with the NN using low level features
during training. Here the test set is scaled up to match the number of training events.
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C.1.2 High level features
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Figure C.2: Test vs train for low mass splittings done with the NN using high level features
during training. Here the test set is scaled up to match the number of training events.
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C.2 Intermediate mass splittings

C.2.1 Low level features
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Figure C.3: Test vs train for intermediate mass splittings done with the NN using low level
features during training. Here the test set is scaled up to match the number of training
events.
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C.2.2 High level features
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Figure C.4: Test vs train for intermediate mass splittings done with the NN using high level
features during training. Here the test set is scaled up to match the number of training
events.
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C.3 High mass splittings

C.3.1 Low level features
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Figure C.5: Test vs train for high mass splittings done with the NN using low level features
during training. Here the test set is scaled up to match the number of training events.
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C.3.2 High level features
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Figure C.6: Test vs train for high mass splittings done with the NN using high level features
during training. Here the test set is scaled up to match the number of training events.
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C.4 Stacked background with data

C.4.1 Low level features
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(b) Chargino production via l̃/ν̃.
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(c) Chargino production via W±.
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Figure C.7: Test vs train for low mass splittings done with the NN using low level features
during training. Here the test set is scaled up to match the number of training events.
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C.4.2 High level features
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(a) Direct slepton production.
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(b) Chargino production via l̃/ν̃.
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(c) Chargino production via W±.
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Figure C.8: Test vs train for low mass splittings done with the NN using high level features
during training. Here the test set is scaled up to match the number of training events.
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Appendix D

Significance plots

145



D.1 Direct slepton production

D.1.1 Low level features
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Figure D.1: Significance plots for direct slepton production where low level features are used
during training the ML models.
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D.1.2 High level features

100 200 300 400 500 600 700 800
m(l)[GeV]

0

100

200

300

400

500

600

700

m
(

0 1)
[G

eV
]

-0.14

-0.04

6.57

-0.14

0.61

-0.12

1.05

-0.14

0.04

1.16

-0.14

0.1

1.470.14

0.13

1.569.19

0.14

1.56

5.39

0.14

-0.14

7.91

0.14

-0.0

0.14

0.91

-0.14

1.66

12.22

0.09

2.13

0.16

0.21

2.31

6.86

0.34

2.35

11.1

0.4

-0.14

0.4

0.06

-0.14

0.43

1.56

-0.14

0.43

2.36

-0.08

2.82

0.17

3.47

0.41

3.36

0.5
-0.14

0.62

-0.14

-0.14

0.66

0.24

0.69

2.4

0.68

3.68

-0.14

-0.07

4.97

0.31

4.88

-0.14

0.62

-0.14

0.88-0.14

0.98

0.29

1.0

3.65

-0.14

1.02

-0.14

-0.14

5.69

-0.14

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Si
gn

ifi
ca

nc
e

-0.14

-0.14 11.1

-0.14
-0.14

-0.14
-0.14

-0.14

-0.14
-0.14

-0.14

(a) Cut and count.

100 200 300 400 500 600 700 800
m(l)[GeV]

0

100

200

300

400

500

600

700

m
(

0 1)
[G

eV
]

-0.09

0.49

-0.13
-0.01

0.68

-0.13

-0.13
-0.07

-0.13
-0.09

-0.13

2.11

-0.13

-0.13

1.29

-0.13

-0.13

0.44

-0.13

-0.13

0.27

-0.13

0.15

-0.13

-0.01

-0.13

0.04

-0.05

-0.08

-0.11

4.82

2.79

6.94

2.58

5.33

7.70

1.52

4.49

5.90

0.88

2.52

5.34

5.60

0.60

1.88

2.72

4.35

4.67

0.31

1.37

2.63

3.20

0.17

0.88

1.47

2.23

0.08

0.56

1.31

1.69

0.01

0.31

0.64

1.03

-0.05

0.21

0.58

0.73

0.04

0.22

0.30

3.23

2.34

2.52

1.84

1.78

1.18

1.28

1.39

0.86

0.92

0.91

0.43

0.42

0.46

0.45

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Si
gn

ifi
ca

nc
e

-0.09

0.49

-0.13
-0.01

0.68

-0.13

-0.13
-0.07

-0.13
-0.09

4.82

(b) Boosted Decision Tree.

100 200 300 400 500 600 700 800
m(l)[GeV]

0

100

200

300

400

500

600

700

m
(

0 1)
[G

eV
]

-0.14

0.52

-0.14
0.26

0.54

-0.14

-0.14
0.41

-0.14
-0.08

-0.14

2.93

-0.14

-0.14

1.38

-0.14

-0.14

0.31

-0.14

-0.14

0.37

-0.14

0.17

-0.14

0.04

-0.14

0.03

-0.05

-0.07

-0.12

2.87

1.32

5.78

1.64

4.35

5.98

0.86

3.23

4.83

0.58

2.11

4.41

4.45

0.51

1.44

2.17

3.39

3.62

0.22

1.04

1.94

2.50

0.11

0.71

1.07

1.69

0.07

0.40

0.98

1.28

-0.01

0.20

0.46

0.75

-0.05

0.14

0.41

0.54

0.01

0.13

0.21

0.62

0.41

0.46

0.32

0.32

0.16

0.19

0.22

0.09

0.12

0.12

-0.01

-0.00

0.01

0.01

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Si
gn

ifi
ca

nc
e

-0.14

0.52

-0.14
0.26

0.54

-0.14

-0.14
0.41

-0.14
-0.08

2.87

(c) Neural Network.

Figure D.2: Significance plots for direct slepton production where high level features are
used during training the ML models.
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D.2 Chargino pair via slepton or sneutrino

D.2.1 Low level features
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(b) Boosted Decision Tree.
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(c) Neural Network.

Figure D.3: Significance plots for chargino production with slepton/sneutrino-mediated-
decay where low level features are used during training the ML models.
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D.2.2 High level features
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(b) Boosted Decision Tree.
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(c) Neural Network.

Figure D.4: Significance plots for chargino production with slepton/sneutrino-mediated-
decay where high level features are used during training the ML models.
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D.3 Chargino pair via W-bosons

D.3.1 Low level features
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(a) Cut and count.
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(b) Boosted Decision Tree.
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(c) Neural Network.

Figure D.5: Significance plots for chargino production with W-boson-mediated-decay where
low level features are used during training the ML models.
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D.3.2 High level features

100 150 200 250 300 350 400 450 500
m( ±

1 )[GeV]

0

25

50

75

100

125

150

175

200

m
(

0 1)
[G

eV
]

0.65

0.13

-0.13

0.6

0.37

-0.14

0.590.47-0.07

0.27

0.640.580.01

0.27

0.750.690.15 0.38

0.450.15-0.14

0.460.62

0.09-0.14

0.41

0.74

0.38-0.14

0.46

0.67

0.37-0.12

0.46

0.37

0.55-0.05

0.42

-0.14

-0.14

0.57

0.65

-0.06

-0.14

0.3

0.75

-0.02

-0.14

0.48

-0.14

0.08

-0.14

0.5

0.69

0.24

-0.14

0.6

-0.04

0.35-0.14

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Si
gn

ifi
ca

nc
e

(a) Cut and count.
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(b) Boosted Decision Tree.
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Figure D.6: Significance plots for chargino production with W-boson-mediated-decay where
high level features are used during training the ML models.
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D.4 Mono-Z

D.4.1 Low level features
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Figure D.7: Significance plots for the mono-Z process where low level features are used
during training the ML models.
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D.4.2 High level features
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Figure D.8: Significance plots for the mono-Z process where high level features are used
during training the ML models.
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[36] T Gleisberg, S Höche, F Krauss, M Schönherr, S Schumann, F Siegert, and J Winter.

Event generation with SHERPA 1.1. Journal of High Energy Physics, 2009(02):007–007,

Feb 2009.

[37] Ryan Gavin, Ye Li, Frank Petriello, and Seth Quackenbush. FEWZ 2.0: A code for

hadronic Z production at next-to-next-to-leading order. Computer Physics Communi-

cations, 182(11):2388–2403, Nov 2011.

[38] Simone Alioli, Paolo Nason, Carlo Oleari, and Emanuele Re. NLO Higgs boson pro-

duction via gluon fusion matched with shower in POWHEG. Journal of High Energy

Physics, 2009(04):002–002, Apr 2009.

[39] Paolo Nason and Carlo Oleari. NLO Higgs boson production via vector-boson fusion

matched with shower in POWHEG. Journal of High Energy Physics, 2010(2), Feb 2010.

[40] Parul Pandey. Understanding the Mathematics behind Gradient Descent.

https://towardsdatascience.com/understanding-the-mathematics-behind-

gradient-descent-dde5dc9be06e, March, 2019.

[41] Anup Bhande. What is underfitting and overfitting in machine learning and how to deal

with it. https://medium.com/greyatom/what-is-underfitting-and-overfitting-

in-machine-learning-and-how-to-deal-with-it-6803a989c76, March, 2018.

160

https://towardsdatascience.com/understanding-the-mathematics-behind-gradient-descent-dde5dc9be06e
https://towardsdatascience.com/understanding-the-mathematics-behind-gradient-descent-dde5dc9be06e
https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76
https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76


[42] Rishi Sidhu. Understanding ML Evaluation Metrics — Precision Re-

call. https://medium.com/x8-the-ai-community/understanding-ml-evaluation-

metrics-precision-recall-2b3fb915b666, June, 2019.

[43] Jason Browniee. How to Choose Loss Functions When Training Deep Learn-

ing Neural Networks. https://machinelearningmastery.com/how-to-choose-loss-

functions-when-training-deep-learning-neural-networks/, January, 2019.

[44] Ajay Kumar, Rama Sushil, and Arvind Kumar Tiwari. Significance of Accu-

racy Levels in Cancer Prediction using Machine Learning Techniques. http:

//bbrc.in/bbrc/significance-of-accuracy-levels-in-cancer-prediction-

using-machine-learning-techniques/, August, 2019.

[45] dmlc XGBoost. About XGBoost. https://xgboost.ai/.

[46] Katherine Woodruff. Introduction to boosted decision trees. https:

//indico.fnal.gov/event/15356/contributions/31377/attachments/19671/

24560/DecisionTrees.pdf, September, 2017.

[47] Mei-Hung Chiu, Yuh-Ru Yu, Hongming Liaw, and Lin Hao. THE USE OF FACIAL

MICRO-EXPRESSION STATE AND TREE-FOREST MODEL FOR PREDICTING

CONCEPTUAL-CONFLICT BASED CONCEPTUAL CHANGE. 01 2016.

[48] Mahsa Shoaran, Benyamin Allahgholizadeh Haghi, Milad Taghavi, Masoud Farivar,

and Azita Emami. Energy-Efficient Classification for Resource-Constrained Biomedical

Applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,

PP:1–1, 06 2018.

[49] Anuja Nagpal. Decision Tree Ensembles - Bagging and Boosting. https:

//towardsdatascience.com/decision-tree-ensembles-bagging-and-boosting-

266a8ba60fd9, October, 2017.

[50] XGBoost developers. Python API Reference. https://xgboost.readthedocs.io/en/

latest/python/python api.html, 2020.

[51] Larry Hardesty. Explained: Neural networks. April, 2017.

[52] Michael A. Nielsen. Neural Networks and Deep Learning. http://

neuralnetworksanddeeplearning.com/chap5.html, 2015.

161

https://medium.com/x8-the-ai-community/understanding-ml-evaluation-metrics-precision-recall-2b3fb915b666
https://medium.com/x8-the-ai-community/understanding-ml-evaluation-metrics-precision-recall-2b3fb915b666
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
http://bbrc.in/bbrc/significance-of-accuracy-levels-in-cancer-prediction-using-machine-learning-techniques/
http://bbrc.in/bbrc/significance-of-accuracy-levels-in-cancer-prediction-using-machine-learning-techniques/
http://bbrc.in/bbrc/significance-of-accuracy-levels-in-cancer-prediction-using-machine-learning-techniques/
https://xgboost.ai/
https://indico.fnal.gov/event/15356/contributions/31377/attachments/19671/24560/DecisionTrees.pdf
https://indico.fnal.gov/event/15356/contributions/31377/attachments/19671/24560/DecisionTrees.pdf
https://indico.fnal.gov/event/15356/contributions/31377/attachments/19671/24560/DecisionTrees.pdf
https://towardsdatascience.com/decision-tree-ensembles-bagging-and-boosting-266a8ba60fd9
https://towardsdatascience.com/decision-tree-ensembles-bagging-and-boosting-266a8ba60fd9
https://towardsdatascience.com/decision-tree-ensembles-bagging-and-boosting-266a8ba60fd9
https://xgboost.readthedocs.io/en/latest/python/python_api.html
https://xgboost.readthedocs.io/en/latest/python/python_api.html
http://neuralnetworksanddeeplearning.com/chap5.html
http://neuralnetworksanddeeplearning.com/chap5.html


[53] Keras API reference. https://keras.io/api/.

[54] Sagar Sharma. Activation Functions: Neural Networks. https:

//towardsdatascience.com/activation-functions-neural-networks-

1cbd9f8d91d6.

[55] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for Activation Func-

tions. CoRR, abs/1710.05941, 2017.

[56] Vitaly Bushaev. How do we ’train’ neural networks. https://

towardsdatascience.com/how-do-we-train-neural-networks-edd985562b73.

[57] Vitaly Bushaev. Stochastic Gradient Descent with momentum. https:

//towardsdatascience.com/stochastic-gradient-descent-with-momentum-

a84097641a5d.

[58] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.
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