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ABSTRACT In this paper, given data with high-dimensional features, we study this problem of how to
calculate the similarity between two samples by considering feature interaction network, where a feature
interaction network represents the relationship between features. This is different from some traditional
methods, those of which learn similarities based on a sample network that represents the relationship between
samples. Therefore, we propose a novel network-based similarity metric for computing the similarity
between samples, which incorporates the knowledge of feature interaction network, in order to overcome
the data sparseness problem. Our similarity metric uses a new Feature Alignment Similarity measure, which
does not directly compute the similarities among samples, but projects each sample into a feature interaction
network and measures the similarities between two samples using the similarities between the vertices of
the samples in the network. As such, when two samples do not share any common features, they are likely
to have higher similarity values when their features share the similar network regions. For ensuring that the
metric is useful in a real-world application, we apply our metric to discover subtypes in tumor mutational
data by incorporating the information of the gene interaction network. Our experimental results from using
synthetic data and real-world tumor mutational data show that our approach outperforms the top competitors
in cancer subtype discovery. Furthermore, our approach can identify cancer subtypes that cannot be detected
by other clustering algorithms in real cancer data.

INDEX TERMS Cancer subtype, feature interaction network, similarity metric, somatic mutational data.

I. INTRODUCTION
Clustering is a key task in data mining, in which data samples
are grouped into clusters. Sample within one cluster are more
similar than those in different clusters. Many clustering algo-
rithms are good at handling low dimensional data, involving
only several dimensions. It is challenging to cluster data
samples in a high dimensional space, especially considering
that such data can be very sparse and highly skewed [1]–[3].
High-dimensional data is a phenomenon in real-world data
mining applications. Gene data is a typical example. The
total number of unique genes in a gene data set represents
the number of dimensions, which is usually in the thousands.

The associate editor coordinating the review of this manuscript and

approving it for publication was Huiling Chen .

High-dimensional data occurs in text data and business data
as well [4]. Sparsity is an accompanying phenomenon of
high-dimensional data.

Clearly, clustering of high-dimensional sparse data
requires special treatment. There are three strategies to
alleviate problems caused by the sparsity and high dimen-
sionality of the data. The first one computes semantic sim-
ilarity between samples by using an external knowledge
source, such as WordNet [5] and Word2Vec [6] in docu-
ments. However, these methods are domain dependent and
language dependent. The second one used methods which are
co-clustering based, in which the features and the samples are
simultaneously clustered by exploiting the duality between
them [7], [8]. However, the methods rely solely on the feature
distributions to cluster the samples and vice-versa. The last
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FIGURE 1. Overview of the challenges of discovering subtypes in uterine cancer data. (a) The heat map of uterine cancer data (248 × 17.968). The
red dot means the gene is mutated in the sample. (b) The statistics of samples. (c) Visualization of uterine cancer data using T-SNE. Uterine cancer
data can be divided into four recorded subtypes on a histological basis. Different colors represent different subtypes. (d) Visualization of the
50-dimensional results of NMF method using T-SNE. (e) Example illustrating two patient somatic mutation profiles (P and Q) over a molecular
interaction network. Mutated genes are shown in blue (patient 1) and yellow (patient 2) in the context of a gene interaction network. Based on the
gene network, genes with high scores in both patients are connected by a bold line. The similarity of two patients is calculated by aligning the
weight of genes of P to genes of Q that attempts to maximize the objective function shown, where s(pi , qj ) represents the similarity of two genes
and f (i, j ) represents how much the weight of pi matches qj .

one uses a sample network that represents the relationship
between samples to improve similarity estimates, e.g. social
network [9], [10], citation network [11]. These methods are
influenced by the structure of the sample network.

In contrast to the above strategies, the novel similarity
metric we are studying computes the similarity between
samples by incorporating the knowledge of a feature inter-
action network, where feature interaction network consists
of the features of the samples in data. In some appli-
cations, there exists such a feature interaction network.
For example, in the task of subtype discovery from gene
mutational data, a gene interaction network contains the
relationship between genes which can help to alleviate the

problem of sparseness [12]–[14]. Here, we give an overview
of the challenges of discovering subtypes from real uterine
cancer mutation data, which are listed in Figure 1.

(1) Few samples and high dimensional features. Figure 1(a)
shows the heat map of uterine cancer data, which includes
248 patients over 17,968 unique genes. As collecting such
data is usually prohibitively expensive, only hundreds of
samples for each cancer can be obtained. The data is high
dimensional with 17,968 features.

(2) Sparse and heterogeneous characteristics. From
Figure 1(a), we can see that some rows (samples) include
many mutated genes and some rows only have a few mutated
genes. Figure 1(b) gives the statistics of the number of
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samples with the number of mutated genes in each sample.
The total number of genes is 17,968 and the percentages of
samples that contain less than 100 are 40%, which means
the data is very sparse. Compared with the 40% (<100),
the percentages of samples that contain greater than 800
are 21%, which indicates the data is heterogeneous.

(3) Discovering the process using the mutation data for
subtype discovery is a challenging task. A good patient rep-
resentation is expected to group similar patients and separate
the different groups. Figure 1(c) shows the T-SNE based visu-
alization [15] of the uterine cancer data we have. In medicine,
Uterine data is usually divided into four recorded subtypes
based on a histological basis. Four different colors represent
four different subtypes in Figure 1(c). However, we can-
not distinguish the four different groups using the original
data representation. Figure 1(d) shows patient representations
using Non-negative Matrix Factorization (NMF) [12], [16],
and we can draw a similar conclusion of distinguishing the
four different groups because the graph in Figure 1(d) resem-
bles the graph in Figure 1(c). Thus, we can conclude NMF
is unsuited to gene mutation data, even though NMF can
successfully discover subtypes from gene expression data.

Therefore, in this paper, we try to overcome the prob-
lems of traditional similarity-based metrics when applied
to high-dimensional sparse data, e.g., gene mutational data.
We propose a new network-based similarity metric to take
advantage of the prior knowledge of a feature interaction
network. We project each sample into the feature interac-
tion network and measure the similarity between two sam-
ples using the similarity between features in the network
in Figure 1(e). In contrast to traditional similarity metric, our
metric generates a high similarity value of two samples when
their features share similar network regions, even if they do
not share any common features. Experimental results show
that our approach outperforms the top competitors in cancer
subtype discovery using a comprehensive set of evaluation
metrics. Furthermore, our approach can identify cancer sub-
types with biological significance that cannot be detected by
other clustering algorithms using real cancer data.

Thus, our main contributions are as follows:
(1) Network-based similarity metric: we propose a novel

similarity metric to measure the similarity between samples
using a feature interaction network.

(2) Effectiveness: When applying subtype discovery, our
approach outperforms state-of-the-art algorithms in discov-
ering cancer subtypes, and detects biologically significant
cancer subtypes that cannot be identified by other top com-
petitors using real cancer data.

Furthermore, our network-based similarity metric can be
easily incorporated into any clustering algorithm that contains
data attributes with network structures.

The paper is organized as follows: Section 2 discusses
related work; Section 3 presents the proposed metric for
computing the similarity between samples; Section 4 reports
experimental results on synthetic data and uterine adenocar-
cinoma datasets; Section 5 concludes the paper.

II. RELATED WORK
We discuss existing work on similarity-based metrics,
network-based similarity metrics, and subtype discovery in
cancer.

A. SIMILARITY-BASED METRIC
There are some traditional similarity functions such as
Euclidean distance, Cosine similarity and Pearson’s distance,
which provide a way to measure how close two samples
are [6]. In probabilistic models, data elements can belong
to more than one topic, and associated with each element is
a set of membership levels, e.g. Non-negative Matrix Fac-
torization (NMF) [12], [16] and Latent Dirichlet allocation
(LDA) [17], [18]. Recent approaches for learning sample rep-
resentations are distributed representations which encode a
sample as a compact, dense and lower-dimensional vector
with the semantic meaning of a sample distributed along
dimensions of the vector. Many neural network-based dis-
tributed representation models have been proposed [19], [20]
and shown to be able to learn better representations in
image datasets and document datasets. The above methods
are not very well suited for dealing with high-dimensional
sparse data due to sparsity. Besides computing the sim-
ilarity between samples, the features and the samples in
co-clustering are simultaneously clustered by exploiting the
duality between them [7]. However, the method relies solely
on the feature distributions to cluster the samples and
vice-versa.

B. NETWORK-BASED SIMILARITY METRIC
In practice, there are many datasets that contain explicit rela-
tions among samples, such as citation network datasets [11]
and NELL dataset [21]. The relationship between samples
can be represented as a network. Through utilizing both data
and networks, many similarity metrics were proposed [22],
[23] and named as network-based similarity metrics, which
have been successfully applied in many application domains.
In recent years, many models have been proposed to learn
lower-dimensional vectors from network and data [9], [10].
But, these methods are unsuited to our problem of incorpo-
rating knowledge from a feature interaction network because
the network adopted by the above methods is the relationship
between samples, whereas the feature interaction network
represents the relationship between features.

C. SUBTYPE DISCOVERY IN CANCER
Identifying cancer subtypes is essential for a wide range
of applications, that of which includes a better under-
standing of the biological complexity of the disease and
developing targeted, precision medicine therapeutic inter-
ventions [24], [25]. Clustering algorithms are often used for
cancer subtype discovery. Subtype discovery is a fundamental
yet unsolved problem in cancer analysis as the presence of
multiple subtypes can confound many analyses [26].
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Gene mutational data, which can be more reliably obtained
than gene expression data, help to determine how the sub-
types develop, evolve and respond to therapies [27]–[29].
In contrast to dense continuous-value gene expression data,
whichmost existing cancer subtype discovery algorithms use,
somatic mutational data are extremely sparse and hetero-
geneous. This is because there are less than 0.5% mutated
genes out of 20,000 human protein-coding genes. Addition-
ally, identical mutated genes are rarely shared by cancer
patients [13]. The major barriers for clustering algorithms are
efficient utilization of extremely sparse and high dimensional
gene mutational data in discrete 1 and 0 values.

If we focus on clustering algorithms to stratify sparse
and heterogeneous somatic mutational profiles, perhaps the
most popular approach for subtype discovery is NMF, which
does not require any prior knowledge of the expected num-
ber of subtypes or the associated mutational patterns [12].
NMF aims to find two non-negative matrices whose prod-
uct provides a good approximation to the original matrix.
One of its drawbacks is that it does not always result in
meaningful parts-based clustering representations. Several
researchers addressed this problem by incorporating sparse-
ness constraints (sparse NMF) on one or both non-negative
matrices [30], [31]. Likewise, we used NetNMF, which is
a NMF variant, to encode the geometrical structure in the
data and subsequently regularize one of the two non-negative
matrices [32]. NMF has been applied to recover meaningful
biological information from cancer-related microarray data
without supervision [12], [33]. Even when using sparse-
ness constraints, however, NMF cannot effectively stratify
somatic mutation data because of its extremely sparseness.
Network-based stratification (NBS) [13] was developed to
adopt NetNMF because of the variety of gene interaction
networks. So far, NBS is the most effective method to strat-
ify patients in an unsupervised fashion from somatic muta-
tion data. However, its performance still needs significant
improvement for a practical clinical application.

III. PROBLEM DEFINITION
We assume that the data X to be analyzed consists of high
dimensional binary features and there exists a feature inter-
action network G that represents the relevance between fea-
tures. Excluding sparse and heterogeneous characteristics,
we focus on this type of dataset with the non-overlapping
characteristic.
Definition 1 (Non-Overlapping Characteristic): Two sam-

ples who belong to the same topic may not share identical
mutated genes.
Defintion 2 (Sparse and Heterogeneous characteristics):

The dataset can be represented as a binary matrix of feature
attributes X ∈ BM×N , whereM is the number of sample data
and N is the number of features. The sparse characteristic
describes the scenario where most of the sample data contains
few non-zero features. Additionally, the number of non-zero
features is far less than the totoal number of features N . The
heterogeneous characteristic describes the scenario where

some of the samples contains hundreds of non-zero features,
especially in comparison to the sparse characteristic.
Defintion 3 (Feature Interaction Network): The feature

interaction network G = (V ,E) consists of N features as
nodes, where V = {v1, . . . , vN } represents the set of vertices,
E represents the set of edges, and each vertex represents one
feature. Each edge connecting two vertices vi and vj has a
weight which represents the relevance between two vertices,
denoted as s(vi, vj). So if the weight of the edge that connects
two vertices is high, then the two vertices are more relevant.
Here, vi and vj are referred as neighbors. Edges(vi) represents
all edges connecting to vertex vi and Neigh(vi) represents all
neighbors of vertex vi.

Based on these characteristics, some common metrics are
not fit for this type of data. Therefore, considering the knowl-
edge existing in feature interaction network G, we intro-
duce Feature Alignment Similarity (FAS) which is a new
network-based similarity metric that embeds intrinsic rele-
vance among features. FAS is designed to deal with data
samples that have few overlapping features. Datasets with
non-overlapping features are common in text data and bio-
logical data. For example, two cancer patients who belong
to the same cancer subtype may not share identical mutated
genes due to the complicated nature of cancer diseases [13].
In natural language processing, it is common that many
short texts (e.g., Tweets or Comments) which use uncommon
words can still discuss the same topic [31]. However, those
non-overlapping features still exhibit a level of similarity
because those features are related to each other through a fea-
ture interaction network.We now formally define the relevant
concepts.

If we cannot obtain the edge weight beforehand, the rele-
vance between features can be estimated using the network
structure explained in Section 3.2. The edge weight
only provides the relevance of two neighbors. For two
non-neighboring vertices, two vertices that are close in the
network can have higher relevance than those that are distant
in the network, which is also considered by our method that
is explained in Section 3.2.

We formulate the problem of computing the similarity
between two data samples as follows.
• Given: two samples P and Q, and a feature interaction
network G that describes the network relevance among
features.

• Find: a similarity metric that properly integrates the
knowledge of feature interaction network.

• Objective: optimal alignment of the features of a sample
P to the features of the sample Q that calculates the
maximal similarity between two samples P and Q.

In the application of cancer subtyping, cancer data is rep-
resented as a binary matrix, where 1 means the gene in this
patient is mutated. The feature interaction network can be
constructed using gene interaction information from gene
networks, e.g., PathwayCommons (a resource for biological
pathway analysis) [34], STRING (functional protein associ-
ation networks) [35] and HumanNet (probabilistic functional
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gene network of Homo sapiens) [36]. A detailed discussion
will be provided in Section 4.1.

A. FEATURE ALIGNMENT SIMILARITY (FAS)
In order to ensure that the maximal similarity between two
data samples do not exceed 1, each feature of a data sample
has a weight associated with itself, which is defined as 1 over
the number of features in this sample, e.g., w(vi) = 1/n,
where n is the total number of features, vi is the ith fea-
ture. Therefore, features that reside in each data sample are
equally important when computing the similarity between
two samples.

Consider two data samples P = {(p1,wp1 ), (p2,wp2 ), . . . ,
(pm,wpm )} and Q = {(q1,wq1 ), (q2,wq2 ), . . . , (qn,wqn )},
where the number of features in P is m, the number of
features in Q is n, wpm is the weight of pm in P, and wqn
is the weight of qn in Q. Here, 1 ≤ pm ≤ N and 1 ≤
pn ≤ N . Our goal is to incorporate the relevance between
two features computed by a feature interaction network into
the data sample similarity metric. The idea is that two data
samples will have a high similarity value when their features
share similar network regions in G, even if they do not share
any common features. First, we allow the weight of each
feature pi in P to be transformed into any feature qj in Q
in total or in parts. Then, we need to optimally align the
weights of the features in the sample P to those of sample
Q to properly calculate the maximal similarity. We define the
Feature Alignment Similarity (FAS) as the similarity between
samples with non-overlapping features.
Defintion 4 (Feature Alignment Similarity): Let f ∈ Rm×n

be an alignment matrix between P and Q, where F = [fij]
represents how much the weight of feature pi allocates to to
feature qj. The similarity of two samples to the maximum
cumulative cost required to align all features of one sample
to the other sample, namely,

∑
i,j fijs(pi, qj), where s(pi, qj)

represents the feature relevance that is discussed in subsec-
tion 3.2. The maximal similarity between two samples can be
calculated using the following objective function,

s(P,Q) = max
f≥0

x∑
i

y∑
j

fijs(pi, qj)

where
n∑
j

fij = w(pi) ∀i ∈ {1, 2, . . . ,m}

m∑
i

fij = w(qj) ∀j ∈ {1, 2, . . . , n} (1)

which matches all weights of PwithQ, the entire outgoing
weight from feature pi equals w(pi), namely

∑n
j fij = w(pi).

Correspondingly, the amount of incomingweight to feature qj
must equal w(qj), namely,

∑m
i fij = w(qj). The optimal flow

F is found by solving this linear optimization problem, and
the best average time complexity of solving the FAS problem
is O(N 3logN ), where N is the number of all features in the
feature interaction network [37]. For a dataset X with hun-
dreds of samples, solving the FAS optimization problem for

any two sample data in X can become prohibitive. Therefore,
we will introduce a faster similarity computation method in
Section 3.4.

For example, let us consider a special case for two sample
data that are the same P = {(a, 1/3), (b, 1/3), (c, 1/3)}
and Q = {(a, 1/3), (b, 1/3), (c, 1/3)} with s(a, a) = 1,
s(b, b) = 1, s(c, c) = 1, s(a, b) = s(b, a) = 0.5, s(a, c) =
s(c, a) = s(b, c) = s(c, b) = 0, where 1 means two
vertices are completely similar and 0.5 means 50% similar.
The weight of each feature can be transformed into that of
any feature in other samples or many features in other sample.
For obtaining the maximal similarity through Equation 1,
in this example, the weight of each feature in P should be
transformed into the corresponding same feature in Q. The
final similarity of P and Q is 1/3× s(a, a)+ 1/3× s(b, b)+
1/3× s(c, c) = 1.

B. FEATURE SIMILARITY
In this subsection, we will explain how to compute the sim-
ilarity between individual features with the help of a fea-
ture interaction network G, e.g., s(pi, qj). For simplification,
s(pi, qj) is expressed as s(i, j). There are only two cases when
calculating the similarity between vertices: the similarity of a
vertex with itself and the similarity of two different vertices.

1) SIMILARITY OF A VERTEX WITH ITSELF
In a traditional similarity matrix, the similarity between a
feature and itself should be 1. However, in our new simi-
larity metric, the similarity between the same feature from
two different samples is calculated based on the different
sub-network regions that the feature resides because the same
feature from different data samples may exhibit different
impacts. We first assign 1 as an initial value to the similarity
of one vertex with itself, then we will compute the similarity
between other vertices, and then modify the initial value
based on their corresponding neighbors in order to distinguish
the influence of different vertices, detailed discussion will be
provided along with Equations 3, 4, and 5 later in this section.

2) SIMILARITY BETWEEN TWO DIFFERENT VERTICES
The similarity between two vertices is related to the degree of
closeness of two vertices. For two different vertices, metric
distance between two vertices should become smaller as the
similarity increases. The closeness between two vertices is
determined by their number of common neighbors. Vertices
i and j are neighbors if they are connected by an edge in
the feature interaction network. For two different vertices
(i and j), similarity can be calculated by finding the shortest
path from one vertex to another vertex. The shortest path is
our proposedmeasurement of closeness between two features
(vertices).
Defintion 5 (First-Order Proximity): Edge weight sij in

G are also called first-order proximities between vertex vi
and vj, since they are the first and foremost measures of
similarity between two nodes.
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At first, for two vertices that are adjacent, its first-order
proximity value is set as,

s(i, j) =
1

| Edges(i) ∪ Edges(j) |
(2)

where Edges(i) represents all edges connecting to vertex i,
and | Edges(i) | represents the number of all edges connecting
to vectex i.
Defintion 6 (High-Order Proximity): The high-order prox-

imity between a pair of vertices describes the proximity
of two non-neighboring nodes. The high-order proximity
between vi and vj is determined by the first-order proxim-
ity. Here, the high-order proximity includes second-order
proximity, third-order proximity, and so on. The second-order
proximity s(i, j) means that vertex i and vertex i are using one
vertex as intermediate point. Correspondently, the third-order
proximity means that two vertex are using two vertices as
intermediate points.

We will compute the high-order proximity of two vertices
by finding the path of greatest similarity using other vertices
as intermediate points along the way. We define a function
greatest(i, j, k) that returns the path of greatest similarity
from vertex i to vertex j using vertices only from the set
{1, 2, . . . , k} as intermediate points.

After defining this function, our aim is to find the path of
greatest similarity greatest(i, j,N ) from each i to each j using
only vertices in {1, 2, . . . ,N }. In this case, the greatest similar
path greatest(i, j,N ) can represent the similarity between i
and j, namely, greatest(i, j,N ) = s(i, j).
The path of greatest similarity of each pair of vertices

greatest(i, j, k + 1) could be either: (1) a path that only uses
vertices in the set {1, 2, . . . , k}, or (2) a path that goes from i
to k+1 and then from k+1 to j.

We know that the best path from i to j that only uses vertices
from 1 through k is defined by greatest(i, j, k), and it is clear
that if there were a better path from i to k + 1 to j, then the
length of this path would be the concatenation of the shortest
path from i to k + 1 (only using intermediate vertices in
{1, . . . , k} and the path of greatest similarity from k to j (only
using intermediate vertices in {1, . . . , k}.

According to the weight of the edge between vertex i and
vertex j, the base case is,

greatest(i, j, 0) = s(i, j) (3)

where base case is the first-order proximity. Consequently,
we can define sim(i, j, k + 1) recursively,

greatest(i, j, k + 1) = max(greatest(i, j, k),

greatest(i, k + 1, k)× greatest(k + 1, j, k)) (4)

Equation 4 ensures that similarity between i and j is always
the path of greatest similarity. This idea is inspired by Floyd’s
algorithm which can be used for finding the lowest cost paths
in a weighted network [38], [39]. The strategy computes
greatest(i, j, k) for all (i, j) pairs for k = 1, then k = 2, until
k = N, and we can find the path of greatest similarity for all

(i, j) pairs using any intermediate vertices. Finally, the simi-
larity between a vertex i and itself can be updated as the sum
of its similarity to all of its neighbors vertices in the gene
network,

s(i, i) =
∑

j∈neigh(i)

s(j, i) (5)

where neigh(i) is a neighboring vertex of vertex i. The under-
lying principle of Equation 5 is that similarity between a
feature and itself in a densely connected network is greater
than in a loosely connected network.
The pseudocode of computing the similarities between

features is shown in Algorithm 1. For example, given the five
vertices in Figure 1(e), the executed process of the algorithm
is shown in Figure 3. Prior to the first iteration of the outer
loop, labeled k = 0k above, the only known paths correspond
to the single edges in the graph. At k = 1, paths that go
through vertex 1 are found. At k = 2, paths going through
vertices 1 and 2 are found, and so on. Given two vertices 1 and
4, the path of greatest similarity is [1, 2, 4] before k = 5, and
the similarity of 1 and 4 is 1/72. When k = 5, the path of
greatest similarity for 1 and 4 is [1, 5, 4] and the similarity is
changed into 1/12.

Algorithm 1 Feature Similarity
1: Let sim be a m×m matrix that is initialized to zero
2: for each vertex i do
3: sim(i, i)← 1
4: end for
5: for each edge (i,j) do
6: sim(i, j)← Equation 2
7: end for
8: for k from 1 to N do
9: for i from 1 to N do
10: for j from 1 to N do
11: if sim(i, j) ≤ sim(i, k)× sim(k, j) then
12: sim(i, j)← sim(i, k)× sim(k, j)
13: end if
14: end for
15: end for
16: end for
17: for each vertex i do
18: sim(i, i)←

∑
j∈neigh(i) sim(i, j)

19: end for

C. METRIC PROOF
We first prove that the relevance between two features s(i, j)
is metric, and then prove that the similarity between two
samples s(P,Q) is metric, namely, Feature Alignment Sim-
ilarity(FAS) is a true metric.

At first, we give the definition of similarity metric.
Defintion 7 (Similarity Metric [40]): Given a Set Y ,

a real-valued function s(i,j) is a similarity metric for
any i, j, k ∈ Y , it satisfies the following conditions:
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FIGURE 2. The similarity matrix at each iteration of k on part of Figure 1(e), with the updated similarities in red.

1. s(i, j) = s(j, i),
2. s(i, i) ≥ 0,
3. s(i, i) ≥ s(i, k),
4. s(i, j)+ s(j, k) ≤ s(i, k)+ s(j, j)
Condition 1 states that s(i, j) is symmetric. Condi-

tion 2 states that for any i the self-similarity is nonnegative.
Condition 3 states that for any i the self-similarity is no less
than the similarity between i and any k , and essentially it
means that i is always more similar to itself than anything
else. Condition 4 states that the similarity between i and j
through k is no greater than the direct similarity between i
and k plus the self-similarity of j.
Theorem 8:Feature Similarity s(i, j) defined inAlgorithm 1

is a similarity metric.
Suppose there are three features i, j, k ∈ V .
Proof: Condition 1, 2 and 3: Symmetry (Condition

1) and non-negativity (Condition 2) hold trivially in all cases.
According to Equation 5, Condition 3 holds trivially.

Condition 4: We need to prove s(i, j) + s(j, k) ≤ s(i, k) +
s(j, j).

According to Equation 5, we can get s(k, k) ≥ s(i, k)
and s(k, k) ≥ s(i, j). The proof can be classified into two
cases.
Case 1: s(i, k) ≥ s(i, j)) or s(i, k) ≥ s(j, k);
Case 2: s(i, k) < s(i, j) and s(i, k) < s(j, k).
For case 1, from Condition 3 we can get that s(j, j) ≥ s(i, j)

and s(j, j) ≥ s(j, k). From that, it is clearly s(i, j) + s(j, k) ≤
s(i, k)+ s(j, j) is true.

For case 2, only when i connects k through j, we have
s(i, k) < s(i, j) and s(i, k) < s(j, k). For example, in Figure 2,
since 1 connects 4 through 5, we have sim(1, 4) < sim(1, 5)
and sim(1, 4) < sim(4, 5). Because j is the intermediate
vertex from i and k , based on Equation 5, we have s(i, k) +
s(j, j) > s(j, j) ≥ s(i, j)+ s(j, k).
Therefore, Theorem 8 is true.
Theorem 9: Feature Alignment Similarity FAS is a

similarity metric.
Given a set of samples X , for any (P,Q,R) ∈ X , we need

to prove FAS satisfies conditions 1-4.
Proof: Symmetry (Condition 1) and non-negativity

(Condition 2) hold trivially in all cases, so we only need to
prove that Condition 3 and Condition 4 hold.

For Condition 3, we only need to prove that
FAS(P,P) ≥ FAS(P,Q).

Let fij represent how much the weight of feature pi of P
flows to feature qj of Q. Based on Definition 4, we can get∑

j fij = w(pi).

FAS(P,Q) ≤
∑
i,j

fijs(pi, qj) ≤
∑
i

w(pi)s(pi, pi)

= FAS(P,P)

For Condition 4, we need to prove that FAS(P,Q) +
FAS(Q,R) ≥ FAS(P,R)+ FAS(Q,Q).

Except fij, let gjk represent how much the weight of feature
qj of Q flows to feature rk of R. Now consider the flow from
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pi to qj and then to rk . The largest weight that moves as one
unit from pi to qj and from qj to rk defines a flow which
we call bijk , where i, j and k correspond to pi, qj and rk
respectively.

From the two constraints
∑

j fij = w(pi) and
∑

i fij = w(qj)
of Definition 4, the following equations can be obtained:∑

k

hik =
∑
j,k

bijk =
∑
j

fij = w(pi), (6)

and ∑
i

hik =
∑
i,j

bijk =
∑
j

gjk = w(rk ), (7)

and ∑
i

fij =
∑
i,k

bijk =
∑
k

gjk = w(qj). (8)

Clearly, we have
∑

k bijk = fij which is the flow from pi
to qj. Likewise, we have

∑
i bijk = gjk and

∑
j bijk = hik .

Hence, we have,

FAS(P,R)+ FAS(Q,Q) (9)

=

∑
i,k

hiks(pi, rk )+
∑
j

w(qj)s(qj, qj) (10)

=

∑
i,j,k

bijks(pi, rk )+
∑
i,j,k

bijks(qj, qj) (11)

≥

∑
i,j,k

bijks(pi, qj)+
∑
i,j,k

bijks(qj, rk ) (12)

=

∑
i,j

fijs(pi, qj)+
∑
j,k

gjks(qj, rk ) (13)

= FAS(P,Q)+ FAS(Q,R) (14)

Equation 9 to 10 and 13 to 14 is based on Definition 4.
Equation 11 to 12 utilizes Theorem 8.

Therefore, Theorem 9 is true.

D. FAST SIMILARITY COMPUTATION
The best average time complexity of solving FAS problem is
O(m3logm), where m is the number of all nodes in a feature
interaction network [37]. With hundreds of samples, solving
the FAS optimal problem can become prohibitive. Therefore,
we introduce an upper bound of the FAS problem that allows
us to prune away the majority of the samples without ever
computing the exact FAS similarity. To obtain a much tighter
bound, we relax the FAS problem and remove one of the two
constraints

∑n
j fij = w(pi) and

∑m
i fij = w(qj) respectively.

We are unable to remove both constraints resulting in the
trivial upper bound T = 1. Here, if we remove the second
one, the optimization becomes,

s(P,Q) = max
f≥0

m∑
i

n∑
j

fijs(pi, qj)

such that :
n∑
j

fij = w(pi) ∀i ∈ {1, 2, . . . , x}

(15)

This relaxed optimization yields an upper-bound to the
FAS similarity, because every FAS solution satisfying both
constraints must remain a feasible solution if one constraint
is removed. The optimal solution is that each feature in pi is
aligned to the most similar feature in pj. Precisely, an optimal
f ∗ matrix is defined as,

f ∗ij =

{
w(pi), if j = argmaxjs(pi, qj)
0, otherwise.

(16)

Let f represent any feasible matrix for the relaxed problem,
the contribution to the objective value for any feature pi, with
closest gene q∗j = argmaxqjs(pi, qj), cannot be larger:∑

j

fijs(pi, qj) ≤
∑
j

fijs(pi, q∗j ) = s(pi, q∗j )
∑
j

fij

= s(pi, q∗j )w(pi) =
∑
j

f ∗ij s(pi, qj)

Therefore, f ∗ must yield a maximum objective value.
For each feature pi in sample P, we only need to find the
most similar feature qj in Q. Upon removing the first con-
straint, the second case is almost same, except the nearest
neighbor search is reversed. If we combine the two relaxed
solutions, denoted as s1(P,Q) and s2(Q,P), we can get
an even tighter bound by taking the minimum of the two,
s(P,Q) = min(s1(P,Q), s2(Q,P)). The time complexity of
the relaxed optimization is O(mn), and it can be further
reduced to O(mlogn) by utilizing existing fast nearest neigh-
bor retrieval [4], where m and n are the number of features in
sample P and Q, respectively.

E. APPLICATION FOR DISCOVERING
SUBTYPES IN CANCER
Since somatic mutation data are extremely sparse in an entire
high-dimensional gene group, it is very common that two
clinically identical patients do not share any common muta-
tion. So, the similarity between patients cannot be directly
measured based on mutated genes using traditional distance
metrics (e.g., Euclidean distance, Cosine Similarity). There-
fore, for stratification of cancer into informative subtypes,
existing methods based on traditional distance metrics can-
not cluster patients with mutations very well. Much valu-
able information is available in public databases of human
protein-protein, functional and pathway interactions, which
are proved very useful to map the molecular pathways of
cancer [41], [42]. Therefore, we can use our Feature Align-
ment Similarity to compute the similarity between patients.
In this way, even if two patients do not have any mutations in
common, they are likely to belong to the same cluster if their
mutations reside in close network regions.
Figure 3 gives the flowchart of the approach to discover

subtypes. Network-based Similarity combines somatic muta-
tion data with a gene interaction network to produce a
robust subdivision of patients into subtypes. First, we choose
a subset of the genes by projecting each patient onto a
gene interaction network from public databases [34]–[36].
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FIGURE 3. Framework of Network-based Affinity Propagation.

TABLE 1. Summary of Uterine and Lung cancers.

Then, we need to compute the similarity between genes by
using a gene network that finds the path of greatest similarity
of two genes. After that, we need to match the vertices of two
patients and apply our FAS metric to compute the similarity
between patients. Finally, the similarity matrix of patients
is used for cancer subtype discovery via Affinity Propaga-
tion [43]. Affinity Propagation is a clustering algorithm that
takes measures of similarity between pairs of data points as
input and simultaneously considers all data points as potential
examples. The whole method referred to as Network-based
Affinity Propagation (NetAP).

The above optimization is a special case of the Earth
Mover’s Distance [44], [45], a well-known transporta-
tion problem for which specialized solvers have been
developed [37], [46].

IV. EXPERIMENT
The task of clustering cancer patients using tumor mutation
information is difficult. A real-world cancer dataset typically
has hundreds of samples, but the number of gene mutations
can be well above 15,000 as shown in Table 1. That being
said, cancer is a complex disease. Two cancer patients of the
same cancer subtype may not share any common mutated
genes. Therefore, many clustering methods cannot achieve
good results if they calculate two samples’ similarity directly.
Cancer has highly heterogeneous causes, and it is difficult to
find a clear group of genes to determine subtypes. To better
evaluation, we evaluate our NetAP algorithm using synthetic
data and real-world data with different focuses:

(1) Evaluation using Synthetic Data. How accurately
does NetAP detect cancer subtypes with respect to various

Algorithm 2 The Process of Generating Simulated Mutation
Data Sets Embedded With Known Network Structure
1: Sample patients from uterine cancer dataset.
2: Permute mutated genes.
3: Divide patients into k subtypes.
4: Assign subtypes to gene modules.
5: For each patient, move a percentage of mutations to

modules from the patient’s subtype.

gene network structures? Does NetAP outperform the state-
of-the-art algorithms used for cancer subtype discovery?

(2) Performance using Real-World Data. Can NetAP
detect cancer subtypes that are clinically meaningful?What is
the impact of different gene networks on performance? Can
NetAP identify cancer subtypes that cannot be detected by
other clustering algorithms?

In our empirical study, we observe that AP is the strongest
baseline clustering algorithm even though it does not use a
gene network. A possible explanation is that the power of
belief-propagation can better tune the center of each cluster.
Hence, in our experiments, we chose AP to integrate with
gene interaction networks for optimal performance.

We implemented NetAP in Matlab.1 All experiments were
conducted on a Windows machine with an Intel 437 2.9 GHz
CPU and 8GB memory. Table 2 and Table 3 show the details
of the real-world uterine and lung cancer datasets as well as
three gene interaction networks we used in our experiments.

A. DATASET INFORMATION AND EXPERIMENT SETUP
Synthetic Data: To test the accuracy of our method, we adopt
a synthetic dataset [13] to mirror the biological characteristics
of cancer and investigate the effectiveness of incorporating
gene interaction networks. The process of generating a simu-
lated mutation dataset is shown in Algorithm 2. The synthetic
dataset adopts the structure of TCGA uterine tumor muta-
tion data 2 and the PathwayCommons gene interaction net-
work [34]. First, mutation profiles are permuted, and patients
are randomly divided into a predefined number of subtypes
(k = 4). Then, we transferred a fraction of the mutations
in each patient to fall within genes of a single ‘network
module’ characteristic of that patient’s subtype, and the rest
of mutations are left to occur randomly. Here, we set the
‘driver’ mutation frequency f varied from 1% to 15%, and
we selected the size of network modules randomly from the
whole network modules with size ranges 10-250 (see the
paper [13] for details and justification for the range of k , f
and s). Through this synthetic data, wemeasured the ability of
NetAP to recover correct subtype assignments in comparison
to other state-of-the-art methods including three methods
not based on network knowledge and one method based on
network knowledge.

1The source code can be downloaded at https://github.com/
qiang2100/NetAP

2https://tcga-data.nci.nih.gov/tcga/
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Real-World Data: High-grade uterine endometrial carci-
noma and lung adenocarcinoma somaticmutational data were
collected from The Cancer Genome Atlas (TCGA) data por-
tal. Only mutation data generated using the high-quality Illu-
mina GAIIx platform were saved for the following analysis,
and patients with less than 10 mutations were removed for
a fair comparison [13]. Patient mutation profiles are con-
structed as binary vectors such that a bit is set to 1 if the
gene corresponding to that position in the vector is mutated
in that patient. We follow the same somatic mutational data
processing procedure as [13], [24].
Evaluation Metrics: The clustering results on real-world

data are evaluated using histological types provided by the
TCGA data. Five metrics are used to measure the clustering
performance: Normalized Mutual Information (NMI), Rand
Index (RI), Adjusted Rand Index (AR), Chi-Square test and
P-Value. NMI, RI and AR are widely used to evaluate the
performance of clustering algorithms in data mining and
machine learning [47], [48]. Chi-square test (Chi-Square) and
P-Value are mostly used in statistics and bioinformatics [49].
For NMI, RI, AR, and Chi-square, a larger score indicates
better clustering performance. For P-Value, a small value
represents good clustering quality.
• Normalized Mutual Information (NMI) is a clustering
validation metric that effectively measures the amount
of statistical information shared by the predicted cluster
assignments and ground truth, independent of absolute
cluster labels. Two patients are assigned to the same
cluster if and only if they are similar; thus, clustering
can be viewed as a series of pair-wise decisions.

• Rand Index (RI) measures the percentage of clustering
decisions that are correct. Rand Index can be adjusted
for the chance clustering of elements, which will result
in one of its variants called Adjusted Rand Index (AR).
AR has a value between 0 and 1, and RI can have
negative values.

• Chi-Square is used to determine whether there is a
significant difference between expected clusters and
observed clusters.

• P-Value can determine how significant clustering results
are by performing a hypothesis test commonly used in
statistics.

Existing State-of-the-Art Methods for comparison:
We compared our NetAP algorithm 3 with Nonnegative
Matrix Factorization (NMF) [16], Latent Dirichlet Allo-
cation (LDA) [17], Affinity Propagation (AP) [43], and
Network-based stratification(NBS) [13]. For each model,
we set K as the real number of clusters of each dataset.
NMF [16]: an unsupervised learning technique originally

employed to decompose high-dimensional data ∈ Rm×n into
two non-negative matrices W ∈ Rm×k and H ∈ Rk×n

whose product is an approximation of A. Here, W vector
of coefficients can be interpreted as the k topic member-
ship weights for the corresponding document. We use the

3Our code is open-sourced at https://github.com/qiang2100/NetAP.

open-source MATLAB implementation4 for NMF based on
Euclidean distance.
LDA [17]: a directed graphical model that models a doc-

ument as a mixture of topics and a topic as a mixture of
words. When LDA is used for text clustering, we choose the
maximum value from a mixture of topics as its cluster label
for each document. LDA based on Gibbs sampling is chosen
as comparison [18].5 α and β of LDA are set as 0.1 and 0.1.
AP [43]: a clustering algorithm that takes as input mea-

sures of similarity between pairs of texts and simultaneously
considers all data points as potential examples. For AP,we use
the ‘‘apcluster’’ package in R.6 Based on empirical obser-
vation, the Pearson correlation coefficient is chosen as the
distance metric. We set parameter λ = 0.9 for AP.
NBS [13]: a clustering algorithm that incorporates

the information from gene networks into network-based
non-negative matrix factorization [32]. The source code of
NBS is provided in Hofree et al. [13].
Other Baselines: more clustering algorithms are used

for subtype discovery. Here, we choose these algo-
rithms (SparseNMF [30], Kmeans [48], PAM [50] and
Hierarchical [51]).
NetAP: the proposedmethod by this paper. A gene network

is a nearest neighbor network derived from the graph Lapla-
cian of an influence distance matrix [42] that comes from the
original gene interaction network, G = {V ,E}. To obtain
the gene network in NetAP, we experimented with neighbor
counts ranging from 5 to 50 to include in the nearest network,
and we observed only small changes in outcome. For the
work shown in this paper, 11 most influential neighbors of
each gene in the network as determined by network influence
distance were used.
Gene Interaction Network: To evaluate the impact of dif-

ferent gene interaction networks, three major gene interaction
databases are used: PathwayCommons [34], STRING [35]
and HumanNet [36]. PathwayCommons7 includes gene inter-
action information extracted from multiple gene interaction
databases, and its focus is on physical protein-protein inter-
actions. We excluded all non-human genes and interactions
from the PathwayCommons network in our experiments.
STRING8 collects protein-protein interactions from expres-
sion data analysis and medical literature using text mining
methods. HumanNet9 is built by amodified Bayesian integra-
tion from multiple organisms. Only the top 10% interactions
of STRING and HumanNet are used in our experiments to
reduce noise. Table 2 summarizes the number of genes and
interactions, and the numbers in parentheses are what we used
in our experiments.

4https://sites.google.com/site/nmftool/
5http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm
6https://cran.r-project.org/web/packages/apcluster/index.html
7www.pathwaycommons.org/pc/
8www.string-db.org/
9www.functionalnet.org/humannet/
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FIGURE 4. Exploring performance of NetAP on synthetic data through varying driver mutation frequency and network module size (the first five
sub-figures). We sum all accuracies of different driver mutation frequency (0.01 to 0.15) by varying network module size (the last sub-figure).

TABLE 2. Summary of gene interaction networks.

B. EVALUATION ON SYNTHETIC DATA
In Figure 4, the comparison is done among NMF, AP, LDA
and NBS on synthetic data using AR metric. We run each
algorithm 20 times, and all results of these methods are the
average value of these 20 runs per experimental setting. First,
we investigate how NetAP performance is affected by driver
mutation frequency and network module size. The first 5 sub-
figures of Figure 4 show the results of NMF, LDA, NBS,
AP and NetAP. LDA and NBS are sufficient for stratification
at high mutation frequencies and small module size, in which
there is high overlapping in mutations among patients of the
same subtype. For large network modules and small driver
mutation frequency, LDA and NBS cannot accurately recover
the correct subtypes. However, AP and NetAP were able to
accurately recover correct subtypes for a much larger range
of both variables. ComparedwithAP, the experimental results
demonstrate the effectiveness of NetAP.

For a better demonstration of the results, we sum all
accuracies of different driver mutation frequency under each
network module size, which is shown in the last sub-figure of
Figure 3 (bottom right). The results demonstrate that NetAP

can effectively detect cancer subtypes with respect to vari-
ous driver mutation frequencies and network module sizes,
especially for large network modules, as these can be asso-
ciated with any of numerous different mutations across the
patient population. As module size decreases, the chance of
observing same mutated gene in patients of the same subtype
increased, and some existing cluster algorithms performed
better (LDA and NBS). AP that does not utilize gene inter-
action networks has the closest performance to NetAP.

C. EFFECTIVENESS ON REAL-WORLD DATA
In Figure 5, we demonstrate that NetAP can detect more
statistically significant cancer subtypes in uterine cancer and
lung cancer datasets. NBS and NetAP use the Pathway-
Commons network. For the other two networks (STRING and
HumanNet), we will discuss their impact on NBS and NetAP
in next section. The results of all methods are illustrated
assuming 10 different numbers of subtypes from 3 to 12.
From the results on uterine cancer, NetAP and NBS per-
form better than AP, NMF and LDA, which confirms that
gene network knowledge helps improve the clustering per-
formance for uterine cancer. We observe that NetAP con-
sistently outperforms NBS. Notably, NetAP achieves almost
30% improvement on AR metric over NBS.

On lung cancer, NetAP performs better than other meth-
ods in terms of AR, RI, Chi-square and P-value metrics,
except NMI metric. Similar to the results on uterine cancer,
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FIGURE 5. Performance of NetAP compared to NMF, LDA, AP, and NBS
with different values of K using NMI, Rand index, Adjusted Rand Index,
Chi-square and P-value metrics on uterine and lung Cancer. NetAP is our
proposed method. For P-Value, the smaller the better. For others,
the larger the better.

NetAP performs most similarly to NBS. However, although
NBS still outperforms NMF, it has similar performance with
AP that does not take advantage of gene network structure.
We suspect that NMF-based methods (NBS is based on
NMF) cannot deal with extremely sparse data such as somatic
mutation data that has lots of 0s and few 1s, even though
incorporating network information can help to alleviate the
sparseness problem to a certain degree.

Table 3 shows that the well-established clustering algo-
rithm SparseNMF (NMF using L1 regularization), Kmeans,
PAM, Hierarchical clustering algorithms have almost iden-
tical or worse performance than random assignment. In our
work, we assume that cancer patients belonging to one

TABLE 3. Performance of NetAP and other clustering methods on uterine
cancer using NMI.

subtype are more likely to share a similar network sub-
region. Network-based NBS (also NMF based) achieves bet-
ter results than NMF, and NetAP outperforms all other meth-
ods that we compared against in real-world data. NMF and its
variations do not work well due to sparse and heterogeneous
characteristics of somatic mutation feature space.

In summary, we can conclude that NetAP is the most
appropriate clustering algorithm for clustering gene muta-
tions, which can produce a robust division of patients into
subtypes from somatic mutation profiles combining gene
interaction network. Because NBS and NetAP are the only
two algorithms using gene network, we will compare them in
more detail that use two more gene networks.

1) PERFORMANCE OF NetAP COMPARED TO
MORE BASELINES
We chose four existing methods (NMF, LDA, AP, NBS) in
the previous experiment. To fully assess the effectiveness of
our method, we conductedmore experiments to compare with
other clustering algorithms (SparseNMF [30], Kmeans [48],
PAM [50] and Hierarchical [51]). Due to the space limit,
we only show the results on uterine data. For conciseness,
we only show the results using NMI metric in Table 3.
‘‘Random’’ refers to the result by random drawing. The
performance of these existing methods is very similar to
‘‘Random’’, which means all these methods are not effec-
tive for somatic mutation stratification due to the extreme
sparseness of somatic mutations. Therefore, incorporating
knowledge of a gene network to reduce sparseness is very
important for identifying subtypes from somatic mutation
data.

2) IMPACT OF GENE NETWORKS
Figure 6 shows the performance of NetAP and NBS on the
uterine cancer dataset by incorporating the other two net-
works (STRING and HumanNet) with different numbers of
subtypes (K=3, 4, . . . , 12) using five metrics (NMI, RI, AR,
Chi-square, P-value). Clearly, NetAP works better than NBS
on these two gene interaction networks in general, except on
AR and RI metrics using STRING network. Especially, when
increasing the number of subtypes K, NetAP can achieve
better results than NBS. Similar to the results that use the
PathwayCommons network, the experimental results give
further evidence that our method NetAP is more robust for
subtype identification than NBS.
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FIGURE 6. Performance of NBS and NetAP on the other two human
networks (STRING and HumanNet) with respect to different values of K.
For P-value, the smaller the better. For others, the larger the better.

As NetAP is naturally dependent on gene interaction net-
works, we examine how different gene networks affect the
quality of NetAP with NMI metric. We chose the follow-
ing three gene networks: PathwayCommons, STRING and
HumanNet. Figure 6 shows the results of NetAP with dif-
ferent gene networks on uterine cancer dataset. When vary-
ing subtypes from 3 to 12, NetAP using PathwayCommons

FIGURE 7. Performance of NetAP with three gene networks
(PathwayCommons, STRING and HumanNet) using NMI on Uterine cancer.

FIGURE 8. Summary of Histological types for each subtype on Uterine
Cancer.

or STRING performs better than NetAP using HumanNet.
Additionally, NetAP using PathwayCommons outperforms
NetAP using STRING. In conclusion, the performance of
NetAP will vary when it incorporates different gene net-
works. This new finding indicates that PathwayCommons
can provide strong genetic traits for usage on cancer subtype
discovery.

3) IDENTIFYING SUBTYPES
To assess the biological significance of the identified sub-
types, we examine whether they correlate with observed
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clinical data. Figure 7 shows the results of NMF, LDA, AP,
NetAP and NBS with recorded subtypes on a histological
basis. We can see that NetAP subtypes are more closely
associated with recorded subtypes on a histological basis than
other algorithms. NMF and LDA cannot separate ‘‘serous
adenocarcinoma type’’ and ‘‘endometrioid type’’ from the
data set. NBS can only extract one subtype ‘‘serous adeno-
carcinoma type’’. NetAP and AP can separate two subtypes
‘‘serous adenocarcinoma type’’ and ‘‘endometrioid type’’.
Furthermore, NetAP has higher accuracy than AP.

V. CONCLUSION
In this paper, our goal is to propose a novel similarity measure
that computes the similarity between samples by incorporat-
ing the knowledge of interaction networks to overcome data
sparseness problem. Our metric does not directly compute the
similarity between two samples but measures the similarity
by the similarity from the embedded features of one sample
to another after the two samples are projected into feature
interaction network. In this way, although two samples do
not share one common feature, they are likely to belong to
the same clustering when their mutations share the similar
network regions. When applied to the discovery of can-
cer subtypes, our approach demonstrates effectiveness and
efficiency on synthetic and uterine adenocarcinoma datasets
along with three popular gene networks using five different
metrics. In the future, we plan to integrate multiple layers of
information beyond somatic mutations (e.g. CNVs, transcrip-
tome, etc.) into our method for better subtype identification.
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