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We address the problem of estimating how different parts of the brain develop and change throughout the lifespan, 

and how these trajectories are affected by genetic and environmental factors. Estimation of these lifespan tra- 

jectories is statistically challenging, since their shapes are typically highly nonlinear, and although true change 

can only be quantified by longitudinal examinations, as follow-up intervals in neuroimaging studies typically 

cover less than 10% of the lifespan, use of cross-sectional information is necessary. Linear mixed models (LMMs) 

and structural equation models (SEMs) commonly used in longitudinal analysis rely on assumptions which are 

typically not met with lifespan data, in particular when the data consist of observations combined from multiple 

studies. While LMMs require a priori specification of a polynomial functional form, SEMs do not easily handle 

data with unstructured time intervals between measurements. Generalized additive mixed models (GAMMs) of- 

fer an attractive alternative, and in this paper we propose various ways of formulating GAMMs for estimation of 

lifespan trajectories of 12 brain regions, using a large longitudinal dataset and realistic simulation experiments. 

We show that GAMMs are able to more accurately fit lifespan trajectories, distinguish longitudinal and cross- 

sectional effects, and estimate effects of genetic and environmental exposures. Finally, we discuss and contrast 

questions related to lifespan research which strictly require repeated measures data and questions which can be 

answered with a single measurement per participant, and in the latter case, which simplifying assumptions that 

need to be made. The examples are accompanied with R code, providing a tutorial for researchers interested in 

using GAMMs. 

1

 

p  

p  

t  

s  

i  

m  

t  

F  

f  

L  

2  

M  

m  

t  

o  

S  

l  

1  

v  

u  

w  

i  

a  

i  

c  

t  

n  

r  

b  

t  

e  

h

R

A

1

. Introduction 

Large datasets with structural magnetic resonance images (MRIs) of

articipants whose ages span from early childhood to late adulthood

rovide ample opportunities to study lifespan brain trajectories. Impor-

ant questions such data can contribute to answering include how brain

tructure is related to aging, how the aging effect is modified by genet-

cs and environmental exposures, and at which age critical events like

aximum volume or maximum rate of change occur. Lifespan brain

rajectories are nonlinear and differ between regions, as illustrated in

ig. 1 for volumes of cerebral white matter, cortex, and hippocampus

or 4352 observations of 2017 healthy participants from the Center for

ifespan Changes in Brain and Cognition longitudinal studies ( Fjell et al.,

017; Walhovd et al., 2016 ), henceforth referred to as the LCBC data.

odeling the type of nonlinear effects shown in Fig. 1 using linear mixed

odels (LMMs) ( Laird and Ware, 1982 ) with polynomials typically leads

o poor fits at least over parts of the lifespan, and is highly dependent

n manual selection of terms ( Fjell et al., 2010; Sorensen et al., 2021 ).
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tructural equation models (SEMs) may be better able to estimate non-

inear trajectories, e.g., with a latent basis model ( McArdle and Epstein,

987; Meredith and Tisak, 1990 ), but SEMs require that the time inter-

als between measurements for all participants take on a small set of

nique values ( Newsom, 2015; Oud and Jansen, 2000 ), an assumption

hich may be hard to satisfy with lifespan data (see Fig. 3 ). General-

zed additive mixed models (GAMMs) 1 ( Lin and Zhang, 1999 ) offer an

ttractive alternative, typically yielding good fit over the full lifespan

n an automated and data-driven manner. This is illustrated in Fig. 2 ,

omparing a GAMM to LMMs with quadratic and cubic polynomials for

he effect of age on cerebellum cortex volume. See Box 1 for a defi-

ition of these and other key terms used in this paper. Similar to often

esearched structures like hippocampus and cerebral white matter, cere-

ellum cortex is characterized by a nonlinear age trajectory. In contrast

o the GAMM, neither of the LMMs capture the steep increase seen in

arly childhood, and the cubic LMM predicts an increase in cerebellum
1 We will use the common abbreviation ”GAMM ”, although strictly speaking 

nly additive mixed models (AMMs) are used in this paper. If necessary, all 

odels described can be straightforwardly generalized, e.g. to logistic or Poisson 

egression. 
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Box 1. Key terms used in this paper, defined in the context of longitudinal data analysis. 

Fig. 1. Lifespan brain development is highly nonlinear . Cerebral white matter, cortex and hippocampal volumes from 4352 MRI scans of 2017 participants in the 

LCBC data. The color scale indicates the birth cohort to which the participant belongs. Dots represent observations and lines connecting the dots indicate repeated 

observations of the same individual. 
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Fig. 2. Comparison of LMMs and GAMMs for lifespan data . Comparison of 

LMMs with quadratic and cubic terms and a GAMM, fitted to lifespan cerebellum 

cortex volume. Black dots represent observations and black lines connecting the 

dots indicate repeated observations of the same individual. 

f  

L  
ortex volume in old age, whereas the GAMM adequately captures the

ecline seen in the data. In addition, both the quadratic and cubic model

stimate cerebellum cortex volume to reach its maximum at the age of

round 25, while the GAMM instead estimates the maximum to occur

round 14 years of age, and the latter seems to be in better agreement

ith the data. Figs. 1 and 2 and all subsequent plots were created in R
 R Core Team, 2019 ) with ggplot2 ( Wickham, 2016 ). 

The goal of this paper is to provide clear recommendations for op-

imal estimation of lifespan trajectories of brain development and ag-

ng. To this end, several aspects need consideration. First, as has been

mphasized by a large number of authors, when analyzing data with

epeated observations over time, care must be taken to distinguish

ithin-individual and between-individual effects, which for the pur-

ose of this paper are longitudinal and cross-sectional effects ( Curran

nd Bauer, 2011; Hoffman, 2007; Hoffman and Stawski, 2009; Mor-

ell et al., 2009; Sliwinski et al., 2010; Thompson et al., 2011 ). Indi-

idual change can only be assessed with repeated measurements, but

ow important are longitudinal data when the task is to estimate tra-

ectories spanning many times the maximum follow-up interval real-

stically attainable in a neuroimaging study? Large datasets combined

rom different studies, either conducted by the same group as for the

CBC data or by multiple groups participating in a data-sharing consor-
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Fig. 3. Characteristics of lifespan data . The plots show data from 4352 MRI scans of 2017 participants in the LCBC data. Left: Scatter plot of age and cohort. 

Connected dots show repeated measurements of the same participant. Top right: Histogram of date of initial measurement for the same participants. Bottom right: 

Histogram of time (in years) between measurements. The peak at zero corresponds to participants scanned twice on the same day, with different scanners, and the 

highest peak corresponds to participants with 10–11 weeks between measurements. 
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ium like Lifebrain ( Walhovd et al., 2018 ) or a meta-analysis network

ike ENIGMA ( Bearden and Thompson, 2017; Thompson et al., 2017 ),

resent further challenges for longitudinal modeling as the number of

easurements per participant and the time intervals between measure-

ents are typically highly varying. All of these issues are illustrated for

he LCBC data in Fig. 3 . While GAMMs flexibly handle data with vary-

ng follow-up intervals, the statistical literature on use of GAMMs for

ongitudinal analysis has almost exclusively focused on cases in which

ach participant has been followed over the full time range under con-

ideration, from a common baseline ( Brumback and Rice, 1998; Durbán

t al., 2005; Edwards et al., 2005; Gu and Ma, 2005; Ke and Wang, 2001;

ambert et al., 2001; Sullivan et al., 2015 ). There is hence a need for

n understanding of how GAMMs should be optimally used in lifespan

rain research, with short follow-up intervals and varying dates of initial

easurement as shown in Fig. 3 . 

The outline of this paper is as follows. In Section 2 we introduce

AMMs formally and define three different candidate models for esti-

ating lifespan brain trajectories. We also describe simulation experi-

ents conducted in order to compare these GAMMs in a realistic setting

or estimating 12 different brain regions. In Section 3 the simulation re-

ults are presented, and next we show two example applications demon-

trating how GAMMs can be used for estimating lifespan brain trajec-

ories and the effect of genetic variations on the trajectories. Accom-

anying R code provides a tutorial for researchers interested in using

AMMs. In Section 4 we discuss the results taking into regard currently

vailable longitudinal studies. We contrast questions that strictly require
 o  
ongitudinal data to questions that under some simplifying assumptions

ay be answered with a single measurement per participant. Finally, in

ection 5 we conclude by presenting recommendations for how to use

AMMs in lifespan brain research. 

. Materials and methods 

.1. Longitudinal and cross-sectional effects 

The effect of age on an outcome in a population can be completely

xplained by longitudinal and cohort effects, with the former represent-

ng the effect of aging for participants in a given birth cohort and the

atter determining how the longitudinal effects differ between partici-

ants belonging to different birth cohorts ( Diggle et al., 2002 , Ch. 1.1).

ross-sectional effects are the effects of age across cohorts when consid-

red at a particular point in time, as illustrated in Fig. 4 . In the absence of

ohort effects the cross-sectional and longitudinal effects are identical.

ge-independent cohort effects result in different slopes for the longi-

udinal and cross-sectional effects, while age-cohort interactions lead to

ongitudinal effects whose slopes depend on age. Selective survival, by

hich life expectancy is correlated with the dependent variable, leads

o population changes over time and hence are part of the longitudi-

al effects ( Baltes, 1968 ). In contrast, with sampling bias, by which the

robability of recruitment or the probability of dropout before the end

f the study depends on the outcome variable, the sample is not repre-
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Fig. 4. Cohort effects . Illustration of the impact of cohort effects in a hypothetical dataset. Dashed lines show the cross-sectional age effect in 1990, colored dots 

show four cohorts of participants whose age in 1990 was 10, 30, 50, and 70 years, respectively, and the blue lines show longitudinal age effects for each cohort. 

In the left plot, there are no cohort effects, and hence longitudinal and cross-sectional effects coincide. In the center plot, the cohort effects are independent of age, 

and the longitudinal effects differ by an offset but the effect of aging is identical across cohorts, as seen by the parallel blue lines. In the right plot, the cohort effects 

depend on age, and in this case also the slope of the longitudinal effect varies between cohorts. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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entative of the population under study and biased estimates may result

 Molenberghs and Fitzmaurice, 2009 ). 

.2. Generalized additive models 

Generalized additive models (GAMs) ( Hastie and Tibshirani, 1986 )

odel the effect of a variable 𝑥 on an outcome 𝑦 with smooth functions

( 𝑥 ) , constructed as weighted sums of 𝐾 basis functions 𝑏 1 ( 𝑥 ) , 𝑏 2 ( 𝑥 ) , … ,

 𝐾 ( 𝑥 ) with weights 𝛽1 , 𝛽2 , … , 𝛽𝐾 , i.e., 𝑓 ( 𝑥 ) = 

∑𝐾 

𝑘 =1 𝛽𝑘 𝑏 𝑘 ( 𝑥 ) . Commonly

sed basis functions are cubic regression splines and thin-plate regres-

ion splines ( Wood, 2003 ), and the number of basis functions is typically

hosen large enough to allow a wide range of nonlinear patterns to be

stimated, while small enough to allow computational efficiency. For a

AM with a single smooth term, 𝑦 = 𝑓 ( 𝑥 ) + 𝜖, the estimate given 𝑛 ob-

ervations is computed by finding the values of 𝛽1 , … , 𝛽𝐾 minimizing

he criterion 

𝑛 

𝑖 =1 

[ 

𝑦 𝑖 − 

𝐾 ∑
𝑘 =1 

𝛽𝑘 𝑏 𝑘 ( 𝑥 𝑖 ) 

] 2 

+ 𝜆∫
𝑏 

𝑎 

[ 

𝐾 ∑
𝑘 =1 

𝛽𝑘 𝑏 
′′
𝑘 
( 𝑥 ) 

] 2 

d 𝑥. 

The first term is the least squares criterion using the basis functions

s explanatory variables, and the second term represents the wiggliness

f 𝑓 ( 𝑥 ) as measured by its squared second derivative over some range

 𝑎, 𝑏 ] , typically the minimum and maximum values of 𝑥 in the sample.

he smoothing parameter 𝜆 controls the extent to which wiggliness is

enalized, striking a balance between overfitting (too low 𝜆, too wig-

ly 𝑓 ( 𝑥 ) ) and underfitting (too high 𝜆, too smooth 𝑓 ( 𝑥 ) ). For data with

epeated measurements, GAMs can be extended to GAMMs by the in-

lusion of random effects. A key insight allowing use of LMM software

or efficient fitting of GAMMs is that the penalized smooth terms may

e decomposed into a fixed effect part representing unpenalized linear

unctional forms with zero second derivative, and a random effect part

epresenting penalized nonlinear functional forms with non-zero second

erivative ( Lin and Zhang, 1999; Wood, 2004; 2010 ). The variance of

he random effects is proportional to 1∕ 𝜆, and this allows the smoothing

arameter to be estimated as a mixed model variance component. 

.3. Generalized additive mixed models for longitudinal data 

In this section we present three different models for estimating lifes-

an brain trajectories. 

Consider a dataset of 𝑛 participants indexed 𝑖 = 1 , … , 𝑛, assume an

utcome 𝑦 𝑖𝑗 has been measured 𝑚 𝑖 times in participant 𝑖, with timepoints

ndexed by 𝑗 = 1 , … , 𝑚 𝑖 , and let 𝑎 𝑖𝑗 denote the age of participant 𝑖 at

er/his 𝑗th timepoint. The question of interest is how the outcome varies

s a function of age, and this can be modeled with the GAMM 

 𝑖𝑗 = 𝛽0 + 𝑓 ( 𝑎 𝑖𝑗 ) + 𝑏 0 𝑖 + 𝜖𝑖𝑗 , (1)
here 𝑓 ( 𝑎 𝑖𝑗 ) is the effect of age, 𝛽0 is the intercept, 𝑏 0 𝑖 is the random

ntercept for participant 𝑖, and 𝜖𝑖𝑗 is a random noise term. Both 𝑏 0 𝑖 and 𝜖𝑖𝑗 
re assumed to be normally distributed, 𝑏 0 𝑖 ∼ 𝑁(0 , 𝜎2 

𝑏 
) and 𝜖𝑖𝑗 ∼ 𝑁(0 , 𝜎2 ) ,

ith 𝜎𝑏 representing the between-participant standard deviation and 𝜎

he within-participant residual standard deviation. We do not consider

andom slopes, due to the low number of repeated measurements in

he typical applications considered in this paper, although this could

e included with an additional term 𝑏 1 𝑖 𝑎 𝑖𝑗 in (1) . With sufficient data,

se of random slopes is recommended, as it relaxes the assumptions on

he covariance structure of repeated measurements ( Fitzmaurice et al.,

011 , Ch. 19). 

In the presence of cohort effects, the term 𝑓 ( 𝑎 𝑖𝑗 ) represents some

eighted combination of cross-sectional and longitudinal effects, and

ence cannot be interpreted as either. The typical method of correcting

or this in LMMs is by splitting the age term into 𝑎 𝑖 1 representing age at

rst measurement, and 𝑡 𝑖𝑗 representing time since baseline ( Fitzmaurice

t al., 2011; Zeger and Liang, 1992 ) (see Mehta and West (2000) for an

quivalent method in SEMs). Extending this to a GAMM yields 

 𝑖𝑗 = 𝛽0 + 𝑓 ( 𝑎 𝑖 1 , 𝑡 𝑖𝑗 ) + 𝑏 0 𝑖 + 𝜖𝑖𝑗 , (2)

here 𝑓 ( 𝑎 𝑖 1 , 𝑡 𝑖𝑗 ) is a smooth bivariate function of baseline age and time.

onsidering the plots in Fig. 1 , using a bivariate function seems nec-

ssary for estimating lifespan trajectories, as the direction of change

learly depend on baseline age. In model (2) the longitudinal effect of

ging 𝑡 from a baseline 𝑎 𝑖 1 is given by 𝑓 ( 𝑎 𝑖 1 , 𝑡 ) keeping 𝑎 𝑖 1 constant, while

he cross-sectional effect of varying baseline age 𝑎 is given by 𝑓 ( 𝑎, 0) . 
Model (2) has some important limitations, however. First, an as-

umption in the LMMs motivating its definition is that all participants

ave identical baseline dates. Second, when participants are followed

ver a short period compared to the full lifespan, the values of 𝑡 𝑖𝑗 vary

etween zero and some maximum which is much lower than the maxi-

um age, which might make estimation of nonlinear longitudinal effects

hallenging. We hence introduce an alternative GAMM modeling cohort

ffects by including birth date 𝑐 𝑖 , 

 𝑖𝑗 = 𝛽0 + 𝑓 ( 𝑎 𝑖𝑗 ) + 𝛽( 𝑎 𝑖𝑗 ) 𝑐 𝑖 + 𝑏 0 𝑖 + 𝜖𝑖𝑗 , (3)

n which 𝑓 ( 𝑎 𝑖𝑗 ) is defined as for (1) , while 𝛽( 𝑎 𝑖𝑗 ) 𝑐 𝑖 is a varying-coefficient

erm ( Hastie and Tibshirani, 1993 ) representing the main effect of co-

ort (birth date) as a function of age. The longitudinal effect of aging

 for a participant belonging to cohort 𝑐 𝑖 is given by 𝑓 ( 𝑎 ) + 𝛽( 𝑎 ) 𝑐 𝑖 keep-

ng 𝑐 𝑖 constant. The cross-sectional effect of age 𝑎 at date 𝑑 is given by

( 𝑎 ) + 𝛽( 𝑎 ) 𝑐, with 𝑐 = 𝑑 − 𝑎 representing the birth date of participants of

ge 𝑎 at date 𝑑, and hence both 𝑎 and 𝑐 are varying in this case. Model

3) is not identified if all participants have identical measurement dates,

ince then birth date and age are perfectly collinear, i.e., 𝑐 𝑖 = 𝑑 𝑗 − 𝑎 𝑖𝑗 
here 𝑑 𝑗 is the common date of the 𝑗th timepoint. However, as illus-
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Fig. 5. Lifespan curves . Characteristic curves of 12 brain regions, estimated from the LCBC data and used in simulation experiments. 
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rated in Fig. 3 (right), both the dates of initial measurements and the

imes between measurements may be highly varying in lifespan data,

nd this variability helps identifying the estimates of model (3) . 

The effect of a time-invariant variable 𝑥 𝑖 on the age trajectory can

e estimated by adding an interaction term to models (1) - (3) . If 𝑥 𝑖 is a

ontinuous variable, the interaction may be a varying-coefficient term

f the form introduced in model (3) . For (1) and (3) it would be 𝛽𝑥 ( 𝑎 𝑖𝑗 ) 𝑥 𝑖 ,
nd for (2) it would be 𝛽𝑥 ( 𝑎 𝑖 , 𝑡 𝑖𝑗 ) 𝑥 𝑖 , where 𝛽𝑥 ( ⋅) in both cases is a smooth

unction representing the effect of 𝑥 𝑖 as a function of either age or base-

ine age and time. On the other hand, if 𝑥 𝑖 is a categorical variable with

 unique values, it can be encoded as 𝐿 − 1 dummy variables 𝑥 2 𝑖 , … , 𝑥 𝐿𝑖 ,

ith a varying-coefficient term 𝛽𝑙 ( 𝑎 𝑖𝑗 ) 𝑥 𝑖 associated with the 𝑙th level for

odels (1) and (3) , and similarly 𝛽𝑙 ( 𝑎 𝑖 , 𝑡 𝑖𝑗 ) 𝑥 𝑖 for model (2) . Each varying-

oefficient term now represents how the trajectory for the 𝑙th level dif-

ers from the trajectory for the baseline level. An example is given in

ection 3.2.2 . 

.4. Simulation experiments 

In order to compare the GAMMs (1) - (3) , characteristic lifespan

urves were estimated for 12 brain regions with the LCBC data, using

AMMs on the form (1) , with additional covariates sex, scanner, and to-

al intracranial volume (ICV). Volumes were estimated with FreeSurfer

.0 ( Dale et al., 1999; Fischl et al., 2002; Reuter et al., 2012 ), and de-

ailed sample characteristics are presented in the Supplementary Sec-

ion S1. The curves, shown in Fig. 5 , were used as ground truths from

hich measurements were sampled. For each region, three cases were

onsidered: no cohort effects, age-independent cohort effects, and age-

ohort interactions. In the latter two cases, cohort effects were added to

he characteristic curves as illustrated in Fig. 6 for cerebral white mat-

m

er, cortex, and hippocampus, and in Supplementary Section S2.2 for

he remaining regions. Data were generated with 𝑛 = 1000 participants,

nd the number of timepoints 𝑚 𝑖 for each was multinomially distributed

ith equal probability of 1, 2, or 3 timepoints. The time between two

easurements of a given participant was uniformly distributed between

 and 6 years, which combined with the maximum number of 3 time-

oints set the maximum possible follow-up interval to (3 − 1) × 6 = 12
ears. Baseline age was uniformly distributed between 4 and 90 years,

nd the date of initial measurement was uniformly distributed over 10

ears, from 1st January 2000 to 1st January 2010. The simulations were

epeated with identical dates of initial measurement. Random intercepts

 0 𝑖 and residuals 𝜖𝑖𝑗 were sampled from normal distributions with mean

ero and standard deviations equal to 50% and 20% of the sample stan-

ard deviation of the region’s volume, respectively, similar to what was

bserved in the LCBC data. Datasets for each of the 12 × 3 = 36 com-

inations of regions and cohort effects were randomly sampled 1000

imes. 

Six models were fitted to each dataset, as summarized by Table 1 .

he two formulations of model (2) differ in that for (2b), the term

( 𝑎 𝑖 1 , 𝑡 𝑖𝑗 ) is a smooth bivariate function of 𝑎 𝑖 1 and 𝑡 𝑖𝑗 defined through

he tensor product construction of Wood et al. (2012) (see the left plot

n Fig. 11 for an illustration), whereas (2a) uses the stricter formulation

( 𝑎 𝑖 1 , 𝑡 𝑖𝑗 ) = 𝑓 ( 𝑎 𝑖 1 ) + 𝛽( 𝑎 𝑖 1 ) 𝑡 𝑖𝑗 , where 𝑓 ( 𝑎 𝑖 1 ) is the main effect of age and

( 𝑎 𝑖 1 ) is a varying-coefficient term ( Hastie and Tibshirani, 1993 ) repre-

enting the effect of time as a function of age. Model (2a) thus assumes

hat the effect of time is linear, with a slope that depends on baseline

ge. Models (3a) and (3b) differ in that (3b) allows the cohort effect to

epend on age, with a term 𝛽( 𝑎 𝑖𝑗 ) 𝑐 𝑖 as shown in (3) , while (3a) assumes

hat the cohort effect is age-independent, i.e., 𝛽( 𝑎 𝑖𝑗 ) = 𝛽 for all 𝑎 𝑖𝑗 . See

upplementary Section S2.1 for precise mathematical definitions of the

odels. 
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Fig. 6. Simulated cohort effects . Cohort effects used in simulation studies, illustrated for cerebral white matter, cortex, and hippocampus. (Cerebral WM = Cerebral 

White Matter). 

Table 1 

Models used in simulation experiments with GAMMs. The ’Identifier’ column describes the name used to identify the model 

in the simulation results presented in Section 3.1 and in the Supplementary Material. 

Identifier Description 

(1a) Model (1) without random effects, using only the first timepoint. 

(1b) Model (1) fitted to the complete data. 

(2a) Model (2) with a varying-coefficient term for the interaction between baseline age and time. 

(2b) Model (2) with a two-dimensional smooth function for jointly modeling the effect of baseline age and time. 

(3a) Model (3) with linear age-independent cohort effects. 

(3b) Model (3) with a varying-coefficient term allowing cohort-age interactions. 
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2 Table 2 shows the square root of the average squared bias and the square 

root of the average variance, but for ease of presentation we will refer to these 
. Results 

.1. Simulation experiments 

Fig. 7 shows root-mean-square error (RMSE) of longitudinal esti-

ates for each of the first 12 years after baseline ages 10, 35, and 60

ears in the case of no cohort effects. Overall, model (1) with longitu-

inal data had the most accurate fits, but the two variants of model

3) were close. The two variants of model (2) , on the other hand,

ad poorer fits than the other models, even for times very close af-

er baseline, for which the data contained a large number of observa-

ions. Fig. 8 shows the results in the presence of age-cohort interactions.

ow model (1) with or without longitudinal data had higher RMSE than

odel (2) for baseline ages 35 and 60 years, but lower RMSE for base-

ine age 10 years. Model (3) had the lowest RMSE for all baseline ages in

his case. Model (3b), which allows cohort-age interactions, had better

verall performance than model (3a), which only contains the cohort

ffect as a single offset term. Results for age-independent cohort effects

nd for other regions were similar, and are shown in Supplementary

ection S2.3.1. 

Table 2 shows the RMSE of the longitudinal estimates 12 years ahead

veraged over each year and over baseline ages of 10, 35, and 60 years,

long with its bias-variance decomposition RMSE 2 = Bias 2 + Variance

e.g., Hastie et al. (2009) ). The bias here quantifies the systematic er-

or made by the model at any given baseline age and time, while the

ariance represents how much the model fit differs from one dataset to

q

nother 2 . In the absence of cohort effects, model (1b) utilizing longi-

udinal data had the lowest RMSE and variance across all regions. The

wo formulations of model (3) had bias close to (1b), but higher vari-

nce. This can be attributed to the fact that the cohort terms in (3a)

nd (3b) are unnecessary in this case, and increase the variance because

hey increase the number of parameters to be estimated. Models (2a)

nd (2b) had the highest RMSE and bias for all regions in the absence of

ohort effects. With age-independent cohort effects, model (3a) which

ncludes the cohort effect as a single offset term had lower RMSE and

ias than the other models across all regions. In this case, model (1b) had

he lowest variance, at the cost of a much higher bias than models (3a)

nd (3b). The two formulations of model (1) and the two formulations

f model (2) had considerably higher RMSE than either formulation of

odel (3) , for all regions. Finally, with cohort-age interactions, model

3b) had lower bias and RMSE than the other models for all regions.

odel (2b), which contains the sufficient terms to capture such interac-

ion effects, had higher RMSE than both versions of model (3) across all

egions. In this case the two formulations of model (1) also performed

oorly. 

Fig. 9 shows estimated trajectories of hippocampal volume from a

aseline age 10 years, from a random subset of 100 out of the total

000 models fitted to the simulated datasets. While the estimates of
uantities as ”bias ” and ”variance ”, respectively. 
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Fig. 7. Longitudinal estimates with no cohort effects . Simulation results in the case of no cohort effects, showing the RMSE of the predicted value after baseline 

ages 10, 35, and 60 years. For any given time 𝑡 along the 𝑥 -axis, the curves represent the RMSE of the predicted longitudinal effect of 𝑡 years of increased age since 

baseline. Column headers specify the model fitted to the data, as defined in Table 1 . 

Table 2 

RMSE, bias, and variance of longitudinal estimates averaged over the next 12 years following baseline ages 10, 35, and 

60 years. Mean-square error, squared bias, and variance of the prediction were averaged over all Monte Carlo samples 

for each baseline age and time, and then averaged over baseline ages and times. The square roots of these averages 

are shown for each region, model, and cohort effect. That is, each cell in column 3 (no cohort effect, RMSE) represents 

the average of a subplot in Fig. 7 , and similarly each cell in column 9 (cohort-age interaction, RMSE) represents the 

average of a subplot in Fig. 8 . 

No cohort effect Age-indep. cohort effect Cohort-age interaction 

Region Model RMSE Bias 
√

Var. RMSE Bias 
√

Var. RMSE Bias 
√

Var. 

Cerebral White Matter (1a) 2575. 933.2 2401. 4454. 3758. 2392. 5071. 4435. 2460. 

Cerebral White Matter (1b) 1995. 419.5 1952. 3801. 3259. 1957. 4487. 4028. 1979. 

Cerebral White Matter (2a) 3639. 2493. 2652. 3789. 2710. 2650. 3842. 2776. 2658. 

Cerebral White Matter (2b) 3281. 1536. 2901. 3646. 2251. 2870. 3726. 2302. 2931. 

Cerebral White Matter (3a) 2376. 407.0 2342. 2339. 418.3 2303. 3129. 2091. 2329. 

Cerebral White Matter (3b) 2885. 641.9 2814. 2858. 662.2 2781. 2860. 666.7 2782. 

Cortex (1a) 4843. 3446. 3405. 6144. 5109. 3414. 7408. 6598. 3369. 

Cortex (1b) 3069. 1128. 2856. 5044. 4164. 2848. 6205. 5509. 2858. 

Cortex (2a) 5907. 4580. 3734. 6060. 4761. 3750. 6263. 4988. 3789. 

Cortex (2b) 4877. 2330. 4287. 5627. 3593. 4332. 5658. 3580. 4384. 

Cortex (3a) 3438. 1160. 3238. 3410. 1093. 3232. 4697. 3351. 3293. 

Cortex (3b) 3966. 1215. 3777. 4045. 1120. 3889. 4052. 1129. 3893. 

Hippocampus (1a) 45.01 19.20 40.73 73.93 61.70 40.74 83.46 72.65 41.11 

Hippocampus (1b) 32.73 7.817 31.80 60.90 51.83 31.99 71.86 64.41 31.87 

Hippocampus (2a) 77.75 64.06 44.09 80.04 66.48 44.60 80.91 67.50 44.64 

Hippocampus (2b) 60.92 35.30 49.68 69.19 46.32 51.41 68.12 44.75 51.39 

Hippocampus (3a) 37.55 7.463 36.82 38.00 6.732 37.41 49.72 33.12 37.10 

Hippocampus (3b) 45.08 9.353 44.12 45.52 8.306 44.78 45.99 8.622 45.20 
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odel (3) follow the true effect over the full 12-year period, a large

roportion of the estimates of model (2) are close to straight lines. Due

o the simulated dropout after the first or second timepoint, combined

ith the unstructured time intervals between measurements, the aver-

ge follow-up time in the data is only 3.5 years, and thus much lower

han the maximum follow-up of 12 years. A consequence of this data

tructure, which resembles the LCBC data shown in Fig. 3 , is that for the

wo formulations of model (2) , there is not enough data to estimate the

ffect of time beyond the first few years after baseline, even though the

aximum follow-up interval is 12 years. With a limited amount of data

or timepoints further than 3–4 years from baseline, the second deriva-

ive penalization used by GAMMs pulls the estimates towards straight

ines, which have zero second derivatives and hence are not penalized,

n effect which is clearly seen in Fig. 9 . 
Simulation results with identical baseline dates shown in Supple-

entary Section S2.4 are practically identical to those described in this

ection, suggesting that the issue of varying baseline dates is not crit-

cal for GAMMs when the maximum variation is ten years. Instead, as

ig. 9 shows, the main challenge with estimating longitudinal effects

sing the GAMM (2) is caused by the fact that time 𝑡 𝑖𝑗 for most par-

icipants spans a short period compared to the full follow-up interval,

aking estimation of nonlinear effects increasingly challenging as time

ince baseline increases. For estimation of cross-sectional effects, the

ifferences between models were smaller. However, the two versions of

odel (2) still showed the poorest performance, while model (1b) and

he two versions of model (3) showed the best performance. Detailed

esults for estimation of cross-sectional effects are shown in Supplemen-

ary Section S2.3.2. 
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Fig. 8. Longitudinal estimates with cohort-age interactions . Simulation results in the case of age-cohort interactions, showing the RMSE of the predicted value 

after baseline ages 10, 35, and 60 years. For any given time 𝑡 along the 𝑥 -axis, the curves represent the RMSE of the predicted longitudinal effect of 𝑡 years of increased 

age since baseline. Column headers specify the model fitted to the data, as defined in Table 1 . 

Fig. 9. Sample fits . A random sample of 100 fits in the case of cohort-age interaction for hippocampal volume. Thin lines show estimated longitudinal effects from 

baseline age 10, and the thick red lines show the true values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

3

 of lifespan brain development, with example R code using the packages 

m ts of the code are omitted for ease of presentation, and can be found in the 

S

3

The data are organized in long format in the dataframe dat , with each row 

r ing variables: 

ero mean and unit variance. 

RI. 

 1st January 1970. 

gorithms used in the models to be fitted are most stable when the explanatory 

v

y fitting a GAM with only the first timepoint of each participant, using the 

g alidation ( Golub et al., 1979 ) for smoothing, but for comparison with mixed 

m  be used, with the argument method = ”REML ”. The smooth function 
.2. Example applications 

In this section we show how GAMMs can be applied to the study

gcv ( Wood, 2017 ) and gamm4 ( Wood and Scheipl, 2017 ). Some par

upplementary Section S3. 

.2.1. Modeling lifespan volume trajectories 

We first consider the hippocampal volumes shown in Fig. 1 (right). 

epresenting one timepoint of a single participant, containing the follow

• ID : Unique participant ID. 
• Age : Age in years at MRI session. 
• Hippocampus : Estimated hippocampal volume in mm 

3 . 
• ICV_z : Estimated total intracranial volume, standardized to have z
• Sex : Participant sex, coded as ”Female ” and ”Male ”. 
• Scanner : Factor variable indicating which scanner was used for M
• Age_bl : Age in years at initial MRI session. 
• Time : Time in years since initial MRI session. 
• Birth_Date_z : Decimal number of years between birth date and

The transformed variables with suffix _z were created because the al

ariables are of similar magnitude. 

Models not separating longitudinal and cross-sectional effects We start b

am() function from mgcv . By default, gam() uses generalized cross-v

odels we specify that restricted maximum likelihood (REML) should
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c  k = 20, bs = ”cr ”) , where we use k = 20 cubic regression ( bs 
=  our experience cubic regression splines typically require half the computing 

t ditional covariates. Throughout this section, the names of the fitted models 

c

 the plot() function. The output is not shown, but see the curve labeled 

m

check() , which implements a permutation algorithm described in Wood 

( edf) close to the maximum degrees of freedom k’, indicates that more splines 

a he maximum number of degrees freedom k’ = 19 is one less than the number 

o enter the smooth function such that it has zero mean over the range of age 

v

both with the gam() and gamm() functions from mgcv , and the gamm4() 
f ere, with a low number of repeated measurements of a large number of 

p  . We opt for the latter, as it is typically faster and more numerically stable. 

T  that we now specify a random intercept with the argument random = 

~

 the GAM above took less than 0.08 seconds. The gamm4() function returns 

a ns information from the lmer() function in the lme4 package ( Bates et al., 

2 e random effect distributions. The element gam contains information about 

t metric fixed effects. 

nd its accessor functions can be used to study the random effect distributions. 

T 601 mm 

3 , is much larger than the within-participant variation, 𝜎̂ = 133 mm 

3 . 

N ation is not available. The second line in the output ( ̂𝜎𝜆 = 21 mm 

3 ) is related 

t ated smoothing parameter is given by 𝜆̂ = 𝜎̂2 ∕ ̂𝜎2 
𝜆
= 38 . 7 . 

tting two versions of model (3) , mod3a which contains a linear cohort effect 

t isting of five cubic regression splines, allowing the cohort effect to depend 

o

orresponding to the term 𝑓 ( 𝑎 𝑖𝑗 ) in model (1) is specified with s(Age,
 ”cr ”) splines. The default is thin-plate splines ( bs = ”tp ”), but in

ime, without yielding poorer fit. ICV, sex, and scanner are added as ad

orrespond to the model identifiers in Table 1 . 

The estimated smooth function can be immediately visualized with

od1a in Fig. 12 (left). 

We can check that the number of splines is sufficiently high with k.
2017 , Ch. 5.9). A significant 𝑝 -value and estimated degrees of freedom (

re required. As shown in the output below, k seems sufficiently high. T

f cubic regression splines, because one degree of freedom is used to c

alues in the data ( Wood, 2017 , Ch. 5.4.1). 

Next, we fit model (1) using the complete data. This can be achieved 

unction from gamm4 . For the type of longitudinal data considered h

articipants, gam() is very slow compared to gamm() and gamm4()
he main difference from the model with only cross-sectional data, is

(1|ID) . 

On a MacBook Pro, fitting this GAMM took 1.7 seconds, while fitting

 list with two elements, named mer and gam . The element mer contai

015 ) used in the numerical computations, and is useful for studying th

he smooth functions, and is useful for studying smooth terms and para

The lme4 package is automatically loaded when gamm4 is loaded, a

he summary below shows that the between-participant variation, 𝜎̂𝑏 = 

ote that for mod1a which does not have random intercepts, this inform

o the formulation of smooth functions as random effects, and the estim

Modeling cohort effects Next, we take cohort effects into account by fi

erm, and mod3b which contains a varying-coefficient term 𝛽( 𝑎 𝑖𝑗 ) cons

n age. 
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Fig. 10. Estimated cohort effect . Estimated cohort effect on hippocampal volume as a function of age. Dashed lines show 95% across-the-function CIs, which have 

the property that the true function is expected to lie within the CI over 95% of the 𝑥 -axis. Dotted lines show 95% simultaneous CIs, which have the property that the 

true function is expected to be completely confined within the CI 95% of the time under repeated sampling from the population. 

p.table in the object returned by mgcv ’s summary() function. A 95% 

c iplied by the 2.5% and 97.5% quantiles of the standard normal distribution 

t  this model is a negative offset of 1.25 mm 

3 per birth year, with 95% CI 

[

ber of years between the participant’s birth date and 1st January 1970, we 

c orn in 1920 by multiplying the estimates in coef_info by 50 years 3 . This 

i m 

3 with 95% CI [−214 , 89 . 0] mm 

3 . The upper and lower limits of the CI are 

s  . 

atrix s.table in the object returned by mgcv ’s summary() function. Its 

e timated as a straight line defined by an intercept and a slope. Its 𝑝 -value of 

0 ohort effect. 

low, using the plot() function for gam objects. This term is numbered 2 

b fying the model. The argument scale = 0 ensures that the y-axis limits 

a l range of the term representing the main effect of age. 

and dashed lines in Fig. 10 . The fact that the estimated cohort effect averaged 

o stimated a negative but non-significant cohort effect. The CIs shown by the 

p m the population, the true function will on average be confined within the 

u  Nychka, 1988 ). These across-the-function CIs will contain the true function 

l n, which explains why the upper limit in Fig. 10 is well below zero despite 

t , would fully contain the complete function 95% of the time under repeated 

s  Ruppert et al., 2003; Simpson, 2016 ) shown in the Supplementary Section 

S nd are wider than the across-the-function CIs. The fact that the upper limit 

i ro, is in agreement with the 𝑝 -value being approximately 0.05. 
We extract the cohort effect estimated by mod3a from the matrix 

onfidence interval (CI) is computed by adding the standard error mult

o the estimate. As the output shows, the estimated cohort effect from

−4 . 29 , 1 . 78] mm 

3 . 

For example, since the variable Birth_Date_z represents the num

an estimate the offset effect of being born in 1970 compared to being b

s illustrated in the line below, which shows that the estimate is −62 . 7 m
mall, but not negligible compared to the sample average of 8065 mm 

3

Next, the varying-coefficient term in mod3b is extracted from the m

stimated degrees of freedom is 2, implying that the cohort effect is es

.0506 also suggests that there is some evidence of an age-dependent c

The estimated cohort effect can be plotted with the code shown be

ecause it was entered as the second smooth term in the formula speci

re adjusted to the term to be plotted, rather than also covering the ful

A slightly modified version of the resulting plot is shown by the solid 

ver all ages is slightly negative is in agreement with mod3a , which e

lot() function have the property that under repeated sampling fro

pper and lower limits over 95% of the 𝑥 -axis ( Marra and Wood, 2012;

ess than 95% of the time under repeated sampling from the populatio

he 𝑝 -value being larger than 0.05. Simultaneous CIs, on the other hand

ampling, and can be constructed using a simulation-based approach (

3.1. These simultaneous CIs are shown as the dotted lines in Fig. 10 , a

s very close to zero for high ages and the lower limit never is above ze
3 Since the cohort effect estimated by mod3a does not interact with age, the result applies to any set of birth dates separated by 50 years. 
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Fig. 11. Two-dimensional smooth functions . Left: tensor product term t2(Age_bl, Time) in mod2b , representing the total effect of baseline age and 

time. Right: tensor interaction term ti(Age_bl, Time) in mod2b_ti , representing the interaction effect between baseline age and time. 

Fig. 12. Model estimates . Estimated cross-sectional and longitudinal effects from each of the five models considered in Section 3.2.1 . The cross-sectional estimates 

are computed for 1st January 2010. The longitudinal estimates are computed 15 years ahead from baseline ages of 10, 30, 50, and 70 years. 

participant born in 1920 is expected to have a 131 mm 

3 lower hippocampal 

v 7 , 145] mm 

3 ). Conversely, a participant born in 1920 is expected to have a 

3 , at age 70 (CI: [−5 . 8 , 685] mm 

3 ). R code for computing these estimates is 

s uggest that a cohort effect cannot be ruled out, despite the term not being 

s ned within the 95% CIs. 

 (2) , using the t2() function to create a two-dimensional smooth term 

( cubic regression splines are used for the effect of baseline age, while only 5 

a 1 years. The construction of the two-dimensional function involves forming 

p lying that the total number of degrees of freedom used by the term equals 

2 sed for imposing a sum-to-zero constraint. Fitting mod2b below took ≈ 90 

s

ree smooth terms: the main effects of age and time, and their interaction. 

T r fitting such a model is provided by mgcv ’s ti() function, representing a 

t  been removed ( Wood, 2006 ). As it is not available in gamm4 , the gamm() 
f andom intercept is specified with random = list(ID = ~1) and the 

u ecified with method = ”REML ” for comparability with the models fitted 

w

The age-dependent cohort effects estimated by mod3b imply that a 

olume at age 20 than a participant born in 1970 at age 20 (CI: [−40
40 mm 

3 higher hippocampal volume than a participant born in 1970

hown in Supplementary Section S3.1.1. As for mod3a , these results s

ignificant, since cohort effects of relatively large magnitude are contai

Modeling baseline age and time since baseline Finally, we fit model

 Wood et al., 2012 ). The argument k = c(20, 5) specifies that 20 

re used for the effect of time, as this term does not span more than 1

roducts of all combinations of splines for baseline age and time, imp

0 × 5 − 1 = 99 , where the one degree of freedom subtracted has been u

econds on a MacBook Pro. 

Model (2) in Section 2.3 could alternatively be formulated with th

his allows significance testing of each term separately. Functionality fo

wo-dimensional tensor interaction term in which the main effects have

unction needs to be used. The syntax is very similar, except that the r

se of REML rather than the default marginal maximum likelihood is sp

ith gamm4() . 
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Fig. 13. Posterior samples . The plots show 50 samples from the posterior distributions of curves for lifespan volumes of cerebellum white matter and hippocampus. 

Red dots indicate the maximum of each curve. 

table returned by summary() , and shows that all terms are significant. 

I  seen by its single degree of freedom, while the two-dimensional interaction 

t

t() function, for which a perspective plot is produces by setting scheme 
=

f the plot, the cross-sectional effect is visualized along the baseline age axis, 

w ig. 5 . The longitudinal effect, plotted along the time axis, is positive for low 

b tion term plotted in the right part of Fig. 11 shows that the effect of time is 

p  in the oldest participants. Note that the left and right plots in Fig. 11 are 

n ction of the estimated total longitudinal effect cannot be evaluated based on 

F  account. 

m the five models estimated in this section. The cross-sectional effects are 

e  estimated with only baseline measurements, indicates a less steep growth 

d  20 and the age of 50. The longitudinal effects are estimated 15 years ahead 

f do not distinguish longitudinal and cross-sectional effects, and hence have 

i ite different from those of the other models, except for a baseline age of 70. 

G s from (2b) are not accurate. The longitudinal estimates of models (3a) and 

( cohort effects in these data are moderate. 

ating lifespan curves, is the age at which critical points occur, e.g. the age 

o timates of such critical ages can be read directly from the fits, if necessary 

a ainty is not directly available. A Bayesian view of the smoothing introduced 

b the estimated regression parameters, including spline weights, and Σ̂𝛽 their 

c s now a normal distribution with mean 𝛽 and covariance Σ̂𝛽 , 𝛽|𝑦 ∼ 𝑁( ̂𝛽, ̂Σ𝛽 ) 
( can make confidence statements about any quantity derived from the smooth 

f istribution of volume curves for cerebellum white matter and hippocampus, 

w ll samples it is evident that there is high uncertainty about the age at which 

c inty about hippocampal volume. 

, we obtained posterior distributions of the age at maximum for each region. 

F e posterior distributions for all 12 regions, using the HDInterval package 
Information about the smooth terms can again be obtained from s.
nterestingly, the main effect of time is estimated to be linear, as can be

erm is highly nonlinear. 

Two-dimensional smooth terms can also be visualized with the plo
 1 . 

The resulting plots are shown in Fig. 11 . Considering the left part o

ith a trajectory similar to the lifespan hippocampal volume shown in F

aseline ages and negative for higher baseline ages. The tensor interac

ositive in the youngest participants, quite flat in adults, and negative

ot comparable. Since the right plot is a pure interaction term, the dire

ig. 11 (right) alone, but also needs to take the main effect of time into

Comparison of model fits 

Fig. 12 shows estimated cross-sectional and longitudinal effects fro

stimated for 1st January 2010, and are all quite similar. Model (1a),

uring childhood, and also exhibits some wiggliness between the age of

rom baseline ages of 10, 30, 50, and 70 years. Models (1a) and (1b) 

dentical estimates in both plots. The estimates from model (2b) are qu

iven the simulation results of Section 3.1 , we suspect that the estimate

3b) are close to the estimates of model (1b), again suggesting that the 

Estimating age at maximum volume A question of interest when estim

f maximum volume, maximum growth, or maximum decline. Point es

fter computing derivatives, but an assessment of their statistical uncert

y Kimeldorf and Wahba (1970) lets us achieve this. Letting 𝛽 denote 

ovariance matrix, the posterior distribution of the true coefficients 𝛽 i

 Wood, 2017 , Ch. 6.10). By sampling from this posterior distribution we 

unctions. As an example, Fig. 13 shows 50 samples from the posterior d

ith the maximum of each marked with a red dot. Even from these sma

erebellum white matter volume is maximal, while there is less uncerta

By sampling 20000 curves and locating the age at maximum for each

ig. 14 shows 95% highest posterior density intervals computed from th
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Fig. 14. Age at maximum volume . 95% highest posterior density intervals for the age at maximum volume of 12 brain regions. Red dots show posterior means. 

( bout the location of the maximum is highly variable between regions, with 

v  proper, and wide intervals and high uncertainty, e.g. for the brain stem and 

c

3

 study how lifespan brain volumes are affected by a categorical variable. As 

a le, which is a known risk factor for Alzheimer’s disease ( Corder et al., 1993; 

G cortex volume differ between carriers of zero, one, or two APOE 𝜖4 alleles. 

S act of the APOE 𝜖4 allele on lifespan hippocampal volume. 

tical structure to the data used in Section 3.2.1 , except that the variable 

r bellum representing cerebellum cortex volume in mm 

3 . In addition, a new 

v s. After excluding participants without information about APOE status, dat 
c  observations) had zero alleles, 341 (789 observations) had 1 allele, and 34 

(

ble Gene_APOEnE4 needs to be coded as an ordered factor. This is done 

w

POEnE4, k = 10, bs = ”cr ”) . For an ordered factor variable with 

𝐿  difference between the trajectory associated with the 𝑙th level ( 𝑙 = 2 , … , 𝐿 ) 

a ce between trajectories does not include pure offset effects, and hence the 

m  factor interaction terms are created, associated with 1 or 2 APOE 𝜖4 alleles. 

I uld estimate a varying-coefficient term as used in Section 3.2.1 treating the 

n s a factor variable a single smooth term would be independently estimated 

f k = 10, bs = ”cr ”) would have to be omitted for the model to be 

i

 to study the smooth terms. The first term represents the trajectory for non- 

c epresent the difference between trajectories of carriers of one or two alleles 

t tion terms, it is clear that there is no evidence that the shape of the lifespan 

c

le returned by summary() . We use R’s grep() function to retain only 

t  one standard error from zero and not significant, indicating that there is no 
 Meredith and Kruschke, 2019 ). The plot shows that the uncertainty a

ery narrow intervals for, e.g. caudate, cerebellum cortex, and thalamus

erebellum white matter. 

.2.2. Interaction effects on lifespan volume trajectories 

We now demonstrate how factor-smooth interactions can be used to

n example application we consider the apolipoprotein E (APOE) 𝜖4 alle

enin et al., 2011 ), and study how lifespan trajectories of cerebellum 

imilar models were used by Walhovd et al., 2020 , who studied the imp

The data are still contained in a dataframe named dat , with iden

epresenting hippocampal volume now is replaced by the variable Cere
ariable Gene_APOEnE4 represents the total number of APOE 𝜖4 allele

ontained 2707 observations of 1139 participants. Of these, 764 (1,838

80 observations) had two alleles. 

Factor smooths In order to estimate the interaction effects, the varia

ith the following code. 

A factor-smooth interaction is defined by s(Age, by = Gene_A
 levels, this term creates 𝐿 − 1 smooth functions, each representing the

nd the trajectory associated with the baseline level 𝑙 = 1 . The differen

ain effect of the ordered factor must be added. In this case, two smooth

n contrast, if Gene_APOEnE4 was a numeric variable, gamm4() wo

umber of alleles as a continuous variable, and if Gene_APOEnE4 wa

or each of the three factor levels and the main effect term s(Age, 
dentified. 

Again, the matrix s.table returned by summary() can be used

arriers, and the two terms starting with s(Age):Gene_APOEnE4 r
o carriers of zero alleles, respectively. From the 𝑝 -values for the interac

erebellum white matter volume depends on APOE 𝜖4 status. 

The main effects of APOE 𝜖4 status can be extracted from p.tab
erms containing the pattern ”Gene_APOE ”. The estimates are less than
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Fig. 15. Factor smooth interactions . Estimated lifespan trajectories of cerebellum cortex volume for males and females with 0, 1, or 2 APOE 𝜖4 alleles. 

e olume. The suffixes .L (’linear’) and .Q (’quadratic’) are a consequence of 

h ne or two alleles, respectively, relative to having zero alleles. 

rpretation of the estimated effects, and we illustrate it here by comparing 

t  zero, one, or two APOE 𝜖4 alleles. First, a grid over which to compute the 

p ges between 4 and 94 years with a spacing of 0.1 years, number of APOE 

𝜖  all variables in the model to be defined, and we hence set ICV_z equal to 

t is one of the scanners used in the LCBC data. Other values of ICV_z and 

S tion would not change. 

t2 ( Wickham, 2016 ) is used to plot the predicted values. 

ote that since Sex is a parametric term, it merely shifts the curves vertically, 

w ffects were significant, but the plots still show how smooth interaction terms 

c  alleles. 

4

ng lifespan brain trajectories. However, the issue of potential cohort effects 

r ons used for separating longitudinal and cross-sectional effects has potential 

p ohort effects, the ”age-time model ” (2) which is a direct extension of LMMs 

c d the alternative ”age-cohort model ” (3) which includes participant birth 

d ngitudinal and cross-sectional effects were compared in realistic simulation 

e of cohort effects the age model was most accurate, with the version using 

l y cross-sectional data. With cohort effects, on the other hand, the age cohort 

m h may be seen as a ”classic ” model used to separate longitudinal and cohort 

e s shown in Table 2 it had both higher bias and variance across the simulated 

s le to estimate nonlinear longitudinal effects beyond short follow-up intervals. 

O  which the age-time model originates, longitudinal effects for any time after 

b als of arbitrary length. Interpretation of the terms in the age-time model as 

l ts have equal dates of initial measurement. However, simulations reported 

i e a very small effect on the accuracy of the age-time model in the settings 

c

vidence for an offset effect of APOE 𝜖4 status on cerebellum cortex v

ow R treats ordered factors, and represent the offset effect of having o

Prediction from GAMMs Creating predictions from GAMMs aids inte

he estimated lifespan cerebellum cortex volumes for participants with

redictions is created. Using expand.grid() , all combinations of a

4 alleles, and sexes are generated. The predict() function requires

he sample mean and Scanner arbitrarily to ”ousAvanto ”, which 

canner would shift the resulting curves vertically, but the interpreta

Next, predictions are computed at all values of the grid and ggplo

A slightly modified version of the resulting plot is shown in Fig. 15 . N

ithout changing their shapes. In this example, none of the interaction e

reate different functional shapes depending on the number of APOE 𝜖4

. Discussion 

This paper has highlighted that GAMMs are well-suited for estimati

equires careful consideration, and direct translation of LMM formulati

itfalls. In Section 2.3 we defined the ”age model ” (1) which ignores c

ommonly used to separate longitudinal and cross-sectional effects, an

ate as a model term. These models’ abilities to accurately estimate lo

xperiments reported in Section 3.1 . Not surprisingly, in the absence 

ongitudinal data performing better than the equivalent model with onl

odel was most accurate. More importantly, the age-time model – whic

ffects – consistently performed worse than the age-cohort model, and a

amples. As also suggested by Figs. 7 and 8 , the age-time model is not ab

n the other hand, in the special case of linear longitudinal effects, from

aseline can in principle be accurately estimated with follow-up interv

ongitudinal and cross-sectional effects also requires that all participan

n Supplementary Section S2.4 suggest that varying baseline dates hav
onsidered here. 
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While limitations will vary with regard to study specific character-

stics, we find it important to emphasize, in light of the present find-

ngs, that age-time models will never be able to make accurate estimates

f lifespan trajectories, or even trajectories for any substantial part of

he lifespan, unless a majority of participants have been followed over

he whole interval of interest. Currently available human cohorts with

ongitudinal imaging data do not span the desired intervals. Further-

ore, reaching acceptable power is impossible if dates of initial mea-

urement are to be contained within a small fraction of time. A look

t some of the most powerful and impressive combined cross-sectional

nd longitudinal studies of brain changes with age, suggests that frac-

ional follow-up interval and range of variation in initial measurement

ates realistically need to be accommodated in all statistical models.

or instance, even the ABCD study ( Casey et al., 2018 ) which utilizes

umerous scan sites to track development in thousands of children at

ery similar age, need to allow for some variation in initial date of mea-

urement, and follow-up intervals are so far limited to a couple of years.

hile there luckily are major and most impressive studies that contain

nformation on participant samples for many decades, such as the White-

all study ( Filippini et al., 2014 ), the Baltimore Longitudinal Study of

ging ( Tian et al., 2015 ), the Betula ( Gorbach et al., 2017 ), or the Loth-

an Birth Cohort study ( Cox et al., 2018 ) these still await longitudinal

maging data ( Filippini et al., 2014 ), or typically have MRI data only

or a small fraction of the time, less than a decade ( Cox et al., 2018;

orbach et al., 2017; Tian et al., 2015 ), sometimes with scan waves be-

ng completed across several years ( Gorbach et al., 2017 ). We note this

ot as a critique of any study, but as a reminder that statistical models

t the very least need to accomodate the realistic situation for the best

ossible data. 

.1. When is a single measurement per participant sufficient? 

The dangers of using cross-sectional data have repeatedly been

ointed out in the quantitative psychology literature. For example, me-

iation analysis using purely cross-sectional data is likely to lead to

iased and misleading estimates under realistic conditions ( Cole and

axwell, 2003; Lindenberger et al., 2011; Lindenberger and Pötter,

998 ). In mediation analysis, the goal is to understand the causal paths

hrough which one or more variables 𝑥 influence an outcome 𝑦, di-

ectly or through one or more mediating variables 𝑚 . Since a cause

recedes its effects, carefully designed longitudinal data collection as

ell as models capable of utilizing this information are then necessary

 Collins et al., 1998 ). Longitudinal data is also required to understand

ow within-individual change differs from between-individual change

nd how within-individual change is correlated across multiple pro-

esses ( Lindenberger et al., 2011; Molenaar, 2004 ). Traditionally, such

tudies have been conducted by following a group of participants of sim-

lar age over a number of waves, e.g. Cox et al. (2020) ; Raz et al. (2010,

005) . 

While the above mentioned cautions about use of cross-sectional data

re completely justified, they do not necessarily extrapolate to estima-

ion of lifespan trajectories. If the goal is to estimate the population

ffect of aging on the volume of one or more brain regions, potentially

ncluding interaction effects of static trait variables like genetic varia-

ions or education level (after completed education), a single measure-

ent per participant may be sufficient. One example is when the strong

ssumption of no cohort effects is made. If it holds, cross-sectional and

ongitudinal effects are equal, and both can be accurately estimated by

he age model using purely cross-sectional data. However, with suffi-

ient variation in baseline dates, the age-cohort model is in principle

ble to estimate longitudinal and cross-sectional effects using a single

easurement per participant. This approach has been used in studies

f cognitive aging, which allows estimation of aging and cohort effects

ithout the risk of confounding by retest effects ( Horn and Donaldson,

976; Salthouse, 2013; 2014; 2019; Schaie et al., 1973 ). In practice,

owever, we have experienced that cohort-age models become more
table and accurate with longitudinal data. In particular, both the ad-

itional variation provided by repeated measurements with heteroge-

eous follow-up intervals and the correlation between repeated mea-

urements of the same participant likely contribute to better separation

f age effects and cohort effects. Furthermore, as shown in Section 3.2.1 ,

 GAMM using longitudinal data also estimates the between-individual

ariation and the within-individual variation, quantifying the extent to

hich differences between participants are due to systematic variation

nd noise, respectively. 

.2. Limitations and future directions 

The GAMMs studied in this paper also have some limitations. The

ge-cohort model is not identified if all participants have been measured

t the exact same dates, since age and cohort then are perfectly collinear.

his is also true with longitudinal data, and emphasizes the fact that

hese models are developed for heterogeneous data, typically combined

rom multiple studies. 

There is also a need for methodological development related to esti-

ation of correlated change between regions. In principle, this could be

one by fitting GAMMs separately for each region, and using the correla-

ion of random slopes across regions as an estimate of correlated change.

 more principled approach is offered by joint modeling frameworks

or LMMs ( Fieuws and Verbeke, 2004; 2006 ), which in this case would

mount to fitting a single hierarchical GAMM ( Pedersen et al., 2019 )

or the lifespan trajectories of multiple regions, with interaction terms

istinguishing trajectories for each region and random effect structures

odeling the within-individual level and change correlation between re-

ion trajectories. However, the fact that the extent of correlated change

etween any pair of brain regions is likely to vary across the lifespan

ould also need to be taken into account, e.g. by modeling correlations

s functions of age. Combined with the need for three or more timepoints

o accurately estimate random slopes, it may currently be challenging to

btain a sufficient amount of longitudinal data for fitting such models. 

A limitation of GAMMs is that the parameters of the estimated

mooth terms typically are not interpretable, and quantities such as rates

f change, initial levels, and final asymptotic levels have to be inferred

rom the estimated functions, e.g. as demonstrated for age at maximum

olume in Figs. 13 and 14 in Section 3.2.1 . When prior knowledge about

he functional form of the phenomenon under study is available, non-

inear mixed models are an attractive alternative, offering directly inter-

retable parameters of substantive interest ( Davidian, 2009; Lindstrom

nd Bates, 1990; Ram and Grimm, 2016 ). Applications include mod-

ling of learning curves ( Cudeck, 1996; Ghisletta et al., 2010 ), model-

ng the effect of preschool instructions on academic achievement using

igmoidal functions ( Grimm and Ram, 2009 ), and modeling of rate of

hange and acceleration in a lexical retrieval task ( Grimm et al., 2013 ).

While we have considered GAMMs for estimating how time-invariant

ariables interact with lifespan trajectories in Section 3.2.2 , interaction

ith time-dependent variables may also be of interest. Although time-

ependent interaction variables can be used within the framework con-

idered here, the interpretation of the estimated effects becomes more

hallenging. If only the value of the time-dependent variable at the

iven timepoint affects the outcome, the effect can be interpreted in ex-

ctly the same way as for a time-invariant variable ( Fitzmaurice et al.,

011 , Ch. 13.5). In many applications, however, it may be more plau-

ible to assume that also the variable’s change since the previous time-

oint contains relevant information, and in this case the models used in

ection 3.2.2 will have biased estimates. Continuous-time SEMs ( Driver

nd Voelkle, 2018; Oud and Jansen, 2000 ) may be useful for this pur-

ose, as they allow regressing a time-dependent process (the outcome

f interest) on the value of another time-dependent process (the inter-

ction variable) at earlier times, without the restrictive assumption of

qually spaced time intervals imposed by ordinary SEMs. However, esti-

ation of nonlinear smooth functions within continuous-time SEMs has
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ot been reported in the literature, and is likely to be both computation-

lly challenging and require large longitudinal datasets. 

. Conclusion 

GAMMs are attractive tools for estimating lifespan brain trajecto-

ies, which flexibly handle the nonlinear effects and variable follow-up

ntervals and measurement dates characteristic of lifespan data. If co-

ort effects are negligible, age models on the form (1) yield the most

ccurate estimates, and in this case a single measurement per partici-

ant may even be sufficient. More realistically, cohort effects are likely

o be present, and in this case the age-cohort model (3) which directly

odels the effect of birth cohort is able to accurately estimate longitu-

inal and cross-sectional effects. On the other hand, the age-time model

2) which separates the effect of age into a baseline term and a time term

s is common with LMMs, yields poor estimates of longitudinal effects.

ith sufficient variation of measurement dates and follow-up intervals,

e thus recommend the age-cohort model for estimating lifespan brain

rajectories. On the other hand, for time-structured data containing little

ariation in measurement dates, the age-cohort model is not identified

nd the age-time model seems to be the best option, with the caveat

hat estimated longitudinal effects may not be reliable for times larger

han the average follow-up interval, as will also be apparent from the

onfidence intervals. 

The R packages mgcv and gamm4 provide efficient software for fit-

ing GAMMs, and are complemented by additional packages enabling

asy visualization and interpretation of summary statistics. 
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