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multidecadal time scale20 



Abstract 21 

It is challenging to quantify representative long-term variability of streamflow and its possible 22 
low-frequency climate drivers from observed streamflow data available, which is usually limited. 23 

To address this issue, a hierarchical, multilevel Bayesian regression (HBR) with the partially 24 
pooled method was developed to reconstruct the 1489-2006 annual streamflow data at six 25 
Athabasca River Basin (ARB) gauging stations based on 14 tree ring chronologies. Seven nested 26 
models were developed to maximize the availability of tree ring predictors. A leave-m-out cross 27 
validation method was used to verify the model performance. The reconstruction model was 28 

demonstrated to be skillful and seems to better capture low flow than high flow scenarios. More 29 
droughts in the premeasurement proxy record with great severity and duration were found from 30 
the reconstructed data, which shows that instrumental records are deficient in representing the 31 
variability of streamflow accurately, especially at multidecadal scales. Results obtained from 32 

wavelet analysis, partial wavelet coherence, and composite analysis show the reconstructed 33 
streamflow of ARB has two statistically significant modes, one at interannual time scale (2-8 34 

year) strongly teleconnected to ENSO and a low-frequency mode (~80 year period) which may 35 
be teleconnected to PDO and AMO. The AMO index is shown to be negatively correlated with 36 
paleo streamflow data of ARB at multidecadal time scale. The long-term streamflow 37 

reconstructions and the relationships with ENSO, PDO, and AMO provide useful information on 38 
the long-term changes in the hydrological regime of ARB. 39 



1 Introduction 40 

It is challenging to estimate representative natural variability of hydrological variables such 41 
as streamflow because worldwide instrumental records are limited, mostly less than 100 years, and 42 

even less than 50 years for many river basins. As a result, an exclusive reliance on limited observed 43 
data to estimate the hydrologic and climate variability of a river basin for designing its hydraulic 44 
infrastructure, reservoir operation, and water conveyance can be problematic. Geological and 45 
biological proxies collected from glaciers, sediments of lakes and marine, tree rings, and corals 46 
over the past centuries (Ho et al., 2015; Tierney et al., 2013) are viable sources of paleoclimate 47 

data that can be used to extend the instrumental records by hundreds of years during the pre-48 
instrumental period to estimate more representative natural climate variability of the river basin. 49 
Besides short instrumental record, data collected in recent years are often affected by 50 
anthropogenic activities on our climate system (Sauchyn & Ilich, 2017). Therefore, by 51 

reconstructing the aforementioned natural proxies, to say, streamflow data, we can overcome the 52 
limitations of short gauging records (Gangopadhyay et al., 2018).  53 

Among various proxy data available, tree ring proxy is usually preferred to reconstruct 54 
climate variables such as temperature (Borgaonkar et al., 2018), precipitation (Steinschneider et 55 
al., 2018), runoff (Ho et al., 2017), and groundwater and lake levels (Meko, 2006; Perez-Valdivia 56 

& Sauchyn, 2011), mainly because such data are widely available, and they can provide past 57 
climate characteristics at annual/sub-annual time scales (Crawford et al., 2015).  Besides, tree ring 58 

signals are typically coherent within hundreds of kilometers, they provide useful hydrological 59 
signals at regional scales (Axelson et al., 2009). Tree ring based streamflow reconstructions have 60 
been applied to water resource management in Asia (Gou et al., 2010; Liu et al., 2019), America 61 

(Carson & Munroe, 2005; Patskoski et al., 2015), Europe (Wilson et al., 2005), and Africa 62 
(Gebrekirstos et al., 2014). In western Canada, tree ring proxy record has been applied to 63 

reconstruct streamflow in the Athabasca River (Bonin & Burn, 2005), Northern and Southern 64 
Saskatchewan River (Axelson et al., 2009; Sauchyn & Ilich, 2017), and Oldman River and Red 65 

Deer River basin (Elshorbagy et al., 2016; Razavi et al., 2016). The basis for reconstructing 66 
historical streamflow time series using tree ring proxy is that the climate variables such as 67 

precipitation, evapotranspiration, and temperature that control the growth of annual treewidth are 68 
related to the discharge of a nearby river (Axelson et al., 2009; Loaiciga et al., 1993; Meko et al., 69 
1995).  70 

Traditionally, linear or nonlinear regression models developed from tree ring data as 71 
predictors to instrumental streamflow records are applied to reconstruct streamflow of pre-72 

instrumental periods from paleo tree ring proxy. Woodhouse (2001) used tree ring data and a 73 
stepwise regression method to reconstruct the mean annual streamflow of the Colorado Front 74 
Range. Maxwell et al. (2011) used a principal components regression (PCR) method to reconstruct 75 

the mean May-Sep streamflow of the Potomac River in the last millennium. Cook et al. (2013) 76 
also used a PCR approach to reconstruct streamflow data of the Indus River for the last 557 years. 77 
Recently, Ferrero et al. (2015) used PCR and tree ring chronology to reconstruct the first 78 
sub/tropical river streamflow in South America for the past 300 years. However, a common pitfall 79 

of traditional regression methods is that such an approach often fail to preserve multi-site 80 
correlation and uncertainties associated with reconstructed streamflow are difficult to estimate. 81 
Recently, the hierarchical Bayesian model which is more robust, and can better handle model 82 

uncertainties has been investigated in hydroclimatic applications such as regional flood frequency 83 



analysis (Wang et al., 2014), modeling of precipitation and streamflow extremes (Bracken et al., 84 

2016; Najafi & Moradkhani, 2014), and trend detection (Sun et al., 2015). Devineni et al. (2013) 85 
used the hierarchical Bayesian regression (HBR) method to reconstruct streamflow in the upper 86 

Delaware River basin and assessed its performance with respect to multi-site information. Rao et 87 
al. (2018) used the HBR to reconstruct streamflow of three sites with short records in the Upper 88 
Indus Basin. 89 

The Athabasca River in Alberta, Canada, the third longest unregulated river in North 90 
America, has been the source of surface water needed for extracting bitumens from oil sands (Eum 91 

et al., 2017). In recent years, new oil sands enterprises have been granted licenses and have started 92 
operation, albeit the total amounts of water withdrawn for the existing licensed projects have 93 
already exceeded the maximum water extraction capacity permitted under the water management 94 
framework Phase I of the Athabasca River (EUB, 2007). Based on historical instrumental records, 95 
most of the streamflow gauges along the Athabasca River show a decreasing trend in recent 96 

decades. Under the climate change impact, the streamflow of the Athabasca River is projected to 97 

decrease at about 8% per oC of warming (Kerkhoven & Gan, 2011). Therefore, the future 98 
streamflow of the Athabasca River may not be sufficient to meet the needs for Alberta’s economic 99 
development and in-stream ecological requirements if this downward trend in streamflow 100 

continues (Alberta, 2006). The combined effect of climate change and increasing water 101 
withdrawals may threaten the water security of aboriginal people and increase the risk of water 102 

scarcity which could affect the planned mining operations. Given long-term flow records are not 103 
available for the Athabasca River, problems exist in estimating uncertainties associated with long-104 
term streamflow projections, the non-stationarity and low-frequency oscillation of streamflow at 105 

interannual or interdecadal time scales, which would affect the oil sands development of Alberta.  106 

 The objective of this study is to reconstruct representative and credible long-term 107 

streamflow data from tree ring proxies that can help water resources engineers to estimate more 108 

accurate extreme flow events for designing more appropriate hydraulic infrastructure, and for the 109 

operation and risk management of water resources systems. This objective was achieved from 110 
applying six streamflow gauges of the Athabasca River, 14 tree ring chronologies from of 4 tree 111 

species (1489-2006 CE) to several modeling techniques: (1) A multi-level, hierarchical Bayesian 112 
model with the partially pooled method was developed to estimate the posterior probability 113 
distribution of reconstructed streamflow and model uncertainties. (2) Teleconnection of 114 

reconstructed streamflow data to large-scale climate patterns was estimated using wavelet analysis, 115 
partial wavelet coherence, and composite analysis. (3) The duration and severity of observed and 116 

reconstructed drought events are estimated and compared, to estimate representative, low 117 
frequency, past extreme droughts of the Athabasca River basin, which could not be done from 118 
limited instrumental record alone. So far, similar analysis based on pre-instrumental streamflow 119 
data, along with possible teleconnection to large-scale climate patterns in the past are mostly 120 
neglected in water resource engineering practice, even though they could have important 121 

implications to achieving effective, long-term water resource management and planning.    122 

The manuscript is organized as follows: The study area and data are described in Section 123 

2, methodology in Sections 3, discussions of results in Section 4, and summary and conclusions in 124 
Sections 5. 125 



2 Study area and Data description 126 

2.1 Study area and streamflow data 127 

The Athabasca River Basin (ARB), with a drainage area of 159,000 km², is located between 128 

central and northern Alberta (Figure 1) and its southern margin is located in the Boreal Plain 129 
ecozone. The Athabasca River originates from the Jasper National Park and travels about 1500 130 
miles to the Lake Athabasca. Data of six unregulated gauging sites taken from the Hydat database 131 
of Environment Canada, located on the mainstream and two tributaries of the Athabasca River, 132 
were chosen for a long-term dendrohydrological streamflow reconstruction. The detailed 133 

information of each site is shown in Table 1. The monthly October-September flow data were 134 
combined to an annual water year data because it has a better correlation with the tree ring 135 
chronology than annual data based on the calendar year. The 1914-2016 natural streamflow 136 

records for each site were found to fit a log-normal distribution well at a 0.05 significance level, 137 
but none of them have a complete record. Two sites, 07BE001 and 07BB002, have missing data 138 
from the 1930s to 1950s. The mean annual flow for most sites approximately exhibits a decreasing 139 

trend (Fig. S1). Up to 80% of the annual flow occurs in the summer, May to August. Summary 140 
statistics of flow data for each gauge are shown in Table 1. Due to a lack of updated tree ring 141 
chronology series, the actual streamflow data for calibrating the reconstruction model were taken 142 

from 1961 to 2006.  143 

 144 

Figure 1. Location of the study area, streamflow gauges (black dots), and tree ring sites (red triangles) used in this 145 
study 146 



 147 
Table 1. Details of streamflow gauges 148 

Station 

Number 
Station Name Latitude Longitude 

Year 

Start 

Year 

End 

Missing 

Data 

Annual 

Mean (m³/s) 

SD* 

(m³/s) 

07BE001 Athabasca River at Athabasca 54.72203 -113.28796 1914 2016 1931-1951 418.8 86.9 

07BB002 Pembina River near Entwistle 53.60419 -115.00474 1914 2018 1924-1954 19.8 8.5 

07AG003 Wolf Creek at Highway No. 16A 53.59835 -116.27184 1955 2015  3.8 1.8 

07AF002 Mcleod River above Embarras River 53.47018 -116.63149 1955 2016  19.3 5.6 

07BC002 Pembina River at Jarvie 54.45029 -113.99332 1961 2015  31.2 16.7 

07AD002 Athabasca River at Hinton 53.42429 -117.56942 1961 2015  169.6 29.1 
* SD= standard deviation. 149 

2.2 Tree ring network 150 

Tree ring chronologies (totally 28 sites) located in the Athabasca and the adjacent river 151 
basins that ended later than 2005 were downloaded from the International Tree-Ring Databank 152 

(https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring). The raw 153 
annual tree growth used for reconstruction is the ring width measured in millimeters per year. The 154 
ARSTAN program proposed by Cook (1985) was applied to process the tree ring data by fitting 155 

the data with a negative exponential curve or a cubic smoothing spline, a low-pass filter with a 156 
50% frequency response cut-off for detrending and removing some non-climatic factors such as 157 

the age of trees or disturbances associated with closed canopy forests (Sauchyn et al., 2015). The 158 
annual standardized tree ring index for each chronology with different sample depth was averaged 159 
using a biweight robust function.  160 

Appropriate tree ring predictors were selected on the basis of the Pearson correlation and 161 

the lag-one (e.g. t-1) correlation estimated between the tree ring series and six streamflow gauges. 162 
A tree ring series will be chosen as a predictor in the reconstruction model if the mean correlation 163 
coefficient between the tree ring and the streamflow is greater than 0.3 and passed the two-tailed 164 

hypothesis test at 0.05 significance level. Based on the selection criterion, 12 tree ring sites (Table 165 
S1) that contain 14 tree ring chronologies from 1062 to 2008 were used as predictors to reconstruct 166 
the streamflow of the ARB. The correlation coefficient ranges from -0.45 to 0.62 (see Figure 2). 167 

To minimize uncertainties in using tree ring chronologies to reconstruct streamflow data, the 168 
minimum number of tree ring chronologies acceptable for each year is set to be 4. As a result, 1489 169 
is chosen as the earliest starting year. The year from 1749 to 2006 is the common period for all the 170 
tree ring sites. For several sites in the North Saskatchewan River Basin and a site U9 in the Bow 171 
River basin that located several hundred kilometers away, the tree ring data also have a significant 172 

correlation with streamflow data of ARB reflects regional climate signals. In addition, earlywood 173 

and latewood widths were considered separately for the tree ring site of Jasper Benchlands (JB8-174 

L and JB8-E). The latewood has the highest mean correlation with the streamflow series, while 175 
the early wood was well correlated with the previous year flow records. Furthermore, given diverse 176 
tree ring species are more likely to achieve credible reconstruction results (Maxwell et al., 2011), 177 
4 tree species (Table S1) were chosen for this study.  178 



2.3 Climate indices 179 

It has been demonstrated that large scale climate patterns such as El Niño Southern 180 
Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Pacific North America (PNA) are 181 

teleconnected to the hydro-climate of western North America (WNA) at interannual to inter-182 
decadal time scales (Gan et al., 2007; Tan et al., 2016). ENSO occurs every 2~ 8 years and has a 183 
significant influence on the interannual variability of precipitation and streamflow in WNA and 184 
other parts of the world. PDO represents inter-decadal oscillations of the northern Pacific and it 185 
also modulates different phases of ENSO at interannual and multidecadal time scales. The Atlantic 186 

Multi-decadal Oscillation (AMO) has been shown to influence the streamflow variability of the 187 
upper Colorado River basin, southern United States (Erkyihun et al., 2016), and streamflow over 188 
Northern Rocky Mountain and western North American (Gray et al., 2004). Therefore, the paleo 189 
data of ENSO, PDO, and AMO were also used to explore their influence on the low-frequency 190 
oscillation and long term persistence in our reconstructed streamflow time series. The paleo 191 

reconstructions of the prior winter (November-January, NDJ) Nino 3.4 index over 1301-2005 is 192 

based on more than 2000 tree ring chronologies taken from both hemispheres 193 
(ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/enso-li2013.txt). The tree-ring 194 
based paleo PDO data from 993 to 1996 was taken from the NOAA website 195 

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/pdo-macdonald2005.txt. The 196 
paleo, 1567-1990, AMO index (smoothed index of the mean SST in the North Atlantic Ocean) 197 

were derived from tree-ring based SST anomalies 198 
(ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/amo-gray2004.txt) reconstructed 199 
over the North Atlantic Ocean. With a various length of records, the analysis of paleoclimate data 200 

is based on their respective overlap periods. 201 

 202 

 203 

Figure 2. Pearson correlation between tree ring predictors and annual mean streamflow data of six gauging stations204 

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/enso-li2013.txt
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/pdo-macdonald2005.txt
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/amo-gray2004.txt


3 Research Method 205 

Regression methods are often applied with different paleoclimate data such as tree ring or 206 
sediment time series as predictors to reconstruct hydrologic variables of interest (predictands). For 207 

our study, instrumental streamflow data available across gauging sites in the boreal plains ecozone 208 
are generally short, and so it is challenging to obtain reconstructed streamflow with high credibility 209 
based on data from a single site. On the other hand, given streamflow gauges used in our study are 210 
close to each other and located in the same river basin, they are expected to come from similar 211 
physical hydrologic processes and therefore are expected to have some cross-correlation (Fig. S2). 212 

Therefore, we propose to reconstruct streamflow using a two-level, hierarchical Bayesian 213 
regression (HBR) that can incorporate multi-sites through a partially pooled method. In the first 214 
level of HBR model, regression coefficients for each streamflow gauging sites are estimated based 215 
on tree ring predictors using a linear regression method. The second level of HBR model allows 216 

the regression coefficients of each individual site may differ but are assumed to be drawn from a 217 
common multivariate normal distribution, which is the partially pooled feature of HBR. Pooling 218 

the information across all sites to an appropriate degree can effectively incorporate the regional 219 
dependency between single-site information, thus reducing the equivalent number of model 220 
parameters needed to effectively reconstruct the streamflow process and to reduce the overall 221 

uncertainties (Devineni et al., 2013b; Lima et al., 2016).  222 

To maximize the use of available tree ring predictors, we developed a total of seven nested 223 

models with different starting year and a minimum of 20 year time steps moving backward in time 224 
(Maxwell et al., 2011), N1 (1749-2006), N2 (1693-1748), N3 (1617-1692),  N4 (1576-1616), N5 225 
(1555-1575), N6 (1534-1554), and N7 (1489-1533). The first reconstruction model N1 from 1749 226 

to 2006 was developed using all available tree ring chronologies. The second model N2 was 227 
calibrated from 1693 to 2006 by selecting fewer long tree ring chronologies so that the full range 228 

of reconstructions can be lengthened by a period of 1693-1748, and so forth. Finally, the full range 229 
of reconstruction was extended from 1489 to 2006. In developing each nested model, Principal 230 

Component Analysis (PCA) was applied to the available tree ring predictors to obtain the first few 231 
leading principal components obtained, which together explain more than 80% of the total 232 

variance, were chosen as predictors.  233 

Given the lack of recent tree ring and streamflow data records, we chose 1961 to 2006 as 234 
the calibration period to develop the HBR model based on the tree ring chronologies. Each nested 235 
reconstruction model was cross-validated using leave-m-out cross validation (LMOCV) method 236 
to access the performance when calibrated with different blocks of data. This approach is widely 237 

applied to a time series that are too short to be divided into calibration and validation periods. 238 
Thus, we randomly select m data from n actually used data for validation. The HBR model 239 
calibrated with the (n-m) observed data was validated against the remaining m data not used in the 240 

calibration experience. This cross-validation process is repeated p times to estimate the 241 
performance indices matrix for each model prediction. Four goodness-of-fit statistics, namely, 242 
reduction of error (RE), coefficient of efficiency (CE), peak flow criterion (PFC), and low flow 243 
criterion (LFC) were used to assess the performance of the HBR model. The RE and CE show the 244 

goodness-of-fit between reconstructed streamflow and the observations for both the calibration 245 
and validation periods, respectively. RE>0 denotes that beyond its calibration experience, HBR 246 
has some predictive ability, which tends to be higher with larger RE. CE is more stringent 247 

goodness-of-fit statistics than RE and is commonly known as the Nash-Sutcliffe coefficient (Nash 248 



& Sutcliffe, 1970). PFC and LFC (Coulibaly et al., 2001) show the goodness-of-fit of HBR on 249 

predicted extremely high and low flow events. Smaller PFC and LFC values, closer to 0, means 250 
more representative predicted extreme peak and low flow values, respectively. Equations of 251 

goodness-of-fit statistics are given in the supplementary information (Text S1). After that, wavelet 252 
analysis, partial wavelet coherence, and composite analysis were used to explore the long term 253 
variability of reconstructed streamflow data and its teleconnection with large-scale climate 254 
patterns. 255 

3.1 Hierarchical Bayesian regression (HBR) Model 256 

Consider that  ,log i tY  represent the log-transformed streamflow data at site i for year t. 257 

 ,log i tY  can be drawn from a non-stationary normal distribution whose mean parameter can vary 258 

with time. 259 

    , ,log ~ ,i t i tY N  Σ   (1) 260 

The mean parameter ,i t  can be estimated from a multi-linear regression model with 261 

intercepts i  and regression coefficient matrix iβ . where tX  is a matrix of n leading PCs of the 262 

tree ring series.  263 

 ,i t i   i tβ X   (2) 264 

Equations (1) and (2) represent the first level of the HBR model. The second level of the 265 
model describes the priors of parameters and hyperparameters.  266 

  ~ ,MVNi β ββ μ Σ   (3) 267 

  4~ 0,10i N  (4) 268 

  4~ 0,10Nβμ  (5) 269 

  0 0~ vInv Wishart βΣ   (6) 270 

  1 1~ vInv Wishart Σ   (7) 271 

We assume that the regression coefficient iβ  (n×6) for each site are drawn from a 272 

multivariate normal distribution with a (n×1) average regression coefficient vector βμ and a (n×n) 273 

covariance matrix βΣ  that represents the correlation across the tree ring predictors. βμ  and βΣ  274 

are called hyperparameters. Non-informative prior distribution was assumed for the intercept term 275 

i  and the hyperparameter βμ . The covariance matrix βΣ was assumed to be drawn from an 276 

inverse Wishart distribution. The setting rules for the parameter of βΣ , 0v  and 0 , are similar to 277 

the covariance matrix Σ . 278 

The (6×6) covariance matrix Σ  is considered as a prediction error term of the multiple 279 

linear regression, its prior distribution was assumed to follow an inverse Wishart distribution with 280 

a degree of freedom parameter 1v  and a scale matrix 1 . The freedom parameter 1v  was set to be 281 

one more than the dimension of the matrix and the scale matrix 1 was set to be an identity matrix 282 

I in the nested approach. 283 



Thus, the whole parameters in the HBR model are 1, , , ,    i β ββ μ Σ Σ . The posterior 284 

distribution  p q  of the whole parameters vector for the HBR reconstruction model with the 285 

partially pooled method is described as follows: 286 
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  (8) 287 

For our study, we use a Markov Chain Monte Carlo (MCMC) coupled with the Gibbs 288 
sampling method to draw values of both hyper-parameters and parameters. We randomly drew 289 
initial values for each parameter and ran three chains to verify the convergence of the results based 290 

on the Gelman–Rubin diagnostic R̂  (Gelman & Rubin, 1992). For each chain, 10000 simulations 291 

were executed and the first 2000 simulations were discarded as a spin-up. The parameters obtained 292 

for the HBR model can be considered to have converged when the diagnostic index R̂  is less than 293 

1.2.  294 

3.2 Wavelet transform analysis and partial wavelet coherence 295 

Continuous wavelet transform (CWT) analysis and partial wavelet coherence (PWC) were 296 
used to detect statistically significant oscillations of the reconstructed streamflow and its 297 

teleconnection to paleo records of large scale climate patterns. CWT has been widely used to 298 
decompose the hydroclimatic time series for both time frequency and domain modes analyses (Li 299 
et al., 2013). CWT is also effective in detecting nonstationary signals and in identifying the 300 

variability of climate variables. More detailed information can be found in Gan et al. (2007).  301 
Global wavelet power spectrum (GWS) is used to show dominant oscillations across the scales by 302 

using an equal weight method to average the local wavelet power spectra over the study period. 303 

Since large-scale climate patterns may be interrelated with each other at different scales, the effect 304 

of other climate indices should be eliminated when estimating the coherence between a hydrologic 305 
variable and a climate index of interest, which is their partial correlation estimated by the PWC 306 

method.307 



4 Discussions of Results 308 

4.1 Validity of Reconstructed Streamflow 309 

To reconstruct the streamflow of ARB, the first three leading PCs of paleo tree ring data 310 

were retained as predictors for each nested model, except for N1 (1489-1533) with four leading 311 
PCs so that the total variance explained by the retained PCs exceeds 80%. Seven nested models 312 
based on tree ring data and the HBR were developed using 1961-2006 as the calibration period 313 
with observed streamflow data, to reconstruct the annual mean flow of 1489 to 2006 for six 314 
gauging sites of the Athabasca River. Figure 3 shows the reconstructed streamflow for site 315 

07BE001 of the Athabasca River together with the goodness-of-fit statistics. There are 14 tree ring 316 
chronologies available from 1749 to 2006, but it gradually decreased backward in time to 4, to the 317 
earliest year of 1489. The median of the posterior distribution of reconstructed streamflow for the 318 

site 07BE001 during calibration period can explain 61.2% of the variance of instrumental records.  319 

As can be seen from Figure 3a, the longest recent low flow period reconstructed was in 320 
1936-1946. This happened during a period of missing data, but low Lake Athabasca water level 321 

was also reconstructed by Meko (2006) and low streamflow was observed in other river basins of 322 
Alberta (Elshorbagy et al., 2016; Sauchyn et al., 2015). This dry period could be attributed to the 323 
negative effect of the prolonged high positive PDO (St. Jacques et al., 2010). There was an abrupt 324 

transition of wet-dry-wet epochs from 1879 to 1901 also demonstrated by Sauchyn et al. (2015). 325 
The reconstructed record also shows an extremely dry event in the 1790s which was also reported 326 

by the Hudson’s Bay Company (Diaz et al., 2016; Sauchyn et al., 2015). Furthermore, 327 
reconstructed streamflow in nearby, North Saskatchewan and Red Deer River basins also show 328 
similar low flows in the 1790s (Case & MacDonald, 2003; Razavi et al., 2016). 1707 to 1730 low 329 

flow period in our reconstructions was also consistent with St. George et al. (2009) who showed a 330 

similar dry period in southern Alberta.  331 

For assessing the performance of each nested HBR model, 10-year records were randomly 332 
selected as across validation samples. Then the cross-validation model was calibrated using the 333 

remaining 36 years of streamflow series and tree ring chronologies. This process was repeated 40 334 
times to get an ensemble of validation metrics, of which the mean values for site 07BE001 are 335 

shown in Figure 3b. For the 1489-2006 reconstruction period, the mean RE and CE values of each 336 
nested model range from 0.35 to 0.48 and 0.27 to 0.42, respectively. As expected, both RE and CE 337 
values are the highest over the 1749-2006 period with all 14 tree ring predictors available, but 338 
deteriorate as we try to reconstruct the streamflow backward in time with correspondingly less tree 339 
ring chronologies available. Moving backward in time, the RE and CE values decrease until the 340 

year of 1693, then marginally increased going back to 1617, possibly due to the exhaustion of tree 341 
ring predictors which have relatively lower correlation coefficients with streamflow series. The 342 

statistics suggest that the reconstructed annual water year streamflow contains useful information 343 
beyond that of the calibration or validation periods. PFC and LFC are used to assess the 344 
performance of the model in reconstructing extreme conditions. Zero values in PFC and LFC mean 345 
a perfect reconstruction in peak and low streamflow values, respectively. In our study, we chose 346 
the 75 and 25 percentile of the observed streamflow data as the respective thresholds for peak and 347 

low flows. As expected, going backward in time, the mean PFC and LFC statistics of each nested 348 
model show an increasing trend, which means the ability of the model to reconstruct extreme 349 
streamflow conditions deteriorates as the number of available tree ring chronologies decreases. 350 



PFC is generally higher than LFC for each nested model which means that the tree ring-based 351 

reconstruction models can better capture low flow than high flow variability. The high flows tend 352 
to be underestimated, partly due to other limiting environment conditions during wet years. Even 353 

with observed records during the instrumental period, the median of the posterior distribution 354 
developed for streamflow reconstructions may still underestimate the high flows such as that of 355 
1995 and 2005.  356 

 357 

Figure 3. The reconstructed streamflow and cross-validation results for site 07BE001. (a) Blue line is the median of 358 
the posterior distribution of annual water year streamflow reconstruction and light blue region is associated 95% 359 
confidence interval from 1489 to 2006. The number of available tree ring chronologies for each nested model is 360 

plotted in yellow line while the black line shows the instrumental records. (b) The mean values of four goodness-of-361 
fit statistics, RE (black line), CE (red line), PFC (dashed blue line), and LFC (dashed green line) for each nested 362 

model363 



4.2 Climate controls on streamflow 364 

4.2.1 Wavelet spectra and coherence analysis 365 

We extracted dominant oscillations of reconstructed streamflow for 1489-2006 at the site 366 

07BE001. The wavelet power spectra (Fig.4a) exhibits interannual oscillations at 2~8 year scale 367 
of large amplitude during pre-1570s, 1650s-1700s, 1900s, and post-1950s, and several significant 368 
oscillations in 1780s-1870s. There are also three significant interdecadal oscillations at 16~30 year 369 
scale in 1670s-1690s, 1780s-1810s, and 1890s. The reconstructed streamflow shows a significant 370 
multidecadal component near 80-year time scale over 1690s-1940s. The significant multidecadal 371 

power at ~80 year time scale might have contributed to persistent low flows reconstructed over 372 
1700-1950s. The GWS result shows significant low-frequency oscillations at both interannual 373 
(4~7 years) and multidecadal (~80 years) time scales. PWC was used to investigate the 374 

teleconnection between reconstructed streamflow of ARB and paleoclimate indices. Fig.4b shows 375 
the PWC between reconstructed streamflow and Nino3.4 with the influence of PDO eliminated. 376 
Apparently, most of the significant coherence occurred in 1-2 year time scale while coherence at 377 

interannual time scale (3~8 years) only occurred in 1640s-1670s, 1820s, and 1860s. There was 378 
also a strong correlation between Nino 3.4 and streamflow at the interdecadal time scale (10~14 379 
years) between 1770s and 1840s. Fig.4c shows the PWC between the paleo PDO index and 380 

reconstructed streamflow after the influence of Nino 3.4 was eliminated. As expected, PDO 381 
generally shows scattered significant coherence with streamflow at interannual (2~8 years) and 382 

long-term multidecadal scales of 16~32 year periodicity over pre-1670s and post-1830s. PDO 383 
shows stronger coherence with reconstructed streamflow series than the Nino 3.4 index. It is noted 384 
that a significant coherence between two signals does not necessarily mean that the wavelet power 385 

of each signal is also statistically significant. For example, the significant coherence between PDO 386 
and streamflow occurred in the pre-1660s, but they did not show significant signals in their power 387 

spectrum (Fig. S3). The PWC between AMO and reconstructed streamflow (Fig.4d) shows that 388 
besides several significant coherence at interannual and interdecadal time scales, there is a 389 

persistent, significant coherence at multidecadal scales of 60~80 year periodicity from 1660s to 390 
1950s, implying that low-frequency variations of AMO may exert a large influence on the low-391 

frequency variability of streamflow. Enfield et al. (2001) showed that the North Pacific (mainly 392 
north of 40°N) is teleconnected to AMO through fluctuations in the tropospheric polar vortex while 393 
others showed that the northern Rocky Mountains is strongly affected by AMO and PDO (Gray et 394 
al., 2004; Hidalgo, 2004; St. Jacques et al., 2010), especially for drought events. Overall, both 395 
ENSO and PDO modulated the interannual variability of reconstructed streamflow 396 

simultaneously, while PDO had been the dominant climate pattern that affected its interdecadal 397 
variability, and AMO exerted its influence on the streamflow at multidecadal time scale. The 398 
results also show that the low-frequency variability of streamflow in ARB varies with time in the 399 

past 500 years, which demonstrates the nonstationary of climate. 400 



 401 

Figure 4. Wavelet analysis and partial wavelet coherence of reconstructed streamflow for site 07BE001. (a) Wavelet 402 
power spectra (left) and GWS (right) result of reconstructed streamflow from 1489 to 2006 for site 07BE001. (b-d) 403 

Partial wavelet coherence between reconstructed streamflow and Nino 3.4 (after PDO effect eliminated), PDO (after 404 
Nino 3.4 effect eliminated), and AMO (after Nino 3.4 effect eliminated).  The solid black contours enclose the 405 

statistically significant coherence at a 5% significance level of a red noise process. The phase difference is shown as 406 
arrows for the coherence larger than 0.8. Arrows pointing right (left) denote the streamflow and climate signals are 407 

in phase (antiphase). Arrows pointing up (down) indicate streamflow leads climate signal by 90° (270°). 408 

 409 

 410 



4.2.2 Correlations at multiple time scales 411 

To better understand the teleconnection between the leading PCs of band-pass filtered 412 
signals of reconstructed streamflow and climate indices Nino3.4, PDO, and AMO, we estimated 413 

their Pearson’s correlation at 1-3, 3-8, 8-30, 30-60, and 60-128 year time scales. A strong 414 
correlation at a given time scale indicates that a climate pattern has a significant influence on 415 
regional streamflow at that time scale. Pearson’s correlations between the leading PCs of band-416 
passed reconstructed streamflow and band-passed climate indices for each selected time scale are 417 
shown in Table S2. Based on Fisher’s Z transform, Pearson’s correlations that are statistically 418 

significant at a 5% significance level is shown in bold text. The first leading PC of each time scale 419 
explains a large percentage of the total variance, ranging from 77.7% to 88.2%. Apparently, ENSO 420 
has a relatively strong significant correlation with reconstructed streamflow at interannual time 421 
scales (1-3 and 3-8 year), while PDO’s influence is more at interdecadal and multidecadal scales 422 
(8-30 and 60-128 year), and AMO’s influence is mainly at 30-60 and 60-128 year time scales. 423 

AMO has relatively less influence on the annual streamflow of ARB than PDO because its 424 

influence is more limited to the summer precipitation, such as its contribution to the summer 425 
drought conditions over the central and northern Canadian Prairies (Bonsal & Shabbar, 2011; 426 
Shabbar & Skinner, 2004). On an annual basis, its overall impact is less because of its relatively 427 

weak influence on the streamflow of ARB in other seasons. Despite this, the first leading PC of 428 
the reconstructed streamflow, representing 88.2% of the total variance in the 60-128 year band, 429 

still has a significant negative correlation with the paleo AMO index (Fig.5).  It seems that a strong 430 
AMO will result in less streamflow and vice versa, over 1572 to 1985, and its negative influence 431 
seems to have increased after the 1870s, but its influence was briefly positive (stronger AMO 432 

resulted in more streamflow) during 1670s-1720s. 433 

 434 

Figure 5. The low pass filtered streamflow reconstructions in 60-128 year time scale (grey line) and reconstructed 435 
climate index of AMO from Gray et al. (2004) with its positive phase shown in red and negative phase shown in 436 

blue. 437 

 438 



4.2.3 Composite analysis 439 

Composite analysis (Boschat et al., 2016; Welhouse et al., 2016) was used to further 440 
explore the possible influence of extreme phases of paleo ENSO, PDO, and AMO on the 441 

reconstructed annual mean streamflow across ARB. El Niño (La Niña) is considered active if the 442 
reconstructed sea surface temperature anomaly during the prior winter (November-January, NDJ) 443 
from 1489 to 2005 is above 0.5 (below -0.5). The warm (cold) phase of PDO from 1489 to 1996 444 
and AMO from 1572 to 1985 were based on the positive (negative) paleo index value, respectively. 445 
The confidence interval for the composite streamflow of a given site was based on the ratio of the 446 

long term mean of streamflow from 1489 to 2006 for certain anomalous years by a bootstrap 447 
resampling method. Specifically, the bootstrap procedure resamples the composite streamflow 448 
associated with El Niño events to estimate the ratio of composite streamflow to the composite 449 
mean, which was repeated 500 times to obtain the distribution of composite streamflow ratios. The 450 
boxplot of composite streamflow of the six gauging sites associated with each climate pattern is 451 

shown in Fig. 6. A composite ratio value greater than 1 denotes that the climate index is associated 452 

with increased streamflow, and vice versa.  Even though composite streamflow ratios vary between 453 
gauging sites, the mean composite ratios obtained from resampling 500 composite streamflow 454 
ratios under La Niña (El Niño), cold (warm) PDO, and cold (warm) AMO events are typically 455 

associated with increased (decreased) streamflow across all six streamflow gauges in ARB. The 456 
composite results for each gauge show a relatively large variance (boxplots with long whiskers), 457 

which may reflect the combined impact of two or more climate indices on the streamflow of ARB 458 
at different timescales. 459 

To investigate the combined impact of climate patterns, we analyze streamflow anomalies 460 

in response to the interactions of ENSO-PDO, ENSO-AMO, PDO-AMO, and ENSO-PDO-AMO 461 
as shown in Fig.7. Fig.7a shows further increased (decreased) streamflow anomalies under active 462 

La Niña (El Niño) combined with cold PDO (warm PDO) regimes than streamflow under the 463 

influence of any single climate pattern. Other studies have shown that the interdecadal variations 464 

of ENSO and PDO have a synchronic influence on streamflow in western North America (Yu & 465 
Zwiers, 2007; Gan et al., 2007). Under El Niño and the cold phase of PDO, streamflow anomalies 466 

tend to be positive but generally with a large variance. The opposite effect of La Niña and warm 467 
PDO resulted in streamflow anomalies generally centered on the long term mean. The combined 468 
impact of ENSO-AMO resulted in higher (lower) streamflow when ENSO and AMO were both in 469 

phase, either cold or warm (Fig. 7b).  Streamflow anomalies are negative when El Niño interacted 470 
with the cold phase of AMO is somewhat unexpected, possibly because of the asymmetrical 471 

response of ENSO to different phases of AMO (García García & Ummenhofer, 2015; Hu & Feng, 472 
2012). The negative streamflow anomaly tends to be higher when El Niño and warm AMO occur 473 
concurrently, but the negative streamflow anomaly in response to El Niño decreases to a minimum 474 
when the effect of El Niño is offset by cold AMO. The PDO-AMO interactions in Fig.7c also show 475 
a synchronic effect on the streamflow of ARB, such that the cold (warm) phases of PDO-AMO 476 

result in enhanced positive (negative) streamflow anomalies than when either the cold (warm) 477 
phase of PDO or AMO acting alone. However, when PDO and AMO are out of phase, the effect 478 

of PDO (AMO) on the streamflow is generally suppressed by the opposite effect of AMO (PDO). 479 
As shown in Fig.7d, the driest (wettest) conditions in ARB tends to occur when El Niño (La Niña) 480 
occur together with warm (cold) PDO and warm (cold) AMO. On the other hand, when these three 481 
climate patterns were out of phase, their effects tend to cancel out each other, resulting in weak 482 
streamflow anomalies.  483 



 484 

Figure 6. Composite analysis of annual reconstructed streamflow for six gauges across the ARB associated with (a) 485 
El Niño and La Niña, (b) cold and warm PDO, (c) cold and warm AMO. 486 

 487 

Figure 7. Composite analysis of annual reconstructed streamflow for six gauges across the ARB associated with the 488 
interactions between the different phase of (a) ENSO and PDO, (b) ENSO and AMO, (c) PDO and AMO, and (d) 489 

ENSO conditioned on PDO and AMO. 490 

4.3 Severity and duration of dry events based on reconstructed streamflow 491 

Given the semi-arid climate of the Canadian Prairies, prolonged droughts could affect the 492 
oilsand industries at ARB and incur severe water shortages to the agriculture and municipal sectors 493 

in southern Alberta. To gain perspective on the characteristics of droughts in the past, we use the 494 
median of posterior distributions of reconstructed streamflow series to estimate the severity and 495 
duration of the low reconstructed flow events, which would also contribute to the long-term 496 

management and sustainable, planning of the water resources of ARB with limited instrumental 497 
records. The severity of drought is defined as the departure from the long term median while the 498 
duration of drought is the duration in years below the long term median. Then 10 driest events 499 
were selected from 1-year, 5-year, 11-year and 21-year, non-overlapping running means of 500 

reconstructed streamflow, and compared with the driest events observed in instrumental records 501 
(Table 2). We used a centered, non-overlapping running mean method for a 1-year, 5-year and 11-502 
year, and a 10-year moving window for the 21-year running means. 503 



Based on the reconstructed streamflow series, 1837 and the 1830s-1860s period 504 

experienced the most severe individual drought event and a severe, prolonged multiyear drought 505 
event that ranked in the top ten droughts over the entire reconstruction period, respectively. Dry 506 

event of 1936 was the driest among the reconstructions for the Twentieth century, ranked the first 507 
and third in the 5 and 11-year droughts, and the tenth place in the 21-year droughts. Further, the 508 
driest instrumental event of 2002 was well replicated in the reconstructed series and ranked top 509 
among the 1-year and 5-year droughts, but the severity and duration of observed records were not 510 
among the top ten severe drought events. This shows the importance of reconstructing long-term 511 

streamflow for analyzing the long-term climate variability, especially since historical extreme 512 
drought events could occur again in modern times. The droughts of the 1560s were exceptional in 513 
terms of severity and duration, as the single and multiyear droughts were all ranked in the top five 514 
among the four running means. Our results are consistent with the 16th-century megadrought that 515 
stretched across North America into Mexico (Stahle et al., 2000). Overall, based on the median of 516 

the posterior distribution of reconstructed streamflow, the modern drought of 2002 ranks as the 517 
top 5 driest years in the last 500 years among the 1-year and 5-year running means, but less severe 518 

than the top 10 driest events at the multiyear scale. 519 

 520 
Table 2. Top 10 driest events for the various year running means of reconstructed streamflow from 1489 to 521 

2006 for site 07BE001 and driest events in instrumental records 522 

Rank 
Dry events 

1-Year 5-Year 11-Year 21-Year 

1 264.3 (1837) 324.3(1938) 357.0(1559) 378.3(1569) 

2 267.2 (1936) 335.1(1561) 370.4(1839) 379.9(1719) 

3 294.0 (1563) 348.2(2001) 373.8(1939) 386.9(1739) 

4 301.0 (1793) 354.1(1986) 375.2(1714) 389.4(1859) 

5 309.5(1940) 356.0(1741) 375.4(1864) 391.2(1839) 

6 310.3(2002) 363.0(1621) 375.6(1624) 391.5(1629) 

7 312.3(1792) 363.3(1716) 377.9(1729) 392.5(1559) 

8 318.9(1730) 364.5(1861) 380.2(1744) 393.6(1649) 

9 322.1(1646) 364.6(1841) 382.4(1999) 394.2(1619) 

10 323.1(1662) 365.2(1661) 384.9(1644) 395.2 (1939) 

Observed 270.2(2002) 331.7(2002) 387.0(2001) 398.1(1996) 

523 



5 Summary and Conclusions 524 

In this study, we developed a hierarchical, multilevel Bayesian regression (HBR) model 525 
for reconstructing the 1489-2006 water year mean annual streamflow of the Athabasca River Basin 526 

(ARB) of Alberta using 14 tree ring chronologies and information from observed streamflow of 527 
six selected sites in the ARB. The posterior distribution for reconstructing streamflow of ARB was 528 
developed from all instrumental streamflow records of the 1961-2006 calibration period. By 529 
incorporating the multi-site information into HBR, the median results agree well with observed 530 
data and can explain more than 60% of the variance of instrumental records (Fig.4, Fig. S3). To 531 

maximize the usage of all the information of available tree ring chronologies of various length, 532 
seven nested models were developed. The cross-validation statistics RE and CE for each nested 533 
period are all positive (Fig.4, Fig. S4), demonstrating a skillful reconstruction of streamflow. Using 534 
tree ring data, reconstructing high flows was more problematic than low flows during the 535 

calibration period, as shown by higher LFC and lower PFC. Results obtained from the 536 
reconstructed streamflow of ARB are consistent with historical documents and studies on the 537 

droughts of ARB. 538 

 The wavelet spectrum and PWC of the reconstructed streamflow in ARB show two 539 
statistically significant modes, an interannual (2-8 year) and interdecadal (~80 year) time scales. 540 

The interannual variability of reconstructed streamflow had been modulated by both ENSO and 541 
PDO simultaneously, while PDO had been the dominant climate pattern that affected its 542 

interdecadal variability. From what we know, for the first time, the AMO index is shown to be 543 
negatively correlated with the streamflow of ARB at multidecadal time scale. The composite 544 
analysis shows that the La Niña (El Niño), cold (warm) PDO, and cold (warm) AMO events are 545 

typically associated with increased (decreased) streamflow anomalies across all six ARB 546 
streamflow gauges selected in this study. These climate patterns are clearly teleconnected to the 547 

streamflow of ARB, but their effects tend to cancel out each other when these climate patterns 548 
were our of phase, resulting in weaker streamflow anomalies. 549 

The recent reconstructed droughts of the 1940s and the observed drought of 2002 rank 550 
among the top 10 most severe droughts of 1-year and 5-year durations. More droughts of greater 551 

severity with 11 and 21-year durations were found from the reconstructions, implying multidecadal 552 
variability should be considered in planning long-term strategic water policy. It seems that 553 
estimating return periods of certain events from our 518 years of reconstructed streamflow based 554 
on tree ring data will be more representative than relying on limited instrumental records. Such 555 
paleo data will also be more effective to quantify the joint probabilities of drought severity and 556 

duration using the copulas theory.  557 

Applying HBR with partially pooled method reduces the equivalent number of model 558 
parameters, thus leads to lower reconstruction uncertainties. The HBR model developed for ARB 559 

is transferrable to other watersheds and it is flexible to incorporate other exogenous predictors than 560 
tree ring chronologies, such as ENSO climate indices as temporal covariates to forecast the 561 
nonstationarity of the variable of interest, while site characteristics such as drainage area could be 562 
used as spatial covariates. Our future research will explore the physical mechanisms behind the 563 

teleconnection of ENSO, AMO, and PDO on the streamflow of western Canada and the 564 
applications of such large-scale climate patterns to predict the long-term streamflow variability for 565 
more effective management of the water recourses. 566 

 567 
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