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Abstract 14 

The evolutionary algorithms can solve reservoir operation with a fast convergence rate 15 

whereas the major impediments in handling the joint operation of mega cascade reservoirs 16 

easily trigger the technical bottlenecks, i.e. trapping into a local optimum, instability and loss 17 

of good solutions. This study proposes a methodology that fuses three auxiliary strategies into 18 

the Kidney Algorithm (KA) to optimize the hydropower output for conquering the bottlenecks 19 

in the KA concerning the joint operation of six mega cascade reservoirs located in the Jin-Sha 20 

River basin in China. The proposed theme would contribute to the application of the state-of-21 

the-art evolutionary algorithms in boosting the cleaner hydropower production of mega 22 

cascade reservoirs. The three auxiliary strategies are that: firstly, the exploration and 23 

exploitation strategy is employed to stimulate the movement of solutions to surmount 24 

technical drawback of trapping into a local optimum; secondly, the adaptive strategy is used to 25 

automatically adjust algorithm parameter values to overcome the instability problem; lastly, 26 

the elitism strategy is introduced to preserve the best solution at every epoch to avoid the loss 27 

of good solutions. Our methodology, without expanding or upgrading hydraulic 28 

infrastructures, can increase the hydropower production of the six mega cascade reservoirs by 29 

7.8 %, as compared with the standard operation policy. The hydropower production can reach 30 

4.8 billion kW·h/year, which can decrease 3.77 billion kg/year in CO2 emission, and bring 31 

217.44 million USD/year in hydropower benefits. The improved KA can considerably 32 

increase the reliability and resilience of hydropower output as well as largely decrease the 33 

vulnerability of hydropower output. The results suggest that our methodology can stimulate 34 

hydropower output to yield more benefits regarding cleaner production, carbon emission 35 

reduction and sustainability.  36 
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Keywords: Hydropower production; Cascade reservoirs; Optimal operation; Water-Energy 37 

nexus; Artificial Intelligence (AI); Jin-Sha River 38 

 39 

1. Introduction 40 

Renewable energy spreads to a growing number of developing and emerging economies. In 41 

some areas, renewable energy has become a pivotal electricity source due to the rapid growth 42 

in the population under urbanization. The ongoing growth in magnitude and geographical 43 

expansion of renewable power capacity are driven by the continuing decline in price for 44 

renewable energy technologies, by raising power demand in some countries and by targeting 45 

renewable energy support mechanisms. Nowadays, most new renewable energy power plants 46 

are installed in developing countries, especially in China, which is the largest developer over 47 

the past eight years. By the end of 2016, the top regions or countries for total installed 48 

renewable energy capacity are China, Europe, USA, India and Japan (Figure 1 (a)). In 2016, 49 

the renewable energy production estimated to reach 30 % (2016.8 GW) of the world’s 50 

generation capacity. This amount is enough to provide 24.5 % of global actual energy 51 

consumption. Among the renewable energy sources, hydropower has a low mean power 52 

generation cost and high generation stability (Global Status Report of renewable energy, 53 

2017). Globally, hydropower provides 16.6 % global energy consumption (Figure 1 (b)), and 54 

this number exceeds 20 % in China (REN21, 2017). The hydropower will continue to grow 55 

(from 13 % in 2000 to 19 % in 2016) to compensate for the decline in thermal power 56 

production (from 85 % in 2000 to 73 % in 2016). Compared with other renewable energy 57 

sources, hydropower is flexible in electricity generation and supply, and hence hydropower  58 
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 59 

Figure 1 Global renewable energy capacity and production in 2016. a. Global renewable 60 

energy capacity of top regions/countries. b. Renewable energy share of global energy 61 

production. 62 

Notes: EU-28 consists of 28 European Countries. The data tracked 155 countries including 63 

Africa, Asia, Central America, the Caribbean, Eurasia, Europe, Middle East, North America, 64 

Oceania, South America, China, India and the United States, covering 96% of global GDP and 65 

representing 96% of global population. (Extracted from the REN21 Renewables Global Status 66 

Report, 2017). 67 

68 
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yields more social benefits for energy economy (He et al., 2018), energy safety (Cheng et al., 69 

2018), carbon emission reduction (Hu et al., 2011; Dou, 2013) and non-fossil energy 70 

expansion (Feng et al., 2018a, b). Besides, many countries and regions are working to 71 

improve hydropower infrastructure, operation and market design to facilitate hydropower 72 

output (Ehteram et al., 2017; Singh and Singal, 2017). To raise cleaner production, our study 73 

is concentrated on probing into a joint operation of mega cascade reservoirs to lift synergy of 74 

water-energy nexus and significantly mitigate CO2 emission with the use of Artificial 75 

Intelligence (AI)-based heuristic techniques.  76 

Modernization and retrofitting of existing facilities continue to be a vital part of 77 

hydropower operations, including the implementation of advanced AI technologies and data 78 

analytics for digitally enhanced hydropower generation (Singh and Singal, 2017; Jha et al., 79 

2017). In recent years, researchers are seeking to imitate nature by evolutionary algorithms 80 

because the designs and abilities of nature are tremendous (Fister et al., 2013; Molina et al., 81 

2018), and therefore nature is the best trainer for technology. Since the two domains and fields 82 

(nature & technology) have a much stronger connection and similarity, easy mapping is 83 

possible from nature to technology in the real world. Evolutionary algorithms inspired by 84 

nature mechanisms and used as a branch of AI techniques for solving various optimization 85 

problems have evolved rapidly over the last few decades (Maarouf et al., 2015; Allawi et al., 86 

2019). The evolutionary algorithms are derived from the activities of physical or biological 87 

systems in the natural world. Some examples of evolutionary algorithms in the literature are 88 

listed in Table 1. The Genetic Algorithm (GA) (Goldberg, 1989), Simulated Annealing (SA) 89 

(Johnson et al., 1989), Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995), 90 
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Harmony Search (HS) (Geem et al., 2001), Ant Colony Optimization (ACO) (Bianchi et al., 91 

2002), Honey Bee Optimization (HBO) (Pham et al., 2005), Intelligent Water Drops (IWD) 92 

(Hosseini, 2007), Cuckoo Search (CS) (Yang and Deb, 2009), Bat Algorithm (BA) (Yang, 93 

2010a), Firefly Algorithm (FA) (Yang, 2010b), Black Hole (BH) (Hatamlou, 2013) and 94 

Kidney Algorithm (KA) (Jaddi et al., 2017) have been widely applied to optimizing 95 

hydropower stations (or cascade reservoirs) long term operation and short term operation as 96 

well as to renewable energy hybrid operation. For instance, Wang et al. (2018) proposed an 97 

effective procedure to strengthen the hydropower scheme by minimizing spillages in the 98 

cascade reservoirs short-term operation. Uen et al., (2018) developed a holistic scheme that 99 

integrated the long-term and short-term reservoir operation for improving the synergistic 100 

benefits of water-energy nexus. Ming et al. (2018a, b) fused the CS algorithm into dynamic 101 

programming to optimize the joint operation of large hydro–photovoltaic hybrid power plants. 102 

Shen et al. (2019) combined evolutionary algorithm and decision-making analysis to optimize 103 

the operation of interprovincial hydropower System. In comparison to the above mentioned 104 

evolutionary algorithms, the KA is introduced to optimize joint operation of mega cascade 105 

reservoirs on the grounds that: firstly, the KA was introduced by Jaddi et al. (2017) as a 106 

successful state-of-the-art optimization algorithm suitable for different engineering 107 

applications versus the other algorithms (Ekinci et al., 2018; Jaddi and Abdullah, 2018) in 108 

term of its computation speed, convergence, stability, and secondly, a review of the available 109 

literature indicates the KA has not been applied in mega cascade reservoirs operation. KA’s 110 

application for the first time to a reservoir operation made by Ehteram et al. (2018a, b). To the 111 

best of our knowledge, although the KA can be used to solve the optimization of low 112 
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dimensional reservoir operation (e.g. one reservoir, 12 (months) decision variables and 48 (= 113 

12 months * 4 constraints) physical constraints at monthly time scale in a year), but its 114 

reliability and practicality of solving the high dimensional cascade reservoirs operation has 115 

not been explored. The major difficulties in handling a large number of decision variables and 116 

constraints closely associated with the optimization of cascade reservoirs operation and non-117 

convex objective function (Cheng et al., 2012). They easily trigger the technical drawbacks, 118 

i.e. trapping into a local optimum, loss of good solutions as well as the instability problem (or 119 

lack of robustness) in evolutionary algorithms. Consequently, it is imperative to conduct in-120 

depth research on the KA for enhancing its robustness of exploration and exploitation in 121 

solving the nonlinear non-convex objective function and high dimensional optimization 122 

operation of mega cascade reservoirs.  123 

Table 1 Examples of evolutionary algorithms in the literature 124 
Evolutionary algorithms Imitation References 

Genetic Algorithm (GA) Natural selection operator and genetic variation Goldberg, 1989. 

Simulated Annealing (SA) Steel annealing process Johnson et al., 1989. 

Particle Swarm Optimization (PSO) Swarm behavior Kennedy and Eberhart, 1995. 

Harmony Search (HS) Finding the harmony in music Geem et al., 2001. 

Ant Colony Optimization (ACO) Finding shortest path to the food sources of ants Bianchi et al., 2002. 

Honey Bee Optimization (HBO) Food-foraging behavior of honey bee colonies Pham et al., 2005. 

Intelligent Water Drops (IWD) Destination finding behavior of natural rivers Hosseini, 2007. 

Cuckoo Search (CS) Reproduction behavior of the cuckoo Yang and Deb, 2009. 

Bat Algorithm (BA) Echolocation behavior of bat Yang, 2010a. 

Firefly Algorithm (FA) 
Flashing light emitted by fireflies in the natural 

world 
Yang, 2010b. 

Black Hole (BH) Black hole phenomenon Hatamlou, 2013. 

Kidney Algorithm (KA) Kidney process in the human body Jaddi et al., 2017. 

 125 

The main objective of this study is to promote the application of the state-of-the-art 126 

evolutionary algorithms for improving the cleaner hydropower production of mega cascade 127 

reservoirs. The innovative nature of this study lies in fusing three auxiliary strategies into the 128 

KA to overcome its technical bottlenecks. The improved KA is applied for optimizing the 129 
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hydropower production of six mega cascade reservoirs. This is the first time that the KA is 130 

modified by using three auxiliary strategies and used to solve a complex joint operation of 131 

mega cascade reservoirs. The exploration is placed on two focuses. Firstly, the cascade 132 

reservoirs operation objective is defined as to maximize the hydropower generation, which a 133 

penalty function is added to the objective function to avoid violations of the guaranteed (or 134 

firm) power output. Secondly, an improved KA with three auxiliary strategies is employed to 135 

solve the optimization problem in a hierarchical structure. The auxiliary strategies consist of: 136 

for the movement operator and filtration operator, the exploration and exploitation strategy is 137 

introduced to stimulate the movement of solutions, and the adaptive strategy is used to adjust 138 

algorithm parameter values respectively. Before reaching the maximum epoch or stopping 139 

criterion, the elitism strategy is adopted for preserving the best solution in every epoch. The 140 

six mega cascade reservoirs located at the middle reach of Jin-Sha River in China are selected 141 

as a case study to assess the applicability as well as reliability of the proposed method.  142 

This paper is organized into five sections. Section 2 introduces the study area and data. 143 

Section 3 describes the framework of the proposed method consisting of the joint operation 144 

model of mega cascade reservoirs, the standard KA and the improved KA. Section 4 presents 145 

results and discussion on the methods in the study case. Section 5 summarizes the results. 146 

 147 

2. Study area and data 148 

Effective management of hydropower stations is the key to the sustainability of our energy 149 

sources of tomorrow. China has greatly endeavoured to make transit-oriented development of 150 

renewable energy systems for fulfilling the pledge of carbon emission reduction and non-151 
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fossil energy expansion to 20% by 2030 or earlier. The installed hydropower capacity of 152 

China reached 332 GW by the end of 2016, which was attributed to the fast development of 153 

hydropower resources and the intensive construction of power grids during the past three 154 

decades. Hydropower resources are concentrated mainly in south-western China while 155 

electricity loads occur mainly around the Yangtze River Delta and the Pearl River Delta. 156 

Being credited to the merits in nature, the Yangtze River basin possesses the largest water and 157 

hydropower resources in China. A total of 267 large reservoirs (more than 100 million m
3
 158 

storage) and 1525 medium-scale reservoirs (more than 10 million m
3
 storage) with 159 

hydropower plants have been built in the end of 2016, and their total installed hydropower 160 

capacity is 200 GW, which accounts for over 60 % of the installed hydropower capacity (332 161 

GW) in China. 162 

Jina-Sha River located at the upstream of Yangtze River possesses the largest hydropower 163 

potential in the 13 large hydropower bases of China. The six mega cascade reservoirs have 164 

been constructed in the middle reach of Jin-Sha River (Figure 2 (a)) and are the pivotal 165 

hydropower bases for the China Southern Power Grid (http://eng.csg.cn/home/index.html). 166 

The mega reservoir is defined herein the reservoir with the total storage capacity greater than 167 

100 million m
3
, the height of the dam more than 100 m, and the installed power capacity 168 

larger than 1000 MW. The climate in Jin-Sha River basin is the humid subtropical climate 169 

with the average annual rainfall of 736 mm, and the average annual runoff is 53 billion m
3
. 170 

The topography is high mountains with a large relief. Thanks to the humid climate and 171 

mountainous topography, this area has a high hydropower potential. The interannual 172 

variability of rainfall is high, with 65 % falls during flood season. The flood season generally 173 

http://eng.csg.cn/home/index.html
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lasts from June to September. The mega cascade reservoirs which served as multiple purposes 174 

not only can generate approximately 13.76 GW of hydropower (i.e. installed capacity) but 175 

also can protect millions of downstream residents from flood hazards. These mega cascade 176 

reservoirs have been managed to meet electricity demands of domestic and industrial sectors, 177 

enable hydropower generation, and carry out flood control operation. The six cascade 178 

reservoirs have total reservoir storage of 7.14 billion m
3
 and total watershed area of 250 179 

thousand km
2
 respectively. The characteristic parameters of cascade reservoirs are listed in 180 

Table 2.  181 

According to the Chinese Flood Control Act, reservoir water levels generally are not 182 

allowed to exceed the top of the buffer pool (see in Table 2) during flood season to provide 183 

adequate storage for flood prevention. During the impoundment operation period in the Jin-184 

Sha River basin, the reservoir water level would be raised from the top of buffer pool on 185 

August 1st to the top of conservation pool (see in Table 2) by the end of October. If the 186 

reservoir water level is below the top of the conservation pool by the end of October, the 187 

water level rising would continue into November. From November to the end of May in the 188 

following year, the reservoir water level would generally be operated at the Zone I or II and it 189 

would be lowered gradually through control of the reservoir water release, which depends on 190 

the reservoir inflow (Zhou et al., 2014, 2015). As shown in Figure 2 (b), every reservoir 191 

authority has implemented the current operation rule curves (i.e. the standard operation policy 192 

(SOP)) to give guidance in hydropower generation (He et al., 2019). The guidance is 193 

described as follows.  194 
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 195 
Figure 2 Investigative area of this study and Standard Operating Policy (SOP) using 196 

operation rule curve. a. Investigative area. b. Operation rule curve. LY is the Li-Yuan 197 

reservoir. AH is the A-Hai reservoir. JAQ is the Jin-An-Qiao reservoir. LKK is the Long-Kai-198 

Kou reservoir. LDL is the Lu-Di-La reservoir. GYY is the Guan-Yin-Yan reservoir.199 
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 200 

Table 2 Characteristic parameters of cascade reservoirs in the middle Jin-Sha River reach 201 

Reservoir 
Jin-Sha River Basin 

LY AH JAQ LKK LDL GYY 

Total storage capacity (Billion m
3
) 0.81 0.89 0.91 0.56 1.72 2.25 

Top of buffer pool (m) 1605 1493.3 1410 1289 1212 1128.8 

Top of conservation pool (m) 1618 1504 1418 1298 1223 1134 

Installed power capacity (GW) 2.40 2.00 2.40 1.80 2.16 3.00 

Minimum power capacity (GW) 0.41 0.29 0.50 0.33 0.43 0.57 

Guaranteed power output (GW)  

of 6 cascade reservoirs 
3.12 

Flood season June 1st to September 30th 

Non-flood season October 1st to the next May 31st 

 202 

In Zone I (Power output < Guaranteed power output): the reservoir water release is equal 203 

to the reservoir inflow if the reservoir water level locates in the Zone I and the reservoir 204 

inflow is less than or equal to the water consumption corresponding to generating the 205 

guaranteed power output, otherwise the reservoir water release is equal to the water 206 

consumption corresponding to generating the guaranteed power output if the reservoir inflow 207 

is larger than the water consumption corresponding to generating the guaranteed power output. 208 

In Zone II (Guaranteed power output ≤ Power output < Maximum power output): the 209 

reservoir water release is equal to the water consumption corresponding to generating the 210 

guaranteed power output if the reservoir water level locates in the Zone II.  211 

In Zone III (Power output = Maximum power output): the reservoir would increase the 212 

water release to decrease the reservoir water level into Zone II in the next time step if the 213 

reservoir water level locates in the Zone III at the current time step.  214 

Data used in this study consist of a total 65 742 (= 365 days (or 366 days) * 30 years * 6 215 

reservoirs) reservoir inflow datasets collected in 30 hydrological years (June 1st-the next May 216 

31st 1988-2018) at a temporal scale of day. The cascade reservoirs characteristics and inflow 217 

data are extracted from the Changjiang Water Resources Commission in China 218 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

13 

(http://www.cjw.gov.cn/, in Chinese). Three hydrological scenarios (dry, normal, wet) are 219 

designed to assess the impacts of different reservoir inflows on the hydropower output of 220 

cascade reservoirs.  221 

 222 

3. Methods 223 

This paper proposes an improved KA to optimize the hydropower generation of the cascade 224 

reservoirs by introducing three auxiliary strategies. The improved KA can overcome the 225 

shortcomings of the standard KA encountered in the nonlinear and non-convex objective 226 

function as well as the high dimensional optimization operation of the cascade reservoirs. 227 

Figure 3 illustrates the architectures of the hydropower generation model (Figure 3 (a)), the 228 

standard KA (Figure 3 (b)) and the improved KA (Figure 3 (c)). The standard KA and GA 229 

served as the benchmark in this study. The methods used in this study are briefly introduced 230 

as follows. 231 

3.1 Problems formulation of mega cascade reservoirs operation 232 

The optimization operation of the cascade reservoirs is modelled for maximizing total 233 

hydropower generation equipped with the penalty function to avoid violations of the 234 

guaranteed (or firm) power output. The objective is to specify the optimal solution to 235 

maximize energy generation during the operation period in consideration of different 236 

operational and physical constraints. A sketch of the variables used to define the objective 237 

function and constraints is presented in Figure 3 (a). The objective function is defined to 238 

maximize hydropower generation: 239 
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 240 
Figure 3 Framework of optimization hydropower generation of mega cascade reservoirs. a. 241 

Hydropower generation model. b. Optimization technique: Kidney Algorithm (KA). c. 242 

Optimization technique: Improved KA. 243 

 244 

245 
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        (1a) 246 

                                                             (1b) 247 

                                                        (1c) 248 

                                                                      (1d) 249 

where HG is the average annual hydropower generation of the cascade reservoirs. T is the 250 

number of time-steps in a year. N is the number of years. M is the number of reservoirs.  is 251 

the time-step.  is the guaranteed (or firm) power output of the cascade reservoirs.  is the 252 

penalty factor, in which the value of  is 1 on condition that the hydropower output of the 253 

cascade reservoirs is less than the guaranteed power output. Pj(t) is the output power of the jth 254 

reservoir at the tth time. RTj(t) is the water release through the turbine of the jth reservoir at 255 

the tth time.  is the hydraulic head difference between the turbine intake and the last tank 256 

of the jth reservoir at the tth time.  is the dimensionless efficiency coefficient of the jth 257 

reservoir at the tth time and is a function  of the water release and water head, in which 258 

the relation curve of efficiency coefficient ( ), water release (RTj(t)) and hydraulic head 259 

( ) can be found in the technical manual of the turbine developed by the manufacturers.  260 

is the density of water.  is the gravity acceleration.  261 

Reservoir operation should obey physical constraints containing the water balance 262 

equation, the hydraulic connection equation, the feasible boundary of the water release, the 263 

hydropower output and the reservoir water level. The mathematical formulations of these 264 

constraints are given as follows: 265 
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                           (2) 266 

                                                         (3) 267 

                                                                           (4a) 268 

                                                                              (4b) 269 

                                                                                 (5) 270 

                                                                            (6) 271 

where , Ij(t) and Rj(t) are the water volume, inflow and water release of the j-th reservoir 272 

at the t-th time, respectively.  is the streamflow of the intermediate catchment 273 

between the (j-1)-th reservoir and the j-th reservoir at the (t+1)-th time. RSj(t) is the water 274 

released through the spillway of the j-th reservoir at the t-th time.  and  are the 275 

minimum and maximum water releases of the j-th reservoir, respectively.  and  are 276 

the minimum and maximum power outputs of the j-th reservoir, respectively. Wj(t) is the 277 

water level of the j-th reservoir at the t-th time.  and  are the minimum and 278 

maximum water levels of the j-th reservoir, respectively. The variables of the above equations 279 

are non-negative. 280 

In this study, the  is equal to the top of the inactive pool in both the flood season and 281 

non-flood season whereas the  is equal to the top of the buffer pool in the flood season 282 

and the top of the conservation pool in the non-flood season respectively (Figure 2 (b) and 283 
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Table 2). Eqs. (2) and (3) are the water balance equation and hydraulic connection equation 284 

respectively. Eqs. (4), (5) and (6) show the constraints of water release, hydropower output 285 

and reservoir water level respectively. Furthermore, the water releases of the cascade 286 

reservoirs are selected as the decision variables of the optimization model.  287 

3.2 Kidney algorithm (KA) 288 

The KA proposed by Jaddi et al. (2017) has been found a quite successful state-of-the-art 289 

optimization algorithm suitable for tacking a wide variety of engineering applications, (e.g., 290 

Ekinci et al., 2018; Jaddi and Abdullah, 2018). As known, the kidneys play a vital role in 291 

filtering blood in the body. They filter blood to repel additional materials and surplus water 292 

from the body and blood present.  293 

There are parts in the structure of kidneys which are called nephrons. Each kidney 294 

contains millions of nephrons. Every nephron is considered as a filtration unit. Kidneys 295 

manipulate following the four processes, i.e., filtration, reabsorption, secretion, and excretion. 296 

According to the analogy between the KA and the kidney biological system, Figure 3 (b) 297 

shows the flow diagram of the KA optimizing process. The implementation procedure is 298 

briefly described as follows: 299 

Step 1: Initialization of feasible solutions and implementation of objective function 300 

evaluation. In a population of solutes, each solute within the blood present is taken as a 301 

candidate solution in the population of the algorithm. It is noted that each solute (or solution) 302 

is used to code the decision variables, i.e., the water release of the reservoir. For this study, 303 

real coded solutions are adopted, and then the objective function evaluation is implemented 304 

for each solution as well as ranking their values according to the descending sequence. 305 
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Step 2: Movement of Solutes (S). The movement operator is a process that the new 306 

solution (or solute) is produced through attempting to move a current solution toward the best 307 

solution based on the results of the objective function evaluation (Step 1), formulated as 308 

below: 309 

                                                           (7) 310 

where  is the solution in the population of the KA at the i-th epoch.  is the best solution 311 

at the current epoch. The value of rand is a random number between 0 and a given number 312 

(such as ( )).  313 

Step 3: Filtration. The filtration operator is a process that the solutions in the population 314 

are filtered using a filtration rate through calculating a filtration function at each epoch. The 315 

filtrated solutes are moved to Filtrated Blood (FB) and the rest are transferred to Waste (W). 316 

In other words, if the objective function value of a solution is large than or equal to a filtration 317 

rate (fr), the solution will be transferred to a part of FB. Otherwise, it will be moved to a part 318 

of W. The filtration rate fr is formulated as below: 319 

                                                                             (8) 320 

where fr is the rate of filtration.  is the filtration coefficient (constant number) in the range of 321 

(0, 1].  is the objective function of solution x at ith epoch.  is the population size.  322 

Step 4: Reabsorption. The reabsorption operator is a process that the solutions of W 323 

would be given a chance to turn into part of FB, owing to executing the movement operator 324 

(Eq. (7)) again, on condition that it meets the requirement of the filtration rate and then would 325 

be transferred to a member of FB.  326 
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Step 5: Secretion. The process of secretion is for the solutions, which have been moved to 327 

a part of FB after reabsorption. If one of the mentioned solutions has a lower quality as 328 

compared with the worst solution in FB, it would be secreted from the blood current and is 329 

classified as a part of W. Otherwise, it would be reserved in FB as well as the worst solution 330 

in FB is secreted and is turned into a part of W.  331 

Step 6: Excretion. The excretion operator is a process that the solutions in W excreted if 332 

they cannot meet the requirement of the filtration rate for becoming a part of FB after 333 

implementation of reabsorption for them. Meanwhile, these solutions would be excreted on 334 

condition that they do not have the capability for turning into a part of FB after conducting 335 

movement operator twice. Under this circumstance, such a solution in W would be substituted 336 

by a random solution. Before moving toward the next epoch, the excretion is used to update 337 

the Sbest, merges W and FB solutions, while recalculating the filtration rate. Terminate the 338 

computation process subject to the stopping criteria (early stopping or the maximal epoch 339 

Emax). In the case of the maximization hydropower generation problem, if the value of the 340 

objective function does not increase over 100 consecutive epochs, hydropower generation can 341 

no longer be enhanced, which triggers the computation to stop. If the epoch number is less 342 

than the maximum epoch “Emax”, then repeat Steps 2-6. Otherwise, stop and output the 343 

optimization results.  344 

The parameters of the KA consist of the maximum epoch (Emax), the population size (Np) 345 

and the filtration coefficient ( ). The parameters of the KA could be obtained by using an 346 

intensive trial-and-error procedure for producing converged results.  347 

3.3 Improved KA 348 
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Despite the KA has been demonstrated its success in coping with the reservoir optimization 349 

operation and other engineering applications, the KA, similar to other evolutionary intelligent 350 

algorithms, has the drawbacks of weak ability to identify the global optimal solution, 351 

especially in complex high-dimensional cascade reservoirs optimization operation with a non-352 

convex function, a huge number of constraints and decision variables. In other words, the KA 353 

would demand auxiliary strategies to increase the performance and flexibility to cope with 354 

complex and real-world optimization problems. Therefore, to improve the ability to obtain the 355 

global optimal solution, three auxiliary strategies, i.e., the exploration and exploitation 356 

strategy for stimulating global optimization ability, the adaptive strategy for adjusting 357 

filtration coefficient and the elitist strategy for storing best solution, are fused into the 358 

standard KA in this study. The three strategies were briefly described as below. 359 

3.3.1 Exploration and exploitation strategy for stimulating global optimization ability 360 

It is worth noting that the Eq. (7) could not offer a high diversity of solutions for promoting 361 

the global exploration capability and local exploitation ability, because the solutions only 362 

varied based on the current solution (Si) and the best solution (Sbest). Bearing this in mind as a 363 

motivation, the exploration and exploitation strategy is accordingly applied to stimulate the 364 

movement of solutions (or maneuver of solutions). One makes use of the current solution and 365 

a weighted difference between the best solution and random solutions to boost the global 366 

exploration ability. Another makes use of the best solution and a weighted difference between 367 

the current solution and random solutions to facilitate the local exploitation capability. The 368 

proposed exploration and exploitation strategy is formulated as below. 369 

Global exploration strategy 370 
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         (9a) 371 

Local exploitation strategy 372 

             (9b) 373 

Combination of exploration and exploitation strategy 374 

                    (9c) 375 

where  and  are the solutions raised by the exploration and exploitation strategy, 376 

respectively.  and  are the random numbers in the range of (0, 1).  and  are the 377 

random solutions in the part of FB and W, respectively, in which . In 378 

comparison to Eq. (7), the Eq. 9 (a) can be useful for global exploration by taking full 379 

advantage of the information difference between the best solution and the random solutions of 380 

FB & W, whilst the Eq. 9 (b) can be beneficial to local exploitation by making full use of the 381 

information difference between the current solution and the random solutions of FB & W. 382 

That is to say, the combination of exploration and exploitation strategy (Eq. 9 (c)) not only 383 

can be applied to direct at the avoidance of low diversity and trapping into a local optimum 384 

but also can make a suitable tradeoff between the exploration and exploitation within the 385 

search domain for achieving the global optimum.  386 

3.3.2 Adaptive strategy for adjusting filtration coefficient 387 

It is also worth noting that the filtration coefficient ( ) of the standard KA in Eq. (8) is a 388 

constant value in the range of (0, 1], which is given in advance. In general, the constant 389 

parameter values have a substantial impact on the quality of the solutions and the robustness 390 

of evolutionary algorithm (Srinivas and Patnaik, 1994; Molina et al., 2018). Additionally, the 391 
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selection of appropriate parameter values is usually resolved by the trial-and-error procedure 392 

and demands the developers and users’ prior knowledge, in which the process is time-393 

consuming due to the sensitivity analysis of adjusting algorithm parameters. To conquer such 394 

technical bottleneck, the adaptive strategy for adjusting algorithm parameter values were 395 

adopted by a variety of researches and was widely used to enhance the quality of the solutions 396 

and the robustness of evolutionary algorithms (e.g., Zhang et al., 2007; Zhou et al., 2017). 397 

Owing to its reliability and wide practicality, the adaptive strategy for adjusting filtration 398 

coefficient is also integrated into the KA in this study and is formulated as below:  399 

          (10a) 400 

                                                                                                     (10b) 401 

where  and  are the random numbers in the range of (0, 1].  is the average value of the 402 

objective function in the KA.  and  are the objective function values of the 403 

random solution in the FB and the best solution, respectively.  404 

3.3.3 Elitist strategy for storing best solution 405 

The concept of elitism proposed by Goldberg (1989) intends to avoid the algorithm getting 406 

stuck in local optimal solutions, and the elitist strategy has been widely adopted for improving 407 

the performance of the evolutionary algorithms, for instance, GA (Goldberg, 1989; Wardlaw 408 

and Sharif, 1999), NSGA-II (Deb et al., 2002), PSO (Bai et al., 2017) and BA (Bora et al., 409 

2012). The Eq. (9) could provide the KA with a high diversity of solutions, whereas both the 410 

Eqs. (7) and (9) could not guarantee that the good solutions would not be discarded even if 411 

they have been found before reaching the maximum epoch. Therefore, in this study, if the 412 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

23 

solution created in the previous epoch (Si-1) is not better than the current solution (Si), the 413 

elitist strategy will be used with a certain probability. Inspired by the concept of elitism, the 414 

proposed strategy employs the best solution ( ) and a difference between the current and 415 

random solutions ( , shown in Eq. 9 (a)) for lifting the performance of the KA to prevent 416 

the loss of good solutions once they are found, which is formulated as below: 417 

In the case of maximization problem:  418 

                       (11a) 419 

In the case of minimization problem: 420 

                   (11b) 421 

where  is the value of objective function of the solution at the ith epoch. The Eq. (10) 422 

equipped with the elitist strategy can be used to avoid the loss of good solutions. That is to say, 423 

the good solutions would be stored when they have been found before meeting the 424 

requirement of the maximum epoch. 425 

 The following section describes how to fuse the three auxiliary strategies into the 426 

standard KA for optimizing the cascade reservoirs operation. Figure 3 (c) shows the flow 427 

diagram of the improved KA optimizing process. The implementation procedure is described 428 

as follows. 429 

Step 1: Initialization of feasible solutions and implementation of objective function 430 

evaluation. Because none of the auxiliary strategies has been implemented for this step, this 431 

process could refer to the Step 1 in the standard KA.  432 
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Step 2: Movement of Solutions (or maneuver of Solutions) (S) using the exploration and 433 

exploitation strategy. According to the rankings of the objective function (Step 1), the 434 

improved movement operator (Eq. (9)) would be conducted to promote the movement of S.  435 

Step 3: Filtration using adaptive strategy. The improved filtration operator (Eq. (10)) will 436 

be implemented for dividing the S into the two parts of the FB and W. 437 

Step 4: Reabsorption. The reabsorption operator would be executed to render an 438 

opportunity for the solutions of W transferring into a part of FB if it satisfies the condition of 439 

the filtration rate. And then the improved movement operator (Eq. (9)) would be run once 440 

again in this procedure. That is to say, the course of the reabsorption can also be enhanced due 441 

to the improved movement of S.  442 

Step 5: Secretion. This process can refer to the Step 5 in the standard KA. 443 

Step 6: Excretion and implementation of the elitist strategy. The excretion operator would 444 

also be carried out if the solutions in W cannot meet the requirement of the filtration rate for 445 

becoming a part of FB. In addition, the elitist strategy (Eq. (11)) would be conducted to store 446 

the best solution. Terminate the computation process subject to the stopping criteria (early 447 

stopping or the maximal epoch Emax). For the maximization hydropower generation problem, 448 

when the value of the objective function does not increase over 100 consecutive epochs, 449 

hydropower generation can no longer be improved, which induces the computation to stop. 450 

When the maximum epoch “Emax” is reached, the computation process stops and outputs the 451 

optimization results. Otherwise, update the epoch and repeat Steps 2-6.  452 

As compared with the standard KA, the merits of the improved KA consist of: firstly, in 453 

Step 2, the combination of exploration and exploitation strategy (Eq. 9 (c)) not only can 454 
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conquer the bottlenecks of low diversity and trapping into a local optimum but also can make 455 

an adequate balance between the exploration and exploitation for searching the global 456 

optimum; secondly, in Step 3, the adaptive strategy is utilized for adjusting the filtration 457 

coefficient parameter to overcome the time-consuming encountered in the trial-and-error 458 

procedure (or sensitivity analysis) of selecting appropriate parameter values; lastly, in Step 6, 459 

the elitist strategy is used to avoid the loss of good solutions before reaching up to the 460 

maximum epoch. 461 

 462 

4. Results and discussion 463 

The results and findings are presented and discussed in details in the order of three parts: the 464 

sensitivity analysis of evolutionary algorithm parameters (GA served as the benchmark) as 465 

well as the comparison between the KA and the improved KA (KA served as the benchmark), 466 

and the summarization, shown as follows.  467 

4.1 Sensitivity analysis of GA and KA parameters  468 

In this section, special attention is paid to the extension of the KA to the optimization of mega 469 

cascade reservoirs at a time scale of day. The GA serves as a benchmark. And the parameters 470 

of the GA consist of the population size (Np), the maximum epoch (Emax), the crossover 471 

probability (Pc) and the mutation probability (Pm). The sensitivity analysis of evolutionary 472 

algorithm parameters is conducted for the optimization operation of the six cascade reservoirs 473 

in the Jin-Sha River basin (Figure 2). Each evolutionary algorithm is driven by a total of 474 

65742 (= 365 days (or 366 days) * 30 years * 6 reservoirs) datasets, which means we have 475 

65742 decision variables and 262968 constraints (= 4 equations * 65742 decision variables). 476 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

26 

For the GA, various researches (e.g., Wardlaw and Sharif, 1999; Deb et al., 2002) have 477 

suggested that for complex cascade reservoirs system, a larger value of Np is required to 478 

maintain the diversity in the population; a larger value of Emax is required to converge to a 479 

state at which there are no changes in the objective function value over 100 generation; good 480 

performance can be achieved using a high value of Pc and low value of Pm. For the KA, to 481 

obtain good performance, the parameter of the filtration coefficient ( ) is additionally advised 482 

to use a medium-low value (Ehteram et al., 2018a, b). Therefore, on condition that both the 483 

KA and GA used the same population size (Np = 500) and maximum epoch (Emax = 1000), we 484 

concentrate on the following sensitivity analysis: for the GA, the most appropriate Pc and Pm 485 

would appear to be in the range of 0.75 up to 0.95 and 0.05 up to 0.25 at an increasing step of 486 

0.05, respectively; for the KA, the most appropriate  would appear to be in the range of 0.25 487 

up to 0.55 at an increasing step of 0.05.  488 

The results of the sensitivity analysis of the GA and KA parameters are shown in Figure 4. 489 

Figure 4 (a) indicates a distinct peak in performance at Pc = 0.85 as well as progressive 490 

deterioration in performance as the value of Pc increases beyond this, whilst there is a distinct 491 

peak in performance at Pm = 0.10 as well as progressive deterioration in performance as the 492 

value of Pm increased beyond this. That is to say, the most appropriate values of Pc and Pm are 493 

0.85 and 0.10, respectively.  494 

The Figure 4 (b) reveals that the best result (= 0.977) in the KA is achieved with the value 495 

of  (= 0.35) using the population size (Np = 500) and maximum epoch (Emax = 1000) whereas 496 

there is a progressive deterioration in performance as the value of  increased beyond this. It 497 

needs to take about 2.1 hours and 1.3 hours computation time (mean of 10 runs of each  498 
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 499 

Figure 4 Sensitive to optimization algorithm parameters and optimization progress using the 500 

population size (Np = 500) and maximum epoch (Emax = 1000). a. Sensitive to the crossover 501 

(Pc) and mutation (Pm) probability of GA. b. Sensitive to the filtration coefficient ( ) of KA. c. 502 

Optimization progress in GA using the most appropriate parameters (Pc= 0.85, Pm = 0.10, Np 503 

= 500 & Emax = 1000) and KA using the most appropriate parameters ( , Np = 500 & 504 

Emax = 1000). The computation result is the average result of 10 runs of each algorithm and 505 

the objective function value is normalized between 0 up to 1. 506 
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evolutionary algorithm) for the implementation of the GA and KA to optimize the operation 507 

of the six cascade reservoirs, conducted by a DELL computer (Intel® CoreTM i5, 7th 508 

Generation CPU @ 2.50 GHz, RAM 8 GB and 1 TB Hard Disk). That is to say, in each trial-509 

and-error computation process, it spends approximately 2.1 hours for the GA to find the 510 

appropriate parameters of Pc (or Pm) whereas it spends 1.3 hours for the KA to search the 511 

appropriate parameter of . The most appropriate parameters of the GA are set as: Np = 500; 512 

Emax = 1000; Pc = 0.85; and Pm = 0.10. The most appropriate parameters of the KA are set as: 513 

Np = 500; Emax = 1000; and  = 0.35. Table 3 summarizes the computation results of the 514 

evolutionary algorithms (GA & KA) in terms of 10 runs of the GA and KA using the most 515 

appropriate parameters. Firstly, from the standpoint of the final objective function value 516 

(normalization), the KA produces much higher final objective function values than the GA in 517 

terms of the best (0.981), average (0.977) and worst (0.974) final objective function values. At 518 

the same time, the standard deviation value of the final objective function in KA is equal to 519 

0.0027, which is noticeably smaller than that (0.0042) of the GA. That means the robustness 520 

of the KA is stronger than that of the GA. Secondly, from the standpoint of the convergence 521 

speed, the number (mean = 406) of epoch attained the convergence result is significantly less 522 

than that (mean = 561) of the GA. Such results demonstrate fewer epochs for the KA are 523 

required to search out the optimal solution (shown in Figure 4 (c)). Thirdly, from the 524 

standpoint of the hydropower generation, the global optimal solution obtained from the KA 525 

can largely improve hydropower generation by 2.9 billion kW·h/year and 1.5 billion 526 

kW·h/year accordingly. In addition, the improved KA can achieve 64.6 kW·h/year 527 

hydropower generation (SOP, 61.7 billion kW·h/year and GA, 63.1 billion kW·h/year). The 528 
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improvement rates reach 4.7 % and 2.4 %, respectively. The reasons for the KA’s superior 529 

performance than that of the GA consist of: firstly, the filtration operator of the KA provides 530 

the algorithm with good exploitation and fast convergence in comparison to the selection 531 

operator of the GA; secondly, the movement and reabsorption operator of the KA gives the 532 

algorithm a good diversity of solution and thus superior exploration as compared with the 533 

crossover and mutation operators of the GA.  534 

 535 

Table 3 Computation results of the evolutionary algorithms (GA & KA) 536 

Number of runs 

Normalization  

final objective function value 

KA GA 

1 0.975 0.963 

2 0.974 0.961 

3 0.981 0.968 

4 0.979 0.966 

5 0.974 0.971 

6 0.977 0.973 

7 0.981 0.971 

8 0.976 0.968 

9 0.980 0.973 

10 0.977 0.964 

Mean 0.977 0.968 

Best 0.981 0.973 

Worst 0.974 0.961 

Standard deviation 0.0027 0.0042 

Mean of time cost (Hours) 1.3 2.1 

Average annual hydropower generationa (Billion kW·h) 64.6 63.1 

Average annual hydropower generation (Billion kW·h)  

using the SOP
b
 

61.7 

Most appropriate parameters 

Np = 500 

Emax = 1000 

 = 0.35 

 

Np = 500 

Emax = 1000 

Pc = 0.85 

Pm = 0.10 

Note: The daily data from June 1
st
 1988 up to May 31

st
 2018 (30 hydrological years) are used in this study.  537 

a
 The hydropower generation is the average annual hydropower generation during 1988 and 2018 and is the 538 

average result of 10 runs of each algorithm.  539 
b
 SOP is the Standard Operating Policy using operation rule curves. 540 

 541 

4.2 Comparison between KA and improved KA 542 

In the case of six cascade reservoirs operation, the computation results (average results of ten 543 

runs) of the four schemes concerning the KA and improved KA are reported in Table 4. It is 544 
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noted that: firstly, the difference between KA0 and KA1 (using one auxiliary strategy) is that 545 

the latter uses the exploration and exploitation strategy whereas the former does not; secondly, 546 

the difference between KA1 and KA2 (using two auxiliary strategies) is that the latter adopts 547 

the adaptive strategy for adjusting filtration coefficient whereas the former does not; and lastly, 548 

the difference between KA2 and KA3 (using three auxiliary strategies) is that the latter 549 

employs the elitist strategy for storing best solution whereas the former does not. 550 

 551 

Table 4 Computation results of the four schemes concerning the standard KA and improved 552 
KA 553 

Scheme KA0 KA1 KA2 KA3 

Parameters 

Np 500 500 500 500 

Emax 1000 1000 1000 1000 

 

0.35 0.35 / / 

Auxiliary strategy 

Exploration and exploitation strategy / Yes Yes Yes 

Adaptive strategy / / Yes Yes 

Elitist strategy / / / Yes 

Number of objective function evaluations (Mean) 406 451 539 487 

Mean of time cost (Hours) 1.3 1.5 1.8 1.6 

Average annual hydropower generation
a
 (Billion kW·h) 64.6 65.1 65.6 66.5 

Average annual hydropower generation (Billion kW·h) using SOP
b
 61.7 

Note: The computation result is the average result of 10 runs of each algorithm and daily data from June 1
st
 554 

1988 up to May 31
st
 2018 (30 hydrological years) are used in this study. 555 

KA0: the optimization algorithm is the standard KA. 556 

KA1: the optimization algorithm is the improved KA with one auxiliary strategy. 557 

KA2: the optimization algorithm is the improved KA with two auxiliary strategies. 558 

KA3: the optimization algorithm is the improved KA with three auxiliary strategies. 559 
a
 Average annual hydropower generation is the mean of annual hydropower generated during 1988 and 560 

2018.  561 
b
 SOP is the Standard Operating Policy using operation rule curves. 562 

 563 

4.2.1 Hydropower generation 564 

The results in Table 4 indicate that: firstly, in comparison to the SOP (61.7 billion kW·h/year), 565 

the improved KA1 can increase the hydropower generation 3.39 billion kW·h/year (5.5 % 566 

improvement), owing to the exploration and exploitation strategy; secondly, the improved 567 
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KA2 can lift the hydropower generation 3.89 billion kW·h/year (6.3 % improvement), in the 568 

combination of the exploration and exploitation strategy as well as the adaptive strategy; lastly, 569 

the improved KA3 can enhance the hydropower generation 4.81 billion kW·h/year (7.8 % 570 

improvement) due to integration of the three auxiliary strategies. As compared with the KA0, 571 

the improved KA3 can promote the hydropower generation of 1.91 billion kW·h/year (3.0 % 572 

improvement). That is to say, the use of the three auxiliary strategies, the improved KA can 573 

dramatically enhance the hydropower generation in virtue of finding the global optimal 574 

solution. The average time cost (2.2 hours) of the improved KA is higher than the KA (1.3 575 

hours), whereas the improved KA can save a lot of time searching appropriate algorithm 576 

parameter due to using the adaptive strategy for adjusting the filtration coefficient. That is to 577 

say, the improved KA not only can increase the hydropower generation but also can conquer 578 

the time-consuming encountered in the trial-and-error procedure (or sensitivity analysis) of 579 

selecting appropriate parameter values, in comparison to the standard KA. 580 

To show the merits of the improved KA, an assessment is conducted on the results 581 

obtained from the convergence process of the four schemes (KA0-KA3) for optimization 582 

operation of the six cascade reservoirs (Figure 5). The comparison between KA0 and KA1 583 

(with one auxiliary strategy) shows that the final objective function value (0.985) of the 584 

improved KA1 is considerably larger than that (0.977) of the KA0. The combination of 585 

exploration and exploitation strategy (Eq. 9 (c)) not only can boost solution diversity and 586 

escape the trap of a local optimum but also can increase the objective function (i.e. 587 

hydropower generation). Moreover, the objective function values of the KA1 show more 588 

fluctuation than those of KA0, which implies the KA1 would easily trigger optimization 589 
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process instability problem due to the utilization of the exploration and exploitation strategy. 590 

 591 

Figure 5 Optimization progress in KA and improved KA. a. Comparison between KA0 and 592 

KA1. b. Comparison between KA1 and KA2. c. Comparison between KA2 and KA3.  593 

KA0: the optimization algorithm is the standard KA. 594 

KA1: the optimization algorithm is the improved KA with one auxiliary strategy. 595 

KA2: the optimization algorithm is the improved KA with two auxiliary strategies. 596 

KA3: the optimization algorithm is the improved KA with three auxiliary strategies. 597 

The computation result is the average result of 10 runs of each algorithm and the objective function value is 598 

normalized between 0 up to 1.599 
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 600 

The results indicate that the KA required more auxiliary strategies to handle its instability 601 

problem. The comparison between KA1 and KA2 (with two auxiliary strategies) shows that 602 

the objective function values of the KA2 fluctuated less and are moderately larger than those 603 

of the KA1, which demonstrates the KA2 can overcome the instability in virtue of the 604 

adaptive strategy for adjusting algorithm parameter values. The reason is that the adaptive 605 

strategy can dynamically adjust the parameter values in response to the higher solution 606 

diversity produced by the exploration and exploitation strategy. The comparison between 607 

KA2 and KA3 (with three auxiliary strategies) shows that the final objective function value 608 

(0.996) of the KA3 is considerably larger than that (0.987) of the KA2. The KA3 can 609 

converge faster and is more robust as shown in Figure 5 and Table 3. The faster convergence 610 

and better robustness is the result of the good exploration and exploitation provided by the 611 

integration of the three auxiliary strategies. 612 

The comparative results demonstrate that the improved KA not only best optimizes 613 

hydropower generation with fast convergence as well as the most stable objective function 614 

curve, but also can effectively conquer the shortcomings of trapping into local optimums, 615 

instability and loss of good solutions. This is due to the utilization of the exploration and 616 

exploitation strategy, the adaptive strategy as well as the elitist strategy. 617 

4.2.2 Reliability, vulnerability and resilience of hydropower output 618 

A coherent set of evaluation criteria is used to distil the merits of the improved KA to 619 

quantitatively assess the impacts and contributions of the KAs on the hydropower generation 620 

in different periods (year-round, flood season, non-flood season) and hydrological 621 

representative years (dry, normal, wet). The criteria are designed for assessing the reliability, 622 
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vulnerability and resilience of hydropower output (Hashimoto et al., 1982; Zhou et al., 2017). 623 

Their formulations are given as follows. 624 

Reliability of hydropower output: The reliability can be described by the probability that a 625 

hydropower energy system remains in a satisfactory state. 626 

                                                                         (12a) 627 

                                                       (12b) 628 

where  is the number of time that total hydropower output is less than the guaranteed 629 

power output of the cascade reservoirs at the t-th time. n (=N·T) is the total number of time 630 

steps in the operation period.  631 

Vulnerability of hydropower output: The vulnerability represents the incompetence of a 632 

hydropower energy system to resist the effect of a hostile environment. It denotes the 633 

maximum ratio of hydropower output deficiency to installed power capacity if once occurs, 634 

shown as follows. 635 

                                                                       (13a) 636 

                                              (13b) 637 

where  is the vulnerability of hydropower output at the t-th time. 638 

Resilience of hydropower output: The resilience describes how quickly a hydropower 639 

system is likely to recover once hydropower output deficiency has occurred, shown as follows. 640 

                                                (14a) 641 
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               (14b) 642 

where  is the number of times that the hydropower energy system is likely to recover 643 

from hydropower output deficiency at the t-th time. The higher index value of reliability and 644 

resilience, as well as the lower index value of vulnerability, indicate better model performance.  645 

The index values of reliability, vulnerability and resilience in different scenarios are 646 

depicted in Table 5. From the standpoint of different periods (year-round, flood season & non-647 

flood season), the results indicate that the improved KA can rapidly increase the index values 648 

of reliability (from 0.95 to 0.98) and resilience (from 0.87 to 0.93), and decrease the index 649 

value of vulnerability (from 0.11 to 0.07) in the case of year-round, as compared with the 650 

standard KA. Additionally, shown by the comparison with the SOP, the improved KA not only 651 

can raise the reliability and resilience with the improvement rates of 8.0 % and 14.8 % 652 

respectively but also can dramatically reduce the vulnerability by 46.7 % in the case of the 653 

non-flood season. Such substantial improvement is mainly owing to the good performance of 654 

the improved KA whilst the objective function of maximization hydropower generation 655 

closely linked with the guaranteed power output (Eq. (1)) also contributed to such 656 

improvement. Some interesting characteristics in different periods can be found in Table 5. 657 

For example, in all cases (SOP, KA & improved KA), both the index values of reliability and 658 

resilience in flood season are equal to one, while the index value of vulnerability in flood 659 

season are equal to zero. In other words, in flood season, the hydropower output of the six 660 

cascade reservoirs is always larger than or equal to the guaranteed power output (3.12 GW, in 661 

Table 2). Both the index values of resilience and vulnerability in the non-flood season are 662 

equal to both the index values of resilience and vulnerability in year-round. The index value 663 
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of reliability in year-round is always larger than the index value of reliability in non-flood 664 

season. The reason is the ratio of runoff in flood season to annual runoff ranges between 60 % 665 

and 70 % in this study area so that the hydropower output deficit always occurred in the non-666 

flood season whereas both the reliability and resilience of hydropower output in flood season 667 

would reach up to 100%. In flood season, the potential of hydropower generation is driven by 668 

lessening the gap between hydropower output and installed (maximum) power capacity. 669 

However, in non-flood season, the potential of hydropower generation is driven by lessening 670 

the gap between hydropower output and guaranteed power output to improve the hydropower 671 

generation.  672 

Table 5 Computation results of the KA and improved KA in the different scenarios 673 

Scheme Indicators 
Different periods 

Year-round
a
 Flood season

b
 Non-flood season

c
 

SOP 

Reliability 0.92 1 0.88 

Vulnerability 0.21 0 0.21 

Resilience 0.81 1 0.81 

KA 

Reliability 0.95 (3.3 %
d
) 1 0.92 (4.5 %) 

Vulnerability 0.11 (26.7 %) 0 0.11 (26.7 %) 

Resilience 0.87 (7.4 %) 1 0.87 (7.4 %) 

Improved KA 

(i.e. KA3) 

Reliability 0.98 (6.5 %) 1 0.95 (8.0 %) 

Vulnerability 0.07 (46.7 %) 0 0.07 (46.7 %) 

Resilience 0.93 (14.8 %) 1 0.93 (14.8 %) 

Scheme Indicators 
Hydrological representative years 

Dry
e
 Normal

f
 Wet

g
 

SOP 

Reliability 0.92 0.95 1 

Vulnerability 0.34 0.22 0 

Resilience 0.72 0.80 1 

KA 

Reliability 0.95 (3.2 %) 0.97 (2.1 %) 1 

Vulnerability 0.20 (41.2 %) 0.14 (36.4 %) 0 

Resilience 0.79 (9.7 %) 0.86 (7.5 %) 1 

Improved KA 

(i.e. KA3) 

Reliability 0.97 (5.4 %) 0.99 (4.2 %) 1 

Vulnerability 0.15 (55.9 %) 0.11 (50.0 %) 0 

Resilience 0.85 (18.1 %) 0.92 (15.0 %) 1 

Note: The computation result is the average result of 10 runs of each algorithm and the daily 674 

data from June 1
st
 1988 up to May 31

st
 2018 (30 hydrological years) are used in this study.  675 

a
 Year-round is the hydrological year, starting from June 1st to the next May 31st in this study area.  676 

b 
Flood season: starting from June 1st to September 30. 677 
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c
 Non-flood season: starting from October 1st to the next May 31st.  678 

d 
 679 

e
 Occurrence frequency of the dry year (2008) is 95% during 1988 and 2018.  680 

f
 Occurrence frequency of the normal year (2003) is 50% during 1988 and 2018.  681 

g
 Occurrence frequency of the wet year (2012) is 10% during 1988 and 2018.  682 

 683 
 684 

Table 5 also shows the sensitivity of reliability, vulnerability and resilience of hydropower 685 

output in response to the hydrological representative years (dry, normal, wet). The results 686 

indicate that: as compared with the SOP, the improved KA can noticeably increase the 687 

reliability and resilience as well as decrease the vulnerability in dry and normal years. The 688 

improvement rates of reliability (from 0.92 to 0.97, 5.4 % improvement), vulnerability (from 689 

0.34 to 0.15, 55.9 % improvement) and resilience (from 0.72 to 0.85, 18.1 % improvement) 690 

are higher especially in dry year. In all cases (SOP, KA & improved KA), both the index 691 

values of reliability and resilience in the wet year (2012, 10% occurrence frequency during 692 

1988 and 2018) are equal to 1, while the index value of vulnerability in the wet year is equal 693 

to 0. In other words, in the wet year, the hydropower output of six cascade reservoirs is 694 

always larger than or equal to the guaranteed power output (3.12 GW, in Table 2).  695 

4.2.3 Reservoir operation curves 696 

Take the first reservoir (LY, Figure 2) and the last reservoir (GYY, Figure 2) of cascade 697 

reservoirs for example, Figure 6 presents the differences in the reservoir water level, water 698 

release and hydropower output trajectories generated by the KA and improved KA in the 699 

scenario of the dry year (2008, 95% occurrence frequency during 1988 and 2018). It can be 700 

further seen from Figures 6 (a) that: for flood season all the three trajectories are satisfied with 701 

the requirements of their constraints whilst for non-flood season sometimes dissatisfied the 702 

hydropower constraint in which the total hydropower output of two cascade reservoirs is less 703 
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than the guaranteed (minimum) power output. Despite the violation of the constraint has 704 

occurred in both the KA and improved KA, the times (1 time in both two cascade reservoirs) 705 

generated by the improved KA is less than the times (2 times in both two cascade reservoirs) 706 

generated by the KA in the scenario of the dry year (marked in red circle).  707 

For flood season, the differences in the three trajectories generated by the standard KA 708 

and improved KA are small. The reservoir water level and hydropower output generated by 709 

the improved KA are slightly higher than that of the KA, whilst the water releases generated 710 

by the improved KA are briefly smaller than those of the KA in both two cascade reservoirs. 711 

For non-flood season the differences in the three trajectories generated by the KA and 712 

improved KA are considerable, in which the reservoir water levels and hydropower outputs 713 

generated by the improved KA are sharply higher than that of the KA whilst the water releases 714 

generated by the improved KA are sharply smaller than that of the KA in both 2 cascade 715 

reservoirs. In other words, for flood season the differences in the three trajectories generated 716 

by the KA and improved KA are small whereas for the non-flood season the differences in the 717 

three trajectories generated by the KA and improved KA are noticeable.  718 

More interesting characteristic of the optimal hydropower output can be found in this 719 

study, for example, most of hydropower output trajectories generated by the improved KA are 720 

larger than or equal to those of the KA whereas small minority of hydropower output 721 

generated by the improved KA is less than that of the KA in both 2 cascade reservoirs 722 

(marked in red rectangle). Therefore, the improved KA can rapidly increase the reliability of 723 

hydropower output in comparison to the KA. The difference in the hydropower output 724 

trajectories can demonstrate the performance of the improved KA is noticeably superior to the  725 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

39 

 726 

Figure 6 Comparison of optimal trajectories generated by the KA and improved KA with 727 

respective to the LY and GYY reservoirs in a dry year (2008) as well as theoretical 728 

relationship curves between power output, hydraulic head, and water consumption of a hydro 729 

unit (i.e., unit performance curves). a. Comparison of optimal trajectories. b. Hydro unit 730 

performance curves.  731 

732 
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performance of the KA in the interests of hydropower generation maximization, whereas the 733 

differences in the reservoir water level or water release trajectories generated by the KA and 734 

improved KA does not necessarily indicate the superiority of one approach over the other. The 735 

reason is that: according to Eq. (1(c)), the value of hydropower output not only is not only 736 

dependent on the values of the water release (RTj(t)) and hydraulic head ( ), but is also 737 

dependent on the value of efficiency coefficient ( ). The function  (Eq. 738 

1(d)) is not monotonically increasing with the values of the water release (or water 739 

consumption) (RTj(t)) and hydraulic head ( ) (Figure 6 (b)). 740 

In summary, these comparative results demonstrate that the improved KA with three 741 

auxiliary strategies not only can produce the largest objective function values and the most 742 

stable objective function curve but also can effectively increase hydropower generation of 743 

mega cascade reservoirs. Such achievement made by the KA3 could be owing to that the 744 

exploration and exploitation strategy improved the hydropower generation from the 745 

perspective of tacking the technical bottleneck of trapping into local optimums, the adaptive 746 

strategy improved the hydropower generation from the perspective of conquering the 747 

instability of optimization process, while the elitist strategy improved the hydropower 748 

generation from the perspective of overcoming the loss of good solutions. Additionally, the 749 

indexes of reliability, vulnerability and resilience are used to assess the KAs for different 750 

periods (year-round, flood season, non-flood season) and different hydrological representative 751 

years (dry, normal, wet) comprehensively. Compared with the SOP, the improved KA can 752 

increase the index values of reliability and resilience, and decrease the index value of 753 

vulnerability in different periods (year-round & non-flood season) and different hydrological 754 
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representative years (dry year & normal year). The improvement rates of reliability, resilience 755 

and vulnerability are higher especially in non-flood season and dry year. The reason is that the 756 

probability of hydropower output deficit occurrence in the non-flood season and the dry year 757 

is higher than the probability of deficit occurrence in the flood season, and the normal & wet 758 

years. From the standpoint of hydropower benefits and CO2 emission reduction, according to 759 

the hydropower price in China (45.3 USD/MW·h) and CO2 emission reduction for 760 

hydropower production (0.785 kg CO2 equivalent/kW·h) (Zhou et al., 2018a,b), in 761 

comparison to the SOP, the improved KA can dramatically stimulate the hydropower benefits 762 

217.44 million USD/year (= 4.8 billion kW·h * 45.3 USD/MW·h) as well as reduce the CO2 763 

emission 3.77 billion kg/year (= 4.8 billion kW·h * 0.785 kg CO2 equivalent/kW·h), 764 

respectively. To support the official mission – to fulfil the pledge of carbon emission 765 

reduction and non-fossil energy expansion to 20% in China by 2030 or earlier, this study 766 

indicates the niche and potential of the hydroelectricity as a guideline for the cleaner 767 

production.  768 

In comparison to the dynamic programming methods, for instance, discrete differential 769 

dynamic programming, progressive optimality algorithm and dynamic programming 770 

successive approximation, the major advantage of the KA approach is that it does not demand 771 

the initial trial water release policy (Ehteram et al., 2018a, b), which can motivate the 772 

robustness of the algorithm and the stochasticity of solutions. As compared with the GA and 773 

KA, the main merit of the improved KA is the capability to find the global optimum with 774 

faster convergence speed. The reasons are as follows: firstly, the filtration operator provides 775 

the required exploitation while the reabsorption operator gives the necessary exploration for 776 
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the evolutionary algorithm; the combination of exploration and exploitation strategy not only 777 

can conquer the bottlenecks of low diversity and trapping into a local optimum, but also can 778 

make an adequate balance between the exploration and exploitation for searching the global 779 

optimum; secondly, the adaptive strategy can automatically adjust the filtration coefficient 780 

parameter to overcome the time-consuming encountered in the trial-and-error procedure of 781 

selecting appropriate parameter values; lastly, the elitist strategy can avoid the loss of good 782 

solutions before reaching up to the maximum epoch. 783 

 784 

5. Conclusion 785 

In China, the developing hydroelectricity can provide a reliable and practical pathway in the 786 

transition to the low carbon and cleaner production for sustainable development. The 787 

optimization operation of mega cascade reservoirs can better produce hydropower outputs. 788 

However, the difficulty encountered in this process raises quickly since the number of cascade 789 

reservoirs, decision variables and constraints grow, in which the optimization process is easy 790 

to give rise to time-consuming and loss of good solutions as well as a trap into local optimum. 791 

In this study, we explored the KA with three auxiliary strategies for stimulating the 792 

hydropower output of cascade reservoirs. The standard KA, GA and SOP were selected as the 793 

benchmark for the comparison analysis. The improved KA was introduced to optimize the 794 

hydropower generation of six mega cascade reservoirs located at middle reach of Jin-Sha 795 

River in China. The mathematical model is driven by a huge number of inputs (i.e., 65742 796 

inflow measurements and decision variables) and constraints (i.e., 262968 conditions).  797 

Here we show that there is a great potential for application of the KAs to complex mega 798 
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cascade reservoir operation. As compared with the SOP, the KA and improved KA can 799 

increase the hydropower generation 2.9 billion kW·h/year (4.7 % improvement) and 4.8 800 

billion kW·h/year (7.8 % improvement) while boost the hydropower benefits 131.37 million 801 

USD/year and 217.44 million USD/year as well as decrease the CO2 emission 2.28 billion 802 

kg/year and 3.77 billion kg/year, respectively. Additionally, the improved KA can increase the 803 

index values of reliability and resilience as well as decrease the index value of vulnerability. 804 

The limitation of the KAs is that if a multipurpose reservoir operation is taken into 805 

consideration, it demands to reconstruct the optimization mechanism from a single objective 806 

into multi-objective optimization to find the Pareto-optimal solutions. Consequently, follow-807 

up studies will fuse the non-dominated sorting strategy and/or dynamically dimensioned 808 

search into a Multi-objective Kidney Algorithm for optimizing the multi-objective operation 809 

of cascade reservoirs.  810 
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