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Abstract Practical application of hydrological models requires parameter transfer, both 6 

temporally and spatially, to compensate for the lack of data. In this study, the 7 

transferability of parameters is evaluated using a lumped hydrological model called the 8 

Xinanjiang model to simulate runoff at different spatiotemporal scales in the Jianxi 9 

basin in south-east China and its four sub-basins. The functional relationships are built 10 

based on the posterior distribution derived by the Differential Evolution Adaptive 11 

Metropolis (DREAM) algorithm to mitigate the effect of parameter uncertainty. The 12 

results show that (1) the sensitivity of parameters KE, SM, KI and KG shows obvious 13 

temporal characteristics, and the sensitivity of NK and CG shows strong spatial 14 

characteristics; (2) most relationships between sensitive parameters and scales are 15 

remarkable with goodness-of-fit coefficient higher than 0.9, which has been verified to 16 
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achieve good performance in the temporal and spatial transfer; (3) the spatial 17 

transferability of the model is greatly influenced by the difference between the basin 18 

sizes; and (4) those parameters with strong spatial characteristics, such as NK and CG, 19 

show obvious impacts on the performance and uncertainty of the model transferred 20 

from the larger/smaller to smaller/larger basins.  21 

 22 
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1. Introduction 25 

Conceptual rainfall-runoff models, based on the physical concept of hydrological 26 

phenomena and empirical formula, can scientifically express the mechanism of the 27 

hydrologic cycle and thus have been extensively used for simulating runoff dynamics 28 

and the water balance (Liu et al. 2017). To match the model response to historical input-29 

output data, model parameters must be calibrated with observed time-series data to 30 

achieve appropriate values (Gupta et al. 1998). However, in practical applications, the 31 

time series of available data may be limited due to, for example, an insufficient length 32 

of data or missing observations, posing fundamental challenges to model calibration 33 

and application (Perrin et al. 2007; Sun et al. 2012). Consequently, attention should be 34 

paid to transferring parameters across different temporal and spatial resolutions during 35 

hydrological modelling (Melsen et al. 2016). 36 

The temporal and spatial scales of input data play an important role in determining 37 

model performance and uncertainty. Bloschl and Sivapalan (1995) reported that natural 38 

catchments exhibited a stunning degree of heterogeneity and variability in both spatial 39 

and temporal scales, which affect state variables, parameters and inputs during 40 
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conceptual hydrological modelling. Bruneau et al. (1995) found that the degradation of 41 

modelling efficiency was more sensitive to an increase in time step than to an increase 42 

in spatial size. The work of Wang et al. (2009) showed that the most accurate simulation 43 

results were obtained on the peak discharge and recession part of the hydrograph by 44 

using the shortest temporal resolution data, and the effects of the time interval were 45 

quite different depending on the response time of parameters.  46 

Despite the consensus that model parameters and performance are strongly 47 

dependent on their respective scales, parameters transferred from other calibration 48 

domains are used to simulate runoff due to a lack of data. In most cases, temporal 49 

transferability of parameters is studied based on the functional relationships established. 50 

Bastola and Murphy (2013) found great decreases in the loss of model performance by 51 

obtaining model parameters using a linear-scaling-relationship function compared with 52 

directly using parameters from another temporal steps. However, the derived 53 

relationship of parameter values at different scales was based on optimized behavioral 54 

parameters, which ignored the equifinality effect of different parameters. Kavetski et al. 55 

(2011) argued that the use of robust numeric and more adequate likelihood functions 56 

markedly reduced time scale dependencies and improved the stability of parameters 57 

within increasingly complex model structures. 58 

However, on account of the intricate characteristics of basins, the transfer of 59 

parameters across spatial scales with a functional relationship remains high uncertainty 60 

(Bardossy 2007). Therefore, directly using parameters from another basin to study 61 

spatial transferability is more popular. Kumar et al. (2013) showed that model 62 

simulations with transferred parameters from coarser to finer scales exhibited great 63 

losses in accuracy. Zelelew and Alfredsen (2014) found that parameters integrated from 64 

one to six donor catchments evidently improved the model performance at ungauged 65 
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catchments. Chouaib et al. (2018) found that parameter transfer within homogeneous 66 

regions outperformed that from directly using a priori parameters in terms of the 67 

decrease in bias and increase in efficiency.  68 

Recently, Jie et al. (2018) established a transformation function according to the 69 

regular relationship between the median values of posterior distribution parameters and 70 

time steps using the Bayesian method, which was found to have a good capacity for 71 

model simulation, and validated the feasibility of transferring parameters across 72 

temporal scales. This study is a continuation of the study of Jie et al. (2018), aiming to 73 

explore the temporal and spatial transferability of parameters. The objective of this 74 

study is to build functional relationships of parameters across temporal and spatial 75 

scales based on characteristic data of basins to quantify the effect of the difference in 76 

time scales and in basin size on the model performance and uncertainty. The goal is 77 

achieved through the following steps: first, the sensitivity of parameters with different 78 

temporal scales is analysed in each basin; then, the posterior distributions of sensitive 79 

parameters are derived using the Bayesian inference and the Differential Evolution 80 

Adaptive Metropolis (DREAM) algorithm; functional relationships are then established 81 

and parameters are transferred through temporal scales for validation; finally, 82 

parameters are spatially transferred and compared using three schemes to explore the 83 

spatial transferability. 84 

2. Material and Methods 85 

2.1 Study area and data 86 

The study area is Jianxi River basin (Qilijie) in south-east China, which is almost 87 

the same with Jie et al. (2018). The difference is that an additional four sub-basins in 88 

Table 1 are considered in this study (Fig. S1), while only Qilijie basin was considered 89 
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in Jie et al. (2018). Hourly hydrological data for the period 2009-2015, including 90 

precipitation data, pan evaporation data and discharge data, are obtained from the Fujian 91 

Hydrology Bureau and Shuikou Reservoir. Then, data series with time intervals of 3, 6, 92 

9, 12 and 24-hours are aggregated from the hourly data above. 93 

<Table 1> 94 

2.2 Xinanjiang Model  95 

The Xinanjiang (XAJ) model, a rainfall-runoff model developed by (Zhao 1992), 96 

has been widely used in China and many countries in the world for flood simulation in 97 

humid and semi-humid regions (Huo and Liu 2020; Liu et al. 2016; Meng et al. 2016; 98 

Yang et al. 2020; Zhang et al. 2019; Zhuo et al. 2016). It is based on the concept of 99 

saturation excess runoff mechanism, which means that runoff is not produced until the 100 

soil moisture content of the aeration zone reaches field capacity. The XAJ model is 101 

composed of 4 main modules, namely, the evaporation, runoff generation, runoff 102 

partition, and runoff routing modules (Tian et al. 2013). The model calculation involves 103 

15 parameters, which can be divided into 4 categories according to physical meanings. 104 

The structure of the XAJ model and the physical meanings of the range of the model 105 

parameters are the same with the previous study conducted by Jie et al. (2018) (Table 106 

S1). 107 

2.3 Sobol sensitivity analysis for parameters 108 

The Sobol sensitivity analysis method, proposed by Sobol′ (2001), is a global 109 

quantitative sensitivity analysis method based on variance decomposition, of which the 110 

key idea is to decompose the total variance of the objective function into the variance 111 

of each single parameter and the variance generated by the interaction between 112 

parameters (Hall et al. 2005). The method can accurately and quantitatively describe 113 
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the sensitivity of an independent parameter and the sensitivity due to the interaction 114 

between parameters (Nossent et al. 2011). Tang et al. (2007) found that the Sobol 115 

method could effectively analyse the parameter sensitivity of the lumped hydrological 116 

model and the interaction between parameters. The equations to calculate sensitivity 117 

indices in Sobol method are as follows: 118 
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where 
iD , 

,i jD  and 
1,2, nD  represent the variance produced by the i-th parameter, 121 

the i-th and j-th parameter, and the interaction of n parameters; and D   and 
~iD  122 

indicate the variance generated from all parameters and the remaining parameters other 123 

than the i-th parameter; and 
TiS  is the total sensitivity for the i-th parameter. If 

TiS  is 124 

greater than 0.1, the i-th parameter has a significant sensitivity (Wan et al. 2015).  125 

In this study, apart from the Nash–Sutcliffe efficiency (NSE) adopted in Jie et al. 126 

(2018), the relative error of the water balance (RE) is also chosen as an additional 127 

objective function to evaluate the sensitivity of the model parameters. 128 

2.4 DREAM algorithm 129 

The Differential Evolution Adaptive Metropolis (DREAM) optimization 130 

algorithm proposed by Vrugt et al. (2009) is an adaptive Markov Chain Monte Carlo 131 

(MCMC) algorithm which can effectively implement Bayesian theory to estimate the 132 

posterior parameter distribution of complex high-dimensional sampling problems 133 

(Zahmatkesh et al. 2015). Jie et al. (2018) applied DREAM method to generate multiple 134 

parallel Markov chains from different search starting points that can fully traverse the 135 

parameter space to search for the global optimal solution, which is used to calculate the 136 
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posterior distribution of the parameters in this study. The uncertainty intervals of 137 

simulated runoff are evaluated using two indexes, including median-NSE and average 138 

relative interval length (ARIL) (Jie et al. 2018; Xiong et al. 2009). 139 

2.5 Transformation functions  140 

According to the types of transformation relationships established (linear function, 141 

power function), the equations used to transfer parameters across temporal scales are as 142 

follows (Bastola and Murphy 2013): 143 

 ' '( )K T T     (3) 144 

 
'

' ( )
T

T

    (4) 145 

where '  is the parameter estimated with the modelling time step 'T ; and T  and 146 

  represent the known time step and parameter value; and K   and B   are scaling 147 

factors estimated from the linear and power function relationships based on calibration 148 

dataset. 149 

Based on the posterior distribution of the parameters and the characteristics of sub-150 

basins, the functions are defined following equations above to transfer parameters 151 

across spatial scales at same temporal scale: 152 

 
' ' '

1 2 0( ) ( )Z Z S S           (5) 153 

In the equation above, Z  and 'Z  represent the known and estimated parameter 154 

value at the same temporal scale; S  and 'S ,   and '  indicate the areas and rainfall 155 

runoff coefficients of basins involved in spatial transform; and 
0  , 

1   and 
2   are 156 

spatial scaling factors. 157 

3. Results and Discussions 158 

3.1 Parameter sensitivity to varying spatial and temporal scales 159 
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The Latin hypercube sampling method (McKay et al. 2000) is used in this paper to 160 

extract parameter samples for sensitivity calculation. The total sensitivity of each 161 

parameter is calculated under different sampling numbers (1000, 1500, 2000, 3000, 162 

4000, and 5000) at 1-h temporal scale. When the number of samples reaches 3000, the 163 

indices of sensitivity are close to stability (Fig. S2). Therefore, for each parameter, 3000 164 

samples are extracted from the feasible domain to compare and analyse the sensitivity 165 

in different sub-basins and temporal scales.  166 

    The total sensitivities of all parameters at different temporal and spatial scales are 167 

plotted in Fig.1. Those parameters are sensitive with the total sensitivities being larger 168 

than 0.1. As can be seen from Fig.1, when the objective function is NSE, the sensitive 169 

parameters are KE, SM, KI, KG, CI, CG, N and NK. Meanwhile, when the objective 170 

function is RE, the sensitivity parameters are KE and CG. These are almost consistent 171 

with previous studies (Jie et al. 2018; Song et al. 2013; Zhang et al. 2012). It is 172 

reasonable for that NSE reflects the goodness-of-fit of the observed and simulated flow 173 

processes and has close relationships with the evapotranspiration, runoff separation and 174 

flow routing parameters; while RE mainly reflects the relative error of the water balance 175 

between the observed and simulated hydrograph and has closer relationships with the 176 

evapotranspiration and flow routing parameters.  177 

<Fig.1> 178 

As can be seen from Fig. 1, for each sub-basin, only KE is sensitive in the four 179 

evapotranspiration parameters under both objective functions. The evaporation module 180 

uses a three-layer (upper, lower, and deep layer) scheme according to the soil moisture 181 

of different layers and rainfall. C is related to the evaporation of lower and deep layer, 182 

and its value is affected by X and Y. This indicates they are not easily affected for the 183 

stability of the lower and deep layer evaporation, especially in wet zones. It can be seen 184 
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that C, X, and Y are insensitive at all temporal scales and basins (Fig. S3). Whether the 185 

objective function is NSE or RE, KE is sensitive and its sensitivity decreases with the 186 

increase of temporal scales as KE is closely related to evaporation in three layers. There 187 

is no big difference in the sensitivity of KE among different basins, while its sensitivity 188 

is very high when the objective function is RE.  189 

All runoff production parameters are insensitive with NSE and RE adopted as 190 

objective functions respectively (Fig.2 and Fig. S4). WM is the areal tension water 191 

storage capacity, B and IMP represent the uneven distribution of tension water storage 192 

and the proportion of impervious area, respectively. These parameters reflect the 193 

physical characteristics of a basin, which are insensitive (Jie et al. 2018; Zhang et al. 194 

2012). Consistent results are derived in this study, and their insensitivities are affected 195 

little by the variation of the temporal scales and basin sizes. 196 

    The SM, KI and KG retain high sensitivity for NSE, while are insensitive for RE. 197 

SM, affected by the time-averaged rainfall data, tends to maintain stable sensitivity at 198 

large temporal scales and basin size (Fig.2 and Fig. S5). The sensitivity of SM decreases 199 

with the increase of temporal scale except 1-hour in all sub-basins, while the sensitivity 200 

of SM is stable in Qilijie basin at all time scales except 1-hour. KI and KG have a direct 201 

influence on the size of the interflow and groundwater flow. The sensitivity of KI and 202 

KG decreases with the increase of time scale, while the KG gradually becomes 203 

insensitive with the increase of time scale in five basins.   204 

Most flow routing parameters, including CI, CG, N and NK, are sensitive in all 205 

basins when the objective function is NSE; meanwhile, only CG retains high sensitivity 206 

in some basins when the objective function is RE (Fig.2 and Fig. S6). The sensitivity 207 

of CI increases as the temporal scales increase in all basins as CI has a great effect on 208 

the recession process of runoff, which is enhanced as the temporal scales increase. 209 
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There are no obvious differences in the variation of the CI sensitivity among the five 210 

basins. To the objective NSE, CG is insensitive in most conditions, while to RE, CG 211 

shows great sensitivity in Wuyishan and Xinchang and insensitivity in Qilijie at all 212 

temporal scales. CG is the parameter of the recession of groundwater storage and has 213 

an impact on the groundwater convergence process. N reflects the regulation ability to 214 

the water storage in a basin and is closely related to the convergence time of the basin, 215 

its sensitivity increases as the temporal scale increases. And there is no big difference 216 

in the variability of the sensitivity of N among the five basins. The sensitivity of NK, 217 

which represents flow concentration time, tends to be stable with the increase of 218 

temporal scale, while it is lower in small basins than in large ones in this study.  219 

From the above analysis, it can be seen that the sensitivities of SM, KI, KG, CI 220 

and N have obvious temporal characteristics when NSE is the objective function. The 221 

sensitivity of SM, KI and KG decreases as the temporal scales increase, while the 222 

sensitivity of CI and N increases as temporal scales increase. The sensitivity of NK 223 

showed strong spatial characteristics, which increases with the increase of basin area. 224 

When RE is the objective function, the sensitivity of KE decreases as the temporal 225 

scales increase, while the sensitivity of CG decreases with the increase of basin area. 226 

3.2 Parameter posterior distribution among different spatial and temporal scales 227 

    The Shuffled Complex Evolution - University of Arizona (SCE-UA) algorithm is 228 

employed for parameter calibration at different temporal scales in each basin (Jie et al. 229 

2018). Considering the interaction of parameters and the computational efficiency of 230 

the DREAM algorithm, the posterior distribution is only derived from those sensitive 231 

parameters with NSE being the objective function, while the values of insensitive 232 

parameters are fixed using the mean values of optimized results at all temporal scales. 233 
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The box plots of the posterior distribution of sensitive parameters at different temporal 234 

scales in each sub-basin are shown in Fig. 2. 235 

<Fig. 2> 236 

As can be seen from Fig. 2, the value and variation of KE with temporal scales 237 

perform diversely in different basins. Its value increases in Wuyishan and Shuiji but 238 

decreases in other basins. KE controls the total water balance and shows high sensitivity 239 

at all scales. As the temporal scale becomes coarser, the 95% confidence interval widths 240 

of KE constantly increase. The length of input hydrological series shortens with the 241 

data series aggregated to a larger temporal step, which causes the data information loss 242 

and increases parameter uncertainty. 243 

For runoff separation parameters, it can be seen that KI and KG are consistently 244 

increasing with the increase of temporal scales of each sub-basin. The variation of SM 245 

with temporal scale differs in sub-basins, which increases in Xinchang and Qilijie and 246 

decreases in Wuyishan, Shuiji, and Jianyang. At the same time, the 95% confidence 247 

interval of SM, KI, and KG continuously broadens, which means the temporal scale has 248 

an impact on the uncertainty of transferred parameters.  249 

The variation rules of all flow routing parameters with changing temporal scale in 250 

different basins coincide with the values decreasing as the temporal scale becomes 251 

coarser. According to the physical meanings, the lower the values of CI and CG that 252 

relate to the low water part, the longer the water recession. N and NK are instantaneous 253 

unit hydrograph parameters, where the low value represents the high peak. Moreover, 254 

the 95% confidence interval widths of CI and CG constantly increase, while those of N 255 

and NK are unchanged. It can be inferred that the uncertainty of parameters relates to 256 

unit hydrograph method is essentially the same at different temporal scales; therefore 257 

the transfer can achieve good results.  258 
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Compared to the posterior distributions of parameters in Qilijie basin derived by 259 

Jie et al. (2018), most results in the five basins in this study are similar to theirs, 260 

especially in Qilijie basin, which is completely consistent with their results. However, 261 

the posterior distribution of parameters in other sub-basins reflects the following 262 

different spatial variation rules: (1) KE and SM show different variation characteristics 263 

in different sub-basins; (2) the 95% confidence intervals of most parameters are affected 264 

by the sizes of the sub-basins. 265 

3.3 Quantitative relationship of parameters between different basins and temporal 266 

scales  267 

    Based on the median value of posterior distribution and temporal scale, functions 268 

are built according to equations 3 and 4 to transfer parameters across temporal scale in 269 

each sub-basin. On the basis of basin characteristic data including area and runoff 270 

coefficients, spatial functions are built according to equation 5 to transfer parameters to 271 

a specific basin from others from same temporal scale.The goodness-of-fits of temporal 272 

and spatial functions for each sub-basin with different coefficients(Table S2, S3 and S4) 273 

are shown in Table 2 following the order of watershed area from small to large. For 274 

temporal transfer, N and NK present a power function relationship with temporal scales, 275 

while others present a linear relationship. Besides, the goodness-of-fits are mainly over 276 

0.95, indicating that remarkable quantitative relationships exist. For spatial transfer, the 277 

functional relationships between parameters and basin characteristic data are also 278 

obvious with goodness-of-fits mainly higher than 0.9. The effects of transfer functions 279 

for KE, SM and CG are slightly worse than others. And there is no big difference in the 280 

goodness-of-fits of function of each parameter between different basins. Based on the 281 

functions above, the transfer of parameter from another basin and another temporal 282 
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scale is realized by transferring to same temporal scale using temporal function in 283 

another basin first, then transferring across basins using spatial function. 284 

<Table 2> 285 

3.4 Parameter transferability from different temporal scales in five basins 286 

    The transformed parameters from other temporal and spatial scales based on the 287 

functions above are used in the Xinanjiang model to simulate runoff with NSE as an 288 

evaluation index and the results are shown in Fig. 3. For each temporal scale, the median 289 

value of NSE using posterior distribution parameters from itself is higher than those 290 

using parameters transferred from others. Besides, the larger the scale gap of the 291 

transition, the more obvious the loss in NSE. Meanwhile, the 95% confidence interval 292 

of model performance widens and uncertainty increases when parameters are 293 

transferred from a larger temporal scale, which is consistent with the results of Jie et al. 294 

(2018). Besides, as the size of the sub-basin increases, the accuracy of simulation results 295 

using posterior distribution parameters and transferred ones at different temporal scales 296 

gradually improves. This is in line with the analysis of Merz et al. (2009) on the effect 297 

of the basin scale on the model performance who found modeling large basins is easier 298 

to get good results than for small ones. More precipitation gauges are contained in larger 299 

basins, thus the error of average areal rainfall, the driving data in XAJ model, is 300 

relatively smaller, which helps achieve higher accuracy in runoff simulations.  301 

<Fig. 4> 302 

3.5 Parameter transferability from different spatial scales 303 

    By using the derived spatial and temporal transfer functions, transfer parameters 304 

from another spatial and temporal scale are done according to the following situation: 305 

(1) transfer from large basins to small basins; (2) transfer from small basins to large 306 
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basins; (3) transfer between sub-basins of the similar size. Their results are shown in 307 

Fig.4.  308 

<Fig. 4> 309 

(1) Transfer from large basins to small basins 310 

    To verify the performance of the parameters transferred from large basins to small 311 

basins, 4 cases (Jianyang-Wuyishan; Qilijie-Jianyang; Qilijie-Shuiji; Qilijie-Wuyishan) 312 

are adopted, whose performance is shown in Fig.4(a). In the first case, the loss in the 313 

median value of NSE is around 0.025 except at 9 and 12-hour scales. In middle two 314 

cases, the loss of spatial transfer reaches 0.1 at 24-hour scale and remains around 0.05 315 

at others. In the last case, the model loss maintains 0.1 at small temporal scales, 316 

including 1, 3 and 6-hour and decreases at 9, 12 and 24-hour scales. It can be found that 317 

the median values of NSE (Qilijie-Wuyishan) are lower than those (Jianyang-Wuyishan) 318 

at most temporal scales. This indicates that when the parameters of a larger basin are 319 

transferred to a small basin, the transferability of the model may decrease more, which 320 

will lead to the worse performance of transferred model. Besides, the loss caused by 321 

spatial transfer decreases when temporal scale increases from 1 hour to 12-hour.  322 

 (2) Transfer from small basins to large basins 323 

In this situation, there are also 4 cases (Wuyishan-Jianyang; Jianyang-Qilijie; 324 

Shuiji-Qilijie; Wuyishan-Qilijie) adopted for comparison and the results are displayed 325 

in Fig.4 (b). In the first case, the loss of the median NSE through spatial transfer is close 326 

to 0.025 at 24-hour scale and around 0.01 at others. In the second case, the loss is 327 

commonly around 0.02 except at 24-hour scale. The model loss in third case is reaching 328 

0.025 at each temporal scale. In the last case, the loss is around 0.05 at sub-daily scales 329 

and decreases to 0.01 at daily scale. It can be found that the loss of NSE increases with 330 

the increase of the difference between the basin sizes at most temporal scales when 331 
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transferred from small basin to large basin.  332 

 (3) Transfer between sub-basins of the similar size 333 

In this situation, parameters are transferred between similarly sized basins, 334 

Jianyang, Shuiji and Xinchang sub-basins, and their performances are shown in Fig. 335 

4(c). Each row represents the result of parameters transferred from other two basins to 336 

a specific basin. The model performance transferred from Xinchang is worse than that 337 

transferred from Shuiji in the first row, which is more obvious at 1 and 3-hour scales. 338 

In the second row, the loss in both cases in Xinchang at each temporal scale is around 339 

0.05 and the width of 95% intervals of NSE is similar. The only difference is that at 1 340 

and 3-hour scales, the model loss caused by parameters transferred from Shuiji from 341 

coarse temporal scales is smaller than from Jianyang. In the third row, the loss in model 342 

performance in Shuiji is close to 0.05 at each temporal scale and slightly decreases 343 

when the temporal scale becomes coarser from 1-hour to 12-hour. In general, the model 344 

losses caused by transferring parameters among similar sized basins are ≤ 0.05 at most 345 

temporal scales, and little difference exists between the 95% intervals of NSE, thus the 346 

result of spatial parameter transfer can be effective for runoff simulation. 347 

(4) Simulation uncertainty of runoff process based on above three situations 348 

To more intuitively compare the simulation uncertainty of the runoff process using 349 

parameters transferred from different temporal scales and different basins, three typical 350 

floods, including P = 80%, 50% and 1% floods (P is the flood frequency), are selected 351 

based on the frequency analysis of 200 flood events, their median-NSE and ARIL are 352 

shown in Table 3. 353 

It can be seen from Table 3 that as the frequency of the flood becomes lower, the 354 

median-NSE increases and the ARIL decreases, which indicates a better match with the 355 

observed runoff and less uncertainty in model performance. The reason is that the 356 
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observation error of rainfall and flow data is relatively smaller during heavy rainfall 357 

periods, helping to improve the simulation accuracy and reduce the simulation 358 

uncertainty. When parameters transferred from a large basin to a small basin, the 359 

calculated peak times delayed a bit compared to posterior parameters (Fig. S7), which 360 

is mainly caused by the longer concentration time in the larger basin. The difference 361 

becomes more apparent as the scale gap in basins sizes becomes larger and the error in 362 

the simulation of peak value raises. When parameters are transferred from a small basin 363 

to a large basin, the peak current time shifts forward while the flood peak becomes 364 

smaller (Fig. S8). Moreover, the greater the difference in basin size, the more obvious 365 

this phenomenon becomes. The change rule of peak occurring time is opposite to the 366 

previous situation due to the effect of parameters and basins sizes. When parameters 367 

transferred between basins with similar sizes, more uncertainty is observed in the 368 

recession of flood simulation by transferred parameters compared to posterior ones (Fig. 369 

S9). It can be seen from Fig.2 that there exists obvious differences in posterior 370 

distribution of CG between Jianyang and other two basins, which may lead to the error 371 

in recession calculation through spatial transfer. Furthermore, the performance by using 372 

parameters from Shuiji is better than that from Xinchang, especially in the simulation 373 

of peak  (Table 3 and Fig. S9), the reason is that Shuiji is geographically closer and 374 

more similar in aspects of slope and land use to Jianyang than Xinchang according to 375 

Table 1. 376 

4. Conclusions 377 

The sensitivity and transferability of hydrological model parameters across 378 

different temporal and spatial scales are discussed in this study. The Xinanjiang model 379 

is applied to the Jianxi basin and its sub-basins at temporal scales of 1, 3, 6, 9, 12 and 380 
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24-hour for sensitivity analysis of model parameters. Functional relationships are 381 

established and validated for several temporal and spatial scales based on the derived 382 

posterior distribution parameters. The conclusions drawn are as follows: 383 

(1) Some parameters’ sensitivities show obvious temporal characteristics. The 384 

sensitivity of KE, SM, KI and KG decreases with the increase of temporal scales, while 385 

the sensitivity of CI and N increases as temporal scales increase. The sensitivity of NK 386 

and CG shows strong spatial characteristics, for example the sensitivity of NK increases 387 

as the basin area increases, while the sensitivity of CG decreases with the increase of 388 

basin area. 389 

(2) Functional relationships between parameters and temporal scales are built  390 

with goodness-of-fit coefficient higher than 0.95 and verified to perform well in runoff 391 

simulation with a little loss in model performance and an increase in uncertainty when 392 

transferring from coarser scales to finer scales. Larger flow events have relatively 393 

smaller uncertainty at different temporal and spatial scales.  394 

(3) The spatial transfer function built based on basin characteristic data are 395 

remarkable with most goodness-of-fit coefficient higher than 0.9, the effect of which  396 

is greatly influenced by the difference between the basin sizes, and the greater 397 

differences between the transferred basins sizes tend to lead to the larger loss of NSE 398 

for the simulation by using transferred parameters. 399 

(4) Those parameters with strong spatial characteristics, such as NK and CG, show 400 

obvious impacts on the performance of the model transferred from larger/smaller to 401 

smaller/larger basins. NK, the concentration time of basin, has a great influence on the 402 

peak occurring time of the simulation and CG may increase the uncertainty of flood 403 

recession when it is transferred between catchments with different sizes.  404 

However, there are also some limitations in this study. The uncertainty in 405 
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parameters and the model increases when parameters are transferred from coarser to 406 

finer scales, thus more work should be done in future to provide a parameter adjustment 407 

procedure to reduce model uncertainty during transfer across scales. For spatial 408 

transferability, only five basins are considered, which leads to the conclusions may not 409 

be representative. More basins with different characteristics and types should be 410 

selected in future study. As only one lumped model, Xinanjiang model, is considered 411 

in this study, the conclusions cannot be generalised. Therefore, more using hydrological 412 

models will be helpful to enrich the spatial and temporal transferability study for 413 

hydrological modelling. 414 
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Figure 

 

Fig. 1 Variation of parameter sensitivity with different temporal scales in five basins 

(W-Wuyishan; X-Xinchang; S-Shuiji; J-Jianyang; Q-Qilijie) with two different 

objective functions. 



 

Fig. 2 Box plots of posterior distributions for sensitive flow routing parameters in 

each sub-basin with different temporal scales. 



  

 

 

 

Fig. 3 Box plots of NSE values using parameters transferred from different temporal 

scales; color blocks from left to right represent 95% confidence intervals of NSE using 

parameters from calibration, at 1-, 3-, 6-, 9-, 12- and 24-hour time steps 

  



 

Fig. 4 Box plots of NSE values using parameters transferred from different temporal 

scales and basins. The directions of arrows in titles represent the direction of spatial 



transfer. The first color block represents the 95% confidence interval of NSE using 

parameters from calibration, others from left to right represent parameters transferred 

from another basin at 1-, 3-, 6-, 9-, 12- and 24-hour time steps. 

  



Table 

 

Table 1 Characteristic data of Jianxi basin and its sub-basins 

Basin Wuyishan Xinchang Shuiji Jianyang Qilijie 

Area (km2) 1072 3060 3305 4837 14749 

Rainfall runoff coefficient (-) 0.6261 0.6339 0.6476 0.5573 0.5447 

Slope (°) 18.31  17.20  15.18  15.23  15.27  

Farmland (%) 13.24  15.32  13.07  14.47  15.81  

Forest (%) 82.17  79.66  81.52  80.22  78.75  

Meadow (%) 3.25  3.63  3.88  3.82  3.95  

Water body (%) 0.53  0.41  0.59  0.56  0.54  

Bare land (%) 0.81  0.99  0.94  0.93  0.95  

 

  



Table 2 Goodness-of-fits(R2) of the temporal and spatial transfer functions for sensitive 

parameters 

  Scale P W X S J Q P W X S J Q 

Spatial 

1h 

KE 

0.89  0.91  0.89  0.90  0.90  

SM 

0.91  0.93  0.91  0.92  0.92  

3h 0.88  0.90  0.88  0.89  0.89  0.91  0.92  0.90  0.92  0.91  

6h 0.88  0.90  0.88  0.89  0.89  0.90  0.92  0.90  0.91  0.91  

9h 0.86  0.88  0.86  0.87  0.87  0.88  0.90  0.88  0.90  0.89  

12h 0.88  0.89  0.88  0.89  0.89  0.90  0.92  0.90  0.91  0.91  

24h 0.88  0.90  0.88  0.89  0.89  0.90  0.92  0.90  0.91  0.91  

1h 

KI 

0.94  0.96  0.94  0.95  0.95  

KG 

0.94  0.96  0.94  0.95  0.95  

3h 0.93  0.95  0.93  0.95  0.94  0.93  0.95  0.93  0.95  0.94  

6h 0.93  0.95  0.93  0.94  0.94  0.93  0.95  0.93  0.94  0.94  

9h 0.91  0.93  0.91  0.93  0.92  0.91  0.93  0.91  0.92  0.92  

12h 0.93  0.95  0.93  0.94  0.94  0.93  0.95  0.93  0.94  0.94  

24h 0.93  0.95  0.93  0.94  0.94  0.93  0.95  0.93  0.94  0.94  

1h 

CI 

0.93  0.95  0.93  0.94  0.94  

CG 

0.92  0.93  0.92  0.93  0.93  

3h 0.92  0.94  0.92  0.93  0.93  0.91  0.93  0.91  0.92  0.92  

6h 0.92  0.94  0.92  0.93  0.93  0.91  0.92  0.91  0.92  0.92  

9h 0.90  0.92  0.90  0.91  0.91  0.90  0.91  0.90  0.90  0.90  

12h 0.92  0.94  0.92  0.93  0.93  0.90  0.92  0.90  0.92  0.91  

24h 0.92  0.94  0.92  0.93  0.93  0.91  0.93  0.91  0.92  0.92  

1h 

N 

0.96  0.98  0.96  0.97  0.97  

NK 

0.97  0.99  0.97  0.98  0.98  

3h 0.95  0.97  0.95  0.97  0.96  0.96  0.98  0.96  0.98  0.97  

6h 0.95  0.97  0.95  0.96  0.96  0.96  0.98  0.96  0.97  0.97  

9h 0.93  0.95  0.93  0.94  0.94  0.94  0.96  0.94  0.95  0.95  

12h 0.95  0.97  0.95  0.96  0.96  0.96  0.98  0.96  0.97  0.97  

  24h 0.95  0.97  0.95  0.96  0.96  0.96  0.98  0.96  0.97  0.97  

Temporal 

KE 0.98  0.91  0.98  0.99  0.99  SM 0.99  0.95  0.93  0.92  0.95  

KI 0.99   0.99  0.99   0.99  0.98  KG 0.99   0.99  0.98  0.99  0.98  

CI 0.99  0.98  0.99  0.98  0.99  CG 0.99  0.99   0.99   0.99  0.99  

N 0.91  0.95  0.94  0.95  0.99  NK 0.99   0.98  0.99   0.99   0.99  

(P-Parameter; W-Wuyishan; X-Xinchang; S-Shuiji; J-Jianyang; Q-Qilijie) 

  



Table 2 Median_NSE and ARIL for three typical flood events transferred from different 

temporal scale and basin by using posterior distribution parameters. 

  W6 J1-W6 Q1-W6 Q6 J1-Q6 W1-J6 J6 X1-J6 S1-J6 

P=80% 

NSE(Median) 0.75 0.74 0.74 0.82 0.79 0.78 0.75 0.75 0.75 

ARIL(95%) 1.52 1.18 1.18 1.31 1.29 1.29 1.18 1.17 1.17 

P=50% 

NSE(Median) 0.88 0.88 0.88 0.88 0.86 0.86 0.90 0.90 0.90 

ARIL(95%) 0.94 0.85 0.85 1.03 1.03 1.03 1.02 1.02 1.02 

P=5% 

NSE(Median) 0.95 0.92 0.92 0.98 0.98 0.98 0.95 0.95 0.95 

ARIL(95%) 0.88 0.83 0.83 0.99 0.99 0.99 1.00 0.99 0.99 

Note: W-Wuyishan; J-Jianyang; Q-Qilijie; S-Shuiji; X-Xinchang; J1-W6: simulation in 

Wuyishan at 6-hour using parameters transferred from Jianyang at 1-hour, ect. P is the 

flood frequency. 

  



Supplementary material 

Table S1 Description and range of Xinanjiang model parameters 

Classification Parameter Physical meaning Range Unit 

Evapotranspiration 

KE 
Ratio of potential evapotranspiration to 

pan evaporation 
0.6-1.3 - 

X 
the coefficient of the upper layer 

tension water storage capacity 
01-0.6 - 

Y 
the coefficient of the lower layer 

tension water storage capacity 
0.1-0.6 - 

C 
Evapotranspiration coefficient of deep 

layer 
0.15-0.2 - 

Runoff production 

WM 
Areal mean tension water storage 

capacity 
100-200 mm 

B 
Exponent of the tension water-capacity 

distribution curve 
0.1-0.8 - 

IMP Factor of impervious area 0.01-0.1 - 

Runoff separation 

SM Free water-storage capacity 10-80 mm 

EX 
Exponential of distribution of free 

water-storage capacity 
1.0-1.5 - 

KI 
Out flow coefficient of free water 

storage to interflow 
0.01-0.45 - 

KG 
Out flow coefficient of free water 

storage to groundwater flow 
0.01-0.45 - 

Flow routing 

CI 
Recession constant of lower-interflow 

storage 
0.7-1 - 

CG 
Recession constant of groundwater 

storage 
0.97-1 - 

N 
Parameter of Nash unit hydrograph 

(Number of linear reservoirs) 
0.5-12 - 

NK 
Parameter of Nash unit hydrograph 

(Concentration time) 
0.8-25 - 

 

  



 

Table S2 Coefficients of the temporal and spatial transfer functions for sensitive 

evapotranspiration parameter 

Parameter Transfer Scale 105*μ1 μ2 
W X S J Q 

10*μ0 

KE 

Spatial 

1h 1.27  -4.68  -1.88  2.36  -0.63  0.53  -0.39  

3h 1.38  -3.77  -1.95  2.04  -0.31  0.63  -0.42  

6h 1.28  -3.24  -1.72  1.29  0.16  0.67  -0.40  

9h 1.18  -2.71  -1.50  0.87  0.35  0.64  -0.36  

12h 1.28  -1.58  -1.29  0.26  0.71  0.65  -0.33  

24h 1.24  0.68  -0.94  -1.26  1.75  0.78  -0.32  

Temporal - 
10*K 

0.11  -0.07  0.22  -0.08  -0.12  

( W-Wuyishan; X-Xinchang; S-Shuiji; J-Jianyang; Q-Qilijie) 

 

  



Table S3 Coefficients of the temporal and spatial transfer functions for sensitive runoff 

separation parameter 

Parameter Transfer Scale 10^5*μ1 μ2 
W X S J Q 

10*μ0 

SM 

Spatial 

1h -114.75  222.5  184.6  -311.2  128.1  -35.6  34.1  

3h -81.96  241.1  187.8  -300.9  117.1  -39.5  35.5  

6h -77.23  232.8  185.3  -260.1  84.6  -46.6  36.8  

9h -76.32  219.2  191.2  -230.5  55.5  -56.0  39.9  

12h -30.94  269.5  191.5  -212.5  40.1  -59.9  40.8  

24h -30.94  269.5  191.5  -212.5  40.1  -59.9  40.8  

Temporal - 
K 

-0.14  0.53  -0.64  -0.24  0.37  

KI 

Spatial 

1h 0.01  0.03  0.06  -0.04  -0.01  -0.02  0.01  

3h -0.01  -0.11  0.18  -0.10  -0.04  -0.08  0.04  

6h -0.10  -0.37  0.41  -0.30  -0.04  -0.16  0.10  

9h -0.15  -0.53  0.62  -0.41  -0.11  -0.25  0.15  

12h -0.54  -0.91  0.78  -0.46  -0.18  -0.33  0.19  

24h -1.82  -2.82  1.37  -1.17  -0.01  -0.50  0.31  

Temporal - 
K 

0.07  0.04  0.07  0.13  0.11  

KG 

Spatial 

1h 0.04  0.03  0.00  -0.01  0.01  0.00  0.00  

3h 0.15  0.07  -0.02  -0.02  0.03  0.01  -0.01  

6h 0.43  0.41  -0.09  -0.28  0.31  0.11  -0.04  

9h 0.59  0.49  -0.06  -0.52  0.48  0.14  -0.04  

12h 0.56  0.44  -0.07  -0.68  0.62  0.18  -0.05  

24h 0.56  0.44  -0.07  -0.68  0.62  0.18  -0.05  

Temporal - 
K 

0.10  0.09  0.13  0.11  0.11  

( W-Wuyishan; X-Xinchang; S-Shuiji; J-Jianyang; Q-Qilijie) 

 

  



Table S4 Coefficients of the temporal and spatial transfer functions for sensitive flow 

routing parameters 

Parameter Transfer Scale 10^5*μ1 μ2 
W X S J Q 

10*μ0 

CI 

Spatial 

1h -0.02  0.05  -0.01  0.01  0.00  0.00  0.00  

3h -0.03  0.13  -0.03  0.03  0.00  0.01  -0.01  

6h -0.30  -0.24  0.07  0.29  -0.29  -0.10  0.03  

9h -0.45  -0.35  0.10  0.42  -0.42  -0.14  0.05  

12h -0.62  -0.48  0.11  0.54  -0.53  -0.17  0.06  

24h -1.05  -0.90  0.17  0.95  -0.92  -0.29  0.09  

Temporal - 
10*K 

-0.02  -0.01  -0.08  -0.03  -0.06  

CG 

Spatial 

1h -0.01  -0.02  0.01  0.00  0.00  0.00  0.00  

3h -0.02  -0.03  0.01  -0.01  -0.01  -0.01  0.00  

6h -0.04  -0.06  0.03  -0.01  -0.01  -0.01  0.01  

9h -0.05  -0.08  0.04  -0.01  -0.02  -0.02  0.01  

12h -0.07  -0.11  0.05  -0.03  -0.02  -0.02  0.01  

24h -0.07  -0.11  0.05  -0.03  -0.02  -0.02  0.01  

Temporal - 
100*K 

-0.02  -0.07  -0.08  -0.03  -0.04  

N 

Spatial 

1h 8.24  10.49  -3.89  0.30  2.57  2.05  -1.03  

3h 4.59  3.18  -4.14  1.63  1.63  1.91  -1.03  

6h 5.89  0.13  -4.20  -1.88  4.63  2.67  -1.22  

9h 7.47  1.68  -3.45  -2.35  4.48  2.36  -1.04  

12h 8.42  3.53  -1.99  -3.07  4.02  1.72  -0.68  

24h 7.11  1.06  0.79  -0.78  0.08  -0.27  0.17  

Temporal - 
β 

-0.48  -0.57  -0.42  -0.41  -0.20  

NK 

Spatial 

1h 43.77  21.25  -37.26  9.83  18.73  18.20  -9.50  

3h 36.38  33.02  -12.73  -3.78  12.40  7.70  -3.60  

6h 19.53  28.61  -12.28  13.29  -2.29  3.91  -2.64  

9h 11.77  20.45  -8.73  12.01  -3.79  2.24  -1.75  

12h 8.94  18.36  -8.55  13.39  -5.07  1.87  -1.63  

24h 8.94  18.36  -8.55  13.39  -5.07  1.87  -1.63  

Temporal - 
β 

-0.93  -0.83  -0.90  -1.05  -1.05  

( W-Wuyishan; X-Xinchang; S-Shuiji; J-Jianyang; Q-Qilijie) 

  



 

Fig. S1 Geographical distribution of hydrological stations and sub-basins in Jianxi 

basin. 

  



 

 

Fig. S2 Total sensitivity of each parameter with different sampling numbers using two  

different objective functions when the temporal scale is 1 h. 

 

 



 

Fig. S3 Variation of evapotranspiration parameter sensitivity with different temporal 

scales with two different objective functions. 

 

 



 

Fig. S4 Variation of runoff production parameter sensitivity with different temporal 

scales with two different objective functions. 



 

Fig. S5 Variation of runoff separation parameter sensitivity with different temporal 

scales with two different objective functions. 



 

 

Fig. S6 Variation of flow routing parameter sensitivity with different temporal scales 

with two different objective functions. 

  



 

 

Fig. S7 95% confidence intervals of simulated runoff processes for three typical flood 

events at a 6-hour temporal scale using posterior distribution parameters, and 

parameters transferred from a 1-hour temporal scale and from a large basin to a small 

basin. The light-green shadowed regions represent 95% confidence intervals of both 

parameter and model uncertainty. 



 

 

Fig. S8 95% confidence intervals of simulated runoff processes for three typical flood 

events at a 6-hour temporal scale using posterior distribution parameters, with 

parameters transferred from a 1-hour temporal scale and from a small basin to a large 

basin. The light-green shadowed regions represent 95% confidence intervals of both 

parameter and model uncertainty. 



 

Fig. S9 95% confidence intervals of simulated runoff processes for three typical flood 

events at a 6-hour temporal scale using posterior distribution parameters, with 

parameters transferred from a 1-hour temporal scale and a similarly sized basin. The 

light-green shadowed regions represent 95% confidence intervals of both parameter and 

model uncertainty. 

 


