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Abstract 18 

Flash floods are one of the most severe natural disasters throughout the world, 19 

and are responsible for sizeable social and economic losses, as well as countless 20 

injuries and death. Risk assessment, which identifies areas susceptible to flooding, has 21 

been shown to be an effective tool for managing and mitigating flash floods. The 22 

study aims to introduce the methods to determine the weights of the risk indices, and 23 

identify the different risk clusters. In this regard, we proposed a methodology for 24 

comprehensively assessing flash flood risk in a GIS environment, by the improved 25 

analytic hierarchy process (IAHP) method, and an integration of iterative 26 

self-organizing data (ISODATA) analysis and maximum likelihood (ISO-Maximum) 27 

clustering algorithm. The weight for each risk index is determined by the IAHP, 28 

which integrates the subjective characteristics with objective attributes of the 29 

assessment data. Based on the data mining technology, the integration of 30 

ISO-Maximum clustering algorithm derives a more reasonable classification. The 31 

Guangdong Province of China was selected for testing the proposed method’s 32 

applicability, and we used a receiver operating characteristics (ROC) curve approach 33 

to validate the modeling of the flash-flood risk distribution. The validation against the 34 

historical flash flood data indicates a high reliability of this method for comprehensive 35 

flash flood risk assessment. In order to verify the proposed method’s superiority, in 36 

addition, the technique for order performance by similarity to ideal solution (TOPSIS) 37 
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and the weights-of-evidence (WE) methods are used for comparison with the IAHP 38 

and ISO-Maximum clustering algorithm method. Moreover, we analyzed and 39 

compared the regularity of flash floods in the rural and urban areas. This study not 40 

only provides a new approach for large-scale flash flood comprehensive risk 41 

assessment, but also assists researchers and local decision-makers in designing flash 42 

flood mitigation strategies. 43 

Keywords:  Flash flood   Comprehensive risk assessment    Improved AHP 44 

method   ISO-Maximum clustering algorithm   Guangdong Province 45 

1 Introduction 46 

The term ‘flash flood’ is commonly defined as rapidly developing floods that 47 

begin within 3-6 hr of heavy rainfalls or other triggers (Hapuarachchi et al., 2011). To 48 

date, they are considered to be the most widespread, devastating, and abundant 49 

naturally occurring disaster. Contemporary climate projections suggest that the 50 

occurrence of high-intensity rainfall events will increase in many areas of the globe in 51 

the future, and such incidents are the primary cause of extreme flooding (Kvočka et 52 

al., 2016). Previous studies suggest that flash floods rank high among the natural 53 

disasters that result in large scale damage in China in the 21
st
 century, and they are 54 

responsible for approximately 70 deaths and 260 million USD in annual losses 55 

(Centre for Research on the Epidemiology of Disasters, 2017). Thus, the ongoing 56 
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flood risk management is of high importance to reduce casualties and economic losses 57 

(Barredo, 2007; Gaume et al., 2009; Marchi et al., 2010). 58 

Flood risk assessment is an important flood prevention tool, as it offers 59 

significant practical applications in flood risk management and can lead to 60 

improvements in public awareness of flood risk (Yang et al., 2018). The flash flood 61 

disaster system is complex, and includes disaster-causing factors, disaster-pregnant 62 

environments, and disaster-bearing bodies. It has the characteristics of high 63 

nonlinearity, spatial-temporal dynamics, and uncertainty, and coupling of various 64 

challenges in the system may produce extremely complex phenomena (Wei et al., 65 

2001). Therefore, flash flood risk assessment is a difficult task. Our previous research 66 

focused on small-scale flash flood risk assessment based on the TOPMODEL coupled 67 

with the 1D-2D hydrodynamic model MIKEFLOOD under the condition of lacking 68 

hydro-meteorological data (Li et al., 2019). In this study, we intend to develop a 69 

suitable methodology for large-scale flash flood risk assessment despite the data 70 

scarcity. 71 

In recent years, two typical approaches or theories have been developed and used 72 

for deriving regional scientific flood risk maps, i.e. the hydrological-hydraulic 73 

modeling (HHM) method and multi-criteria analysis (MCA) method.  74 

The classical method for analyzing flood-prone areas with different risk levels is 75 

based on the application of hydrological-hydraulic modeling (Cheng et al., 2017; Hu 76 
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and Song, 2018; Löwe et al., 2017; Mandal and Chakrabarty, 2016; Mani et al., 2014). 77 

For example, Mandal et al. (2016) collected data on past rainfall events that triggered 78 

flash floods and applied it to build a simulation model. By using HEC-RAS, and 79 

HEC-HMS Software, they obtained the peak discharge time and volume, as well as 80 

the total inundation area and determined the high flash flood risk in the Sikkim 81 

Darjeeling Himalaya Teesta Watershed. Cheng et al. (2017) employed the InfoWorks 82 

ICM 2D hydrodynamic model to simulate historical and designed rainfall events, then 83 

recorded the simulate water depth and flow velocity for flood risk assessment in the 84 

Jinan City. Löwe et al. (2017) linked the 1D-2D hydrodynamic modeling engine 85 

MIKE FLOOD (DHI, 2013) with the urban development model DAnCE4-Water 86 

(Urich and Rauch, 2014) to consider 9 scenarios for urban development and climate 87 

and 32 potential combinations of flood adaptation measures in Melbourne, Australia. 88 

Hu and Song (2018) applied the two-dimensional hydrodynamic model to simulate 89 

flash flooding in mountain watersheds with a robust finite volume scheme, which can 90 

quickly simulate the rainfall-runoff process and be used for real-time prediction of 91 

large-scale flash floods with high-resolution grids. Other scholars have applied 92 

different hydrological-hydraulic models to carry out numerous and varied studies on 93 

flood risk assessment. However, model simulation methods require much more 94 

high-quality data, as the relevant calculations are very complex (Wang et al., 2011). 95 

Moreover, there are many unmapped large basins where expensive and 96 
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time-consuming hydrological-hydraulic simulations are not possible due to data 97 

scarcity. An additional limitation of the method is that it is not universally applicable 98 

to different regions because it depends on the catchment properties (Kourgialas and 99 

Karatzas, 2011). In these cases, using an alternative effective tool to delineate the 100 

flash flood-prone areas is necessary. 101 

Multi Criteria Decision Analysis (MCDA) method is a modeling and 102 

methodological tool for dealing with complex problems（He et al., 2018; Shen et al., 103 

2016). Especially, it has been widely used in many studies to assess flood risk 104 

(Danumah et al., 2016; Guo et al., 2014; Musungu et al., 2012; Shehata and Mizunaga, 105 

2018; Sowmya et al., 2015; Wang et al., 2011). MCA is a broad term used to describe 106 

a set of methods that can be applied to support the decision-making processes by 107 

considering multiple and often conflicting criteria via a structured framework (Brito 108 

and Evers, 2016). The crucial step is to select the methodologies that calculate 109 

multiple index weights. Analytic hierarchy process (AHP) method has been applied to 110 

flash flood risk assessment with multiple criteria systems (Ghosh and Kar, 2018; 111 

Pantelidis et al., 2018; Shehata and Mizunaga, 2018). AHP has a demonstrated ability 112 

to assess and map flood risk with good accuracy (Danumah et al., 2016). However, 113 

one of the limitations of AHP is its high subjectivity in choosing the weights for each 114 

factor since it is significantly affected by the expert’s experience and knowledge 115 

(Zhao et al., 2017). Thus, some improved AHP methods were further proposed. For 116 
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example, Xie et al. (2011) proposed an information fusion method based on DS-AHP 117 

(Dempster-Shafer and Analytic Hierarchy Process) to deal with uncertainty 118 

information. Zou et al. (2013) introduced fuzzy mathematics in which AHP was 119 

combined with trapezoidal fuzzy numbers to calculate assessment indices’ weights. 120 

Guo et al. (2014) determined the assessment indices weights by combining the 121 

minimum relative entropy principle and the AHP. Zhao et al. (2015) introduced game 122 

theory to correct the one-sidedness of the single weighting method by integrating AHP 123 

weight and entropy weight. Fang et al. (2017) built Grey-AHP model based on the 124 

grey theory to overcome uncertainty resulted from determination of some indices’ 125 

weight. Dahri and Abida (2017) built a function of weights using Monte Carlo 126 

simulation and global sensitivity analysis to improve the AHP. However, these 127 

methods need a lot of detailed data, and the computation processes for all the above 128 

methods are complicated and tedious. 129 

Given the above concerns, the purpose of this study is to propose an integrated 130 

method based upon the IAHP method and ISO-Maximum likelihood clustering 131 

algorithm for large-scale flash flood risk assessment under conditions of data scarcity. 132 

Due to intelligible theories and simple implementation steps, the proposed method 133 

offers general applicability. Performing large-scale flash flood risk assessment in 134 

China and other developing countries is of great significance, as it can guide 135 

stakeholders and government officials to focus on areas prone to flash flood disasters 136 
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and improve regional management and planning efficiency. IAHP is a comprehensive 137 

method for determining weights of the assessment indices, which combines the AHP 138 

weight method and the entropy method to reflect empirical judgments of experts and 139 

objective variability of assessment data. Furthermore, in order to determine the risk 140 

level of different regions, we adopted the ISO-Maximum likelihood clustering 141 

algorithm to conduct clustering analysis. The clustering analysis algorithm is a data 142 

mining technology and thus overcomes the difficulty in determining the risk 143 

classification threshold that is required in traditional flood risk analysis (Xu et al., 144 

2018). Finally, we verified the assessment results qualitatively and quantitatively 145 

using the historical data from flash flood disasters. In previous studies, most 146 

researchers tended to qualitatively verify the flash flood assessment results (Shehata 147 

and Mizunaga, 2018; Zou et al., 2013), so quantitative validation of assessment results 148 

is rarely found. Thus, the receiver operating characteristic technique (ROC) is 149 

introduced to quantitatively evaluate the established model’s accuracy, which is 150 

widely used to assess model accuracy in landslide vulnerability (Bednarik et al., 2010; 151 

Bui et al., 2011), groundwater qanat potential (Naghibi et al., 2015), and flash flood 152 

susceptibility (Khosravi et al., 2018). ROC is flexible enough for a range of 153 

capabilities, and provides a trial for the quantitative validation of the flash flood risk 154 

assessment model. Through the above steps, we obtained a reasonable flash flood risk 155 

distribution map of the study area. The cartographic products are very useful for 156 
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helping decision-makers and map users from various fields (such as strategic planning, 157 

emergency management, or the public) adapt appropriate actions and measures for 158 

flood risk mitigation (Godfrey et al., 2015; Meyer et al., 2012). 159 

Additionally, TOPSIS and WE methods were selected for comparison with the 160 

IAHP and ISO-Maximum likelihood clustering algorithm. TOPSIS is extensively 161 

applied to water resource and environmental problems (Zagonari and Rossi, 2013), as 162 

well as flood risk analysis in previous literature (Chengjie et al., 2017; Lee et al., 2014; 163 

Najafabadi et al., 2016; Radmehr and Araghinejad, 2015). The WE method is also 164 

adapted to flood or landslide risk research and has achieved reasonable results in 165 

interesting areas (Xu et al., 2012; Tehrany et al., 2014; Weed, 2010). Subsequently, we 166 

obtained the results through TOPSIS and WE methods, then compared and discussed 167 

the similarities and differences obtained by the three methods.   168 

The remainder of this paper is structured as follows. Section 2 introduces the 169 

study area and data; while Section 3 shows how we adapted the IAHP method and the 170 

ISO-Maximum clustering algorithm for comprehensive flash flood risk assessment. 171 

Section 4 displays detailed results of the trial region. In Section 5 we present a series 172 

of discussions on the implementation and improvement of the proposed method. 173 

Finally, the conclusions are summarized in Section 6. 174 

2 Study area and data 175 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/environmental-problem
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2.1 Study area 176 

Guangdong Province is located on the southernmost tip of China. It includes the 177 

Pearl River Delta, which is one of China’s most important economic development 178 

zones and is an important part of the Guangdong-Hong Kong-Macao Greater Bay 179 

Area for the national development strategy. Guangdong Province is situated at 180 

20°13′-25°31′N, 109°39′-117°19′E and covers an area of 179,700 km
2
 ( Figure 1). It is 181 

vulnerable to flash floods because of its unusual geographic location and complex 182 

topography. Guangdong Province is one of the wettest areas in China, with an average 183 

annual precipitation of 1789 mm. Drainage systems are numerous and complex, and 184 

primarily consist of Pearl River, Han River, and many other smaller rivers. In addition, 185 

the topography in Guangdong Province is characterized by mountains, hills, platforms, 186 

valleys, basins, and plains interlacing with each other. All these above natural 187 

conditions tend to facilitate the occurrence of flash floods. 188 

Statistical analysis shows that flash floods in Guangdong Province have occurred 189 

in 1182 small watersheds since 1980, in 15 of 69 counties (cities and districts). They 190 

have covered an area of 116,800 km
2
 and affected a population of 27,177,400 people. 191 

About 3.85 million people are regularly threatened by flash floods, of which 3.08 192 

million are living in rural areas and 0.77 million are in towns and cities. Flash floods 193 

also directly threaten the safety of industrial and mining enterprises and important 194 

infrastructure with fixed assets of 98.99 billion RMB. Therefore, it is critical to 195 
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establish a suitable flash flood risk assessment model for regional safety and 196 

development. 197 

2.2 Data 198 

Three types of data were collected for the proposed method in this study: 1) basic 199 

administrative division of the study area; 2) the flash flood risk assessment indices, 200 

including the Digital Elevation Model (DEM) data, terrain slope (SL), rainfall, 201 

drainage, topographic, population, economic, and urbanization data; and 3) records of 202 

historical flash flood events, which are used to verify the assessment results accuracy. 203 

The above data are described in detail in section 1 of the supplementary material. 204 

3 Methodology 205 

The overall framework of the proposed method involves two main components: 206 

(1)  The IAHP method and the ISO-Maximum likelihood clustering algorithm 207 

were used to develop the flash flood risk levels map (Figure 2). 208 

(2)  In order to verify the proposed method that was applied to flash flood risk 209 

assessment, the distribution map of historical flash flood disasters was employed to 210 

qualitatively verify evaluation results and ROC curves were introduced to 211 

quantitatively assess the model accuracy. 212 
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3.1 Conceptual model 213 

Various studies have used different definitions of risk. This study establishes a 214 

conceptual model based on District Disaster System theory (Shi, 1996; Crichton and 215 

Mounsey, 1997). The definition of risk is expressed by Eq. 1 (Maskrey, 1989) : 216 

                 Risk = Hazard + Vulnerability                     (1) 217 

where Hazard is the premise, which mainly describes the natural environment 218 

and hydro-climatic conditions in the assessment area. Vulnerability represents 219 

socio-economic conditions in the region and describes the potential losses. Risk 220 

indicates the probability and potential loss based on different intensity floods. 221 

Therefore, we adopt a general structure in which risk is a function of both the hazard 222 

and vulnerability of the indices at risk. Thus, the conceptual model of regional flash 223 

flood risk assessment can be expressed as: 224 

                                    (2) 225 

where 226 

   （ ）     
 
                             (3) 227 

          
 
                              (4) 228 

            
 
         

 
                       (5) 229 

where    and    represent hazard and vulnerability indices values, respectively, 230 

after standardization treatments.    and    are the hazard and vulnerability index 231 

weights, respectively.  232 
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3.2 IAHP method 233 

a. Selection of risk indices 234 

Flood risk occurrence is a combination of natural and anthropogenic factors, and 235 

the selection of risk index variables varies among study areas according to the specific 236 

characteristics of each location (Tehrany et al., 2013). After carefully considering the 237 

flash flood characteristics associated with hazard and vulnerability in the study area 238 

and reviewing the recommendations throughout the literature, we selected eight 239 

indices based on available data. The four hazard indices consist of: drainage density 240 

(DD), comprehensive rainstorm (CR), slope (SL), and topography (TO); while the 241 

four vulnerability indices are: urbanization ratio (UR), population density (PD), 242 

primary industry proportion (PIP), and per unit area GDP (PUAGDP). The basic data 243 

and detailed process of the eight criteria have showed in the Supplementary Material 244 

(Figure S1), all the abbreviations used in. 245 

b. Calculation of weight 246 

AHP, developed by Saaty (1980), is one of the best known and most widely used 247 

multi-criteria analysis (MCA) approaches. Furthermore, the AHP method has been 248 

shown to comprehensively determine weights by considering the data’s subjective 249 

attributes (Xu et al., 2018). In contrast, entropy is a management approach employed 250 

in the system to prevent disorder, instability, disturbance, and uncertainties inherent in 251 
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that system (Pourghasemi et al., 2014). Entropy offers a method for estimating main 252 

factors among effective factors of an objective. In other words, it determines variables 253 

that are more influential in event occurrence (Haghizadeh et al., 2017). Thus, IAHP 254 

combines the subjectivity of AHP and the objectivity of the entropy weight method to 255 

comprehensively determine the weights of indices. The specific steps for performing 256 

this calculation are as follows: 257 

(1) Entropy weight method to determine weights of risk indices. 258 

Step1:  Assuming that there are m objects and n indices, the judgment matrix R is 259 

constructed. 260 

                                                          (6) 261 

Step2:  The matrix R is transformed into a normalized matrix    to avoid the 262 

effect of the different evaluation data units. 263 

                               
                              (7) 264 

The specific normalization formulas are as follows: 265 

(a) Normalized formula for positive indices: 266 

                         
  

            

                 
                     (8) 267 

(b) Normalized formula for negative indices: 268 

                          i 
  

            

                 
                      (9) 269 



 

15 

 

Step3:  The entropy    of the jth index is defined as follows: 270 

                     
          

 
   

   
                          (10) 271 

where          is set as zero if     is equal to zero and 272 

                                  
 
      i=1,2,3…,m; =1,2,3…n   (11) 273 

Step4:  The entropy weight    is calculated as follows: 274 

                           -                                (12) 275 

(2) AHP method to determine the weights of risk indices 276 

The AHP method uses hierarchical structures to represent the problem, and then 277 

develops the priorities for alternatives based on the user’s judgment. The main steps in 278 

implementing the AHP method are as follows (Saaty, 1980): 279 

Step1:  Break a complex unstructured problem down into its component factors. 280 

Step2:  Develop the AHP hierarchy, the AHP model used in the process flash 281 

flood risk map is shown in Table 1.  282 

Step3:  Design a paired comparison matrix determined by imposing judgments. 283 

In the study, we invited relevant experts to determine the relative degree of 284 

importance between risk indices, which is the basis for the construction of the 285 

judgment matrix (Table 2). 286 

Step4:  Assign values to subjective judgments and calculate the relative weights 287 
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of each criterion. The binary combination for index comparison in Table 3 is based on 288 

a scale proposed by Saaty (1980). 289 

Step5:  Synthesize judgments to determine the priority variables. 290 

Step6:  Check the consistency of assessments and judgments. If the consistency 291 

ratio is < 0.1, then the mentioned matrix can be considered as an acceptable 292 

consistency. 293 

(3) IAHP method to determine the final weights 294 

The determination of index weight should maximize the balance between 295 

subjective intention and objective impartiality to evaluate the results, so the 296 

calculation of the final weight   by the IAHP is as follows (Wang, 2018): 297 

                                                      (13) 298 

Where    denotes the subjective weight determined by the AHP method. 299 

c. Making risk assessment index layers  300 

The geographic information system (GIS)-based method employs a spatial 301 

analysis function for flood risk assessment, and forms visual flood risk maps to provide 302 

useful information for decision-makers (DMs) and insurance companies (Wang et al., 303 

2011). This study mainly uses the ArcGIS Spatial Analysis module function to make 304 

the risk assessment index layers. The specific processing steps are detailed in section 2 305 

of the supplementary material. 306 
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3.3 ISO-Maximum Likelihood algorithm clustering analysis 307 

Clustering is a popular data analysis and data mining technique, which aims at 308 

partitioning a collection of data objects into several groups or clusters, such that 309 

intra-cluster dissimilarity is small and inter-cluster dissimilarity is large. In this study, 310 

the ISODATA clustering algorithm and the maximum likelihood algorithm were 311 

combined for risk clustering analysis. The ISODATA is a widely used partitioning, 312 

unsupervised and iterative clustering algorithm. The fundamental difference between 313 

the ISODATA clustering algorithm and the traditional clustering algorithm is that the 314 

former is a soft classification while the latter is a hard one. Soft classification can 315 

recognize the most essential attributes, and most classification objects are unlikely to 316 

show during the initial cognition or initial classification (Yang and Luo, 2006; Zeng, 317 

2009). A more detailed explanation concerning the ISODATA clustering algorithm 318 

calculation principle is available in Memarsadeghi et al. (2007). 319 

Furthermore, the feature file generated by the ISODATA clustering algorithm is 320 

used as the input file for the Maximum likelihood clustering classification, which can 321 

better control the classification parameters. All the above steps are completed by GIS 322 

techniques, enabling the study to obtain more scientific clustering results for flash flood 323 

risk.  324 
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3.4 Verification 325 

In this study, we conducted both qualitative and quantitative validation of the 326 

assessment results. To begin the qualitative verification, we normalized the historical 327 

data of flash flood events, then summed the normalized values to generate the historical 328 

flash flood loss distribution map in the GIS environment. The qualitative verification 329 

analysis was realized by comparing the historical flash flood loss map with the risk 330 

distribution map. In contrast, the ROC was introduced to quantitatively evaluate the 331 

proposed method’s accuracy, which has rarely done in previous studies. The ROC 332 

curve is a statistical technique that can be used to provide performance predictions and 333 

compare different models (sensitivity vs. specificity) (Bui et al., 2011) , by depicting a 334 

graphical representation of equilibrium between the negative and positive rate of error 335 

for each possible fitness value (Pourghasemi et al., 2014). The curve is a 336 

two-dimensional graph, in which the true-positive rate is plotted on the Y-axis and the 337 

false-positive rate is plotted on X-axis. The area under the ROC curve (AUC) is a 338 

summary of the plot’s information, which can be used to estimate the validity: accuracy 339 

or overall quality of the model (Hosmer and Lemeshow, 2000). If the AUC value is 340 

close to 1, the model accuracy is considered to be high (Bui et al., 2011). In this study, 341 

we selected two representative flood events, including extreme precipitation events 342 

during June 2005 and June 2010. The data from these events were entered into the 343 
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established risk assessment model and used to forecast flash flood likelihood as well as 344 

plot the ROC curves to realize quantitative accuracy analysis. 345 

4 Results 346 

4.1 Weights 347 

Based on the detailed description in Section 3.2, the index weights were 348 

calculated using the IAHP method, which mainly integrates the entropy weight and 349 

the AHP method. To begin, the entropy weights of risk indices in the study area were 350 

calculated, as shown in Table 4. The results in Table 5 indicate that the judgment 351 

matrices pass the consistency test. Table 4 shows that the weight results determined by 352 

the entropy weight and the AHP method are significantly different, so it is more 353 

reasonable to adopt the IAHP method, which comprehensively considers the 354 

subjective judgment and objective data variability. The final index weights are listed 355 

in Table 4. According to the final calculation results, the established evaluation model 356 

can be determined as follows: 357 

            
 
         

 
      0.13                     358 

                                                    ( 14 ) 359 

where R is risk, H is hazard, and V is vulnerability,    and    represent values 360 

of the hazard and vulnerability indices, respectively, after standardization treatments, 361 
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while    and    are the weights for the hazard and vulnerability indices, 362 

respectively. 363 

4.2 Risk distribution 364 

The risk index layer’s distribution map was developed using the GIS techniques 365 

(more detailed data of the study area are given in section 1 of the supplementary 366 

material). Furthermore, following the above calculation steps, we determined the final 367 

weight of each index and multiplied it in classes of that index or values related to each 368 

index. Weighted maps were added up and final maps of flash flood hazard, 369 

vulnerability, and risk were obtained (Figures 3.a.b.c). Finally, the risk clustering map 370 

was generated based on the ISO-Maximum likelihood clustering algorithm (Figure 371 

3.d). 372 

A flash flood risk distribution map that only considers the hazard indices should 373 

be different from one considering both the hazard and vulnerability indices. In general，374 

both maps have similar space patterns: the risk in the northern low mountainous areas 375 

is higher than the southern plain, and the difference in some parts of the study area is 376 

greatly influenced by the socio-economic indices. Some high-level flash flood areas 377 

showed a low-risk level when the socio-economic indices were considered, e.g., 378 

Qujiang, Huidong, and Lechang. In these cases, fewer people, properties and primary 379 

industries are located in the areas with a high flood hazard level. As such, the 380 

casualties and property losses are expected to be lower, even though the risk of 381 
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flooding is high. On the contrary, some areas with a low flash flood hazard level have 382 

significantly high-risk for damage, e.g., Shenzhen, Guangzhou, Yangxi, and Huilai. If 383 

a flash flood occures in these areas, there will be a large number of casualties and 384 

property losses due to the dense populations and high property concentrations. 385 

Therefore, a comprehensive flash flood risk map acts more representative of the study 386 

area due to the involvement of hazard and vulnerability. 387 

According to the results of flash flood risk clustering, three categories of flash 388 

flood risk were compared: low, medium, high. As shown in Figure 3.d, low, medium, 389 

and high-risk zones accounted for 12.51%, 38.59%, and 48.91%, respectively. The 390 

high-risk areas are mainly located in the north, east and southwest parts of Guangdong 391 

Province, and the areas with the highest flash flood risk occurred in Guangzhou and 392 

Baoan. 393 

The mean index value of the three risk levels was calculated in order to analyze 394 

the underlying causes of the risk distribution (Figure 4). As shown in Figure 4, the 395 

high- risk zones generally exhibit higher slopes and are distributed over low 396 

mountainous and hilly regions. Disaster-causing vulnerability indices, including 397 

higher PIP and lower UR more easily induce the flash floods. Thus, the combination 398 

of physical and socio-economic variables could result in a high flash flood risk.  399 

Furthermore, Figure 5 shows 8 index values for each of the 20 selected areas in 400 

the high risk zones: Xuwen, Qingxin, Zijin, Xinfeng, Lianzhou, Wuhua, Xingning, 401 
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Renhua, Dongyuan, Shixing, Longmen, Yangchun, Liannan, Wengyuan, Huaiji, 402 

Yingde, Lianshan, Yangdong, Yangshan, Longgang, Yangxi. As demonstrated in 403 

Figure 5, all the selected areas generally exhibit higher SL and PIP and lower UR. 404 

Moreover, most of the areas are located in low mountain regions. It is also evident 405 

from Figure 5 that most high-risk areas have higher CRV and DD values than the 406 

other areas. In general, high-risk areas tend to have higher slopes, more rainfall, and 407 

developed primary industry, a lower urbanization rate, and be located in mountainous 408 

regions. These counties (districts) should be a priority for carrying out intensive 409 

studies and considering flash flood mitigation measures. 410 

The regularity of flash flooding in the study area was further analyzed by 411 

selecting and comparing 20 typical urban and rural areas. The 8 index values of each 412 

selected area are shown in Figures 6 and 7, and were used to analyze the main 413 

disaster-causing factors. The results demonstrated that the main flash flood 414 

disaster-causing factors in rural areas (Figure 7) show more regularities than urban 415 

areas (Figure 6), which may indicate that the assessment system based on the IAHP 416 

method is more suitable for mountainous areas. For these areas, the flash flood 417 

disaster-causing factors include low-lying terrain (such as middle and low 418 

mountainous areas), lower UR and higher SL, which is consistent with the flash flood 419 

formation theories. The flash flood formation theories emphasize that the terrain in 420 

mountainous rural areas is undulating, and the windward side of the mountains 421 
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provides sufficient water for flash floods. Furthermore, the steep mountains provide 422 

dynamic conditions for downward sliding, which is conducive to the rapid 423 

accumulation of flash flood waters into valleys. Although the disaster-causing factors 424 

of flat urban areas do not depict universal laws, we find high-risk urban areas due to 425 

higher rainfall concentrations. Normally, flash flooding directly in urban areas is 426 

caused by intense rainfall events, which exceed the capacity of the drainage systems 427 

(Blanc et al., 2012; Maksimović et al., 2009). Moreover, inadequate solid-waste 428 

management and drain maintenance can lead to clogged drains, which in turn leads to 429 

localized flooding even with light rainfall (Satterthwaite et al., 2007). 430 

4.3 Verification 431 

The flash flood historical loss distribution map was derived using the method 432 

detailed in the supplementary material (Figure S2), and then overlapped with the flash 433 

flood risk distribution map in Figure 8. Results showed that the middle, high-risk areas 434 

cover the counties (districts) with severe historical flash flood losses, which 435 

preliminarily demonstrates the reliability and rationality of the assessment results. The 436 

data also showed that the risk to developed areas along the coast is overestimated, 437 

mainly because of excessively abundant rainfall and the concentrated population and 438 

economy. 439 

Next, the ROC curves were plotted based on the true-positive and flash-positive 440 

degree of identified flash floods as the classification threshold varies. According to the 441 
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two ROC curves, the AUCs were 0.693 and 0.729 for the selected flash flood events 442 

(Figure 9). This indicates that the established flash flood assessment model has 443 

relatively good accuracy. 444 

In summary, we obtained relatively reasonable and reliable risk assessment results 445 

for Guangdong Province using the IAHP and ISO-Maximum likelihood clustering 446 

algorithm. Furthermore, the results were verified as described above. Thus, the flash 447 

flood risk map exhibits practical application in regional unity planning and flash flood 448 

prevention in the Guangdong Province. 449 

5 Discussions 450 

5.1 Comparison of methods 451 

The TOPSIS method and EW method were compared to the IAHP method to 452 

validate the proposed approach in flash flood risk assessment. Figures 10 and 11 453 

present the flash flood risk maps developed by the TOPSIS and EW methods. 454 

Using the TOPSIS method, we produced a risk distribution similar to the 455 

assessment results of the IAHP and ISO-Maximum clustering algorithm. In addition, 456 

the flash flood risk spatial distribution is approximately identical to the PIP 457 

distribution map, more detailed data of study area are displayed in section 1 of 458 

supplementary material (Figure S1.g). Furthermore, the proportion of high-risk zones 459 

is extremely low (approximately 11.17%), and the maximum and minimum risk 460 
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values are higher and lower, respectively, than the results of our proposed method. In 461 

addition, by comparing the distribution maps of historical flash floods disaster losses, 462 

it becomes clear that the risk of many flash flood disaster-prone areas in northeast and 463 

west of Guangdong Province, such as Gaozhou, Huazhou, Wuhua, Zijin, Dongyuan, 464 

etc., is obviously underestimated. This comparison indicates that the assessment 465 

results from the TOPSIS method are potentially problematic and inferior to the 466 

method proposed in this paper. 467 

For the flash flood risk distribution, there are noticeable differences between the 468 

EW method and the IAHP method. The results shown in Figure 11 are simply 469 

unreasonable, as they indicate that the high-risk areas are located in the southwest and 470 

east of Guangzhou, while the risk in the northern mountainous areas is lower. 471 

Furthermore, comparison with the distribution of the historical flash flood losses 472 

indicates that the risk in northern Guangdong Province is obviously underestimated. 473 

These results show that the IAHP method is more reasonable than the EW method. 474 

5.2 Advantages and limitations 475 

The IAHP and ISO-Maximum likelihood clustering algorithm were proposed to 476 

assess large-scale flash flood risk and were applied to the Guangdong Province as a 477 

case study. The results show that the proposed framework can achieve more reliable  478 

results in large-scale flash flood risk assessment. The methodology has the following 479 

advantages: (1) The model’s construction theory is intelligible. The theoretical basis 480 
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of the model is flash flood risk formation mechanisms, which builds a conceptual 481 

model from two aspects of vulnerability and hazard. (2) The IAHP method is adapted 482 

to effectively determine the weights of different risk indices. It takes the objective 483 

characteristics of data and the empirical judgment of experts into account. (3) Data 484 

mining technology ISO-Maximum likelihood clustering algorithm is used for 485 

clustering analysis, which overcomes the deficiency in traditional flash flood risk 486 

classification and obtains more reasonable classification results. (4) A series of 487 

appropriate operations in the GIS environment improved situations where data deficits 488 

originally limited evaluation of flash flood risk, with high efficiency and flexibility.  489 

However, the proposed approach also has some limitations. In large-scale studies, 490 

a regional economic development gap will lead to a great change in social 491 

vulnerability indices data, and the weights of vulnerability indices are slightly 492 

overestimated by the proposed method. The regional economic development of the 493 

study area is extremely unbalanced, as the Pearl River Delta region is more developed, 494 

while other regions are less developed. Therefore, the variation range of vulnerability 495 

indices is much larger than that of the hazard indices, which results in the weights of 496 

vulnerability indices being overestimated by the IAHP method. This is also part of the 497 

reason why the risk in economically developed areas, such as Shenzhen and 498 

Guangzhou, is overestimated. In the future, this problem can be improved by 499 

acquiring more detailed data and increasing relative risk indices. Moreover, more 500 
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detailed work would focus on waterlogging disasters in these urban cities in the future 501 

(Yang et al., 2019; Zhu et al., 2019).  502 

When compared to other alternatives, the proposed method has greater 503 

reproducibility and applicability, and can obtain relatively good evaluation results 504 

based on basic theories and simple operation processes. There are reasons to believe 505 

that this method will offer preferable assessment results with the support of high 506 

accuracy and abundant data.  507 

5.3 Improvement 508 

Based on our study, the following measures should be considered to further 509 

improve the IAHP and ISO-Maximum likelihood clustering algorithm in flash flood 510 

risk assessment: 511 

First, physical and social vulnerability factors should be taken into account when 512 

analyzing regional vulnerability (Karagiorgos et al., 2016). In this study, only the 513 

physical vulnerability was considered with the socio-economic and demographic 514 

indicators. More social vulnerability factors are expected in order to improve 515 

assessment accuracy, including residency length, the degree of solidarity, the trust of 516 

people living in the area, and participation in local associations, etc. (Hurlbert et al., 517 

2000; Kuhlicke et al., 2011). 518 

Second, the variables that trigger flash floods are complex. Accordingly, it is less 519 
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reasonable to adopt a unified evaluation index system, and risk indices should be 520 

determined based on the different regional characteristics. 521 

Third, in order to compute the overall risk, weights calculated by the AHP and 522 

entropy method are given equal weight, but some adjustments may be needed in the 523 

future studies. The huge gap in regional socio-economic development will lead to 524 

overestimation of the vulnerability factor weights. Hazard indices are the source for 525 

flash floods. If there was no adverse environment to form flash floods, then no loss 526 

would be induced, and the region would not suffer hazards. 527 

Finally, numerous studies focus on flash flood risk in spatial dimension rather 528 

than temporal. Thus, determining how to effectively integrate real-time information to 529 

establish a dynamic flash flood risk assessment model in the future is currently a hot 530 

issue (Adams et al., 2019, Shirisha et al., 2019, Zhang et al., 2019a, Zhang et al., 531 

2019b). There is no doubt that flash flood assessment will be strengthened by 532 

collaboration with other disciplines, such as radar technology and remote sensing. 533 

5.4 Prevention of flash floods 534 

This study indicates that most areas in Guangdong Province are encountering 535 

high or medium flash flood risks; thus some kinds of appropriate methods are needed 536 

to mitigate flash flood risk. Mitigation measures vary, ranging from physical measures, 537 

such as flood defense or safe building design, to legislation, and training and 538 
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improving public awareness. Public officials are suggested to provide some flood 539 

control engineering supports in flood-prone areas, such as embankment construction 540 

and channel improvement, etc. Furthermore, flash flood risk maps have been shown to 541 

greatly support planners and engineers to select suitable locations for implementation 542 

of flash flood control measures. For Guangdong Province, the government should also 543 

focus on renovating aging and damaged flood control facilities. These measures can 544 

provide substantial protection for flash floods in areas prior to such events. 545 

Furthermore, flash flood warning systems (FFEW) present a more efficient 546 

approach to flood prevention and mitigation than engineering measures (Li et al., 547 

2018), which can provide real-time forecasting based on developed technologies. The 548 

government should increase the density of weather, rainfall, and river monitoring 549 

networks and develop radar and satellite technology for acquiring high-quality 550 

real-time data. Moreover, the government should also expand the options enabling the 551 

masses to receive and share real-time flash flood information-e.g., creating relative 552 

applications (APPs). 553 

Protecting people from flash flood disasters is a race against time (Li et al., 2018), 554 

as in many areas, the question is not if it will happen, but when. In addition to 555 

delivering real-time and useful information, it is also important to improve human 556 

response to flash flood disasters. These approaches should be considered for 557 

enhancing the public’s ability to cope with flash floods, such as promoting the 558 
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knowledge of flash flood escape routes and conducting regular flood control exercises 559 

and evacuation drills. 560 

By using a combination of the above measures, we believe that the flash flood 561 

risk can be effectively mitigated, thus reducing the devastation caused by flash floods 562 

to human society.  563 

6 Conclusions 564 

Flash flood risk assessment is unquestionably helpful for avoiding and/or reducing 565 

death and destruction from flooding. In addition, knowledge and scientific 566 

understanding of flash flood risk distribution are clearly beneficial to policymakers, as 567 

well as the public. The study provides a new approach for large-scale flash flood 568 

comprehensive risk assessment with data scarcity, which integrates IAHP with 569 

ISO-Maximum clustering algorithm. In the proposed method, the IAHP approach was 570 

used to determining the weights of risk indices, which additionally considers entropy 571 

weights to modify the subjectivity of traditional AHP. It is the important step to realize 572 

a comprehensive assessment. The ISO-Maximum likelihood clustering algorithm was 573 

used to resolve the artificial determination of the flash flood risk clusters’ threshold, 574 

which could obtain more reasonable classification results. Besides, the ROC curve 575 

was introduced to evaluate the accuracy of flash flood risk assessment model 576 

quantitatively, which was rarely shown in previous studies. Conclusions are drawn as 577 

follows:  578 
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(1) The good agreement between the assessment results and historical spatial 579 

patterns of the flash flood events indicates that the IAHP and ISO-Maximum 580 

clustering algorithm method exhibits good suitability for practical applications.  581 

(2) The results of the study area indicate that flash flood risk of Guangdong 582 

Province is classified into three categories: low, medium, and high. Most of the 583 

areas are located in middle- or high-risk level, and high-risk zones account for 584 

48.91% of total area. In general, the assessment result matches well with the 585 

historical data of flood events. Meanwhile, the credibility and reliability of the 586 

results derived from the proposed method are obvious as compared with the 587 

TOPSIS and WE methods. 588 

(3) We further analyzed the regularity of flash flooding through the assessment 589 

results in the study area. The high-risk blocks mainly cover in the north, east and 590 

southwest of study area. The main indices cause the high-risk including higher 591 

SL, CRV, lower UR and complex terrain. For rural areas, the flash flood 592 

disaster-causing factors include low-lying terrain, lower UR and higher SL. 593 

Higher rainfall concentrations are the disaster-causing factor to flash flood of 594 

urban areas where are more prone to waterlogging disasters.  595 
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Table 1  793 

AHP hierarchy model of the study area 794 
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Judgment matrices in AHP 797 
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Scale Judgment of preference Description 

1 Equal Importance Two factors contribute equally to the objective 

3 Moderate Importance 

Experience and judgment slightly favor one over 

the other 

5 Essential Importance 

Experience and judgment strongly important 

favor one over the other 

7 Very/strong Importance 

Experience and judgment strongly important 

favor one over the other 

9 Extreme Importance 

The evidence favoring one over the other is 

of the highest possible validity 

2,4,6,8 

Intermediate preference between 

adjacent scales 

When compromised is needed 

 801 

Table 4 802 

Determination of the index weights of assessment indices 803 

Methods 

Index 

SL DD CRV TO UR PD PIP PUAGDP 
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AHP 0.210 0.075 0.225 0.090 0.080 0.120 0.080 0.120 

Entropy weight 0.057 0.017 0.046 0.064 0.049 0.238 0.072 0.457 

Improved AHP 0.134 0.046 0.136 0.077 0.064 0.179 0.076 0.289 

 804 

Table 5 805 

The consistency test matrices by the relative experts for flash flood risk 806 

assessment.  807 

Judge matrix max  m RI CI CR Consistency 

H-V 2 2 \ 0 0 Yes 

Hazard-Index 4 4 0.89 0 0 Yes 

Hazard-Index 4 4 0.89 0 0 Yes 

max , m, RI, CR and CI represent the  udgment matix’ largerst eigenvalue, order,  808 

random consistency idicator, random cnsistency index and consistency ratio, 809 

respectively. 810 

 811 

 812 

 813 

 814 

 815 
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List of Figures 816 

Figure 1  Location and administrative divisions of study area, Guangdong 817 

province consists of 21 prefecture-level cities and 37 counties (districts). 818 

Figure 2  The overall framework of flash flood assessment. 819 

Figure 3  Spatial distribution of flash flood vulnerability, hazard, risk and risk 820 

clusters in study area. 821 

Figure 4  Mean normalized index values of the assessment indices of different 822 

risk levels. 823 

Figure 5  Normalized index values of the assessment indices of selected areas in 824 

the high risk level. 825 

Figure 6  Normalized index values of the assessment indices of the selected 826 

urban areas in the high risk level. 827 

Figure 7  Normalized index values of the assessment indices of the selected 828 

rural areas in the high risk level. 829 

Figure 8  Verification result. Comparison between historical disaster losses and 830 

risk distribution of flash flood. 831 

Figure 9  ROC curves of flash flood potential forecasting map. The left ROC 832 

curve map is the forecasting result of the extreme precipitation events during the June 833 

2005, and the right is the extreme precipitation events during the June 2010. 834 
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Figure 10  Spatial distribution of flash flood risk is developed by the TOPSIS 835 

method in study area. 836 

Figure 11  Spatial distribution of flash flood risk is developed by the EW 837 

method in study area. 838 
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