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Abstract

With the introduction of the exchange-traded German wind power futures,
opportunities for German wind power producers to hedge their volumetric
risk are present. We propose two continuous-time multivariate models for
the wind power utilization at different wind sites, and discuss the proper-
ties and estimation procedures for the models. Employing the models to
wind index data for wind sites in Germany and the underlying wind index
of exchange-traded wind power futures contracts, the estimation results
of both models suggest that they capture key statistical features of the
data. We argue how these models can be used to find optimal hedging
strategies using exchange-traded wind power futures for the owner of a
portfolio of so-called tailor-made wind power futures. Both in-sample and
out-of-sample hedging scenarios are considered, and, in both cases, signif-
icant variance reductions are achieved. Additionally, the risk premium of
the German wind power futures is analysed, leading to an indication of
the risk premium of tailor-made wind power futures.

JEL Classification: C3, G1, Q4.

Keywords: multivariate Ornstein-Uhlenbeck process; wind power futures; hedg-
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1 Introduction
In the power market, producers in general face market risk in the sense of
uncertainty of the prices at which they can sell their generated power. The
intermittent nature of renewable energy sources such as wind and photo voltaic
power production adds yet another layer of risk, known as volumetric risk in the
sense that the produced amount of electricity is uncertain due to the dependence
on weather. Globally, so-called power purchase agreements and subsidies from
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governments have minimized the market risk for renewable power producers. In
contrast, the volumetric risk has only recently been addressed in Germany—and
only for wind power producers (WPPs)—by the introduction of the exchange-
traded wind power futures (WPF) contracts. The underlying of a WPF contract
is an index between zero and one representing the overall utilization of the
installed German wind power production. By taking an appropriate position
in WPF contracts, the lost income of the WPPs implied by low wind scenarios
is (partially) offset by the position in WPF contracts, hence minimizing the
volumetric risk. Due to the prioritization of the cheapest power producers in
Germany, the opposite part of the WPF market is typically conventional power
producers (CPPs) such as gas-fired power plants. By taking an appropriate
position in exchange-traded WPF contracts, CPPs can hedge their exposure to
the cheap electricity generated by WPPs.

In consequence of the recent introduction of the WPF market, the related
literature is limited. [10] consider the WPF market in great detail, and propose
an equilibrium pricing model. They find that the willingness to engage in the
WPF market is greater for the WPPs compared to CPPs. In other words, the
hedging benefits of the WPF contracts are greater for WPPs than CPPs. This
is supported by the results in [8] who employ an ARMA-GARCH copula frame-
work to the joint modelling of one site-specific wind index and the underlying
WPF index. In [6] modeling of the underlying WPF index is considered and
closed-form formulas for the WPF price and the price of European options writ-
ten on the WPF index are derived. A common feature of the mentioned articles
is that they do not consider the simultaneous modeling of more than two wind
indexes. Considering a portfolio of wind generation sites, where the production
of electricity at each site is represented by the wind index at each wind site,
a simultaneous model for the wind indexes at several wind sites is motivated
for e.g. risk management of this portfolio. To the best of our knowledge, such
simultaneous model is unexplored in the literature.

One way of constructing such simultaneous model is by using Lévy processes.
Continuous-time modeling using univariate Ornstein-Uhlenbeck (OU) processes
driven by non-decreasing Lévy processes, like the compound Poisson process
with exponential jumps, have been studied extensively, and used to model, for
example, stochastic volatility of financial assets, wind, electicity prices, and tem-
perature (see [3, 4, 5, 6]). A detailed treatment of Lévy processes can be found
in [15]. The multivariate modeling of more than two stochastic processes using
multidimensional non-Gaussian Lévy processes is, however, more limited. Here
we mention the work of [12] and [16] that introduce the multivariate construc-
tion by subordination of Brownian motions, and the work of [2] using linear
transformations of Lévy processes.

Our contribution to the literature is twofold. Firstly, we propose a joint
model for the simultaneous behaviour of wind indexes that allows for a parsi-
monious representation of the correlation structure. This model can be seen as
the multivariate version of the model presented in [6]. As a consequence of the
scarce literature on such multivariate models, we propose an alternative model
for comparison reasons. Secondly, we suggest the idea of so-called tailor-made
WPF contracts to eliminate the volumetric risk of WPPs completely. Employing
our proposed joint model of wind indexes, we investigate the hedging benefits of
exchange-traded WPF contracts for an owner of a portfolio of tailor-made WPF
contracts, and comment on the risk premium of tailor-made WPF contracts. We
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show that this construction is beneficial for both parties of the tailor-made WPF
contracts.

The rest of the paper is organized as follows. Sec. 2 presents the data of
wind indexes we later analyze in greater detail and also serves as motivation
for the proposed model. In Sec. 3 we present models for the joint behaviour
of wind indexes and corresponding estimation procedures. In Sec. 4 we present
the estimation results of the two models. Sec. 5 discusses the hedging of wind
power production using WPF contracts implied by the proposed models. Lastly,
Sec. 6 concludes.

2 Data presentation
The empirical observation period spans from 1 July 2016 to 30 June 2019, which
corresponds to 1095 daily observations for each considered wind index. The data
set consists of

1. A daily wind index at three wind sites provided by Centrica Energy Trad-
ing. The wind index at wind site i is calculated by

Qi(t)

h(t)Ci
,

where h(t) is the number of hours in day t, Qi(t) is the power production
at day t at site i, and Ci is the installed capacity at site i. Figure 1 shows
the approximate geographical locations for the three wind sites.5

2. A daily German wind index provided by Nasdaq, representing the German
utilization of wind power plants. The acronym used for it is NAREX
WIDE (NAsdaq REnewable indeX WInd DE (Germany)) and is used as
the underlying for WPF contracts traded on Nasdaq. We will simply
denote it as the German wind index in the remaining part of the paper.

The wind indexes are bounded between zero and one. Fig. 2 shows all four
wind indexes, and the corresponding autocorrelation function for each wind
index. In all four cases, the wind index displays a pronounced yearly cycle
consistent with the observations made in [6] and [8]. Since the German wind
index is by construction made up of all wind power production in Germany, the
behaviour of the German wind index is less extreme compared to the individual
wind indexes. To concretize, a value of zero for the German wind index is not
observed in our observation period, whereas it is for all three wind sites. Also the
maximum attained value for each site wind index is higher than the maximum
value of the German index; however, it does not reach one in any of the cases.

3 Model description

3.1 General model considerations
Let n denote the number of wind sites and Pi(t) the ith wind index. We assume
that the ith wind index can be described by

Pi(t) = 1− e−Si(t)Xi(t), i = 1, . . . , n, (3.1)
5The locations are approximate due to confidentially issues.
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Figure 1: Locations of wind sites with site ID in Germany.

where Si(t) : R → R+ is a deterministic function intended to filter out poten-
tial seasonal effects, and Xi(t) is a mean-reverting stochastic process satisfying
Xi(t) ≥ 0 for all t. The intention of X(t) = (X1(t), ..., Xn(t))> is to capture the
short-term uncertainty and the dependence between the n wind indexes. By
this specification we are ensured that Pi(t) ∈ [0, 1).

The proposed model in Eq. (3.1) distinguishes itself from the specification
in [6], where the natural extension of their univariate setup to the present mul-
tivariate setup would be

Pi(t) = Si(t)e
−Xi(t). (3.2)

with appropriate choices of Xi(t) and Si(t). We do, however, prefer Eq. (3.1)
over Eq. (3.2) for the following reasons. Firstly, due to our specification with
regard to the deterministic part Si(t) of the model, we do not face any potential
model inconsistencies as is the case of Eq. (3.2). We refer the interested reader
to [6] for more information and discussion. Secondly, as discussed in Sec. 2,
the wind index at a given site can attain a value of zero, whereas, on the other
hand, we have not observed full utilization of the capacity at a single wind site.
Since [6] consider the German wind index separately, which is never zero or one
due to the construction of it, Eq. (3.2) is applicable without any modifications.
Lastly, Eq. (3.1) implies that increased values of Si(t) and Xi(t) translate to
an increased value of Pi(t), which is more intuitively appealing. In Eq. (3.2),
increased values of Si(t) will still translate to increased values of Pi(t), but here
increased values of Xi(t) translates to decreased values of Pi(t).

Moving on to the seasonal components of the model, we include the following
yearly seasonality motivated by the observations made in Fig. 2,

Si(t) = ai + bi sin(2πt/365) + ci cos(2πt/365), i = 1, . . . , n,

where ai, bi, ci ∈ R. With N being the number of observations, the coefficients
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(a) Wind index at site 1
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(b) Autocorr. of site 1
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(c) Wind index at site 2
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(d) Autocorr. of site 2
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(e) Wind index at site 3
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(f) Autocorr. of site 3
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(g) German wind index
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(h) Autocorr. of German

Figure 2: All four wind indexes with corresponding empirical auto-correlation
function.
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are determined by

min
ai,bi,ci

N∑
t=1

[− log (1− Pi(t))− Si(t)]2 , i = 1, . . . , n.

Having obtained the estimated seasonal functions, the observed values of Xi(t)
implied by the estimated seasonal function Ŝi(t) can then be calculated as

Xi(t) =
− log(1− Pi(t))

Ŝi(t)
. (3.3)

We will in the following discuss two approaches for modeling Xi(t).

3.2 A gamma model
In this section a multivariate model for n − 1 wind indexes and the German
wind index is discussed, which we refer to as the gamma model in the sequel.
In Sec. 4 we will consider the case n = 4. We start by introducing the noise
process. In particular, we say a Lévy process L is a compound Poisson process
with exponential jumps and parameters α > 0 and β > 0 if

L(t) =

N(t)∑
i=1

Ji

where (N(t))t∈R is a Poisson process with intensity α and Ji, i ∈ N, are inde-
pendent exponentially distributed random variables with parameter β. We say
a random variable has an exponential distribution with parameter β if it has
density x 7→ 1[0,∞)(x)βe−βx.

The gamma model assumes X is a multidimensional Lévy-driven Ornstein-
Uhlenbeck (OU) process,

dX(t) = −ΛX(t)dt+ ΣLdL(t). (3.4)

Here, L is an n-dimensional Lévy process where the i’th entry is an independent
compound Poisson process with exponential jumps, variance equal to one, and
parameters αi and βi for i = 1, . . . , n. Furthermore, Λ is a diagonal matrix,
diag(λ1, . . . , λn) with λi > 0 for i = 1, . . . , n. We assume ΣL is given by

ΣL =


σ1,1 0 . . . 0 σ1,n

0 σ2,2 . . . 0 σ2,n

...
...

. . . 0
...

0 0 0 σn−1,n−1 σn−1,n

0 0 0 0 σn,n

 (3.5)

and that all entries of ΣL are non-negative. Due to the form of ΣL, each
individual wind index has an idiosyncratic risk associated to it through one
of the first n − 1 compound Poisson process L1, . . . , Ln−1. Furthermore, all
sites and the German index share a systematic risk through the n’th compound
Poisson process Ln. A similar construction is also considered in [2] where a
multivariate model is proposed for modeling financial products written on more
than one underlying asset.

6



0 0.2 0.4 0.6 0.8 1

x

0

1

2

3

4

5

D
e
n
s
it
y

alpha = 0.5, beta = 3

alpha = 1.5, beta = 3

alpha = 3, beta = 2.5

alpha = 1.5, beta = 5

Figure 3: Different variations of the density in (3.6)

3.2.1 Distribution of Pn(t) in the gamma model

The process associated with the German wind index, Xn, is an OU process
driven by one compound Poisson process with exponential jumps, and it there-
fore has a gamma distribution as its stationary distribution. The processes
X1, . . . , Xn−1 on the other hand are sums of two independent gamma distribu-
tions. The density of a sum of two independent gamma distributions does not,
in general, have a closed form, and thus, there does not exist simple expressions
for the densities of the individual site index similar to the one for the German
index stated in Prop. 3.1.

Proposition 3.1. The stationary distribution of Pn(t) in the gamma model has
density

fPn(t)(x) =
(− log(1− x))αn−1(1− x)βn/Sn(t)−1

Sn(t)αn
x ∈ (0, 1) (3.6)

Proof. This is a direct consequence of Xn(t) being gamma distributed with
shape αn and rate βn (see for example [3]).

In Figure 3 the density of Pn is depicted for different αn and βn (with
Sn(t) = 1). We see that the densities implied by the gamma model are rather
flexible and able to cover both low and high utilization scenarios.

3.2.2 Covariance between wind indexes in the gamma model

We now give (semi-)analytical expressions of the covariances implied by the
gamma model, which will be useful for fast calculation of the minimum variance
hedges discussed in Section 5.

Before we state the result, let us introduce some notation to help making a
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concise statement. To this end define the n× (n+ 1) matrix Σ̃L by

Σ̃L =


σ1,1 0 . . . 0 0 σ1,n

0 σ2,2 . . . 0 0 σ2,n

...
...

. . . 0 0
...

0 0 0 σn−1,n−1 0 σn−1,n

0 0 0 0 0 σn,n


where σi,j is the (i, j)’th entry of ΣL. Let σ̃i,j denote the (i, j)’th entry of Σ̃L.
Furthermore, define α̃, β̃ ∈ Rn+1 by

α̃ = (α1, . . . , αn−1, 0, αn)> and β̃ = (β1, . . . , βn−1, 1, βn)>,

and denote the i’th entry of α̃ and β̃ by α̃i and β̃i. We now give the expressions
of the covariances of the gamma model. The proof is relegated to the Appendix.

Proposition 3.2. Consider s ≤ t and define

fi,j(u) = Si(t)σ̃i,n+1e
−λi(t−s+u) + Sj(s)σ̃j,n+1e

−λju, i, j = 1, . . . , n.

Then

cov(Pi(t), Pj(s))

=

(
β̃i

β̃i + σ̃i,iSi(t)

)α̃i/λi
(
β̃n+1 + σ̃i,n+1Si(t)e

−λi(t−s)

β̃n+1 + σ̃i,n+1Si(t)

)α̃n+1/λi

×

(
β̃j

β̃j + σ̃j,jSj(s)

)α̃j/λj
[(

1 +
fi,j(0)

β̃n+1

)α̃n+1fi,j(0)/f ′
i,j(0)

× exp

{
α̃n+1

∫ ∞
0

d

du

(
fi,j(u)
d
dufi,j(u)

)
log

(
1 +

fi,j(u)

β̃n+1

)
du

}

−

(
β̃n+1

β̃n+1 + σ̃i,n+1S4(t)e−λi(t−s)

)α̃n+1/λi
(

β̃n+1

β̃n+1 + σ̃j,n+1Sj(s)

)α̃n+1/λj


(3.7)
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for i, j = 1, . . . , n, i 6= j, and

cov(Pi(t), Pi(s))

=

(
β̃i+ σ̃i,iSi(t)e

−λi(t−s)

β̃i + σ̃i,iSi(t)

)α̃i/λi
(
β̃n+1 + σ̃i,n+1Si(t)e

−λi(t−s)

β̃n+1 + σ̃i,n+1Si(t)

)α̃n+1/λi

×

( β̃i

β̃i +
(
Si(t)e−λi(t−s) + Si(s)

)
σ̃i,i

)α̃i/λi

×

(
β̃n+1

β̃n+1 +
(
Si(t)e−λi(t−s) + Si(s)

)
σ̃i,n+1

)α̃n+1/λi

−

 β̃2
i(

β̃i + σ̃i,iSi(t)e−λi(t−s)
)(

β̃i + σ̃i,iSi(s)
)
α̃i/λi

×

 β̃2
n+1(

β̃n+1 + σ̃i,n+1Si(t)e−λi(t−s)
)(

β̃n+1 + σ̃i,n+1Si(s)
)
α̃n+1/λi


(3.8)

for i = 1, . . . , n.

The integral in Eq. (3.7) is the only non-analytical part of the expression,
but we argue in Remark A.3 that this integral is small and can be coarsely
approximated without significant effect. This allows us to maintain a fast com-
putational speed when calculating the covariances. To further this point, we
find a compute time, when evaluating (3.7) or (3.7) numerically 1, 000 times, of
around 0.03 seconds on a standard laptop implemented in Matlab R© R2018b.

3.2.3 Identification of parameters in the gamma model

Let Λvar be the n× n matrix given by

(Λvar)i,j =
1

λi + λj
.

Furthermore, denote by ◦ the Hadamard product. Then the following result will
be used to estimate the parameters of the gamma model. Again, we relegate
the proof of Proposition 3.3 to the Appendix.

Proposition 3.3. The mean of X is

E[X(0)] = Λ−1ΣLβ/2 (3.9)

and the auto-covariance of X is

cov(X(0), X(t)) =
(
Λvar ◦

(
ΣLΣ>L

))
e−Λt (3.10)

for t ≥ 0.
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The parameters of the gamma model will be estimated in three steps. First,
the mean-reversion matrix Λ will be fitted to the empirical auto-correlation
function based on the first 25 lags. From (3.10), it follows that the model auto-
correlation function of Xi is t 7→ e−λit. To find λ̂i, the estimate of λi, we
therefore minimize

25∑
t=1

(
ρ̂i(t)− e−λ̂it

)2

such that λ̂i > 0 for i = 1, . . . , n, where ρ̂i(t) is the empirical auto-correlation
function of Xi.

Next, Σ̂L is chosen such that the model matches the empirical covariances.
In particular, we choose Σ̂L to minimize∥∥∥Σ̂X − Λvar ◦

(
Σ̂LΣ̂>L

)∥∥∥2

where Σ̂X is the sample covariance of X, ‖ · ‖ is the Frobenius norm and the
minimization is done over matrices Σ̂L with non-negative entries of the form in
(3.5).

Finally, we discuss how the parameters α and β are estimated. First, we
choose β̂ = (β̂1, . . . , β̂n) to minimize∥∥∥µ̂X − Λ−1Σ̂Lβ̂/2

∥∥∥2

such that β̂i > 0, where µ̂X is the empirical mean of X.
It is not too difficult to show that var(Li(1)) = 2αi/β

2
i and, since the com-

pound Poisson processes are assumed to have unit variance, it therefore follows
that

1 = var(Li(1)) =
2αi
β2
i

Consequently, we take α̂i = β̂2
i /2.

3.3 A lognormal model
In this section we present a lognormal model relying on different assumptions
than the gamma model. We assume that G(t) := logX(t) can be modelled as a
multidimensional Gaussian Ornstein-Uhlenbeck process,

dG(t) = −Υ(G(t)−Θ)dt+ ΣdB(t), (3.11)

where (B(t))t∈R is an n-dimensional Brownian motion, Υ ∈ Rn×n is a diagonal
matrix, Σ ∈ Rn×n is a lower triangular matrix, and Θ ∈ Rn.

It is well-known (see e.g. [13]) that the stationary distribution of G(t),
when the diagonal elements of Υ all are positive, is normal with mean Θ. The
autocovariance of G(t) is given in, for example, [13], and it is the same as for
the gamma model found in Prop. 3.3. In particular, we find

ΣG(t) := cov (G(0), G(t))) =
(
Υvar ◦

(
ΣΣ>

))
e−Υt, t ≥ 0. (3.12)
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Here, Υvar is the n× n matrix given by

(Υvar)i,j =
1

υi + υj
,

where υi is the i’th entry of Υ, i = 1, . . . , n.
Consequently, the stationary distribution of X(t) is multivariate lognormal

with expected value of Xi(0) being

E[Xi(0)] = exp

(
Θi +

ΣG(0)ii
2

)
,

while the autocovariance is

cov(Xi(0), Xj(t)) = E[Xi(0)]E[Xj(0)](eΣG(t)ij − 1) (3.13)

for i, j = 1, . . . , n (see e.g. [11] for more information on the multivariate lognor-
mal distribution). This implies that the autocorrelation of X(t) is

corr(Xi(0), Xj(t)) =
exp (ΣG(0)ije

−tυj )− 1√
(eΣG(0)ii − 1)(eΣG(0)jj − 1)

, (3.14)

for i, j = 1, . . . , n.

3.3.1 Distribution of Pi(t) in the lognormal model

Having the results for X(t) from the previous section in mind, the stationary
distribution of Pi(t) is given in Prop. 3.4.

Proposition 3.4. The stationary distribution of Pi(t) is characterized by the
density

fPi(t)(x) =
−1

(1− x) log(1− x)
√

ΣG(0)i,i
φ

 log
(
− log(1−x)

Si(t)

)
−Θi√

ΣG(0)i,i

 , (3.15)

where ΣG(0)i,i is the i’th element of the diagonal of ΣG(0), Θi is the i’th element
of Θ, and φ(·) is the density of the standard normal distribution.

To investigate the density of Pi(t) in more detail, consider for a moment a
more generic version of Eq. (3.15), given by

f(x|µ, σ) =
−1

(1− x) log(1− x)σ
φ

(
log (− log(1− x))− µ

σ

)
. (3.16)

As can be seen in Fig. 4, showing examples of the density given different values of
µ and σ in Eq. (3.16), the distribution is rather flexible and capable of attaining
quite different forms.

3.3.2 Covariance between wind indexes in the lognormal model

Deriving the covariances between wind indexes in the lognormal model is closely
related to the derivation of the Laplace transform of the lognormal distribution.
To the best of our knowledge, no closed-form has been derived for the Laplace
transform of the lognormal distribution, but there exist approximations, see
e.g. [1]. With regard to this paper, we refer the interested reader to [1] and the
references herein for further information, and employ numerical integration by
exploiting our knowledge of the distribution of G(t) to determine the covariances
between the wind indexes.
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Figure 4: Different variations of the density in Eq. (3.16).

3.3.3 Identification of parameters in the lognormal model

To identify the parameters of the model, we employ the method of moments as
in the gamma model case. We first identify ΣG(0) by exploiting Eq. (3.13),

ΣG(0)ij = log

(
Σ̂X,ij
µ̂iµ̂j

+ 1

)
, (3.17)

with µ̂i being the empirical mean of Xi(t), and Σ̂X,ij is the (i, j)th entry of the
empirical covariance between Xi(0) and Xj(0).

Having obtained an estimate of ΣG(0) and remembering the model implied
autocorrelation in Eq. (3.14), we identify υi by minimizing

25∑
t=1

ρ̂i(t)− exp
(

Σ̂G(0)iie
−tυi

)
− 1√

(eΣ̂G(0)ii − 1)(eΣ̂G(0)ii − 1)

2

,

where ρ̂i(t) is the empirical autocorrelation function of Xi(0) and Xi(t). Here,
as in the gamma model, we use the first 25 lags of the empirical auto-covariance
function to estimate λi. With Υ̂, consisting of the estimated υi for i = 1, . . . , n
in the diagonal, at hand, we identify ΣΣ> by

ΣΣ> = Σ̂G(0)� Υ̂var,

where � is the Hadamard division defined for two matrices A and B by A�B =
Aij/Bij . Lastly, we determine Θ by

Θi = log(µi)−
Σ̂G(0)ii

2
, i = 1, . . . , n. (3.18)

3.4 Comparison of the gamma and lognormal model
The covariances between indexes in the gamma model can be calculated fast
using Proposition 3.2 to find the optimal hedging strategy (see Sec. 5). The noise
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âi b̂i ĉi

Site 1 0.1721 -0.0491 -0.0804
Site 2 0.2848 -0.0405 -0.0956
Site 3 0.2294 -0.0322 -0.1226
German 0.2732 -0.0298 -0.1285

Table 1: Fitted seasonal parameters for the four wind indexes.

in the gamma model also has a compelling interpretation, where an idiosyncratic
risk is associated to each site index and a systematic risk is associated to all site
indexes and the German index. On the other hand, the lognormal model gives
rise to closed-form expressions of the densities of all indexes as opposed to only
the German index in the gamma model. The lognormal model is simple in the
sense that the underlying process is a Gaussian driven OU process. This makes
it possible to do numerical analysis based on Gaussian theory.

Both the gamma and lognormal model have straightforward and fast estima-
tion procedures, making them easy to implement. Furthermore, as we will see in
Sec. 4, both models capture the autocorrelation ofXi, the cross-autocorrelations
between Xi and Xj , and the stationary distribution of Xi well.

4 Estimation results
In this section we summarize and discuss the estimation results. As a starting
point, we consider the fitted seasonal functions. In Table 1 we report the fitted
parameters for all four wind indexes.

4.1 Gamma model
Fig. 5 shows the theoretical autocorrelation implied by the estimated gamma
model compared to the empirical autocorrelation. The fit to the empirical auto-
correlation is convincing, and it is worth noticing that the cross-autocorrelations
match well even though the model has only been estimated to the marginal au-
tocorrelation functions.

In Fig. 6 the histogram of Xi and the model density based on a simulation
are shown. We see that the distribution of the wind sites implied by the gamma
model have a convincing fit to the empirical distributions. The German wind
index takes values close to zero more frequently than predicted by the gamma
model, but besides this, the distribution of the gamma model gives a satisfying
fit to the empirical distribution.

We report the estimated parameters in Table 2. The parameters α4 and
β4 are considerably larger than αi and βi for i = 1, 2, 3. This implies that the
systematic risk factor L4 jumps much more frequently than Li, i = 1, 2, 3, but
that the jumps of L4 are relatively small compared to the jumps of Li, i = 1, 2, 3.
This aligns well with the intuition that the systematic risk is associated to the
wind utilization of the whole of Germany.

To further assess the model, we report in Table 3 the mean, variance, skew-
ness, and kurtosis of the gamma model along with the empirical and lognormal

13
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Figure 5: Empirical autocorrelation and theoretical autocorrelation implied by
the fitted gamma model. The (i, j)’th panel shows cor(Xi(0), Xj(t)) for t =
0, 1, . . . , 25.
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(a) Site 1 (b) Site 2

(c) Site 3 (d) German

Figure 6: Histograms of Xi(t) with the fitted densities of the gamma model.

α̂i β̂i λ̂i σ̂i,i σ̂i,4

Site 1 0.0271 0.2328 0.8977 1.0305 1.1593
Site 2 0.0538 0.3282 0.7589 0.6101 0.9792
Site 3 0.1383 0.5260 0.8513 1.1674 0.8247
German 0.8960 1.3387 0.6539 (-) 0.9781

Table 2: Estimated parameters in the gamma model.
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Mean Variance Skewness Kurtosis

Gamma 1.00 0.73 1.71 7.38
Lognormal 1.00 0.73 3.17 24.98
Empiricial 1.00 0.73 1.67 6.27

Table 3: Mean, variance, skewness, and kurtosis of the German wind index
in the gamma and lognormal model together with the empirical values for the
German wind index.

Θ̂i υ̂i

Site 1 -0.4282 0.7080
Site 2 -0.3215 0.6341
Site 3 -0.3803 0.6837
German -0.2711 0.5607

Table 4: Estimated parameters in the lognormal model.

equivalents for the German wind index6. The first two moment of the gamma
model agrees with the empirical version as expected from the estimation proce-
dure, where we match the gamma model to the empirical mean and variance.
Further, the empirical skewness and kurtosis are captured within a reasonable
precision by the gamma model.

4.2 Lognormal model
Fig. 7 shows the theoretical autocorrelation implied by the estimated lognormal
model compared to the empirical autocorrelation. As in the gamma model case,
the lognormal model captures the autocorrelation and cross-autocorrelation
well, in particular taking into account that only the autocorrelation is used
to estimate the parameters affecting both the autocorrelations and the cross-
autocorrelations.

Fig. 8 shows histograms of the marginal distributions and the fitted lognor-
mal densities. The lognormal model provides overall a decent fit, but seems to
capture the distribution of the German wind index better than the site indexes.
The estimated Θ and Υ for the lognormal model is reported in Table 4 and the
estimated Σ is

Σ̂ =


1.0987 0 0 0
0.6763 0.5886 0 0
0.4902 0.3505 0.8376 0
0.6381 0.2539 0.2162 0.3035

 .
Although the speed of mean reversion parameters υ̂i differ in the lognormal
model compared to the gamma model, the same pattern is observed, with the
German wind index being the most persistent.

Returning to Table 3, the lognormal model matches the empirical mean and
variance as a results of the estimation procedure, but it does not capture the
higher order standardized moments. This indicates that the lognormal model
does not capture the whole distribution of the data as well as the gamma model.

6Since the same quantities for the site wind indexes are not relevant in the remaining part
of the paper, we have chosen to omit them.
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Figure 7: Empirical autocorrelation and theoretical autocorrelation implied by
the fitted lognormal model. The (i, j)’th panel shows cor(Xi(0), Xj(t)) for t =
0, 1, . . . , 25.
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(a) Site 1 (b) Site 2

(c) Site 3 (d) German

Figure 8: Histograms of Xi(t) with fitted lognormal densities.
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5 Hedging wind power production
In the following we denote the German wind index at day t by Pn(t). An
exchange-traded WPF contract is written on the underlying daily wind index,
Pn(t). The payoff of a long position in such a contract is

H(P̄n(S, T )− Pn(t0, S, T ))X, (5.1)

where H is the number of hours during the delivery period [S, T ], Pn(t0, S, T )
is the WPF price agreed on at time t0 < S < T , X is a specified tick size, and

P̄n(S, T ) =
1

T − S + 1

T∑
t=S

Pn(t).

From Eq. (5.1) it is apparent that a short position results in a positive payoff
in low wind scenarios according to the short position equivalent to Eq. (5.1),

H(Pn(t0, S, T )− P̄n(S, T ))X.

That is, if the realization of P̄n(S, T ) is lower than Pn(t0, S, T ). This is favourable
for a WPP, since this payoff will offset the loss in income from the long position
in wind power production.

To be more specific, let Ci denote the capacity of WPP i, and let Pi(t)
denote the daily wind index/utilization of WPP i such that CiPi(t) is the actual
production of power. Further assume that the WPP receives a fixed price Qi
per produced MWh. The long position in wind power production for WPP i
doing the period [S, T ] is therefore

P̄i(S, T )CiHQi, (5.2)

where

P̄i(S, T ) =
1

T − S + 1

T∑
t=S

Pi(t). (5.3)

Assume that the WPP takes a position γi ∈ Z in WPF contracts with delivery
period being [S, T ]. The payoff from taking this position and the long position
in wind power production results in a portfolio with payoff

HP̄i(S, T )CiQi + γiH(P̄n(S, T )− Pn(t0, S, T ))X. (5.4)

From Eq. (5.4) it is clear that perfectly hedging the volumetric risk would mean
to choose γi such that HP̄i(S, T )CiQi = −γiHP̄n(S, T )X, resulting in the de-
terministic payoff γiHPn(t0, S, T )X. However, the problem for the WPP is
that the stochastic terms P̄i(S, T ) and P̄n(S, T ) are not perfectly dependent,
and hence obtaining the deterministic payoff γiHPn(t0, S, T )X is not possible.
In fact, as shown in [8], it is far from optimal using the exchange-traded WPF
contracts for hedging purposes for a single WPP, depending on the dependence
structure between the site-specific wind index and the underlying index of the
WPF contract.
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5.1 Perfect hedging of volumetric risk using tailor-made
wind power futures

Tailor-made over-the-counter WPF contracts is a way of perfectly hedging the
volumetric risk. Instead of going short the exchange-traded WPF contract,
the WPP could instead go short an over-the-counter WPF contract with the
underlying being Pi(t) instead of Pn(t). In the following we therefore consider
the situation of an energy management company (EMC) acting as counterparty
of these tailor-made WPF contracts from n−1 different WPPs in Germany. Let
H(P̄i(S, T )−Pi(t0, S, T ))CiQi be the payoff of a long position in a tailor-made
WPF contract for WPP i. Thus, from the point of view of the EMC, the payoff
of acting as counterparty for n− 1 different WPPs and taking a position γ ∈ Z
in the exchange-traded WPF contract is

RC(γ) =

n−1∑
i=1

H(P̄i(S, T )− Pi(t0, S, T ))CiQi + γH(P̄n(S, T )− Pn(t0, S, T ))X,

(5.5)

while the payoff from the point of view of the ith WPP is

RWPP,i = HP̄i(S, T )CiQi +H(Pi(t0, S, T )− P̄i(S, T ))CiQi

= HPi(t0, S, T )CiQi.

We argue that this construction can be beneficial for both the individual WPPs
and the EMC: Firstly, the individual WPPs obtain a perfect hedge of their
volumetric risk, and secondly, with an appropriate number of WPPs and distri-
bution of the WPPs geographically, the portfolio of tailor-made WPF contracts
approximately replicates the exchange-traded WPF contract. The EMC will
thereby be able to hedge its volumetric risk by taking an appropriate position
in the exchange-traded WPF, as in Eq. (5.5). A premium has to be paid from
the individual WPP to the EMC in order to transfer the WPP’s volumetric risk
to the EMC. We return to this discussion in Sec. 5.2.3. However, the motivation
for the EMC to engage in such tailor-made WPF contracts lies in this premium
and the size of it compared to the premium in the exchange-traded WPF mar-
ket. We mention in passing that to offset the potential residual volumetric risk
of the portfolio described by Eq. (5.5), additional instruments could be added
to the portfolio. This is outside the scope of present paper, and we leave this
as future work.

5.2 Minimum variance hedge of a tailor-made WPF con-
tracts portfolio

In this section we discuss a minimum variance hedge of a portfolio consisting
of tailor-made WPF contracts for the EMC. I.e., from Eq. (5.5) we define the
objective to

min
γ

var(RC(γ)).
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Site ID Capacity in MW, Ci Price in EUR/MWh, Qi

1 100 30
2 100 30
3 100 30

Table 5: Fictional contract specifications for the sites in Fig. 2.

The variance is

var(RC(γ)) = var

[
n−1∑
i=1

H

(
1

T − S + 1

T∑
t=S

Pi(t)− Pi(t0, S, T )

)
CiQi

+ γH

(
1

T − S + 1

T∑
t=S

Pn(t)− Pn(t0, S, T )

)
X

]

=

n−1∑
i=1

n−1∑
j=1

(
H

T − S + 1

)2

CiQiCjQj

T∑
t=S

T∑
s=S

cov(Pi(t), Pj(s))

+

(
γ

H

T − S + 1
X

)2 T∑
t=S

T∑
s=S

cov(Pn(t), Pn(s))

+ 2

n−1∑
i=1

(
H

T − S + 1

)2

γXCiQi

T∑
t=S

T∑
s=S

cov(Pn(t), Pi(s)). (5.6)

It follows from Eq. (5.6) that the optimal position of WPF contracts is

γ = −
∑n−1
i=1 CiQi

∑T
t=S

∑T
s=S cov(Pn(t), Pi(s))

X
∑T
t=S

∑T
s=S cov(Pn(t), Pn(s))

. (5.7)

Besides the fact that the dependencies between the stochastic variables impact
the size of γ, the size of each wind site measured by Ci and the price paid for
each MWh to each wind site measured by Qi both translate linearly to the size
of γ. Therefore, the larger the wind site or the higher the price paid for each
MWh, the larger γ will be in absolute terms (all other things being equal).

5.2.1 In-sample hedging effectiveness

In the following we consider the case of an EMC that needs to hedge its portfolio
of tailor-made WPF from one year ahead to two years ahead. The considered
wind sites are the ones depicted in Fig. 2. We assume that the contract specifi-
cations for each site is as shown in Table 5. Further, we assume that X = 100
EUR. The estimated parameters of the gamma and lognormal model are the
ones reported in Sec. 4.

In Table 6 we present the hedging results for the gamma and lognormal
model. We include the case with all three sites and the German WPF in the
portfolio, and then three cases where we only include one of the wind sites and
the German WPF. In each case, we report the model-implied optimal position of
exchange-traded WPF contracts, γ̂, and the variance reduction (in percentage)
implied by the model calculated by [var(RC(0)) − var(RC(γ̂))]/ var(RC(0)). It
is apparent that the portfolio with all three sites outperforms the three other
cases, confirming the diversification approach of the EMC discussed in Sec. 5.1.
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Case Sites in portfolio γ̂ var(RC(0)) var(RC(γ̂)) Variance reduction (%)

Gamma

1 1,2,3 -63.60 8.12 · 1011 1.31 · 1011 83.83
2 1 -18.87 8.55 · 1010 2.56 · 1010 70.12
3 2 -26.79 1.55 · 1011 3.41 · 1010 77.96
4 3 -17.94 1.25 · 1011 7.07 · 1010 43.42

Lognormal

1 1,2,3 -64.00 7.06 · 1011 1.21 · 1011 82.89
2 1 -18.97 8.12 · 1010 2.98 · 1010 63.33
3 2 -25.10 1.34 · 1011 4.42 · 1010 67.04
4 3 -19.92 1.13 · 1011 5.66 · 1010 50.05

Table 6: Optimal hedging quantity γ implied by the gamma and lognormal
model for different portfolios consisting of different wind sites, and the corre-
sponding variance of the portfolio excluding the exchange-traded WPF contract,
and the variance of the portfolio when the optimal hedge is employed. Addi-
tionally, we show in all cases the associated variance reduction in percentage.

The fact that the difference regarding γ̂ is small indicate that both models
could be used interchangeably to determine an appropriate hedge, though the
difference in variance reduction will mislead in a risk management context. In
other words, if the wind indexes are driven by the gamma (lognormal) model,
and one uses the lognormal (gamma) model to determine hedges, the variance
reduction implied by the used model is wrong, while the hedging quantity is
relatively close to the optimal hedge.

Comparing Eq. (5.4) to Eq. (5.5), the cases 2, 3, and 4 represent the vari-
ance reduction implied by the model if the individual wind sites were to hedge
their power production themselves by using the exchange-traded WPF contract.
From a social welfare point of view, the sum of variances of case 2, 3, and 4 is
approximately 8% larger for both models compared to the variance of case 1.
So not only does the model suggest that tailor-made WPF contracts constitute
an obvious way of mitigating uncertainty for wind power producers, but also as
a way of optimizing the integration of wind power penetration in the electricity
grid from a total variance perspective.

5.2.2 Out-of-sample hedging effectiveness

In this section we consider the same portfolio of wind sites as in the previous
case study, and the specifications of the sites are therefore specified in Table 5.
However, here we assess the model on out-of-sample observations. We assume
that an EMC has bought tailor-made WPF contracts at the three sites for the
period from 2 July 2018 to 30 June 2019, corresponding to 364 days or 52
weeks. We employ a weekly minimum variance hedging strategy, meaning that
the EMC has a naked position in a portfolio of tailor-made WPF contracts for
the entire period with the exception of the front week. To concretize, the first
position taken in exchange-traded WPF contracts is the contract with a weekly
delivery period from 2 July 2018 to 8 July 2018. The position is taken based
on a model that is estimated by using two years of observations ending the
last trading day before the delivery period of the weekly exchange-traded WPF
contract. With the delivery period starting the 2 July 2018, the last trading day
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(b) Lognormal model

Figure 9: Variance minimizing hedge quantitiy, γ̂, implied by (a) the gamma
model and (b) the lognormal model for the 52 weeks covering the period from
2 July 2018 to 30 June 2019.

turns out to be 29 June 2018. Then we step one week ahead and determine the
appropriate hedge for the week starting 9 July 2018 and ending 15 July 2018,
but again only by employing two years of in-sample observations to estimate the
model (the estimation period again ends on the last day where one can trade
the weekly exchange-traded WPF contract). In this way we end up with 52
hedging quantities, where each quantity is calculated using different estimated
parameters of the model due to the moving two-year observation period.

A comment on the model specifications is in place. The stationarity of
the models in Sec. 3 might seem unreasonable in the present context, given
the short period of time between an estimation date and the corresponding
start date of delivery of the exchange-traded WPF contract. However, we also
implemented the models that take the conditional distribution into account,
resulting in similar results. For the sake of keeping the presentation as clear as
possible, we have therefore only chosen to present the stationary versions of the
models.

The resulting optimal hedge quantities are depicted in Fig. 9, indicating
a seasonal pattern with more exchange-traded WPF contracts needed during
spring compared to autumn. Considering Eq. (5.7), this is the result of the fact
that the difference between the sum of the autocovariances of the German wind
index and the sum of the autocovariances between the German wind index and
the site indexes increases. To assess the hedging effectiveness, we calculate the
corresponding implied weekly payoff, RC(γ̂), for each weekly hedge quantity,
γ̂. Since we have a variance minimizing perspective, we force a simplistic view
on Pi(t0, S, T ) for all wind indexes. Specifically, we assume that for each i,
Pi(t0, S, T ) for all weeks during the out-of-sample period from 2 July 2018 to 30
June 2019 is the mean of Pi(t) over the first estimation period spanning 1 July
2016 to 29 June 2018,

Fig. 10 shows a histogram of the payoffs of the portfolio of tailor-made WPF
contracts and the exchange-traded WPF contract acting as hedging instrument.
Compared to Fig. 10(a), the variances in Fig. 10(b) and Fig. 10(c) are clearly
reduced. In fact, the variance reduction in percentage of using the exchange-
traded WPF contracts as hedging instrument is 93.64% for the gamma model
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Figure 10: Histograms of (a) the payoff for EMC by not hedging the portfolio of
tailor-made WPF contracts with exchange-traded WPF contracts, and (b)-(c)
using the gamma and lognormal model to find the position in exchange-traded
WPF contracts used as a hedging instrument for the portfolio of tailor-made
WPF contracts.

and 93.62% for the lognormal model.

5.2.3 Risk premium of wind power futures

Since tailor-made WPF contracts are, by construction, traded over-the-counter,
it is worth to discuss the risk premium of such contracts. As a reference point,
we consider the risk premium of the exchange-traded WPF contracts. We define
the risk premium as the model implied WPF contract price under the physical
measure subtracted from the observed exchange-traded WPF contract price.
The model implied price is defined by E[P̄n(S, T )], meaning that the risk pre-
mium RP (to, S, T ) is

RP (t0, S, T ) = P̄n(t0, S, T )− E[P̄n(S, T )] (5.8)

on day t0 for the delivery period [S, T ]. The observed quoted exchange-traded
WPF prices are obtained from NASDAQ OMX. As concluded in Sec. 5.2.2,
the stationarity of the models does not imply different results compared to the
conditional versions of the models for such long time periods, so to ease the
presentation, we only consider the unconditional expected value here7.

We limit ourselves to yearly and quarterly exchange-traded WPF contracts
for two reasons. First, it is unlikely that the tailor-made WPF contracts in
general will be specified for a short delivery such as a week as a result of such non-
standardized instrument. Secondly, as concluded in [6], fundamentals impact the
information premium of exchange-traded WPF contracts with a short delivery
period (e.g. a week) and a short period of time to delivery, which we would like
to avoid. Thirdly, to assess the seasonal differences we also consider quarterly
contracts.

For the period from 1 July 2016 to 30 June 2019, we show E[P̄n(S, T )] and
P̄n(t0, S, T ) in Fig. 11 for the front year (that is, for a given date, the front year
denotes the next year). The quoted prices are fairly constant throughout the

7Despite the fact that RP (t0, S, T ) still depends on t0 thorugh P̄n(t0, S, T ), the assumption
of stationarity is to some degree confirmed by the constant pattern of P̄n(t0, S, T ) observed
in Figs. 11 and 12(a).
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Figure 11: The model implied and quoted price for the front year for the period
from 1 July 2016 to 30 June 2019. Notice that the date refers to the observation
date; i.e., the date where the contract is quoted.

entire period, which could be a consequence of illiquidity of exchange-traded
WPF contracts. The risk premium is -0.011 for the gamma model and -0.013
for the lognormal model on average. Since we are considering a yearly WPF
contract we can ignore the seasonality and use the empirical mean to assess the
risk premium. The empirical risk premium is -0.011, agreeing with the gamma
model. This is likely a consequence of the gamma model having a better fit
to the distribution of the German wind index as discussed in Sec. 4 (see also
Table 3).

Fig. 12(a) shows the model implied and quoted prices for the front quarter,
and Fig. 12(b) shows the corresponding risk premium. The mean of the risk
premium in this case is -0.014 for the gamma model and -0.016 for the lognormal
model. The seasonal variation in the prices peaks for contracts with delivery
during Q4 and Q1, simply since more wind is present during these quarters. This
is also reflected in the model-implied prices. The peaks in the risk premium are
observed for contracts with delivery during Q3 and Q24. One explanation of
this could be non-aligned incentives to engage in the WPF market throughout
the year for the buying and selling side. [9] shows that the hedging benefits are
greater for CPPs during Q3 and Q4 compared to Q1 and Q2; hence, during Q3
and Q4, CPPs are more interested in WPF contracts and thus willing to pay
more. In particular, this is observed for the contract with delivery during Q3
in 2017, where the risk premium even turns slightly positive for both models.
We note that the observed spike for this contract, where the value of the risk
premium becomes almost 0.03, corresponds to the trading activity on a single
day.

A negative risk premium is in line with the findings in [6] and [10]. One
might argue that this is expected from a hedging benefit perspective, since the
hedging benefits in general are greater for the selling side than the buying side
(see [8], [9], and [10]). Continuing this argument, the risk premium is likely
to be even more negative in the tailor-made WPF market as a result of the
perfect hedge implied by the tailor-made WPF contracts for WPPs. However,
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Figure 12: (a) the model implied and quoted price for the front quarter, and
(b) the risk premium for the front quarter. The observations period is from 1
July 2016 to 30 June 2019. Notice that the date refers to the observation date;
i.e., the date where the contract is quoted.

from the perspective of the individual WPP, this extra risk premium associated
with the tailor-made WPF contract compared to the exchange-traded WPF
contract has to be weighted against the deterministic payoff implied by the
tailor-made WPF contract. Opposite, from the perspective of the EMC, this
negative risk premium constitutes the motivation for engaging in the tailor-made
WPF market and thereby taking over the volumetric risk.

6 Conclusion
In this paper, we propose and compare two multivariate continuous-time mod-
els, the gamma and lognormal model, for the joint behaviour of wind indexes.
We discuss the properties of the models, and propose estimation procedures.
Empirically, we employ the models to a joint model for the wind indexes at
three different wind sites in Germany, and the German wind index that repre-
sents the overall utilization of wind power production in Germany. We find that
both models are able to capture the autocorrelation structure well. However,
the gamma model captures the skewness and kurtosis of the German wind index
better than the lognormal model.

The models are applied to a variance-minimizing hedging strategy of a port-
folio consisting of long positions in so-called tailor-made wind power futures con-
tracts at the three wind sites, and a short position in the exchange-traded wind
power futures contract. The hedging effectiveness is assessed in an in-sample
and out-of-sample context. Both models indicate that a significant variance
reduction can be obtained by hedging the portfolio with the exchange-traded
wind power futures contracts in-sample as well as out-of-sample. Further, the
hedging benefits are greater for the portfolio of tailor-made wind power futures
compared to hedging each individual wind site with exchange-traded wind power
futures contracts.

The risk premium of the exchange-traded wind power futures contracts is
examined, where we find that the gamma model implies a more reliable estimate
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of the risk premium. A negative risk premium is observed in line with other
findings in the literature for both yearly and quarterly contracts. Even though
the tailor-made wind power futures contracts give each wind power producer
a perfect volumetric hedge of her wind power production, we argue that it is
likely that the risk premium for a tailor-made wind power futures contract is
even more negative compared to the exchange-traded contract.
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A Theoretical results for the gamma model
This appendix is dedicated to proving Prop. 3.2 and Proposition 3.3. We start
by proving Prop. 3.3, which the lemma below is a first step towards. We will
use some standard results about continuous-time moving averages, all of which
can be found in [14].

The following Lemma is well-known, but we give a proof for the sake of
completeness.

Lemma A.1. Let t ≥ 0 and consider the two one-dimensional processes

Y1(t) =

∫ t

−∞
f1(t− u)dZ(u) and Y2(t) =

∫ t

−∞
f2(t− u)dZ(u) (A.1)

for functions f1 and f2 in L1(R) ∩ L2(R), and where Z is a one-dimensional
Lévy process with second moment. Then

E[Y1(0)] =

∫ ∞
0

f1(u)duE[Z(1)]

and

E[(Y1(0)− E[Y1(0)])(Y2(t)− E[Y2(t)])] =

∫ ∞
0

f1(u)f2(t+ u)du var(Z(1)).

Proof. Let ψY1(0),Y2(t) be the cumulant generating function of (Y1(0), Y2(t)) and
ψZ be the cumulant generating function of Z. Then

ψY1(0),Y2(t)(x) = logE[exp{x1Y1(0) + x2Y2(t)}]

=

∫ t

0

ψZ(x2f2(u))du+

∫ ∞
0

ψZ(x1f1(u) + x2f2(t+ u))du.

It follows that for n1, n2 ∈ N0 with n1 + n2 ≤ 2,

dn1+n2

dxn1
1 dxn2

2

ψY1,Y2(x) =

∫ t

0

fn2
2 (u)ψ

(n2)
Z (x2f2(u))du

+

∫ ∞
0

fn1
1 (u)fn2

2 (u)ψ
(n1+n2)
Z (x1f1(u) + x2f2(u))du.

27



where ψ(n1+n2)
Z denotes the n1 + n2 times derivative of ψZ . We conclude that

E[Y1(0)] =
d

dx1
ψY1(0),Y2(t)(0) =

∫ ∞
0

f1(u)duE[Z(1)].

Assume now, without loss of generality, E[Z(1)] = 0. Then

E[(Y1(0)− E[Y1(0)])(Y2(t)− E[Y2(t)])]

=
d2

dx1dx2
ψY1(0),Y2(t)(0)

=

∫ ∞
0

f1(u)f2(t+ u)du var[Z(1)]

Proof of Prop. 3.3. Let σi,k denote the (i, k)’th entry of ΣL. Then, using Lemma
A.1,

E[Xi(t)] =

n∑
k=1

E
[∫ t

−∞
e−λi(t−u)σi,kdLk(u)

]

=

n∑
k=1

1

λi
σi,kβk/2

=
(
Λ−1ΣLβ/2

)
i
.

This gives (3.9). Assume now, without loss of generality, E[L(1)] = 0. Then,
using Lemma A.1 again,

E[Xi(0)Xj(t)]

= E

[(
n∑
k=1

∫ 0

−∞
e−λi(−u)σi,kdLk(u)

)(
n∑
k=1

∫ t

−∞
e−λj(t−u)σj,kdLk(u)

)]

=

n∑
k=1

σi,kσj,k

∫ ∞
0

e−λj(t+u)e−λiudu

=
e−λjt

λi + λj

n∑
k=1

σi,kσj,k

= ((Λvar ◦ ΣLΣ>L )e−Λt)i,j

from which (3.10) follows.

We now turn to prove Prop. 3.2. Initially, we give the next result which is
a special case of [7, Theorem 4.8], but again, we give a proof for the sake of
completeness.

Proposition A.2. Let L be a compound Poisson process with intensity α > 0
and exponential jumps with parameter β > 0. Consider t ∈ R, λ, µ > 0 and
x1, x2 ∈ R with x1 + x2 < β. Furthermore, assume x1x2 ≥ 0 and x1 6= 0, and
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let f(t) = x1e
−λt + x2e

−µt. Then

logE
[
exp

{∫ t

−∞
f(t− u)dL(u)

}]
= α

f(0)

f ′(0)
log

(
1− f(0)

β

)
+ α

∫ ∞
0

(
f(u)

f ′(u)

)′
log

(
1− f(u)

β

)
du,

(A.2)

where ∣∣∣∣∣
(
f(u)

f ′(u)

)′∣∣∣∣∣ ≤ (λ− µ)2

2λµ
(A.3)

for all u ≥ 0.

Proof. Initially, note that f/f ′ is bounded and∣∣∣∣∣
(
f(u)

f ′(u)

)′∣∣∣∣∣ =
|f ′(u)2 − f(u)f ′′(u)|

f ′(u)2

=
x1x2(λ− µ)2e−(λ+µ)u

x2
1λ

2e−2λu + x2
2µ

2e−2µu + 2x1x2λµe−(λ+µ)u

≤ (λ− µ)2

2λµ
.

This gives the bound on (f/f ′)′. Additionally, we find that∣∣∣∣∣
(
f(u)

f ′(u)

)′∣∣∣∣∣ =
x1x2(λ− µ)2e−(λ+µ)u

x2
1λ

2e−2λu + x2
2µ

2e−2µu + 2x1x2λµe−(λ+µ)u

=
x1x2(λ− µ)2

x2
1λ

2e−(λ−µ)u + x2
2µ

2e−(µ−λ)u + 2x1x2λµ
.

We conclude that (f(u)/f ′(u))′ = O(e−|λ−µ|u) as u → ∞. Thus, all integrals
below are convergent and the integration by parts is justified. Next let

ψ(u) = logE[exp(uL(1))] = α
u

β − u

be the cumulant-generating function of L(1) and let φ(u) = −α log(1 − u/β)
be the cumulant-generating funciton of a gamma distribution with shape α and
rate β (see for example [6]). Note that ψ(u) = uφ′(u). Then, using integration
by parts,

logE
[
exp

{∫ t

−∞
f(t− u)dL(u)

}]
=

∫ ∞
0

ψ(f(u))du

=

∫ ∞
0

f(u)

f ′(u)
(φ(f(u)))′du

= − f(0)

f ′(0)
φ(f(0))−

∫ ∞
0

(
f(u)

f ′(u)

)′
φ(f(u))du.
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Remark A.3. Considering the proof of Prop. A.2 there are two approaches to
calculate

logE
[
exp

{∫ t

−∞
f(t− u)dL(u)

}]
. (A.4)

Either by calculating ∫ ∞
0

ψ(f(u))du (A.5)

or

− f(0)

f ′(0)
φ(f(0))−

∫ ∞
0

(
f(u)

f ′(u)

)′
φ(f(u))du. (A.6)

Here, ψ and φ are the cumulant-generating function of L(1) and of a gamma
distribution with shape α and rate β as defined in the proof of Prop. A.2. By
(A.3), the integral in (A.6) will be small whenever (λ − µ)2/(2λµ) is small. In
the application we consider we are concerned with the case where λ = λ̂i and
µ = λ̂j for some i, j = 1, 2, 3, 4, where λ̂i and λ̂j are given in Table 2. We have

max
i,j

(λ̂i − λ̂j)2

2λ̂iλ̂j
= 0.0506,

and therefore, indeed, that (λ − µ)2/(2λµ) is small in the case relevant to us.
The integral in (A.6) has φ in the kernel whereas (A.5) has ψ, making a direct
comparison more difficult. We do, however, have

φ(u) = αu+O(u2) and ψ(u) = αu+O(u2) as u→ 0

(by a Taylor approximation argument), indicating that φ and ψ are of compa-
rable size, at least for small values. Furthermore, by numerical comparison, we
have found them to be of similar size. We conclude that the kernel of (A.6)
is expected to be considerably smaller than the kernel of (A.5). We therefore
prefer to do the calculation in (A.6) instead of (A.5) since we can do a much
more coarse approximation for a desired precision of an approximation of (A.4).

Proposition A.4. Let L be a compound Poisson process with intensity α > 0
and exponential jumps with parameter β > 0. Consider s < t, λ > 0 and x < β.
Then

E
[
exp

{
x

∫ t

s

e−λ(t−u)dL(u)

}]
=

(
β − xe−λ(t−s)

β − x

)α/λ
and

E
[
exp

{
x

∫ t

−∞
e−λ(t−u)dL(u)

}]
=

(
β

β − x

)α/λ
(A.7)

Proof. Let

ψ(t) = logE[exp(tL(1))] = α
t

β − t
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be the cumulant-generating function of L. Then

logE
[
exp

{∫ t

s

f(t− u)dL(u)

}]
=

∫ t−s

0

ψ(e−λu)du

=
α

λ

(
log(β − xe−λ(t−s))− log(β − x)

)
.

A similar calculation gives (A.7).

Proof of Theorem 3.2. For notional convenience, let

L̃(t) = (L1(t), . . . , Ln−1(t), 0, Ln(t))> ∈ Rn+1.

First consider (3.7) and assume i 6= j. We have

Xi(t) =

∫ t

−∞
e−λi(t−u)σ̃i,idL̃i(u) +

∫ t

s

e−λi(t−u)σ̃i,n+1dL̃n+1(u)

+

∫ s

−∞
e−λi(t−u)σ̃i,n+1dL̃n+1(u)

and

Xj(s) =

∫ s

−∞
e−λj(s−u)σ̃j,jdL̃j(u) +

∫ s

−∞
e−λj(s−u)σ̃j,n+1dL̃n+1(u).

Next, note that cov(UV,W ) = cov(V,UW ) = E[U ] cov(V,W ) for a random
variable U independent of the random variables V and W . Applying this, and
the above, we conclude that

cov(Pi(t), Pj(s))

= cov
(
e−Si(t)Xi(t), e−Sj(s)Xj(s)

)
=E

[
exp

{
−Si(t)

∫ t

−∞
e−λi(t−u)σ̃i,idL̃i(u)

}]
×E

[
exp

{
−Si(t)

∫ t

s

e−λi(t−u)σ̃i,n+1dL̃n+1(u)

}]
×E

[
exp

{
−Sj(s)

∫ s

−∞
e−λj(t−u)σ̃j,jdL̃j(u)

}]
× cov

(
exp

{
−Si(t)

∫ s

−∞
e−λi(t−u)σ̃i,n+1dL̃i(u)

}
,

exp

{
−Sj(s)

∫ s

−∞
e−λj(s−u)σj,n+1dL̃n+1(u)

})

(A.8)

Expressions of the three expectations in Eq. (A.8) are given in Prop. A.4. Fur-
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thermore,

cov

(
exp

{
−Si(t)

∫ s

−∞
e−λi(t−u)σ̃i,n+1dL̃i(u)

}
,

exp

{
−Sj(s)

∫ s

−∞
e−λj(s−u)σ̃j,n+1dL̃n+1(u)

})
=E

[
exp

{
−
∫ s

−∞
fi,j(s− u)dL̃n+1(u)

}]
−E

[
exp

{
−Si(t)

∫ s

−∞
e−λi(t−u)σ̃i,n+1dL̃n+1(u)

}]
×E

[
exp

{
−Sj(s)

∫ s

−∞
e−λj(s−u)σ̃j,n+1dL̃n+1(u)

}]
for which expressions are given in Prop. A.2 and Prop. A.4.

Next, consider (3.8). We write

Xi(t) =

∫ t

s

e−λi(t−u)
(
σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)
+

∫ s

−∞
e−λi(t−u)

(
σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)
and

Xi(s) =

∫ s

−∞
e−λi(s−u)

(
σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)
.

Consequently,

cov(Pi(t), Pi(s))

= cov
(
e−Si(t)Xi(t), e−Si(s)Xi(s)

)
=E

[
exp

{
−Si(t)

∫ t

s

e−λi(t−u)
(
σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)}]
× cov

(
exp

{
−Si(t)

∫ s

−∞
e−λi(t−u)

(
σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)}
,

exp

{
−Si(s)

∫ s

−∞
e−λi(s−u)

(
σ̃i,idL̃j(u) + σ̃i,n+1dL̃n+1(u)

)})
Again, expressions for the expectation in (A.8) can be found using Prop. A.4.
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Finally,

cov

(
exp

{
−Si(t)

∫ s

−∞
e−λi(t−u)

(
σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)}
,

exp

{
−Si(s)

∫ s

−∞
e−λi(s−u)

(
σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)})
=E

[
exp

{
−
∫ s

−∞
σ̃i,i

(
Si(t)e

−λi(t−s) + Si(s)
)
e−λi(s−u)dL̃i(u)

}]
×E

[
exp

{
−
∫ s

−∞
σ̃i,n+1

(
Si(t)e

−λi(t−s) + Si(s)
)
e−λi(s−u)dL̃n+1(u)

}]
−E

[
exp

{
−
∫ s

−∞
σ̃i,iSi(t)e

−λi(t−u)dL̃i(u)

}]
×E

[
exp

{
−
∫ s

−∞
σ̃i,n+1Si(t)e

−λi(t−u)dL̃n+1(u)

}]
×E

[
exp

{
−
∫ s

−∞
σ̃i,iSi(s)e

−λi(s−u)dL̃i(u)

}]
×E

[
exp

{
−
∫ s

−∞
σ̃i,n+1Si(s)e

−λi(s−u)dL̃n+1(u)

}]

whose expressions are given in Prop. A.4.
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