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Abstract: It is critical for monthly water balance models (MWBMs) to achieve 18 

realistic hydrological modelling of total flow and its components (i.e. quick flow and 19 

baseflow) in practical application. Various methods have been developed to improve 20 

the performances of the three flow components by focusing on calibration procedures. 21 

However, the understanding of runoff partitioning structure in MWBMs for better 22 

performances is still very limited, especially whether the storage-discharge 23 

relationship is linear or nonlinear at monthly time scale. In this study, model 24 

structures for baseflow simulation in 5 widely used MWBMs are reviewed and 25 

modified from a linear storage-discharge relationship to a nonlinear exponential 26 

storage-discharge relationship to achieve realistic baseflow simulation in 443 27 

catchments from Australia with diverse hydro-climatic conditions. The performances 28 

of original and modified models are evaluated and compared through four assessment 29 

criteria including Nash-Sutcliffe efficiency (NSE), logarithmic form of NSE 30 

(NSE(log)), Pearson correlation coefficient (r) and Bias (B). Basically, the original 31 

models with linear storage-discharge relationship perform satisfactorily in simulating 32 

total streamflow and quick flow, but degrade remarkably for simulating baseflow with 33 

an underestimation of −60±36% in all study catchments. The modified MWBMs with 34 

nonlinear storage-discharge relationship significantly outperform the original ones for 35 

simulating both total streamflow and baseflow. The assessment criteria NSE, 36 

NSE(log), r and B of total streamflow improve in 82±4.0% (mean ± 1 standard 37 

deviation of 5 MWBMs), 72±4.7%, 76±4.5% and 51±2.4% study catchments, 38 

respectively. The NSE(log) and r of baseflow simulated using the modified MWBMs 39 

have improved in 68±4.6% and 83±4.1% catchments with median improvement of 40 

0.17±0.03 and 0.14±0.03, respectively. It suggests that the exponential nonlinear 41 

storage-discharge relationship is more capable for MWBMs to capture 42 
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storage-discharge dynamics than the linear one at monthly time scale. This study 43 

highlights that, at monthly time scale, the nonlinearity in catchment storage-discharge 44 

relationship is a very important factor for MWBMs performance and more studies are 45 

required to reveal catchment monthly runoff generation mechanisms.  46 

Keywords: monthly water balance model; baseflow mechanisms; runoff partitioning 47 

structure; storage-discharge relationship  48 
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1 Introduction 49 

Monthly water balance models (MWBMs) are important tools for effective water 50 

resource management as they have low input requirement, simple model structure and 51 

easy to calibrate (Nasseri et al., 2014; Dakhlaoui et al., 2017). Good performance and 52 

robustness of MWBMs are fundamental for water resources assessment (Xu and 53 

Singh, 1998), streamflow forecasting (Alley, 1984; Schar et al., 2004), climate change 54 

impact assessment (Gleick, 1987; Bastola et al., 2011; Chen et al., 2011), and 55 

snowmelt runoff simulation (Xu et al., 1996; Rezaeianzadeh et al., 2013). Lumped 56 

MWBMs tend to oversimplify the complexity of hydrological processes, which casts 57 

doubt on their capacity to predict seasonal flows under various climate conditions 58 

(Dakhlaoui et al., 2017; Hamel et al., 2017). In the majority of widely used MWBMs, 59 

such as the Dynamic Water Balance Model (DWBM) (Zhang et al., 2008), Belgium 60 

Model (VUB) (Vandewiele et al., 1992), Time Variant Gain Model (TVGM) (Xia et 61 

al., 1997), WatBal Model (WM) (Leaf and Brink, 1973) and Schaake Model (SM) 62 

(Schaake, 1990), runoff generation process consists of quick flow generation and 63 

baseflow generation, referred as runoff partitioning structure. To improve the 64 

performance of MWBMs for simulating total streamflow, Bai et al. (2015) modified 65 

the evapotranspiration equations but the performances of total streamflow have no 66 

significant improvement. The improvement of total flow performance in MWBMs 67 

should focus on runoff generation mechanisms rather than actual evapotranspiration 68 

process (Vandewiele et al., 1992; Bai et al., 2015). However, studies on the 69 
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deficiencies in MWBMs are limited and it is important to assess the model structure 70 

for runoff generations, especially the baseflow that is of critical importance for water 71 

resource management and ecosystem health. 72 

Evaluation of hydrological behaviours extracted from total streamflow can guide 73 

model improvements in a meaningful way (Gupta et al., 2008; Yilmaz et al., 2008) 74 

and achieve realistic hydrological simulation (Duan et al., 2006; McMillan, 2020). For 75 

MWBMs with runoff partitioning structure, performances of quick flow and baseflow 76 

provide new insight of internal model behaviour, which can be directly used to detect 77 

the deficiency of runoff partitioning structure (Shafii et al., 2019). The ideal structure 78 

of MWBMs is supposed to achieve realistic representation of the real world, namely 79 

keeping acceptably accurate simulations of not only total streamflow but also quick 80 

flow and baseflow (Gupta et al., 2008; Euser et al., 2013; Khatami et al., 2019). 81 

However, good performance of total streamflow does not necessarily mean internal 82 

model processes are correct as it may be achieved under insufficient parameterization 83 

constraints and improper conceptualization of hydrological processes in real-world 84 

systems (Hrachowitz et al., 2014). Dynamics in quick flow and baseflow can be 85 

improperly simulated due to the weaknesses in calibration procedures (Beven, 1993; 86 

Bai et al., 2018) and structural inadequacy (Shafii et al., 2017). Many approaches 87 

have been proposed to improve calibration procedures such as multi-objective 88 

optimization framework (Shafii and Tolson, 2015; Kelleher et al., 2017; He et al., 89 

2018; Larabi et al., 2018; Schuite et al., 2019), temporal variation of parameters 90 
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(Deng et al., 2018; Xiong et al., 2019) and alternative calibration criteria (Gupta et al., 91 

2009; Larabi et al., 2018; Fowler et al., 2018a). In these studies, observed signals of 92 

quick flow and baseflow have been incorporated into multi-objective optimization 93 

framework, which results in reliable performance of quick flow and baseflow. 94 

However, studies to achieve realistic simulation of total streamflow, quick flow and 95 

baseflow through evaluating and developing runoff partitioning structure in MWBMs 96 

are still very limited, especially the baseflow modelling structure (Westra et al., 2014; 97 

Fowler et al., 2018b). 98 

Although most MWBMs use a linear storage-discharge relationship to describe 99 

storage-discharge dynamics, the storage-discharge relationship at monthly time scale 100 

is still unclear. Catchment storage-discharge relationship is traditionally established at 101 

event or daily time scales in previous studies and is rarely investigated at monthly 102 

time scale. At event or daily time scale, there has been an on-going discussion for 103 

decades that whether the storage-discharge relationship is linear or nonlinear (Moore, 104 

1997; Wittenberg, 1999; Lee, 2007). Various linear and nonlinear storage-discharge 105 

relationships have been developed (Stoelzle et al., 2015) via mathematical derivation 106 

(Duffy, 1996), recession analysis (Chapman, 1999; Aksoy and Wittenberg, 2011; 107 

Cheng et al., 2016) and hydrological modelling analysis (Fenicia et al., 2006; 108 

Markovic and Koch, 2015). At short time scale, the linear storage-discharge 109 

relationship has solid physical basis, which conceptualize moisture storage as a 110 

straight-sided bucket with a hole at the bottom (Beven, 2001). The moisture storage at 111 
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short time scale is assumed to be replenished by previous rainfall events and the 112 

recharge from the current rainfall event is typically neglected (Buttle, 1994; 113 

Wittenberg, 1999). However, at monthly time scale, the mechanism of baseflow 114 

generation is different because the recharge to soil water storage from precipitation at 115 

the current month must be considered (Lindstrom et al., 1997; Hrachowitz et al., 116 

2014). Therefore, the linear storage-discharge relationships based on straight-sided 117 

bucket conceptualization in MWBMs have to be carefully investigated.  118 

To evaluate the baseflow modelling structure in monthly water balance models, 5 119 

widely used MWBMs (the DWBM, VUB, TVGM, WM and SM) with both quick 120 

flow and baseflow generation processes are selected. The 5 selected MWBMs all 121 

adopt a linear storage-discharge relationship to describe baseflow generation 122 

mechanism at monthly time scale. Observed hydroclimatic data from 443 catchments 123 

across Australia with a wide range of climatic and physiographical conditions are 124 

collected to test the performance of models with two different types of catchment 125 

storage-discharge relationships. First, the performances of these 5 MWBMs in their 126 

original form (i.e. with a linear storage-discharge relationship) are assessed in terms 127 

of their capability for simulating total streamflow, quick flow and baseflow. Then, the 128 

linear storage-discharge relationships in all selected MWBMs are replaced with a 129 

nonlinear exponential relationship proposed by Peters and Aulenbach (2011) 130 

(hereafter denoted as PA11). The performances of modified MWBMs are evaluated 131 

for simulating total flow and baseflow. The primary objectives of this study are: (1) to 132 
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diagnose the performance in runoff partitioning structure of 5 widely applied 133 

MWBMs with both quick flow and baseflow generation processes; (2) to examine the 134 

influences of nonlinear storage-discharge relationship on the capability of MWBMs 135 

for simulating total streamflow; (3) to examine the ability of nonlinear 136 

storage-discharge relationship for MWBMs to achieve realistic hydrological 137 

modelling performance in terms of baseflow. 138 

2 Study catchments and data 139 

Daily streamflow of 443 un-nested catchments in Australia with minimum 140 

human interferences (without dams, intensive irrigation and land use change) are 141 

collected to test the performance of MWBMs (Figure 1). All these catchments are part 142 

of the Australia unregulated catchment dataset (Zhang et al., 2013). The collected 143 

streamflow, precipitation and potential evapotranspiration data span over the period of 144 

1975-2012. All the catchments have a minimum length of 20-year records with at 145 

least 10-year continuous records and less than 10% missing daily data in total. The 146 

drainage area ranges from the order of 10 to 10000 km
2
. Based on the Köppen-Geiger 147 

climate classification map produced by Kottek et al. (2006), the 443 catchments cover 148 

all the 5 distinct climatic zones in Australia including tropics, arid, equiseasonal-hot, 149 

equiseasonal-warm and winter rainfall dominant (see Figure 1). The number of the 150 

catchments within tropics, arid, equiseasonal-hot, equiseasonal-warm and winter 151 

rainfall climate zones is 56, 50, 105, 171 and 61, respectively. The average 152 

precipitation of all catchments is 958±421 (mean ± standard deviation), potential 153 
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evapotranspiration is 1411±294, aridity index is 1.76±1.01, runoff coefficient is 154 

0.19±0.15 and baseflow index is 0.28±0.15. The coefficient of variation (CV) of 155 

monthly precipitation, defined as the ratio of standard deviation (σ) to mean (μ) 156 

monthly precipitations, is 0.89±0.31. The CV of monthly runoff, representing the 157 

integrated effects of geological and climatic characteristics on catchments runoff, is 158 

2.36±1.33 (ranges see Table 1). 159 

3 Methodology 160 

3.1 Separation of quick flow and baseflow 161 

Daily observed total streamflow is separated into daily quick flow and daily 162 

baseflow using the Lyne-Hollick (denoted as LH) method (Lyne and Hollick, 1979). 163 

The LH method is adopted in this study not only because it has been widely applied 164 

worldwide (Ahiablame et al., 2013), but also due the reason that it yields practically 165 

equivalent results as other complex physical methods (Cheng et al., 2012; Zhang et al., 166 

2017). The principle of this separation method is based on signal processing theory. 167 

According to the high frequency characteristic of quick flow, the filter equation for 168 

quick flow is expressed as: 169 

                
    

 
                    (1) 170 

where Q is total streamflow (mm d
−1

);    is quick flow (mm d
−1

); i is the index of 171 

time step; and    is the filter parameter (unit of d
−1

), which is also called the 172 

recession constant. Baseflow    can be calculated subsequently by: 173 



 10 / 44 

       
                         

                                     

         (2) 174 

Here the digital filter is applied in a traditional way, i.e. baseflow is separated 175 

from total flow with three passes (forward, backward and forward) and the filter 176 

parameter (recession constant)    is set to 0.925 as suggested by Nathan and 177 

McMahon (1990). Separated daily quick flow and baseflow are aggregated to monthly 178 

values and are taken as the observed monthly quick flow and baseflow for evaluating 179 

model performance. 180 

3.2 Descriptions of the MWBMs 181 

In this study, 5 widely applied monthly water balance models with both quick 182 

flow and baseflow generation process are chosen to assess the runoff partitioning 183 

structure in these MWBMs. They are the Dynamic Water Balance Model (DWBM) 184 

(Zhang et al., 2008), the Belgium Model (VUB) (Vandewiele et al., 1992), the Time 185 

Variant Gain Model (TVGM) (Xia et al., 2005), the WatBal Model (WM) (Leaf and 186 

Brink, 1973) and the Schaake Model (SM) (Schaake, 1990). The general water 187 

balance equation of all these models can be expressed as: 188 

                                          (3) 189 

where S(t-1) and S(t) are the soil moisture storage (unit of mm) at the beginning and 190 

end of the time interval t, respectively;     ,      ,      ,       are precipitation, 191 

actual evapotranspiration, quick flow and baseflow, respectively. Unit of     ,      , 192 

      and       is mm month
−1

. For a given time step (i.e. month),    is equal to 193 
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1. Basically, all the selected 5 MWBMs have similar conceptual structure for 194 

estimating actual evapotranspiration (  ), quick flow (  ) and baseflow (  ). The 195 

only differences in model structure are the number of water storages and whether 196 

equations for estimating different components of water budget are linear or not. The 197 

structure of 5 MWBMs are shown in Figure 2. Equations for simulating actual 198 

evapotranspiration, quick flow and baseflow of the 5 models are summarized in Table 199 

2. The symbols   -    (see Figure 2 and Table 2) represent serial numbers of the 200 

equations of 5 original MWBMs. Detailed descriptions of all the 5 models are 201 

provided in the Appendix. Major similarities and differences are briefly summarized 202 

here. 203 

Four of the 5 model (i.e. VUB, TVGM, WM and SM) have only one soil water 204 

storage to estimate   ,    and   . Only the DWBM has two soil water storages (i.e. 205 

upper soil water storage ( ) and lower groundwater storage ( )), and soil water in 206 

upper storage can recharge to the lower groundwater storage. In the DWBM,    and 207 

   are generated from the upper soil water storage, while    is generated from lower 208 

groundwater storage. 209 

Table 3 summarizes whether equations for estimating quick flow, baseflow and 210 

evapotranspiration of different MWBMs are linear or not. For quick runoff (  ), it is 211 

simulated as a nonlinear function of precipitation and amount of soil water in all 5 212 

models. With respect to baseflow (  ), all the selected models estimate    using a 213 

linear storage-discharge relationship. Regarding to the actual evapotranspiration (  ), 214 
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all selected models estimate    as a function of soil moisture and potential 215 

evapotranspiration. The SM and WM adopt a simple linear function to estimate 216 

monthly   , while other models use nonlinear functions. 217 

3.3 Modification of baseflow generation mechanism 218 

Table 4 shows the modification of the linear storage-discharge relationship in 5 219 

original MWBMs to a nonlinear storage-discharge relationship proposed by Peters 220 

and Aulenbach (2011) (hereafter denoted as PA11) with parameterization and 221 

equations for estimating   ,    and S are all kept unchanged. The PA11 can be 222 

written as: 223 

                          (22) 224 

                            (23) 225 

where       is baseflow at time step t;      is the available water to generate 226 

baseflow;        is catchment soil moisture storage at time step    ;      is 227 

precipitation at time step t; b and m are constants to be calibrated. Parameter m 228 

determines the nonlinear variability between      and      . Parameter b mainly 229 

influences the magnitude of      . 230 

In the PA11, soil moisture storage S includes both shallow soil water storage and 231 

groundwater storage as defined by Aulenbach and Peters (2018) and thus all MWBMs 232 

are supposed to have only one moisture storage. Four of the five study MWBMs 233 

(except the DWBM) have only one water storage and thus the storage structure of 234 
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these four models are kept the same. In both original and modified forms of these four 235 

models, moisture storage supplies water for   ,    and   . Storage structure of the 236 

DWBM model is changed to replace the linear storage-discharge relationship to a 237 

nonlinear one. The original DWBM with two water storages is restructured to one 238 

storage to incorporate the PA11. For the original DWBM, upper storage (i.e. soil 239 

storage S) supplies water for actual evapotranspiration (  ) and discharge (R) to the 240 

lower storage (i.e. groundwater storage G), from which baseflow (  ) is generated. 241 

While in the modified DWBM (denoted as DWBMmod), both    and    are 242 

generated from the same united soil storage. Meanwhile, in all the models, equations 243 

for estimation   ,    and S are all kept unchanged, which are shown in Table 2. 244 

3.4 Parameter estimation and model evaluation 245 

In this study, parameters are calibrated using an automatic optimization technique, 246 

Genetic Algorithm (GA) (Grefenstette et al., 1986). Five criteria are selected to assess 247 

model performance including the Nash-Sutcliffe efficiency (NSE, (Nash and Sutcliffe, 248 

1970)), logarithmic form of NSE (NSE(log)), Pearson correlation coefficient (r), Bias 249 

Score (BS) (Wang et al., 2011) and Bias (B). The objective function (    ), which is 250 

used to optimize parameter sets, combines four criteria (NSE, NSE(log), r and BS) 251 

that can minimize both systematic (e.g. BS) and dynamic error (e.g. NSE and 252 

NSE(log)) between the simulated and observed high and low flows (Krause et al., 253 

2005). The mathematic formulations of the five criteria and      are as follows: 254 
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         (24) 255 

           
                           

  
   

                                        
   

      (25) 256 

  
          

                                     

           
                                        

   
 
       (26) 257 

          
           

           
 
           

           
             (27) 258 

        
                       

           
            (28) 259 

                                 (29) 260 

                                (30) 261 

where         and         are the simulated and observed flow at time step t, 262 

respectively; variables with overbar denote average value; n is the number of months 263 

during the study period. 264 

In this study, parameters of both original and modified models are calibrated 265 

against observed total streamflow only by maximizing the value of     . Separated 266 

quick runoff and baseflow are not used to calibrate parameters but are used to assess 267 

the capability of original and modified MWBMs for simulating different flow 268 

components. Model performances for simulating total flow, baseflow and quick flow 269 

are evaluated by NSE, NSE(log), r, B and     . The BS is much more sensitive to 270 

very poorly simulated flows than B. The BS is used in      for parameter 271 

optimization to guarantee much more suitable parameters for baseflow simulation that 272 

can be identified. When calibrated against total flow only, total volume of baseflow 273 
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may not be well simulated in a few catchments, which can result in large negative 274 

values of      and makes comparison and visualization of results of all the 275 

catchments very difficult. Therefore, bias (B), which can also measure the systematic 276 

error as the BS, is chosen to calculate performance index      for evaluation. 277 

The NSE, NSE(log), BS and B can vary from    to 1.0 and r can vary from 278 

−1.0 to 1.0. The closer the NSE, NSE(log), r, BS and B approach 1.0, the better the 279 

model performs. The NSE=1.0 or NSE(log)=1.0 means simulated flows are exactly 280 

the same as observed flows in every time step. The r=1 means the predicted flows 281 

show a complete linear relationship with the observed flows. The BS=1.0 or B=1.0 282 

means the volume of simulated and observed flows are the same and there is no 283 

systematic error. For the evaluation of baseflow performance, logarithmic form of 284 

NSE (NSE(log)) and correlation coefficient (r) are more suitable than NSE and B 285 

because baseflow is typically a few orders of magnitude smaller than total flow and 286 

quick flow, which will be discussed in section 5.1. 287 

4 Results 288 

4.1 Performances of the original MWBMs 289 

Performances of the 5 MWBMs in their original forms for estimating total flow 290 

( ), quick flow (  ) and baseflow (  ) in all the 443 catchments are shown in Figure 291 

3. Basically, all the MWBMs perform satisfactorily in simulating total streamflow and 292 

quick flow. However, all the models perform poorly in simulating baseflow. 293 
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As for the performance of total flow ( ), the median      of all the models is 294 

larger than 0.68 with a range of 0.68 ~ 0.77 (see Table 5). The DWBM and VUB have 295 

the best performance with median     =0.77, followed by the TVGM (0.71), SM 296 

(0.71), and WM (0.68). The inter-quantile range (IQR, i.e. range between 75
th

 and the 297 

25
th

 percentiles) of      varies from 0.11 to 0.19. The VUB model is the most robust 298 

model with an IQR of 0.11, followed by the DWBM (0.12), SM (0.14), WM (0.18), 299 

and TVGM (0.19). The median      of all the five MWBMs is quite far from the 300 

perfect match between the observed and simulated total flow, i.e. both          301 

and        . 302 

Regarding to the performance of quick flow (  ), the median      of all the 303 

models is higher than 0.52 with a range of 0.52 ~ 0.63. The VUB has the best 304 

performance with median     =0.63, followed by the SM (0.57), DWBM (0.56), 305 

TVGM (0.55), and WM (0.52). The IQR of      is smaller than 0.27 with a range 306 

from 0.15 to 0.27. The TVGM is the most robust model with an IQR of 0.15, 307 

followed by the WM (0.16), VUB (0.17), SM (0.19), and DWBM (0.27). The median 308 

     and IQR of quick flow are roughly as good as those of total flow for all the 5 309 

MWBMs, which means the parameterization schemes of the quick flow are accurate 310 

in all these models. 311 

With respect to the performance of baseflow (  ), the median      of all the 312 

models is smaller than 0.39 with a range of 0.11 ~ 0.39. The SM has the best 313 

performance with median     =0.39, followed by the DWBM (0.30), VUB (0.12), 314 
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WM (0.12), and TVGM (0.11). The IQR of      ranges from 0.21 to 0.42. The VUB 315 

is the most robust model with IQR equal to 0.21, followed by the SM (0.27), TVGM 316 

(0.33), DWBM (0.39), and WM (0.42). For baseflow, the median      is almost 317 

three times smaller and the IQR is about twice wider than those of total flow. 318 

Comparison of observed and simulated monthly baseflow by all the 5 MWBMs 319 

in their original forms in the 443 catchments over the study period are shown in 320 

Figure 4. The baseflow is significantly underestimated by all the models about 321 

 60±36%. The median Pearson correlation coefficient (r) between baseflow 322 

estimated by the 5 original MWBMs and observed baseflow is smaller than 0.62 with 323 

a range of 0.48 ~ 0.62. These results indicate the linear storage-discharge relationships 324 

in all the 5 MWBMs are not appropriate for baseflow simulation. Therefore, model 325 

structure for simulating baseflow in these MWBMs has to be modified to improve 326 

model performances of both baseflow and total streamflow. 327 

4.2 Performances of the modified MWBMs in simulating total 328 

streamflow 329 

Figure 5 shows total flow performances of the 5 MWBMs together in their 330 

original and modified forms across 443 study catchments. The modified models 331 

outperform original models clearly in terms of the NSE (Figure 5a) and NSE(log) 332 

(Figure 5b), marginally in terms of the r (Figure 5c) and B (Figure 5d). Performances 333 

of the modified models in terms of the objective values of 4 evaluation indices using 334 
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box-plot are compared with original models in Figure 3 as well in all the study 335 

catchments. Figure 6 shows the changes in model performance between modified and 336 

original MWBMs individually in simulating total streamflow. The modified MWBMs 337 

outperform the original models on total streamflow in terms of the percentages of 338 

catchments that have a better performance (Figure 6a), median increased value 339 

(Figure 6b) and change in IQR (Figure 6c) of all study catchments in four different 340 

criteria (i.e. NSE, NSE(log), r and B).  341 

For the criterion of NSE, all modified MWBMs have higher NSE in most study 342 

catchments. All the models show smaller IQR compared with the original models, 343 

except for the VUB model (see Table 6). The modified models have higher NSE in 344 

82±4.0% catchments with a range of 72% ~ 93%. The WM has the largest proportion 345 

of catchments that is improved (93%), followed by the VUB (85%), TVGM (82%), 346 

DWBM (77%) and SM (72%). The median improved NSE for all the study 347 

catchments is 0.03±0.007 with a range of 0.01 ~ 0.05. The WM has the largest median 348 

improved NSE (0.05), followed by the SM (0.03), DWBM (0.03), TVGM (0.02), and 349 

VUB (0.01). The IQR of NSE reduces about 0.02±0.02 with a range of  0.05 to 0.06. 350 

The DWBM has the largest reduction of IQR (0.06), followed by the SM (0.05), WM 351 

(0.03), TVGM (0.02) and VUB ( 0.05). 352 

All the 5 modified models have higher NSE(log) in most study catchments and 353 

different change of IQR compared with those of the original models. Compared with 354 

original models, modified models are better in simulating total streamflow in 72±4.7% 355 
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catchments with a range of 61% ~ 81% in term of NSE(log). The TVGM has the 356 

largest proportion of catchments that is improved (81%), followed by the DWBM 357 

(79%), WM (77%), SM (63%) and VUB (61%). The median improved NSE(log) for 358 

all the study catchments is 0.03±0.008 with a range of 0.01 ~ 0.05. The DWBM has 359 

the largest median improved NSE(log) (0.05), followed by the WM (0.04), TVGM 360 

(0.04), SM (0.02) and VUB (0.01). The IQR of NSE(log) has reduced about 361 

0.002±0.02 with a range of  0.04 to 0.06. The DWBM has the largest reduction of 362 

IQR (0.06), followed by the SM (0.03), WM (0.00), TVGM ( 0.04) and VUB 363 

( 0.04). 364 

For the criterion of r, the 5 modified models also have marginal higher r in most 365 

study catchments and smaller IQR. The modified models perform better for 366 

simulating total streamflow in 76±4.5% catchments with a range of 61% ~ 86% in 367 

terms of r. The WM has the largest proportion of catchments that is improved (86%), 368 

followed by the VUB (79%), DWBM (79%), TVGM (77%) and SM (61%). The 369 

median improved r for all the study catchments is 0.01±0.002 with a range of 0.00 ~ 370 

0.01. Expect for the SM (0.00), the median improved r of other models values 0.01. 371 

The IQR of r has reduced about 0.02±0.01 with a range of 0.00 to 0.04. The DWBM 372 

has the largest reduction of IQR (0.04), followed by the SM (0.02), WM (0.02), 373 

TVGM (0.01) and VUB (0.00).  374 

For the criterion of B, the 5 modified models have marginal improvement of B 375 

and marginal reduction of IQR. The modified models have improvement in 51±2.4% 376 
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study catchments. The median improved B of the 5 modified model is 0.002±0.002 377 

and mean reduction of IQR is 0.004±0.003.  378 

In summary, compared to original models, the NSE, NSE(log), r and B of 379 

modified models are better for the simulation of total streamflow in 82±4.0%, 380 

72±4.7%, 76%±4.5% and 51±2.4% study catchments, respectively. The median 381 

improved NSE, NSE(log), r and B are 0.03±0.007, 0.03±0.008, 0.01±0.002 and 382 

0.002±0.002, respectively. The IQR of NSE, NSE(log), r and B have reduced about 383 

0.02±0.02, 0.002±0.02, 0.02±0.01, 0.004±0.003, respectively. Increase in model 384 

performance and decrease in IQR suggest that MWBMs became more reliable and 385 

robust by replacing the linear storage-discharge relationship with an exponential 386 

nonlinear (i.e. PA11) relationship.  387 

4.3 Performance of modified models in simulating baseflow 388 

Figure 7 shows the comparison of baseflow performance of the 5 MWBMs 389 

together between their original and modified forms across 443 study catchments. The 390 

modified models outperform original models clearly on the NSE (when NSE>0) 391 

(Figure 7a), NSE(log) (Figure 7b) and r (Figure 7c). Both original and modified 392 

MWBMs have poor NSE with nearly 70% catchments smaller than 0. Figure 8 shows 393 

the changes in model performances between modified and original MWBMs for 394 

simulating baseflow individually. Basically, the modified MWBMs outperform the 395 

original models in terms of NSE (log) and r, but underperform original models in 396 
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terms of NSE (all catchments) and B. All 5 modified MWBMs have much higher r 397 

and NSE(log) in 83±4.1% and 68±4.6% study catchments comparing with those of 398 

the original models, respectively (Figure 8a, Table 7). The median improved r and 399 

NSE(log) of all study catchments are 0.14±0.03 and 0.17±0.03, respectively (Figure 400 

8b). Change in IQR of r is marginal (0.03±0.04, Figure 8c). The IQR of NSE(log) has 401 

reduced significantly about 0.12±0.08. For the criteria of NSE and B, simulated 402 

baseflow using modified models is better than that using original ones in about half 403 

study catchments. For NSE, the modified MWBMs perform better in 41±7.2% but 404 

worse in 59±7.2% catchments. For B, the modified MWBMs perform better and 405 

worse in 46±8.3% and 54±8.3% catchments, respectively. The median improved NSE 406 

and B of all study catchments are  0.08±0.05 and  0.04±0.06, respectively. The 407 

change of IQR of NSE and B are 0.99±0.57 and 0.27±0.06, respectively. 408 

The increased NSE(log) and   suggest general improvement of baseflow 409 

simulation using nonlinear baseflow modelling structure because NSE(log) is more 410 

suitable than NSE to evaluate the performance of baseflow and r is the most direct 411 

criterion to evaluate whether the storage-discharge relationship is exponential 412 

nonlinear or not. According to the equation (31), the much higher   (i.e. higher   in 413 

Eq.31) of the modified MWBMs provides a precondition of model structure for 414 

MWBMs to have higher NSE on baseflow simulation. It directly indicates that the 415 

nonlinear relationship (i.e. PA11) is better than the linear relationship to capture 416 

catchment storage-discharge dynamics at monthly time scale.  417 
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5 Discussion 418 

5.1 Characteristics of different criterion and their suitability for 419 

evaluation the performance of baseflow 420 

Every criterion has advantages and disadvantages in quantifying the agreement 421 

between observed and simulated flows. The Nash-Sutcliffe efficiency (NSE) proposed 422 

by Nash and Sutcliffe (1970) is a widely used assessment criterion. The NSE is 423 

largely a dynamic indicator and it is very sensitive to high flows and is insensitive to 424 

low flows because of its squared formulation (Legates and McCabe Jr., 1999). To 425 

compensate the disadvantage of NSE, NSE(log) is used to give more weights on low 426 

flows in the performance assessment. Pearson correlation coefficient (r) measures the 427 

co-variability of the simulated and observed flows, which describes how much of the 428 

dispersion in observed flows is explained by the simulated flows. The BS and B are 429 

employed to measure symmetric error between simulated and observed flows. 430 

The four different criteria (i.e. NSE, NSE(log), r and B) provide useful insight 431 

into basic characteristics of simulation performance. For the evaluation of baseflow 432 

performance, logarithmic form of NSE (i.e. NSE(log)) and correlation coefficient (r) 433 

are more important than NSE and B. The NSE(log) is more suitable than NSE for 434 

baseflow evaluation because baseflow is typically a few orders of magnitude smaller 435 

than the quick flow that is generated during the heavy rainfall events. The r is the 436 

most straightforward criterion among these four selected criteria to indicate the 437 

storage-discharge relationship is linear or nonlinear because r measures the degree of 438 
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linear association between the observed and simulated baseflow. Thus r is the most 439 

powerful criterion to evaluate baseflow generation structure in this study. Moreover, 440 

higher value of linear correlation coefficient (r) is the precondition for higher value of 441 

Nash-Sutcliffe efficiency (NSE) because NSE can be decomposed three components 442 

as advised by Murphy (1988): 443 

                 
  

  
  

 

              
    (31) 444 

where   is the linear correlation coefficient;         and         represent the 445 

first two statistical moments (means and standard deviations) of simulated and 446 

observed sequences, respectively. The quantity   measures the strength of the linear 447 

relationship between simulated and observed values,   measures the conditional 448 

bias, and   measures the unconditional bias. Higher value of NSE depends on higher 449 

 , as well as lower   and  . That is to say, higher NSE is achieved by both higher 450 

  and lower bias. In this study, the much high r of modified MWBMs for simulating 451 

baseflow provide precondition for higher value of Nash-Sutcliffe efficiency (NSE). 452 

5.2 Different control of the two parameters in the PA11 method on 453 

baseflow simulation 454 

The capability of PA11 can be evidenced by comparison of the variability and 455 

magnitude of simulated and observed baseflow, which can be measured by r and B, 456 

respectively. The variability and magnitude of baseflow are controlled by different 457 
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parameters in the PA11 approach. The PA11 method (equation (23)) can be 458 

reformulated as:  459 

        
    

 
                 (32) 460 

In terms of equation (32), it can be found that the value of simulated baseflow is 461 

determined by two parts. One is the nonlinearity between      and       (i.e. 462 

  
    

 
 
). The other is the magnitude of       (i.e.     ). The first part represents 463 

the nonlinear structure between      and      , and the second part only includes 464 

parameters m and b. Linear correlation (r) between observed and simulated baseflow 465 

is only controlled by the first part. Thus the criterion r is the most direct criterion to 466 

evaluate whether the storage-discharge relationship is exponential nonlinear or not, 467 

which is controlled only by m. In other words, the ability of the nonlinear baseflow 468 

modelling structure is only controlled by parameter m and directly measured by 469 

criterion r. While NSE(log), NSE and B are determined by both parts, which is 470 

controlled by both m and b. 471 

Take DWBM as an example, DWBMmod (i.e. modified DWBM) can capture the 472 

variability of baseflow, but it underestimates apparently the magnitude of baseflow. 473 

Figure 9 shows observed and simulated baseflow sequences for catchment 238204 474 

(Figure 9a) and catchment 108002 (Figure 9b). The baseflow simulated by DWBMmod 475 

has the same variability with the observed baseflow, i.e. both increase and decrease 476 

simultaneously and peak at the same time, but they have different magnitudes. 477 
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The differences in magnitude can be attributed two reasons. One is the 478 

uncertainty of observed baseflow derived from the LH method. The other one is the 479 

poorly calibrated parameter b, which determines the magnitude of simulated baseflow. 480 

The magnitude of baseflow is much smaller than that of total and direct flows, thus 481 

the magnitude of baseflow is easily poorly simulated with poorly calibrated parameter 482 

b. Figure 10 shows the comparison of baseflow derived from LH method used in this 483 

study with the other two baseflow separation methods, i.e. the United Kingdom 484 

Institute of Hydrology (UKIH) method (Richards, 1994) and the Chapman-Maxwell 485 

(CM) method (Chapman and Maxwell, 1996). Baseflows derived from three digital 486 

filter methods have the same temporal variability, but have different magnitudes. 487 

Considering that the variability of baseflow has been well captured by DWBMmod, the 488 

difference in magnitude can be further reduced by adjusting the parameter b. In 489 

DWBMmod, under-estimation of baseflow in catchment 238204 means b is 490 

overestimated. Over-estimation of baseflow in catchment 108002 means b is 491 

underestimated. The poorly calibrated b in DWBMmod is adjusted (hereafter denoted 492 

as Adjusted-b-DWBMmod) through minimizing the criterion B. The details of 493 

adjustment of parameter b is shown in Table 8. As shown in Figure 11, the magnitude 494 

difference of baseflow decreased in Adjusted-b-DWBMmod with higher NSE, NSE 495 

(log) and B than those of both DWBM and DWBMmod. 496 

However, in this study, further calibration of baseflow parameters (b) against the 497 

separated (or “observed”) baseflow to get a better performance of baseflow is not 498 
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considered. The calibration procedure adapted in this study is to calibrate both 499 

original and modified models against total flow only due to lack of direct 500 

measurement of baseflow. Separated slow component from hydrographs using widely 501 

used baseflow separation method (such as the LH method used in this study) may not 502 

be strictly considered as baseflow (Klaus and McDonnell, 2013; Pelletier and 503 

Andreassian, 2020). The baseflow modelling structure of modified MWBMs can 504 

catch the variability of baseflow from all three digital filter methods, the magnitude 505 

difference of baseflow can attribute to the uncertainty of baseflow separation method 506 

and calibration process. Here we just demonstrate the superiority of nonlinear 507 

baseflow modelling structure to capture storage baseflow dynamics at monthly time 508 

scale. More studies on the calibration of baseflow parameters still required in the 509 

future to improve the performance of MWBMs. But it is beyond the scope of this 510 

study. 511 

5.3 Considering model consistency for structure evaluation 512 

The structure of the five models consists of several components, representing 513 

different hydrological processes. The evaluation of baseflow performance can be 514 

referred as “model consistency” evaluation, defined as the ability of a model structure 515 

to adequately reproduce several hydrological signatures simultaneously while using 516 

the same set of parameter values (Euser et al., 2013). The consistency is considered 517 

important for evaluating model structure because consistency can achieve the realistic 518 

representation of the real world and reduce equifinality (McMillan, 2020). The 519 
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improved performance of baseflow using modified MWBMs is resulted from more 520 

reasonable baseflow modelling structure with only one more parameter rather than 521 

overparameterization or equifinality and thus overparameterization is not evaluated 522 

here. 523 

In this study, the general improvement of baseflow performance indicated that 524 

the nonlinear storage-baseflow relationship can improve the consistency of MWBMs. 525 

The more realistic modelling in the modified MWBMs can achieve the least 526 

uncertainty in simulating not only total streamflow (Kumar, 2011) but also baseflow. 527 

During past few decades, both quantity and quality of baseflow have received 528 

increased attention (Arnold et al., 1995) such as sustaining aquatic habitats (Poff et al., 529 

1997; Fan et al., 2013) and dynamics of chemicals in watersheds (Shafii et al., 2019). 530 

Accurate simulation of baseflow in MWBMs will extend the capability and 531 

application of MWBMs. Thus, improvement of MWBMs structure should consider 532 

the consistency of several hydrological signatures to achieve realism of hydrological 533 

processes instead of focusing on total streamflow only. 534 

5.4 Nonlinear exponential storage-discharge relationship for 535 

baseflow estimation 536 

The rationality and physical basis of the nonlinear exponential storage-discharge 537 

relationship to describe baseflow process have been proved by previous studies 538 

through reservoir conceptualization and recession analysis (Brutsaert and Nieber, 539 
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1977; Stoelzle et al., 2015; Nippgen et al., 2016). The baseflow process is complex 540 

and nonlinear due to the joint control of hydroclimatic conditions and geological 541 

characteristics on baseflow generation (Maneta et al., 2018). The nonlinearity of 542 

baseflow process is widely observed in catchment storage-discharge relationship. At 543 

lower baseflows, large changes in soil moisture are related to relatively small change 544 

in baseflow; while at higher baseflows, small changes in soil moisture result in 545 

relatively large changes in baseflow (Nippgen et al., 2016). Based on reservoir 546 

conceptualization, the nonlinear storage-discharge relationship is usually described by 547 

combination of several linear reservoirs or single nonlinear reservoir (Stoelzle et al., 548 

2015). For the case of single nonlinear reservoir, baseflow is typically estimated using 549 

a power function (Harman and Sivapalan, 2009) or an exponential function (Beven 550 

and Kirkby, 1979). Peters and Aulenbach (2011) proposed the PA11 model in virtue 551 

of observed soil moisture using the exponential function. Aulenbach and Peters (2018) 552 

showed that the exponential function (i.e. the PA11) can well describe the 553 

storage-discharge dynamics with a high coefficient of determination (adjusted 554 

       ) using observed soil moisture and estimated baseflow from Eckhardt filter 555 

method (Eckhardt, 2005). The nonlinear storage-discharge relationship can also be 556 

derived from recession analysis. In Kirchner (2009), the recession curve is described 557 

by a power law function  
  

  
     based on the fundamental works of Horton 558 

(1941) and Brutsaert and Nieber (1977). The storage-discharge relationship can be 559 

linear, power, exponential, or more than exponential when b=1, b<2, b=2, b>2, 560 
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respectively. Patnaik et al. (2018) found the median b of the recession curve of 358 561 

catchments in the United States nearly equals to 2, which indicates that the 562 

storage-discharge relationship is exponential in most catchments. In this study, the 563 

nonlinear exponential storage-discharge relationship in modified MWBMs improve 564 

model performance in terms of both total flow and baseflow compared with the linear 565 

storage-discharge relationship in original MWBMs. Therefore, the nonlinear 566 

exponential storage-discharge relationship may have stronger physical basis and is 567 

more universal than linear storage-discharge relationship. 568 

5.5 Monthly versus daily models for baseflow simulation 569 

Within-month variability of hydrological variables and the storage response to 570 

daily rainfall events are two main factors that lead to different baseflow generation 571 

mechanisms at daily and monthly time scale. The two factors need to be considered in 572 

the nonlinear or linear forms of the storage-discharge relationship. Baseflow is 573 

possible to be measured at daily and/or hourly time scale through rigours flow 574 

recession analysis (Cheng et al., 2016) and tracer-based methods (Gonzales et al., 575 

2009), while it is difficult to be measured at monthly time scale. Based on observed 576 

hydrological variables, the nonlinear and linear storage-discharge relationships can be 577 

derived from reservoir conceptualization and recession analysis at short time scale (i.e. 578 

daily and hourly). For the MWBMs investigated in this study, catchment 579 

storage-discharge relationships at short time scale are directly adopted without 580 

considering the within-month variability in climate forcing variables and 581 
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rainfall-storage responses. From modelling perspective, Wang et al. (2011) compared 582 

the monthly and daily models for the simulation of monthly total runoff and reported 583 

that the monthly models have not been disadvantaged for not using the within-month 584 

temporal sequences of the forcing variables. The other factor, i.e. storage response to 585 

rainfall events at current month, is ignored by original MWBMs and leads to apparent 586 

lag in the peak time of baseflow. Increased correlation between observed and 587 

simulated baseflow using modified MWBMs is probably resulted from adding 588 

precipitation to storage at the current month for baseflow generation. No obvious 589 

correlation has been found between increased model performance on baseflow and 590 

catchments properties such as aridity index, elevation, slope, soil properties, etc. From 591 

a modelling perspective, monthly storage-baseflow relationship is investigated in this 592 

study and results indicate that the nonlinear relationship is more effectively to capture 593 

the variability of monthly baseflow at most catchments. However, further studies are 594 

still required to advance our capability in simulating baseflow across various spatial 595 

and time scales. 596 

6 Conclusions 597 

In this study, the performance of linear storage-discharge relationship in 5 widely 598 

used monthly water balance models (MWBMs) is diagnosed and evaluated using 599 

observed daily hydrological data from 443 catchments across Australia with distinct 600 

hydro-climatic conditions. A nonlinear exponential storage-discharge relationship (i.e. 601 

the PA11) is employed to replace the linear one in the study MWBMs to improve 602 
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monthly baseflow modelling accuracy and to achieve realistic hydrological modelling 603 

at monthly time scale. The main findings are summarized as follows: 604 

(1). Baseflow simulated by 5 original MWBMs are remarkably underestimated 605 

and unable to explain the dispersion of observed baseflow. The poor performance of 606 

baseflow suggests the linear baseflow generation mechanism may not be suitable for 607 

monthly water balance models. 608 

(2). Modified MWBMs with nonlinear baseflow modelling structure outperform 609 

the original ones in simulating total flow. On average, the criteria NSE, NSE(log), r 610 

and B of modified models are improved in 82±4.0%, 72±4.7%, 76%±4.5% and 611 

51±2.4% of study catchments, respectively. 612 

(3). The modified MWBMs improve baseflow performance significantly with 613 

better NSE(log) and r in 68±4.6% and 83±4.1% study catchments with median 614 

improvement of 0.17±0.03 and 0.14±0.03, respectively. 615 

These results suggest that the modified MWBMs with the nonlinear 616 

storage-discharge relationship is more capable than the original MWBMs with the 617 

linear storage-discharge relationship to capture the dynamics in monthly baseflow 618 

component. 619 

 620 



 32 / 44 

Acknowledgements  621 

This study was supported by the National Natural Science Foundation of China 622 

(41890822; 51879193; 51861125102); the National Key Research and Development 623 

Program of China (2018YFC0407202; 2017YFC1502503); and the Overseas 624 

Expertise Introduction Project for Discipline Innovation (111 Project) funded by 625 

Ministry of Education and State Administration of Foreign Experts Affairs P.R. China 626 

(B18037). We thank Dr. Y. Zhang for providing the collation of streamflow data of 627 

Australian unregulated catchments. 628 

  629 



 33 / 44 

Appendix A. Model description 630 

A.1. Dynamic Water Balance Model (DWBM) 631 

The DWBM was proposed by Zhang et al. (2008) based on the Budyko 632 

framework. The model structure is presented in Figure 2a. The DWBM 633 

conceptualizes a catchment as a system of two storages, i.e. soil water storage and 634 

groundwater storage. Rainfall in time step t is partitioned into quick flow (  ) and the 635 

sum of the other water balance components. The       in the DWBM is calculated as: 636 

                           (4) 637 

where X(t) is called catchment rainfall retention, calculated as 638 

           
                  

    
    . The parameter      is soil water storage 639 

capacity.    is a parameter that influences retention efficiency. The form of 640 

  
                  

    
     is generalized from the equation   

                  

    
 641 

    
                  

    
        , which is a classical Budyko framework proposed by 642 

(Fu, 1981). The form of F() used following is the same. Water availability of a 643 

catchment can be defined as                 . The      is the amount of 644 

rainfall retained in the catchment for actual evapotranspiration, soil moisture and 645 

groundwater recharge. Namely,                     . The       is 646 

estimated as: 647 

             
      

    
             (5) 648 
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where    is a parameter that influences evapotranspiration efficiency. Groundwater 649 

recharge (R) is also generated from W(t) and is calculated as: 650 

                         (6) 651 

where Y(t) is called evapotranspiration opportunity, calculated as 652 

           
           

    
    . Groundwater discharge in the DWBM is treated as 653 

linear reservoir and       is calculated as: 654 

                         (7) 655 

where the parameter d represents the baseflow generation efficiency. Groundwater 656 

balance can be modeled as                      . In total, there are 4 657 

parameters in the DWBM to be calibrated including     ,   ,    and d. The unit of 658 

     is mm and the unit of d is month–
1

. 659 

A.2. Belgium Model (VUB) 660 

The VUB was proposed by Vandewiele et al. (1992). The model structure is 661 

presented in Figure 2b. In this model, actual evapotranspiration (  ) is computed as: 662 

                      

    

                  (8) 663 

where the    is a non-negative parameter which represents evapotranspiration 664 

resistance of the river basin;      is available water for    and is estimated as 665 

                . Simulated monthly total flow of the VUB is the sum of 666 
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quick flow (  ) and baseflow (  ). The       is calculated as a function of soil 667 

moisture and effective precipitation as: 668 

                             (9) 669 

                      
     

              (10) 670 

where    is a parameter, representing the fraction of precipitation that is immediately 671 

transformed into    during the same rainfall event;       is the effective 672 

precipitation. The    in month t is calculated as: 673 

                         (11) 674 

where    is a parameter, representing the fraction of stored soil water that is 675 

discharged as baseflow. In total, 3 parameters in the VUB are to be calibrated 676 

including   ,    and   . The unit of    and    is month–
1
. 677 

A.3. Time Variant Gain Model (TVGM) 678 

The theory of the TVGM was first proposed by Xia et al. (1997) and then 679 

developed later by Xia et al. (2005). The model structure is presented in Figure 2c. As 680 

for the actual evapotranspiration (  ), it can be expressed as a function of soil 681 

moisture and potential evapotranspiration as: 682 

                          
        (12) 683 

where   is a parameter, representing the nonlinear relationship between    and 684 

relative soil moisture. Quick flow (  ) in month t is calculated as: 685 
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              (13) 686 

where      is saturated soil moisture;   and    are two empirical coefficients. As 687 

for the subsurface runoff generation model, the soil moisture at time step t is 688 

calculated by combining the water balance equation and the dynamic 689 

storage-discharge function. And the baseflow (  ) is calculated by a linear function of 690 

the soil moisture at time steps t   and t: 691 

                               (14) 692 

where S(t  ) and S(t) are the soil moisture at time t   and t, respectively;    is an 693 

empirical coefficient related to baseflow generation. In total, there are 5 parameters in 694 

the TVGM to be calibrated including     ,  ,   ,    and   . The unit of      is 695 

mm and the unit of    is month
–1

. 696 

A.4. WatBal Model (WM) 697 

The WM was originally developed by Leaf and Brink (1973) and was further 698 

modified by Wang et al. (2014). The model structure is presented in Figure 2d.       699 

is a function of potential evapotranspiration and the relative soil moisture and is 700 

estimated as: 701 

                                (15) 702 

where        is the soil moisture storage at the beginning of time step t;      is 703 

the maximum storage capacity.       is calculated as a function of relative storage 704 

and precipitation as: 705 
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                                (16) 706 

where    the is quick flow coefficient.    in month t is calculated with a linear 707 

storage-discharge function as: 708 

                         (17) 709 

where    is a parameter, representing the fraction of stored soil water that discharges 710 

as baseflow. In total, there are 3 parameters in the WM to be calibrated including 711 

    ,    and   . The unit of      is mm and the unit of    is month–
1
. 712 

A.5. Schaake Model (SM) 713 

The SM was firstly developed by Schaake and Liu (1989) and was improved later 714 

by Schaake (1990). The model structure is presented in Figure 2e. The uniqueness of 715 

the model is to introduce soil moisture deficit (D) for estimation of actual 716 

evapotranspiration (  ) and runoff. In the SM,    is assumed to deplete the soil 717 

water at a potential rate when the storage deficit is zero, whereas    is zero when the 718 

storage deficit reaches the maximum. For the case storage deficit does not reach the 719 

maximum,    of month t is calculated as: 720 

             
         

    
         (18) 721 

where D(t) is the soil water storage deficit at current time step, and      is the 722 

maximum deficit of soil moisture storage. Quick runoff (  ) is calculated as: 723 

           
                       (19) 724 
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                                (20) 725 

where       is effective precipitation; and    and   are empirical parameters. 726 

Parameter   represents the proportion of actual evapotranspiration that must be 727 

satisfied by current month precipitation before runoff can occur, and parameter   728 

represents the proportion of infiltration that must be satisfied by current month 729 

precipitation before runoff can occur. Baseflow (  ) is assumed to vary with soil 730 

moisture deficit (i.e. D) and is calculated as: 731 

                            (21) 732 

where k is a parameter representing the proportion of surplus to generate baseflow, 733 

and      is the maximum groundwater storage. In total, there are 5 parameters in 734 

the SM to be calibrated including     ,  ,  ,   and     . The unit of      and 735 

     is mm and the unit of   is month–
1
. The storage structure of SM is different 736 

with the other four. The SM uses only one soil moisture deficit (D) to represent both 737 

soil water and groundwater storages and uses two parameters (i.e. Dmax and Gmax) to 738 

represent the capacity of soil water and groundwater storages, respectively. Recharge 739 

from soil moisture to groundwater is not allowed in the SM.       is calculated as 740 

the function of −D(t),       is a function of (Dmax−D(t)), and       is a function of 741 

(Gmax−D(t)). The number of water storage is regarded as only one (Jiang et al., 2007) 742 

as there is only one current status of moisture storage (i.e. D). 743 

 744 
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Figure 1. Spatial distribution and catchment characteristics of the 443 unregulated 

catchments used in this study. The background colour of subplot (a) shows different climatic 

types based on the Köppen-Geiger classification schemes. Subplots (b) and (c) show the 

frequency histograms of mean annual precipitation and aridity index, respectively. 

Figure



 

Figure 2. Conceptual representations of the 5 MWBMS with runoff partitioning structure. 

The meaning of the symbols refers to Table 2.  



 

Figure 3. Boxplots showing the performance (value of     ) of the 5 MWBMs in their 

original (black line) and modified (red line) forms for estimating total flow (Q, red fill), quick 

flow (Qd, green fill) and baseflow (Qb, blue fill) in all the 443 catchments. Note that the 

minimum performance of the WM model is not included for a better visualization. 

  



 

Figure 4. Hexagon binning plots showing comparison of observed and simulated monthly 

baseflow (mm month
−1

) by 5 models in their original forms across all the 443 catchments over 

the period of 1975-2012. Subplots (a)~(e) are the results of DWBM, VUB, TVGM, WM and 

SM, respectively. The colour ramp of the hexagon in proportion to the counts indicates the 

density of data points. 

  



 

Figure 5. Comparison of total flow performance of the 5 original and modified MWBMs of 

all the 443 catchments. Subplots show exceeded percentage of catchments that (a) NSE, (b) 

NSE(log), (c) r, and (d) B. 

 



 

Figure 6. Comparison of total streamflow performance between original and modified 

models. (a) the percentage of improved catchments, (b) improvement of median value and, (c) 

change of IQR in terms of NSE, NSE (log), r and B of all the 443 catchments. The bar and 

error bar of the mean indicate mean and standard deviation of all the 5 models and all the 443 

catchments. 

 



 

Figure 7. Same as Figure 5 except for baseflow. 



 

Figure 8. Same as Figure 6 except for baseflow. Note that maximum change of IQR of NSE 

of the WM model is 2.9 and the y-axis of subplot (c) is truncated to 2.0 for a better 

visualization. 

 



 

Figure 9. Time series of monthly baseflow (mm month
−1

) from observation (blue line) and 

simulated by DWBM (red line) and DWBMmod (black line) in two selected catchments: (a) 

238204 and (b) 108002. Note only ten-year records are showed for a better visualization. 



 

Figure 10. Comparison of baseflow derived from LH method (blue line), UKIH method 

(green line) and CM method (purple line) in catchments (a) 238204 and (b) 108002. 

 

Figure 11. Scatter plots of observed and simulated monthly baseflow (mm month
−1

) by 

DWBM (green dots), DWBMmod (red triangles) and Adjusted-b-DWBMmod (blue squares) in 

two selected catchments: (a) 238204 and (b) 108002. 



Table 1. Summary of the catchment characteristics in the 443 catchments including tropics, arid, equiseasonal-hot, equiseasonal-warm and winter rainfall 

dominant. 

 

 

 

 

Catchment characteristics Total Arid Equiseasonal hot Equiseasonal warm Winter rainfall Tropics 

Number of catchments 443 50 105 171 61 56 

Catchment area (km2) 48-72902 65-72902 53-15851 51-16953 48-11795 66-47651 

Mean annual rainfall (mm) 230-3684 230- 892 547-1791 491-2405 294-1129 760-3684 

Mean annual potential evapotranspiration (mm) 921-2238 1214-1988 1190-1819 921-1495 1046-1553 1641-2238 

Aridity index 0.39-6.99 2.21-6.99 0.76-2.69 0.39-2.31 1.14-5.28 0.48-2.49 

Annual runoff coefficient 0.000-0.961 0.000-0.398 0.025-0.735 0.029-0.861 0.005-0.263 0.106-0.961 

Annual baseflow index 0.001-0.792 0.001-0.027 0.032-0.509 0.033-0.792 0.062-0.799 0.061-0.605 

CV of monthly precipitation 0.47-1.92 0.73-1.92 0.65-1.13 0.47-1.05 0.57-1.11 1.00-1.57 

CV of monthly runoff 0.61-313.65 4.13-107.22 1.32-52.36 0.61-38.51 4.23-313.65 1.14-16.84 

Table
Click here to download Table: Revision_1 - Tables - V3 - Clear.docx

http://ees.elsevier.com/hydrol/download.aspx?id=1621111&guid=d4ad11bc-9d2b-4721-b7e6-9e03f4537261&scheme=1


Table 2. Equations of the 5 models for simulating actual evaporation, quick flow and baseflow. 

 

Model Parameters Equations to simulate actual evapotranspiration No. Equations to simulate quick flow No. Equations to simulate baseflow No. 

DWBM                           
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Table 3. Summary of the linear or nonlinear characteristics of actual evapotranspiration, 

quick flow and baseflow simulating equations of the 5 MWBMs. 

Model 

Actual evapotranspiration  Quick flow  Baseflow 

linear nonlinear  linear nonlinear  linear nonlinear 

DWBM  √   √  √  

VUB  √   √  √  

TVGM  √   √  √  

WM √    √  √  

SM √    √  √  

 

Table 4. The function for baseflow generation mechanism in the 5 original and modified 

models. 

Original model Equation for baseflow  Modified model Equation for baseflow 

DWBM                DWBMmod                   

VUB                 VUBmod                   

TVGM                          TVGMmod                              

WM                 WMmod                   

SM                     SMmod                             

Note:                  

 



Table 5. The value of      at 25th, 50th and 75th percentile across 443 catchments of total streamflow (  ), quick flow (  ) and baseflow (  ) simulated by five 

original models. The IQR is inter-quantile range (i.e. range between 75th and the 25th percentiles). The row of “Average” means the average value of      of the 

five models. 

Model 
     of total streamflow       of quick flow       of baseflow 

25th 50th 75th IQR  25th 50th 75th IQR  25th 50th 75th IQR 

DWBM 0.72 0.77 0.84 0.12  0.41 0.56 0.68 0.27  0.09 0.30 0.48 0.39 

VUB 0.72 0.77 0.83 0.11  0.52 0.63 0.69 0.17  0.00 0.12 0.21 0.21 

TVGM 0.61 0.71 0.8 0.19  0.47 0.55 0.62 0.15  -0.14 0.11 0.19 0.33 

WM 0.58 0.68 0.76 0.18  0.44 0.52 0.6 0.16  -0.21 0.12 0.21 0.42 

SM 0.63 0.71 0.77 0.14  0.47 0.57 0.66 0.19  0.24 0.39 0.51 0.27 

Average 0.65 0.73 0.80 0.15  0.46 0.57 0.65 0.19  0.00 0.21 0.32 0.32 

 

  



Table 6. Summary of the improved values of different indicators for the total streamflow performance comparing the modified and original models. The last 

row shows the average (mean ± standard deviation) of all the 5 models. 

Model 

NSE  NSE(log)  r  B 

Proportion 

(%) 

Median IQR  Proportion 

(%) 

Median IQR  Proportion 

(%) 

Median IQR  Proportion 

(%) 

Median IQR 

DWBM 76.75  0.03   0.06   79.46  0.05   0.06   78.56  0.01   0.04   53.27  0.00  0.00  

VUB 85.33  0.01  0.05   61.17  0.01  0.04   79.01  0.01  0.00   53.27  0.00   0.01  

TVGM 82.17  0.02   0.02   80.81  0.04  0.04   76.98  0.01   0.01   49.44  0.00  0.00  

WM 92.78  0.05   0.03   76.75  0.04  0.00   85.55  0.01   0.02   43.57  0.00   0.01  

SM 72.01  0.03   0.05   62.75  0.02   0.03   61.40  0.00   0.02   55.76  0.01  0.00  

Range 72.01~92.78 0.01~0.05  0.06~0.05  61.17~80.81 0.01~0.05  0.06~0.04  61.40~85.55 0.00~0.01  0.04~0.00  43.57~55.76 0.00~0.01  0.01~0.00 

Average 81.81       0.03         0.02       72.19       0.03         0.002        76.30       0.01         0.02        51.06      0.002        0.004        

 

  



Table 7. Same as Table 6 except for baseflow. 

 

Model 

NSE  NSE (log)  r  B 

Proportion 

(%) 

Median IQR  Proportion 

(%) 

Median IQR  Proportion 

(%) 

Median IQR  Proportion 

(%) 

Median IQR 

DWBM 50.56  0.00  0.64   80.59  0.24   0.05   91.42  0.22  0.02   25.73   0.21  0.19  

TVGM 28.67   0.08  0.08   56.21  0.09   0.08   91.87  0.19  0.08   41.31   0.03  0.42  

VUB 59.82  0.04  1.15   65.69  0.20  0.05   80.81  0.12  0.13   66.59  0.09  0.12  

WM 37.92   0.11  0.20   64.33  0.17   0.13   76.52  0.09   0.08   57.79  0.06  0.24  

SM 26.41   0.24  2.90   72.23  0.12   0.38   74.49  0.09  0.02   36.12   0.09  0.36  

Range 26.41~59.82  0.24~0.04 0.08~2.90  56.21~80.59 0.09~0.24  0.38~0.05  74.49~91.42 0.09~0.22  0.08~0.13  25.73~66.59  0.21~0.09 0.12~0.42 

Average 40.68        0.08       0.99        67.81       0.17        0.12        83.02       0.14       0.03        45.51        0.04       0.27       



Table 8. Summary of model parameters and performances of the DWBM, DWBMmod and 

Adjusted-b-DWBMmod in catchment 238204 and 108002. 

Station Model 

Parameters  Criteria 

m b  r NSE NSE(log) B 

238204 

DWBM / /  0.713 0.471 0.126 0.811 

DWBMmod 47.5 233.9  0.840 0.572 0.343 0.612 

Adjusted-b- DWBMmod 47.5 210  0.840 0.705 0.491 0.988 

108002 

DWBM / /  0.698 0.468 0.259 0.998 

DWBMmod 226.8 1.73  0.872 0.307 0.657 0.427 

Adjusted-b- DWBMmod 226.8 100  0.872 0.753 0.772 0.925 


