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Abstract 12 

As a major weather-driven disaster, drought can be assessed from meteorological to 13 

hydrological aspects. Although the propagation from meteorological to hydrological 14 

droughts has received lots of attention in recent years, the hazard transferability in 15 

such a propagation process has been less investigated. In this study, we propose a 16 

framework with the incorporation of copulas and a drought hazard propagation ratio 17 

(DHPR) to examine the drought propagation process, particularly to investigate the 18 

accompanying hazard transferability. Three catchments with few human activities 19 

located in two major river basins of China (i.e., the Yangtze River basin and the 20 

Yellow River basin) with different hydro-climatic conditions are selected as case 21 
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studies. First, the standardized precipitation evapotranspiration index (SPEI) and the 22 

standardized runoff index (SRI) are calculated to measure meteorological and 23 

hydrological droughts for the 1961-2014 period. Subsequently, the drought duration 24 

and severity are identified using the theory of run, and then the most-likely scenarios 25 

and the corresponding uncertainty ellipse based on copulas are incorporated to 26 

appraise meteorological and hydrological drought hazards. Finally, a novel concept of 27 

DHPR is proposed to evaluate the hazard transferability from meteorological to 28 

hydrological drought. The results show that (1) the drought propagation generally 29 

shows lengthened duration, amplified severity, and the time-delay phenomenon 30 

among these catchments; (2) drought hazards represented by the most-likely scenarios 31 

of duration and severity and the uncertainty ellipse tend to ascend based on the 32 

bivariate frequency analysis; and (3) the hazard transferability is stable from 33 

meteorological to hydrological droughts, as indicated by the almost unchanged DHPR 34 

ranging between 1 and 2 for the most-likely scenarios and varying between 2 and 4 35 

for the uncertainty ellipse under different return periods. The above results imply firm 36 

and robust correlations between meteorological and hydrological drought hazards, 37 

which can provide a supplement for revealing the drought propagation mechanism 38 

and would benefit drought risk assessment.  39 

Keywords: Meteorological drought; hydrological drought; drought propagation; 40 

drought return period; most-likely events;  41 
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1 Introduction 43 

As one of the most complex and severe natural hazards, drought has widespread 44 

impacts on society and the environment. Depending on the considered hydro-climatic 45 

variables and impacted aspects, drought can be defined as meteorological drought, 46 

hydrological drought, agricultural drought, and socio-economic drought (Mishra et al., 47 

2010). From the perspective of social activities on water resources, such as irrigation, 48 

industry and urban water supply, meteorological and hydrological droughts, defined 49 

as an abnormally dry climate and a deficit in surface or subsurface water, respectively, 50 

can be the most important (Haslinger et al., 2014; Su et al., 2018). Understanding the 51 

links between meteorological and hydrological droughts is necessary for revealing the 52 

causative mechanism of droughts, and is of paramount importance in water resource 53 

planning and management.  54 

Previous studies (e.g. Huang et al., 2017; Apurv et al., 2017; Guo et al., 2020) 55 

have investigated the links between meteorological and hydrological droughts in 56 

recent years and classified them into three categories. The first category involves 57 

analyzing the correlations between hydrological and meteorological droughts 58 

combined with the investigation of contributing factors (Lorenzo-Lacruz et al., 2013; 59 

Vicente-Serrano et al., 2005). For example, Folland et al. (2015) used the standardized 60 

indicators to reflect temporal correlations among meteorological drought (i.e., 61 

Standardized Precipitation Index, SPI) and streamflow drought (i.e., Standardized 62 

Streamflow Index, SSI), and found high correlations exist between them. Haslinger et 63 
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al. (2014) investigated their correlations by using rank correlation analysis and found 64 

that there was a significant correlation between hydrological drought and 65 

meteorological drought under humid conditions. However, this correlation can be 66 

weakened to some extent under a dry climate, especially for catchments where 67 

groundwater storage and snow processes are significant. Overall, the above studies 68 

demonstrate that there are non-negligible correlations between meteorological 69 

droughts and their manifestation in hydrological responses, though the intensity of 70 

these correlations varies with local or regional climatic and underlying surface 71 

conditions (Barker et al., 2016).  72 

The second category focuses on investigating the variations of drought 73 

characteristics (e.g., frequency, duration, severity and area) across typical events in 74 

meteorological and hydrological conditions by using modeling or statistical 75 

approaches (Yang et al., 2017; Zhang et al., 2017). For instance, Vidal et al. (2010) 76 

identified meteorological and hydrological droughts over France and found that mean 77 

duration and severity of hydrological droughts appeared to be larger than that of 78 

meteorological droughts, but a reversed pattern in drought propagation processes can 79 

also be detected across some particular events and regions. Liu et al. (2019) 80 

established a multivariate joint distribution of duration, severity and area to connect 81 

meteorological and hydrological drought events, and concluded that minor 82 

meteorological droughts were less prone to result in a hydrological response. They 83 

also found that lagging and lengthening features exist in the propagation of the 84 
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drought signal from meteorological to hydrological drought. Van Loon et al. (2015) 85 

used an Austrian dataset consisting of 44 catchments to investigate drought 86 

propagation. They found that there were fewer but longer droughts in discharge than 87 

in precipitation, and found that the average deficit volume of droughts in discharge 88 

was comparable with that in precipitation, though with larger ranges. In brief, 89 

previous studies witness the responses of hydrological droughts to meteorological 90 

droughts and the comparability with regard to their characteristics.   91 

The third category mainly involves using meteorological drought indices to 92 

detect hydrological droughts to solve problems in the absence of hydrological records 93 

(e.g., Zhai et al., 2010; Wong, 2013; Hao et al., 2015). For example, Zhu et al. (2016) 94 

proposed an approach by combining meteorological indices at multiple timescales to 95 

monitor hydrological droughts. They indicated that meteorological indices (e.g., SPI) 96 

of short timescales (1-3 months) performed better in detecting hydrological droughts 97 

with short duration and deficit, whereas indices of long timescales, especially blended 98 

timescales (e.g., blending 8-month SPEI and 9-month SPEI), are more robust in 99 

detecting extremely severe hydrological droughts.  100 

Although previous studies have investigated the variations of drought indicators 101 

and characteristics, no work has studied the variations of drought hazards propagating 102 

from the anomalous dry climates to the terrestrial part of the hydrological cycle. In 103 

general, a hazard quantifies the probability of the occurrence of a potentially 104 

damaging phenomenon. It represents a probability ranging between 0 and 1, and is 105 
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usually denoted by a return period. Variations of drought indicators and characteristics 106 

can apparently result in changes of drought hazards, which is crucial for effective 107 

drought monitoring and management (Gu et al., 2020; Dai et al., 2020). From this 108 

perspective, quantifying the variations of drought hazards can help to understand 109 

drought propagation mechanisms, as well as benefiting drought mitigation and 110 

adaptation strategies.  111 

Over the years, a suite of approaches has been developed to investigate drought 112 

hazards, and especially for multivariate probabilistic characterization of droughts. The 113 

copula-based methodology for multivariate frequency analyses has been well 114 

established in drought fields. For example, Zhang et al. (2015) estimated regional 115 

joint probability and the uncertainty of joint probability curves in terms of drought 116 

duration and severity in China by using the fuzzy c-means method and copula 117 

functions. Ayantobo et al. (2018) employed bivariate Archimedean copulas to 118 

systematically appraise meteorological drought hazards in mainland China for the 119 

1961–2013 period. They found that Northwestern and Southwestern China would 120 

subject to the highest drought hazards.  121 

Different from univariate frequency analyses, where a determined design value 122 

of drought characteristics can be estimated under a given return period, there are 123 

infinite combinations of drought characteristics in the multivariate case. Lack of 124 

uniquely determined drought design values may hinder making effective drought 125 

management and mitigation polices. In fact, the occurrence probability of these 126 
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infinite combinations is not the same. The most-likely scenario that has the highest 127 

probability of occurrence (the largest joint probability density) among these 128 

combinations appears to be the best representative candidate (Salvadori et al., 2011; 129 

Yin et al. 2018a, b). Nevertheless, few studies have identified the most-likely 130 

scenarios of drought characteristics in multivariate frequency analyses. Moreover, the 131 

inevitably large sampling uncertainty due to limited sample size is usually neglected 132 

(Cancelliere et al., 2010; Weng et al., 2015; Chang et al., 2016; Zhang et al., 2017; 133 

Ayantobo et al., 2018; Gu et al., 2018), though it is prominent in both univariate and 134 

multivariate frequency analyses. 135 

Accordingly, the present study aims at investigating the links between 136 

meteorological and hydrological droughts from the hazard assessment perspective. To 137 

this end, the specific objectives are to (i) investigate meteorological and hydrological 138 

drought hazards based on the most-likely scenarios and their corresponding bivariate 139 

uncertainty envelopes; and (ii) characterize the transferability of drought hazards in 140 

drought propagation from meteorology to hydrology. To achieve this, a general 141 

framework is proposed (Figure 1) to characterize drought hazard propagation 142 

processes. The case study is conducted over three catchments with different 143 

hydro-climatic conditions, two of which are seasonally snow-covered and the other is 144 

driven by subtropical monsoon rainfall. The SPEI and SRI are used to derive 145 

meteorological and hydrological droughts, respectively. The hazard transferability is 146 

evaluated by comparing both most-likely scenarios and their corresponding 147 
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uncertainty.  148 

[Please insert Fig. 1 here] 149 

2 Study Area and Data 150 

Three catchments from China’s two main river basins were selected to 151 

demonstrate the hazard variations between meteorological and hydrological droughts. 152 

They include the upper stream of the Yellow River basin (UYRB), and the Jinsha 153 

River basin (JSRB) and Jialing River Basin (JLRB) in the Yangtze River basin. The 154 

reason to choose these three catchments is because they are less influenced by human 155 

activities. The different hydro-climatic characteristics and drainage areas are other 156 

reasons to select these catchments.  157 

The UYRB has a surface area of 12.19×10
4
 km

2 
(Fig. 2(a)). The mean annual 158 

precipitation for 1961–2014 was 552 mm, with a standard deviation of 56 mm. It 159 

belongs to the cool temperature climate zone with the mean annual daily temperature 160 

being around −1.75 ℃. Runoff in this catchment is generated as the combination of 161 

snowmelt, groundwater recharge and precipitation. The mean annual runoff depth was 162 

172 mm, with large inter-annual variations (the standard deviation was 39.6 mm).  163 

The JSRB is located in the upper stream of the Yangtze River basin (Fig. 2(b)). It 164 

has a catchment area of 43.63×10
4
 km

2
 and ranges from a cool temperate climate to a 165 

monsoon climate. The mean annual precipitation in this catchment was slightly higher 166 

than that of the UYRB, with a value of 685 mm (the standard deviation was 48.9 mm). 167 

The mean annual daily temperature was 2.89 ℃ with the standard deviation being 168 
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0.60 ℃. Both the snowmelt and precipitation contribute to runoff. The mean annual 169 

runoff was 329 mm with a standard deviation of 53.5 mm.  170 

The JLRB has a surface area of 15.10 × 10
4
 km

2
 (Fig. 2(c)). It is located in the 171 

upper stream of the Yangtze River basin and has a subtropical monsoon climate. The 172 

mean daily temperature was 12.6 ℃, which is much higher than the other two 173 

catchments. The water resources in this watershed are the most abundant compared to 174 

the other two catchments and the main contributor to runoff is precipitation. The mean 175 

annual precipitation was 849 mm with a standard deviation of 93.5 mm, and the mean 176 

annual runoff was 437 mm with a standard deviation of 110 mm. The location of the 177 

three catchments and corresponding hydrometric stations are shown in Figure 2.  178 

[Please insert Fig. 2 here] 179 

Precipitation data with spatial resolution of 0.5°×0.5° are provided by the China 180 

Meteorological Data Sharing Service System (http://www.cma.gov.cn) for these three 181 

catchments. Six climate variables (maximum, minimum, and mean air temperature, 182 

wind speed, relative humidity, sunshine hours) at the daily scale are used to calculate 183 

the potential evapotranspiration (PET). These variables for the period 1961–2014 are 184 

collected from 6 gauges in the UYRB, 15 gauges in the JSRB, and 10 gauges in the 185 

JLRB. They are then aggregated to monthly values to estimate drought indices. 186 

Monthly runoff records covering the 1961–2014 period for the UYRB and JLRB and 187 

the 1961-2011 period for the JSRB is provided by the Yangtze River Water Resources 188 

Commission and the Yellow River Water Resources Commission in China for the 189 

http://www.cma.gov.cn/
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outlet of each catchment, respectively (Tang- Naihai Station, UYRB; Ping-Shan 190 

Station, JSRB; and Bei-Pei Station, JLRB).  191 

The MOPEX dataset (http://water.usgs.gov/nwis) is also used to test the 192 

proposed framework in this study. This dataset contains daily time series of 193 

observations of precipitation and discharge, and potential evapotranspiration based on 194 

NOAA Evaporation Atlas (Farnsworth et al., 1982; Yin et al., 2019). The MOPEX 195 

data are often assumed to only include in-situ observations unaffected by human 196 

interferences (Wang et al., 2011). We selected 218 small-scale catchments (ranging in 197 

area from 134 to 10375 km
2
) with the high data quality.  198 

3 Methodology 199 

3.1 Drought Index Calculation 200 

The Standardized Precipitation Evapotranspiration Index (SPEI) 201 

(Vicente-Serrano et al., 2010) and Standardized Runoff Index (SRI) (Shukla, 2008) 202 

are employed to measure the dry and wet conditions in terms of both meteorological 203 

and hydrological variables, respectively. SPEI and SRI consist of multiple timescales, 204 

while the 6-month timescale is selected to consider a relatively long period of 205 

abnormally wet/dry conditions and to filter redundant information introduced by 206 

too-long timescales (e.g., 12–24 months) (Ayantobo et al., 2018).  207 

The calculation of SPEI-6 is based on the differences between the aggregated 208 

6-month precipitation (P) and 6-month PET. The three-parameter log-logistic 209 

probability distribution is usually employed to fit the aggregated 6-month differences 210 

http://water.usgs.gov/nwis
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between P and PET:  211 

1(x) [1 ( ) ]F
x





 


                    (1) 212 

where F(x) means the cumulative distribution function of the log-logistic distribution, 213 

and α, β and λ represent the 3 parameters of the distribution. The maximum likelihood 214 

estimation (MLE) method (Ahmad et al., 1988) is used to estimate these 3 parameters. 215 

The PET is calculated by using the Food and Agriculture Organization of the United 216 

Nations (FAO) Penman-Monteith approach (Allen et al., 1998): 217 
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where Δ is the slope of saturation vapor pressure vs. air temperature curve (kPa /℃), 219 

Rn is the net radiation (MJ/m
2
/day), G is the soil heat flux (MJ/m

2
/day) and is close to 220 

zero at the daily scale, γ is the psychometric constant (kPa/℃), Tmean is the daily mean 221 

air temperature at 2-m height (℃), u2 is the mean wind speed at 2-m height (m s
-1

), 222 

and es and ea are saturated and actual vapor pressure (kPa), respectively. They can be 223 

obtained using the following equations: 224 

17.27

237.30.6108
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                        (3) 225 

100
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e e                          (4) 226 

where rhs is the relative humidity (%), and tmp is temperature (i.e., daily 227 

maximum and minimum air temperature). Due to the non-linearity of eq. (3), here the 228 

mean saturated vapor pressure derived from the daily maximum and minimum air 229 

temperature is used. At the last step, a standardized process is used to calculate the 230 
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SPEI-6 values by transforming the fitted log-logistic distribution function F(x) to the 231 

standard normal distribution with a mean of zero and a standard deviation of one 232 

(Vicente et al-Serrano., 2012; Huang et al., 2017; Gu et al., 2019). The SPEI-6 values 233 

are derived as the standardized values of F(x).  234 

SRI-6 is calculated with the similar method to SPEI-6. However, the Person-III 235 

distribution recommended by the Chinese Guideline (MWR, 2006) is used to fit the 236 

aggregated 6-month runoff series for each calendar end-month (of the 6-month period) 237 

(Barker et al., 2016): 238 

1 (x )(x) (x )
( )

x

F e dx


  






   
                (5) 239 

where F(x) means the cumulative distribution function of the Person-III distribution, 240 

and α, β and ω represent the 3 parameters of the distribution.  241 

 242 

3.2 Drought Event Identification 243 

A meteorological (hydrological) drought event is defined for values of SPEI-6 244 

(SRI-6) continuously below zero, and a meteorological (hydrological) event ends 245 

when the values of SPEI-6 (SRI-6) rise above zero (Yevjevich et al., 1967; Mishra et 246 

al., 2010; Zargar et al., 2011; Ayantobo et al., 2017). The duration and severity are 247 

then extracted as two measurements to characterize drought events. The drought 248 

duration is defined as the length of the time period that the values of SPEI-6 (SRI-6) 249 

are continuously negative, and the drought severity is defined as the cumulative 250 

SPEI-6 (SRI-6) values in the drought duration (to facilitate analysis, absolute values 251 
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are used in this study).  252 

 253 

3.3 Copula Theory for Drought Analysis  254 

(1) Marginal distribution function for drought analysis 255 

For univariate drought analyses, the Gamma, Normal, Weibull, Log-logistic, 256 

Log-normal and Exponential distributions (Kwon et al., 2016) are usually employed 257 

to fit drought duration and drought severity. The best distribution is identified by 258 

using the Akaike information criterion (AIC) (Bozdogan et al., 1987):  259 

2
2log(MSE)

1

n k
AIC

n k

 
 

 
                       (6) 260 

where log(MSE) denotes the negative log-likelihood function, k denotes the number 261 

of parameters in the distribution function, and n denotes the sample size. The smallest 262 

AIC value represents the best fitting.  263 

 (2) Univariate return period 264 

The univariate return period is calculated as follows (Shiau et al., 2001, 2006): 265 

1

l
D

D

E
T

F



                           (7) 266 

1

l
S

S

E
T

F



                            (8) 267 

where El represents the expected inter-arrival time of drought events, and TD and TS 268 

represent the univariate return period of drought duration and severity, respectively.  269 

The credible intervals (95%) based on the non-parametric bootstrap method 270 

(Kyselý et al., 2010) are used to quantify the sampling uncertainty. Specifically, the 271 
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length between the upper boundary and lower boundary of the estimated drought 272 

duration (or drought severity) under a given return period is employed to evaluate the 273 

uncertainty of the univariate distribution:  274 

(D)

rp rp rp

unc up lowL D D                           (9) 275 

( )

rp rp rp

unc S up lowL S S                            (10) 276 

where 
(D)

rp

uncL  and 
( )

rp

unc SL  are the measurements of sampling uncertainty for drought 277 

duration and severity in univariate frequency analysis, respectively, and rp

upS  ( rp

upD ) 278 

and rp

lowS  ( rp

lowD ) are the upper and lower boundaries of the drought severity (duration) 279 

under a given return period, respectively.  280 

(3) Copula functions and Joint return period 281 

The copula functions are employed to characterize the dependence structure of 282 

drought duration and severity. According to Sklar’s theorem (Sklar, 1959), the 283 

bivariate probability distribution ( , )F d s  can be expressed by its marginal 284 

distributions and the associated dependence function:  285 

 ( , ) ( ( ), ( ))D SF d s C F d F s                       (11) 286 

where C denotes a copula function, and ( )DF d  and ( )SF s denote the cumulative 287 

distribution functions of drought duration and severity, respectively.  288 

In this study, the Gaussian, Gumbel and Frank copulas are identified as the 289 

candidate bivariate distributions (Nelsen, 2007):  290 

1 1( ) ( ( ), ( )) ( [ 1,1])Gaussian D SC F F                    (12) 291 

1/

D( ) exp{ [( ln( ) ) ( ln( ) )] } ( [1, ])Gumbel SC F F                 (13) 292 
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(e 1)
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.           (14) 293 

The parameter ϴ is estimated by the MLE method. The Akaike information criterion 294 

(AIC) is employed to evaluate the goodness-of-fit of the candidate copula functions.  295 

The OR ({D d} {S s}   ) and AND ({D d} {S s}   ) cases are selected as 296 

the bivariate return periods in this study (Shiau et al., 2006; Zhang et al., 2015):  297 

D S1 ( , )

l
or

E
T

C F F



                        (15) 298 

D D S1 ( , )

l
and

S

E
T

F F C F F


  
                   (16) 299 

where Tor (Tand) denotes the OR (AND) return period, and D S( , )C F F  represents the 300 

combined cumulative distribution functions based on the copula functions.  301 

 (4) The most-likely scenario  302 

For bivariate frameworks under a given Tor or Tand, there are infinite 303 

combinations of drought duration and severity which constitute a contour (or a design 304 

curve), albeit with different likelihoods of these combinations. In this study, the 305 

combination that has the largest probability to occur has been identified by utilizing 306 

the most-likely design realization method proposed by Salvadori et al. (2011). For a 307 

given joint return period Tor, the corresponding level 1 1/ ort T  can easily be 308 

calculated, and the most-likely combination (MLC) point (d∗, s∗) of all possible 309 

events at this level can be obtained by selecting the point with the largest joint 310 

probability density (Salvadori et al. 2011): 311 

D S S( *, *) arg max ( , ) [ (d), (s)] (d) (s)Dd s f d s c F F f f            (17) 312 
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( (d), (s)) 1 1/D S orC F F T                          (18) 313 

where ( , )f d s  represents the joint probability density function of drought duration 314 

and severity; D S D S D[ (d), (s)] ( (d), (s)) / ( (d)) ( (s))Sc F F dC F F d F d F  represents the 315 

density function of the copula; and (d)Df  and S(s)f  are probability density 316 

functions of drought duration and severity, respectively. Since the analytical solutions 317 

are unavailable, the harmonic mean Newton’s method is applied to estimate the 318 

results (Yin et al., 2018a, b). 319 

(5) Bivariate uncertainty envelopes  320 

To evaluate the uncertainty of the most-likely designs for droughts introduced by 321 

the limited sample size, the bootstrap method in the bivariate framework is used as 322 

follows:  323 

a. Predefine the sample size n of bootstrapping samplings, and obtain the large 324 

sample B (b1, b2, bi, …, bn) involving n group of simulated drought duration and 325 

severity series (bi).  326 

b. For each sample series bi in B, respectively use the simulated drought duration 327 

and severity to fit the marginal distributions and then select the most appropriate 328 

copula function.  329 

c. For each sample bi in B under a joint return period Tor or Tand, firstly estimate 330 

the most-likely design scenarios (di*, si*) by Eqs. (15)-(18) and then derive n pairs of 331 

most-likely design scenarios.  332 

d. Under a joint return period Tor or Tand, use n pairs of most-likely design 333 
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scenarios (di*, si*) calculated above to estimate a 95% confidence ellipse (Friendly et 334 

al., 2013). The area of the ellipse is used as the measurement of the sampling 335 

uncertainty under the bivariate framework.  336 

 337 

3.4 Drought Hazard Propagation Ratio 338 

(1) Drought hazard propagation ratio for most-likely designs 339 

To further investigate the linkages between meteorological and hydrological 340 

drought hazards, a drought hazard propagation ratio for the most-likely design events 341 

(DHPR-MLE) is proposed. The DHPR-MLE is defined as the ratio between the 342 

meteorological and hydrological most-likely drought scenarios for a given return 343 

period:  344 

 345 

RP
RP h

RP

m

MLE
DHPR MLE

MLE
                        (19) 346 

where RP

mMLE ( RP

hMLE ) denotes the most-likely scenario of meteorological 347 

(hydrological) droughts for a given return period. 348 

 (2) Drought hazard propagation ratio for uncertainty envelopes  349 

A drought hazard propagation ratio for the bivariate confidence envelope 350 

(DHPR-CE) is also proposed as a supplement of the design scenario. The DHPR-CE 351 

is defined as the ratio between the areas of the confidence ellipse for meteorological 352 

design scenarios and the areas of the confidence ellipse for hydrological design 353 

scenarios for a given return period: 354 
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RP
RP h

RP

m

ER
DHPR CE

ER
                         (20) 355 

where RP

mER  ( RP

hER ) denotes the bivariate confidence ellipse corresponding to the 356 

most-likely scenario of meteorological (hydrological) droughts for a given return 357 

period. 358 

 359 

4 Results 360 

4.1 Identification of Meteorological and Hydrological Drought Characteristics 361 

Based on the theory of run, drought events were identified for the UYRB, the 362 

JSRB, and the JLRB, as shown in Figure 3. The upper three panels indicate 363 

meteorological droughts derived from the six-month SPEI, and the bottom three 364 

panels show hydrological droughts from the six-month SRI.  365 

[Please insert Fig. 3 here] 366 

Generally, the meteorological droughts tended to be more frequent than 367 

hydrological droughts for these catchments, with smaller severity and shorter duration. 368 

However, for events with long duration (>10 months), which might induce severe 369 

socio-economic losses, the hydrological droughts occur more frequently than the 370 

meteorological droughts. Additionally, notable meteorological droughts with the 371 

longest duration were not always consistent with notable hydrological droughts (See 372 

Table S1). This is because besides meteorological variables, other factors (e.g., 373 

antecedent soil moisture, groundwater recharge) might also play an important role in 374 
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the formation of hydrological droughts.  375 

To be specific, 63 meteorological and 35 hydrological drought events were 376 

recognized during the 1961–2014 period in the UYRB. The severe meteorological and 377 

hydrological droughts with long duration (>10 months) occurred 8 and 10 times, 378 

respectively. The longest meteorological drought duration spanned from June 1990 to 379 

February 1992 with a duration of 21 months (with a severity of 21.5), while the 380 

longest hydrological drought duration spanned from June 1969 to December 1971 381 

with a duration of 31 months (with a severity of 24.2). The average duration and 382 

severity were 4.5 months and 4.97, respectively, for the 63 meteorological droughts, 383 

while they had almost increased by one time for hydrological droughts, with average 384 

duration of 7.5 months and average severity of 8.8.  385 

In the JSRB, there were 9 meteorological droughts and 12 hydrological droughts 386 

with long duration (>10 months) during the 1961–2014 period. For meteorological 387 

droughts, there were 55 events in total. The average duration was 5.1 months and the 388 

average severity was 5.76. Moreover, the most severe event spanned 36 months from 389 

January 1971 to December 1973 (with a severity of 34.4). For hydrological droughts, 390 

34 drought events were identified, with an average duration of 7.4 months and 391 

average severity of 8.76. Additionally, the longest event spanned 35 months from June 392 

1975 to April 1978 (with a severity of 27.4).  393 

In the JLRB, more notable meteorological droughts (12 times) with long duration 394 

were identified during 1961–2014 compared to notable hydrological droughts (9 395 
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times). Specifically, among 64 meteorological droughts, the longest spanned from 396 

January 2006 to June 2007 with 18 months in duration and 35.38 in severity, while 397 

among 55 hydrological droughts, the longest event spanned from August 1977 to 398 

January 1980 with 30 months in duration and 30.98 in severity. The average 399 

meteorological drought duration was 4.2 months with an average severity of 4.88, 400 

while the average hydrological drought duration was 4.6 months with an average 401 

severity of 5.29.  402 

4.2 Propagation of Drought Characteristics  403 

In order to better understand the overall pattern of drought events and intuitively 404 

reveal the relationship between meteorological and hydrological droughts, violin plots 405 

(Hintze et al., 1998) were used to investigate the distribution of drought duration and 406 

severity. The white circle in Figure 4 indicates the median of drought duration and 407 

severity from 1961 to 2014.  The drought duration and severity derived from SPEI 408 

and SRI characterize “below-normal water availability” in the climatic (SPEI) and 409 

terrestrial (SRI) components of the hydrological cycle, respectively. Their 410 

dimensionless standardized property enables the comparison of drought duration and 411 

severity between meteorological episodes and hydrological episodes. Further, this 412 

comparison between the clusters in hydrological drought duration and severity and in 413 

meteorological drought duration and severity (characterized by the violin plots) 414 

facilitates to reveal the drought propagation processes that dominated by the 415 

synergetic impacts of local climates and catchment characteristics. (Van Loon et al., 416 
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2015; Yang et al., 2017; Liu et al., 2019). Generally, the distribution of the drought 417 

duration and severity between meteorological and hydrological events shows a similar 418 

pattern. All distributions are wide. They are even slightly wider for hydrological 419 

events than for meteorological events. These wide patterns imply great diversities 420 

across drought events. In addition, there are upward tendencies in terms of 421 

distributions of duration and severity from meteorological drought events to 422 

hydrological drought events across the three catchments, with larger changing 423 

amplitudes in the UYRB and JSRB than those in the JLRB. Again, these amplified 424 

drought signals denote deteriorated drought conditions from meteorological to 425 

hydrological propagation, which are consistent with previous studies (Yang et al., 426 

2017; Liu et al., 2019).  427 

[Please insert Fig. 4 here] 428 

Furthermore, to probe into details how hydrological droughts response to 429 

meteorological droughts, we match some extreme hydrological droughts (with 430 

duration longer than 10 months) with corresponding meteorological droughts in 431 

Tables S2. The results show that there is the lagged response time from 432 

meteorological to hydrological droughts (for both the whole drought clusters and 433 

extreme episodes) over these 3 catchments. Generally speaking, these time-lags 434 

roughly range between 1 and 8 months over these three catchments. Specifically, the 435 

average time-lag in the JSRB was the longest (with an average time-lag of 4.1 436 

months), followed by that in the JLRB (with an average time-lag of 1.7 months), and 437 
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then in the UYRB (with an average time-lag of 1.1 months). Additionally, some 438 

negative time-lags emerged in the smaller watersheds (i.e., UYRB and JLRB), which 439 

might derive from the low antecedent soil moisture and limited groundwater storage 440 

capacity. Subsequently, a hydrological drought would occur in advance and it would 441 

even occur before a meteorological drought (Fleig et al., 2011; Liu et al., 2019).  442 

4.3 Propagation of Univariate Drought Hazard 443 

Prior to evaluating the bivariate hazard, it is essential to first perform drought 444 

analysis for marginal distributions. The candidate marginal distributions with the 445 

smallest AIC values for drought duration and severity were identified and are 446 

highlighted in bold in Table S3. The goodness-of-fit for duration and severity for the 447 

most appropriate distributions were further evaluated by the K–S test at the 0.05 448 

significance level (Table S4). H values in Table S4 equaling to zero mean that the 449 

selected marginal distribution passes the K–S test and it is appropriate to be used. 450 

Also, the goodness-of-fit can be further demonstrated by p-values, with a larger 451 

p-value indicating a better fitting.  452 

Figure 5 presents the fitted distribution and corresponding confidence intervals 453 

of duration and severity for meteorological and hydrological drought events over 454 

three catchments. Figure 6 shows the estimated design values and 95% confidence 455 

intervals for duration and severity under 10-, 20-, 30-, 50-, and 100-year return 456 

periods, respectively. In general, univariate design values under different return 457 

periods tend to increase from meteorological droughts to hydrological droughts in 458 
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terms of both duration and severity. For instance, design values of the meteorological 459 

drought duration (severity) vary from 11.4 to 20.8 months (from 12.8 to 28.9) when 460 

return periods increase from 10 to 100 years in the UYRB, while those of the 461 

hydrological drought duration (severity) vary from 15.3 to 29.6 months (from 14.6 to 462 

35.9). The increasing ratio in design values ranging from 14% to 42% clearly implies 463 

an increasing drought hazard in drought propagation processes.  464 

In addition, the intervals of drought duration and severity are wide, particularly 465 

for high quantiles (or large return periods). Consistent with design values, the 466 

confidence intervals also noticeably ascend in drought propagation processes. 467 

Moreover, the increasing extent in the confidence intervals is even more remarkable 468 

than that in the design values (ranging from 67% to 100%). For example, the 469 

confidence intervals of the meteorological drought duration (severity) range from 15 470 

to 24 months (from 18 to 35) for 10- and 100-year return periods for the UYRB, 471 

whereas those of the hydrological drought duration (severity) range from 30 to 49 472 

months (from 30 to 60).  473 

Similar results can be found in the JSRB and JLRB, which also demonstrate 474 

amplifying drought hazards under univariate frameworks in drought propagation 475 

processes.  476 

[Please insert Figs. 5-6 here] 477 

4.4 Propagation of Bivariate Drought Design 478 

The correlations between drought duration and severity (as indicated by Pearson, 479 
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Kendall, and Spearman coefficients), the goodness-of-fit (as denoted by AIC values), 480 

and parameters for the most preferred copulas are listed in Table S5. In general, 481 

drought duration and severity are highly correlated for these catchments. In addition, 482 

correlations between duration and severity in meteorological events are similar to 483 

those of hydrological events for all catchments, indicating that the dependence 484 

structure between drought characteristics may not be changed in the drought 485 

propagation process.  486 

Figure 7 presents bivariate return periods of drought duration and severity under 487 

five different return periods (i.e. T=10-, 20-, 30-, 50- and 100-year), the most-likely 488 

design scenarios, and corresponding confidence envelopes for meteorological and 489 

hydrological droughts. The observations are also shown in the figure to obtain a rough 490 

estimation of their magnitudes in the bivariate context. As shown in the figure, most 491 

of the observed events are located below Tor = 50-year curve (Tand = 100-year curve) 492 

for these catchments. Generally, for any given bivariate drought event, the 493 

corresponding OR return period is larger than that of the AND, which indicates 494 

different design strategies. Additionally, for a given return period, the drought designs 495 

under the univariate framework are smaller than the most-likely design scenarios 496 

associated with the OR case, whereas they are larger than those associated with the 497 

AND case.  498 

In general, from meteorological to hydrological droughts, there is an increasing 499 

tendency in the magnitude of the most-likely scenarios for both OR and AND cases. 500 
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This implies deteriorated hazards in drought propagation processes under the bivariate 501 

frameworks. For instance, for meteorological droughts in the UYRB, the most-likely 502 

designs are 10.5 (13.3) for severity and 9.8 (11.7) months for duration in the AND 503 

(OR) case under the 10-year return period, and 22.0 (32.3) for severity and 16.6 (22.5) 504 

months for duration in the AND (OR) case under the 100-year return period. In 505 

contrast, for hydrological droughts, the most-likely designs become 17.6 (19.3) for 506 

severity and 17.5 (18.5) months for duration under the 10-year return period, and 38.6 507 

(40.9) for severity and 31.4 (32.9) months for duration under the 100-year return 508 

period. Increases in the magnitude of the most-likely scenarios from meteorological 509 

events to hydrological events are also found in the JSRB and JLRB.  510 

Consistent with the magnitude of the most-likely scenarios, the uncertainty 511 

envelope of the OR case is also larger than that of the AND case. More importantly, 512 

an increasing tendency of the uncertainty envelopes can also be observed from 513 

meteorological to hydrological events in both OR and AND cases. These increasing 514 

amplitudes are even more pronounced with return periods ascending. For example, in 515 

the UYRB, the area of the uncertainty envelope is 20.6 (17.0) for meteorological 516 

events in the AND (OR) case under the 10-year return period, whereas it is almost 517 

doubled for hydrological events, with the uncertainty envelope area being equal to 518 

40.6 (53.1). Under the 100-year return period, the area of the uncertainty envelope is 519 

80.9 (96.4) for meteorological events in the AND (OR) case, while it is roughly 3 520 

times larger for hydrological events, with the uncertainty envelope area being equal to 521 
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204.7 (236.2) in the AND (OR) case. As expected, similar results can also be observed 522 

in the JLRB and JSRB.  523 

[Please insert Fig. 7 here] 524 

4.5 Propagation of Drought Hazard Analysis 525 

The return levels ranging between 10- to 200-year for drought duration and 526 

severity, as well as the most-likely scenarios for meteorological and hydrological 527 

events over the three catchments are displayed in Figure 8. As expected, magnitudes 528 

of both meteorological and hydrological drought designs increase gradually with 529 

return periods ascending.  530 

To further investigate changes of hazards in drought propagation with return 531 

periods ascending, the drought hazard propagation ratio (DHPR) calculated by 532 

Equations (19) and (20) are shown in Figure 9 for the three catchments. The upper 533 

three panels show the DHPR for the most-likely scenarios in the AND and OR cases, 534 

whereas the bottom three panels demonstrate the DHPR for the corresponding 535 

confidence ellipse. The results show that with return periods ascending, the DHPR 536 

shows slight fluctuations for the most-likely scenarios and their corresponding 537 

uncertainty ellipse.  538 

Specifically, the DHPR consistently ranges between 1 and 2 for the most-likely 539 

scenarios in the AND and OR cases over these catchments. Nevertheless, the 540 

DHPR-MLE in the larger catchment (JSRB) tends to be more stable than that in the 541 

smaller catchments (i.e., UYRB, JLRB) for duration and severity in both AND and 542 
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OR cases. 543 

The DHPR for confidence ellipse is roughly higher than that for the most-likely 544 

scenarios. Specifically, the DHPR for confidence ellipse in both AND and OR cases 545 

ranges between 2 and 3 over the three catchments, which demonstrates the stability of 546 

hazard transferability from meteorological to hydrological droughts.  547 

[Please insert Figs. 8-9 here] 548 

4.6 Generalization of the proposed framework 549 

To confirm the stability of drought hazard propagation ratio for both the most 550 

likely scenario and the corresponding confidence ellipse, this framework is extended 551 

to test over 218 small-scale catchments in the United States. The best-performed 552 

marginal distributions and appropriate Copula types are presented in Figure. S1. As 553 

shown, the selected marginal distributions and Copula types for the meteorological 554 

droughts are similar to those for the hydrological droughts to some extent. This 555 

indicates the close relationships between these two drought categories. The 20-, 50-, 556 

100-year most likely scenarios (under the OR case) of severity and duration for 557 

meteorological (and hydrological) droughts are demonstrated in Figures S2-S3, 558 

respectively. As expected, for a given return period, the severity and duration of 559 

hydrological droughts are prone to be larger than those of meteorological droughts. 560 

For instance, under the 20-year joint return period, the most likely scenarios of 561 

severity are below 20 for meteorological droughts over those catchments, while they 562 

roughly range between 20 and 40 for hydrological droughts. This phenomenon also 563 
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holds for the corresponding confidence ellipse (Figure. S4). Figures 10-11 present the 564 

DHPR-MLE for drought severity and duration, respectively. It can be observed that 565 

the DHPR-MLE almost stay unchanged for both drought duration and severity with 566 

the joint return period increasing over the 218 catchments. In addition, the 567 

DHPR-MLE in most catchments are higher than 1. This implies the lengthening and 568 

exacerbating phenomenon in drought propagation from the meteorological 569 

circumstance to the underlying surfaces. Furthermore, the DHPR-CE is presented in 570 

Figure 12 for those catchments. Similar to the pattern of DHPR-MLE, the DHPR-CE 571 

typically remains the same with the joint return period ascending, though larger 572 

spatial variations are observed. Overall, those results confirm the stability of DHPR.  573 

[Please insert Figs. 10-12 here] 574 

5 Discussion  575 

It is well known that a hydrological drought usually stems from a meteorological 576 

drought and is determined by the propagation of meteorological drought through the 577 

terrestrial hydrological cycle (Van Loon et al., 2015). To investigate the climate 578 

conditions inducing a hydrological drought, we identify the SPEI-6 value at the onset 579 

of a hydrological drought and accumulate negative SPEI-6 values forward until it 580 

becomes above zero. To further elaborate the correlations between these two types of 581 

droughts, the drought duration and severity derived from SPEI-6 with the 582 

corresponding hydrological drought is compared. The notorious drought episodes 583 

longer than 10 months (listed in Table S2) are selected and are employed to 584 
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demonstrate the corresponding results for the three catchments in Tables S6. It can be 585 

observed that when a hydrological drought occurs, the current-month SPEI-6 value is 586 

generally lower than the SRI-6 value and the antecedent cumulative SPEI-6 value is 587 

even much lower than the SRI-6. This verifies that abnormally dry climates can 588 

induce a hydrological drought. Furthermore, it can be observed that during a 589 

hydrological drought with long persistent time and large severity, the dry duration and 590 

magnitude characterized by SPEI-6 are also considerable, but smaller than the 591 

corresponding values calculated by SRI-6. For instance, in the UYRB, the 592 

hydrological drought occurred between June, 1969 and December, 1971 which lasted 593 

31 months with a severity of 35.72, the corresponding dry months are 25 months with 594 

a magnitude of 29.30. This indicates that the exacerbated conditions in drought 595 

propagation processes (Van Loon et al., 2014). In short, hydrological droughts are 596 

generally related to abnormally dry climates and sustained “below-normal water 597 

availability” in climates which typically contribute to large magnitudes of 598 

hydrological droughts.  599 

To further probe into the drought propagation regimes of these three catchments 600 

that spans from humid to semi-arid climates and involves different catchment 601 

characteristics, the correlations between SPEI and SRI are connected with local 602 

rainfall-runoff relationships. The results show that the correlation between SPEI and 603 

SRI is highly dependent on the relationship between precipitation and runoff. 604 

Variations of other recharge (e.g., snowmelt, groundwater discharge) to runoff cannot 605 
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be captured by SPEI and may weaken this correlation. Therefore, in the UYRB (with 606 

the rainfall–runoff coefficient being 0.31) the correlation between SPEI and SRI is 607 

weaker than that in the JSRB and JLRB (with the rainfall–runoff coefficients being 608 

0.48 and 0.51, respectively). Additionally, though the time-delay phenomenon in 609 

drought propagation processes can be observed, the time-lags differ among the three 610 

catchments. For instance, the longest time-lag between hydrological and 611 

meteorological droughts emerges in the JSRB. This may be due to the fact that the 612 

widely distributed coniferous forests, hard-wood forest and bush-wood in this 613 

catchment, and the large drainage area contribute to the prolonging of hydrological 614 

responses to the abnormally dry climates (Donohue et al., 2011; Ye et al., 2015; Liu et 615 

al., 2016).  616 

The notion of “return period” (or “design quantile”) that is closely related to the 617 

concept of “hazard” is frequently used in practice for the identification of dangerous 618 

events. In the multivariate framework, a given return period usually means infinite 619 

combinations for each variable involved and thus additional information is needed to 620 

pick out a single scenario in practice. Traditionally, for a given return period, the 621 

design scenario with the same marginal distribution probability for each variable has 622 

been identified and used (Zscheischler et al., 2017). However, this scenario deriving 623 

from the same probability for each variable is neither the most conservative 624 

estimation, nor the most-likely scenario to happen, lacking statistical consideration 625 

and physical mechanism. Consequently, the most-likely realization (Salvadori et al., 626 
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2011; Yin et al., 2018b) under the multivariate case is employed in this study. This 627 

design represents a scenario that is “more likely” to happen than others. Furthermore, 628 

the effectiveness and safety of design strategies for this scenario has been validated 629 

and can be the reasonable candidate in multivariate hazard assessments. Also, the 630 

uncertainty correlated with the most-likely design that has raised lots of attentions in 631 

the univariate context is usually ignored in the multivariate cases. This study 632 

quantifies such bivariate uncertainty and investigates the propagation process from 633 

meteorological conditions to hydrological responses. The results show that the 634 

magnitudes of the most-likely scenarios are inclined to increase from meteorological 635 

to hydrological droughts. At the same time, the corresponding uncertainty envelopes 636 

that are measured by the confidence ellipses also tend to ascend in drought 637 

propagation. This clearly implies deteriorated hazards of hydrological responses to 638 

abnormal climatic dryness. Moreover, it is worth noting that the DHPR for both the 639 

most-likely scenarios and corresponding bivariate uncertainty are relatively stable 640 

under different return periods. This may reveal the steady correlations between 641 

meteorological drought hazards and hydrological drought hazards.  642 

On the other hand, since drought severity are accumulated values of SPEI or SRI 643 

that below zero during the drought events, the values of severity thus includes 644 

variations of drought duration to some extent. To tackle this problem and verify the 645 

robustness of our results that the proposed DHPR-MLE and DHPR-CE are stable in 646 

drought propagation, the intensity is employed to characterize droughts to serve as a 647 
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comparison. This intensity is obtained by dividing the original “severity” by the 648 

“duration”, which can thus avoid the effect of drought duration. The newly calculated 649 

drought propagation ratio following the proposed framework is investigated (Figures. 650 

13-14). The results show that the DHPR-MLE (of duration and intensity) and 651 

DHPR-CE remain stable. Distinct from the DHPR-MLE of drought severity, the 652 

DHPR-MLE of drought intensity is no longer higher than 1 in the UYRB. This 653 

demonstrates that the enlarged severity from the meteorological droughts to the 654 

hydrological droughts in the UYRB is mainly caused by lengthened durations, while 655 

in the JSRB and JLRB, it is more related to strengthened intensities, which implies the 656 

differences of local climates and catchment characteristics across the three catchments. 657 

Overall, the above indicates that DHPR-MLE (of severity and duration) and 658 

DHPR-CE are stable and our conclusions are robust.  659 

[Please insert Figs. 13-14 here] 660 

The proposed framework provides a unique perspective to systematically 661 

understand the drought propagation process, especially for the variation of drought 662 

hazards. However, there are also some limitations in this study. For instance, to reduce 663 

sampling uncertainty, the value of zero is employed as the threshold to identify 664 

droughts for including minor to moderate drought events. Further studies may use 665 

different threshold values to explore their contributions to drought hazard 666 

transferability. In addition, some previous studies (Barker et al., 2016; Yang et al., 667 

2017) have indicated that the climatic properties, catchment landscape, and 668 
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groundwater conditions all play an important role in drought propagation. Future 669 

studies may explore and even quantify their relative contributions regarding hazard 670 

variations in drought propagation. Another issue that should be noted is that this study 671 

only investigated the hazard transferability, while did not quantify the drought risk 672 

due to paucity of data. The investigation of risk variation in drought propagation by 673 

further incorporating the exposure (e.g., population) and vulnerability (e.g., land use, 674 

economy, health, energy, and infrastructure) components (Ahmadalipour et al., 2018, 675 

2019) may also be an avenue for future studies.  676 

 677 

6 Conclusions  678 

Understanding drought propagation is essential to developing efficient drought 679 

adaptation policies and drought management plans. This study proposed a framework 680 

with incorporation of copulas and the DHPR to examine hazard transferability from 681 

meteorological to hydrological droughts. The proposed framework was applied to 682 

three different basins in China and further tested over 218 small-scale catchments in 683 

the United States. 684 

Generally, there is a lagging effect for meteorological to hydrological drought 685 

propagations. The longest time-lag emerges in the JSRB. Time-lags in the JLRB and 686 

UYRB are shorter, with average values both smaller than 2 months. The duration and 687 

severity of meteorological droughts are both amplified when propagating to 688 

hydrological droughts among the three catchments, reflecting a deteriorated condition 689 
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in drought propagation. Drought hazards denoted by the most-likely scenarios and 690 

corresponding bivariate confidence ellipses from climatic “below-normal water 691 

availability” to the terrestrial hydrological part pronouncedly ascend across all the 3 692 

catchments, as well as over the tested 218 catchments. It also can be found that the 693 

hazard transferability processes are relatively stable, as indicated by the almost 694 

unchanged DHPR-MLE and DHPR-CE with return periods increasing. To be specific, 695 

the DHPR-MLE tends to be smaller than the DHPR-CE.  696 

In summary, this study shows that there is a strong and stable linkage between 697 

meteorological and hydrological drought hazards and this linkage can be reflected in 698 

unchanged DHPR-MLE and DHPR-CE. Results of this study can provide useful 699 

information to understand the drought propagation mechanisms in hydrological 700 

systems.  701 
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Figures 

 

 

Figure 1 A schematic framework of the drought hazard propagation analysis.  
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Figure 2 Location of three catchments used in this study and corresponding 

hydrological and meteorological stations: (a) UYRB, the upper Yellow River basin 

controlled by the Tang-Naihai Station; (b) JSRB, the Jinsha River basin located in the 

upper Yangtze River basin and controlled by the Ping-Shan Station; (c) JLRB, the 

Jialing River basin located in the middle Yangtze River basin and controlled by the 

Bei-Pei Station.  
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Figure 3 Time series of SPEI-6 and SRI-6 and corresponding meteorological drought 

(M) and hydrological drought (H) duration and severity. 
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Figure 4 Violin plot of the meteorological drought severity (DS(M)) and drought 

duration (DD(M)), and the hydrological drought severity (DS(H)) and drought 

duration (DD(H)).   
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Figure 5 Univariate frequency analysis for the meteorological droughts (M) and the 

hydrological droughts (H) in the three catchments. The red dots denote the empirical 

distributions; the magenta lines denote the best fitted distributions; the cyan regions 

denote the 95% confidence intervals.  
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Figure 6 Univariate design values and interval widths of 95% confidence intervals for 

meteorological droughts (M) and hydrological droughts (H) under 10-, 20-, 30-, 50-, 

and 100-year return periods for the three catchments.  
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Figure 7 The isolines, bivariate quantiles and 95% confidence ellipse of drought 

duration and severity for the meteorological droughts (M) and the hydrological 

droughts (H) in the three catchments. The isolines are associated with 10-, 20-, 30-, 

50- and 100-year return periods, respectively.  
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Figure 8 The isolines, bivariate quantiles of drought duration and severity ranging 

from 10-year to 200-year return periods (under the 5-year intervals) for the 

meteorological droughts (M) and the hydrological droughts (H) in the three 

catchments.   



 

 

 
Figure 9 DHPR-MLE and DHPR-CE of drought duration and severity ranging 

between 10-year and 200-year return periods in the OR and AND cases for the three 

catchments.  



 

 

 

 

Figure 10 DHPR-MLE under the 20-, 50-, 100-year return periods of severity (S) for 

218 catchments in the United States. 

 

 



 

 

 

Figure 11 DHPR-MLE under the 20-, 50-, 100-year return periods of duration (D) for 

218 catchments in the United States. 

 



 

 

 

Figure 12 DHPR-CE under the 20-, 50-, 100-year return periods for 218 catchments 

in the United States. 



 

 

 

Figure 13 The isolines, bivariate quantiles and 95% confidence ellipse of drought 

duration and intensity for the meteorological droughts (M) and the hydrological 

droughts (H) in the three catchments. The isolines are associated with 10-, 20-, 30-, 

50- and 100-year return periods, respectively.



 

 

 

Figure 14 DHPR-MLE and DHPR-CE of drought duration and intensity ranging 

between 10-year and 200-year return periods in the OR case for the three catchments.  
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