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chapter.
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Chapter 1

Introduction

There are currently two paradigm shifts happening in society and scientific
computing: (1) Artificial Intelligence (AI) is replacing humans in problem solving,
and, (2) AI is replacing the standard algorithms in computational science and
engineering. Since reliable numerical calculations are paramount, algorithms
for computational science are traditionally based on two pillars: accuracy and
stability. Notably, this is true for image reconstruction, which is a mainstay of
computational science, providing fundamental tools in medical, scientific and
industrial imaging.

In this thesis, we demonstrate that the stability pillar is typically absent in
current deep learning [47] and AI-based algorithms for image reconstruction,
and we present a solution to why this phenomenon occurs for AI-based methods
applied both to image reconstruction and to classification in general. This
raises two fundamental questions: how reliable are such algorithms when applied
in society, and do AI-based algorithms have the unavoidable Achilles heel of
instability? We investigate these phenomena, and we introduce a framework
designed to demonstrate, investigate and ultimately answer these fundamental
questions.

At the forefront of AI developments, we have the field of deep learning,
utilising neural networks to solve problems with an accuracy that was not even
imaginable ten years ago. A first impression of this new AI revolution appeared
in 2012, when the neural network AlexNet [46] almost halved the error rate for
image classification compared to standard algorithms at the time. Since then, we
have seen neural networks and deep learning reach state-of-the-art performance
in historically-challenging problems, such as speech recognition [22, 40], natural
language processing [74], game intelligence [67] and autonomous vehicles [11].
Following these breakthroughs, AI techniques are starting to replace standard
algorithms in the sciences. Examples include, but are by no means limited to,
any type of image reconstruction problems [7, 84], such as Magnetic Resonance
Imaging (MRI) and Computed Tomography (CT), solution of ordinary and
partial differential equations [20, 27, 61, 79], as well as polynomial [25, 82] and
high-dimensional approximations [65].

Despite deep learning’s remarkable performance, it is widely acknowledged
that neural networks are unstable to certain tiny perturbations of their input,
causing the network to produce completely wrong output (often with a highly
non-human or unpredictable behaviour). This phenomenon was first observed
in image classification [75], where a ‘fire truck’ can be seen as a ‘bird’, or two
images of a mole, which to a human doctor look identical, are classified with high
certainty by the neural network as cancerous and not cancerous, respectively [30].
However, this phenomenon is not restricted to computer vision, but is present
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1. Introduction

in most of the new AI technologies, such as in reinforcement learning [10, 43],
speech-to-text translation [16], speech recognition models and voice controllable
system [17, 83], natural language processing [32, 49] and image reconstruction
[6, 42]. The lack of robustness of modern AI is, therefore, causing concerns in
high-stake applications [30] and in society in general [8, 35].

This thesis investigates image reconstruction from the traditional pillars of
numerical analysis, namely stability and accuracy. Starting in 2006, with the
works by Candes, Romberg & Tao in [13] and Donoho in [26], compressive sensing
(CS) created a new standard for image reconstruction in the underdetermined
setting. Since then, compressive sensing has spurred renewed interest for inverse
problems in imaging, leading to certain accuracy and stability guarantees for
methods based on CS. Notably, this has ultimately lead to approval of compressive
sensing based techniques in commercial medical imaging [76, 77].

During the last decade, we have also witnessed the development of a myriad
of methods based on deep learning for image reconstruction. These methods
claim to achieve comparable or even superior performance [84] to compressive
sensing based methods. Their potential has therefore been described by Nature
as ‘transformative’ [71]. However, there is a growing awareness that deep learning
techniques have not yet been subjected to the same rigorous standards as other
more well-established methods in scientific computing [8].

We investigate compressive sensing and deep learning through the traditional
eyes of scientific computing. Some of our findings are summarised below.

(i) By providing numerous examples, we establish that trained neural networks
for image reconstruction can be unstable with respect to certain tiny
perturbations of their input. As a consequence, the neural networks can
potentially add false positives or false negatives in the images. That is,
adding false information or removing crucial information in the images,
respectively.

(ii) We explain why these instabilities occur, and we show that the instabilities
are stable, meaning that the perturbations causing false positives and false
negatives do not belong to a set of Lebesgue measure zero.

(iii) We show that, by adding no more than two extra samples to the training set,
we can make a neural network trained for image reconstruction arbitrarily
unstable.

(iv) We show that deep learning can be more accurate than compressive sensing
at the cost of instabilities. Specifically, the more accurate a neural network
is, the larger the instabilities will be.

(v) We derive recovery guarantees, ensuring stable and accurate compressive
sensing recovery of functions belonging to infinite-dimensional function
spaces (specifically for functions in L2([0, 1])).

(vi) Wavelet sparsity is a critical component of compressive sensing in imaging.
We unify previous deductions of wavelet on the interval preserving
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Inverse problems in imaging

polynomial exactness, and we explain how to transfer this to software.
These wavelets ensure more accurate compressive sensing reconstructions.

Moreover, we also discuss instabilities in deep learning for classification problems.
Our main finding is:

(vii) We present a possible explanation, formulated as conjecture, to why deep
learning is so successful in classification problems, and why neural networks
based on deep learning are at the same time universally unstable.

In the remainder of this introduction, we discuss what an imaging problem is,
how to model it and methods for solving it. We also explain a simple setup for
classification problems, and how deep learning tries to learn the right structure.
We aim at presenting the background for this thesis in a simplified setting and
to motivate many of the results we derive later in the thesis. For this reason,
we summarise our findings without going into details. Some of the results are
stated here in a simpler and less general form than when they appear later in
the thesis.

1.1 Inverse problems in imaging

Daily, we all look at images on our phone, computer, or on the subway on our way
to work. A standard camera typically captures images we meet in our everyday
life, but images are formed in many other ways. To name a few, we have images
acquired in the infrared spectrum, ultrasound images, radar, magnetic resonance
imaging and computed tomography. In this thesis, we consider how to go from
the measurements produced by the sampling device, to the final image. As we
shall see, this is a delicate procedure, where our overall goal is to produce a
high-quality image, which accurately represents the underlying object.

Generally, we shall also be interested in using as few measurements as possible.
There are many reasons for not sampling more than necessary, but time, power
and costs savings are among the key drivers. For medical imaging, saving time
can also reduce patient discomfort and reduce exposure to radiation for certain
types of sampling modalities such as CT.

In its simplest form, an imaging problem can be described by the equation

y = Ax. (1.1)

Here y ∈ Cm is a vector of acquired measurements and A ∈ Cm×N is a simplified
model of the sampling device. The vector x ∈ CN is a vectorised version of the
unknown image we want to recover. A few examples of measurements y, using
different transforms A, can be seen in Figure 1.1.

If m = N and A is non-singular and well conditioned, this problem becomes
trivial. This is the case for our everyday cameras, where the identity matrix
can model the sampling modality. For more advanced imaging modalities, such
as MR or CT, the matrix A is better modelled using a discretised Fourier or
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1. Introduction

Shepp–Logan phantom Sinogram k-space

Figure 1.1: (Sampling domains). The Shepp-Logan phantom image [66] (left)
and its measurements using different sampling modalities. CT is best modelled
using the Radon transform. The raw data originating from this transform is
called a sinogram and is displayed in the middle image. MR is modelled using
Fourier measurements, and in the right image, we see the result of a discrete
Fourier transform of the left image. This transformed domain is called ‘k-space’,
and is the data we would get from an MR scanner.

Radon transform. For these modalities, it is often undesirable, and sometimes
unfeasible, to do full sampling. We, therefore, have m < N measurements.

Whenm < N , the linear system (1.1) is underdetermined, and there are many
x’s which agrees with the measurements y. Thus, without more information,
we are facing an ill-posed problem. However, images have specific structures,
such as edges, lines and large regions with roughly the same colour. This extra
information makes the problem of recovering x more tractable.

The linear system (1.1) is a simplified model of the imaging process, with all
of its modelling assumptions. While having a simple model might be easier when
reconstructing an image, simplified models might lead to undesirable artefacts
in the reconstructed image [18, 33, 58]. This is particularly true, for sampling
modalities where the acquisition process is better modelled using continuous
integral transform, rather than the discrete inner-product between the vectorised
image x and the rows of A. For such models, we represent the image as a
function f in some infinite-dimensional separable Hilbert space H, and we model
the acquisition process as

y = A f. (1.2)

Here y ∈ Cm still represents the measurements produced by the sampling device,
but A is now a linear operator acting on elements in H. To exactly recover
functions in infinite-dimensional function spaces is impossible on a computer,
as the coefficients of such functions are infinite sequences. However, by using
careful discretizations of (1.2), we can recover an approximation to the M first
coefficients of f , in some suitable basis. This is done by rewriting (1.2) as a
linear system of the form (1.1). We will discuss the details of this discretisation
in Section 1.7, and for now, we simply consider the finite-dimensional model
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Original image Wavelet transform Discrete gradient

Figure 1.2: (Images are sparse under certain transforms). An image
x ∈ CN (left) under different sparsifying transforms. In the middle, we see a
wavelet transformed image, and to the right, we see a discrete gradient image.

(1.1).
Given the above setup with m < N , approaches for recovering x in imaging

usually takes one of two possible forms. Either we use reconstruction techniques
based on compressive sensing theory, or we learn the reconstruction map using
deep learning. Among the two, compressive sensing has to be regarded as a
‘standard algorithm’. It has been around since the mid-2000s and is approved
by the FDA for certain types of MRI [76, 77]. Nevertheless, deep learning is
an attractive competitor, which might offer higher accuracy. In the next two
sections, we review the two approaches separately.

1.2 Compressive sensing

The theory surrounding compressive sensing is based on sparsity. This is
motivated by the fact that most images are approximately sparse under certain
sparsifying transforms. Two examples, wavelet and discrete gradient, can be
seen in Figure 1.2, but other options such as shearlets [50], curvelets [14], and
total generalised variation [12] are also used.

Let W ∈ CK×N denote one of these transforms. The idea of compressive
sensing is to find a solution x̂ of the linear system Ax = y for which Wx
is approximately sparse. This is typically done by solving some type of `1-
regularised optimization problem, such as

minimise
z∈CN

‖Wz‖`1 subject to Az = y,

called basis pursuit, or an unconstrained version of it, given by

minimise
z∈CN

λ‖Wz‖`1 + 1
2‖Az − y‖

2
`2 , λ > 0,

called (unconstrained) LASSO. The above optimization problems are both convex,
and we can compute approximations to the minimum using a large number of
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1. Introduction

algorithms. Moreover, the use of the `1-norm ensures that the solutions x̂ is
approximately sparse in the transformed domain Wx̂.

To see why this strategy works, we introduce some notation. For a set
Ω ⊆ {1, . . . , N}, we let PΩ : CN → CN be the projection onto the coordinates
indexed by Ω, i.e., (PΩx)i = xi if i ∈ Ω and zero otherwise. We sometimes abuse
notation slightly and assume that PΩ is a projection onto C|Ω|. We also recall
that a vector with at most s non-zero coefficients is called s-sparse.

Definition 1.2.1 (Robust Null Space Property). A matrix A ∈ Cm×N satisfies
the robust Null Space Property (rNSP) of order 1 ≤ s ≤ N with constants
0 < ρ < 1 and γ > 0, if

‖PΩx‖`2 ≤ ρ√
s
‖P⊥Ω x‖`1 + γ‖Ax‖`2 ,

for all x ∈ CN and any Ω ⊆ {1, . . . , N} with |Ω| ≤ s.

Next consider a simplified setup, where W ∈ CN×N is unitary, as in the
case of certain types of wavelets, for example. It is then possible to show the
following result (see e.g., [31, Thm. 4.22]), which ensures accurate and stable
recovery, even if x is only approximately s-sparse and the measurements y are
contaminated with noise.

Theorem 1.2.2 (rNSP implies accurate and stable recovery). Suppose that
W ∈ CN×N is unitary and A ∈ Cm×N is such that AW−1 has the rNSP of
order s with constants 0 < ρ < 1 and γ > 0. Let x ∈ CN and y = Ax+ e ∈ Cm,
where ‖e‖`2 ≤ η for some η ≥ 0. If

x̂ ∈ argmin
z
‖Wz‖`1 subject to ‖Az − y‖`2 ≤ η, (1.3)

then there are constants C1, C2 depending on ρ and γ only, such that

‖x̂− x‖`2 ≤ C1
σs(Wx)`1√

s
+ C2η,

where σs(z)`1 = inf{‖z − v‖`1 : v is s-sparse} is the `1-distance to a s-sparse
vector.

In particular, we notice that if x is s-sparse and we do not have noise, then
we get exact recovery. Moreover, the further away x is from being s-sparse and
the more noise we add, the worse the reconstruction will be. Thus, if x does not
satisfy our a priori assumption about being approximately sparse, the minimiser
in (1.3) is not the x we are searching for.

1.2.1 Compressive sensing for image reconstruction

In imaging, the matrix A models some physical sampling device, which often has
certain restrictions on how it can acquire its samples. As an example, consider
MRI, where the matrix A can be modelled as

A = PΩF, (1.4)
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where F ∈ CN×N a normalised discrete Fourier transform (DFT) matrix. Here
we can choose the projection set Ω ⊆ {1, . . . , N} as we want, but the matrix
F represents the underlying physics of the MR scan, and is not something we
can change arbitrarily. Other examples include Fluorescence microscopy [72]
and lensless imaging [85], where the matrix F above is replaced with a binary
matrix, such as the unitary Hadamard matrix H ∈ RN×N . Another example is
CT modelled using a Radon transform and we have some freedom to choose the
angles θ ∈ [0, π) of the rays we want to measure.

Likewise, we have some freedom in how to choose the sparsifying transform
W , but also this transform must be chosen so that images are sparse in the
transformed domain.

Going back to the setup of Theorem 1.2.2, we assume W ∈ CN×N is unitary,
and recall that the stability and accuracy guarantees provided by the theorem
hinge on the matrix AW−1 having the rNSP of order s. For any unitary matrix
W , it possible to construct a (random) matrix A by drawing its entries from
certain probability distributions in such a way that AW−1 satisfies the rNSP of
order s with high probability, see, e.g., [31, Thm. 9.1]. The problem, however, is
that most such matrices A can not be represented by physical devices in imaging.

In these cases, where our imaging problem is constrained by the physics
of a sampling device, a more refined theory is necessary to provide recovery
guarantees. There exist many works in this direction, see, e.g., [4, 9, 48]. In Paper
III we build on these models, and provide uniform recovery guarantees for an
infinite-dimensional model in compressive sensing. To do so, we define properties
similar to the rNSP and derive theorems with similar recovery guarantees as
given in Theorem 1.2.2. The concrete setup and a summary of our results are
described in Section 1.7 and Section 1.8, respectively.

1.3 Deep learning

The term deep learning is used for almost any type of problem solving method
using neural networks. In this short introduction we focus on the core application
of deep learning, namely supervised learning problems of the following form.
Given pairs of data{

(y(1), x(1)), . . . , (y(n), x(n))
}

= T ⊂ Rm × RN , (1.5)

and a semi-metric d on RN , we want to find a function Ψ: Rm → RN for which
d(Ψ(y(i)), x(i)) ≤ η, for i ∈ S ⊆ {1, . . . , n} and some η ≥ 0. The set S is
often not decided beforehand, but it is determined while searching for Ψ. We
emphasize that S ⊆ {1, . . . , n} might be a proper subset, and note that herein
lies some of the delicacy of data driven methods.

Indeed, to find a function Ψ which interpolates all the data in T is
straightforward and can be achieved with a large number of different functions,
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1. Introduction

the simplest being

Ψ(y) =
{
x(i) if y = y(i) i ∈ {1, . . . , n}
0 otherwise

.

The delicacy of learning is to find a function which agrees with all data in T
using only a subset of the data. This is done as follows. We partition the set T
into two subset,

Ttrain ∪ Ttest = T , where Ttrain ∩ Ttest = ∅

and find a function which agrees with all or most of the data in Ttrain without
looking at Ttest. Then, we check if Ψ also agrees with the data in Ttest. If it
agrees with most of the data in Ttest, then we have found our desired Ψ, and we
stop. Otherwise, we repeat the procedure.

Obviously, it is hard to repeat this procedure until d(Ψ(y(i)), x(i)) ≤ η, for
all i ∈ {1, . . . , n}, but in the end, we settle for a function which approximate
most or all of data with an error which is no more than η ≥ 0.

The above procedure for learning a function Ψ applies to any supervised
learning problem and is not restricted to deep learning. What is characteristic
for deep learning, is to search for functions Ψ which are neural networks. In fact,
one of the reasons why neural networks have become popular is that a neural
network fitting the data in Ttrain, remarkably often also fit the data in Ttest, for
widely different data T and choices of semi-metrics d.

Below we introduce the standard definition of a neural network, and we
discuss how this definition does not always agree with what is being used in
practice.

Definition 1.3.1. An L-layer neural network is a function Ψ : Rm → RN of the
form

Ψ(y) = VL(ρ(VL−1(ρ(. . . ρ(V1(y)) . . .)))), y ∈ Rm,

where each Vj : Rnj−1 → Rnj is an affine map, namely

Vj(y) = Wjy + bj , Wj ∈ Rnj×nj−1 , bj ∈ Rnj , (1.6)

and ρ : R→ R is a non-linear function acting component-wise on a vector, and
n0 = m, nL = N . We let NN [N,L,ρ], with N = [m = n0, n1, . . . , nL = N ],
denote the set of all such L-layer neural networks.

Here the Wj ’s and bj ’s are referred to as the weights of the network, and
ρ is called an activation function. Typical choices for ρ are the Rectified
Linear Unit (ReLU), defined by ρ(x) = max{0, x}, or the sigmoid, defined
by ρ(x) = 1/(1 + e−x). The architecture of a neural network refers to fixed
choices of ρ, L and N. If all of the Wj ’s are convolutional operators, the network
is called a convolutional neural network (CNN).

While the above definition is mostly used by mathematicians, we note that
functions not satisfying the conditions of Definition 1.3.1 are called neural

8
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networks.1 In particular, most deep learning partitioner’s would not feel restricted
to use the same activation function between all the affine maps. Moreover, it is
also common to use max-pooling layers, mapping a vector v = (vk)Kk=1 as

v1
v2
...
vK

 7→


max{v1, v2}
max{v3, v4}

...
max{vK−1, vK}

 .
Many modern architectures also use so-called skip connections,2 where the input
to one layer is sent directly forward to a layer further down in the network. As
an example, let h1 : Rm → Rm and h2 : Rm → RN be neural networks according
to Definition 1.3.1, then

h(x) = h2(x+ h1(x))
is a neural network with a skip connection. This type of function compositions
can be done multiple times, so that one obtains both internal and global (that is
h(x) = x+ h1(x)) skip connections.

The motivation for deviating from Definition 1.3.1 is often to work with
functions which more easily fit the data in both Ttrain and Ttest.

1.3.1 Deep learning for image reconstruction

Before we start, we note that many imaging problems are formulated using
complex numbers, while the presentation above, focus on real-valued neural
networks. A standard way of associating a vector y ∈ Cm with a vector y′ ∈ R2m

is to let y′ consist of the real and imaginary parts of y. We may then apply a
real-valued network Ψ : R2m → R2N . Similarly, x′ = Ψ(y′) is associated with a
complex image x ∈ CN . We assume that the complex case is treated in this way,
and henceforth we simply write Ψ : Cm → CN for a network taking complex
inputs and outputs.

We recall from Section 1.1 that an imaging problem is of the form

given measurements y = Ax, recover x, (1.7)

where A ∈ Cm×N with m < N is a model of the sampling modality. This means
that there are many x’s which map to the same measurements y. To make the
problem tractable, we introduce

a domainM1 ⊂ CN where (M1, d1) is a metric space, and
the rangeM2 = A(M1) ⊂ Cm, where (M2, d2) is a metric space.

The idea is that the domain M1 is the ‘set of natural images’, which is
substantially smaller than CN . This could make it possible to learn a mapping

1This mix of terminology is not new, and have been noted by Pinkus [59] already in 1999.
2The term ‘skip connection’ is far from unique for this type of connections, and the terms

residual [36], short-cut [19, 69] or jump connections [81] are all used.

9
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FBP from sionogram k-space sampling pattern Zero padded DFT

Figure 1.3: (Linear reconstruction maps). Linear reconstruction maps,
using a Filtered back projection (left) on sinogram data, and a zero-padded DFT
matrix A∗ = F ∗PΩ on k-space data (right). In the middle we see the k-space
sampling pattern Ω. Here a white dot indicate that we sample this pixel in
k-space and a black dot indicate no sampling.

Ψ: M2 →M1. In deep learning, the setsM1 andM2 are not known, but are
learned from the data T . Thus, we assume that T ⊂M2 ×M1 and try to learn
the mapping Ψ: M2 →M1 using the dataset T .

Often, trying to learn the mapping y 7→ x directly is difficult. This is because
the data y typically have a completely different structure than the image x, after
being transformed by A. To undo the linear map A, a common approach is
to use a known linear operator H : Cm → CN (depending on A) to map the
measurements y back into the image domain CN . For Fourier sampling, i.e.,
for A = PΩF where F ∈ CN×N is a normalised DFT matrix, a common choice
for H is A∗, whereas for Radon sampling a Filtered back projection (FBP)
(see, e.g., [56, Ch. 5]) matrix is often used . Whenever the resulting image is
complex-valued, we always display the modulus of the complex numbers in our
figures. A few examples of data y, looking nothing like the underlying image x,
can be seen in Figure 1.1. In Figure 1.3, we show the cheap and often erroneous
reconstructions provided by H for Fourier and Radon sampling.

The simplest approaches for learning the mapping Ψ: M2 →M1, rewrite
the problem into a denoising problem. That is, we let the neural network Ψ have
the form

Ψ(y) = Hy − φ(Hy), (1.8)

where φ : CN → CN is a trainable convolutional neural network which learns to
recognise the noisy artefacts in the images Hy. While the structure of Ψ in (1.8)
is uncomplicated and more advanced setups exist, such as [34, 41, 51, 64, 70],
the main idea of building the known operator H into the network architecture
and use convolutional layers to improve image quality is used by most networks
[53].

10
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1.3.2 Deep learning for classification

Consider a classification problem where each sample y(i) ∈ Rm, i ∈ {1, . . . , n}
from T associate to exactly one out of N different labels. If the y(i)’s are
images, the labels might be {‘cat’, ‘firetruck’, . . . , ‘football’}, but we label them
as {1, . . . , N}. The neural network Ψ: Rm → RN is a function whose output is a
vector in RN . To measure the networks accuracy in terms of correctly classified
samples, it is nessesary to convert this vector to an integer in the range 1, . . . , N .
One way to do this is as follows. Let γ : RN → {1, . . . , N} be the function

γ(v) = smallest i such that vi ≥ vj for all j ∈ {1, . . . , N}, (1.9)

for a vector v ∈ RN . For y(i) ∈ Rm, i ∈ {1, . . . , n}, let the corresponding vector
x(i) ∈ RN be one-hot encoded. That is

(x(i))k =
{

1 if y(i) belong to class k
0 otherwise

.

Using the semi-metric d(v, w) = ddisc(γ(v), γ(w)), where

ddisc(a, b) =
{

1 if a 6= b

0 otherwise

is the discrete metric, we can measure the neural networks accuracy, in terms of
correctly classified samples, on the set T by

1
|T |

∑
(y,x)∈T

d(Ψ(y), x).

As for image reconstruction, it is common in classification to deviate from
Definition 1.3.1 when constructing the architecture of the neural network. For
high dimensional problems, such as image classification, the use of max-pooling
layers is widespread to reduce the size effectively. Moreover, to use internal skip
connections between layers is also common [36].

1.3.3 Instabilities in deep learning for classification

Despite deep learnings ability to produce state-of-the-art accuracy for a wide
range of problems, it is widely recognised that deep learning and neural networks
are often highly unstable with respect to tiny perturbations of their input [5, 37].
The most prominent examples of instabilities are found within image classification
[28, 29, 45, 54, 55, 57, 68, 73, 75], but the instability phenomenon for neural
networks have been demonstrated in other areas as well [1, 10, 16, 32, 43, 49,
80].

For the classification problem described above with N different labels, a
worst-case perturbation of the input can take many forms. To make the setup
sufficiently general, we start by introducing some notation from [29]. Let R

11
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Additive perturbations

toyshop Christmas stocking Scottish deerhound ski mask porcupine

carousel Indian elephant Indian elephant African grey tabby

Geometric perturbations

Trombone Flower pot

WokSafety pinArctic foxNecklace

Christmas stocking Ice bear Soccer ball Carton

File cabinetSnail

Similarity Affine Projective

Figure 1.4: (Tiny perturbations of the input leads to misclassification).
In the top two rows we add a fixed perturbation r ∈ Rm, to all the images.
The figures are from [54]. In the last two rows we consider different types of
geometric transformations to the input images. Figures are from [45].

denote a set with a magnitude function ‖ · ‖R : R → R+ and let Tr : Rm → Rm
be a family of mappings defined for each r ∈ R. The mapping Tr is what we
call a perturbation mapping and it can have different forms, depending on what
type of perturbations we consider.

As an example, suppose we are working with image classification. Then the
set R could be [0, 2π) and the perturbations Tr could be rotation of the image
by an angle r ∈ R. Another more general example is to consider R ⊂ Rm, and
let Tr(y) = y + r denote additive perturbation.

Thus, given the triple {R, ‖ · ‖R, Tr} and a neural network Ψ: Rm → RN ,
we define the worst case perturbation for a given sample y ∈ Rm as

r∗(y) ∈ argminr∈R ‖r‖R subject to γ(Ψ(Tr(y))) 6= γ(Ψ(y)), (1.10)

where γ is the function from (1.9). The optimization problem (1.10) defines the
perturbation r∗(y) we are searching for, and can be used as a starting point

12
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Original x |x+ r1| |x+ r2| |x+ r3|

Ψ(Ax) Ψ(A(x+ r1)) Ψ(A(x+ r2)) Ψ(A(x+ r3))

Figure 1.5: (Unstable neural network). The effect of small perturbations on
the AUTOMAP network [84] for recovering an image x from its measurements
y = Ax. Here A ∈ Cm×N is a subsampled discrete Fourier transform, which
is the standard mathematical model for MRI. The left column shows that the
network, denoted by Ψ, recovers the original image x well. However, as shown
in the second to fourth columns, small perturbations ‖r1‖ < ‖r2‖ < ‖r3‖ of x
cause large artefacts in the recovered images Ψ(A(x+ ri)). This experiment is
from Paper I.

for finding small perturbations which causes misclassification. A few examples
of such small perturbations r for different triples {R, ‖ · ‖R, Tr} can be seen in
Figure 1.4, where tiny perturbations makes high accuracy networks mispredict.

1.4 Are deep learning for inverse problems unstable?

Seeing that trained neural networks for classification are unstable to tiny
perturbations of their input, one of the questions we investigate in this thesis
is whether the same phenomenon occurs for deep learning in inverse problems.
Before answering this question, we first recall that constructing a stable neural
network is straightforward and can be achieved by picking the zero network, i.e.,
a network where all weights are zero. Thus, part of the subtlety is to produce a
network which finds the right trade-off between stability and accuracy.

In Paper I, we make an empirical investigation of trained neural network’s
stability and accuracy compared to state-of-the-art (SoA) methods for inverse
problems in imaging. These state-of-the-art methods are based on compressive
sensing and provide a baseline for what type of accuracy we can achieve with
standard methods. Often, these methods come with certain stability guarantees,

13
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such as the one we saw in Theorem 1.2.2. To test both the neural networks
stability and accuracy, we ask the following:

(i) Are there tiny perturbations either in the image or in the sampling domain,
such that the neural network produces a widely different output?

(ii) Is the network able to detect small structural perturbations (such a tumour)
in the images?

To answer question (i), we develop an algorithm which, given a neural network
Ψ: Cm → CN , a sampling matrix A ∈ Cm×N and an image x ∈ CN , seeks an
r ∈ CN such that

‖Ψ(y +Ar))−Ψ(y)‖ is large, while ‖r‖ is small.

The perturbation r is deliberately computed in the image domain so that one
can verify by visual inspection that it is tiny. However, a perturbation in the
image domain may imply a perturbation in the sampling domain. For medical
imaging applications, we note that these small perturbations r could occur due to
slight movements of the patient, anatomical differences, or to the inevitable noise
from the sampling device. Thus, the perturbations could be both random and
structured. An example of such small perturbations, causing large instabilities
in MRI, can be seen in Figure 1.5.

In question (ii) we consider small, clearly visible perturbations in the image
domain. In a medical setting, this could be a tumour or small cracks in a bone
structure. We test the network’s accuracy by checking whether it can resolve
fine, and potentially important, details. To create a sufficiently difficult task for
the networks, we propose to insert short text strings and symbols in the images,
to easily check whether the networks capture small structural changes in the
images. An example can be seen in Figure 1.6, where a network, trained to
reconstruct images of ellipses, completely washes out any fine details. This is
not entirely surprising, as the network have never seen such fine details.

Remark 1.4.1. For both question (i) and (ii), we remark that it is important to
test against a state-of-the-art method, to ensure that any instability is caused
by the network itself and not because of ill-conditioning of the inverse problem.
Indeed, it would certainly be possible to insert a detail so small that no method
could stably reconstruct it.

1.5 Why instabilities occur – A motivating example

In Paper II, we investigate from a theoretical perspective why instabilities for
inverse problems in imaging occur. To understand some of the mechanisms
behind instabilities in inverse problems, we consider a simple example explaining
why this phenomenon occurs. Hopefully, this sheds some light on why this
problem is more prominent for data driven approaches than for compressive
sensing, which is based on prior assumptions.
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Original x Original cropped

Network rec. Ψ(Ax) (cropped) State-of-the-art: Φ(Ax) (cropped)

Figure 1.6: (Small structural perturbation/false negatives). The
FBPConvNet neural network Ψ : Rm → RN from [44] is trained to recover
images comprised of ellipses from a Radon sampling operator A ∈ Rm×N . Top
left: The image x containing a bird and the letters ‘A BIRD?’. This is a feature
the network has not seen. Top right: Cropped original image. Lower left:
The cropped FBPConvNet reconstruction from measurements Ax. Lower right:
The cropped reconstruction of x from measurements Ax using a state-of-the-
art decoder (based on compressive sensing) Φ : Rm → RN . See Paper II for
experiment details.
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Original |x| DM: |Ψ(A(x+ r))| CSD: |Φ(Ax)|

|x+ r| DM: |Ψ(A(x+ r))| CSD: |Φ(A(x+ r))|

Figure 1.7: (False positives). Perturbations cause the Deep MRI neural
network (DM) Ψ : Cm → CN from [64] to reconstruct false positives (red
arrows). Left: Original image x (top) and perturbed image x + r (bottom).
Middle: DM reconstructs the image x from measurements y = Ax (top) and
ỹ = A(x + r) (bottom). Here A ∈ Cm×N is a subsampled Fourier transform.
Right: A compressive sensing decoder (CSD) Φ : Cm → CN reconstructs the
image x from measurements y = Ax (top) and ỹ = A(x + r) (bottom). This
experiment is from Paper I.

We consider the following imaging inverse problem,

[
1 0

] [x1
x2

]
= y, x1, x2, y ∈ R, (1.11)

where A =
[
1 0

]
, and we see that y = x1. We consider a data-driven approach

for learning the inverse Ψ: M2 → M1, where M1 ⊂ R2 and M2 ⊂ R. For
data-driven methods, we have access to a (potentially large) dataset

T = {(y(1), x(1)), . . . , (y(n), x(n))} ⊂ R× R2,

and it is common to assume T ⊂ M2 ×M1, since the sets M1 and M2 are
supposed to be learned from the data. The setsM1 andM2 are equipped with
metrics, which we for simplicity assume are induced by norms in this example.
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Suppose we after the training, have found a function Ψ: M2 → M1 such
that

‖Ψ(y(j))− x(j)‖ ≤ η, for j ∈ S ⊆ {1, . . . , n}, where |S| ≥ 2. (1.12)

Let TS = {(y(i), x(i)) ∈ T : i ∈ S}, and fix (ỹ, x̃), (y′, x′) ∈ TS . We write these as

x̃ =
[
x̃1
x̃2

]
and x′ =

[
x̃1 + ε
x′2

]
, where x′1 = x̃1 + ε,

and notice that, by assumption, we have

‖Ψ(ỹ)− x̃‖ ≤ η and ‖Ψ(ỹ + ε)− x′‖ ≤ η.

Thus, if
‖x̃− x′‖ > 2η is large, while |ε| > 0 is small, (1.13)

the mapping sought during training is necessarily sensitive to noise. Indeed,
at ỹ we only require a perturbation e of size |ε| in order for Ψ(ỹ + e) to give a
completely different output.

If (1.13) is fulfilled, what happens in the above example is that Ψ recover
elements, whose difference x̃ − x′ lies close to the null space N (A). Thus, if
‖x̃− x′‖ > 2η is bounded from below, we can make the Lipschitz constant of the
map Ψ arbitrarily large by choosing |ε| > 0 small, i.e., letting x̃− x′ lie closer
to N (A). The example is of course overly simplified, yet the setup transfers
to more advanced examples and can be seen in practice. See, e.g., Figure 1.7,
where a tiny perturbation r ∈ CN is mapped to a perturbation e = Ar in the
sampling domain, causing a potential false positive. That is, it adds potential
false information, by creating certain dark areas in the image. Other examples
can be found in Paper I and Paper II.

1.6 Kernel awareness – At the heart of compressive
sensing

As the previous example explains, the root to instabilities for inverse problems
in imaging is to recover elements whose difference lie close to the null space
N (A) of the sampling operator. Seeing this, it is natural to ask how compressive
sensing deals with the same problem. The answer can be summarised in two
words, kernel awareness, and lies at the heart of compressive sensing theory.

To see this, we go back to the simplified compressive sensing setup from
Section 1.2. We set Σs = {z ∈ CN : z is s-sparse} and recall that W ∈ CN×N is
a unitary matrix. In compressive sensing, we choose the setM1 explicitly so
that it is a good model for images. One example would be to let W be a discrete
wavelet transform (DWT). ThenM1 = W−1(Σs) is the set of all s-sparse images
in wavelets.

To guarantee accurate and stable recovery onM1, Theorem 1.2.2 required
the matrix AW−1 to satisfy the rNSP of order s. That is

‖PΩx‖`2 ≤ ρ√
s
‖P⊥Ω x‖`1 + γ‖AW−1x‖`2 , for all x ∈ CN ,
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and for any Ω ⊂ {1, . . . , N} with |Ω| ≤ s. We want to show that this implies

‖x− z‖`2 ≤ (3 + ρ)γ
1− ρ ‖AW

−1(x− z)‖`2 , for all x, z ∈ Σs, (1.14)

i.e., that the difference between any two elements in Σs is bounded away from the
kernel. In Section 1.5, it was the lack of a lower bound like this one which allowed
us to map two completely different vectors to almost the same measurements.
This caused the instabilities.

We also note that (1.14) implies

‖x− z‖`2 ≤ (3 + ρ)γ
1− ρ ‖A(x− z)‖`2 for all x, z ∈M1 = W−1(Σs)

which means that the difference between all s-sparse images in wavelets is
bounded away from the kernel. To show (1.14) we rely on the following lemma.

Lemma 1.6.1 ([31, Thm. 4.25]). Suppose the matrix AW−1 ∈ Cm×N satisfies
the robust null space property of order s with constants 0 < ρ < 1 and γ > 0.
Then for any x, z ∈ CN ,

‖x− z‖`2 ≤ C√
s

(‖z‖`1 − ‖x‖`1 + 2σs(x)1) +D‖AW−1(x− z)‖`2

where C = (1 + ρ)2/(1− ρ) and D = (3 + ρ)γ/(1− ρ).

To prove (1.14), let x, z ∈ Σs, and assume that ‖x‖`1 ≥ ‖z‖`1 . Since
x, z ∈ Σs we have σs(x)1 = σs(z)1 = 0. Thus by Lemma 1.6.1, we have
that ‖x − z‖`2 ≤ D‖A(x − z)‖`2 . If instead ‖x‖`1 ≤ ‖z‖`1 , we notice that
‖x− z‖`2 = ‖z − x‖`2 . We can therefore reverse the argument. This proves the
claim.

In practice, it might be more realistic to assume that x can be approximated
well by an image which is s-sparse in wavelets. If x not exactly s-sparse, we saw
that the error bound in Theorem 1.2.2 accounted for vectors which were only
approximately sparse and measurements y, being contaminated with noise.

In Section 1.2.1 we mentioned that physical constrains of the sampling device,
might make it impossible to design the matrix A in such a way that AW−1

satisfies the rNSP. In such cases, more refined models are needed. In the two
next sections we introduce one of these models in infinite-dimensional function
spaces.

1.7 An infinite-dimensional model for imaging

In infinite-dimensional compressive sensing, we are interested in approximating
functions, rather than vectors. A continuous d-dimensional image is a function
f : [0, 1]d → C. It can be discretised by evaluating f at distinct points ti ∈ [0, 1]d.
For simplicity, we consider d = 1, and let xi = f((i − 1)/N) for i = 1, . . . , N .
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f x f̂
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Figure 1.8: (Continuous and discrete images). Left: Continuous image
f : [0, 1] → C. Middle: discrete image x ∈ CN . Right: Continuous image
f̂ : [0, 1]→ C create from discrete measurements x.

The vector x ∈ CN represents a discrete version of the image f . We can convert
the discrete image x back to a continuous image as

f̂ =
N∑
i=1

xiχi.

for appropriate step functions χi : [0, 1]→ R. An example of the three different
kinds of images can be seen in Figure 1.8. Whenever we visualise a complex-
valued image, we display the modulus of the complex numbers.

In the finite-dimensional compressive sensing model, we work with discrete
images x ∈ CN , and we assume that each measurement yk, k = 1, . . . ,m is best
modelled by using the discrete inner-product

yk = 〈x, ak〉CN =
N∑
i=1

xi(ak)i, (1.15)

where ak ∈ CN is the k-th row in the matrix A ∈ Cm×N .
In the infinite-dimensional model, we consider a function f in an infinite-

dimensional separable Hilbert space H3. Let {sk}k∈N be an orthonormal basis
for H. We call {sk}k∈N the sampling basis and model the measurements as

yk = 〈f, sk〉H .

The motivation for using an infinite-dimensional model, is that many physical
sampling devices are better modeled using integral transforms, where the function
f is integrated over time or over an area. Thus, for certain choices of H, such as
L2([0, 1]d), the above inner-product is an integral transform, i.e.,

yk = 〈f, sk〉L2([0,1]d) =
∫

[0,1]d
f(t)sk(t)dt.

3We note that such a Hilbert space, does not need to be a function space, but we abuse
notation slightly and say that f ∈ H is a function.
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Fourier: fm, m = 32 Fourier: fm, m = 256 Walsh: fm, m = 32
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Figure 1.9: (Undesirable artifacts). The approximation fm from (1.16) for
both a Fourier and Walsh sampling basis. Left and middle: A m-term Fourier
approximation to the discontinuous Haar wavelet. Right: A m-term Walsh
approximation to the hat function.

In practice, we can only acquire a finite number of m measurements and since
{sk}k∈N is orthonormal, we can approximate f immediately using

fm =
m∑
i=1

yksk =
m∑
i=1
〈f, sk〉H sk. (1.16)

Most physical devices are restricted to certain choices of basis {sk}k∈N. If
H = L2([0, 1]), then examples include Fourier sampling used in MRI with
sk(t) = e2πikt for k ∈ Z, or Walsh sampling used for binary imaging, where
sk = wk for k ∈ N0. Here wk : [0, 1] → {+1,−1} is a Walsh function (see Def.
III.4.1).

For both of these choices, the approximation fm typically contains undesirable
artefacts. In the case of Fourier sampling, fm is a truncated Fourier series,
exhibiting Gibbs oscillations at any discontinuity, whereas Walsh sampling gives
a blocky approximation due its discontinuous nature. Examples of such artifacts
can be seen in Figure 1.9.

1.8 Compressive sensing in infinite-dimensions

The idea of reconstruction techniques, such as infinite-dimensional compressive
sensing (and also generalised sampling [2, 3]), is to improve upon the
approximation fm, by computing an approximation in an M -dimensional
subspace RM ⊂ H. The subspace RM is chosen a priori, and it is designed
so that a projection of f onto RM is likely to be a good approximation to
f . An example can be seen in Figure 1.10, where different choices of wavelet
subspaces offer substantially better representations of the underlying functions.
Let {rk}k∈N be an orthonormal basis for H. We call {rk}k∈N the reconstruction
basis, and we let RM = span{rk : 1 ≤ k ≤M}.

In compressive sensing an additional requirement on {rk}k∈N, is that the
coefficients xk = 〈f, rk〉, 1 ≤ k ≤ M , are sparse. To achieve this, we consider
consider orthonormal wavelets bases as our preferred reconstruction bases in this
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Wavelet reconstruction from different sampling domains
Fourier sampling, m = 32 Walsh sampling, m = 32
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Figure 1.10: (Improved reconstruction in RM ). We compute approxim-
ations to the functions f(t) considered in Figure 1.9 using functions in the
subspace RM . The approximations are computed using infinite dimensional
compressive sensing from m = 32 samples in different domains. In the left
image, we let RM be spanned by the Haar wavelet basis (M = 16) and in the
right image we consider RM spanned by functions from the Daubechies 2 (DB2)
wavelet basis (M = 32).

thesis. For wavelets, sparsity alone is often too general to obtain sharp estimates
on the required number of samples m. In these cases, it is required to take
the local structure of the wavelet coefficients into account. This motivates the
definition of sparsity in levels. In this thesis, the levels M are chosen according
to wavelet scales.

Definition 1.8.1 (Sparsity in levels). Let M = [M1, . . . ,Mr] ∈ Nr, M0 = 0, with
1 ≤ M1 < · · · < Mr = M and let s = (s1, . . . , sr) ∈ Nr with sl ≤ Ml −Ml−1,
for l = 1, . . . , r. We say that the vector x ∈ CM is sparse in levels if

| supp (x) ∩ {Ml−1 + 1, . . . ,Ml}| ≤ sl for l = 1, . . . , r.

In this case x is called (s,M)-sparse.

Next, we consider how to compute a finite dimensional approximation in
RM . Let yk = 〈f, sk〉H and xk = 〈f, rk〉H. Then y = (yk)k∈N ∈ `2(N) and
x = (xk)k∈N ∈ `2(N) represents the coefficients of f with respect to two different
bases. Furthermore, we have that

y = Ux, where (U)ij = 〈rj , si〉H . (1.17)

Here U is a bounded linear operator on `2(N), and can be viewed as a change of
coordinates matrix between {rk}k∈N and {sk}k∈N. We notice in particular that
U is unitary as both bases are orthonormal.

Recall that for a set Ω ⊆ {1, . . . , N} we defined PΩ : CN → CN as the
projection onto the canonical basis, that is (PΩz)i = zi if i ∈ Ω and zero
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otherwise. We extend PΩ to act on sequences in `2(N) in the natural way.
Moreover, we use the notation PN = P{1,...,N}.

The key to obtain a good approximation to a function f ∈ H, is to discretise
the infinite-dimensional problem in the right way. In infinite-dimensional
compressive sensing, this is achieved by choosing a set Ω ⊂ {1, . . . , N}, of
size |Ω| = m (here N ≥M) and consider scaled measurements, namely

ỹ = DPΩy ∈ Cm where D ∈ Rm×m is a diagonal scaling matrix.

Furthermore, we use the finite dimensional sampling matrix

A = DPΩUPM ∈ Cm×M , (1.18)

as a model of our sampling modality.
The matrix D above is present for technical reasons, and it has explicit

entries, depending on Ω, see Paper III and Equation (III.6) for its definition. We
note that by replacing PΩU with PΩUPM we introduce a truncation error

ỹ −Ax = DPΩUP
⊥
Mx.

This error is inevitable, and occurs whenever we consider a finite dimensional
approximation to a function in H. However, if RM is chosen so that f can
be well approximated by functions in RM , then this truncation error is small.
This is the case for most wavelet spaces, where the scaling space and the first
few detail spaces normally capture the important characteristics of not overly
irregular functions.

Next, let ω = {ω1, . . . , ωM} ⊂ R+ be positive weights, and define the
weighted `1-norm on CM as

‖z‖1,ω =
M∑
i=1

ωi|zi|, z ∈ CM .

Let also

x̂ ∈ argminz∈CM ‖z‖1,ω subject to ‖Az − ỹ‖`2 ≤ η + η′, (1.19)

where ỹ = DPΩy + e and the noise parameters η ≥ ‖e‖`2 and η′ ≥
‖DPΩUP

⊥
Mx‖`2 .

In Paper III we consider H = L2([0, 1]), and we derive conditions for choosing
the sampling set Ω, weights ω, diagonal matrix D, N in relation to M , so that
any minimiser x̂ of (1.19) satisfies the bound

‖PMx− x̂‖`2 ≤ (1 + r1/4)
(
C
σs,M(PMx)1,ω√

r
+D

1√
θ

(η + η′)
)

with high probability. Here C,D > 0 are explicit constants, r is the number of
sparsity levels, 0 < θ < 1 depends on the relation N ≥M , and

σs,M(PMx)1,ω = inf{‖PMx− z‖1,ω : z is (s,M)-sparse}
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is the weighted distance to a (s,M)-sparse vector.
Notice that the structure of this recovery guarantee is similar to the recovery

guarantee we have already seen in Theorem 1.2.2. As we shall see in Paper III,
a sufficient condition for the bound in (1.19) to hold, is that the matrix A in
(1.18) satisfies what we call the weighted robust null-space property in levels (see
Def. III.5.1).

1.9 Wavelets

1.9.1 The wavelet setup

Wavelets are built around nested sets of subspaces. Its construction start with a
scaling function satisfying the properties of a multiresolution analysis (see e.g.
[52]).

Definition 1.9.1. A multiresolution analysis (MRA) is a sequence of closed
subspaces Vj , j ∈ Z of L2(R) satisfying

(i) Vj ⊂ Vj+1 for all j ∈ Z,

(ii) f ∈ Vj if and only if f(2·) ∈ Vj+1, for all j ∈ Z,

(iii)
⋂
j∈Z Vj = {0}4,

(iv)
⋃
j∈Z Vj = L2(R),

(v) there exists a function φ ∈ V0 such that {φ(·−n) : n ∈ Z} is an orthonormal
basis of V0

5.

Let φj,n = 2j/2φ(2j · −n) denote a translated and dilated version of a scaling
function φ, satisfying the properties of an MRA. We denote the subspaces

Vj = span(φj,n : n ∈ Z), and Wj = span(ψj,n : n ∈ Z),

where ψ : R→ R is a wavelet we would like to construct and ψj,n = 2j/2ψ(2j ·−n).
The wavelet ψ is constructed so that Vj+1 = Vj ⊕Wj for all j ∈ Z. Here ⊕
denotes the direct sum of two vector spaces. We assume this setup and to make
the following discussion coherent with the previous sections, we also assume that
the functions φj,n and ψj,n are orthonormal, with compact support. In this case
we have that

Wj = {f ∈ Vj+1 : f ⊥ g,∀g ∈ Vj}

is the orthogonal complement of Vj in Vj+1. Moreover, for any j0 ∈ Z we have
that

{φj0,n : n ∈ Z} ∪ {ψj,n : j ≥ j0, n ∈ Z}
4This condition is implied by condition (i), (ii) and (v).
5Some authors require {φ(· − n) : n ∈ Z} to be a Riesz basis, but such a definition can be

shown to be equivalent to the one above. See, e.g., [38, Sec. 2.1].
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Figure 1.11: (Wavelet coefficients are sparse at fine scales). We show the
piecewise smooth function f (left), and the magnitude of its wavelet coefficients
dj,n = 〈f, ψj,n〉 at scale j = 3 (middle) and scale j = 6 (right). The wavelet ψ is
an orthonormal wavelet with ν = 2 vanishing moments.

is an orthonormal basis for L2(R).
For a wavelet ψj,n, the coefficient dj,n = 〈f, ψj,n〉 describes the local behaviour

of f ∈ L2(R) in the area where ψj,n is supported. As j grows, the support of
ψj,n shrinks. This means that, if j is large, then the coefficient dj,n contains
more localised information about f , than if j is small. Generally, we shall be
interested in sparse or compressible representations of f , and we seek a ψ so
that the coefficients {dj,n}n∈Z are small at fine scales, i.e., for large j.

To achieve this, it is common to construct ψ so that it is orthogonal to all
polynomials of degree ν − 1. That is,

∫
R
tkψ(t)dt = 0, for k = 0, . . . , ν − 1. (1.20)

We say that ψ has ν vanishing moments if (1.20) is satisfied.
Now, notice that if f is sufficiently regular around supp(ψj,n), then f can be

well approximated by a polynomial of degree ν−1, and we get dj,n = 〈f, ψj,n〉 ≈ 0
as desired. However, if f is less regular, say discontinuous at some point
t ∈ supp(ψj,n), then the magnitude of the coefficient dj,n is typically large. An
example can be seen in Figure 1.11, where we see that at the fine scale j = 6,
we have dj,n = 0 in any area where f is smooth. For j = 3, the support of ψj,n,
is large enough for all of the dj,n’s to notice the discontinuities of f , and we do
not get a sparse representation. In images these type of irregularities are found
around lines and edges. An example can be seen in Figure 1.2.

We note for completeness that if ψ have ν vanishing moments then the
minimal support of this wavelet is 2ν − 1 (see, e.g., [24]). The same holds for φ,
and we assume without loss of generality that supp(ψ) = supp(φ) = [−ν + 1, ν].
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0 1

Figure 1.12: (A periodically extended wavelet). We see the orthonormal
Daubechies wavelet ψper

4,0 = φ4,0|[0,1]+ψ4,24 |[0,1] for ν = 5 vanishing moments.

1.9.2 Wavelets on the interval

In imaging, we typically work with functions on an interval, which we take to be
[0, 1] for simplicity. In this case, we need to create wavelet bases on L2([0, 1])
rather than L2(R). It is natural to reuse as much of the old bases as possible,
but to build orthonormal bases, it is necessary to replace all wavelets and scaling
functions intersecting the boundary. To ensure that at least one φj,n is fully
contained in the interval [0, 1], let j0 ≥ log2(2ν)6, and only consider j ≥ j0.
One way of retaining orthonormality is by periodically extending all functions
intersecting the boundaries. That is, we define the periodically extended functions
as

φper
j,n = φj,n|[0,1]+φj,2j+n|[0,1] for n = 0, . . . , ν − 2,
φper
j,n = φj,n|[0,1]+φj,n−2j |[0,1] for n = 2j − ν + 1, . . . , 2j − 1,

and similarly for ψper
j,n . Here |[0,1] means the restriction to the interval [0, 1].

These periodically extended functions are orthonormal and thus, if we define

Bper
φ,j = {φper

j,n}
ν−2
n=0 ∪ {φj,n}

2j−ν
n=ν−1 ∪ {φ

per
j,n}

2j−1
n=2j−ν+1

for each j ≥ j0, and similarly for Bper
ψ,j , then B

per
φ,j ∪

(⋃
s≥j B

per
ψ,s

)
is an orthonormal

basis for L2([0, 1]). An example of the wavelet ψper
4,0 can be seen in Figure 1.12,

for ν = 5 vanishing moments.
Whenever we restrict orthonormal wavelets to an interval, the easiest way

of preserving orthonormality is to extend the wavelet basis periodically at the
boundaries. The drawback, however, is that the wavelet basis no longer has the
vanishing moments property. For non-periodic images, this creates a few extra
high amplitude coefficients at each scale j. Moreover, as we can see in Figure
1.13, the underlying periodic assumption also leads to less accurate function
approximation of non-periodic functions.

In [21] Cohen, Daubechies and Vial construct orthonormal wavelet bases
on the interval which preserve vanishing moments. Similar extensions exist

6For ν = 1 we can take j0 ≥ 0.
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Figure 1.13: (Periodic boundary conditions are not optimal for non-
periodic functions). We consider a Walsh sampling basis {sk = wk−1}k∈N,
with N = 32 Walsh samples, and a wavelet reconstruction basis {rk} on [0, 1]
with ν = 4 vanishing moments and M = 16 basis functions. We consider
periodic and vanishing moment preserving (VMP) boundary extensions. Let
yk = 〈f, sk〉L2([0,1]), k = 1, . . . , N and let y ∈ CN denote the measurement vector.
Let x̂ = argminx∈CM ‖y − PNUPMx‖2`2 , be the least-squares solution, where U
is the matrix from (1.17). We then compute an approximation f̃ =

∑M
k=1 x̂krk

to f , in RM . This is known as the generalised sampling approximation [2]. To
the left we consider the 1-periodic function f(t) = cos(2πt). In the middle and
right plots we consider f(t) = cos(2πt) + t. What is clear is that for non-periodic
functions, we get artefacts at the boundary due to the underlying discontinuity.
Vanishing moment preserving wavelets avoid this and provide a more accurate
reconstruction.

for biorthogonal wavelets [23, 60]. While these wavelets have attractive
properties which might lead to better compression and more accurate function
approximation, most implementations do not support them. Moreover, the few
which actually do, all have certain restrictions, such as limited support for DWT
computations of vectors with non-standard lengths (i.e., other than 2m), or they
are restricted to certain wavelets.

Paper IV unify the constructions of wavelets on the interval, both for
orthonormal and biorthogonal wavelets. This is done in the language of linear
algebra, which helps translating the constructions of these wavelets to software.
The accompanying software is built on the implementation from [62, 63] and
is made general enough to support a wide range of different vanishing moment
preserving orthonormal and biorthogonal wavelets on the interval. It also accepts
DWT computations of non-standard vector lengths.

1.10 False structures

In 1904, an old German schoolteacher, Herr von Osten, trained a horse named
Hans to do arithmetics and light intellectual tasks. The horse could count up
to one hundred, walk over to an object if you named it, or tell you the number
of a playing card. The horse could not talk, but tapped its right foot n times,
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followed by a final tap with the left foot, to communicate the number n. For
natural numbers the translation to taps was immediate, but for other tasks, such
as naming playing cards, a translation was necessary, aces where one tap, kings
two, and so forth. [15, p. 111–113]

During the summer of 1904, the horse became a hot topic in Berlin and in
September news of the horse reached the New York times [39]. At the same
time in Berlin, a commission was put together for examining the horse. The
commission consisted of two teachers, two zoo directors, two military majors, a
circus manager, a veterinarian, a horseman, and two academics, one of which
was Professor Carl Stumpf, at that time director of the Psychological Institute
of Berlin. [15, p. 177]. The commission mostly tested Hans accuracy and
the limits of his intelligence with and without Herr von Osten being present.
On 12 September the same year, the commission, somewhat hurried, issued a
report saying that no trickery was found. Despite not finding any trickery, the
commission did not rule out that any other factors were involved, and they could
not decide whether Hans was clever or not [15, p. 177-118] (see also [78]).

During the autumn the investigation was continued by Prof. Stumpf’s student,
Oskar Pfungst, who started to investigate the relationship between the horse and
humans. Pfungst discovered that Hans was unreliable whenever a new person
asked him a question. However, if a person familiar to Hans was around, or
he got to know the person asking the questions more thoroughly, Hans would
answer correctly. Another test Pfungst made, was to check how Hans responded
whenever the questioner did not know the answer. It turned out that in this
case, the horse would consistently tap too many times. From this and several
other tests, Pfungst concluded that Hans could not think independently of
humans. What Pfungst discovered, was that the horse was picking up on delicate
human-originated cues. These cues could be a person bending slightly forward
when asking the question, or making a small unwanted upward jerk of the head,
when the desired number of taps was reached7.

We believe the same phenomenon, where the horse seems to be intelligent,
but is in fact picking up a different structure, is currently happening in modern
AI. This can cause high accuracy on a test set, yet incredible instabilities. In
Paper V, we formally define what we mean by the word structure, and the term
false structure, and we formulate a possible explanation to what AI algorithms
actually learn as a conjecture. We note that this conjecture can never be proven
in the traditional sense of the word, but must be established with a combination
of theoretical and computational results, in the same way as one does in physics.
We then discuss the potential consequences of the conjecture and provide two
numerical examples demonstrating how difficult it is to learn the true structure.

7For a more thorough description of the experiments, followed by a discussion of whether
these were adequate for drawing these conclusions we refer to [15, Ch. 5].
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I

Abstract

Deep learning, due to its unprecedented success in tasks such as image
classification, has emerged as a new tool in image reconstruction with
potential to change the field. In this paper we demonstrate a crucial
phenomenon: deep learning typically yields unstable methods for image
reconstruction. The instabilities usually occur in several forms: (1) certain
tiny, almost undetectable perturbations, both in the image and sampling
domain, may result in severe artefacts in the reconstruction, (2) a small
structural change, for example a tumour, may not be captured in the
reconstructed image and (3) (a counterintuitive type of instability) more
samples may yield poorer performance. Our new stability test with
algorithms and easy to use software detects the instability phenomena.
The test is aimed at researchers to test their networks for instabilities
and for government agencies, such as the Food and Drug Administration
(FDA), to secure safe use of deep learning methods.

There are two paradigm changes currently happening: (1) AI is replacing
humans in problem solving, however, (2) AI is also replacing the standard
algorithms in computational science and engineering. Since reliable numerical
calculations are paramount, algorithms for computational science are traditionally
based on two pillars: accuracy and stability. This is in particular true of
image reconstruction, which is a mainstay of computational science, providing
fundamental tools in medical, scientific and industrial imaging. This paper is
the first to demonstrate that the stability pillar is typically absent in current
deep learning and AI-based algorithms for image reconstruction. This raises
two fundamental questions: how reliable are such algorithms when applied in
the sciences, and do AI-based algorithms have an unavoidable achilles heel:

Keywords: instability, deep learning, AI, image reconstruction, inverse problems.
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I. On instabilities of deep learning in image reconstruction

instability? This paper introduces a comprehensive testing framework designed
to demonstrate, investigate and ultimately answer these foundational questions.

The importance of stable and accurate methods for image reconstruction for
inverse problems is hard to over estimate. These techniques form the foundation
for essential tools across the physical and life sciences such as Magnetic Resonance
Imaging (MRI), Computerised Tomography (CT), fluorescence microscopy,
electron tomography, Nuclear Magnetic Resonance (NMR), radio interferometry,
lensless cameras etc. Moreover, stability is traditionally considered a necessity
in order to secure reliable and trustworthy methods used in, for example, cancer
diagnosis. Hence, there is an extensive literature on designing stable methods
for image reconstruction in inverse problems [11, 16, 19, 48].

Artificial intelligence (AI) techniques such as deep learning and neural
networks [31] have provided a new paradigm with new techniques in inverse
problems [18, 24, 32, 36, 37, 44, 47, 54, 56] that may change the field. In
particular, the reconstruction algorithms learn how to best do the reconstruction
based on training from previous data, and through this training procedure aim
to optimise the quality of the reconstruction. This is a radical change from the
current state of the art both from an engineering, physical and mathematical
point of view.

AI and deep learning has already changed the field of computer vision and
image classification [10, 14, 29, 55], where the performance is now referred to
as super human [21]. However, the success comes with a price. Indeed, the
methods are highly unstable. It is now well established [13, 26, 38, 39, 49] that
high performance deep learning methods for image classification are subject to
failure given tiny, almost invisible perturbation of the image. An image of a cat
may be classified correctly, however, a tiny change, invisible to the human eye,
may cause the algorithm to change its classification label from cat to a fire truck,
or another label far from the original.

In this paper we establish the instability phenomenon of deep learning in
image reconstruction for inverse problems. A potential surprising conclusion
is that the phenomenon may be independent of the underlying mathematical
model. For example, MRI is based on sampling the Fourier transform whereas
CT is based on sampling the Radon transform. These are rather different models,
yet the instability phenomena happen for both sampling modalities when using
deep learning.

There is, however, a big difference between the instabilities of deep learning
for image classification and our results on instabilities of deep learning for
image reconstruction. Firstly, in the former case there is only one thing
that could go wrong: a small perturbation results in a wrong classification.
In image reconstruction there are several potential forms of instabilities. In
particular, we consider three crucial issues: (1) instabilities with respect to
certain tiny perturbations, (2) instabilities with respect to small structural changes
(for example a brain image with or without a small tumour), (3) instabilities
with respect to changes in the number of samples. Secondly, the two problems
are totally unrelated. Indeed, the former problem is, in its simplest form, a
decision problem, and hence the decision function (‘is there a cat in the image?’)
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Original |x| |x+ r1| |x+ r2| |x+ r3| SoA from Ax

DM f(Ax) DM
f(A(x+ r1))

DM
f(A(x+ r2))

DM
f(A(x+ r3))

SoA from
A(x+ r3)

Figure I.1: Perturbations rj (created to simulate worst-case effect) with
|r1| < |r2| < |r3| are added to the image x. Upper row images (1)-(4): original
image x and perturbations x + rj . Lower row images (1)-(4) reconstruction
from A(x+ rj) using the Deep MRI (DM) network f , where A is a subsampled
Fourier transform (33% subsampling), see Methods and SI for details. Rightmost
column: reconstruction from Ax and A(x+ r3) using a state-of-the-art (SoA)
method, see Methods for details. Note how the artefacts (red arrows) are hard
to dismiss as non-physical.

to be approximated is necessarily discontinuous. However, the problem of
reconstructing an image from Fourier coefficients, as is the problem in MRI, is
completely different. In this case there exist stable and accurate methods that
depend continuously on the input. It is therefore paradoxical that deep learning
leads to unstable methods for problems that can be solved accurately in a stable
way (see §I.A.1.5 in the Supplementary Information (SI)).

The networks we have tested are unstable either in the form of (1) or (2) or
both. Moreover, networks that are highly stable in one of the categories tend to
be highly unstable in the other. The instability in form of (3), however, occur for
some networks but not all. The new findings raise two fundamental questions:

(i) Does AI, as we know it, come at a cost? Is instability a necessary by-product
of our current AI techniques?

(ii) Can reconstruction methods based on deep learning always be safely used
in the physical and life sciences? Or, are there cases for which instabilities
may lead to, for example, incorrect medical diagnosis if applied in medical
imaging?

The scope of this paper is on the second question, as the first question is
on foundations, and our stability test provides the starting point for answering
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|x+ r1 + v| |x+ r1 + v|
(cropped)

f(A(x+ r1 + v)
(cropped)

SoA: A(x+ r1 + v)
(cropped)

Figure I.2: A random Gaussian vector e ∈ Cm is computed by drawing (the
real and imaginary part of) each component independently from the normal
distribution N (0, 10). We let v = A∗e, and rescale v so that ‖v‖2 = 1

4‖r1‖2,
where r1 is the perturbation from Figure I.1. The Deep MRI network f
reconstructs from the measurements A(x+ r1 + v) and shows the same artefact
as was seen for r1 in Figure I.1. Note that in this experiment A ∈ Cm×N is a
subsampled normalized discrete Fourier transform (33% subsampling), so that
AA∗ = I i.e. e = Av.

question (ii). However, even if instabilities occur, this should not rule out the use
of deep learning methods in inverse problems. In fact, one may be able to show,
with large empirical statistical tests, that the artefacts caused by instabilities
occur infrequently. As our test reveals, there is a myriad of different artefacts
that may occur, as a result of the instabilities, suggesting vast efforts needed to
answer (ii). A detailed account is in the conclusion.

I.1 The instability test

The instability test is based on the three instability issues mentioned above. We
consider instabilities with respect to the following:

I.1.1 Tiny worst-case perturbations

The tiny perturbation could be in the image domain or in the sampling domain.
When considering medical imaging, a perturbation in the image domain could
come from a slight movement of the patient, small anatomic differences between
people etc. The perturbation in the sampling domain may be caused by
malfunctioning of the equipment or the inevitable noise dictated by the physical
model of the scanning machine. However, a perturbation in the image domain
may imply a perturbation in the sampling domain. Also, in many cases, the
mathematical model of the sampling reveals that such a sampling process implies
an operator that is surjective onto its range, and hence there exists a perturbation
in the image domain corresponding to the perturbation in the sampling domain.
Thus, a combination of all these factors may yield perturbations that in a worst
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case scenario may be quite specific, hard to model and hard to protect against
unless one has a completely stable neural network.

The instability test includes algorithms that do the following. Given an image
and a neural network, designed for image reconstruction from samples provided
by a specific sampling modality, the algorithm searches for a perturbation of the
image that makes the most severe change in the output of the network while
still keeping the perturbation small. In a simple mathematical form this can
be described as follows. Given an image x ∈ RN (we interpret an image as a
vector for simplicity), a matrix A ∈ Cm×N representing the sampling modality
(for example a discrete Fourier transform modelling MRI) and a neural network
f : Cm → CN , the neural network reconstructs an approximation x̃ to x defined
by y = Ax, where x̃ = f(y). The algorithm seeks an r ∈ RN such that

‖f(y +Ar)− f(y)‖ is large, while ‖r‖ is small,

see the methods section for details. However, the perturbation could, of course,
be put on the measurement vector y instead.

I.1.2 Small structural changes in the image

By structural change we mean a change in the image domain that may not be
tiny, and typically significant and clearly visible, however still small (for example
a small tumour). The purpose is to check if the network can recover important
details that are crucial in, for example, medical assessments. In particular, given
the image x ∈ RN we add a perturbation r ∈ RN , where r is a detail that is
clearly visible in the perturbed image x+ r, and check if r is still clearly visible
in the reconstructed image

x̂ = f(A(x+ r)).

In this paper we consider the symbols from cards as well as letters. In particular,
we add the symbols ♠,♥,♦,♣ and the letters CAN U SEE IT to the image.
The reason for this is that card symbols as well as letters are fine details that are
hard to detect, and thus represent a reasonable challenge for the network. If the
network is able to recover these small structural changes it is likely to recover
other details of the same size. On the other hand, if the network fails on these
basic changes, it is likely to fail on other details as well. The symbols can, of
course, be specified depending on the specific application. Our choice is merely
for illustration.

Important note: When testing stability, both with respect to tiny perturba-
tions and with respect to small structural changes, the test is always done in
comparison with a state-of-the-art (SoA abbreviated) stable method in order to
check that any instabilities produced by the neural network is due to the network
itself and not because of ill-conditioning of the inverse problem. The state-of-
the-art methods used are based on compressed sensing and sparse regularisation
[7, 9, 43]. These methods often come with mathematical stability guaranties [2],
and are hence suitable as benchmarks (see the Methods for details).
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Original x |x+ r1| |x+ r2| |x+ r3| |x+ r4|

AUTOMAP
f(Ax)

AUTOMAP
f(A(x+ r1))

AUTOMAP
f(A(x+ r2))

AUTOMAP
f(A(x+ r3))

AUTOMAP
f(A(x+ r4))

SoA from A(x) SoA from
A(x+ r1)

SoA from
A(x+ r2)

SoA from
A(x+ r3)

SoA from
A(x+ r4)

Figure I.3: Perturbations r̃j (created to simulate worst-case effect) are added to
the measurements y = Ax, where |r̃1| < |r̃2| < |r̃3| < |r̃4| and A is a subsampled
Fourier transform (60% subsampling). To visualise we show |x + rj | where
y + r̃j = A(x+ rj). Upper row: original image x with perturbations rj . Middle
row: reconstructions from A(x+ rj) by the AUTOMAP network f . Lower row:
reconstructions from A(x+ rj) by a state of the art method (see Methods for
details). A detail in form of a heart, with varying intensity, is added to visualise
the loss in quality.

I.1.3 Changing the number of samples in the sampling device
(such as the MRI or CT scanner)

Typical state-of-the-art methods share a common quality; more samples imply
better quality of the reconstruction. Given that deep learning neural networks
in inverse problems are trained given a specific sampling pattern, the question
is how robust is the trained network with respect to changes in the sampling.
The test checks whether the quality of the reconstruction deteriorates with more
samples. This is a crucial question in applications. For example the recent
implementation of compressed sensing on Philips MRI machines allows the
user to change the under sampling ration for every scan. This means that if a
network is trained on 25% subsampling, say, and suddenly the user changed the
subsampling ratio to 35% one would want an improved recovery. If the quality
deteriorates or stagnates with more samples, this means that one will have to
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produce networks trained for each and every combination of subsampling that
the machine allows for. Finally, due to the other instability issues, every such
network must individually be empirically statistically tested to detect whether
the occurrence of instabilities is rare or not. It is not enough to test on only one
neural network, as their instabilities may be completely different.

I.2 Testing the test

We test six deep learning neural networks selected based on their strong
performance, wide range in architectures, difference in sampling patterns and
subsampling ratios, as well as their difference in training data. The specific
details about the architecture and the training data of the tested networks can
be found in the supplementary information (SI).

Important note: The tests performed are not designed to test deep learning
against state-of-the-art in terms of performance on specific images. The test
is designed to detect the instability phenomenon. Hence, the comparison with
state-of-the-art is only to verify that the instabilities are exclusive only to neural
networks based on deep learning, and not due to an ill-conditioning of the
problem itself. Moreover, as is clear from the images, in the unperturbed cases,
the best performance varies between neural networks and state-of-the-art. The
list of networks is as follows:

AUTOMAP [56]: This is a neural network for low resolution single coil MRI
with 60% subsampling. The training set consists of brain images with added
white noise to the Fourier samples.

DAGAN [54]: This network is for medium resolution single coil MRI with
20% subsampling, and is trained with a variety of brain images.

Deep MRI [44]: This neural network is for medium resolution single coil MRI
with 33% subsampling. It is trained with detailed cardiac MR images.

Ell 50 [24]: Ell 50 is a network for CT or any Radon transform based inverse
problem. It is trained on images containing solely ellipses (hence the name Ell
50). The number 50 refers to the number of lines used in the sampling in the
sinogram.

Med 50 [24]: Med 50 has exactly the same architecture as Ell 50 and is used
for CT, however, it is trained with medical images (hence the name Med 50)
from the Mayo Clinic database. The number of lines used in the sampling from
the sinogram is 50.

MRI-VN [18]: This network is for medium to high resolution parallel MRI
with 15 coil elements and 15% subsampling. The training is done with a variety
of knee images.

I.3 Stability with respect to tiny worst-case perturbations

Below follows the description of the test applied to some of the networks where
we detect instabilities with respect to tiny perturbations.
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Original x x+ r1 Original x̃ x̃+ r2

MRI-VN f(Ax) MRI-VN
f(A(x+ r1)) MED 50 f̃(Ãx̃) MED 50

f̃(Ã(x̃+ r2))

SoA from Ax SoA from A(x+ r1) SoA from Ãx̃ SoA from Ã(x̃+ r2)

Figure I.4: Perturbations r1, r2 (created to simulate worst-case effect) are added
to the images x and x̃ in the first row. The reconstructions by the network
f (MRI-VN), from Ax and A(x + r1), and the network f̃ (MED 50), from
Ãx̃ and Ã(x̃ + r2) are shown in the second row. A is a subsampled discrete
Fourier transform and Ã is a subsampled Radon transform. State-of-the-art
(SoA) comparisons are shown in the last row.

Deep MRI: In this test we perturb the image x with a sequence of
perturbations {rj}3j=1 with |r1| < |r2| < |r3| in order to simulate how the
instabilities continuously transform the reconstructed image from a very high
quality reconstruction to an almost unrecognisable distortion. This is illustrated
in the lower row of Figure I.1. Note that the perturbations are almost invisible
to the human eye as demonstrated in the upper row of Figure I.1. The rj
perturbations are created by early stopping of the algorithm iterating to solve
for the optimal worst case perturbation. The purpose of this experiment is to
demonstrate how the gradual change in perturbation create artefacts that may
be hard to verify as non-physical. Indeed, the worst case perturbation r3 causes
clearly a reconstruction that, in a real world situation, can be dismissed by a
clinician as non-physical. However, for the smallest r1 we have a perturbation
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Original x1 + r1 Original x1 + r1 (zoomed) Ell 50 f1(A1x1 + r1) SoA from A1(x1 + r1)

Original x2 + r2 Original x2 + r2 (zoomed) DAGAN f2(A2x2 + r2) SoA from A2(x2 + r2)

Original x3 + r3 Original x3 + r3 (zoomed) MRI-VN f3(A3x3 + r3) SoA from A3(x3 + r3)

Original x4 + r4 Original x4 + r4 (zoomed) Deep MRI f4(A4x4 + r4) SoA from A4(x4 + r4)

Ell 50/Med 50 DAGAN VN-MRI Deep MRI

Figure I.5: First four rows: Images xj plus structured perturbations rj (in the form of text and

symbols) are reconstructed from measurements yj = Aj(xj + rj) with neural networks fj and state-of-the-

art (SoA) methods. The networks are: f1 = Ell 50, f2 = DAGAN, f3 = MRI-VN, f4 = Deep MRI. The

sampling modalities Aj are: A1 is a subsampled discrete Radon transform, A2 is a subsampled discrete

Fourier transform (single coil simulation), A3 is a superposition of subsampled discrete Fourier transforms

(parallel MRI simulation with 15 coils elements), A4 is a subsampled discrete Fourier transform (single coil).

Note that Deep MRI has not been trained with images containing any of the letters or symbols used in the

perturbation, yet it is completely stable with respect to the structural changes. The same is true for the

AUTOMAP network (see first column of Figure I.3). Last row: The figures show PSNR as a function of

the subsampling rate for different networks. The red line indicates the subsampling ratio that the networks

were trained for. 45
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that is completely invisible to the human eye, yet it results in a reconstruction
that is hard to dismiss as non-physical, and provides an incorrect representation
of the actual image. Such examples could potentially lead to incorrect medical
diagnosis. Note that state-of-the-art methods are not affected by the perturbation
as demonstrated in the rightmost column of Figure I.1. However, although this
network is highly unstable with respect to certain tiny perturbations, it is highly
stable with respect to small structured changes, see the 4th row of Figure I.5.
Note also that the instabilities are actually stable. In particular, in Figure I.2
we demonstrate how a random Gaussian perturbation added to the perturbation
r1 still yields a substantial artefact (see also §I.A.1.8 in SI).

AUTOMAP: This experiment is similar to the one above, however, in this case
we add r̃1, . . . , r̃4 to the measurements y = Ax, where |r̃1| < |r̃2| < |r̃3| < |r̃4| and
A is a subsampled discrete Fourier transform. In order to illustrate how small the
perturbations are we have visualised |x+ rj | in the first row of Figure I.3, where
y + r̃j = A(x+ rj). To emphasise how the network reconstruction completely
deforms the image we have, inspired by the second test on structural changes,
added a small structural change in form of a heart that gradually disappears
completely in the network reconstruction. This is demonstrated in the second
row of Figure I.3, and the third row of Figure I.3 contains the reconstruction
done by a state-of-the-art method. Note that the worst case perturbations are
completely different to the ones failing the Deep MRI network. Hence, the
artefacts are also completely different. These perturbations are white-noise like
and the reconstructions from the network provide a similar impression. As this
is a standard artefact in MRI, it is, however, not clear how to protect against
the potential bad tiny noise. Indeed, a detail may be washed out, as shown
in the experiment (note the heart inserted with slightly different intensities in
the brain image), but the similarity between the standard artefact may make it
difficult to judge that this is an untrustworthy image.

MRI-VN: In this case we add one perturbation r1 to the image, where r1
is produced by letting the algorithm searching for the worst perturbation run
until it has converged. The results are shown in the first two columns of Figure
I.4, and the conclusion is the same for the MRI-VN net as for Deep MRI and
AUTOPMAP; perturbations barely visible to the human eye, even when zooming
in, yield substantial misleading artefacts. Note also that the perturbation has
no effect on the state-of-the-art-method.

Med-50: Here we add a perturbation r2 that is also produced by running
the algorithm until it has converged, and the results are visualised in the last
two columns of Figure I.4. The Med-50 network is moderately unstable with
respect to tiny perturbations compared to Deep MRI, AUTOMAP and MRI-VN,
however, severe artefacts are clearly seen. It is worth noting that this network is
used for the Radon transform, which is, from a stability point of view, a more
unstable operator than the Fourier transform when considering its inverse.
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I.4 Stability with respect to small structural changes

Instabilities with respect to small structural changes are documented below.
Ell-50: This network provides a stark example of instability with respect

to structural perturbation. Indeed, none of the details are visible in the
reconstruction as documented in the first row of Figure I.5. This may not
be entirely surprising, given that the network is trained on ellipses.

DAGAN: This network is not as unstable as the Ell-50 network with respect to
structural changes. However, as seen in the second row of Figure I.5 the blurring
of the structural details are substantial, and the instability is still critical.

MRI-VN: This is an example of a moderately unstable network when
considering structural changes. Note, however, how the instability coincides with
the lack of ability to reconstruct details in general. This is documented in the
third row of Figure I.5.

Deep MRI: To demonstrate how the stability with respect to small structured
changes coincides with the ability to reconstruct details, we show how stable
the Deep MRI network is. Observe also how well the details in the image are
preserved in the fourth row of Figure I.5. Here we have lowered the subsampling
ration to 25% even when the network is trained on 33% subsampling ratio. We
want to point out that none of the symbols, nor any text, has been used in the
training set.

I.5 Stability with respect to more samples

Certain convolutional neural networks will allow for the flexibility of changing
the amount of sampling. In our test cases all of the networks except AUTOMAP
have this feature, and we report on the stability with respect to changes in the
amount of samples below and in the last row of Figure I.5:

Ell 50/Med 50: Ell 50 has the strongest and most fascinating decay in
performance as a function of an increasing subsampling ratio. Med 50 is similar,
however, with a less steep decline in reconstruction quality.

DAGAN: The reconstruction quality deteriorates with more samples similar
to the Ell 50/Med 50 networks.

VN-MRI: This network provides reconstructions where the quality stagnates
with more samples as opposed to the decay in performance witnessed in the
other cases.

Deep MRI: This network is the only one that behaves aligned with standard
state-of-the-art methods and provides better reconstructions when more samples
are added.

I.6 Conclusion

The new paradigm of learning the reconstruction algorithm for image recon-
struction in inverse problem, through deep learning, typically yields unstable
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methods. Moreover, our test reveals numerous instability phenomena, challenges
and new research directions. In particular:

(1) Certain tiny perturbations lead to a myriad of different artefacts. Different
networks yield different artefacts and instabilities, and as Figures I.1, I.3, I.4
reveal there is no common denominator. Moreover, the artefacts may be difficult
to detect as non-physical. Thus, several key questions emerge: given a trained
neural network, which types of artefacts may the network produce? How is the
instability related to the network architecture, training set and also subsampling
patterns?

(2) Variety in failure of recovering structural changes. There is a great
variety in the instabilities with respect to structural changes as demonstrated in
Figure I.4, ranging from complete removal of details to more subtle distortions
and blurring of the features. How is this related to the network architecture
and training set? Moreover, does the subsampling pattern play a role? It is
important, however, to observe (as in the 4th row of Figure I.5 and 1st column
of Figure I.3) that there are perfectly stable networks with respect to structural
changes, even when the training set does not contain any images with such
details.

(3) Networks must be retrained on any subsampling pattern. The fact that
more samples may cause the quality of reconstruction to either deteriorate
or stagnate means that each network has to be retrained on every specific
subsampling pattern, subsampling ratio and dimensions used. Hence, one may
in practice need hundreds of different network to facilitate the many different
combinations of dimensions, subsampling ratios and sampling patterns.

(4) Instabilities are not necessarily rare events. A key question regarding
instabilities with respect to tiny perturbations is whether they may occur in
practice. The example in Figure I.2 suggests that there is a ball around a
worst-case perturbation in which the severe artefacts are always witnessed. This
suggests that the set of ’bad’ perturbations have Lebesgue measure greater
than zero, and thus, there will typically be a non-zero probability of a ’bad’
perturbation. Estimating this probability may be highly non-trivial as the
perturbation will typically be the sum of two random variables, where one
variable comes from generic noise and one highly non-generic variable is due to
patient movements, anatomic differences, apparatus malfunctions, etc. These
predictions can also be theoretically verified, as discussed in §I.A.1.8 in SI.

(5) The instability phenomenon is not easy to remedy. We deliberately choose
quite different networks in this paper to highlight the seeming ubiquity of the
instability phenomenon. Theoretical insights (see §I.A.1.8 in SI on the next
generation of methods [3, 4, 17, 41, 50]) also support the conclusion that this
phenomenon is nontrivial to overcome. Finding effective remedies is an extremely
important future challenge.
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I.A Supplementary Information

I.A.1 Methods

The specific setups for deep learning and neural networks in inverse problems are
typically rather specialised for each type of network. However, the main idea can
be presented in a rather general way. Given an under-sampled inverse problem

Ax = y, A ∈ Cm×N , m < N (I.1)

there is typically an easy linear way of approximating x from the measurement
vector y. We will denote this linear operator by H ∈ CN×m. In the MRI case,
when A is a subsampled discrete Fourier transform, often H = A∗. Note that
in the MRI case x is complex valued and we actually display the magnitude
image |x|. An example is illustrated in Figure I.6. In the CT case H could be
A∗, however, this gives very poor results (as demonstrated in Figure I.6), and
thus H is usually a discretisation of the filtered back projection (FBP). The
problem is, as displayed in Figure I.6, that the reconstruction x̃ = Hy may still
be rather poor. The philosophy of deep learning is quite simple; improve this
reconstruction by using learning. In particular, inspired by deep learning in
image denoising [5], given training images {x1, . . . , xn} and poor reconstructions
{HAx1, . . . ,HAxn}, train a neural network f : CN → CN such that

‖f(HAxj)− xj‖ � ‖HAxj − xj‖, j = 1, . . . , n. (I.2)

The hope is that (I.2) will hold for other images as well, not just the training
examples {x1, . . . , xn}.

The construction process of the neural network f is typically done as follows.
First one decides on a particular class (architecture) of neural networks NN .
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Then one decides on a cost function Cost : NN ×CN ×Cm×CN → R and tries
to solve the optimisation problem of finding

f ∈ argmin
h∈NN

n∑
j=1

Cost(h,HAxj , Axj , xj). (I.3)

The task of finding a good class NN and a good cost function Cost is an
engineering art on its own. All the networks we test, except for AUTOMAP,
are trained with some form of a ‘warm start’ in form of a linear operator H,
however, AUTOMAP is based on directly solving the problem

f ∈ argmin
h∈NN

n∑
j=1

Cost(h,Axj , xj), (I.4)

without any reference to the reconstructions HAxj . We refer to Section I.A.2
for details regarding the training of the networks. Note that the instability
phenomenon is independent of the choice of (I.3) or (I.4), and the operator H
may be viewed as just adding a layer to the network. Thus, we will in general
talk about a network f that takes the measurements y = Ax as input.

I.A.1.1 Describing the test

Before describing the algorithm for creating the unstable perturbations, it is
convenient to have a short review of the framework for establishing instabilities
for neural networks for image classification. For a detailed review of such
methods, see [13] and the references therein. The basic idea is as follows. Let
g : Rd → [0, 1]C be an image classification network with C different classes, so
that g(x) is a C-dimensional vector containing the probabilities associated to
the different classes for a given input image x. Let k̂g : Rd → {1, . . . , C} where
k̂g(x) = argmaxi(g(x)i) is the image classifier. For a given norm ‖ · ‖ on Rd, we
can then define the optimal, meaning smallest, unstable perturbation r∗ ∈ Rd,
for an image x ∈ Rd as

r∗(x) ∈ argmin
r
‖r‖ subject to k̂g(x+ r) 6= k̂g(x), (I.5)

where we write r∗(x) to indicate that this is a perturbation for the image x.
It is clear that one cannot apply the approach in (I.5) to the problem of

finding instabilities of neural networks for the inverse problem. Indeed, (I.5) is
designed for a decision problem a la ‘is there a cat in the image?’. In inverse
problems there is no decision problem but rather the following, slightly simplified
issue:

Reconstruct x from y = Ax, A ∈ Cm×N . (I.6)
Thus, if we are given a neural network f : Cm → CN designed to solve (I.6), and
we want to search for instabilities imitating (I.5), we would end up with the
problem of finding

r̂(x) ∈ argmin
r
‖r‖ subject to ‖f(y +Ar)− f(y)‖ ≥ δ, (I.7)

50



Supplementary Information

for some δ > 0, where y = Ax for some x. Note that (I.7) has a clear disadvantage
in that it may be infeasible for different values of δ. Hence, a slightly different,
constrained Lasso inspired variant, may be worth considering;

r̃(x) ∈ argmax
r
‖f(y +Ar)− f(y)‖ subject to ‖r‖ ≤ θ, (I.8)

for some τ > 0. In the case of (I.8) we do not have any issues regarding
infeasibility. However, a third option could be an unconstrained Lasso inspired
version of (I.8) given by

r∗(y) ∈ argmax
r

1
2‖f(y +Ar)− f(y)‖22 −

λ

2 ‖r‖
2
2 (I.9)

(here we have specified the norm), where λ > 0. Note that (I.9) is not the only
possibility. In particular, one could consider the more general setting

r∗(y) ∈ argmax
r

1
2‖f(y +Ar)− p(x)‖22 −

λ

2 ‖r‖
2
2, (I.10)

where p : CN → CN . In this case r∗ will obviously depend on p, and the quality
of the artefacts produced by r∗ may differ greatly as p changes. Indeed, this is
the motivation for allowing this extra variable. In this paper we focus on (I.10)
and consider p(x) = f(Ax) (as in (I.9)) and p(x) = x.

However, the first part of our test could indeed be carried out by a different
optimisation problem. Moreover, we anticipate that there will be other methods
for creating instabilities for neural networks for inverse problems that will be
as reliable and diverse as what we present here. Note that (I.10) is set up to
find perturbations in the image domain. We do this deliberately as this provides
an easy way to compare the original image with a perturbed image and deduce
whether the reconstruction of the perturbed image is acceptable/unacceptable.
However, one could set up (I.10) so that the perturbation is in the sampling
domain as well. In the following we describe the test in detail and the
methodology.

I.A.1.2 Stability with respect to tiny perturbations

The neural network f : Cm → CN is a non-linear function. In practice this makes
the problem of finding a global maximum of the optimization problem in (I.10)
impossible, even for small values of m and N . In the following we will provide a
method that aims at locating local maxima of (I.10) by using a gradient search
method. In particular, given an image x ∈ RN , A ∈ Cm×N and y = Ax as in
(I.1) let

Qpy(r) = 1
2‖f(y +Ar)− p(x)‖22 −

λ

2 ‖r‖
2
2 (I.11)

be the objective function. A most natural method to solve (I.10) is gradient
ascent with momentum. Thus, the method uses the gradient of Qpy in conjunction
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with two parameters γ > 0 (the momentum) and η > 0 (the learning rate) in
each step towards a local maximum.

Algorithm 1 Finding unstable perturbation for inverse problems
1: Input: Image: x, neural network: f , sampling matrix: A, maximum number

of iterations: M .
2: Output: Perturbation rM
3: Initialize: y ← Ax, v ← 0, i ← 1, r0 ∼ Unif([0, 1]N ), 0 < λ, γ, η, τ . Set
Qpy(r) as in Equation (I.11).

4: r0 ← τr0
5: while i ≤M do
6: vi+1 ← γvi + η∇rQy(ri)
7: ri+1 ← ri + vi+1
8: i← i+ 1
9: return rM

This means that there are three parameters λ > 0, γ > 0 and η > 0 to be set,
and hence the perturbation r found by the algorithm will depend on these. The
complete algorithm is presented in Algorithm 1, where r0 is initialised randomly.
Note that the parameter τ used in Algorithm 1 is simply a scaling factor needed
as the input images may have values in different ranges.

Note that for u = y +Ar, the gradient of Qpy is given by

∇rQpy = A∗∇ug(u)− λr, g(u) := ‖f(u)− p(x)‖22 (I.12)

where ∇ug(u) can be computed efficiently using back propagation. Note also
that at each iteration this gradient is left multiplied by the adjoint A∗.

Algorithm 2 Finding unstable perturbation for Radon problems
1: Input: Image: x, neural network: f , sampling matrix: A, FBP operator:
B, maximum number of iterations: M .

2: Output: Perturbation rM
3: Initialize: y ← Ax, v ← 0, i ← 1, r0 ∼ Unif([0, 1]N ), 0 < λ, γ, η, τ . Set
g(u) as in Equation (I.12).

4: r0 ← τr0
5: while i ≤M do
6: vi+1 ← γvi + ηB∇ug(y +Ari)− λri
7: ri+1 ← ri + vi+1
8: i← i+ 1
9: return rM

Just as in the case when training neural networks using stochastic gradient
descent with momentum, choosing the parameters γ and η is an art of engineering.
We are in a similar situation with our algorithm, and the optimal choices of
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γ, η are based on empirical testing. Such experimenting with parameters also
motivates experimenting with other parts of the algorithm. For example, when
considering Radon measurements, we found that setting the optimal values of γ
and η could be rather difficult. However, by replacing A∗ in (I.12) by B ∈ RN×m
being a discretisation of a filtered back projection (FBP), this problem could be
overcome and we therefore use Algorithm 2 in the case of Radon samples.

It should be mentioned that there are different variations of discretisations of
the filtered backprojection for Radon problems. The discretisation B ∈ RN×m
used in our experiment is the one provided by MatLab R2018b.

I.A.1.3 State-of-the-art comparison method

All of our tests are done against state-of-the-art benchmark methods using
established techniques based on sparse regularisation and compressed sensing [2,
7, 9, 43].

There are many variations in the literature using X-lets and Total Variation
(TV) techniques separately or in combination. Our main algorithm is based on
the re-weighting technique suggested in [8]. This idea was refined in [35] and
[34], by combining both X-lets (shearlets in this case) and TV. This is our main
algorithm of choice used in this paper. We refer the reader to [34] for details,
however, a short summary can be described as follows. The algorithm allows for
both Fourier and Radon sampling, however, the current implementation only
allows for single coil MRI in the Fourier case. The idea is to solve iteratively the
problem

minimise
z

J∑
j=1

λj‖WjΨjz‖1 + TGV2
α(z) subject toAz = y,

where the λjs are weights, Wj is a diagonal weighting matrix, Ψj is the j’th
subband in a shearlet transform [34], and TGV2

α, α = (α1, α2) is the second
order Total Generalised Variation operator. The TGV2

α operator consist of a
first order term (TV) weighted by α1 and a second order (generalised) term
weighted by α2. In each iteration step the weights λj and weighting matrices
Wj are updated.

In particular, the minimisation problem is casted into an unconstrained
formulation

minimise
z

J∑
j=1

λj‖WjΨjz‖1 + TGV2
α(z) + β

2 ‖Az − y‖
2
2,

and solved via split Bregman iterations. This means that the problem is decoupled
into two portions, one accounting for the `1-norm term and one for the `2-norm
term.

In particular, on denoting by Ψ′ a composite operator including (1) the effect
of multi-scale X-lets transform in different levels including the weights λj , (2)
the first order (TV) term of TGV2

α and (3) the second order term of the same
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operator, and by adding a further splitting variable d = Ψ′z, it is possible to
write the k-th split Bregman iteration as

(zk+1, dk+1) = arg minz,d ‖Wd‖1 + β
2 ‖Az − yk‖

2
2

+µ
2 ‖d−Ψ′z − bk‖22,

bk+1 = bk + Ψ′zk+1 − dk+1,
yk+1 = yk + y −Azk+1.

(I.13)

During each iteration, the (z, d)-minimisation problem is solved using one
or multiple non-linear block Gauss-Seidel iterations, which alternate between
minimising z and d. Also, in contrast with the re-weighting strategy originally
presented in [8], the weights in W are updated not only after convergence to the
solution of the `1 minimisation problem, but weight updates are incorporated in
the split Bregman iterations.

In the above iterations we have allowed for a slight abuse of notation. We
are using µ = (µ1, µ2, µ3) and split the sum ‖d−Ψ′z − bk‖22, into three separate
parts, depending on which of the terms of Ψ′ they come from, and weight each
partial sum separately with µ1

2 ,
µ2
2 and µ3

2 , respectively (see equation (15) in
[34] for details).

This method has been used for reconstruction from Fourier and Radon
measurements, using two different setups. For the case of Fourier measurements,
discrete shearlets are generated with 3 scales and with directional parameters
[1 2 2] (see [35] and [34] for details). The optimisation parameters are set as
follows:

• (µ1, µ2, µ3) : (5000, 10, 20),

• (α1, α2): (1, 1),

• β: 105,

• ε: 10−5,

Where ε is a parameter which is added in the denominator, of the updating rule,
for the weights W , to avoid division by zero. Similarly, image reconstruction
from Radon measurements are obtained by using shearlets with 4 scales and
directional parameters [0 0 1 1] and with the following parameter setup:

• (µ1, µ2, µ3) : (500, 0, 0),

• (α1, α2): (1, 0),

• β: 50,

• ε: 10−8,

Notice in particular that µ3 = α2 = 0, hence we are only using shearlets and a
TV term as our regularizes. In all setups, we run the algorithm until convergence,
i.e. between 50 and 500 iterations.
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The above approach is used in all examples except for the tests using
the MRI-VN network which is designed for parallel MRI. For this imaging
modality we have the following reconstruction problem. Let Ω ⊆ {1, . . . , N},
|Ω| = m and PΩ ∈ Rm×N be the projection operator onto the canonical basis i.e.
PΩx = (xi)i∈Ω. Let F ∈ CN×N be the discrete Fourier transform (DFT) matrix.
The Fourier sampling matrix can then be written as Af = PΩF , for a given
sampling pattern Ω. In parallel Fourier imaging we receive information from
multiple coils elements at the same time. This is modeled by introducing diagonal
sensitivity matrices S1, . . . Sc ∈ CN×N which weight the measurements, based
on the environmental conditions of the sensing problem. The corresponding
measurement matrix is then written as

Apf =

PΩF
. . .

PΩF


S1

...
Sc

 ∈ Cm
′×N .

where m′ = cm. Note that for this sampling operator we might have m′ > N ,
which means that the corresponding linear system may be overdetermined. Given
an image x ∈ RN we let y = Apfx and use the SPGL1 algorithm [53] for solving

minimise
z

‖z‖1 subject to ‖ApfΨ−1z − y‖2 ≤ δ,

where Ψ ∈ RN×N is the wavelet transform corresponding to the periodised
Daubechies 2 wavelet with 3 levels. In all the experiments we set δ = 0.01.

I.A.1.4 Non-uniqueness of the test – parameter dependency

Note that the test we provide can never become unique. Indeed, we choose to
solve (I.10) with different choices of p (see Figure I.7), however, (I.7) and (I.8)
could also be viable alternatives. Moreover, all of these approaches depend on
parameters δ, θ and λ that have to be specified, and different values give different
worst-case perturbations. In addition, Algorithm 1 and Algorithm 2 designed
to solve (I.10) depend on the parameters γ, η and τ . Moreover, note also that
there is no built-in halting criteria in Algorithm 1 and Algorithm 2, but rather
the parameter M controlling the number of iterations. Thus, the stability test
can never become a unique test, but instead a collection of algorithms depending
on different parameters. Hence, an appropriate use of the test means running
Algorithm 1 and Algorithm 2 varying the parameters. This is also what is
done in this paper, however, only the results based on the final parameters are
displayed in the figures. The final parameters chosen are listed in Table I.1.

In Figure I.9, we display different perturbations rj produced by Algorithm 1
with different values ofM corresponding to the experiments shown in Figures I.1,
I.3 and I.7. The values of λ, γ, η and τ are as in Table I.1. Note the difference
between the perturbations depending on the network. As the perturbations are
tiny, they have been enlarged in order to get a visual impression.
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I.A.1.5 Stability of state-of-the-art methods

The perturbation r computed by the algorithms from Section I.A.1.2 are
constructed specifically for an image x, sampling operator A and neural network
f . Hence it might not be too surprising that the state-of-the-art methods are
unaffected by this perturbation. Though our use of state-of-the-art methods
in this work have mainly been to ensure that the inverse problem in itself is
not ill posed, it is tempting to see if similar instabilities can occur for sparse
regularization algorithms as well. Indeed, it could be that sparse regularization
techniques are equally unstable to a worst case perturbation r, but that such a
perturbation is rare enough so as to not have yet arisen in practice. Compressive
sensing techniques have after all, only been tested by the scientific community
for a little more than a decade, and by clinicians for the last few years.

Extending the algorithms from Section I.A.1.2 so that they can be applied to
general sparse regularization algorithms is a challenging task, as both algorithms
need to compute the gradient of g(u) = ‖f(u)− p(x)‖22. Thus if f is not a neural
network, we can no longer use the back propagation algorithm to easily compute
this quantity. While some of the simplest sparse regularization algorithms can be
written as neural networks, more sophisticated algorithms often contain internal
if-else or while statements, making it hard to write them as neural networks.

Writing the above sparse regularization algorithms as neural networks
are beyond the scope of this paper. Yet, we want to illustrate that sparse
regularization algorithms can be tested if they are written as neural networks.
To this end, we include an experiment from [1, 20], where an iterative algorithm
for solving the following optimization problem

minimise
z∈CN

µ‖Wz‖1 + ‖AΨ−1z − y‖2, µ > 0, (I.14)

have been unrolled, using 1000 iterations, as a neural network. Here W ∈ RN×N
is a diagonal weighting matrix, A = PΩF ∈ Cm×N is a subsampled Fourier
transform and Ψ ∈ RN×N is the discrete Haar wavelet transform. To test the
stability of this network, we have used the same data x and sampling pattern
Ω as for the AUTOMAP network. Using Algorithm 1, we then computed
perturbations vj , j = 1, 2, 3, 4 all with the same `2-norm as the rj ’s computed
for AUTOMAP in Figure I.3 in the main paper. As can be seen in Figure I.8,
the network seems stable with respect to tiny perturbations.

I.A.1.6 Stability with respect to small structural changes

This part is fully explained in the main manuscript. However, we want to
emphasise that the symbols used in the experiment are chosen in order to assure
that networks can recover important details. These can of course be replaced by
other symbols as long as the ability of an algorithm to reconstruct these symbols
correlate with the ability to recover other small important details.

Important note: In our examples, it is irrelevant whether the symbols have
been included in the training set or not. In fact, both the AUTOMAP and
the Deep MRI networks have no problem recovering the symbols, see the first
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column of Figure I.3 and Figure I.7, where a heart is artificially added, and the
fourth row of Figure I.5. Indeed, none of these networks have been trained on
images containing the symbols, yet they can perfectly well recover them.

I.A.1.7 Stability with respect to more samples

All of the networks we have tested, except AUTOMAP, are convolutional neural
networks (CNNs), which means that the trained weights come from convolutional
layers. This has the advantage of reducing the number of parameters we need to
learn, compared to fully connected layers (dense matrices), and may for large
image sizes be the only alternative. Moreover, these CNNs can easily be adapted
to other subsampling patterns as explained below. Thus, one can easily apply a
network that is trained on 25% subsampling, say, to input that uses, for example,
35% subsampling. The question is whether the quality of the reconstruction is
kept when increasing the subsampling ratio. The reason for the flexibility of
the CNNs in our test is that they all depend on the operator H ∈ CN×m, as
described in (I.2), by considering it as a non-learnable first layer. As the H is
non-learnable, this allows for flexibility in our choice of m, since we know how
to construct H for various values of m.

In the last row of Figure 4 in the main manuscript we have varied the number
of samples m and measured the image quality of the networks reconstruction
using the peak signal-noise-ratio (PSNR) between the magnitude images of the
original and the reconstructed image. Figure 4 shows all of the networks, except
the AUTOMAP network, which learns a mapping directly from the measurement
domain without using a non-learned layer H. Below follows the description of
each of the experiments visualised in the last row of Figure 4.

Ell 50: We created 25 sinograms of images containing ellipses similar to the
data in the network’s training and test set. The sinograms were created with
1000 uniformly spaced angles (views) using the formula for the Radon transform
of an ellipse. We then considered an acceleration factor k ∈ {2, . . . , 30}, by
subsampling every k-th line among the 1000 views. The FBP of the subsampled
sinogram was given to the network and the PSNR of the reconstruction was
computed against the FBP of all 1000 views.

Med 50: We used a test set, provided by the authors of [24], consisting of
25 CT images from the Mayo Clinic. These images were synthetically sampled,
using a the discrete Radon transform from MatLab, at the same angles as the
Ell 50 network. The subsampled sinograms were mapped back into the image
domain using a FBP and reconstructed using the network. The PSNR values
were computed with the original image as ground truth.

DAGAN: We used 20 MR images of brain tissue from the test set, and
subsampled these images using the 1D Gaussian sampling patterns provided by
the authors of [54]. These patterns have been generated for subsampling rates
1%, 5%, 10%, 20%, 30%, 40% and 50%.

MRI-VN: We used image data from the networks test set, and picked one
image slice from 10 different patients. The image data was subsampled with
uniformly spaced lines (center lines was always included), at subsampling rates
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5%, 10%, 15%, 20%, 25%, 30%, 35%, and 50%. The PSNR was computed with
the magnitude image of the fully sampled images as reference.

Deep-MRI: We used 30 image slices from one MRI scan, and subsampled each
slice using lines sampled according to a Gaussian distribution. Extra caution
was taken, so that all lines sampled at a low sampling rate, was included at
higher sampling rates. We sampled with an acceleration rate 2, . . . , 14.

It should be noted that measuring image quality is a delicate issue. We point
out that no comparison based on the last row of Figure I.5 on the reconstruction
quality should be made between the networks, as the PSNR is unfit to measure
image quality between different types of images [22]. However, we are only
interested in the change in PSNR, as a function of subsampling percentage, for
each specific network.

I.A.1.8 Theoretical aspects

Our contribution documents the instability phenomenon in deep learning
methods for inverse problems. However, the instability phenomenon can
be explained theoretically as well. Indeed, the recent paper [15] provides
theoretical foundations that explain the reasons for the instabilities. Moreover,
the theoretical results confirm that the instabilities are stable in the sense
that there will always be balls around the ’bad’ perturbations such that adding
elements in the ball to the ’bad’ perturbation will yield another ’bad’ perturbation.
If the perturbation

rpert = r1
pert + r2

pert,

where r1
pert and r2

pert are random variables there will typically be a non-zero
probability that rpert is a ’bad’ perturbation depending on the probability
distribution of r1

pert and r2
pert. We may have that r1

pert is a Gaussian vector
but r2

pert could have a probability distribution (coming from patient movement,
anatomic differences, etc) that is incredibly difficult to estimate. Thus, deeming
unstable neural networks safe for use in medical imaging based on a probabilistic
estimate is far from trivial, if not impossible.

The theoretical developments also demonstrate how difficult it is to cure
the instability phenomenon. As the theoretical results in [15] confirm, one
can predict which attempts on remedies that will have limited effect. This
includes adversarial training (a technique that has been thoroughly investigated
as a remedy for instabilities occurring in image classification), training with
multiple random sampling patterns, enforcing consistency, adding small random
perturbations to the measurements etc. [3, 4, 17, 41, 50]

I.A.2 Technical details needed to reproduce the results

I.A.2.1 Overview

This section contains all the extra material on neural networks that is useful in
order to understand and reproduce all the experiments done in the paper. In
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particular, the it displays the variety of different architectures and training sets
used in the various experiments. The neural networks considered are:

(i) AUTOMAP [56]: The AUTOMAP neural network we test is for low
resolution single coil MRI with 60% subsampling. In the paper [56] one
mentions 40% subsampling, but this apparent discrepancy is simply due to
different interpretation of the word subsampling. We use the traditional
meaning in sampling theory referring to x% subsampling as describing that
the total amount of samples used are x% of full sampling. The network
used in our experiment is trained by the authors of [56]. The details of the
architecture and training data are summarised in §I.A.2.2.

(ii) DAGAN [54]: This network is for medium resolution single coil MRI
with 20% subsampling. The network weights are not available online,
however, complete instructions on how to reproduce the network used in
[54] are accessible. Based on these instruction, we have retrained a network
that reproduces the results in [54]. The details of the training data and
architecture are summarised in §I.A.2.3.

(iii) Deep MRI [44]: This neural network is for medium resolution single coil
MRI with 33% subsampling. The network used in our experiments is
trained by the authors of [44], can be found online and we summarise the
details on training data and architecture in §I.A.2.4.

(iv) Ell 50 [24]: Ell 50 is a network for CT or any Radon transform based
inverse problem. The number 50 refers to the number of lines used in the
sampling in the sinogram. The training of the network is done by the
authors of [24]. The network can be obtained online, and all the details
can be found in §I.A.2.5.

(v) Med 50 [24]: Med 50 has exactly the same architecture as Ell 50 and is used
for CT, however the training is done on a different dataset. The network
is trained by the authors of [24]. Details are summarised in §I.A.2.5.

(vi) MRI-VN [18]: This network is for medium to high resolution parallel MRI
with 15 coil elements and 15% subsampling. In order to show a variety of
subsampling ratios we have trained this network on a smaller subsampling
percentage than what the authors of [18] originally (25% and 33%) did
in their paper. As we already have 33%, and 20%, we want a test on
even lower subsampling rates. All the remaining parameters are kept
as suggested in the code provided by the authors of [18], except for the
subsampling ratios and batch size (due to memory limitations). All the
details are documented in §I.A.2.6.

All network weights are available from https://github.com/vegarant/Invfool.
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I.A.2.2 AUTOMAP

Network architecture The AUTOMAP network [56] is proposed for image
reconstruction from Radon measurements, spatial non-Cartesian Fourier
sampling, misaligned Fourier sampling and undersampled Cartesian Fourier
samples. In this work we have tested the network trained for image reconstruction
from undersampled Cartesian Fourier samples. In contrast with the other
networks considered in this work, the AUTOMAP network provides a direct
mapping of the Fourier measurements to the image domain without applying
the adjoint operator H as a first step.

The authors of [56] have not made their code publicly available, and the
weights from their paper [56] had not been stored. However, they kindly agreed
to retrain their network for us and save the weights. The network architecture
they trained deviates slightly in some of activation functions reported in their
paper [56], however, the network was trained on the same data and sampling
pattern. Below we describe the network architecture we received. The training
parameters and data, are reported as in the paper [56].

The input of the AUTOMAP network, as described in [56] and in Figure
I.10 takes a complex n × n image of measurements as input. In the case of
subsampling, one may interpret the n × n image as being zero padded in the
coordinates that are not sampled. In the tests, n = 128, and in the actual
implementation the input is represented by the complex measurement data
y ∈ Cm with m = 9855 (60% of n2) in this experiment. Such data is reshaped
into a vector of length 2m with real entries before being fed into the network.
The first two layers of the network a fully connected matrices of size 25000× 2m
and n2 × 25000. The first fully connected layer is followed by a hyperbolic
tangent activation function. The second fully connected layer is followed by a
layer which subtracts the mean from the output of the second layer. The output
is then reshaped into an n× n image.

Next follows two convolutional layers with filter size 5× 5, 64 feature maps
and stride 1 × 1. The first convolutional layer is followed by a hyperbolic
tangent function, while the other is followed by a rectified linear unit (ReLU).
Finally, the output layer deconvolves the 64 feature maps provided by the second
convolutional layer with 7×7 filters with stride 1×1. The output of the network
is an n× n matrix representing the image magnitudes.

Training parameters The loss function used for training consisted of two
terms, LSE and LPEN. Here LSE is the `2-norm of the difference between
the ground truth magnitude image and the magnitude image predicted by the
network. Similarly the LPEN is an `1-penalty on the outputs of the activations
following the second convolutional layer (C2). The total loss was then computed
as

LTOTAL = LSE + λLPEN

with λ = 0.0001. The network is trained using the RMSProp algorithm (see
for example http://www.cs.toronto.edu/~ tijmen/csc321/slides/lecture_slides_
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lec6.pdf as referred to in [56]) with minibatch size 100, learning rate 0.00002,
momentum 0, and decay 0.9. The number of training epochs is 100.

Training data The training dataset consists of 50, 000 images taken from 131
different subjects from the MGH-USC HCP public dataset [12]1. For each image,
the central 256 × 256 pixels were cropped and subsampled to a resolution of
128× 128 pixels. Before training, the images were preprocessed by normalizing
the entire dataset to a constant value defined by the maximum intensity of the
dataset. Fourier data were obtained by subsampling the Cartesian k-space using
a Poisson-disk sampling pattern with 60% undersampling [51].

In order to increase the network robustness against translation, the following
data augmentation scheme was applied. New images were created from each
image in the training dataset by tiling together four reflections of the original
image. Then, the so obtained 256×256 image was cropped to a random 128×128
selection. The routines used to implement the AUTOMAP network were written
in TensorFlow2.

I.A.2.3 DAGAN

Network architecture The DAGAN network was introduced in [54] to recover
images from Fourier samples, with particular emphasis on MRI reconstruction
applications. The DAGAN network assumes measurements y = Ax, where A is a
subsampled discrete Fourier transform. The input of the network is represented
by the noisy magnitude image x̃ = |Hy|, which is obtained by direct inversion of
the zero-filled Fourier data, in particular, H = A∗.

The recovery algorithm presented in [54] is based on a conditional generative
adversarial network (GAN) model, which consists of a generator network, used
for the image reconstruction, and a discriminator network, measuring the quality
of the reconstructed image. The generator network adopted in [54] has a U-net
structure, similar to that used in [24], and its objective is to produce the recovered
image. In [54] the authors propose two almost identical architectures, and train
them with different loss functions. Below we will describe their ‘refinement’
architecture trained with what is referred to as Pixel-Frequency-Perceptual-
GAN-Refinement loss in the paper. The refined version is also our choice, as
this architecture and training performed the best in the paper and in our tests
as well. The network was not made publicly available, and based on advice from
the authors of [54] we trained the network ourselves.

The architecture of the generator network, which is reported in Figure I.11,
contains 8 convolutional layers and 8 deconvolutional layers each followed by batch
normalization (BN) [23]. The batch normalization layers after the convolutional
layers are followed by leaky ReLU (lReLU) activations with slope equal to 0.2 for
x < 0, while the batch normalization layers after the deconvolutions are followed
by a ReLU activation. The generator network also contains skip connections,

1https:// db.humanconnectome.org/
2https://www.tensorflow.org
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i.e., connections that copy the output of a layer directly to the input of a layer
further down in the hierarchy. The skip connections are used to concatenate
mirrored layers (see Figure I.11). The filter kernels used for the convolutional
and deconvolutional layers have size 4 × 4 with stride 2 × 2. The number of
filters in each convolutional/deconvolutional layer increases/decreases according
to Figure I.11.

The last deconvolutional layer is followed by a hyperbolic tangent activation
function. A global skip connection, adding the input to the network and the
output from the hyperbolic tangent function, is then followed by a ramp function
clipping the output values of the image to the range [−1, 1]. Adding this last
skip connection means that the network is actually approximating the residual
error between the network input x̃ = Hy and the image of interest.

The generator network is trained jointly with a discriminator network, which
aims to distinguish between the output of the generator network and ground
truth images. For further information on this network, we refer to [54].

Training parameters The loss function used to train the DAGAN network
consists of four different terms. First, an image domain mean square error
(MSE) loss, LiMSE, which accounts for the `2 distance between the output of the
generator network and the ground truth image. Second, a frequency domain MSE
loss, LfMSE, which enforces consistency between the output of the generative
network in the frequency domain and the acquired Fourier measurements. Third,
a perceptual loss term, LVGG, which is computed by using a pretrained VGG-16
described in [46]. In particular, the VGG-16 network was trained over the
ImageNet dataset3 and the output of its conv4 layer was used to compute the
loss term by considering the `2-norm of the difference between the VGG-16
output corresponding to the ground truth image and the generator network
output. Finally, the fourth term, LGEN is computed using a cross entropy loss
on the output of the discriminator network. Adding these four terms together
gives us the loss

LTOTAL = αLiMSE + βLfMSE + γLVGG + τLGEN, α, β, γ, τ > 0.

We used the same values for α, β, γ and τ as in [54], in particular, α = 15,
β = 0.1, γ = 0.0025 and τ = 1. The generator and the discriminator network
were jointly trained by alternating gradient optimization. In particular, the
Adam [27] optimizer was adopted, with initial learning rate 0.0001, momentum
0.5, and minibatch size 25. The learning rate was halved every 5 epochs. We
applied the same early stopping rule as given in their implementation4. This is
based on measuring the LiMSE loss between the training set and validation set.
We used the early stopping number 10. In total this resulted in 15 epochs of
training.

3http://www.image-net.org/
4https://github.com/nebulaV/DAGAN
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Training data The DAGAN network was trained using data from a MICCAI
2013 grand challenge dataset5. We removed all images from the dataset where
less than 10% of the pixel values were non-black. In total we therefore used
15912 images for training and 4977 images for validation. The dataset consisted
of T1-weighted MR images of different brain tissues.

The following data augmentation techniques were used to increase the amount
of training data: image flipping, rotation, shifting, brightness adjustment,
zooming, and elastic distortion [45].

The discrete Fourier transform of the training images were subsampled using
1D Gaussian masks, i.e., masks containing vertical lines of data in the k-space
randomly located over the image according to a Gaussian distribution. In our
tests we trained a network to do recovery from 20% subsampling. The code
used to implement DAGAN was written using the TensorLayer6 wrapper and
TensorFlow, and was made publicly available by the authors of [54].

I.A.2.4 DeepMRINet

Network architecture The Deep MRI net is used to recover images from their
subsampled Fourier measurements. Its architecture is built up as a cascade of
neural networks, whose input is represented by the blurry image obtained by
direct inversion of the measurements, i.e., x̃ = Hy. The networks in the cascade
are convolutional neural networks (CNN) designed as follows

CNNi(x̃) = x̃+ C(i)
recρ(C(i)

rec−1 · · · ρ(C(i)
1 x̃+ b

(i)
1 ) · · ·+ b

(i)
rec−1) + b(i)rec,

where ρ(z) = max{0, z} is the ReLU activation function, whereas C(i)
k and

b
(i)
k represent trainable convolutional operators and biases, respectively, for the
ith network. These networks are then tied together and interleaved with data
consistency layers (DC), which have the objective to promote consistency between
the reconstructed images and the Fourier measurements. The DC layers are
defined as

DCλ(x̃, y,Ω) = F−1gλ(Fx̃, y,Ω), where gλ(z, y,Ω) =
{
zk k 6∈ Ω
zk+λyk

1+λ k ∈ Ω
.

Here F represents the Fourier operator, and Ω is the set of indices corresponding
to the measurements acquired in the k-space. We point out that in the limit
λ→∞, the gλ function simplifies to yk if k ∈ Ω and zk otherwise.

In practice, a DC layer performs a weighted average of the Fourier coefficients
of the image obtained as the output of a CNN in the cascade and the true
samples y. The parameter λ can either be trained or kept fixed. In [44], it is not
specified whether λ is learned or not, however, from the code7 it is clear that λ
is chosen to be ∞.

5http://masiweb.vuse.vanderbilt.edu/workshop2013/index.php/
6http://tensorlayer.readthedocs.io
7https://github.com/js3611/Deep-MRI-Reconstruction
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The complete network can now be written as

f(y,Ω) = DCλ(CNNn(· · ·DCλ((CNN1(Hy)), y,Ω) · · · ), y,Ω),

and its architecture is reported in Figure I.12. In particular, the architecture
used to produce the results in [44] and those reported in this paper contains 5
CNNs interleaved with 5 DC layers. Each CNN contains 5 convolutional layers,
all with kernel size 3× 3 and stride 1× 1. The first 4 layers are using 64 filters
and are followed by a ReLU activation function. The fifth convolutional layer
in each CNN contains 2 filters, representing the real and imaginary part of the
image. This fifth layer is not followed by any activation function, however its
output is added to the input to the CNN using a skip connection.

Training parameters In our experiments we used a pre-trained network that
was trained (and published online) by the authors of [44] with training parameters
documented in the paper [44]. The DeepMRINet was trained using a loss function
with two terms, LMSE and LWEIGHTS. The LMSE term computed the mean
squared error (MSE) between the true (complex valued) image and the predicted
(complex valued) image, while the LWEIGHTS computed the `2-norm of the
weights. The loss function was then computed as

LTOTAL = LMSE + 10−7LWEIGHTS.

The network weights were initialized using He initialization [21] and the Adam
[27] optimizer was used for training. This optimizer takes as input a learning
rate (step size) α, and two exponential decay parameters β1 and β2 related to a
momentum term. We refer to [27] for further explanations of these parameters.
The network was trained with α = 10−4, β1 = 0.9, β2 = 0.999 and batch size
equal 10.

Training data The DeepMRINet was trained using data from five subjects
from the MR dataset used in [6], which consists of 10 fully sampled short-
axis cardiac cine scans. Each of these scans was then preprocessed, using the
SENSE [40] software, into 30 temporal (complex-valued) frames of size 256× 256.
Synthetic MRI measurements were then obtained by sampling retrospectively the
reconstructed images in k-space according to a Cartesian undersampling masks.
During training, whereas a fixed undersampling rate of 33% was used, different
undersampling masks were randomly generated in order to allow the network
to recover images from measurements obtained with different undersampling
masks. In particular, training images were fully sampled along the frequency-
encoding direction but undersampled in the phase-encoding direction, according
to the scheme described in [25] (center frequencies were always included in the
subsampling patterns).

To prevent overfitting, data augmentation was performed by including rigid
transformations of the considered images in the training datasets.
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The code used to implement the DeepMRINet was written in Python using
the Theano 8 and Lasagne9 libaries.

I.A.2.5 FBPConvNet – The Ell 50 and Med 50 networks

The Ell 50 and Med 50 networks were proposed in [24] under the name
FBPConvNet. The networks are trained to reconstruct images from Radon
measurements. The networks have identical architecture and are trained using
the same algorithm, with the same set of hyper parameters. The only difference
between the training of the two networks, is the dataset they have been trained
on. Below, we will describe the architecture and the training procedure of both
the networks. We will then describe the datasets for the two networks in separate
sections.

Network architecture The Ell 50 and Med 50 networks are trained for
reconstructing x from measurements y = Ax where A ∈ Rm×N is a Radon10

sampling operator, sampling 50 uniformly spaced radial lines. Rather than
learning a mapping from y to x directly, the networks takes advantage of a
discrete filtered back projection11 H ∈ RN×m, as described in the methods
section, to obtain a noisy approximation x̃ = Hy to x. The operator H can be
seen as a non-learnable first layer in the network.

The network contain several convolutional and deconvolutional layers, all
of which (except the last) are followed by a batch normalization (BN) layer
and a ReLU activation function. The (de)convolutional layers use filter size
3× 3, stride 1× 1 and a varying number of filters. We will not describe the full
architecture in detail, as it can be seen in Figure I.13, with the relevant number
of filters, skip connections, max-poolings (2 × 2) and concatenations. We do,
however, point out that the network applies a final global skip connection, so
that rather than learning a mapping from x̃ to x the network is trying to learn
the ‘noise’ x− x̃.

Training parameters The network weights were provided by the authors of
[24] and obtained based on the training procedure as described in their paper
[24]. The loss function used to train the networks is the `2 difference between the
network output and the ground truth, and the networks are trained using the
stochastic gradient descent algorithm with momentum. The learning rate varies
from 0.01 to 0.001, whereas the momentum is set to 0.99, and the minibatch size
is equal to 1. During training, gradients are clipped to the interval [−Imax, Imax]
with Imax = 10−2, to prevent the divergence of the cost function. The networks

8http://deeplearning.net/software/theano
9https://lasagne.readthedocs.io/en/latest

10We used MatLabs randon command to represent this operator
11We used MatLabs iradon with linear interpolation and a ‘Ram-Lak‘ filter to represent

this operator
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are trained for 101 epochs, and the code used to implement the networks is
written in MatLab using the library MatConvNet12.

Ell 50 – Training data The Ell 50 network is trained from the filtered back
projection of 475 synthetic sinograms containing the Radon transform of ellipses
of random intensity, size, and location. The dynamic range of the back projected
images is adjusted so that image values are contained in the interval [−500, 500].
The Radon transform of an ellipse has an analytic formula, and hence this formula
was used to create sinograms of such images using 1000 uniformly spaced lines
(views). Measurement data are obtained by retaining 50 radial lines out of the
1000 views. The ground truth images were obtained by applying filtered back
projection to fully sampled sinograms (i.e., 1000 radial lines). This approach
is motivated by the fact that in applications, one will never have access to the
underlying actual ground truth image. Data augmentation is also applied to the
training data, by considering horizontal and vertical mirroring of the original
images.

Med 50 – Training data Med 50 is trained on synthetic images obtained from
475 real in-vivo CT images from the Low-dose Grand challenge competition
database provided by the Mayo Clinic. The sinograms used for this training
were synthetically generated from high quality CT-images using MatLab radon
command. The same approach as for the Ell 50 network was used, where one
sampled 1000 view and used this as ground truth. The network was trained
from 50 of these views.

I.A.2.6 MRI Variational Network (MRI-VN)

Network architecture The MRI Variational Network (MRI-VN) presented in
[18] is designed to reconstruct images from undersampled MRI data, sampled
using 15 coil elements. Thus, we use the sampling operator A = Apf as described
in the methods section, with c = 15.

The network structure is inspired by the unfolding of a variational
minimization problem including a fidelity term and a regularization term defined
according the Fields of Experts model [42]. In particular, each iteration of the
corresponding Landweber method [30] corresponds to a layer of the resulting
neural network. More specifically, the implementation considered in this work
consists of T = 10 layers/iterations that can be expressed as follows:

ut+1 = ut − (Kt)TΨt(Ktut) + λtA∗(Aut − y), 0 ≤ t < T (I.15)

where u0 = Hy is the complex image obtained by applying H = A∗pf . We will
describe each of the remaining components of this network separately.

We start by noticing that the images ut ∈ CN (stacked as a vector in this
simplified description) are complex valued, and can therefore described by its

12http://www.vlfeat.org/matconvnet
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real and imaginary components utre and utim, respectively. We will alternate
between the representations.

The operator Kt : CN → RN×Nk acts as follows on ut,

Ktut = Kt
reu

t
re +Kt

imu
t
im,

where Kt
re,K

t
im : RN → RN×Nk , are learnable convolutional operators, with Nk

filters (channels), filter size 11× 11 and stride 1× 1. We will comment on the
value of Nk later.

The Ψt : RN×Nk → RN×Nk is a non-linear activation function in the network.
For each filter/channel, i = 1, . . . , Nk it applies the non-linear function

φti(z) =
Nw∑
j=1

wtij exp
(
− (z − µj)2

2σ2

)
,

pointwise to each component z in that channel. Here {wtij}
Nk,Nw
i=1,j=1, with Nw = 31,

are weights which are learnt during the training phase. The nodes µj are non-
learnable, and distributed in an equidistant manner on the interval [−Imax, Imax],
for a fixed value Imax, commented on below. The σ is also non-learnable and
equals 2Imax

Nw−1 .
The operator (Kt)T : RN×Nk → CN , maps z 7→ (Kt

re)T z + i(Kt
im)T z, where

i is the imaginary unit, and (Kt
re)T , (Kt

im)T are the transpose of Kt
re,K

t
im,

respectively. The matrices A,A∗ are the matrix Apf and its adjoint, while λt
is a learnable scalar. The remaining operations should be clear from Equation
(I.15).

During training, each of the filters in Kt
re and Kim were restricted to have

zero mean and have unit Euclidean norm. This was done to avoid a scaling
problem with the weights wij .

To reproduce this network, we use the code published by the authors of
[18]13. Parts of this code uses slightly different parameters, than what was used
in the original paper. In particular, the value Nk = 24 was chosen, rather than
Nk = 48, as used in the paper. The value of Imax, was also changed from 150 in
the paper, to 1 in the code. The change of the Imax value is motivated by another
change, also made in the published implementation, namely the scaling of the
k-space values. In [18] the k-space volumes (with nsl slices) was normalized by
the factor √nsl10000/‖yvolume‖2, whereas in the code this have been changed to
scaling each k-space slice y with 1/‖Hy‖2. This change has been made to make
the their implementation more streamlined. Whenever there has been a conflict
between the two sources, we have chosen the version found in the code.

Training parameters The MRI-VN network is trained using the `2-norm as
loss function. In particular, since MRI reconstruction are typically assessed
through magnitude images, the error is evaluated by comparing smoothed version

13https://github.com/VLOGroup/mri-variationalnetwork
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of magnitude images

|x|ε =
√

(Re(x))2 + (Im(x))2 + ε,

with ε = 10−12. The network parameters that minimize the loss function are
determined using the inertial incremental proximal gradient (IIPG) optimizer
(see [18, 28] for details). Optimization is performed for 1000 epochs, with a step
size of 10−3. Training data is arranged into minibatches of size 5. In the original
paper, the batch size was set to 10, but due to memory limitations we had to
adjust this.

Training data The authors in [18] considered 5 datasets for different types of
parallel MR imaging protocols, and trained one VN for each dataset. In this
work, we have trained a VN for one of these protocols, namely Coronal Spin
Density weighted with Fat Suppression. The training data consisted of knee
images from 10 patients. From each patient we used 20 slices of the knee images,
making up a total of 200 training images. The raw k-space data for each slice
consisted of 15, k-space images of size 640 × 368, each with a precomputed
sensitivity map. The sensitivity map was computed by the authors of [18], using
ESPIRiT [52].

The raw data was obtained using a clinical 3T system (Siemens Magnetom
Skyra) using an off-the-shelf 15-element knee coil. The raw data was subsampled
retrospectively by zeroing out 85% of the k-space data. In [18] they test both a
regular sampling scheme and a variable density pattern as proposed in [33]. In
our work, we used a regular sampling scheme, where the 28 first central k-space
lines were sampled, and the remaining lines were placed equidistantly in k-space.
No data augmentation was used.

The code was implemented in Python with a custom made version of
Tensorflow14, which was partly implemented in C++/CUDA with cuDNN
support. All the code and data have been made available online by the authors
of [18].

14https://github.com/VLOGroup/tensorflow-icg
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Original x Sampling pattern Ω x̃ = F ∗PΩy

Sinogram y = Ax
Back projection

x̂1 = A∗y
Filtered back projection

x̂2 = By

Figure I.6: (Under-sampled MRI and CT problem) We consider sampling
y = Ax for two different sampling modalities: the Fourier transform (upper
figure simulating MRI) and the Radon transform (lower figure simulating CT) .
Upper left: x is the original image. Upper middle: The white dots corresponds
to the frequencies we sample i.e. the indices of the sampling pattern Ω. Upper
right: The poorly reconstructed image x̃ = A∗y, where A = PΩF and F is the
2-dimensional discrete Fourier transform transform and PΩ is the projection
onto the span of {ej}j∈Ω where the ejs denote the canonical basis. Lower left:
Sinogram of Radon measurements using 729 radial lines, y = Ax where A is
the discrete Radon sampling matrix. Lower middle: The back projected blurry
image x̂ = A∗y obtained by using a radon matrix with 50 uniformly spaced
lines. Lower right: The slightly sharper image x̂2 = By using the filtered back
projection with 50 uniformly spaced lines.
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Original x |x+ r1| |x+ r2| |x+ r3| |x+ r4|

AUTOMAP
f(Ax)

AUTOMAP
f(A(x+ r1))

AUTOMAP
f(A(x+ r2))

AUTOMAP
f(A(x+ r3))

AUTOMAP
f(A(x+ r4))

SoA from A(x) SoA from
A(x+ r1)

SoA from
A(x+ r2)

SoA from
A(x+ r3)

SoA from
A(x+ r4)

Figure I.7: The experiment from Figure I.3. is repeated, however, by using
a different p in Algorithm 1. In particular, Figure I.3. is produced by using
p(x) = x, however, this figure is produced by using p(x) = f(Ax). Note
the substantial difference in the quality of the artefacts in the AUTOMAP
reconstruction compared to Figure I.3.
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Original x |x+ v1| |x+ v2| |x+ v3| |x+ v4|

(SL) f(Ax) (SL)
f(A(x+ v1))

(SL)
f(A(x+ v2))

(SL)
f(A(x+ v3))

(SL)
f(A(x+ v4))

Figure I.8: The recovery mapping f is based on unraveling an optimisation
algorithm for solving the (square root) LASSO (SL) optimization problem in
(I.14) used in compressed sensing. The perturbations vj have been chosen so
that ‖vj‖2 = ‖rj‖2 for j = 1, 2, 3, 4, where rj are the perturbations used for
Figure 3 in the main paper. The sampling operator A ∈ Cm×N is the same
in both experiments. As is evident from the images, this compressed sensing
type recovery mapping f has a local Lipschitz constant that is quite reasonable,
whereas the AUTOMAP network from Figure 3 in the main paper has a very
large local Lipschitz constant.
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Figure I.9: First row: We visualise the perturbations |r1|, |r2| and |r3| used in
Figure I.1 in the main manuscript to create the instabilities for the Deep MRI
network. These perturbations have been rescaled to all lie in the same intensity
range. The number of iterations in Algorithm 1 is given byM = 2000, 4000, 6000.
Second and third row: We visualise the perturbations |r1|, |r2|, |r3| and |r4| used
in Figure I.3. (second row) and Figure I.7 (third row) to create the instabilities
for the AUTOMAP network. These perturbations have been rescaled to all lie
in the same intensity range. The number of iterations in Algorithm 1 is given by
M = 12, 16, 20, 24, for the second row and M = 160, 170, 177, 183 for the third
row. The values of λ, γ, η and τ used in in Algorithm 1 are given in Table I.1.
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Figure I.10: The AUTOMAP architecture (figure from [56]).
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1← number of filters
64

128
256

512 512 512 512 512 1024 1536 1536 1536
768

384

192
641

+

1

4× 4 Conv2D stride (2,2)
4× 4 Conv2D stride (2,2) +BN+ lReLU
4× 4 DeConv2D stride (2,2) +BN+ ReLU
1× 1 Cond2D stride (1,1) +BN+ tanh
ramp (−1, 1)

Figure I.11: DAGAN architecture. Here lReLU is the leaky ReLU function with
slope parameter equal to 0.2.
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Figure I.12: The DeepMRINet architecture (figure from [44]).
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Figure I.13: The Ell 50 and Med 50 architecture (figure from [24]).
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Table I.1: Summary of the different choices of parameters leading to the results
reported in Figures I.1, I.3, I.4 and I.7.

Neural Network λ γ η τ p(x)
Deep MRI 0.001 0.9 0.01 0.01 f(Ax)
AUTOMAP Fig. I.3 0.1 0.9 0.001 10−5 f(Ax)
AUTOMAP Fig. I.7 0.1 0.9 0.001 10−5 x
MRI-VN 1 0.9 0.005 0.001 f(Ax)
MED 50 20 0.9 0.005 0.005 f(Ax)
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Abstract

Infinite-dimensional compressed sensing deals with the recovery of analog
signals (functions) from linear measurements, often in the form of integral
transforms such as the Fourier transform. This framework is well-suited
to many real-world inverse problems, which are typically modelled in
infinite-dimensional spaces, and where the application of finite-dimensional
approaches can lead to noticeable artefacts. Another typical feature of
such problems is that the signals are not only sparse in some dictionary,
but possess a so-called local sparsity in levels structure. Consequently,
the sampling scheme should be designed so as to exploit this additional
structure. In this paper, we introduce a series of uniform recovery
guarantees for infinite-dimensional compressed sensing based on sparsity
in levels and so-called multilevel random subsampling. By using a
weighted `1-regularizer we derive measurement conditions that are sharp
up to log factors, in the sense they agree with those of certain oracle
estimators. These guarantees also apply in finite dimensions, and improve
existing results for unweighted `1-regularization. To illustrate our results,
we consider the problem of binary sampling with the Walsh transform
using orthogonal wavelets. Binary sampling is an important mechanism
for certain imaging modalities. Through carefully estimating the local
coherence between the Walsh and wavelet bases, we derive the first known
recovery guarantees for this problem.

Keywords: Infinite-dimensional compressed sensing, uniform recovery, Walsh sampling,
wavelet recovery, sparsity in levels, local coherence
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III.1 Introduction

Compressive sensing (CS), introduced by Candes, Romberg & Tao in [10] and
Donoho in [14], has been an area of substantial research during the last decade.
The key assumption, which lays the foundation for this field of research, is that
a sparse vector x ∈ CM can be recovered from an underdetermined system of
linear equations, using, for instance, convex optimization algorithms [15, 16].

Imaging has been one of the most successful areas of application of CS.
However, in this area, the sparsity assumption is typically too general. Examples
include all applications using Fourier samples – such as Magnetic Resonance
Imaging (MRI) [22, 24, 25], surface scattering [21], Computerized Tomography
(CT) and electron microscopy – as well as applications using binary sampling, e.g.
fluorescence microscopy [29], lensless imaging [33] and numerous other optical
imaging modalities [6, 17, 32]. Natural images, when sparsified via a wavelet
(or more generally, X-let) transform, are not only sparse, but have specific
sparsity structure [3, 27]. For wavelets, which will be our sparsifying transform
in this paper, natural images have coefficients where most of the large entries
are concentrated at the coarse scales, and progressively fewer at the fine scales
(termed asymptotic sparsity in [3]).

In the presence of structured sparsity, it is natural to ask how best to promote
this additional structure. In [3] it was proposed to do this via the sampling
operator. Wavelets partition Fourier space into dyadic bands corresponding to
distinct scales. Hence, by choosing Fourier samples in these bands corresponding
to the local sparsities, one obtains as structured sampling scheme – a so-called
multilevel sampling scheme – which promotes the asymptotic sparsity structure.
The practical benefits of such schemes have been demonstrated in [27] for various
different imaging modalities, including MRI, Nuclear Magnetic Resonance (NMR)
spectroscopy, fluorescence microscopy and Helium Atom Scattering. Theoretical
analysis has been presented in [3] (nonuniform recovery) and [7, 23] (uniform
recovery in the finite-dimensional setting).

III.1.1 Main results

This paper has two main objectives. First, we generalize existing uniform
recovery guarantees [7, 23] from the finite-dimensional to the infinite-dimensional
setting. This extension is important for practical imaging. Although much of
the compressive imaging literature considers the recovery of discrete images (i.e.
finite-dimensional arrays) from discrete measurements (e.g. the discrete Fourier
transform), modalities such as MRI, NMR and others are naturally analog, and
hence better modelled over the continuum (i.e. functions, and the continuous
Fourier transform). Indeed, as we will see in Section III.2.3, discretizing such a
problem leads to measurement mismatch [11], and in the case of wavelet recovery,
the wavelet crime [28, p. 232], both of which can introduce artefacts in the
reconstruction [19]. In this paper, we consider signals as functions f ∈ L2([0, 1))
and work with continuous integral transforms, thus avoiding these pitfalls.

136



Sparsity in levels in finite dimensions

In our theoretical analysis, we also improve the uniform recovery guarantee
given in previous works [7, 23]. Unlike previous results, our recovery guarantees
are, up to log factors, optimal: specifically, they agree with those of the oracle
least-square estimator based on a priori knowledge of the support [1]. We do
this by replacing the standard `1-minimization decoder by a certain weighted
`1-minimization decoder; an idea originally proposed in [31].

Our second objective is to consider binary sampling. Previous works have
addressed the case of (discrete or continuous) Fourier sampling. Yet many
imaging modalities, e.g. fluorescence microscopy and lensless imaging, require
binary sampling operators. To do so, we replace the Fourier transform

Ff(ω) :=
∫

[0,1)
f(x)e−2πωx dx, f ∈ L2([0, 1)),

by the binary Walsh transform

Wf(n) :=
∫

[0,1)
f(x)wn(x) dx, f ∈ L2([0, 1))

where wn : [0, 1)→ {+1,−1}, n ∈ Z+ := {0, 1, . . .} denote the Walsh functions.
This is a widely used sampling operator in binary imaging [29, 33], and often
goes under the name of Hadamard sampling in the discrete case. Working with
this continuous transform, we provide analogous guarantees for binary sampling
to those for Fourier sampling. As a side note, we remark that working in the
continuous setting also simplifies the analysis (specifically, the derivation of
so-called local coherence estimates) over working directly with the discrete setup.

We note that in this paper, we only consider recovery guarantees for one
dimensional functions. We expect that the setup for higher dimensional function
will deviate slightly from what we present here, and we will save this discussion
for future work.

The outline of the remainder of this paper is as follows. We commence in
Section III.2 by reviewing previous work, and in particular, the existing finite-
dimensional theory. We then introduce an abstract infinite-dimensional model
for isometries U acting on `2(N) in Section III.3. Here we will derive sufficient
conditions for such operators to provide uniform recovery guarantees. In Section
III.4 we continue this work by finding conditions for which the cross-Gramian U
between a wavelet and Walsh basis satisfies these conditions. Finally in Section
III.5, III.6 and III.6.6 we will present proofs of our main results.

III.2 Sparsity in levels in finite dimensions

III.2.1 Notation

For N ∈ N and Ω ⊆ {1, . . . , N} we let PΩ ∈ CN×N denote the projection onto
the linear span of the associated subset of the canonical basis, i.e. for x ∈ CN ,
we have (PΩx)i = xi if i ∈ Ω and (PΩx)i = 0 if i 6∈ Ω. Sometimes, we will abuse
this notation slightly by assuming PΩ ∈ C|Ω|×N , and discard all the zero entries
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in PΩx. Whether we mean PΩ ∈ CN×N or PΩ ∈ C|Ω|×N will be clear from the
context. If Ω = {Nk−1 + 1, . . . , Nk} we simply write PNk−1

Nk
= P{Nk−1+1,...,Nk},

and simply PNk if Nk−1 = 0.
We call a vector x ∈ CN s-sparse if | supp(x)| ≤ s, where supp(x) = {i : xi 6=

0}. We write A . B if there exits a constant C > 0 independent of all relevant
parameters, so that A ≤ CB, and similarly for A & B.

III.2.2 Finite model

Let V ∈ CN×N be a measurement matrix e.g. a Fourier of Hadamard matrix,
denoted VFour and VHad, respectively, and let Ω ⊂ {1, . . . N} with |Ω| = m < N .
In a typical finite-dimensional CS setup we consider the recovery of a signal
x ∈ CN from measurements y = PΩV x+ e ∈ Cm, where e ∈ Cm is a vector of
measurement error. If x is sparse in a discrete wavelet basis, one then recovers
its coefficients by solving the optimization problem

minimise
z∈CN

‖z‖1 subject to ‖PΩVΨ−1z − y‖2 ≤ η (III.1)

where Ψ ∈ CN×N is a discrete wavelet transform and η ≥ ‖e‖2 is a noise
parameter. Usually one would scale V ∈ CN×N so that it becomes orthonormal
and choose an orthonormal wavelet basis, so that the matrix U = VΨ−1 = VΨT

acts as an isometry on CN .
Suppose that U is indeed an isometry. To obtain a uniform recovery

guarantee for the above system, one typically first shows that the matrix
A = 1√

pPΩU ∈ Cm×N , with p = m
N , satisfies the Restricted Isometry Property

(RIP) with high probability.

Definition III.2.1 (RIP). Let 1 ≤ s ≤ N and A ∈ Cm×N . The Restricted
Isometry Constant (RIC) of order s is the smallest δ ≥ 0 such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 ∀x ∈ Σs,

where Σs denotes the set of s-sparse vectors in CN . If 0 ≤ δ < 1 we say that A
has the Restricted Isometry Property (RIP) of order s.

Theorem III.2.2 ([16, Thm. 6.12]). Suppose the RIC δ2s of a matrix A ∈ Cm×N
satisfies δ2s < 4/

√
41 ≈ 0.62. Then for any x ∈ CN and e ∈ Cm with ‖e‖2 ≤ η,

any solution x̂ ∈ CN of

minimise
z∈CN

‖z‖1 subject to ‖z − (Ax+ e)‖2 ≤ η

satisfies

‖x− x̂‖2 ≤
C√
s
σs(x)1 +Dη

where C,D > 0 are constants dependent on δ2s only and σs(x)1 = inf{‖x− z‖1 :
z ∈ Σs}.
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For an isometry U ∈ CN×N the question of whether or not PΩU satisfies the
RIP is related to the so-called coherence of U :

Definition III.2.3 (Coherence). Let U ∈ CN×N be an isometry. The coherence
of U is

µ(U) = max
i,j=1,...,N

|Uij |2 ∈ [N−1, 1].

Theorem III.2.4 ([16, Thm. 12.32]). Let U ∈ CN×N be an isometry and let
0 < δ, ε < 1. Suppose Ω = {t1, . . . tm} ⊆ {1, . . . , N} where each tk is chosen
uniformly and independently at random from the set {1, . . . , N}. If

m & δ−2 · s ·N · µ(U) ·
(
log(2m) log(2N) log2(2s) + log(ε−1)

)
then with probability 1−ε the matrix A = 1√

pPΩU ∈ Cm×N , with p = m
N , satisfies

the RIP of order s with δs ≤ δ.

(We slightly abuse notation here in that we allow for possible repeats of the
values ti that make up Ω). Thus if the coherence µ(U) ≈ N−1 we obtain the
RIP of order s using approximately s measurements up to constants and log
factors.

There are, however, two problems with this approach. First, in our setup,
where U = VΨT is the product of a Fourier or Hadamard matrix and a discrete
wavelet transform, the coherence µ(U) ≈ 1. Hence satisfying the RIP requires
at least m ≈ N measurements. Second, the RIP asserts recovery for all s-
sparse vectors of wavelet coefficients and thus does not exploit any additional
structure these coefficients possess. However, as stated, wavelet coefficients are
highly structured: large wavelet coefficients tend to cluster at coarse scales, with
coefficients at fine scales being increasingly sparse.

Motivated by this, the following structured sparsity model was introduced in
[3]:

Definition III.2.5 (Sparsity in levels). Let M = [M1, . . . ,Mr] ∈ Nr, M0 = 0, with
1 ≤ M1 < · · · < Mr = M and let s = (s1, . . . , sr) ∈ Nr with sl ≤ Ml −Ml−1,
for l = 1, . . . , r. We say that the vector x ∈ CM is sparse in levels if

| supp (x) ∩ {Ml−1 + 1, . . . ,Ml}| ≤ sl for l = 1, . . . , r.

In which case we call x, (s,M)-sparse, where s and M are called the local
sparsities and sparsity levels, respectively. We denote the set of all (s,M)-sparse
vectors by Σs,M.

As noted above, randomly subsampling an isometry U is a poor measurement
protocol for coherent problems such as Fourier–Wavelets. Instead, in [3] it was
proposed to sample in the following structured way:

Definition III.2.6 (Multilevel random subsampling). Let N = [N1, . . . , Nr] ∈ Nr,
where 1 ≤ N1 < · · · < Nr = N and m = (m1, . . . ,mr) ∈ Nr with
mk ≤ Nk − Nk−1 for k = 1, . . . , r, and N0 = 0. For each k = 1, . . . , r, let
Ωk = {Nk−1 + 1, . . . , Nk} if mk = Nk − Nk−1 and if not, let tk,1, . . . , tk,mk
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III. Uniform recovery in infinite-dimensional compressed sensing

be chosen uniformly and independently from the set {Nk−1 + 1, . . . , Nk}, and
set Ωk = {tk,1, . . . , tk,mk}. If Ω = ΩN,m = Ω1 ∪ · · · ∪ Ωr we refer to Ω as an
(N,m)-multilevel subsampling scheme.

For this structured model, the following extensions of the RIP was first
introduced in [7].

Definition III.2.7 (RIPL). Let s,M ∈ Nr be given local sparsities and sparsity
levels, respectively. For a matrix A ∈ Cm×N the Restricted Isometry Constant
in Levels (RICL) of order (s,M), denoted δs,M, is the smallest δ ≥ 0 such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 ∀x ∈ Σs,M.

We say that A has the Restricted Isometry Property in Levels (RIPL) if 0 ≤ δ < 1.

We shall see that this leads to uniform recovery of all (s,M)-sparse vectors,
but first we define the best (s,M)-term approximation error of x ∈ CN . That is

σs,M(x)p := inf{‖x− z‖p : z ∈ Σs,M}.

Theorem III.2.8 ([7, Thm. 4.4]). Let s,M ∈ Nr be local sparsities and sparsity
levels, respectively. Let αs,M = maxk,l=1,...,r sl/sk and s = s1 + · · ·+sr. Suppose
that the RICL δ2s,M ≥ 0 for the matrix A ∈ Cm×M satisfies

δ2s,M <
1√

r(√αs,M + 1
4 )2 + 1

. (III.2)

Then, for x ∈ CM and e ∈ Cm with ‖e‖2 ≤ η, any solution x̂ of

minimise
z∈CM

‖z‖1 subject to ‖z − (Ax+ e)‖2 ≤ η

satisfies

‖x− x̂‖2 ≤ (C + C ′(rαs,M)1/4)σs,M(x)1√
s

+ (D +D′(rαs,M)1/4)η

where C,C ′, D,D′ > 0 are constants which only dependent on δ2s,M.

In [23] the authors investigated conditions under which a subsampled isometry
U ∈ CN×N satisfies the RIPL. In was shown that the number of samples required
to satisfy the RIPL was related to the so-called local coherence properties of U :

Definition III.2.9. Let U ∈ CN×N be an isometry and N,M ∈ Nr be given
sampling and sparsity levels. The local coherence of U is

µk,l = µk,l(N,M) = {max |Uij |2 : i = Nk−1 + 1, . . . , Nk, j = Ml−1 + 1, . . . ,Ml}.

Theorem III.2.10 ([23, thm. 3.2]). Let U ∈ CN×N be an isometry. Let r ∈ N,
0 < δ, ε < 1, and 0 ≤ r0 ≤ r. Let Ω = ΩN,m be an (N,m)-multilevel random
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subsampling scheme. Let m̃ = mr0+1 + . . .+mr and s = s1 + . . .+ sr. Suppose
that the mks satisfy

mk = Nk −Nk−1, for k = 1, . . . , r0, (III.3)

and

mk & δ
−2 · (Nk −Nk−1) ·

(
r∑
l=1

slµk,l

)
·
(
r log(2m̃) log(2N) log2(2s) + log(ε−1)

)
(III.4)

for k = r0 + 1, . . . , r. Then the matrix

A =


1√
p1
PΩ1U

...
1√
pr
PΩrU

 where pk = mk

Nk −Nk−1
for k = 1, . . . , r (III.5)

satisfies the RIPL of order (s,M) with constant δs,M ≤ δ.

This theorem characterizes the number of local measurements mk needed
to ensure uniform recovery explicitly in terms of local sparsities sk and local
coherences µk,l. In particular, if the local coherences are suitably well-behaved,
then recovery may still be possible from highly subsampled measurements, even
though the global coherence may be high (see next). Note that the condition
(III.3), whereby the first r0 sampling levels are saturated, models practical
imaging scenarios where the low Fourier frequencies are typically fully sampled.

To illustrate this theorem, in [4] the authors consider the one-dimensional
discrete Fourier sampling problem with sparsity in Haar wavelets. For the Haar
wavelet basis we choose an ordering where the first level {M0 + 1,M1} = {1, 2}
consists of the scaling function and mother wavelet and the subsequent levels are
chosen so that {Ml−1 + 1, . . . ,Ml} = {2l−1 + 1, . . . , 2l} consists of the wavelets
at scale l − 1. This gives the sparsity levels

M = [21, 22, . . . , 2r],

where r = log2(N) (assumed to be an integer). Next we define the entries in the
Fourier matrix VFour ∈ CN×N as

(VFour)N/2, Nω=−N/2+1, j=1 = 1√
N

exp(2πi(j − 1)ω/N),

where we have started the ordering of the rows with negative indices for
convenience. We define the sampling levels for the frequencies ω in dyadic
bands with W1 = {0, 1} and

Wk+1 = {−2k + 1, . . . ,−2k−1} ∪ {2k−1 + 1, . . . , 2k}, k = 1, . . . , r − 1.

Notice that for a suitable reordering of the rows of VFour these bands corresponds
to the sampling levels N = [21, 22, . . . , 2r].
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Theorem III.2.11 ([23, Cor. 3.3]). Let N = 2r for some r ≥ 1 and let
U = VFourΨ−1 ∈ CN×N , where Ψ is the Haar wavelet matrix. Let 0 < δ, ε < 1
and let N = M = [21, . . . , 2r]. Let m = m1 + · · ·mr and s = s1 + · · · sr. For
each k = 1, . . . , r suppose we draw mk Fourier samples from band Wk randomly
and independently, where

mk & δ
−2 ·

( r∑
l=1

2−|k−l|sl
)(

r log(2m) log(2N) log2(2s) + log(ε−1)
)
.

Then with probability at least 1 − ε the matrix (III.5) satisfies the RIPL with
constant δs,M ≤ δ.

Here, for convenience, we have taken r0 = 0; see [23] for further discussion
on this point.

III.2.3 Shortcomings

These results have two primary shortcomings, which we now discuss in further
detail. The key issue is that they are limited to finite dimensions. As noted in
Section III.1, applying finite-dimensional recovery procedures to analog problems
can result in artefacts. For simplicity, let N = 2p. We have argued that analog
signals should be modelled as elements in L2([0, 1)), rather than CN . Yet, above
we have tried to use discrete tools for recovering the signal f ∈ L2([0, 1)) by
replacing Wf and Ff with VHad and VFour, respectively. Next, we argue that
this construction leads to both measurement mismatch and the wavelet crime.

Let χ[a,b) denote step functions on the interval [a, b) and set ∆k,p =
[k2−p, (k + 1)2−p). We see that replacing Wf with VHad ∈ CN×N is equivalent
to replacing f by e.g. f̃ =

∑N−1
k=0 ckχ∆k,r

for some c ∈ CN , since W f̃ = VHadc.
Clearly, W f̃ will be a poor approximation to Wf . We refer to this as
measurement mismatch.

Next let φ0, φ1 denote a scaling function and wavelet, respectively, and set
φsj,k = 2j/2φs(2j · −k) for s ∈ {0, 1}. By construction the solution x̂ of (2.1) will
be the coefficients of a function f̂ written in a basis consisting of both wavelets
and scaling functions. Equivalently we can represent f̂ in the basis {φ0

j,k}
N−1
k=0

using the coefficients c = Ψ−1x̂ ∈ CN . The wavelet crime is whenever we let c,
represent pointwise samples of f i.e. ck = f(k/N).

What does this mean for reconstruction? To illustrate the issue, we provide
a similar example to the first numerical simulation in [2], showing how finite-
dimensional compressed sensing fails to recover even a function that is 1-sparse
(meaning it has only one non-zero coefficient) in its wavelet decomposition.
Indeed, in Figure III.1 we consider the problem of recovering a function f
from samples of the continuous Walsh transform. In particular, we choose
f(t) = φ4,4(t), where φ is the Daubechies scaling function, corresponding
to the wavelet with four vanishing moments. Figure III.1 shows the poor
performance of CS using the discrete finite-dimensional setup when applied to a
continuous problem. Conversely, the infinite-dimensional CS approach, which
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we develop in the next sections, gives a much higher fidelity reconstruction from
exactly the same samples as used in the finite-dimensional case. In fact, the
infinite-dimensional CS reconstruction recovers f perfectly up to numerical errors
occurring from solving the optimization problem. We also observe the slightly
paradoxical phenomenon in the finite-dimensional case: more samples do not
improve performance. This is due to the fact that the finite-dimensional CS
solution with full sampling coincides with the truncated Walsh series (direct
inversion) approximation. This approximation is clearly highly suboptimal, as
demonstrated in Figure III.1.

We note in passing that the above crimes stem from too early a discretization
of the inverse problem. Our infinite-dimensional CS approach replaces VHadΨ−1

by a finite section of the an isometry U ∈ B(`2(N)) representing change of basis
between the continuous Fourier or Walsh transform and wavelet basis.

On a related note, even if one were to ignore the above issues, estimating the
local coherences µk,l in the discrete setting for anything but the Haar wavelet
becomes extremely complicated. Conversely, by moving to the continuous setting,
these estimates become much easier to derive. We do this later in the paper for
arbitrary Daubechies’ wavelets with the Walsh transform.

The second shortcoming relates to Theorem III.2.8. It says that we can
guarantee recovery of all sparse signals provided the matrix A ∈ Cm×M satisfies
the RIPL with constant

δ2s,M <
1√

r(√αs,M + 1
4 )2 + 1

.

Here r is the number of levels and αs,M = maxk,l=1,...,r sl/sk is the sparsity
ratio. Inserting the above inequality into Theorem III.2.10 gives a sampling
condition of the form

mk & r · αs,M · (Nk −Nk−1) ·
(

r∑
l=1

µk,lsl

)
· L

where L is the log factors. This means that the sparsity ratio αs,M will affect
the sampling condition in all sampling levels. Thus for signals where we expect
the local sparsities to vary greatly from level to level (e.g. wavelets) this will
lead to a unreasonably high number of samples.

To overcome this problem, using an idea from [31], we replace the `1-
regularizer in the optimization problem (III.1) with a weighted `1-regularizer.
For a suitable choice of weights, this removes the factor of αs,M in the various
measurement conditions. As we show, these guarantees are optimal up to
constants and log factors.

143



III. Uniform recovery in infinite-dimensional compressed sensing

Infinite-dimensional CS (16 samples) Truncated Walsh series (32 samples)

Finite-dimensional CS (16 samples) Finite-dimensional CS (32 samples)

Figure III.1: Reconstructions (using Walsh samples) of f(t) = φ4,4(t), where φ is
the Daubechies scaling function, corresponding the wavelets with four vanishing
moments. Upper left: Reconstruction from the first 16 Walsh samples using
an infinite-dimensional CS model. Upper right: Truncated Walsh series based
on the first 32 Walsh samples. Lower left: Reconstruction from the first 16
Walsh samples using the finite-dimensional (32 × 32) CS model. Lower right:
Reconstruction from the first 32 Walsh samples using the finite-dimensional
(32× 32) CS model. In theory, the right images should be the same, however,
numerical errors in the optimisation cause the difference.

III.3 Extensions to infinite dimensions

III.3.1 Setup

We will continue with the notation we introduced above, extended to infinite
dimensions. That is, we assume that the signal f is an element of L2([0, 1)). We
still let PΩ denote the projection onto the canonical basis, but we now let it
be an element in either B(`2(N)) or B(`2(N),C|Ω|). Similarly we call a vector
x ∈ `2(N) (s,M)-sparse if PMx is (s,M)-sparse and P⊥Mx = 0. Here M = Mr

and we refer to it as the sparsity bandwidth of x. For an isometry U ∈ B(`2(N))
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we define the coherence of U as µ(U) = sup{|Uij |2 : i, j ∈ N}.
Next we describe the setup for a general sampling basis Bsa =

{bsa
1 , b

sa
2 , b

sa
3 , . . . , } and a sparsifying basis Bsp = {bsp

1 , b
sp
2 , b

sp
3 , . . . , }, both as-

sumed to be orthonormal bases of L2([0, 1)). In Section III.4, we will specialize
this so that Bsa is the Walsh sampling basis and Bsp is a wavelet sparsifying
basis. This will enable us to derive concrete recovery guarantees for f . The
setup below is, however, completely general.

For the two bases Bsa and Bsp we can represent f using the coefficients y =
{〈f, bsa

n 〉}n∈N and x = {〈f, bsp
n 〉}n∈N, respectively. To change the representation

from Bsa to Bsp we define the following matrix.

Definition III.3.1. Let Bsa = {bsa
1 , b

sa
2 , b

sa
3 , . . . , } and Bsp = {bsp

1 , b
sp
2 , b

sp
3 , . . . , }

be orthonormal bases for L2([0, 1)). The change of basis matrix U ∈ B(`2(N))
between Bsa and Bsp is the infinite matrix with entries

Uij =
〈
bsp
j , b

sa
i

〉
We will denote this matrix by U = [Bsa, Bsp].

Notice in particular that since Bsa and Bsp are orthonormal, U = [Bsa, Bsp]
is an isometry on `2(N) and we can write y = Ux.

Next let Ω = Ωm,N be a given multilevel random sampling scheme with
|Ω| = m. We refer to N = Nr as the sampling bandwidth of Ω (as discussed later,
this will be chosen in terms of sampling bandwidth to ensure stable truncation
of U). Now define the matrix

H :=


1/√p1PΩ1U
1/√p2PΩ2U

. . .
1/√prPΩrU

 ∈ Cm×∞, where pk = mk/(Nk −Nk−1) (III.6)

and we use the slightly unusual notation Cm×∞ for the operators B(`2(N),Cm).
Due to the scaling factors 1/√pk we consider scaled noisy measurements

ỹ = DPΩy + e ∈ Cm (III.7)

where D is a diagonal matrix with the corresponding scaling factors found in H
along the diagonal and e is the measurement noise.

Suppose that x is approximately (s,M)-sparse with sparsity bandwidth M .
It is tempting to form the finite matrix A = HPM ∈ Cm×M and solve the
minimization problem

minimise ‖z‖1 subject to ‖Az − ỹ‖2 ≤ η.

However, note that the truncation of H to A introduces an additional truncation
error HP⊥Mx. Indeed,

Ax− ỹ = HP⊥Mx+ e,

and this poses a problem since for the above decoder we require η ≥ ‖HP⊥Mx+e‖2
in order for PMx to be a feasible point. For some applications we might have
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III. Uniform recovery in infinite-dimensional compressed sensing

a rough estimate of ‖e‖2, but any estimate of ‖HP⊥Mx‖2 would require a priori
knowledge of x, the signal we are trying to recover. This is generally impossible.
(We note in passing that there is some recent work [8] which derives CS recovery
guarantees in the absence of feasibility of the target vector PMx, but the
application of this work to the sparse in levels model is not clear).

To overcome this issue, we will introduce a data fidelity parameter K ≥M
and assume we know ‖e‖2 so that we can let η > ‖e‖2. Then there will always
exits a K ′ ≥M such that PKx lies in the feasible set {z ∈ CK : ‖Az − ỹ‖2 ≤ η}
corresponding to the augmented matrix

A = HPK (III.8)

for all K ≥ K ′. In practice (for the general case) it will also be impossible
determine a sufficient value for K, but for fixed η > ‖e‖2 there will always exist
such a K. It should, however, be noted that there are special cases, such as
Walsh sampling and wavelet recovery, where sufficient values for K are known;
see Remark III.4.9.

This aside, as previously mentioned, we also now modify the optimization
problem to include weights. Specifically, let M, s ∈ Nr be given sparsity levels
and local sparsities respectively. For positive weights ω = (ω1, . . . , ωr+1) we
define

‖x‖1,ω :=
r+1∑
l=1

ωl‖P
Ml−1
Ml

x‖1,

with Mr+1 = K for x ∈ CK . Notice that this weighted regularizer assigns
constant weights on each sparsity level. With this in hand, our recovery procedure
is

minimise ‖z‖1,ω subject to ‖Az − ỹ‖2 ≤ η,

with A as in (III.8) and η ≥ ‖Ax− ỹ‖2.

III.3.2 The balancing property

We now discuss the relationship between the sampling and sparsity bandwidths
N and M . From generalized sampling theory [2] we know that we must choose
N ≥M to obtain a stable mapping between the first N sampling basis functions
and the first M sparsity basis functions. The degree of stability for this solution
will depend on the so-called balancing property:

Definition III.3.2. Let U : `2(N) → `2(N) be an isometry. Let 0 < θ < 1 and
N ≥M ≥ 1. Then U has the balancing property with constant θ if

‖PMU∗PNUPM − PM‖2 ≤ 1− θ.

Note that the balancing property may not hold for any N ≥M . However, it
always holds for sufficiently large N (for fixed M). Indeed, PMU∗PNUPM →
PMU

∗UPM ≡ PM in the operator norm, hence the balancing property holds
with θ arbitrarily close to 1 for large enough N .
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Below we shall see that this property will also affect our recovery guarantees,
but it will be camouflaged as the quantity ‖G−1‖2, where G =

√
PMU∗PNUPM .

This gives the following relation.

Lemma III.3.3. Let U ∈ B(`2(N)) be an isometry satisfying the balancing property
of order 0 < θ < 1 for M,N ∈ N. Let G =

√
PMU∗PNUPM be self-adoint and

nonnegative definite. Then G is invertible and

‖G−1‖2 ≤ 1/
√
θ (III.9)

III.3.3 G-adjusted Restricted Isometry Property in Levels (G-RIPL)

Our theoretical analysis requires a RIP-type property for the matrix HPM .
However, as implied in the previous discussion, the finite matrix PNUPM ∈
CN×M (from which APM is constructed) is not an isometry for any N ≥M . In
particular, unlike in finite dimensions E(PMH∗HPM ) = PMU

∗PNUPM = G2 is
not the identity. In order to handle this situation, we introduce the following
generalization of the RIP:

Definition III.3.4 (G-RIPL). Let A ∈ Cm×M , G ∈ CM×M be invertible,
M = (M1, . . . ,Mr) be sparsity levels and s = (s1, . . . , sr) be local sparsities.
The sth G-adjusted Restricted Isometry Constant in Levels (G-RICL) δs,M is
the smallest δ ≥ 0 such that

(1− δ)‖Gx‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖Gx‖22, ∀x ∈ Σs,M.

If 0 < δs,M < 1 we say that the matrix A satisfies the G-adjusted Restricted
Isometry Property in Levels (G-RIPL) of order (s,M).

The G-RIPL is of course completely general and can be stated for any G.
However, in the following we will let G =

√
PMU∗PNUPM and show that the

matrix A = HPK (or equivalently, HPM – note that Σs,M consists of vectors z
with P⊥Mz = 0) satisfies the G-RIPL for this particular G.

First, however, we show that the G-RIPL implies uniform recovery. For this,
we introduce the following notation:

Sω,s :=
r∑
l=1

ω2
l sl and ζs,ω = min

l∈{1,...,r}
ω2
l sl.

Notice in particular that for the choice ω = (1, . . . , 1, ωr+1) we have Sω,s =
s1 + . . .+ sr and for the choice ω = (s−1/2

1 , . . . , s
−1/2
r , ωr+1) we have Sω,s = r.

Finally, we let κ(G) = ‖G‖2‖G−1‖2 denote the condition number of G.

Theorem III.3.5. Let A ∈ Cm×K , G ∈ CM×M with K ≥ M and let M, s ∈ Nr
be given sparsity levels and local sparsities, respectively. Let ω ∈ Rr+1 be positive
weights. Suppose APM satisfies the G-RIPL of order (t,M) with constant
δt,M ≤ 1/2 and

147



III. Uniform recovery in infinite-dimensional compressed sensing

tl = min
{
Ml −Ml−1, 2

⌈
4κ(G)2Sω,s

ω2
l

⌉}
for l = 1, . . . , r. (III.10)

Let

ωr+1 ≥
√
Sω,s( 1

3 (1 + (Sω,s/ζs,ω)1/4)−1 + 2
√

2‖APMK ‖1→2‖G−1‖2).

Let η ≥ 0, x ∈ CK , e ∈ Cm with ‖e‖2 ≤ η and set y = Ax + e. Then any
solution x̂ of the optimization problem

minimise
z∈CK

‖z‖1,ω subject to ‖Az − y‖2 ≤ η (III.11)

satisfies

‖x− x̂‖1,ω ≤ Cσs,M(x)1,ω +D‖G−1‖2
√
Sω,sη (III.12)

‖x− x̂‖2 ≤ (1 + (Sω,s/ζs,ω)1/4)
(
C
σs,M(x)1,ω√

Sω,s
+D‖G−1‖2η

)
(III.13)

where C = 2(2 +
√

3)/(2 −
√

3), D = 8
√

2/(2 −
√

3) and σs,M(x)1,ω =
inf{‖x− z‖1,ω : z ∈ Σs,M}.

Notice that the condition on δ in the above theorem is fundamentally
different from the condition found in Theorem III.2.8. In the latter one requires
δ2s,M < (r(√αs,M + 1

4 )2+1)−1/2 where αs,M = maxk,l=1,...,r sk/sl is the sparsity
ratio. Thus for sparsity levels where the local sparsities vary greatly, this bound
will be unreasonably small.

In the above theorem we have removed this sparsity ratio term, by setting
δ = 1/2, and require δt,M ≤ δ where tl ≥ 2

⌈
4κ(G)Sω,sw−2

l

⌉
. For the unweighted

case this leads to a condition of the form

tl ≥ 2
⌈
4κ(G)2(s1 + . . .+ sr)

⌉
which could be difficult to fulfill in practice, since each tl would have to be
greater than the total sparsity of the signal. However, by considering the weights
ω = (s−1/2

1 , . . . , s
−1/2
r , ωr+1) we obtain a condition of the form

tl ≥ 2
⌈
4κ(G)2rsl

⌉
,

where tl is independent of sk for k 6= l. This means that we can write the
requirement as δ2d4κ(G)2rse,M ≤ 1/2, and ignore any dependence between the
s-values, as was the problem in Theorem III.2.8.

III.3.4 Sufficient condition for the G-RIPL

In Definition III.2.9 we defined the local coherence µk,l of an isometry U ∈ CN×N .
We extend this to isometries U ∈ B(`2(N)) in the exact same way

µk,l = µk,l(N,M) = {max |Uij |2 : i = Nk−1 + 1, . . . , Nk, j = Ml−1 + 1, . . . ,Ml}.

This yields the following theorem.
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Theorem III.3.6 (Subsampled isometries and the G-RIPL). Let U ∈ B(`2(N)) be
an isometry, and let Ω = ΩN,m be an (N,m)-multilevel sampling scheme with
r levels. Let M, s ∈ Nr be sparsity levels and local sparsities, respectively. Let
ε, δ ∈ (0, 1) and let 0 ≤ r0 ≤ r, with m̃ = mr0+1 + · · ·+mr. Let s = s1 + · · ·+ sr
and L = r · log(2m̃) · log(2N) · log2(2s)+log(ε−1). Suppose G =

√
PMU∗PNUPM

is non-singular. If

mk = Nk −Nk−1, k = 1, . . . , r0, (III.14)

and

mk & δ
−2 · ‖G−1‖22 · (Nk −Nk−1) ·

( r∑
l=1

µk,l · sl
)
· L, (III.15)

for k = r0 + 1, . . . , r then with probability at least 1− ε, the matrix

A =

1/√p1PΩ1UPM
...

1/√prPΩrUPM

 where pk = mk

Nk −Nk−1
for k = 1, . . . , r (III.16)

satisfies the G-RIPL of order (s,M) with constant δs,M ≤ δ.

III.3.5 Overall recovery guarantee

Theorem III.3.5 and Theorem III.3.6 yield the next results.

Corollary III.3.7. Let U ∈ B(`2(N)) be an isometry, and let Ω = ΩN,m be an
(N,m)-multilevel sampling scheme with r levels. Let M, s ∈ Nr be sparsity levels
and local sparsities, respectively, and let ω = [s−1/2

1 , . . . , s
−1/2
r , ωr+1] be weights.

Let ε, δ ∈ (0, 1) and 0 ≤ r0 ≤ r. Let m = m1 + . . .+mr, m̃ = mr0+1 + · · ·+mr,
s = s1 + · · · + sr, and L = r · log(2m̃) · log(2N) · log2(2s) + log(ε−1). Let
H ∈ Cm×∞ be as in (III.6) and set A = HPK . Let x ∈ `2(N), e1 ∈ Cm and
η > 0. Set e = HP⊥Kx+ e1 and ỹ = Ax+ e. Suppose

(i) we choose M and N so that U satisfies the balancing property of order
0 < θ < 1,

(ii) we choose η ≥ ‖e1‖w and K so that ‖HP⊥Kx‖2 ≤ η′,

(iii) the weight ωr+1 satisfies

ωr+1 ≥
√
r

(
1

3(1 + r1/4) + 2
√

2
θ
‖APMK ‖1→2

)
,

(iv) the mk’s satisfy mk = Nk −Nk−1 for k = 1, . . . , r0 and

mk & θ
−2 ·r·(Nk−Nk−1)·

( r∑
l=1

µk,lsl

)
·L for k = r0+1, . . . , r. (III.17)
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III. Uniform recovery in infinite-dimensional compressed sensing

Then with probability 1− ε any solution x̂ of the optimization problem

minimise
z∈CK

‖z‖1,ω subject to ‖Az − ỹ‖2 ≤ η + η′

satisfies

‖PKx− x̂‖1,ω ≤ Cσs,M(PKx)1,ω +D

√
r√
θ

(η + η′) (III.18)

‖PKx− x̂‖2 ≤ (1 + r1/4)
(
C
σs,M(PKx)1,ω√

r
+D

1√
θ

(η + η′)
)

(III.19)

where C = 2(2 +
√

3)/(2−
√

3) and D = 8
√

2/(2−
√

3).

Suppose that x is exactly (s,M)-sparse. Then the above theorem guarantees
exact recovery of x via weighted `1 minimization subject to the corresponding
measurement condition. We note in passing this measurement condition is
optimal up to log factors, in the sense that it is the same of that of the oracle
estimator based on a priori knowledge of supp(x). See [1].

III.4 Recovery guarantees for Walsh sampling with wavelet
reconstruction

Having presented the abstract infinite-dimensional CS framework in full
generality, the remainder of the paper is devoted to its application to the
case of binary sampling with the Walsh transform with sparsity in orthogonal
wavelet bases. We first describe the setup, before presenting the main recovery
guarantees in Sections III.4.3 and III.4.4.

III.4.1 Walsh functions

For any number n ∈ Z+ = {0, 1, 2, . . .} there exits a unique dyadic expansion

n = n120 + n221 + . . .+ nj2j−1 + · · ·

where nj ∈ {0, 1} for j ∈ N. Similarly any x ∈ [0, 1) can be written in its dyadic
form as

x = x12−1 + x22−2 + · · ·+ xj2−j

with xj ∈ {0, 1} for all j ∈ N. For a dyadic rational number x this expansion is
not unique, as one may use either a finite expansion, or an infinite expansion
where xi = 1 for all i ≥ k for some k ∈ N. In such cases we always consider the
finite expansion. In practice this means that we have removed countably many
singletons from [0, 1).

Definition III.4.1. Let n ∈ Z+ and x ∈ [0, 1). The Walsh function wn : [0, 1)→
{+1,−1} is given by

wn(x) := (−1)
∑∞

j=1
(nj+nj+1)xj (III.20)
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Recovery guarantees for Walsh sampling with wavelet reconstruction

On the interval [0, 1) the Walsh function wn has n sign changes, n is therefore
often denoted the frequency of wn. The 2r first Walsh functions gives rise to the
entries in the sequency ordered Hadamard matrix

(VHad)i,j = wi−1((j − 1)/2r)

where i, j = 1, . . . , 2r.

Definition III.4.2 (Walsh basis). Define the Walsh basis as

Bwh := {wn : n ∈ Z+}

where ‘wh’ is an abbreviation for Walsh-Hadamard.

Note that this is an orthonormal basis of L2([0, 1)).

III.4.2 Wavelet transform

Let φ : R → R and ψ : R → R be a orthonormal scaling function and wavelet
[13], respectively, with minimal support, corresponding to an multiresolution
analysis (MRA). Note that this could both be the classical ‘Daubechies wavelet’
with a minimum-phase or ‘symlets’ which are close to being symmetric, but with
a larger phase [26, p. 294]. Let

φj,k(x) := 2j/2φ(2jx− k) and ψj,k(x) := 2j/2ψ(2jx− k) (III.21)

denote the scaled and translated versions.
A wavelet ψ is said to have ν vanishing moments if∫ ∞

−∞
xkψ(x) dx = 0 for 0 ≤ k < ν.

For for orthogonal wavelets with minimum support, the support depends on
the number of vanishing moments. That is

supp(φ) = supp(ψ) = [−ν + 1, ν]. (III.22)

While this system constitutes an orthonormal basis of L2(R), in our case we
require an orthonormal basis of L2([0, 1)). There exists several construction of
wavelets on the interval, but we will only consider periodic extensions and the
orthogonal boundary wavelets introduced by Cohen, Daubechies and Vial in [12],
which preserves the number of vanishing moments.

For wavelets on the interval, we need to replace the 2ν wavelets/scaling
functions intersecting the boundaries at each scale, with their corresponding
boundary-corrected counterparts. We postpone the formal definition of periodic
and boundary wavelets until we need it, in the proof sections. But to simplify
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III. Uniform recovery in infinite-dimensional compressed sensing

the notation let

φ0
j,k :=


φboundary
j,k for k ∈ {0, . . . , ν − 1}
φj,k for k ∈ {ν, . . . , 2j − ν − 1}
φboundary
j,k for k ∈ {2j − ν, . . . , 2j − 1}

,

φ1
j,k :=


ψboundary
j,k for k ∈ {0, . . . , ν − 1}

ψj,k for k ∈ {ν, . . . , 2j − ν − 1}
ψboundary
j,k for k ∈ {2j − ν, . . . , 2j − 1}

,

where φboundary
j,k and ψboundary

j,k are either a periodic wavelet/scaling function
or the boundary wavelet/scaling functions introduced in [12]. For the former
extension we say that φsj,k, s ∈ {0, 1} ‘originate from a periodic wavelet’ while
for the latter we say that it ‘originate from a boundary wavelet’.

We will throughout assume J0 ∈ Z+ satisfies 2J0 ≥ 2ν for ν ≥ 2 and J0 ≥ 0
for ν = 1. This will ensure that there exits at least one k ∈ {0, . . . , 2j − 1} such
that supp(φj,k) = supp(ψj,k) ⊆ [0, 1) for all j ≥ J0.

Definition III.4.3. For a fixed number of vanishing moments ν, minimum wavelet
decomposition J0 and a boundary extension which is either periodic or boundary
wavelets, let φsj,k be the corresponding wavelets and scaling functions. We define

BJ0,ν
wave =

{
φ0
J0,0, . . . , φ

0
J0,2J0−1, φ

1
J0,0, . . . , φ

1
J0,2J0−1, φ

1
J0+1,0, . . . , φ

1
J0+1,2J0+1−1, . . .

}
Both Bwh and BJ0,ν

wave are orthonormal bases for L2([0, 1)).

III.4.3 Recovery guarantees

From Section III.3 there are four unknown factors depending on U which need to
be estimated. These are the local coherences µk,l, the norm ‖HPMK ‖1→2 where
H is given by (III.6), the condition number κ(G) = ‖G‖2‖G−1‖2 and the factor
‖G−1‖2 found in condition (III.15).

For the two latter factors we have G =
√
PMU∗PNUPM . Furthermore we

know that ‖G‖2 ≤ 1 since U is an isometry. In practice we therefore only need
to determine an upper bound ‖G−1‖2 and from Lemma III.3.3 we know that
‖G−1‖2 ≤ 1/

√
θ, where 0 < θ < 1 is the balancing property constant. In other

words, it suffices to determine when the balancing property holds with a given θ.
The following three propositions estimate these quantities for the case

U = [Bwh, B
J0,ν
wave].

Proposition III.4.4. Let U = [Bwh, B
J0,ν
wave]. For each θ ∈ (0, 1), there exits a

constant qθ ≥ 0, such that whenever N = 2k+qθ ≥ 2k = M then U satisfies the
balancing property of order θ for all k ∈ N.

Note that Proposition III.4.4 is a consequence of Theorem 1.1 in [20].

Proposition III.4.5. Let U = [Bwh, B
J0,ν
wave] with ν ≥ 3 and let

M = [2J0+1, . . . , 2J0+r] and N = [2J0+1, . . . , 2J0+r−1, 2J0+r+q] with q ≥ 0,
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Recovery guarantees for Walsh sampling with wavelet reconstruction

be sparsity and sampling levels, respectively. Then the local coherences of U
scales like

µk,l . 2−J0−k2−|l−k|.
Proposition III.4.6. Let U = [Bwh, B

J0,ν
wave] and let M,N ∈ Nr be sparsity and

sampling levels. Let Ω = Ωm,N be a multilevel random sampling scheme, and let
H be as in (III.6). Then

‖HP⊥K‖1→2 .

√
N

K
.

We can now present the two main theorems in this section. We point out that
these are only valid for ν ≥ 3 vanishing moments. For ν = 1, the corresponding
wavelet is the Haar wavelet and will be considered in the next subsection. For
ν = 2, the coherence of U = [Bwh, B

J0,2
wave] does not decay as fast as for the other

wavelets. Whether this is because our coherence bounds are not sharp enough
for this wavelet or if it is because the coherence of U = [Bwh, B

J0,2
wave] actually

decays more slowly is not known. We do, however, present some numerics in
Section III.6.5 which indicate that it is potentially the latter.

Theorem III.4.7. Let U = [Bwh, B
J0,ν
wave] with ν ≥ 3 and let

M = [2J0+1, . . . , 2J0+r] and N = [2J0+1, . . . , 2J0+r−1, 2J0+r+q] with q ≥ 0,

be sparsity and sampling levels, respectively. Let s ∈ Nr be local sparsities.
Suppose q is chosen so that U satisfies the balancing property with constant
0 < θ < 1 and set G =

√
PMU∗PNUPM . Let ε, δ ∈ (0, 1) and let

0 ≤ r0 ≤ r, with m̃ = mr0+1 + · · · + mr. Let s = s1 + · · · + sr and
L = r · log(2m̃) · log(2N) · log2(2s) + log(ε−1). If

mk = Nk −Nk−1, k = 1, . . . , r0, (III.23)

and

mk & δ
−2 · θ−1 · 2qmax{k+1−r,0} ·

( r∑
l=1

2−|k−l|sl
)
· L

for k = r0 + 1, . . . , r, then with probability at least 1− ε, the matrix in (III.16)
satisfies the G-RIPL of order (s,M) with constant δs,M ≤ δ.

With this in hand, we now present our main result:

Theorem III.4.8. Let U = [Bwh, B
J0,ν
wave] with ν ≥ 3 and let

M = [2J0+1, . . . , 2J0+r] and N = [2J0+1, . . . , 2J0+r−1, 2J0+r+q], with q ≥ 0

be sparsity and sampling levels, respectively. Let s ∈ Nr be local sparsities,
ω = (s−1/2

1 , . . . , s
−1/2
r , ωr+1) be weights and let m ∈ Nr be sampling densities.

Let ε ∈ (0, 1) and let 0 ≤ r0 ≤ r. Let m = m1 + . . .+mr, m̃ = mr0+1 + · · ·+mr,
s = s1 + . . .+ sr, and L = r · log(2m̃) · log(2N) · log2(2s) + log(ε−1).

Let H ∈ Cm×∞ be as in (III.6) and set A = HPK . Let x ∈ `2(N), e1 ∈ Cm
and η > 0. Set e = HP⊥Kx+ e1 and ỹ = Ax+ e. Suppose
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III. Uniform recovery in infinite-dimensional compressed sensing

(i) we choose q = qθ as in Proposition III.4.4 so that U satisfies the balancing
property of order 0 < θ < 1,

(ii) we choose η ≥ ‖e1‖ and K so that ‖HP⊥Kx‖2 ≤ η′,

(iii) the weight ωr+1 satisfies

ωr+1 ≥
√
r

(
1

3(1 + r1/4) + 2
√

2
θ
‖APMK ‖1→2

)
,

(iv) the mk’s satisfy mk = Nk −Nk−1 for k = 1, . . . , r0 and

mk & θ
−2 · r · 2qmax{k+1−r,0}

( r∑
l=1

2−|k−l|sl
)
· L for k = r0 + 1, . . . , r.

(III.24)

Then with probability 1− ε any solution x̂ of the optimization problem

minimise
z∈CK

‖z‖1,ω subject to ‖Az − ỹ‖2 ≤ η + η′

satisfies

‖PKx− x̂‖1,ω ≤ Cσs,M(PKx)1,ω +D

√
r√
θ

(η + η′) (III.25)

‖PKx− x̂‖2 ≤ (1 + r1/4)
(
C
σs,M(PKx)1,ω√

r
+D

1√
θ

(η + η′)
)

(III.26)

where C = 2(2 +
√

3)/(2−
√

3) and D = 8
√

2/(2−
√

3).

Remark III.4.9. Note that the second condition (ii) can be guaranteed using
Proposition III.4.6. Indeed, it suffices for K to satisfy∥∥P⊥Kx∥∥1√

K
.

η′√
N
.

Hence, given any a priori estimates on the decay of the coefficients x (such as in
the case of wavelets), one can use this to determine a suitable K.

III.4.4 Uniform recovery for Haar wavelets

Below we shall see that for the Haar wavelet, PNUPN will be an isometry
for N = 2r where r ∈ N. This can also be seen from Figure III.2, where
U = [Bwh, B

J0,ν
wave] is perfectly block diagonal for ν = 1. This means that the

G-RIPL, reduces to the I-adjusted RIPL, or simply the RIPL, which we know
from the finite dimensional case. Notice in particular that we also avoid any
considerations where K > M = N as above, since HP⊥M = 0.
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Recovery guarantees for Walsh sampling with wavelet reconstruction

Haar (DB1) DB4

Figure III.2: The absolute values in log scale of the matrix PMUPM for
U = [Bwh, B

J0,ν
wave], with ν = 1 (left) and ν = 4 (middle). The rightmost

image is the colorbar.

Proposition III.4.10. Let U = [Bwh, B
J0,1
wave] and let N = 2k, for some k ∈ N with

k ≥ J0 + 1. Then PNUPN is an isometry on CN .

Proposition III.4.11. Let U = [Bwh, B
J0,1
wave] and let M = N = [2J0+1, . . . , 2J0+r]

be sparsity and sampling levels, respectively. Then the local coherences of U are

µkl =
{

2−J0−k+1 if k = l

0 if k 6= l

It is now straightforward to derive the following:

Theorem III.4.12. Let U = [Bwh, B
J0,1
wave] and let M = N = [2J0+1, . . . , 2J0+r] be

sparsity and sampling levels. Let s ∈ Nr be local sparsities and m ∈ Nr be local
sampling densities. Let ε, δ ∈ (0, 1) and 0 ≤ r0 ≤ r. Let m̃ = mr0+1 + . . .+mr

and s = s1 + . . . + sr. Suppose that the mk’s satisfies mk = Nk − Nk−1 for
k = 1, . . . , r0 and

mk & δ
−2sk

(
r log(2m̃) log(2N) log2(2s) + log(ε−1)

)
, for k = r0 + 1, . . . , r.

(III.27)
Then with probability 1− ε the matrix (III.16) satisfies the RIPL with constant
δs,M ≤ δ.

Proof. Using Proposition III.4.10 we know that PNUPN is an isometry. Thus
inserting the local coherences from Proposition III.4.11 into (III.4) in Theorem
III.2.10 gives to the result. �
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Theorem III.4.13. Let U = [Bwh, B
J0,1
wave] and let M = N = [2J0+1, . . . , 2J0+r] be

sparsity and sampling levels. Let s ∈ Nr be local sparsities, ω = (s1/2
1 , . . . , s

1/2
r )

be weights and m ∈ Nr be local sampling densities. Let ε ∈ (0, 1) and let
0 ≤ r0 ≤ r. Let m = m1 + . . .+mr, m̃ = mr0+1 + · · ·+mr and s = s1 + . . .+ sr.
Suppose we sample mk = Nk −Nk−1 for k = 1, . . . , r0 and

mk & r · sk ·
(
r log(2m̃) log(2N) log2(2s) + log(ε−1)

)
,

for k = r0 + 1, . . . , r. Let H ∈ Cm×∞ be as in (III.6) with A = HPM . Let
x ∈ `2(N) and e ∈ Cm with ‖e‖2 ≤ η for some η ≥ 0. Set ỹ = Ax+ e. Then any
solution x̂ of the optimization problem

minimise
z∈CM

‖z‖1,ω subject to ‖Az − ỹ‖2 ≤ η

satisfies

‖PMx− x̂‖1,ω ≤ Cσs,M(PMx)1,ω +D
√
rη

‖PMx− x̂‖2 ≤ (1 + r1/4)
(
C
σs,M(PMx)1,ω√

r
+Dη

)
with probability 1− ε, where C = 2(2 +

√
3)/(2−

√
3) and D = 8

√
2/(2−

√
3).

Proof. Proposition III.4.10 gives G =
√
PMU∗PNUPM =

√
I = I. Next

notice that Sω,s = r and that PMx ∈ {z ∈ CM : ‖Az − ỹ‖2 ≤ η} since
‖HP⊥M‖ = 0. Using Theorem III.3.5 we see that we can guarantee recovery of
(s,M)-sparse vectors, if A satisfies the RIPL with constant δt,M ≤ 1/2, where
tl = min{Ml −Ml−1, 8rsl}. Using Theorem III.4.12 gives the result. �

III.5 Proofs of results in Section III.3

When deriving uniform recovery guarantees via the RIP, it is typical to proceed
as follows. First, one shows that the RIP implies the so-called robust Null space
Property (rNSP) of order s (see Def. 4.17 in [16]). Second, one shows that the
rNSP implies stable and robust recovery. Thus the line of implications reads

(RIP) =⇒ (rNSP) =⇒ (uniform recovery).

A similar line of implications holds for the RIPL and the corresponding robust
Null Space Property in levels (rNSPL); see Def. 3.6 in [7]).

Both of the recovery guarantees for matrices satisfying the rNSP and rNSPL
consider minimizers of the unweighed quadratically-constrained basis pursuit
(QCBP) optimization problem. In our setup, we consider minimizers of the
weighted QCBP. We have therefore generalized the rNSPL to what we call the
weighted robust null space property in levels.

For the sufficient condition for the G-RIPL in Theorem III.3.6, the proof
follows along similar lines as in [23]. We only sketch the main differences here.
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III.5.1 The weighted rNSPL and norm bounds

For a set Θ ⊆ {1, . . . ,M} and a vector x ∈ CM we let the vector xΘ be given by

(xΘ)i =
{
xi i ∈ Θ
0 i 6∈ Θ

.

We also define

Es,M = {Θ ⊆ {1, . . . ,M} : |Θ ∩ {Ml−1 + 1, . . . ,Ml}| ≤ sl, for l = 1, . . . , r}.

Definition III.5.1 (weigthed rNSP in levels). Let M, s ∈ Nr be sparsity levels
and local sparsities, respectively. For positive weights ω ∈ Rr+1, we say that
A ∈ Cm×M satisfies the weighted robust Null Space Property in Levels (weighted
rNSPL) of order (s,M) with constants 0 < ρ < 1 and γ > 0 if

‖xΘ‖2 ≤
ρ‖xΘc‖1,ω√

Sω,s
+ γ‖Ax‖2 (III.28)

for all x ∈ CM and all Θ ∈ Es,M.

Lemma III.5.2 (weighted rNSPL implies `(1,ω)-distance bound). Suppose that
A ∈ Cm×M satisfies the weighted rNSPL of order (s,M) with constants 0 < ρ < 1
and γ > 0. Let x, z ∈ CM . Then

‖z−x‖1,ω ≤
1 + ρ

1− ρ (2σs,M(x)1,ω + ‖z‖1,ω − ‖x‖1,ω) + 2γ
1− ρ

√
Sω,s‖A(z−x)‖2.

(III.29)

Proof. Let v = z − x and Θ ∈ Es,M be such that ‖xΘc‖1,ω = σs,M(x)1,ω. Then

‖x‖1,ω + ‖vΘc‖1,ω ≤ 2‖xΘc‖1,ω + ‖xΘ‖1,ω + ‖zΘc‖1,ω
= 2‖xΘc‖1,ω + ‖xΘ‖1,ω + ‖z‖1,ω − ‖zΘ‖1,ω
≤ 2σs,M(x)1,ω + ‖vΘ‖1,ω + ‖z‖1,ω,

which implies that

‖vΘc‖1,ω ≤ 2σs,M(x)1,ω + ‖z‖1,ω − ‖x‖1,ω + ‖vΘ‖1,ω. (III.30)

Now consider ‖vΘ‖1,ω. By the weighted rNSPL, we have

‖vΘ‖1,ω ≤
√
Sω,s‖vΘ‖2 ≤ ρ‖vΘc‖1,ω +

√
Sω,sγ‖Av‖2.

Hence (III.30) gives

‖vΘ‖1,ω ≤ ρ
(

2σs,M(x)1,ω + ‖z‖1,ω − ‖x‖1,ω + ‖vΘ‖1,ω
)

+
√
Sω,sγ‖Av‖2,
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and after rearranging we get

‖vΘ‖1,ω ≤
ρ

1− ρ

(
2σs,M(x)1,ω + ‖z‖1,ω − ‖x‖1,ω

)
+ γ

1− ρ
√
Sω,s‖Av‖2.

Therefore, using this and (III.30) once more, we deduce that

‖z − x‖1,ω = ‖vΘ‖1,ω + ‖vΘc‖1,ω
≤ 2‖vΘ‖1,ω +

(
2σs,M(x)1,ω + ‖z‖1,ω − ‖x‖1,ω

)
≤ 1 + ρ

1− ρ

(
2σs,M(x)1,ω + ‖z‖1,ω − ‖x‖1,ω

)
+ 2γ

1− ρ
√
Sω,s‖A(z − x)‖2,

which gives the result. �

Lemma III.5.3 (weighted rNSPL implies `2 distance bound). Suppose that
A ∈ Cm×M satisfies the weighted rNSPL of order (s,M) with constants 0 < ρ < 1
and γ > 0. Let x, z ∈ CM . Then

‖z − x‖2 ≤
(
ρ+ (1 + ρ)(Sω,s/ζs,ω)1/4/2

) ‖z − x‖1,ω√
Sω,s

+
(

1 + (Sω,s/ζs,ω)1/4/2
)
γ‖A(z − x)‖2.

(III.31)

Proof. Let v = z − x and Θ = Θ1 ∪ · · · ∪Θr, where Θl ⊆ {Ml−1 + 1, . . . ,Ml},
|Θl| = sl is the index set of the largest sl coefficients of PMl−1

Ml
v in absolute value.

Then

‖vΘl‖2 =
√∑
i∈Θl

|vi|2 ≥
√
sl min
i∈Θl
|vi| ≥

√
sl max
Ml−1<i≤Ml

i/∈Θl

|vi|, l = 1, . . . , r,

which gives

‖vΘc‖22 =
r∑
l=1

∑
Ml−1<i≤Ml

i/∈Θl

|vi|2 ≤
r∑
l=1

max
Ml−1<i≤Ml

i/∈Θl

|vi|
∑

Ml−1<i≤Ml

i/∈Θl

|vi|

≤
r∑
l=1

‖vΘl‖2√
sl

∑
Ml−1<i≤Ml

i/∈Θl

|vi| ≤ max
l=1,...,r

{
‖vΘl‖2
ωl
√
sl

} r∑
l=1

ωl
∑

Ml−1<i≤Ml

i/∈Θl

|vi|

≤ max
l=1,...,r

{
‖vΘl‖2
ωl
√
sl

}
‖vΘc‖1,ω

Since ‖vΘl‖2 ≤ ‖vΘ‖2 we deduce that

‖vΘc‖2 ≤

√
‖vΘ‖2‖vΘc‖1,ω

minl=1,...,r{ωl
√
sl}

=

√
‖vΘ‖2‖vΘc‖1,ω√

ζs,ω
.
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Applying Young’s inequality ab ≤ 1
2a

2 + 1
2b

2, we obtain

‖vΘc‖2 ≤
(Sω,s/ζs,ω)1/4

2
‖vΘc‖1,ω√

Sω,s
+ (Sω,s/ζs,ω)1/4

2 ‖vΘ‖2.

Hence

‖v‖2 ≤ ‖vΘ‖2+‖vΘc‖2 ≤
(

1 + (Sω,s/ζs,ω)1/4/2
)
‖vΘ‖2+(Sω,s/ζs,ω)1/4

2
‖vΘc‖1,ω√

Sω,s
.

We now use the weighted rNSPL to get

‖v‖2 ≤
(
ρ+ (1 + ρ)(Sω,s/ζs,ω)1/4/2

) ‖vΘc‖1,ω√
Sω,s

+
(

1 + (Sω,s/ζs,ω)1/4/2
)
γ‖Av‖2.

To complete the proof, we use the inequality ‖vΘc‖1,ω ≤ ‖v‖1,ω. �

III.5.2 Weighted rNSPL implies uniform recovery

Theorem III.5.4. Let M, s ∈ Nr be sparsity levels and local sparsities, respectively,
and let ω ∈ Rr+1 be positive weights. Let x ∈ CK , with K > M and e ∈ Cm
with ‖e‖2 ≤ η. Set y = Ax+ e. Let A ∈ Cm×K and suppose that APM satisfies
the weighted rNSP in levels of order (s,M) with constants ρ =

√
3/2 and γ > 0.

If

ωr+1 ≥
√
Sω,s

(
1

3(1 + (Sω,s/ζs,ω)1/4) + 2γ‖APMK ‖1→2

)
(III.32)

then any solution x̂ of the optimization problem

minimise
z∈CK

‖z‖1,ω subject to ‖Az − y‖2 ≤ η (III.33)

satisfies

‖x− x̂‖1,ω ≤Cσs,M(x)1,ω +Dγ
√
Sω,sη

‖x− x̂‖2 ≤
(

1 + (Sω,s/ζs,ω)1/4
)(

C
σs,M(x)1,ω√

Sω,s
+Dγη

)
,

where C = 2(2 +
√

3)/(2−
√

3) and D = 8/(2−
√

3).

Proof. Recall that ρ =
√

3/2, and notice that this gives C/2 = (1 + ρ)/(1− ρ)
and D/2 = 2/(1− ρ). Next we consider the bound (III.32), and note that this
bound implies

ωr+1 ≥ γ
√
Sω,s‖APMK ‖1→2/ρ (III.34)

1 + 2ρ ≥ 1 + 2γ
√
Sω,s‖APMK ‖1→2/ωr+1 (III.35)

1 + ρ ≥ 1− ρ+ 2γ
√
Sω,s‖APMK ‖1→2/ωr+1 (III.36)

C

2 ≥ 1 + D

2 γ
√
Sω,s‖APMK ‖1→2/ωr+1. (III.37)
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We also note that (III.32) implies

ωr+1 ≥
(

1
3(1 + (Sω,s/ζs,ω)1/4) + 2γ‖AP⊥M‖1→2

)√
Sω,s

≥
(

2
C(1 + (Sω,s/ζs,ω)1/4) + D

C
γ‖APMK ‖1→2

)√
Sω,s

which can be written as

(1 + (Sω,s/ζs,ω)1/4)(C/2) 1√
Sω,s

≥
(

(D/2)(1 + (Sω,s/ζs,ω)1/4)γ‖APMK ‖1→2 + 1
)
/ωr+1.

(III.38)

Next set v = x− x̂ and consider the `(1,ω)-bound. First notice that since APM
satisfies the weighted rNSPL, Lemma III.5.2 gives

‖PMv‖1,ω ≤(C/2) (2σs,M(PMx)1,ω + ‖PM x̂‖1,ω − ‖PMx‖1,ω) + (D/2)γ
√
Sω,s‖APMv‖2.

(III.39)

Here the last term can be bounded by

‖APMv‖2 ≤ ‖Av + y − y‖2 + ‖APMK v‖2 ≤ 2η + ‖AP
M
K ‖1→2

ωr+1
‖PMK v‖1,ω

(III.40)

≤ 2η + ‖AP
M
K ‖1→2

ωr+1

(
‖PMK x‖1,ω + ‖PMK x̂‖1,ω

)
, (III.41)

since both x and x̂ are feasible. Combining (III.37), (III.39) and (III.41) gives

‖v‖1,ω ≤‖PMv‖1,ω + ‖PMK x‖1,ω + ‖PMK x̂‖1,ω
≤(C/2)

(
2σs,M(PMx)1,ω + ‖PM x̂‖1,ω − ‖PMx‖1,ω

)
+ ‖PMK x‖1,ω + ‖PMK x̂‖1,ω

+ (D/2)γ
√
Sω,s‖APMv‖2

≤(C/2)
(
2σs,M(PMx)1,ω + ‖PM x̂‖1,ω − ‖PMx‖1,ω

)
+Dγ

√
Sω,sη

+
(

1 + (D/2)γ
√
Sω,s

‖APMK ‖1→2

ωr+1

)(
‖PMK x‖1,ω + ‖PMK x̂‖1,ω

)
≤(C/2)

(
2σs,M(x)1,ω + ‖x̂‖1,ω − ‖x‖1,ω

)
+Dγ

√
Sω,sη.

Using that x̂ is a minimizer of (III.33) gives the desired bound.
We now consider the `2-bound. First note that

‖v‖2 ≤ ‖PMv‖2 + ‖PMK v‖2 ≤ ‖PMv‖2 + 1
ωr+1

‖PMK v‖1,ω. (III.42)
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We shall also need

(ρ+ (1 + ρ)(Sω,s/ζs,ω)1/4/2) 2
1− ρ + (1 + (Sω,s/ζs,ω)1/4/2)

=(D/4)
(
2ρ+ (1 + ρ)(Sω,s/ζs,ω)1/4 + (1− ρ) + (1− ρ)(Sω,s/ζs,ω)1/4/2

)
=(D/4)

(
(1 + ρ) + 1

2 (3 + ρ)(Sω,s/ζs,ω)1/4)
≤(D/2)

(
1 + (Sω,s/ζs,ω)1/4)

(III.43)
Again, since APM satisfies the weighted rNSPL we can apply Lemma III.5.3,
Lemma III.5.2 and inequality (III.43) to obtain the bound

‖PMv‖2 ≤
(
ρ+ (1 + ρ)(Sω,s/ζs,ω)1/4/2

) ‖PMv‖1,ω√
Sω,s

+
(

1 + (Sω,s/ζs,ω)1/4/2
)
γ‖APMv‖2

≤
(

1 + (Sω,s/ζs,ω)1/4
)

(C/2) 2σs,M(PMx)1,ω + ‖PM x̂‖1,ω − ‖PMx‖1,ω√
Sω,s

+
(
ρ+ (1 + ρ)(Sω,s/ζs,ω)1/4/2

) 2γ
1− ρ‖APMv‖2

+
(

1 + (Sω,s/ζs,ω)1/4/2
)
γ‖APMv‖2

≤
(

1 + (Sω,s/ζs,ω)1/4
)

(C/2) 2σs,M(PMx)1,ω + ‖PM x̂‖1,ω − ‖PMx‖1,ω√
Sω,s

+(D/2)
(

1 + (Sω,s/ζs,ω)1/4
)
γ‖APMv‖2.

(III.44)

Combining (III.38), (III.41), (III.42), (III.44) and now gives

‖v‖2 ≤
(

1 + (Sω,s/ζs,ω)1/4
)

(C/2) 2σs,M(PMx)1,ω + ‖PM x̂‖1,ω − ‖PMx‖1,ω√
Sω,s

+ (D/2)
(

1 + (Sω,s/ζs,ω)1/4
)
γ‖APMv‖2 + 1

ωr+1
‖PMK v‖1,ω

≤
(

1 + (Sω,s/ζs,ω)1/4
)

(C/2) 2σs,M(PMx)1,ω + ‖PM x̂‖1,ω − ‖PMx‖1,ω√
Sω,s

+
(

(D/2)
(

1 + (Sω,s/ζs,ω)1/4
)
γ
∥∥APMK ∥∥1→2 + 1

) ‖PMK x‖1,ω + ‖PMK x̂‖1,ω
ωr+1

+
(

1 + (Sω,s/ζs,ω)1/4
)
Dγη

≤
(

1 + (Sω,s/ζs,ω)1/4
)

(C/2) 2σs,M(x)1,ω + ‖x̂‖1,ω − ‖PKx‖1,ω√
Sω,s

+
(

1 + (Sω,s/ζs,ω)1/4
)
Dγη

Using that x̂ is a minimizer of (III.33) completes the proof. �
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III.5.3 G-RIPL implies weighted rNSPL

Theorem III.5.5. Let A ∈ Cm×M and let G ∈ CM×Mbe invertible. Let M ∈ Nr
be sparsity levels, s, t ∈ Nr be local sparsities and let ω ∈ Rr be positive weights.
Suppose that A satisfies the G-RIPL of order (t,M) with constant 0 < δt,M < 1,
where

tl = min
{
Ml −Ml−1, 2

⌈(
1 + δ

1− δ

)
κ(G)2

ρ2ω2
l

Sω,s

⌉}
, for l = 1, . . . , r. (III.45)

Then A satisfies the weighted rNSP in levels of order (s,M) with constants
0 < ρ < 1 and γ = ‖G−1‖2/

√
1− δ.

Proof. Let x ∈ CK be such that P⊥Mx = 0 and let Θ = Θ1 ∪ · · · ∪Θr, where Θl is
the set of the largest sl indices of PMl−1

Ml
x in absolute value. If tl = Ml −Ml−1,

let Tl,0 = {Ml−1 + 1, . . . ,Ml} and let Tl,k = ∅ for k ≥ 1. For tl < Ml −Ml−1 let
Tl,0 be the index set of the largest tl/2 values of |PMl−1

Ml
x|, and let Tl,1 be the

index set of the next tl/2 largest values and so forth. In the case where there
are less than tl/2 values left at iteration k, we let Tl,k be the remaining indices.
Let Tk = T1,k ∪ · · · ∪ Tr,k and let T{0,1} = T0 ∪ T1. Since Θ ⊆ T{0,1} we have

‖xΘ‖22 ≤ ‖xT{0,1}‖
2
2 ≤ ‖G−1‖22‖GxT{0,1}‖

2
2 ≤
‖G−1‖22
1− δ ‖AxT{0,1}‖

2
2

where δ = δt,M. Note that

AxT{0,1} = Ax−
∑
k≥2

AxTk ,

Then

‖AxT{0,1}‖
2
2 = 〈AxT{0,1} , Ax〉 −

∑
k≥2
〈AxT{0,1} , AxTk〉

≤ ‖AxT{0,1}‖2‖Ax‖2 + ‖AxT{0,1}‖2
∑
k≥2
‖AxTk‖2

≤ ‖AxT{0,1}‖2‖Ax‖2 +
√

1 + δ‖AxT{0,1}‖2
∑
k≥2
‖GxTk‖2

≤ ‖AxT{0,1}‖2‖Ax‖2 +
√

1 + δ‖G‖2‖AxT{0,1}‖2
∑
k≥2
‖xTk‖2

Set ∆ = {l ∈ {1, . . . , r} : tl < Ml − Ml−1} and notice that Tl,k = ∅ for
l ∈ {1, . . . , r} \∆ and k ≥ 1. Thus for k ≥ 2 we get

‖xTk‖22 =
∑
l∈∆

‖xTl,k‖22 ≤
∑
l∈∆

2‖xTl,k−1‖21
tl

=
∑
l∈∆

2‖xTl,k−1‖21ω2
l

tlω2
l

≤
∑
l∈∆ 2‖xTl,k−1‖21,ω
minl∈∆{ω2

l tl}
≤

2‖xTk−1‖21,ω
minl∈∆{ω2

l tl}
.
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Therefore

‖AxT{0,1}‖2 ≤ ‖Ax‖2 +
√

2(1 + δ)‖G‖2√
minl∈∆{ω2

l tl}

∑
k≥2
‖xTk−1‖1,ω

≤ ‖Ax‖2 +
√

2(1 + δ)‖G‖2√
minl∈∆{ω2

l tl}
‖xT c0 ‖1,ω

≤ ‖Ax‖2 +
√

1 + δ‖G‖2
minl∈∆{ωl

√
tl/2}

‖xΘc‖1,ω.

This results in

‖xΘ‖2 ≤
√

1 + δ

1− δ ‖G‖2‖G
−1‖2

√
Sω,s

minl∈∆{ωl
√
tl/2}

‖xΘc‖1,ω√
Sω,s

+ ‖G
−1‖2√

1− δ
‖Ax‖2

≤ρ‖xΘc‖1,ω√
Sω,s

+ ‖G
−1‖2√

1− δ
‖Ax‖2

which establishes the weighted rNSPL of order (s,M) with 0 < ρ < 1 and
γ = ‖G−1‖2/

√
1− δ. �

III.5.4 Proof of Theorem III.3.5

Proof of Theorem III.3.5. First notice that for 0 < δ ≤ 1/2 we have

1 + δ

1− δ ≤ 3 and 1√
1− δ

≤
√

2.

Hence using Theorem III.5.5 with 0 < δt,M ≤ δ ≤ 1/2 and ρ =
√

3/2 we see
that Equation (III.45), simplifies to Equation (III.10). This implies that APM
satisfies the weighted rNSPL of order (s,M), with constants ρ =

√
3/2 and

γ =
√

2‖G−1‖2. Now since

ωr+1 ≥
√
Sω,s( 1

3 (1 + (Sω,s/ζs,ω)1/4)−1 + 2
√

2‖APMK ‖1→2‖G−1‖2)

we know from Theorem III.5.4 that any solution x̂ of (III.11) satisfies (III.12)
and (III.13). �

III.5.5 Proof of Theorem III.3.6

Proof of Theorem III.3.6. We recall that U ∈ B(`2) is an isometry and that

A =


1/√p1PΩ1UPM
1/√p2PΩ2UPM

...
1/√prPΩrUPM

 ∈ Cm×M , where pk = mk/(Nk −Nk−1),
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and m = m1 + . . .+mr. Note that

‖Ax‖2 − ‖Gx‖2 = 〈(A∗A−G∗G)x, x〉,

and therefore
δ = sup

Θ∈Es,M

‖PΘ(A∗A−G∗G)PΘ‖2.

Notice also that pk = 1 and Ωk = {Nk−1 + 1, . . . , Nk} for k = 1, . . . , r0. Next
notice that the matrix PΩk can be written as

PΩk =
mk∑
i=1

etk,ie
∗
tk,i
,

where {ei}∞i=1 is the standard basis on `2(N). It now follows that

A∗A =
r∑

k=1

1
pk
PMU

∗PΩkUPM =
r∑

k=1

1
pk

mk∑
i=1

PMU
∗etk,ie

∗
tk,i
UPM

= PMU
∗PNr0

UPM +
r∑

k=r0+1

mk∑
i=1

Xk,iX
∗
k,i,

where Xk,i are random vectors given by Xk,i = 1√
pk
PMU

∗etk,i . Note that the
Xk,i are independent, and also that

E(A∗A) = PMU
∗PNr0

UPM +
r∑

k=r0+1

mk∑
i=1

E
(
Xk,iX

∗
k,i

)
= PMU

∗PNr0
UPM +

r∑
k=r0+1

mk

pk(Nk −Nk−1)

Nk∑
j=Nk−1+1

PMU
∗eje

∗
jUPM

= PMU
∗PNr0

UPM + PMU
∗P

Nr0
Nr

UPM

= PMU
∗PNUPM (III.46)

= G2, (III.47)

where G ∈ CM×M is non-singular by assumption. Let

Ds,M,G =
{
η ∈ CM : ‖Gη‖2 ≤ 1, | supp(η) ∩ {Mk−1 + 1, . . . ,Mk}| ≤ sk, k = 1, . . . , r

}
.

We now define the following seminorm on CM×M :

|||B|||s,M,G := sup
z∈Ds,M,G

|〈Bz, z〉| ,

so that
δs,M = |||A∗A−G∗G|||s,M.
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Due to (III.46) and (III.47), we may rewrite this as

δs,M = |||
r∑

k=r0+1

mk∑
i=1

(
Xk,iX

∗
k,i − E(Xk,iX

∗
k,i)
)
|||s,M. (III.48)

Having detailed the setup, the remainder of the proof now follows along very
similar lines to that of [23, Thm. 3.2]. Hence we only sketch the details.

The first step is to estimate E (δs,M). Using the standard techniques of
symmetrization, Dudley’s inequality, properties of covering numbers, and arguing
as in [23, Sec. 4.2], we deduce that

E (δs,M) ≤ D +D2, D = C1

√
rQ‖G−1‖22 log(2m̃) log(2M) log(2s)

m
,

(III.49)
where C1 > 0 is a universal constant, m̃ =

∑r
k=r0+1mk, and

Q = max
k=r0+1,...,r

r∑
l=1

µk,lsl
pk

. (III.50)

In particular,
E (δs,M) ≤ δ/2,

provided
C2Q

∥∥G−1∥∥2
2δ
−2r log(2m̃) log(2M) log2(2s) ≤ 1, (III.51)

where C2 > 0 is a constant. Using this, Talagrand’s theorem and using the fact
that ‖PNUPM‖2 ≤ ‖U‖2 = 1 (see [23, Sec. 4.3]) we deduce that

P(δs,M ≥ δ) ≤ exp
(
−3δ2/(8(3 + 7δ)Q

∥∥G−1∥∥2
2)
)
.

In particular,
P(δs,M ≥ δ) ≤ ε,

provided
80
3 Q

∥∥G−1∥∥2
2δ
−2 log(ε−1) ≤ 1.

Combining this with (III.50) and (III.51) now completes the proof.
�

III.5.6 Proof of Corollary III.3.7 and Lemma III.3.3

Proof of Corollary III.3.7. We must ensure that all the conditions are met to
be able to apply Theorem III.3.5 with PKx.

First notice that for weights ω = (s−1/2
1 , . . . , s

−1/2
r , ωr+1) we have Sω,s = r

and ζs,ω = 1. Next we note that condition (ii) implies that PKx is a feasible
point since ‖HPKx− ỹ‖2 ≤ ‖HP⊥Kx‖2 + ‖e1‖2 = η + η′.

165



III. Uniform recovery in infinite-dimensional compressed sensing

Let G =
√
PMU∗PNUPM . Combining condition (i) and Lemma III.3.3 gives

‖G−1‖2 ≤ 1/
√
θ and since ‖G‖2 ≤ 1 we also have κ(G) = ‖G‖2‖G−1‖2 ≤ 1/

√
θ.

Inserting the above equalities and inequalities into the weight condition for ωr+1
in Theorem III.3.5 gives condition (iii).

Next we must ensure that APM satisfies the G-RIPL of order (t,M) with
δt,M ≤ 1/2 where

tl = min
{
Ml −Ml−1, 2

⌈
4θ−1rsl

⌉}
. (III.52)

According to Theorem III.3.6 this occurs if the mk’s satisfies condition (iv). The
error bounds (III.12) and (III.13) now follows directly from Theorem III.3.5. �

Proof of lemma III.3.3. First notice that the balancing property is equivalent
to requiring

σM (PNUPM ) ≥
√
θ (III.53)

where σM (PNUPM ) is the Mth largest singular value of PNUPM . Indeed, since
U is an isometry, the matrix PM − PMU∗PNUPM is nonnegative definite, and
therefore

‖PMU∗PNUPM − PM‖2 = sup
x∈CM ,‖x‖2≤1

〈(PMU∗PNUPM − PM )x, x〉 (III.54)

= sup
x∈CM ,‖x‖2≤1

(‖PMx‖2 − ‖PNUPMx‖2) (III.55)

= 1− inf
x∈CM ,‖x‖2=1

‖PNUPMx‖2 (III.56)

This gives (III.53). Next let G =
√
PMU∗PNUPM and notice that σM (G) =

σM (PNUPM ). This gives ‖G−1‖2 = 1/σM (G) ≤ 1/
√
θ. �

III.6 Proofs of results in Section III.4

In Section III.4 we found concrete recovery guarantees for the Walsh sampling and
wavelet reconstruction, using the theorems in Section III.3. The key to deriving
Walsh-wavelet recovery guarantees boils down to estimating the quantities
µk,l, ||HPMK ||1→2 and ||G−1||2 ≤ 1√

θ
. All of these quantities depend directly

U = [Bwh, B
J0,ν
wave], and to control them we will have to estimate how the entries

of U changes for varying n, j, k and s. We will therefore start this section by
setting up notation for wavelets on the interval and stating some useful properties
of Walsh functions. Then in Section III.6.3 and III.6.4 we will estimate µk,l,
followed by a discussion of the sharpness of this estimate for ν = 2 in Section
III.6.5. We will then finish in Section III.6.6 by estimating ||HPMK ||1→2, show
how θ scales for varying M and N , and prove Theorem III.4.7 and III.4.8.

III.6.1 Wavelets on the interval and regularity

In section III.4.2 we introduced orthogonal wavelets on the real line, but we did
not make any formal definitions of the wavelets we used at the boundaries of
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the interval [0, 1). Next we consider the two boundary extensions, periodic and
boundary wavelets. To simplify the exposition, we define the following sets

Λν,j,left := {0, . . . , ν − 1}, Λν,j,mid := {ν, . . . , 2j − ν − 1},
Λν,j,right := {2j − ν, . . . , 2j − 1} Λj = Λν,j,left ∪ Λν,j,mid ∪ Λν,j,right

At each scale j ≥ J0, the periodic wavelet basis consists of the usual wavelets
and scaling functions ψj,k, φj,k for k ∈ Λν,j,mid and the periodic extended
functions φper

j,k and ψper
j,k for k ∈ Λν,j,left ∪ Λν,j,right. These are defined as

φper
j,k := φj,k|[0,1)+φj,2j+k|[0,1) for k ∈ Λν,j,left (III.57)
φper
j,k := φj,2j−ν−k|[0,1)+φj,k|[0,1) for k ∈ Λν,j,right (III.58)

and similarly for ψper
j,k . Strictly speaking we could have defined these periodic

extensions only for k = 0, . . . , ν − 2 and k = 2j − ν + 1, . . . , 2j − 1, but to unify
the notation for both boundary extensions we have chosen the former.

Next we have the boundary wavelet basis with ν vanishing moments. This
wavelet basis consists of the same interior wavelets as the periodic basis, but
with 2ν boundary scaling and wavelet functions.

φleft
k , φright

k , ψleft
k , ψright

k , for k = 0, . . . , ν − 1.

As for the interior functions we also define the scaled versions as
φleft
j,k (x) := 2j/2φleft

k (2x), φright
j,k (x) := 2j/2φright

k (2x),
ψleft
j,k (x) := 2j/2ψleft

k (2x), ψright
j,k (x) := 2j/2ψright

k (2x).
(III.59)

The names ’left’ and ’right’ corresponds to the support of these functions. That
is

suppφleft
j,k = [0, 2−j(ν + k)]

suppφright
j,k = [2−j(2j − ν − k), 1]

for k = 0, . . . , ν − 1.
In the following we shall see that all of our results holds for both periodic

and boundary wavelets, but their treatment in some of the proofs differs slightly.
To make the treatment as unified as possible we make the following definition.

Definition III.6.1. We say that φsj,k, s ∈ {0, 1} ‘originates from a periodic wavelet’
if

φ0
j,k :=


φper
j,k for k ∈ Λν,j,left

φj,k for k ∈ Λν,j,mid

φper
j,k for k ∈ Λν,j,right

, φ1
j,k :=


ψper
j,k for k ∈ Λν,j,left

ψj,k for k ∈ Λν,j,mid

ψper
j,k for k ∈ Λν,j,right

.

We say that φsj,k ‘originates from a boundary wavelet’ if

φ0
j,k :=


φleft
j,k for k ∈ Λν,j,left

φj,k for k ∈ Λν,j,mid

φright
j,2j−1−k for k ∈ Λν,j,right

, φ1
j,k :=


ψleft
j,k for k ∈ Λν,j,left

ψj,k for k ∈ Λν,j,mid

ψright
j,2j−1−k for k ∈ Λν,j,right

.
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With these functions defined now for both boundary extensions, the definition
of BJ0,ν

wave is also clear. Next we make a note on the regularity of these orthogonal
wavelets.

Definition III.6.2. Let α = k + β, where k ∈ Z+ and 0 < β < 1. A function
f : R → R is said to be uniformly Lipschitz α if f is k-times continuously
differentiable and for which the kth derivative f (k) is Hölder continuous with
exponent β, i.e.

|f (k)(x)− f (k)(y)| < C|x− y|β , ∀x, y ∈ R

for some constant C > 0.

In particular the Daubechies wavelet with 1 vanishing moment (i.e., the Haar
wavelet) is not uniformly Lipschitz as it is not continuous, whereas for ν ≥ 2
we have the constants found in table III.1 [13, p. 239]. For large ν, α grows as
0.2ν [26, p. 294]. Also note that each of the boundary functions φleft

k , φright
k and

ψleft
k , φright

k are constructed as finite linear combinations of the interior scaling
function φ and wavelet ψ. Thus all of these boundary functions has the same
regularity as φ and ψ.

ν α

2 0.55
3 1.08
4 1.61

Table III.1: The Lipschitz regularity of Daubechies wavelets with ν vanishing
moments.

III.6.2 Properties of Walsh functions

Definition III.6.3. Let x = {xi}∞i=1 and y = {yi}∞i=1 be sequences consisting of
only binary numbers. That is xi, yi ∈ {0, 1} for all i ∈ N. The operation ⊕
applied to these sequences gives

x⊕ y := {|xi − yi|}∞i=1. (III.60)

For two binary numbers xi, yi ∈ {0, 1}, we let xi ⊕ yi = |xi − yi|.

Proposition III.6.4. For j,m, n ∈ Z+ and x, y ∈ [0, 1), the Walsh function
satisfies the the following properties∫ 1

0
wn(x)wm(x) dx =

{
1 if m = n

0 otherwise
(III.61)

wn(x⊕ y) = wn(x)wn(y) (III.62)
wn(2−jx) = wbn/2jc(x) (III.63)
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Proof. Equation (III.62) and (III.61) can be found in any standard text on Walsh
functions e.g., [18], whereas the last follows by inserting j zeros in front of x’s
dyadic expansion. �

III.6.3 Bounding the inner product |〈φsj,k, wn〉|

The entries in U = [Bwh, B
J0,ν
wave], consists of 〈φsj,k, wn〉 for different values of

j, k, s and n. Thus in order to determine the local coherences we need to find
an upper bound of this inner product. Next we derive such an bound for ν ≥ 2
vanishing moments and discusses its sharpness. For ν = 1 we determine the
magnitude of each matrix entry explicitly.

Lemma III.6.5. Let wn ∈ Bwh and let φsj,k ∈ BJ0,ν
wave for ν ≥ 2. For j ≥ J0,

s ∈ {0, 1} and k ∈ Λj we have

∣∣〈φsj,k, wn〉∣∣ ≤ 2−j/22νmax
l∈Γk

{∣∣∣Wφs(·+ l)
∣∣
[0,1)

(⌊ n
2j
⌋)∣∣∣} (III.64)

where

Γk =


{0, . . . , ν + k − 1} for k ∈ Λν,j,left;
{−ν + 1, . . . , ν − 1} for k ∈ Λν,j,mid;
{k − ν + 1, . . . , 2j − 1} for k ∈ Λν,j,right.

if φsj,k originates from a boundary wavelet and

Γk = {−ν + 1, . . . , ν − 1}

if φsj,k originates from a periodic wavelet.

Proof. First notice that for any x ∈ [0, 1) we have

x

2j + k

2j =
∞∑
i=j

xi−j+12−i−1 +
j∑
i=1

ki2−j−1+i

=
∞∑
i=j

xi−j+12−i−1 ⊕
j∑
i=1

ki2−j−1+i = x

2j ⊕
k

2j .

(III.65)

Next, we only consider the interior wavelets φsj,k i.e. k ∈ Λν,j,mid. For
k ∈ Λν,j,left ∪ Λν,j,right, we need to handle the two cases where φsj,k orignates
from a periodic and boundary wavelet seperately. The arguments/calculations
for the two different boundary extensions are analogous. Also, both of these
extensions will have support less than 2ν.
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For k ∈ Λν,j,mid, notice that supp(φsj,k) = [2−j(−ν+ 1 +k), 2−j(ν+k)]. This
gives

〈
φsj,k, wn

〉
=
∫ 1

0
φsj,k(x)wn(x) dx

=
∫ 2−j(ν+k)

2−j(−ν+1+k)
2j/2φs(2jx− k)wn(x) dx

= 2−j/2
∫ ν

−ν+1
φs (x)wn

(
x+ k

2j

)
dx

= 2−j/2
ν−1∑

l=−ν+1

∫ 1

0
φs (x+ l)wn

(
x+ l + k

2j

)
dx.

Using Equation (III.65) and Proposition III.6.4 now gives

〈
φsj,k, wn

〉
= 2−j/2

ν−1∑
l=−ν+1

∫ 1

0
φs (x+ l)wn

(
x

2j ⊕
l + k

2j

)
dx

= 2−j/2
ν−1∑

l=−ν+1
wn

(
l + k

2j

)∫ 1

0
φs (x+ l)wn

( x
2j
)

dx

= 2−j/2
ν−1∑

l=−ν+1
wn

(
l + k

2j

)
Wφs0,−l

∣∣
[0,1)

(⌊ n
2j
⌋)

≤ 2−j/22νmax
l∈Γk

{∣∣∣Wφs(·+ l)
∣∣
[0,1)

(⌊ n
2j
⌋)∣∣∣} .

�

Lemma III.6.6 ([9]). Let f : [0, 1)→ R be uniformly Lipschitz 0 < α ≤ 1 then

|Wf(n)| =
∣∣∣∣∫ 1

0
f(x)wn(x) dx

∣∣∣∣ . (n+ 1)−α

for n ∈ Z+.

Theorem III.6.7. Let φsl,t ∈ BJ0,ν
wave with ν ≥ 3 and let wn ∈ Bwh. For l ≥ J0 and

2k ≤ n < 2k+1 with k ∈ Z+, we have

|
〈
φsl,t, wn

〉
|2 . 2−k2−|l−k|

for all t ∈ Λl and s ∈ {0, 1}. For n = 0 the bound hold with k = 0.

Proof. To obtain the bound above we will combine Lemma III.6.5 and Lemma
III.6.6. We start by arguing that φsl,t have the same regularity regardless of
boundary extension. Let a ∈ Γt where Γt is as in lemma III.6.5.
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If φsl,t originates from a periodic wavelet, φs0,−a|[0,1), will have Lipschitz
regularity α > 0, since both φ and ψ have this regularity. Next if φsl,t originates
from a boundary wavelet and t ∈ Λν,l,mid, φs0,−a|[0,1) will have Lipschitz regularity
α, by the same argument as above. If t ∈ Λν,l,left ∪ Λν,l,right we know from
the construction of the boundary functions [12] that these are finite linear
combinations of φl,t and ψl,t. These function will therefore posses the same
regularity α as the interior function.

Next notice from table III.1 that for ν ≥ 3 vanishing moments, we known
that α ≥ 1. Applying Lemma III.6.5 and Lemma III.6.6 then gives∣∣〈φsl,t, wn〉∣∣2 ≤ 2−l4ν2 max

a∈Γt

{∣∣∣Wφs(·+ a)
∣∣
[0,1)

(⌊ n
2l
⌋)∣∣∣2} (III.66)

. 2−l 1
(
⌊
n
2l
⌋

+ 1)2 ≤ 2−l 1
(b2k−lc+ 1)2 ≤ 2−k2−|l−k| (III.67)

where Γt depends on the boundary extension. �

Theorem III.6.8. Let wn ∈ Bwh and let φsl,t ∈ BJ0,1
wave for l ≥ 0 and t ∈ Λl. Then

|
〈
φ0
l,t, wn

〉
|2 =

{
2−l if n < 2l

0 otherwise

|
〈
φ1
l,t, wn

〉
|2 =

{
2−l if 2l ≤ n < 2l+1

0 otherwise
.

Proof. These equalities can be found in either [5] or [30]. �

III.6.4 Proof of Proposition III.4.5, III.4.10 and III.4.11

Using the above results we are now able to determine the local coherences of
U = [Bwh, B

J0,ν
wave].

Proof of Proposition III.4.5. We use the bound found in Theorem III.6.7. Recall
that M = [2J0+1, . . . , 2J0+r] and N = [2J0+1, . . . , 2J0−1+r, 2J0+r+q]. For fixed
l ∈ {1, . . . , r} and k ∈ {2, . . . , r} we have

µk,l = max
{
|
〈
φsJ0−1+l,t, wn

〉
|2 :

Nk−1≤n<Nk
t∈ΛJ0−1+l,s∈{0,1}, if l=1,

s=1 if l>1

}
. 2−(J0−1+k)2−|(J0−1+l)−(J0−1+k)| . 2−J0−k2−|l−k|

For l ∈ {1, . . . , r} and k = 1 we have N0 = 0. This gives

µk,l = max
{
|
〈
φsJ0−1+l,t, wn

〉
|2 :

0≤n<N1
t∈ΛJ0−1+l,s∈{0,1}, if l=1,

s=1 if l>1

}
. 2−(J0−1+l) . 2−J0−k2−|l−k|

�
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Proof of Proposition III.4.10. Since both BJ0,1
wave and Bwh are orthonormal, U =

[Bwh, B
J0,1
wave] is an isometry on `2(N) i.e. U∗U = I ∈ B(`2(N)). Let N = 2k for

some k ∈ N with k ≥ J0 + 1. Using Theorem III.6.8 we see that

P⊥NUPN =
{〈
φsj,t, wn

〉
:

n≥2k
s=1,J0≤j<k,t∈Λj
s=0,j=J0,t∈ΛJ0

}
= 0

which means that

(PNUPN )∗(PNUPN ) = ((PN + P⊥N )UPN )∗((PN + P⊥N )UPN )
= (UPN )∗(UPN ) = PNU

∗UPN = I ∈ CN×N .

�

Proof of Proposition III.4.11. We use the bound found in Theorem III.6.8.
Recall that M = N = [2J0+1, . . . , 2J0+r]. For fixed k, l ∈ {1, . . . , r} we have that

µk,l = max
{
|
〈
φsJ0−1+l,t, wn

〉
|2 :

Nk−1≤n<Nk
t∈ΛJ0−1+l,s∈{0,1}, if l=1,

s=1 if l>1

}
=
{

2−J0−l+1 if l = k

0 otherwise
.

�

III.6.5 About the sharpness of the local coherence bounds

As can be seen from Proposition III.4.11, the coherence bounds for ν = 1 are
sharp. However, for ν ≥ 2, we have not discussed their sharpness. In fact, none
of the results in this paper consider the case for ν = 2 vanishing moments. The
reason for this is that these wavelets have a Lipschitz regularity α ≈ 0.55, which
means that the bound in Theorem III.6.7 would have less rapid decay if we
included these wavelets in the theorem. To simplify the presentation, we have
chosen to exclude them.

We will argue that Theorem III.6.7 does not seem to extend to wavelets
with ν = 2 vanishing moments. Let M = N = [2J0+1, . . . , 2J0+r] and
U = [Bwh, B

J0,ν
wave] for ν ≥ 2. Notice that setting ν = 2 does only affect the

local coherence estimates µk,l for k ≥ l. For k < l, the local coherences are
unaffected by the regularity of the wavelet. This follows from Lemma III.6.5, by
setting |Wφs(·+ l)(0)| ≈ 1. Next consider the case where k ≥ l, then Theorem
III.6.7 suggests that µk,l/µk+1 ≈ 4 for ν ≥ 3.

We now consider table III.2 and notice that for ν = 2, all of the 18 entries in
table III.2 have values less than 4. This suggests that the bound in Theorem
III.6.7 does not extend to the case of ν = 2 vanishing moments. From the same
table we also observe that for ν = 4, the bound in Theorem III.6.7 seem to be
quite sharp. While there are a few entries that are less than 4, most are very
close, if not larger than this value.
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µk,l/µk+1,l l = 1 l = 2 l = 3
k = 2 3.017
k = 3 2.532 1.854
k = 4 3.292 2.532 1.846
k = 5 3.653 3.293 2.534
k = 6 3.828 3.653 3.293
k = 7 3.914 3.828 3.654
k = 8 3.957 3.914 3.828

µk,l/µk+1,l l = 1 l = 2 l = 3
k = 2 4.342
k = 3 6.160 3.439
k = 4 3.643 6.202 3.503
k = 5 4.060 3.639 6.286
k = 6 3.961 4.064 3.632
k = 7 4.004 3.960 4.070
k = 8 3.996 4.004 3.960

Table III.2: Left: Fraction between the local coherences for U = [Bwh, B
3,2
wave]

and M = N = [24, . . . , 211]. Right: Fraction between the local coherences for
U = [Bwh, B

4,4
wave] and M = N = [25, . . . , 212].

III.6.6 Proof of remaining results in Section III.4

Proof of Proposition III.4.4. This proposition is a consequence of Theorem 1.1
in [20]. Let SN = {wn : n = 0, . . . , N − 1} and RM be the M first function in
BJ0,ν

wave. The subspace cosine angle between SN and RM is defined as

cos(ω(RM ,SN )) = inf
f∈RM ,‖f‖=1

‖PSN f‖ where ω(RM ,SN ) ∈ [0, π/2],

and PSN is the projection operator onto SN . As both Bwh and BJ0,ν
wave are

orthonormal bases, the synthesis and analysis operators are unitary. We therefore
have

inf
f∈RM ,‖f‖=1

‖PSN f‖ = inf
x∈CM ,‖x‖2=1

‖PNUPMx‖2 (III.68)

Furthermore notice that by equation (III.56) and the definition of the balancing
property, we have

cos(ω(RM ,SN )) = inf
x∈CM ,‖x‖2=1

‖PNUPMx‖2 ≥ θ. (III.69)

Hence if U satisfies the balancing property of order θ ∈ (0, 1) for N and M , then
1/ cos(ω(RM ,SN )) ≤ 1/θ, where 1/θ > 1. Next for M ∈ N and γ > 1 we define
the stable sampling rate as

Θ(M,γ) = min(N ∈ N : 1/ cos(ω(RM ,SN )) < γ).

Rearranging the terms we see that if N , M satisfies the stable sampling rate of
order γ = 1/θ > 1 then U satisfies the balancing property of order θ for N and
M .

Theorem 1.1 in [20] states that for M = 2r, r ∈ N and for all γ > 1 there
exists a constant Sγ > 1 (dependent on γ), such that whenever N ≥ SγM ,
then 1/ cos(ω(RM ,SN )) < γ. Moreover, we have the relation Θ(M,γ) ≤
SγM = O(M). Hence if q =

⌈
log2 S1/θ

⌉
we see that the proposition hold

with N = 2k+q ≥ S1/θ2k > 2k = M . �
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Proof of Proposition III.4.6. Using Theorem III.6.7, we see that µ(PNUP⊥K ) .
K−1. This gives

‖HP⊥Kx‖22 =
r∑

k=1

Nk −Nk−1

mk

∑
i∈Ωk

∣∣∣∣ ∑
j>K

Uijxj

∣∣∣∣2

≤
r∑

k=1

Nk −Nk−1

mk

∑
i∈Ωk

(∑
j>K

√
µ(PNUP⊥K )|xj |

)2

≤
r∑

k=1
(Nk −Nk−1)µ(PNUP⊥K )

(∑
j>K

|xj |
)2

≤ Nµ(PNUP⊥K )
(∑
j>K

|xj |
)2
.
N

K
‖x‖21.

�

Proof of Theorem III.4.7. First recall that M = [2J0+1, . . . , 2J0+r] and N =
[2J0+1, . . . , 2J0+r−1, 2J0+r+q] where q ≥ 0 is chosen so that G satisfies the
balancing property of order 0 < θ < 1. From Lemma III.3.3 we therefore
have ‖G−1‖2 ≤ 1/

√
θ.

From Theorem III.3.6 we know that the matrix A in equation (III.16) satisfies
the G-RIPL with δs,M ≤ δ, provided the sample densities m ∈ Nr satisfies
mk = Nk −Nk−1 for k = 1, . . . , r0, and

mk & δ
−2 · ‖G−1‖22 · (Nk −Nk−1) ·

( r∑
l=1

µk,l · sl
)
· L, (III.70)

for k = r0 + 1, . . . , r. Next notice that Nk−Nk−1 = 2J0+k−1 for k = 2, . . . , r− 1,
while Nr − Nr−1 = 2J0+r(2q − 2−1) and N1 − N0 = 2J0+1. Using the local
coherences µk,l from Proposition III.4.5 we obtain

(Nk −Nk−1)
( r∑
l=1

µk,lsl

)
. 2J0+k2qmax{k+1−r,0}

( r∑
l=1

2−J0−k2−|l−k|sl
)

= 2qmax{k+1−r,0}
( r∑
l=1

2−|k−l|sl
)
.

Inserting this and ‖G−1‖22 ≤ θ−1 into (III.70) leads to the sampling condition in
Theorem III.4.7. �

Proof of Theorem III.4.8. The theorem is identical to Corollary III.3.7, except
that we have fixed M and N. The concrete values for these have been inserted
in condition (iv) together with the local coherences µk,l. The computation of
this can be found in the proof above. �
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IV

Abstract

We revisit the construction of wavelets on the interval with various degrees
of polynomial exactness and present a unified scheme for constructing
these, applicable to compactly supported delay-normalized wavelets. This
extends previous constructions applicable to orthogonal- or Spline wavelets.
It is explained how the corresponding discrete wavelet transform can be
made flexible w.r.t. the length of the input and the method of stable
completion is restated in the unified scheme. The contribution differs
substantially from previous ones in how results are stated and deduced:
linear algebra notation is exploited more heavily, and the use of sums and
complex index notation is reduced. This extended use of linear algebra
eases translation to software, and a general open source implementation
that exploits the presented results has been developed.

IV.1 Introduction

Wavelets on the interval are well studied, and several constructions exist for
various degrees of polynomial exactness at the primal and dual sides [1, 5, 7, 8,
13, 15]. Their practical use has been limited, however: Software involving wavelet
transforms typically abandon polynomial exactness in favour of simpler extension
strategies at the boundaries, such as periodic or symmetric extensions [22]. One
reason for this is that polynomial exactness on the interval only may reduce
spikes in wavelet coefficients near the boundaries. Therefore, little is obtained
in terms of compression, one of the main applications of wavelets. Also, to the
best of the authors knowledge, there does not exist openly available software
handling such polynomial exactness on the interval1.

Keywords: Wavelets, wavelets on the interval, boundary wavelets, polynomial exactness
Mathematics Subject Classification (2010): 42C40, 65T60

1There do, however, exist a few implementations which support a limited set of wavelets
(such as certain orthogonal Daubechies wavelets), with coefficients precomputed from [7], see
also [3, 11, 12]. The code for computing these coefficients are, however, not available.
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IV. On the unification of schemes for wavelets on the interval

This contribution is an attempt to address this lack of software, and it is
therefore closely tied to an open source implementation. In terms of linear
algebra and notation (see Section IV.1.1) the proofs are largely rewritten from
those commonly found in the literature to be minimalistic, so that translation
to software is straightforward. While many results in the literature restrict
to specific cases such as the orthogonal- or Spline cases, we show that the
deductions make sense for much more general compactly supported wavelets as
well – one only needs to assume delay-normalized wavelets (see Section IV.2),
and a common centre of support for the scaling function and its dual counterpart.
Also, the method of stable completion [4] can be generalized to this setting. The
deductions can be thought of as an extension of the Spline-based deductions
from [8] to the delay-normalized case, with substantial changes to the notation.

We remark that [16] establishes Spline wavelets on the interval in an improved
way, by keeping the primal boundary functions fixed, only modifying the dual
boundary functions. We translate the main results from [16] to the delay-
normalized setting as well. [16] makes the point that staggered supports (see
Section IV.4.1) seem to produce wavelet bases with favourable Riesz bounds. The
software implementation takes this into account. It is, however, straightforward
to modify this not to use staggered supports2, or use other bases (see [9] for
recommendations).

Although polynomial exactness at the boundaries may give little extra
in terms of applications, the software implementation hopefully can serve as
a playground for researchers experimenting with wavelets. Exploiting some
flexibility noted in [8], the implementation also opens for discrete wavelet
transforms on the interval applicable to any input size and number of resolutions.
This flexibility comes at the cost of numerical stability, however, so that putting
constraints on the length of the input is natural. (such constraints are implicit
in contributions such as [7, 16], since they operate with fixed boundary functions
at the primal side: As an example, an m-level DWT as defined in [7] is possible
only if the vector length is divisible with 2m).

IV.1.1 Notation

The paper follows notation in [19, 20], which introduce the reader to signal
processing and wavelets in a linear algebra friendly way, and in a style very
different from that common for wavelets. The books also use the same software
implementation and actually build it from scratch. The interval notation
[a, b] = {a, a+1, . . . , b} will be used to denote all integers between the two integers
a and b. If b < a, [a, b] = ∅. Similarly, [a, b) denotes the set {a, a+ 1, . . . , b− 1}.
Furthermore, for k ∈ Z, one defines in the obvious way

k[a, b] = {ka, k(a+ 1), . . . , kb} k + [a, b] = {k + a, k + a+ 1, . . . , k + b}.

These can also be combined, i.e., for k1, k2 ∈ Z, one has

k1 + k2[a, b] = {k1 + k2a, k1 + k2(a+ 1), . . . k1 + k2b}.
2Note, however, that stable completions are made in the setting of staggered supports
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Setup for wavelets on the entire real line

This notation will be used to refer to segments of matrices and vectors. It should
be clear from the context whether a range of integers, or an actual interval on the
real line, is meant. This notation will eliminate much of the extensive indexing
in wavelet literature. In particular, it will simplify referring to segments of the
DWT/IDWT matrices, as will often be needed. In the literature, a DWT/IDWT
is often expressed in terms of the filter coefficients, since these represent all entries
in those matrices. This brings one away from simple matrix-vector expressions,
and our deductions will, therefore, avoid this.

Wavelet bases for L2(R) contain an infinite number of basis functions at
each resolution, whereas wavelet bases on the interval have finitely many. It
will therefore be convenient to mix notation for finite and infinite matrices, and
allowing finite matrices and vectors to have any given legal range of row- and
column indices. In particular, in an expression on the form φb0,0

...
φb0,N−1

 = CT

φ0,−R+1|[0,∞)
...

φ0,N−1|[0,∞)

 ,

it will be assumed that the column vector on the left hand side has row indices
[0, N − 1], and that the column vector on the right hand side has row indices
[−R + 1, N − 1]. The matrix C can be any infinite matrix, but when written
as above, it is assumed that the range of column- and row indices in C are
[0, N − 1]× [−R+ 1, N − 1], i.e., that the indices match. Since any range of row-
and column-indices may be legal, entries with index 0 or (0, 0) will occasionally
be underlined (as in filter notation in signal processing), to make positions clear.
The MatLab notation that a simple colon denotes all elements along an axis,
will also be followed.

IV.1.2 Organization of the paper

The paper is organized as follows. In Section IV.2 the general setup for wavelets
is introduced, and in Section IV.3 the setup is specialized to the interval. In
sections IV.4 and IV.5 the scaling functions and the corresponding mother
wavelets are constructed. While those sections were adapted to the left end of
the interval, Section IV.6 explains how delay-normalizedness ensures that the
construction at the right end can be obtained from a simple mirroring operation
of the left end. In Section IV.7 the result in [16] are put into the context of
this contribution. Some notes on the software implementation can be found in
Section IV.8. A more detailed explanation of this implementation can be found
in the technical report [2].

IV.2 Setup for wavelets on the entire real line

Let φ and ψ be the scaling function and the mother wavelet of a compactly
supported wavelet. Assume also that φ is exact of order N (meaning that all
polynomials of degree less than N can be written as linear combinations of
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the translates {φ(t − n)}n). Similarly let φ̃, ψ̃, and Ñ be the corresponding
quantities for the dual wavelet. The resolution space V0 is the space spanned by
the translates φ0,n(t) = φ(t− n), while the detail space W0 is the space spanned
by ψ0,n(t) = ψ(t− n). For m > 0, the resolution- and detail spaces Vm and Wm

are the spaces spanned by the dilated functions

φm,n(t) = 2m/2φ0,n(2mt) ψm,n(t) = 2m/2ψ0,n(2mt), (IV.1)

respectively. Similar definitions apply for φ̃ and ψ̃. One also writes

φm = {φm,n}∞n=−∞ ψm = {ψm,n}∞n=−∞,

so that Vm = span(φm) and Wm = span(ψm). When φ gives rise to a
multiresolution analysis the Vm are nested (i.e., Vm ⊂ Vm+1), and Vm =
Vm−1 ⊕Wm−1, so that

Cm = {φm−1,n, ψm−1,n}∞n=−∞

(i.e., where the dilated scaling functions and mother wavelets are listed in
alternating order) is also a basis for Vm. This alternating order of the basis
functions is non-standard in wavelet literature, where all φm−1,n-functions usually
preceed the ψm−1,n. This reordering has the advantage that the index n into
the basis Cm represents time, and that change of coordinate matrices involving
those bases will be banded.

On the dual side one similarly defines φ̃m, ψ̃m, Ṽm, W̃m, and C̃m. The
Gramm matrix of two bases B = {bi}i and C = {cj}j , denoted (〈B, C〉), is
the matrix with entries 〈bi, cj〉. If (〈B, C〉) = I one also says that B and C
are biorthogonal. A wavelet is called biorthogonal if the corresponding bases
are biorthogonal, i.e., (〈φm, φ̃m〉) = (〈Cm, C̃m〉) = I. Some of the most used
biorthogonal wavelets were established in [6]. Some of the most used orthonormal
wavelets, for which φ = φ̃, ψ = ψ̃, and (〈φm,φm〉) = (〈Cm, Cm〉) = I (i.e., both
φm and Cm are orthonormal bases for Vm) were established in [10]. Denoting by
supp(f) the support interval of the function f , a convention therein is that

supp(φ) = supp(ψ) = [−N + 1, N ]. (IV.2)

The change of coordinates from φm to Cm is called the (one-level) Discrete
Wavelet Transform, or DWT, and denoted H (i.e., H = PCm←φm). Its inverse is
the IDWT, denoted by G (i.e., G = Pφm←Cm), and can be written as

G =
(
. . . [φm−1,0]φm [ψm−1,0]φm [φm−1,1]φm [ψm−1,1]φm . . .

)
.

(IV.3)
Since the bases here are doubly infinite, the component with index zero is
emphasized by underlining it, i.e., the coordinate vector of f(t) = c−1φ0,−1 +
c0φ0,0 + c1φ0,1 in φ0 will be written as [f ]φ0 = (c−1, c0, c1). Coefficients which
are zero were not listed here, as is common in signal processing filter notation.

H and G can be expressed in terms of filters as follows [19, 20, Chapter 3]:
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1. The even-indexed rows of H coincide with those of a (low-pass) filter
matrix, denoted H0.

2. The odd-indexed rows of H coincide with those of a (high-pass) filter
matrix, denotes H1.

3. The even-indexed columns of G coincide with those of a (low-pass) filter
matrix, denoted G0.

4. The odd-indexed columns of G coincide with those of a (high-pass) filter
matrix, denoted G1.

Thus, H can be alternatively defined as the unique matrix compatible with filters
H0 and H1, and G as the unique matrix compatible with filters G0 and G1. It is
known (Exercise 5.10 in [19, 20]) that if the filters of a wavelet are finite impulse
response (FIR), then there exist an integer d and α ∈ R so that

(H1)n = (−1)nα−1(G0)n−2d (G1)n = (−1)nα(H0)n+2d. (IV.4)

Since the alternating sign corresponds to a shift in frequency by π, this says
that, up to multiplication with a scalar,

1. H1 is the high-pass filter corresponding to the low-pass filter G0,

2. G1 is the high-pass filter corresponding to the low-pass filter H0.

When d = 0 in (IV.4), (φ, ψ) is said to be delay-normalized [22]. Clearly there is
no loss in generality in assuming this, as changing d simply reorders the mother
wavelet basis functions with a shift. Delay-normalized wavelets will be assumed
in the following, as this will simplify some proofs. Wavelets with symmetric
filters are clearly delay-normalized.

The dual wavelet transforms, denoted by H̃ and G̃, are the matrices
compatible with the filters, H̃0 = GT0 and H̃1 = GT1 , and G̃0 = HT

0 and
G̃1 = HT

1 . Let [L,R] = supp(φ), and [L̃, R̃] = supp(φ̃) denote the left and right
supports of φ and φ̃. Defining the support of a filter as the smallest interval
containing the nonzero filter indices, one has that supp(G0) = supp(φ) = [L,R],
and supp(G̃0) = supp(φ̃) = [L̃, R̃]. When the wavelet is delay-normalized one
has that

supp(G1) = supp(H0) = supp(G̃0
T ) = [−R̃,−L̃]

supp(G̃1) = supp(HT
1 ) = supp(GT0 ) = [−R,−L].

These formulas tell us which scaling functions at scale 1 contribute in ψ and
ψ̃, a fact which will be useful. It is straightforward to find the supports of the
mother wavelets from the supports of the filters (see for instance Exercise 5.16
in [19, 20]). In particular, a delay-normalized wavelet can be recognized in terms
of the supports by the requirement

supp(ψ) = [(L− R̃+ 1)/2, (R− L̃+ 1)/2]. (IV.5)
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Clearly (φ0,n, ψ), as well as (φ̃0,n, ψ̃), are also delay-normalized for any n, as
translating φ and φ̃ with the same n gives scaling functions for a new biorthogonal
wavelet.

For an orthonormal wavelet the filters and the dual filters equal, and H is
orthogonal. From the deductions above, one sees that supp(G0) = supp(GT1 ), in
order for an orthonormal wavelet to be delay-normalized. It is straightforward
to check that assumption (IV.2) implies that (IV.5) holds, so that this support
assumption guarantees a delay-normalizedness.

IV.3 Setup for wavelets on the interval

When restricting to an interval of the form [0,M ], the wavelet bases φm, ψm,
and the functions φm,n, ψm,n, will be replaced with new bases φbm, ψbm, and
modified functions φbm,n, ψbm,n. Here b is short for boundary, and only those
functions supported near the boundaries are modified (called left- and right
edge functions). Initial candidates for the left edge scaling functions will first
be defined. It will then be seen how changes of coordinates can be applied to
make those functions orthonormal/biorthogonal. The right edge functions will
be obtained by repeating the left edge analysis, following a mirroring operation.
The following definition is a generalization of that in [7].

Definition IV.3.1 (Initial left edge functions). Let {ck}N−1
k=0 and {c̃k}Ñ−1

k=0 be bases
for the polynomials of degree at most N − 1 and Ñ − 1, respectively, and let
K ≥ max(−L,N), K̃ ≥ max(−L̃, Ñ) be integers so that N −K = Ñ − K̃. The
initial left edge scaling functions are defined on [0,∞) by

φb0,k(t) =
{∑K−1

n=−R+1 ck(n)φ0,n(t) for 0 ≤ k < N

φ0,k+K−N (t) for N ≤ k
(IV.6)

φ̃b0,k(t) =
{∑K̃−1

n=−R̃+1 c̃k(n)φ̃0,n(t) for 0 ≤ k < Ñ

φ̃0,k+K̃−Ñ (t) for Ñ ≤ k,
(IV.7)

and the sets φb0 = {φb0,k}k≥0 and φ̃b0 = {φ̃b0,k}k≥0. V b0 and Ṽ b0 will denote the
spaces spanned by φb0 and φ̃b0, respectively.

Some comments are in order.

• The first part of these functions are replacements of the {φ0,k}K−1
k=K−N .

Moreover, span
(
{φb0,k}k≥0

)
is independent of the choice of {ck}N−1

k=0 , and
will contain all polynomials of degree < N on (0,∞). This follows since∑∞

n=−∞ ck(n)φ0,n is a polynomial on (−∞,∞), and its restriction to (0,∞)
can be written as

φb0,k +
∑
n≥K

ck(n)φ0,n = φb0,k +
∑
n≥N

ck(n+K−N)φb0,n ∈ span
(
{φb0,k}k≥0

)
.
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• The second part of these functions are translates of the scaling function,
all supported on [0,∞) since K ≥ −L, K̃ ≥ −L̃. They are called internal
functions. The index shift K−N = K̃− Ñ is present for technical reasons:
In order to compute an m-level DWT on the interval, we will see that K
must be chosen accordingly. The {φ0,k}K−N−1

k=0 in φ0 have no counterpart
in φb0. This is reflected in the IDWT matrix in that rows are shifted K−N
entries downwards. However, K −N basis functions will be added later,
so that the net effect is that there is no shift.

• N −K = Ñ − K̃ secures the same alignment of the shifted basis functions
in φb0 and φ̃b0, as in φ0 and φ̃0. One has flexibility in choosing K and K̃.

• {φb0,n}n≥N can be expressed in terms of {φb1,n}n≥N , so that the internal
functions inherit a refinability relation. This follows since φb0,N = φ0,K

can be expressed in terms of {φ1,n}n≥2K+L = {φb1,n}n≥N+K+L, and since
K + L ≥ 0.

• φbm,n are defined from φb0,n using (IV.1) for m > 0. Bases φbm and spaces
V bm are defined similarly.

Let C be the matrix with entries Cn,k = ck(n) for (n, k) ∈ [−R+ 1,K)× [0, N),
and C̃ the matrix with entries C̃k,n = c̃k(n) for (n, k) ∈ [−R̃ + 1, K̃) × [0, Ñ).
Definition IV.3.1 says that φb0,0

...
φb0,N−1

 = CT

φ0,−R+1|[0,∞)
...

φ0,K−1|[0,∞)

 and

 φ̃b0,0
...

φ̃b0,Ñ−1

 = C̃T

φ̃0,−R̃+1|[0,∞)
...

φ̃0,K̃−1|[0,∞)

 .

(IV.8)

C clearly has linearly independent columns, and thus full rank N . Any N rows
of C give a nonsingular matrix since any polynomial of degree N − 1 is uniquely
identified from N distinct points.

Lemma IV.3.2. The {φb0,k}
N−1
k=0 are

1. linearly independent on [0,∞), and linearly independent from the
{φb0,k}k≥N ,

2. orthogonal to the {φ̃b0,k}k≥Ñ ,

3. orthogonal to the {ψ̃0,k}k supported on [0,∞).

Proof. If {φb0,k}
N−1
k=0 are linearly dependent on [0,∞) there must exist a non-zero

linear combination so that
∑N−1
k=0 αkφ

b
0,k(t) = 0 for all t ∈ [0,∞). Letting α be
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the column vector with entries αi, and using (IV.8) one gets

αT

 φb0,0
...

φb0,N−1

 = αTCT

φ0,−R+1|[0,∞)
...

φ0,K−1|[0,∞)

 = (Cα)T

φ0,−R+1|[0,∞)
...

φ0,K−1|[0,∞)

 .

Now, since {φ0,n|[0,∞)}K−1
n=−R+1 are linearly independent on [0,∞), it is clear

that Cα = 0. But since C has linearly independent columns it follows that
α = 0, so that the {φb0,k}

N−1
k=0 are linearly dependent as well. 1. now follows

from the obvious fact that {φb0,k}
N−1
k=0 and {φ0,k}k≥K = {φb0,k}k≥N are linearly

independent on [0,∞). 2. and 3. follow also easily, since {φ̃b0,k}k≥Ñ are
supported on [0,∞). �

It is known that the modified edge functions satisfy a refinement relation
(This fact will be reproved in our setting in the following), so that the new spaces
V bm also give rise to a multiresolution analysis. One can thus define change of
coordinate matrices Hb and Gb as before, replacing the counterparts on the entire
real line. If the first N scaling functions/mother wavelets need modification,
(IV.3) translates to

Gb =
(
[φb0,0]φb1 [ψb0,0]φb1 · · · [φb0,N−1]φb1 [ψb0,N−1]φb1 [φb0,N ]φb1 [ψb0,N ]φb1 · · ·

)
,

with all but the last two listed functions being modified versions. Since the
unmodified functions inherit known refinability relations, the two columns listed
last above are known. For the first columns one will write(

[φb0,0]φb1 [ψb0,0]φb1 · · · [φb0,N−1]φb1 [ψb0,N−1]φb1
)

=
(
X
Z

)
,

with X representing the contribution of the modified functions, Z that of the
internal functions, i.e.

φb0,0
ψb0,0
...

φb0,N−1
ψb0,N−1

 = XT

 φb1,0
...

φb1,N−1

+ ZT

(
φb1,N
...

)
. (IV.9)

Denoting the even- and odd-indexed columns in X and Z, by Xe, Ze and Xo, Zo
(throughout the paper the letters e and o will indicate even and odd indices),
respectively, (IV.9) is equivalent to φb0,0

...
φb0,N−1

 = (Xe)T

 φb1,0
...

φb1,N−1

+ (Ze)T
(
φb1,N
...

)
(IV.10)
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 ψb0,0
...

ψb0,N−1

 = (Xo)T

 φb1,0
...

φb1,N−1

+ (Zo)T
(
φb1,N
...

)
. (IV.11)

Since the left edge functions span the same space, regardless of the choice of
polynomials, it makes sense to consider changes of coordinates between different
candidates for edge functions. One can apply several such coordinate changes,
in order to obtain functions φb0,n with desired properties. The following result
concerns how Xe, Ze, and C are updated by such coordinate changes (note that
Lemma IV.3.2 guarantees the uniqueness of Xe and Ze in a factorization of the
form (IV.10)).

Lemma IV.3.3. Assume that a change of coordinates is applied to the left edge
functions. Let {φb,10,k}

N−1
k=0 and {φb,20,k}

N−1
k=0 be bases, P = P{φb,10,k}←{φ

b,2
0,k}

the change
of coordinate matrix from the second to the first basis. If (IV.13) holds for
{φb,10,k}

N−1
k=0 , then (IV.13) also holds for {φb,20,k}

N−1
k=0 , and the change of coordinates

from {φb,10,k}
N−1
k=0 to {φb,20,k}

N−1
k=0 transforms Xe, Ze, and C according to

Xe → P−1XeP Ze → ZeP C → CP. (IV.12)

Proof. One has that φb,20,0
...

φb,20,N−1

 = PT

 φb,10,0
...

φb,10,N−1

 = PT

XT
e

 φb,11,0
...

φb,11,N−1

+ ZTe

 φb1,N
...

φb1,K+R+N−2




= PT

XT
e (P−1)T

 φb,21,0
...

φb,21,N−1

+ ZTe

 φ1,K
...

φ1,2K+R−2




= (P−1XeP )T

 φb,21,0
...

φb,21,N−1

+ (ZeP )T

 φb1,N
...

φb1,K+R+N−2

 .

One also has that φb,20,0
...

φb,20,N−1

 = PT

 φb,10,0
...

φb,10,N−1

 = PTCT

φ0,−R+1|[0,∞)
...

φ0,K−1|[0,∞)



= (CP )T

φ0,−R+1|[0,∞)
...

φ0,K−1|[0,∞)

 .

(IV.12) follows. �
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IV. On the unification of schemes for wavelets on the interval

IV.4 Finding the left edge scaling functions

First the refinement relations satisfied by the modified edge functions is
established.

Lemma IV.4.1. For each choice of polynomial basis {ck}N−1
k=0 one has that φb0,0

...
φb0,N−1

 = (Xe)T

 φb1,0
...

φb1,N−1

+ (Ze)T

 φb1,N
...

φb1,K+R+N−2

 , (IV.13)

with

Xe = C†GIXC Ze = GIZC, (IV.14)

where

• Xe has indices from [0, N)× [0, N),

• Ze has indices from [N,K +R+N − 2]× [0, N),

• IX = [−R+ 1,K)× 2[−R+ 1,K),

• IZ = [K, 2K +R− 2]× 2[−R+ 1,K),

and where C† is the generalized inverse of C. Xe is nonsingular.

Here it is assumed that C† has row indices equal to the column indices of C,
and vice versa.

Proof. The first part of this proof corresponds to Lemma 3.1 in [8]. Since V b0
contains all polynomials of degree less than N , C can be chosen so that

φb0,k(t) +
∑
n≥K

ck(n)φ0,n(t) = tk

on [0,∞). Inserting 2t for t and multiplying with
√

2 one also has

φb1,k(t) +
∑
n≥K

ck(n)φ1,n(t) =
√

2(2t)k.

Comparing these and using matrix notation one sees that φb0,0
...

φb0,N−1

+ CT

(
φ0,K
...

)
= D


 φb1,0

...
φb1,N−1

+ CT

(
φ1,K
...

) , (IV.15)

where D is N ×N and diagonal with {2−k−1/2}N−1
k=0 on the diagonal. Since

• φ0,K ∈ Span({φ1,n}n ≥ K) (alternatively, φb0,N ∈ Span({φb1,n}n≥N )),
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Finding the left edge scaling functions

• supp(φb0,N−1) ends to the right at R+K − 1,

• supp(φ1,2K+R−2) = supp(φb1,K+R+N−2) also ends to the right at R+K−1,

replacing {φ1,k}k≥K with {φb1,k}k≥N gives (IV.13) for this choice of φb0,k, with Xe

and Ze having the stated indices. Since clearly Xe = D, it must be nonsingular.
Since (IV.13) holds and Xe is nonsingular for this initial basis, Lemma IV.3.3
says that this will be the case for any other polynomial basis as well.

Now, (IV.8) can be written φb0,0
...

φb0,N−1

 = CT

φ0,−R+1|[0,∞)
...

φ0,K−1|[0,∞)


= CT (G[−R+1,2K+R−2],2[−R+1,K))T

 φ1,−R+1|[0,∞)
...

φ1,2K+R−2|[0,∞)


= CT (GIX )T

φ1,−R+1|[0,∞)
...

φ1,K−1|[0,∞)

+ CT (GIZ )T

 φ1,K
...

φ1,2K+R−2


= (GIXC)T

φ1,−R+1|[0,∞)
...

φ1,K−1|[0,∞)

+ (GIZC)T

 φb1,N
...

φb1,K+N+R−2

 ,

(IV.16)

where the matrix product with GT was split into two parts on the third line.
Noticing that (IV.13) can also be rewritten as φb0,0

...
φb0,N−1

 = (Xe)TCT

φ1,−R+1
...

φ1,K−1

+ (Ze)T

 φb1,N
...

φb1,K+N+R−2


Comparing with (IV.16) and using the linear independence of {{φ1,n}n≥−R+1}
on [0,∞), one sees that

GIXC = CXe GIZC = Ze.

Multiplying with C† to the left in the first equation gives the first equation
in (IV.14). �

Some remarks on the initial choice of polynomials can be found in the
technical report [2].
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IV. On the unification of schemes for wavelets on the interval

IV.4.1 Change of coordinates for staggered supports

We will now try to make a change of coordinates so that the new bases satisfy

supp(φ0,k+K−N ) ∩ [0,∞) = supp(φb0,k). (IV.17)

One says that the supports are staggered. For n ≥ N (IV.17) follows by definition.
For all n < N , staggeredness is seen to be equivalent to the lower N ×N -block
of C being upper triangular. The subspace of span

(
{φb0,k}

N−1
k=0

)
consisting of

functions on the form
∑K−1
n=−R+1 c(n)φ0,n with c so that c(K −N + k) = · · · =

c(K − 1) = 0, clearly has dimension k. If the φb0,k have staggered supports,
φb0,k will lie in this k-dimensional subspace, so that standard orthogonalization
procedures give us a unique (up to signs) orthonormal basis of functions with
staggered supports. Staggered supports can thus be used to single out unique
boundary functions (as partially noted in [7]).

More generally we will say that {fi}i have staggered supports if i < j,
supp(fi) = [0, A], and supp(fj) = [0, B] implies that A < B. This more general
definition also comprises the setting in [16], and also possible supports for the
mother wavelets. A coordinate change transforming the fi to functions with
staggered support can clearly be interpreted in terms of bringing a matrix to
echelon form.

To obtain bases with staggered supports, Lemma IV.3.3 says that one needs
to find a change of coordinates P so that the lower N ×N -block of CP is upper
triangular. Clearly, this can be achieved by means of a QR-factorization, or an
LU factorization. The technical report [2] contains further details.

IV.4.2 Change of coordinates for orthogonalization

In the following we will assume that N = Ñ (the deductions are a bit more
complicated when N 6= Ñ , see the technical report [2] for further details). Since

• {φb0,k}k≥N and {φ̃b0,k}k≥N are biorthogonal,

• {φb0,k}
N−1
k=0 and {φ̃b0,k}k≥Ñ are mutually orthogonal,

• {φb0,k}k≥N and {φ̃b0,k}Ñ−1
k=0 are mutually orthogonal,

in order to obtain biorthogonal bases for V bm and Ṽ bm, it is enough to find
coordinate changes ensuring biorthogonality of {φb0,k}

N−1
k=0 and {φ̃b0,k}Ñ−1

k=0
3.

One of the two sets may here contain internal scaling functions. We will see
that a coordinate change can be made so that it does not affect these. With
Y =

(〈
{φb,10,k}

N−1
k=0 , { ˜φb,10,k}Ñ−1

k=0

〉)
the Gramm matrix of the initial bases, one

3We do not go into details on when the Gramm matrix of these bases is invertible, but
see [8, 18] for proofs for those considered in the literature
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Finding the left edge scaling functions

sees that, when N = Ñ (which will be assumed for simplicity in the following) ,

〈φb,10,k,
˜φb,10,l〉 =

∑
1≤r,s<N

(Xe)r,k(X̃e)s,l〈φb,10,r,
˜φb,10,s〉+

∑
r≥0

(Ze)r,k(Z̃e)r,l,

where it was used that 〈φb,10,r, φ̃
b,1
0,s〉 = 〈φb,11,r, φ̃

b,1
1,s〉. This gives

Y = (Xe)TY X̃e + (Ze)T Z̃e, (IV.18)

Solving AV BT = F is equivalent to solving the linear system (A⊗B)vec(V ) =
vec(F ) [14], where ⊗ is the (left) Kronecker product, and where vec(X) is the
vector where the rows of X have been stacked horizontally and then transposed
to a column vector. Equation (IV.18) can therefore be written as

(I − (Xe)T ⊗ (X̃e)T )vec(Y ) = vec((Ze)T Z̃e) (IV.19)

(see also Theorem 3.2 in [17]. This paper also elaborates on the general
computation of Gramm matrices), where I is the N2 ×N2 identity matrix4.

Denote bases by

B = {φb,10,k}
N−1
k=0 C = {φb,20,k}

N−1
k=0

B̃ = { ˜φb,10,k}Ñ−1
k=0 C̃ = { ˜φb,20,k}Ñ−1

k=0 ,

and let P = PB←C and P̃ = PB̃←C̃ be the corresponding coordinate changes (i.e.,
from the old to the new bases). It is straightforward to show that

(〈C, C̃〉) = PT (〈B, B̃〉)P̃ . (IV.20)

Since one wants bases C and C̃ so that (〈C, C̃〉) = I, and since upper triangular
coordinate changes preserve staggered supports, one seeks upper triangular
matrices P and P̃ so that PT (〈B, B̃〉)P̃ = I, i.e., so that

Y = (PT )−1P̃−1.

Now, if Y = LU is an L1U-factorization 5 of Y , one can choose our upper
triangular coordinate changes as P = (L−1)T and P̃ = U−1. In the orthogonal
case where B = B̃ and C = C̃, Y is positive semidefinite, and thus has a unique
Cholesky factorization Y = LLT , so that one can choose P = P̃ = (L−1)T as
our coordinate change6.

In the following, it will always be assumed that φb0 and φ̃b0 are biorthogonal,
both with staggered supports.

4Xe has eigenvalues {2−k−1/2}N−1
k=0 . It follows that ρ(Xe) < 1, so that I− (Xe)T ⊗ (X̃e)T

is nonsingular, so that Y is unique.
5It is a major issue whether Y is nonsingular in the general case. Some special cases are

handled in [8, 17, 18]. For Y to have a unique L1U-factorization one also needs the principal
leading submatrices to be nonsingular. The software implementation handles these issues only
numerically. Other factorizations such as a LU1 or LDU could also be chosen.

6It has been noted in the literature that Y can be badly conditioned. [9] proposes to use a
Singular Value Decomposition of Y to address this problem. [9] does not assume staggered
supports.
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IV. On the unification of schemes for wavelets on the interval

IV.5 Stable completion and the left edge mother wavelets

We define ψb0,k = ψ0,k+K−N and ψ̃b0,k = ψ̃0,k+K̃−Ñ . This aligns (φb0,n, ψb0,n) in
the same way as (φ0,n, ψ0,n). First the ψb- and ψ̃b-functions that satisfy old
refinement relations will be characterized.

Lemma IV.5.1. The following hold.

1. If N0 is chosen so that 2N0 ≥ 2N −K − 1 + R̃, then {ψb0,n}n≥N0 can be
expressed in terms of {φb1,k}k≥N .

2. If Ñ0 is chosen so that 2Ñ0 ≥ 2Ñ − K̃ − 1 +R, then {ψ̃b0,n}n≥Ñ0
can be

expressed in terms of {φ̃b1,k}k≥Ñ .

Proof. Since supp(G1) = [−R̃,−L̃] when the wavelet is delay-normalized, only
{φ1,k}k≥−R̃+1 contribute in ψ. ψb0,N0

= ψ0,N0+K−N can therefore be expressed
in terms of

{φ1,k}k≥2(N0+K−N)−R̃+1 = {φb1,k}k≥2N0+K−N+1−R̃.

2N0 +K −N + 1− R̃ ≥ N thus implies that ψb0,N0
can be expressed in terms of

{φb1,k}k≥N , and 1. follows. 2. follows in the same way. �

In the following it will be assumed that N0 and Ñ0 satisfy the properties
in Lemma IV.5.1, and we will set N ′0 = max(N0, Ñ0). The set {ψb0,k}k≥N ′0 =
{ψ0,k}k≥N ′0+K−N accounts for all but the first N ′0 + K − N mother wavelets
{ψ0,k}k≥0 in V b1 , and similarly on the dual side. Define

A = {{φb0,n}n≥0, {ψb0,n}n≥N ′0} Ã = {{φ̃b0,n}n≥0, {ψ̃b0,n}n≥N ′0},

and write A = span(A), Ã = span(Ã). The previous lemma states that A ⊂ V b1 ,
and Ã ⊂ Ṽ b1 and A and Ã, are clearly biorthogonal by construction. Denote by
A⊥ the orthogonal complement of A in Ṽ b1 .

If g ∈ A, g̃ will denote the vector in Ã with the same index, and vice versa.
We define, for f ∈ A and f̃ ∈ Ã,

P (f) =
∑
g∈A
〈f, g̃〉g P̃ (f̃) =

∑
g̃∈Ã

〈f̃ , g〉g̃.

Note that

• P equals the identity on A, and equals zero on Ã⊥.

• I − P equals the identity on Ã⊥, and equals zero on A.

• The spaces A and Ã⊥ are linearly independent: If v ∈ V b1 lies in both
these spaces it must be on the form v =

∑
g∈A αgg, and must for all h̃ ∈ Ã

satisfy 〈
∑
g∈A αig, h̃〉 = αh = 0, where biorthogonality was used.
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Stable completion and the left edge mother wavelets

• V b1 = A⊕ Ã⊥, and v = P (v) + (v − P (v)) is the unique decomposition of
v ∈ V b1 in A⊕ Ã⊥. P is thus a generalization of orthogonal projection, for
which A = Ã.

Lemma IV.5.2. Assume that N0 ≥ R and Ñ0 ≥ R̃, and that they satisfy the
properties in Lemma IV.5.1. Assume also that the supports of φb1 and φ̃b1 are
staggered. Then the following hold.

1. Let
S = [0,K −N +R) ∪

(
K −N +R− 1 + 2[1, N0 −R]

)
Then |S| = N0 + K − N and

{
{(I − P )φb1,k}k∈S , {ψb0,n}

N ′0−1
n=N0

,A
}

is a
linearly independent set.

2. Let
S̃ = [0, K̃ − Ñ + R̃) ∪

(
K̃ − Ñ + R̃− 1 + 2[1, Ñ0 − R̃]

)
Then |S̃| = Ñ0 + K̃ − Ñ and

{
{(I − P̃ )φ̃b1,k}k∈S̃ , {ψ̃b0,n}

N ′0−1
n=Ñ0

, Ã
}

is a
linearly independent set.

Remark IV.5.3. The requirements N0 ≥ R, Ñ0 ≥ R̃) are a bit difficult to grasp.
If these are not fulfilled, the set [0,K −N +R) will not be contained in S (the
way this set is defined), and this will imply that one can’t find enough functions
(using the strategy of the proof) to find a new basis for V b. Since one would like
N0 and Ñ0 to be as small as possible (to inherit as many of the old refinement
relations as possible), the implementation computes these as

N0 = max
(⌈

2N −K − 1 + R̃

2

⌉
, R

)
,

Ñ0 = max
(⌈

2Ñ − K̃ − 1 +R

2

⌉
, R̃

)
.

(IV.21)

Proof. Only the first statement is considered since the second statement follows
from the same line of arguments.

It is easily checked that |S| = N0 + K − N , and that the last and largest
entry of S is

K −N +R− 1 + 2(N0 +K −N − (K −N +R)) = 2N0 +K −N −R− 1

Due to staggered supports and Lemma IV.4.1, the highest index among boundary
basis functions at resolutions 1 which contribute in φb0,0 is

K +R+N − 2− 2(N − 1) = K −N +R.

Also, the highest index among boundary basis functions at resolutions 1 which
contribute in φb0,k is K −N +R+ 2k. It follows that the coordinate matrix of
{φb0,k}k≥0 and {φb1,k}k∈S relative to φb1 has different highest contributing indices.

193



IV. On the unification of schemes for wavelets on the interval

In particular, any finite set of these columns must be linearly independent, a
fact which will be used in the final part of the proof.

Since clearly {ψb0,k}
N ′0−1
n=N0

⊂ Ã⊥, also {{(I − P )φb1,k}k∈S , {ψb0,k}
N ′0−1
n=N0

} ⊂ Ã⊥,
so that linear independence of Span{{(I − P )φb1,k}k∈S , {ψb0,k}

N ′0−1
n=N0

} and A is
immediate. It remains to show that {{(I −P )φb1,k}k∈S , {ψb0,k}

N ′0−1
n=N0

} are linearly
independent. Assume that

∑
k∈S

αk(I − P )φb1,k −
N ′0−1∑
n=N0

γnψ
b
0,n = 0,

where α is a vector indexed over S, γ a vector indexed over [N0, N
′
0). But then

∑
k∈S

αkφ
b
1,k −

N ′0−1∑
n=N0

γnψ
b
0,n =

∑
k∈S

αkPφ
b
1,k +

∑
k∈S

αk(I − P )φb1,k −
N ′0−1∑
n=N0

γnψ
b
0,n

=
∑
k∈S

αkPφ
b
1,k ∈ A.

This means that

∑
k∈S

αkφ
b
1,k =

∑
n≥0

βnφ
b
0,n +

∑
n≥N ′0

γnψ
b
0,n +

N ′0−1∑
n=N0

γnψ
b
0,n

=
∑
n≥0

βnφ
b
0,n +

∑
n≥N0

γnψ
b
0,n,

(IV.22)

for some vector β, and where γ was expanded to a vector with indices from
[N0,∞). Viewing φb0,n as functions on [L−R+ 1,∞) (see Equation (IV.6)), and
similarly for φb1,k, we can ensure that (IV.22) holds also on (−∞,∞), by adding
a finite linear combination of functions φ1,k, k ≤ −R (i.e., scaling functions
supported on (−∞, 0) on the left hand side:

∑
k≤−R

rkφ1,k +
∑
k∈S

αkφ
b
1,k =

∑
n≥0

βnφ
b
0,n +

∑
n≥N ′0

γnψ
b
0,n +

N ′0−1∑
n=N0

γnψ
b
0,n

=
∑
n≥0

βnφ
b
0,n +

∑
n≥N0

γnψ
b
0,n.

Taking inner products with φ̃b0,n one sees that βn = 0 for n sufficiently large.
Taking inner products over (−∞,∞) with {ψ̃0,n}n≥N0+K−N on both sides (these
may not be supported on [0,∞)), one has that 〈φb1,k, ψ̃0,N0+K−N 〉(−∞,∞) = 0
for k in S and for k ≤ −R since

1. the largest entry of S is 2N0 + K − N − R − 1, so that the largest φ1,k
contributing on the left hand side is φ1,2(N0+K−N)−R−1,
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Stable completion and the left edge mother wavelets

2. only {φ̃1,k}k≥2(N0+K−N)−R+1 contribute in ψ̃0,N0+K−N (see the proof of
Lemma IV.5.1),

3. φ1 and φ̃1 are biorthogonal.

Since also 〈φb0,n, ψ̃b0,k〉(−∞,∞) = 0 for all k, it follows that γn = 0 for n ≥ N0.
That also αk = βn = 0 for k ∈ S, and for smaller n, follows since, as noted
above, from the fact that any finite set of columns in the coordinate matrix of{
{φb1,k}k∈S , {φb0,n}n≥0

}
relative to φb1 are linearly independent. It follows that{

{(I − P )φb1,k}k∈S , {ψb0,n}
N ′0−1
n=N0

,A
}
is a linearly independent set. �

In the next section, this analysis is repeated at the right edge, and it follows
from a simple dimension count that the two mentioned linearly independent sets
are in fact bases for V b1 and Ṽ b1 . If S = {k1, . . . , k|S]}, one therefore defines for
N −K ≤ n < N0,

ψb0,n = (I − P )φb1,kn ψ̃b0,n = (I − P̃ )φ̃b1,kn .

We point out that when N −K < 0 this gives negative index sets. In particular
the matrix Gb takes the form

Gb =
(

[ψb0,N−K ]φb1 · · · [ψb0,−1]φb1 [φb0,0]φb1 [ψb0,0]φb1 [φb0,1]φb1 [ψb0,1]φb1 · · ·
)

(IV.23)

Lemma IV.5.4. The coordinate matrix of the {{(I −P )φb1,k}k∈S relative to φb1 is

I:,S −Gb:,2[0,T ](G̃bS,2[0,T ])T ,

where T is the largest integer so that 2T ≤ 2N0 −R− L̃− 1, i.e.,

T = N0 +
⌊
−R+ L̃+ 1

2

⌋
(IV.24)

Proof. In the proof above it was shown that 〈φb1,k, ψ̃b0,n〉 = 0 for k ∈ S and
n ≥ N ′0, so that

P (φb1,k) =
∑
n≥0
〈φb1,k, φ̃b0,n〉φb0,n.

Now, the φ̃b0,n can be expressed in terms of {φ̃b1,r}r≥2n+K̃−Ñ+L̃, and since the
largest index in S is 2N0 + K −N − R − 1, one can have contribution in the
sum above only when n satisfies

2N0 +K −N −R− 1 ≥ 2n+ K̃ − Ñ + L̃.
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IV. On the unification of schemes for wavelets on the interval

Since N −K = Ñ − K̃, this occurs when 2n ≤ 2N0 −R− L̃− 1. This gives the
expression for T . One obtains

P (φb1,k) =
T∑
n=0
〈φb1,k, φ̃b0,n〉φb0,n =

(
φb0,0 · · · φb0,T

)
(G̃bk,2[0,T ])T

=
(
φb1,0 φb1,1 · · ·

)
Gb:,2[0,T ](G̃bk,2[0,T ])T .

It follows that

(I − P )φb1,k = φb1,k −
(
φb1,0 φb1,1 · · ·

)
Gb:,2[0,T ](G̃bk,2[0,T ])T .

This gives the individual columns in the coordinate matrix of the {{(I −
P )φb1,k}k∈S relative to φb1, so that this matrix is I:,S −Gb:,2[0,T ](G̃bS,2[0,T ])T . �

Remark IV.5.5. A T̃ also needs to be computed for the dual wavelet (i.e.,
T̃ = Ñ0 +

⌊
− R̃+L+1

2

⌋
).

Remark IV.5.6. The previous lemma does not provide any row limits. To deduce
such limits, note first that φb0,T can be expressed in terms of {φb1,k}

2T+K−N+R
k=0 .

Note also that, since by definition 2T ≥ 2N0 −R− L̃− 2, it follows that

2N0 +K−N −R− 1 ≤ 2T +R+ L̃+ 2 +K−N −R− 1 = 2T + 1 + L̃+K−N.

Since L̃ + 1 ≤ R, this is ≤ 2T + R + K − N . Since the largest entry in S is
2N0 +K −N −R− 1, and after dropping rows that are zero, this proves that
the coordinate matrix of the {{(I − P )φb1,k}k∈S can also be written relative to
{φb1,0, . . . , φb1,2T+K−N+R}, and as

I[0,2T+K−N+R],S −Gb[0,2T+K−N+R],2[0,T ](G̃bS,2[0,T ])T .

One now redefines {ψb0,k}
N0−1
k=N−K as the functions {(I − P )φb1,k}k∈S , and set

ψb0 = {ψb0,k}k≥N−K , and

Cb1 = {{ψb0,k}−1
k=N−K , φ

b
0,0, ψ

b
0,0, φ

b
0,1, ψ

b
0,1, . . .},

with the 1-level DWT the change of coordinates from φb1 to Cb1. Set now(
Xo

Zo

)
= I:,S −Gb:,2[0,T ](G̃bS,2[0,T ])T , (IV.25)

i.e., ψ
b
0,N−K
...

ψb0,N0−1

 = (Xo)T

 φb1,0
...

φb1,N−1

+ (Zo)T
(
φb1,N
...

)
. (IV.26)

The column indices of Xo and Zo are in [N − K,N0 − 1]. As for the scaling
functions, we address how coordinate changes affect Xo and Zo.
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Lemma IV.5.7. Assume that a change of coordinates is applied to the left
edge mother wavelets without altering the left edge scaling functions, and let
{ψb,10,k}

N0−1
k=N−K and {ψb,20,k}

N0−1
k=N−K be bases, and P = P{ψb,10,k}←{ψ

b,2
0,k}

the change
of coordinate matrix from the second to the first basis. The change of coordinates
from {ψb,10,k}

N0−1
k=N−K to {ψb,20,k}

N0−1
k=N−K transforms Xo and Zo according to(
Xo

Zo

)
→
(
Xo

Zo

)
P. (IV.27)

Proof. One gets as aboveψ
b,2
0,N−K
...

ψb,20,N0−1

 = PT

ψ
b,1
0,N−K
...

ψb,10,N0−1

 = PT

XT
o

 φb1,0
...

φb1,N−1

+ ZTo

(
φ1,N
...

)

= (XoP )T

 φb1,0
...

φb1,N−1

+ (ZoP )T
(
φ1,N
...

)
.

(IV.27) follows. �

(IV.27) is applied twice. First the supports of {ψb0,k}
N−1
k=0 is made staggered

by finding a coordinate change which brings
(
Xo

Zo

)
to echelon form. Secondly,

the mother wavelets at the left edge are bi-orthogonalized, preserving their
staggeredness. One now needs the (N0 +K−N)× (Ñ0 +K−N) Gramm matrix

Y =
(〈
{ψb0,k}

N0−1
k=N−K , {ψ̃b0,k}

Ñ0−1
k=N−K

〉)
.

Similarly to Equation (IV.18) it follows that Y = (Xo)T X̃o + (Zo)T Z̃o (there is
no Y on the right hand side here, however, since there are no ψ-functions on the
right hand side). With Y found, one proceeds as in the end of Section IV.4 to
find the required changes of coordinates.

IV.6 The right edge

Up to now K and K̃ have denoted the number of scaling functions at resolution 1
needed to synthesize {φb0,k}

N−1
k=0 and {φ̃b0,k}Ñ−1

k=0 . In analyzing the right edge, the
flexibility in these numbers needs to be exploited, in order to obtain a Discrete
Wavelet Transform on the interval for the dimension in question. K and K̃ will
now be assigned different values at the left and right edge, and we write KL and
K̃L for the left edge values, KR and K̃R for the right edge values. Since the
value N0 depended on K as well, its notation is changed to N0,L and N0,R.

All functions are assumed to be defined on [0,M ]. The operation m(f) =
f(M − t) ”mirrors” functions on [0,M ] so that the left and right edges are
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IV. On the unification of schemes for wavelets on the interval

swapped. For the right edge, we reuse the left edge analysis, and the right
edge functions are found so that their mirrors are on the form that has been
considered, i.e., delay-normalized, possibly with the same supports. If this is
the case, the right edge analysis simply boils down to repeating the left edge
analysis with reversed filter coefficients. The following result addresses this.

Theorem IV.6.1. Assume that (φ, ψ) is delay-normalized. Then

1. (m(φ0,n),m(ψ0,M−1)) is delay-normalized for any n.

2. m(ψ0,M−1)) has the same support as ψ if and only if L+R = L̃+ R̃ (i.e.,
supp(φ) and supp(φ̃) have the same midpoints).

3. m(φ0,n) has the same support as φ if and only if n = M − (L+R).

Some comments are in order.
1. The case L + R = L̃ + R̃ = 0 includes wavelets with symmetric filters,

while the case L+R = L̃+ R̃ = 1 includes orthogonal wavelets with the support
assumption (IV.2).

2. Recall that (φ0,n, ψ) is delay-normalized for any n, as long as (φ, ψ) is.
This means that, when L+R = L̃+ R̃, one can always assume that the common
value is 0 or 1 (by changing the scaling function at the start). Moreover, the
result says that

• when L + R = 0, (m(φ0,M ),m(ψ0,M−1))) is delay-normalized, with the
same supports as (φ, ψ).

• when L+R = 1, (m(φ0,M−1),m(ψ0,M−1))) is delay-normalized, with the
same supports as (φ, ψ).

In both cases the new pairs of delay-normalized functions are adjacent basis
functions, the only difference being that their internal order differs (something
an implementation must take into account). In summary, when L+R = L̃+ R̃
one can always assume equal supports at the left and right edge, and that the
mirroring process preserves the ordering of the basis functions.

3. It is straightforward to prove thatm(φm,2mM−(L+R)) has the same support
as φm,0, in the same way one proves the third statement. If L + R = L̃ + R̃
and (φ, ψ) is delay-normalized, it also follows that m(ψm,2mM−1) has the same
support as ψm,0. In other words, when constructing a multiresolution analysis
it is desirable to consider the sets {φm,n}2

mM−(L+R)
n=0 and {ψm,n}2

mM−1
n=0 , since

a mirroring operation on each of these simply produce new functions with the
same supports.

4. When L+R 6= L̃+ R̃ = 0 the right edge analysis is still possible, but the
supports at the right edge will be different from those at the left edge. Also,
the relative ordering at the right edge needs to be handled differently for the
wavelet and the dual wavelet, making things more complicated. The software
implementation, therefore, handles only the case L+R = L̃+ R̃, and this will
be assumed in the following.
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The right edge

Note that, assuming that L+R = 0 or 1, from the two filters G0 and G1 one
can compute everything (L, R, L̃, and R̃, as well as H0 and H1, N and Ñ). In
particular, there is no need to specify the positions of the filter coefficients, since
these can also be inferred. The software implementation takes advantage of this
fact.

Proof of Theorem IV.6.1. One has that

supp(m(φ0,M )) = [−R,−L] supp(m(φ̃0,M )) = [−R̃,−L̃].

In order for m(ψ0,n) to ensure delay-normalized mirrors, Equation (IV.5) says
that supp(m(ψ0,n) must equal [(−R+ L̃+ 1)/2, (−L+ R̃+ 1)/2]. Also, m(ψ0,n)
has support M − n + [(L̃ − R − 1)/2, (R̃ − L − 1)/2]. Comparing one obtains
that 1/2 = M − n− 1/2, so that n = M − 1. This proves the first claim.

Equal supports for supp(m(ψ0,M−1) and ψ requires that (using Equa-
tion(IV.5) again)

[(L− R̃+ 1)/2, (R− L̃+ 1)/2] = [(−R+ L̃+ 1)/2, (−L+ R̃+ 1)/2],

i.e., L + R = L̃ + R̃. Equal supports for φ and m(φ0,n) requires that
[L,R] = M − n− [R,L], so that n = M − (L+R). �

The sets φbm and ψbm are now redefined as follows:

1. φbm: Take {φm,n}
2mM−(L+R)
n=0 , remove the first KL functions and replace

them with N modified functions, remove the last KR functions and replace
them with N modified functions.

2. ψbm: Take {ψm,n}2
mM−1
n=0 , remove the first N0,L functions and replace them

with KL −N +N0,L modified functions, remove the last N0,R functions
and replace them with KR −N +N0,R modified functions.

Both these are linearly independent (simply repeat the arguments from
Section IV.5 by also including modified functions at the right edge), and one
can define V bm = Span(φbm), W b

m = Span(ψbm) (and their duals, and one still has
biorthogonality) as before. A simple count gives that

dim(V bm) = 2N + 2mM − L−R−KR −KL + 1 dim(W b
m) = 2mM. (IV.28)

It is easily checked that dim(V bm)+dim(W b
m) = dim(V bm+1), and since V bm∪W b

m ⊆
V bm+1, it follows that Cbm and φbm are alternative bases for V bm (redefining Cbm
in the obvious way), so that one can define the DWT/IDWT as before. The
following result provides a requirement on KL + KR in order for an m-level
DWT to be computable.

Theorem IV.6.2. Let dim(x) be the number of components in x. An m-level
DWT and an m-level dual DWT of x are possible only if

dim(x) + L+R− 2N +KL +KR − 1 is divisible by 2m. (IV.29)

199



IV. On the unification of schemes for wavelets on the interval

Remark IV.6.3. The value of M is not needed in the computations, and is
eliminated in favour of dim(x). The proof of this theorem makes it clear that
M must be chosen as

M = 2−m(dim(x) + L+R− 2N +KL +KR − 1) (IV.30)

in order for x to be the coordinates in a wavelet basis on [0,M ]. In addition to
Equation (IV.29), we need also take into account that KL and KR must satisfy
the requirements of Definition IV.3.1.

Proof of Theorem IV.6.2. Since x are coordinates in φbm, (IV.28) says that

dim(x) = 2N + 2mM − L−R−KR −KL + 1,

so that anm-level DWT is possible if and only if dim(x)+L+R−2N+KL+KR−1
is divisible by 2m. Equation (IV.30) follows by reorganizing this. By combining
(IV.28) for k = 1 and k = m and eliminating M , one also deduces

dim(φb1) = 21−mdim(x) + (1− 21−m)(2N − L−R−KL −KR + 1), (IV.31)

which we also will have use for. Since KL −N = K̃L − Ñ , and L+R = L̃+ R̃,
the same requirement is needed for a dual m-level DWT as well. �

The condition from Theorem IV.6.2 is not sufficient for an m-level DWT to
be computable, however: It may be that the smallest resolution spaces do not
have room for all the boundary functions needed in the construction. Details on
this can be found in [2].

In summary, the software first finds (for a given m and dim(x)) KL +KR

from Equation (IV.29), and then chooses KL and KR so that they are as equal
as possible.

Of particular interest are the cases where no shift in the basis functions is
needed, i.e., when we can set KL = KR = N . Important cases are

1. dim(x) = M2m + 1 when L+R = L̃+ R̃ = 0 (for instance wavelets with
symmetric filters),

2. dim(x) = M2m when L + R = L̃ + R̃ = 1 (for instance orthonormal
wavelets).

IV.7 Biorthogonal Spline Wavelets on the interval as
defined in [16]

[16] gives a more refined construction of Biorthogonal Spline wavelets on
the interval where the primal boundary functions are fixed, and directly
defined from the Schoenberg-Spline basis with equidistant knots on the interval
[21]. All internal primal scaling functions are included, thereby changing the
multiresolution minimally. This differs from the previous part of the paper,
where internal functions may be absorbed in the boundary functions, leading to
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Biorthogonal Spline Wavelets on the interval as defined in [16]

more changes to the multiresolution at the boundaries (in terms of boundary
functions with wilder oscillations). This is particularly the case when K and
K̃ are increased to adapt the multiresolution to a given vector length. The
strategy in [16], however, is not adaptable to different vector lengths: For this, a
combination with the strategy from the previous part of the paper is needed.

Let us explain how one can extend the results from [16] to the general
delay-normalized case, including how to make stable completions. One clearly
needs s = min(R − L − 1, N) boundary adapted functions at the primal side,
and s̃ = min(R̃ − L̃ − 1, Ñ) boundary adapted functions at the dual side.
With d := L + s − L̃ − s̃ ≥ 0, this modifies equations (IV.6) and (IV.7) in
Definition IV.3.1 to

φb0,k(t) =
{∑−L−1

n=−R+1 ck(n)φ0,n(t) for 0 ≤ k < s

φ0,k−L−s(t) for k ≥ s
(IV.32)

φ̃b0,k(t) =
{∑−L̃−1

n=−R̃+1 c̃k(n)φ̃0,n(t) for d ≤ k < d+ s̃

φ̃0,k−L−s(t) for k ≥ d+ s̃,
(IV.33)

so that we need to construct d functions {φ̃b}d−1
k=0 on the dual side (it is easily

checked that d = N − 2 in the case of Spline wavelets, agreeing with the
construction in [16]). These are defined recursively as

 φ̃b0,0
...

φ̃b0,d−1

 = (G̃b:,2[0,d))T



φ̃b1,0
...

φ̃b1,d−1
φ̃b1,d
...

φ̃b1,d+s̃−1
φ̃b1,d+s̃

...


.

This is simply a restatement of Equation (4.3) in [16] with all values of k there
combined: G̃b:,2[0,d) represents the refinement relations for the functions {φ̃b}d−1

k=0
we seek to construct (these refinement relations were previously denoted by X̃e

and Z̃e). We will assume that the nonzero indices in column n of G̃be come at
indices [n+ 1, x+ 2n] (i.e., we assume staggered supports, and that the φb0,n can
be defined in terms of φb0,n+1, . . . , φ

b
0,d−1, i.e., iteratively in terms of previously

constructed functions). This is again all compatible with [16], with the additional
complication of finding a number x so that unique refinement relations can be
found. The following result is the delay-normalized generalization of Theorem
4.13 in [16], and explains how to find the columns in G̃b iteratively, and the
value for x.

201



IV. On the unification of schemes for wavelets on the interval

Theorem IV.7.1. Define t = n +
⌊
x+s+1

2
⌋
, and assume that z is a solution to

the linear system 〈
 φb0,0

...
φb0,t−1

 ,

 φ̃b1,n+1
...

φ̃b1,x+2n

〉
 z = en.

Define column n of G̃be so that (G̃be)[n+1,x+2n],n = z, and zero elsewhere, and
define

φ̃b0,n = ((G̃be)[n+1,x+2n],n)T

 φ̃b1,n+1
...

φ̃b1,x+2n


Then 〈φb0,k, φ̃b0,n〉 = δk,n for all k. Moreover, the linear system is square if
x = s+ 1 (in which case t = n+ s+ 1).

The value of x here is again compatible with the statements for the Spline
case in [16]. We do not prove that the coefficient matrix of the above system is
invertible. As commented in [16], numerical experiments show this to be true
for the most common values of N an Ñ in the Spline case, but a general proof
for this was not given.

Proof. If k ≥ s (i.e., φb0,k is internal), only the {φ1,t}t≥2k−2s−L contribute in
φb0,k = φ0,k−L−s. If n < d (i.e., φ̃b0,n is one of the functions we seek to construct),
only the

{φ̃b1,t}x+2n
t=n+1 = {φ̃b1,t}d−1

t=n+1 ∪ {φ̃b1,t}d≤t≤x+2n

contribute in φ̃b0,n. In {φ̃b1,t}d≤t≤x+2n only the {φ̃1,t}t≤x+2n−L−s contribute.
Thus, if 2k − 2s− L > x+ 2n− L− s (i.e., 2k > 2n+ x+ s), we have that

〈φb0,k, φ̃b0,n〉 =
〈
φb0,k, ((G̃be)[n+1,d−1],n)T

φ̃
b
1,n+1
...

φ̃b1,d−1

〉 .
In particular, 〈φb0,k, φ̃b0,d−1〉 = 0 when 2k > 2d− 2 + x+ s.

Assume now that 〈φb0,k, φ̃b0,n′〉 = 0 for n′ = n + 1, . . . , d − 1, k > x. Using
the above, for 2k > 2n+ x+ s (i.e., k ≥ n+

⌊
x+s+1

2
⌋

=: t),

〈φb0,k, φ̃b0,n〉 =
〈
φb0,k, ((G̃be)[n+1,d−1],n)T

φ̃
b
1,n+1
...

φ̃b1,d−1

〉

=
〈

((Gbe)2k−L−s+[L,R],k)T

 φb1,2k−s
...

φb1,2k−s−L+R

 , ((G̃be)[n+1,d−1],n)T

φ̃
b
1,n+1
...

φ̃b1,d−1

〉 ,
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which is zero by assumption (since 2k − s > 2n+ x ≥ x). Note that t = x+ n if
and only if

x+ n = n+
⌊
x+ s+ 1

2

⌋
,

which is seen to hold if x = s + 1 (this agrees with x = N in the spline case).
We have that〈 φb0,0

...
φb0,t−1

 , φ̃b0,n

〉
=
〈 φb0,0

...
φb0,t−1

 , ((G̃be)[n+1,x+2n],n)T

 φ̃b1,n+1
...

φ̃b1,x+2n

〉

=

〈
 φb0,0

...
φb0,t−1

 ,

 φ̃b1,n+1
...

φ̃b1,x+2n

〉
 (G̃be)[n+1,x+2n],n,

and we have biorthogonality if this equals en (since orthogonality with {φb0,r}r≥t
was shown to hold above). This implies that (G̃be)[n+1,x+2n],n (and thus the
entire column n of G̃be) can be found by solving the stated linear system. �

To obtain the stated coefficient matrix one can compute〈
 φb0,0

...
φb0,n+s

 ,

 φ̃b1,n+1
...

φ̃b1,s+1+2n

〉


=((Ge)b:,[0,n+s])T

〈(φb1,0...
)
,

 φ̃b1,n+1
...

φ̃b1,s+1+2n

〉


=((Gbe):,[0,s+n])T
(〈(

φb1,0
...

)
,

φ̃
b
1,n+1
...

φ̃b1,d−1

〉

〈(
φb1,0
...

)
,

 φ̃b1,d
...

φ̃b1,d+s̃−1

〉〈(φb1,0...
)
,

 φ̃b1,d+s̃
...

φ̃bs+1+2n

〉)

=((Ge)b:,[0,s+n])T
((

0n+1,d−n−1
Id−n−1

) (
Y

C̃[−L+1,−L̃),:

) (
0d+s̃,L̃−L+2n+2
IL̃−L+2n+2

))
,

where we set

Y =
〈 φb0,0

...
φb0,s−1

 ,

 φ̃b0,d
...

φ̃b0,d+s̃−1

〉 .
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This can be found as in Section IV.4.2, with further in the technical report [2],
and where C̃ was defined from (IV.33) as in Section IV.3. It is now clear that

〈 φb0,0
...

φb0,d+s̃−1

 ,

 φ̃b0,0
...

φ̃b0,d+s̃−1

〉 =
(
Id Y

0s̃,d C̃[−L+1,−L̃),:

)
.

Since this is upper triangular, one can proceed as in [16] to biorthogonalize while
preserving staggered supports.

It is not too hard to generalize the arguments from Section IV.5 in order
to obtain a stable completion also here. Simply note that the quantity K −N
needs to be replaced by −L− s (compare Definition IV.3.1 and (IV.33)). This
modifies the definition of the sets S and S̃ as well. The set S̃ is ‘punctured’ with
d values due to the addition of the {φ̃b0,k}d−1

k=0.
Currently, the software implementation does not support a delay-normalized

generalization of the results in [16]. There are two reasons for this. First of all,
keeping the primal boundary functions fixed is not compatible with adaptability
to the input length, one of the main features of the software implementation (and
there is no consensus on how to combine the strategy from [16] with absorption
of inner functions in the boundary functions). Secondly, one would need some
canonical boundary functions at the primal side in the general delay-normalized
case, similarly to those obtained from the Schoenberg Spline basis in the Spine
case.

IV.8 Notes on the implementation

This paper spares the reader for many tedious calculations needed for the software
implementation. The necessary details for this can be found in the technical
report [2], and can be summarized as follows.

• What are the smallest vector sizes so that a DWT/IDWT is possible (i.e.,
so that the left and right boundary functions do not interact)?

• Adoption of a lifting-based approach to the interval.

• Preconditioning (this was addressed in [7] for the orthogonal case, but [2]
addresses this more generally).

• One has freedom in how to scale the modified boundary functions. [2]
computes Gramm matrices as described in [17], in order to find the norms
of the modified functions, and uses these to scale them accordingly.

• Computation of the Gramm matrices when N 6= Ñ .

All code related to the paper can be found at https://github.com/oyvindry/wl
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