
Time-robust Optimal and Fair
Automated Decisions

Making automated decisions that are
optimal over time with regard to both
fairness and utility: An experimental

study of fairness in automated decision
makers and objective functions

Aleksander Wang-Hansen

Thesis submitted for the degree of
Master in Data Science

60 credits

Department of Informatics
Department of Mathematics

Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2020

Time-robust Optimal and
Fair Automated Decisions

Making automated decisions that are
optimal over time with regard to both
fairness and utility: An experimental
study of fairness in automated decision

makers and objective functions

Aleksander Wang-Hansen

c© 2020 Aleksander Wang-Hansen

Time-robust Optimal and Fair Automated Decisions

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract

Fairness is an inherently important aspect of decision-making in general,
and with automated algorithms increasingly making decisions impacting
our lives it is of paramount importance that the decisions they make be
fair according to some fairness criterion and that this criterion is open to
scrutiny. This is important both to ensure people are treated fairly, but
also to ensure that the public, in general sceptical of machines having
power, doesn’t stop the promising field of automated decision-making in
it’s tracks.

This thesis explores a Bayesian approach to optimizing decisions in settings
where we have little data and high uncertainty. We seek to optimize the
decisions with regard both to the utility of the decision-maker and to
the decisions being fair. Finally we seek to take the decisions that give
the optimal utility and fairness not only for the decisions taken at the
present, but for all decisions taken now and in the future, by also placing
a value on the information gained from our decisions.

The results we were seeking to replicate did not, and our hypothesised
method for improving that method resulted in no improvement. We
therefore offer a framework for exploring approaches related to methods
for optimizing a combination of fairness and utility, and of different utility
functions, along with some reflections on the failures of the methods
tested and possible other approaches to test out going forward.

i

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Christos Dimi-
trakakis. Firstly for your invaluable course introducing me both to automated
decision-making and to the aspect of fairness therein. Secondly for all your
guidance during the writing of this thesis, and for carefully crafting your input
to allow me to find my own solutions to the problems I was facing.

I would also like to thank my co-supervisors, Magdalena Ivanovska and Fabio
Massimo Zennaro for guiding me through my initial research phase, for pointing
me in the direction of fairness from a causal perspective, and for always replying
promptly and thoroughly when I asked for input and feedback.

A big thank you to the faculty at the University of Oslo Institutes of Mathematics
and Informatics responsible for the Master of Data Science program, led by
Geir Olve Storvik, for their great efforts in figuring out and creating such a
holistic study programme covering the wide span of the nascent field of Data
Science.

Furthermore I must express my deep appreciation for my employer, Kolonial.no,
and my boss Nina Wahlberg, for always supporting me and never asking me to
compromise between my thesis and my work, and for offering me the computing
power I needed on their computing platform when my Google Cloud funding ran
out. Thanks also to my supervisor Kjetil Åmdahl-Sævik for pointing out the
qualities of the Ranger optimizer when I was stuck with unconverging policies
in difficult objective functions.

Thanks to Google Cloud for providing me with computing power when my
experimentation got serious and beyond the capabilities of home computers.

And last but not least, a big thank you to my family: To Sine for always
encouraging me in my efforts, never complaining about the long nights and
weekends I spent in front of the computer and for inspiring me to take on the
effort in the first place. Thank you to aunt Anveig and all the grandparents for
taking care of the children while I worked, and finally to Eivind and Askild, for
making it all worthwhile.

iii

Contents

Abstract i

Acknowledgements iii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Why Automated Decisions . 1
1.2 Fairness . 2
1.3 Contribution . 6
1.4 Outline . 7
1.5 Definitions and Symbols . 8

2 The Problem 11
2.1 The Setting . 12
2.2 Utility . 12
2.3 Fairness . 13
2.4 Future discount . 15
2.5 Utility versus fairness weighting 16

3 The Setting 19
3.1 Low-dimensional setting . 20
3.2 Extended setting - higher dimensional input 22

4 Policies 33
4.1 Transforming the input . 33
4.2 Transforming the output . 34
4.3 Static policy . 34
4.4 Adaptive policy . 34

5 Optimization 35
5.1 Main optimization loop . 35
5.2 Expected Utility functions . 36

v

Contents

5.3 Optimizer stepping functions 39
5.4 Convergence . 39
5.5 Automating gradient calculation 40

6 Experiments 41
6.1 Preparation - tuning optimizer and metrics 41
6.2 Comparing the results . 42
6.3 Simulating . 43
6.4 Low-dimensional with static policy 44
6.5 Low-dimensional with adaptive policy 46
6.6 High-dimensional with static policy 50
6.7 High-dimensional with adaptive policy 52

7 Conclusion 57
7.1 Summary of results . 57
7.2 Discussion . 57
7.3 Further work . 58

Appendices 59

A The First Appendix 61
A.1 Utility calculation . 61
A.2 More complex networks as policies 62
A.3 Experiment settings . 62

B The Second Appendix 63
B.1 Experiment details . 63
B.2 Results . 63

Bibliography 67

vi

List of Figures

3.1 Low-dim data graph . 20
3.2 Low-dim data pairplot . 21
3.3 High-dim data graph . 24
3.4 High-dim data pairplot . 25
3.5 High-dim simulated data pairplot 31

6.1 Mean fair utilty with distribution for each of the utility calculations
across all λ’s . 44

6.2 Mean fair utility over all simulation for all utility calculations at
each timepoint for each λ . 45

6.3 Mean fair utility across time and simulations for all optimizers for
each value of λ . 46

6.4 Mean fair utilty with distribution for each of the utility calculations
across all λ’s . 47

6.5 Mean fair utility over all simulation for all utility calculations at
each timepoint for each λ . 48

6.6 Mean fair utility across time and simulations for all optimizers for
each value of λ . 49

6.7 Mean fair utilty with distribution for each of the utility calculations
across all λ’s . 50

6.8 Mean fair utility over all simulation for all utility calculations at
each timepoint for each λ . 51

6.9 Mean fair utility across time and simulations for all optimizers for
each value of λ . 52

6.10 Mean fair utilty with distribution for each of the utility calculations
across all λ’s . 53

6.11 Mean fair utility over all simulation for all utility calculations at
each timepoint for each λ . 54

6.12 Mean fair utility across time and simulations for all optimizers for
each value of λ . 55

B.1 Mean fair utilty with distribution for each of the utility calculations
across all λ’s . 64

B.2 Mean fair utility over all simulation for all utility calculations at
each timepoint for each λ . 64

vii

List of Figures

B.3 Mean fair utility across time and simulations for all optimizers for
each value of λ . 65

viii

List of Tables

1.1 Definitions and Symbols . 9

A.1 Experiment Parameter values . 62

ix

List of Algorithms

1 Approximating fairness probability distributions from simulated
data . 15

2 Generating low-dimensional data 21

3 Generating high-dimensional data 25

4 Simulating high-dimensional data 31

5 Generalized Gradient Ascent optimizer 36

6 Empirical Fair Utility . 37

7 Marginal Utility . 37

8 Shallow Utility . 38

9 Recursive Utility function . 38

10 Convergence checker . 40

11 Simulator . 43

xi

CHAPTER 1

Introduction

1.1 Why Automated Decisions

Every day a staggering number of decisions needs to be made. This ranges from
personal decisions about minute details in a single persons life, to significant,
strategic decisions made by private citizens, businesses, and organizations; or
decisions about personalized recommendations for services. Already in 1954
there was evidence of cases where automated decision making was preferrable
to human decision making (Meehl 1954) with simple statistical methods outper-
forming trained psychological clinicians in predicting patient outcomes. Since
this controversial point was introduced the evidence in its support has grown
(Grove et al. 2000).

These days there is more and more focus on decisions being data-driven with
well-documented reasoning behind the decision being made. Part of the reason
for this drive is the realization that people frequently balance information
unevenly and, based on their own personal experiences, introduce unconscious
biases in their decisions.

In the sphere of personalized recommendations, particularly by online businesses,
the sheer number of decisions being made and the available time for a decision
to be made excludes manual decision making.

Lately, automated decision making through machine learning has been seen by
many as a solution to unfairness often prevalent in human decision making based
on bias, subjectiveness and favouritism. In the past few years, however, it has
been shown that there are many challenges in this regard also when it comes to
automated decision making by computers. Reasons for this unfairness in naive
algorithms for machine learning-based decision makers are many: There could
be problems with the data used for training such as biased data, unbalanced data
or cencored data (Chouldechova and Roth 2018), it could be due to uncertainty
about the model itself (Dimitrakakis et al. 2017), or it could be due to biases in
the objective function. It might even be due to unconscious or conscious biases
in the way the world is modelled.

1

1. Introduction

1.2 Fairness

In general, fairness in decision making is an inherently desirable trait as we see
our world today. One reason for this is the ethical viewpoint that in our current
society we think it is right and good when people are treated equally regardless
of what group they belong to or what traits they possess. Another is that the
legitimacy of any decision, and of any decision-making process, depends on
how it is percieved, and right now the appearance of fairness in any decision is
vital to its legitimacy. The perception of fairness is even more important for
automated decision makers1 than for humans as it appears that we tolerate
more faults from human decision makers than from machines.

In order to measure the fairness of a decision, we need to define what constitutes
a fair decision. So far, several definitions of fairness have been introduced. In
order to structure these definitions we will perform four dichotomous splits:

• Focus: Is the focus on fairness relative only to outcome, or to outcome
given some measure of quality or fit of the individuals in question. The
latter is the “similar outcome for similar individuals” criterion from Dwork
and Ilvento 2018.
In using the ‘similar outcome for similar individuals’ it also becomes
vital to define how we measure similarity. If we measure similarity,
directly or indirectly, based on the very traits or group belongings that
we wish to avoid discriminating on, then we are simply institutionalizing
discrimination.
If we focus instead only on the outcome, then any hiring process will
not be able to use, say, university education, as a sorting criterion if
completing a university education might be more prevalent in one group
than in another.

• Stochasticity: Are we judging fairness based on the realized outcome, or
on the expected outcome? In the first case a lottery is terribly unfair, in
the second case it is perfectly fair. This is the ex-post and ex-ante fairness
in Kearns, Roth, and Wu 2017 where they also include a third, ex-interim,
variant between the two.

• Individual vs group: Are we looking at individual fairness or group fairness?
Under group fairness the interest is rather that the link between actions
and outcomes does not differ significantly between groups Under individual
fairness it is difficult to use the conventional measures of fairness because
you don’t have two groups for whom you may examine some statistical
properties. Kusner et al. 2017 introduced a novel way of approaching
individual fairness in which they use counterfactual fairness using causal
modelling., i.e., measuring how different the action would have been if an
individual had belonged to a different group.

1By an automated decision maker we mean a machine capable of returning a decision
to a problem given a set of inputs by applying some algorithm. This could be through the
use of hard-coded heuristics, through statistical or machine learning, or so-called artificial
intelligence. In principle, for the discussion here, it could equally well be a manually applied
algorithm without the use of machines, except for the argument about speed and volume of
decisions.

2

1.2. Fairness

• Symmetry (over time): Do we require decisions to be perceived as fair by
the people exposed to them only as they happen, or also when the action
has already taken place? If a sense of fairness means to not be treated
worse than others, and we only require a decision to appear fair to the
person currently being affected by the decision, then we can relax our
fairness criteria to use asymmetric fairness where we can make decisions
that are more beneficial to people over time. This is the “fairness-in-
hindsight” of Gupta and Kamble 2018.

Individual fairness that depends solely on the outcome of a decision is often
difficult to measure and impossible to satisfy unless we focus on the expected
outcome. In many scenarios the only way to satisfy it completely would be
to make the same decision for everyone. In other scenarios it may well be
impossible. For example, we can not let everyone be prime minister. It could
be solved by giving everyone an equal chance to be selected, i.e. a lottery, thus
treating everyone the same, and every individual will have the same expected
outcome.

One problem with focusing on group fairness is that we are limited to making
one specific criterion to split individuals into groups, meaning we give no regard
to all other possible criteria that might be used. If we split by ethnicity, do we
then not care about fairness between genders? Sexual orientation? Religious
affiliation? On the other hand if we want to satisfy group fairness based on
every conceivable group split we quickly approach individual fairness.

If we only focus on the outcome in group fairness, it is fairly simple. We need
to satisfy “demographic parity” Liu et al. 2018, i.e. each side of a division
created by the decisions taken should have similar demographics. In order to
measure fairness it is sufficient to see how large a deviation there is between
the demographic makeup of the whole population and of each subset of the
population the decision maker creates.

For group fairness, using the principe of “similar outcome for similar individuals”,
two popular definitions at the moment are Calibration and Balance.

Definition 1.2.1 (Kleinberg, Mullainathan, and Raghavan 2016). Kleinberg,
Mullainathan, and Raghavan (2016) defines these fairness criteria in the context
of a classification problem where

the positive class consists of the people who constitute positive
instances, and the negative class consists of the people who constitute
negative instances. For example, for criminal defendants, the positive
class could consist of those defendants who will be arrested again
within some fixed time window, and the negative class could consist
of those who will not.

Each person also belongs to one of two groups, labeled 1 or 2, and
we would like our decisions to be unbiased with respect to the
members of these two groups. In our examples, the two groups

3

1. Introduction

could correspond to different races or genders, or other cases where
we want to look for the possibility of bias between them.

Informally, risk assessments are ways of dividing people up into sets
based on their feature vectors σ (potentially using randomization),
and then assigning each set a probability estimate that the people
in this set belong to the positive class. Thus, we define a risk
assignment to consist of a set of “bins” (the sets), where each bin is
labeled with a score vb that we intend to use as the probability for
everyone assigned to bin b.

• Calibration within groups requires that for each group t, and each bin b
with associated score vb, the expected number of people from group t in b
who belong to the positive class should be a vb fraction of the expected
number of people from group t assigned to b.

• Balance for the negative class requires that the average score assigned to
people of group 1 who belong to the negative class should be the same as
the average score assigned to people of group 2 who belong to the negative
class. In other words, the assignment of scores shouldn’t be systematically
more inaccurate for negative instances in one group than the other.

• Balance for the positive class symmetrically requires that the average
score assigned to people of group 1 who belong to the positive class should
be the same as the average score assigned to people of group 2 who belong
to the positive class.

For our purposes we need a somewhat less context-specific definition, and we
need one we can compute clearly. We therefore group the two balance criteria
into one and translate these criteria into mathematical formulae using the
concept of conditional independence.

Definition 1.2.2 (Dimitrakakis et al. 2017). Let z denote the group from Defini-
tion 1.2.1, y denote the result, analogous to what in Definition 1.2.1 is denoted
as the positive and negative classes, but extended to a regression setting, and a
denote the action taken, similar to the bin used in Definition 1.2.1.

• Calibration: Under the notion of calibration, for a given action by the
decision-maker, the outcome is independent of group affiliation. Thus if
calibration is satisfied completely we would see

P (y, z|a) = P (y|a)P (z|a) (1.1)

• Balance: Under the notion of balance, for a given outcome, the action
that was taken should be independent of group affiliation. Thus if balance
is satisfied completely we would see

P (a, z|y) = P (a|y)P (z|y) (1.2)

4

1.2. Fairness

These are both sensible notions of fairness, and one might argue that both
ought to be satisfied, but Kleinberg, Mullainathan, and Raghavan 2016 shows
that, except in two special and trivial circumstances, it is impossible to satisfy
both.

A final consideration when attempting to quantify the fairness of decisions
and the similarities of individuals is the danger of overweighing measurable
quantities in favour of unmeasurable ones as pointed out by Green and Hu
2018.

Fairness over time

In addition to the above mentioned static definitions of fairness, we need to define
an appropriate measure of dynamic fairness. When considering the temporal
effect of fairness, Gupta and Kamble 2018 defines a fairness-in-hindsight, under
which fairness is assymetric in time. Under this notion of fairness a decision
only needs to be judged fair by the current subject of the decision, not previous
subjects. Hence, under this notion of fairness, the decision-maker can treat
people better over time without violating the fairness criterion, but not worse.
In contrast to this notion, we might apply a static definition of fairness across
everyone affected by the decisions of the decision maker, thus disregarding time.
A third option is to consider fairness within isolated periods of time. Then, in
order to judge the total fairness, there needs to be some accumulation of the
deviation from fairness across all time periods. If this is simply cumulative, the
effect will be similar to using a static definition across all time periods, but it
could also discount across time to empasize present fairness.

How you include the temporal aspect into the fairness assessment has direct
implications on which decisions are optimal. Gupta and Kamble 2018 deduce
their Careful Exploration from their fairness-in-hindsight-criterion in which
they begin treating people harshly while exploring and gradually relaxing their
decisions as they learn to make better decisions in order to reduce regret. This
approach has some drawbacks, namely, it will not work if the level of utility
granted to the subject of the decision is relevant for the information we get
back, and it assumes that a consensus can be created for this time-dependent
asymmetric sense of fairness. It also assumes that it is possible to treat people
harshly in general at one time-point and not in another timepoint. This is in
theory possible in the case of lending, but in our scenario of school admissions
it makes little sense. Both because the decision we make is dichotomous, so we
can’t admit someone just a little, leading to the aforementioned information
scarcity resulting from harsh decisions, and also because it makes no sense for
a school to admit almost nobody as a Careful Exploration strategy.

Another aspect of fairness when we include the temporal aspect is whether
or not it is in the long-term interest of a sensitive group that decisions are
changed in order to satisfy fairness criteria at the present time. In general,
there are two changes that can be made to decisions in order to improve fairness
in the case where the maximum utility decision is violating group fairness.
Either one can increase the randomness in the policy to improve fairness, given
that we are focusing on the expected rather than the realized outcome, or one

5

1. Introduction

can use different criteria for different groups. As shown by Liu et al. 2018
there are circumstances where maximizing group fairness can be detrimental
to the protected groups long-term well-being in addition to being detrimental
to institution utility. The example they use is a lending scenario in which a
protected group is granted loans with lower credit rating scores. If this threshold
is set too low then people will be given loans that they cannot expect to repay,
putting them potentially in a worse position than if they had not been given
that loan.

Any attempt at creating an automated decision-maker is predicated on a model
that can be used to predict the future. Good, unbiased predictions of the future
are a requirement for good, unbiased decisions. Any model that we create will
be an uncertain representation of the world, although the more data we have
the lower the uncertainty in our model. Any decision-maker, and certainly any
decision-maker attempting to make fair decisions must take this uncertainty
into account. Using a decision-maker that takes the uncertainty estimates of
the model into account improves learning the best decisions in settings with
low data and high model uncertainty (Dimitrakakis et al. 2017).

Task-specific fairness considerations

In addition to the above mentioned fairness concerns which largely are applicable
in general, there can also be concerns that are specific to the situation under
consideration. In our case, of admissions data, there could for example be
the case that a higher probability of admission for students with lower grades
would carry a significant fairness violation when we are not basing the decision
on the protected variable. In cases where the protected variable is taken into
account and the percieved weaker group is given advantageous treatment there
could be some acceptance of this and a small fairness violation. If, however, the
admission grade is the only information available to the policy, and it grants a
higher admission probability to a lower grade (perhaps because it has realized
that this would admit more of the weaker group), this would likely not be seen
as acceptable.

1.3 Contribution

This thesis seeks to reproduce the results of Dimitrakakis et al. 2017 showing
that a model-based calculation of expected fairness and utility taking into
account the full uncertainty distribution of the model will perform better than
one simply based on the marginal of the model. It will also seek to extend
these results by exploring the behaviour of this algorithm and another using
back-induction (DeGroot 2004) in optimizing for maximum utility and fairness
over time.

In our setting of tertiary school admissions the fairness-in-hindsight-concept is
not particualrly useful due to the drawbacks listed above. Instead, we consider
each group of applicants at a timepoint as a group for which we desire fair
actions, and then we accumulate fairness over time.

The results from Dimitrakakis et al. 2017 have not been reproduced. On

6

1.4. Outline

the contrary, the marginal of the models has shown the best performance
and it is in the setting where we only care about fairness where the different
methods have the most similar results. We do, however, show a significant
improvement of the model-based approach to calculating fairness and utility
over the empirical calculations more commonly employed when training Neural
Nets with Stochastic Gradient Descent optimizers in low-data settings.

We also provide a GitHub repository with the source code used during the
experimentation in this thesis, which is modifiable to test out different strategies
on different datasets.

1.4 Outline

This thesis includes an Introduction with some theoretical concepts and some
considerations around fairness followed by a description of the main work of
the thesis.

Chapter 2 gives an overview of the problem and the setting we are exploring
before continuing with a more specific discussion on fairness and utility,
which fairness definitions we have chosen to use and how we measure them
in our setting. Finally, we conclude the chapter with a discussion on how
to measure fairness and utility over time, and how we weigh fairness and
utility against each other.

Chapter 3 deals with the specific setting in which we try to solve our problem.
In this chapter we explain the logic behind and the structure of the data
generating process and how we model the data. Finally we discuss why it
was necessary to also explore the problem in a higher dimensional setting
and the extended data generating process, what those data look like and
how we modelled them.

Chapter 4 discusses policies in general: What they are and how we structure
them. We explain the difference between static and adaptive policies and
show examples of both in addition to explaining how we apply the policies
to our data in order to yield decisions.

Chapter 5 demonstrates how the policies were optimized. We give a summary
overview of the optimization engine applying Stochastic Gradient Descent
and explaining how we modify it to solve our problem. We also give a
thorough explanation of the different metrics we optimize our policies for
and how we iterate over and finalize the policies.

Chapter 6 provides the details of the experiments we performed to test the
hypoteses. It has a thorough description of how the experiments were
conducted in order to ensure robustness of the conclusions and what the
results were measured against. We also go into a deeper explanation of
the policies we used during experimentaion. Finally, we present the results
obtained from the experiments.

7

https://github.uio.no/aleksaw/optimally_fair_automated_decisions

1. Introduction

Chapter 7 contains a discussion of our results and what we need to consider
when interpreting them. We conclude the thesis with a discussion about
what we might have done differently and how that would affect the results
and their implications before we suggest directions for building upon this
work.

Appendix A features a more thorough explanation of some concepts and details
about the implementation.

Appendix B shows some alternative settings that were explored and that might
be interesting approaches to improve on in further work.

1.5 Definitions and Symbols

Symbol Meaning
π Policy
Θ A Bayesian model of the world with assumed interactions be-

tween variables and a distribution over the effects of each inter-
action

θ A Belief about the model Θ containing single point values of
each interaction effect in the model. The values of the believed
effects could be randomly sampled from the distribution, or
they could be the exepcted value of the distribution.

U Utility, a measure of the usefulness of an action-outcome pair
to the decision maker

Ut The utility at time t
R Reward, a measure of the usefulness of an outcome to the

decision maker
C Cost, the cost of an action for the decision maker
a An action
A The set of possible actions (in this thesis, always 2)
|A| The number of possible actions
a A vector containing actions ai ∈ A ∀i ∈ [1, N] for multiple

individuals
x The value of one feature in one individual
X The set of all possible values a feature can hold
|X| The number of possible values a feature can hold
x A vector containing multiple feature values for an individual
X A matrix containing rows of xi ∀i ∈ [1, N] for multiple indi-

viduals
N Number of individuals in consideration
y An outcome
Y The set of possible values an outcome can take
|Y| The number of possible outcomes
y A vector containing outcomes yi ∈ Y ∀i ∈ [1, N] for multiple

individuals
z A sensitive group identifier
Z The set of possible sensitive groups
|Z| The number of sensitive groups (in this thesis, always 2)

8

1.5. Definitions and Symbols

Symbol Meaning
z A vector containing sensitive group belonging zi ∈ Z ∀i ∈

[1, N] for multiple individuals
F Fairness, a metric defining how fair a set of actions and corre-

sponding outcomes. Perfect fairness is 1
F̄ Fairness violation, a metric defining the violation of fairness of

a set of actions and corresponding outcomes. Perfect fairness
violation is 0

B Balance, a metric defining the violation of the balance criterion
for fairness of a set of actions and corresponding outcomes.
Perfect balance is 0

C Calibration, a metric defining the violation of the calibration cri-
terion for fairness of a set of actions and corresponding outcomes.
Perfect calibration is 0

γ The weighting of balance versus calibration in the final fairness
metric

FU, UF Fair utility, a weighted average of fairness and utility wherein
the decision maker determines how much emphasis to put on
own utility versus fairness for the objects of the decisions

λ The weighting of fairness compared with utility in the final
utility

Pθ The probability of an event under a certain belief, equivalent to
p(. . . |θ)

δ Discounting factor for utility, fairness and fair utility, reduc-
ing the weight placed on future utility, fairness violation and
consequently fair utility

D(t) A generalized discount formula for a time t timepoints into the
future

W The matrix making up the weights of a policys computational
layer

wij A single weight in W
LF Latent Feature, a feature used in the data generating process

that is unobservable
ω Mapping of discrete input values from x to a vector multipliable

by W
Ω A vector produced by an ω consuming an x
φ The Probability Density Function of the Normal distribution
D Dataset
T=tDia The value of a, the action, of the i-th individual of the dataset

seen at time T = t.
d Number of features for an individual: |x|

Table 1.1: Definitions and Symbols

9

CHAPTER 2

The Problem

The problem that we are trying to solve has a number of elements to it. We
are trying to make decisions that are both useful for the decision maker and
fair. We are also trying to optimize these decisions not only with regard to to
the outcome of the current set of decisions, but also with regard to all future
decisions.

While it may appear difficult to optimize current decisions with regard to
the outcome from future decisions, this is simply a trade-off between taking
decisions for optimal outcomes in the current set of decisions versus taking the
decisions that lead to maximum increase in actionable information for optimizing
future decisions. Thus we need to weigh the reward from the outcomes of the
current decisions with the information gathered from the outcomes of those
same decisions. As a result we may find it better to take decisions at the
present if those decisions are likely to yield information that enables us to take
better decisions in the future whose expected improvement is larger than the
detriment caused to our current decisions. This trade-off between current and
future reward is, in the field of automated decision making, commonly referred
to as the exploration–exploitation dilemma(Sutton and Barto 2020, p. 3).

In order to measure the quality of our decisions we need to define a few concepts:

• Utility: This is the utility of the outcome from a decision for the decision
maker. This will need to be measured by the decision maker.

• Fairness: As we are trying to make decisions that are both useful and
fair we need to define what we mean by fair.

• Future discount: It may be that we would like to put more emphasis on
the present outcomes than the future outcomes. This could be because
we prefer something good at the present and would want more future
improvement to sacrifice current utility. It could also be that the future
utility is uncertain as it is only an estimate based on longer-term predic-
tions than the current utility, and that we want some discount for our
willingness to tackle that increased risk.

• Utility vs fairness: We need to define how we weigh utility against fairness.
At some point our decision maker will have to choose between a policy

11

2. The Problem

with a higher utility and one with lower fairness violation. In order to
make this choice we need to define how much we care about one versus
the other.

2.1 The Setting

We could have chosen almost any setting where decisions are to be made that
have an impact on individuals. The main point is that we need to explore/exploit
and we need to find the optimal trade-off as well as the optimal decision with
regard to fairness and utility. Thus the requirements for a setting we can use
are that it needs to be a setting where a decision maker gets a reward from
the outcomes of the actions chosen, we must be able to discuss the fairness of
the decisions taken and we need to gain information from the outcomes of the
choices made in order to be able to have an interesting problem of balancing
present and future rewards.

In order to fulfill these requirements we chose the setting of admissions to
tertiary schooling. We then have information from secondary school graduation
to base admissions on. We will need to be able to group the students into two
groups (though we don’t necessarily need to define what those groups are) in
order to be able to talk about fairness. Finally we will have outcomes in the
form of graduation grades from tertiary education determining the reward of
our decision maker, namely the college or university in question.

2.2 Utility

The utility of the institution will depend on the cost, C, of admitting a student
and the reward, R, of having a student graduate. Probably the reward of a
student graduating is higher the better the graduation result, y. Thus we might
set a formula such as

U(a, y) =
{
R(y)− C if a=’admit’
0 otherwise

(2.1)

to give the value of each student admitted. Now at time of admission we don’t
know y, so calculating this utility is difficult. We could use 2.1 on the students
that we already have observed and consider representative of our current batch
of students or we can calculate an expected utility of the student by using the
distribution P (y|x), where x is the information about a student known to the
decision maker, in

E[U |x] =


∑
Y

R(y)P (y|x)− C if a=’admit’

0 otherwise
(2.2)

This requires a way to estimate the distribution P (y|x).

Now, if we are given a policy π, that is a function assigning a probability
distributions over the set of possible actions for every possible input x (see

12

2.3. Fairness

Chapter 4 for a formal definition), then we can include it in the conditionals
and calculate the expected utility in the following way:

E[U |x, π] = (
∑
Y

R(y)P (y|x)− C)π(a = ’admit’|x) + 0 · π(a = ’not admit’|x)

E[U |x, π] = π(a = ’admit’|x)
∑
Y

R(y)P (y|x)− C (2.3)

The problem with this approach is that we need a set of students to calculate
a utility, and thus we can’t define the policy before the students have applied.
We can, however, note that the expected utility of a student depends only
on the student’s results from secondary education,x, which means we use the
probability of obtaining an applicant with input x to calculate a new expected
utility, this time before seeing any applicants.

E[U |π] =
∑
X

P (x)π(a = ’admit’|x)
∑
Y

R(y)P (y|x)− C

This could be written more generally as

E[U |π] =
∑
X

P (x)
∑
A

π(a|x)
∑
Y

U(a, y)P (y|x)

where U(a, y) is 2.1 or even shorter as

E[U |π] =
∑
X,Y,A

π(a|x)U(a, y)P (y,x) (2.4)

In the case where the number of possible combinations of all x, y and a make
Equation (2.4), intractable a Monte Carlo approximation will be required

E[U |π] = 1
N

N∑
i=0

xi,yi∼P (y,x)

∑
a∈A

π(a|xi)U(a, yi) (2.5)

2.3 Fairness

For group fairness we have two reasonable measures of fairness, balance and
calibration(Definition 1.2.2). Since it is impossible to satisfy both(Kleinberg,
Mullainathan, and Raghavan 2016) we have to either choose one, or to optimize
over a weighted average of the two. The latter approach seems more reasonable,
as it would be better to have a small violation of both measures than no violation
of one of them and a large violation on the other one. Thus our fairness function
can be

F̄ = γB + (1− γ)C (2.6)

Where F̄ is total fairness violation, B is violation of the fairness criterion balance
given in Equation (1.2), C is violation of the fairness criterion calibration given
in Equation (1.1), and γ is a constant determining the weighting between the
two.

13

2. The Problem

These measures of fairness are easy to calculate on a dataset where we have
actions and outcomes, but we want to apply them on our applicants, for whom
we do not have any actions yet, and we don’t know what the outcomes will
be. Thus we need, as in the case of utility, to calculate the expected fairness
violation.

Expected Fairness

Dimitrakakis et al. (2017) uses a formula for expected balanced fairness violation
of a policy given a model:

f(π) =
∫

Θ

∑
a,y,z

∣∣∣∣∣∑
x

π(a|x) [Pθ(x, z|y)− Pθ(x|y)Pθ(z|y)]

∣∣∣∣∣
P

dβ(θ) (2.7)

This can be written in a more general form as

f(π) =
∫
θ∈Θ

β(θ)
∫
a∈A

∫
y∈Y

∫
z∈Z

E[F̄ (a, y, z)|θ, π]dzdydadθ (2.8)

where F̄ (a, y, z) is a function defining the violation of fairness in a dataset,
in this case the balanced fairness criterion as defined in Equation (1.2). The
violation is defined as the divergence between the two distributions

F̄ (a, y, z) = D(P (a, z|y)‖P (a|y)P (z|y))

In this case the divergence measure is a variant of Total Variation Distance

D(P (a, z|y)‖P (a|y)P (z|y)) = |P (a, z|y)− P (a|y)P (z|y)|P

In the case where the model Θ, a, x, y, and z are discrete, the integrals above
are reduced to sums, and, as long as there are only a few possible values each
variable can take, it is computationally tractable to compute the expectation
as described in Equation (2.7). In all of the cases that we will explore it is
only the Θ that is continous, and the a-, y- and z variables make a manageable
number of combinations. In this case we will rewrite Equation (2.8) as

f(π) =
∑
θ∼Θ

∑
a,y,z

E[F (a, y, z)|θ, π] (2.9)

and in one of our cases the x variable takes on a sufficiently low cardinality
that we can use as Dimitrakakis et al. 2017

E[F̄ (a, y, z)|θ, π] =

∣∣∣∣∣∑
x

π(a|x) [Pθ(x, z|y)− Pθ(x|y)Pθ(z|y)]

∣∣∣∣∣
P

(2.10)

to calculate balance. This decomposition of expected balance given π,Θ is
only computationally tractable for the balance criterion and not the calibration
criterion.

14

2.4. Future discount

In a higher cardinality setting on the x, where x is continous instead of discrete,
or for the calibration criterion, Equation (2.10) becomes intractable as a sum
and we will use a Monte Carlo approximation of E[F̄ (a, y, z)|θ, π]

E[F̄B(a, y, z)|θ, π] ≈
∣∣∣P̂ (a, z|y, θ, π)− P̂ (a|y, θ, π)P̂ (z|y, θ, π)

∣∣∣P (2.11)

E[F̄C(a, y, z)|θ, π] ≈
∣∣∣P̂ (y, z|a, θ, π)− P̂ (y|a, θ, π)P̂ (z|a, θ, π)

∣∣∣P (2.12)

where P̂ (a, z|y, θ, π), P̂ (a|y, θ, π), P̂ (z|y, θ, π), P̂ (y, z|a, θ, π), P̂ (y|a, θ, π) and
P̂ (z|a, θ, π) are approximated according to Algorithm 1.

Algorithm 1: Approximating fairness probability distributions from
simulated data

begin
1 Simulate a dataset D from θ by sampling x, y, z ∼ P (x, y, z|θ)

2 Set P̂ (Y = y, Z = z|θ) =
∑
Di∈D

I(Diy=y,Diz=z)
|D| ∀y ∈ Y ∀z ∈ Z

3 Set P̂ (A = a|Y = y, Z = z, θ, π) =∑
Di∈D

I(Diy=y,Diz=z)π(A=a|Dix)∑
Di∈D

I(Diy=y,Diz=z)
∀y ∈ Y ∀z ∈ Z ∀a ∈ A

4 Set P̂ (A = a|θ, π) =
∑
Di∈D

π(A=a|Dix)
|D| ∀a ∈ A

5 Set P̂ (Y = y, Z = z|A = a, θ, π) =
P̂ (Y=y,Z=z,θ)P̂ (A=a|Y=y,Z=z,θ,π)

P̂ (A=a,θ,π) ∀y ∈ Y ∀z ∈ Z ∀a ∈ A
6 Estimate P̂ (a, z|y, θ, π), P̂ (a|y, θ, π), P̂ (z|y, θ, π), P̂ (y|a, θ, π) and

P̂ (z|a, θ, π) similarly as P̂ (y, z|a, θ, π)

For the balance criterion this is just a computationally more efficient form of,
in the notation of Dimitrakakis et al. 2017,

E[F̄ (a, y, z)|θ, π] ≈

∣∣∣∣∣∣
∑

x∼P (x|a,y,z,Θ,π)

Pθ(x, z|y)− Pθ(x|y)Pθ(z|y)

∣∣∣∣∣∣
P

2.4 Future discount

When computing and comparing utility over time we need to make the sum of
present and future utility finite. There are two ways to do this:

We can compute the utility for each timepoint for a finite horizon T

U =
T∑
t=0

Ut (2.13)

15

2. The Problem

or we can compute utility for an infinite horizon, but using discounting to
downweigh future utility over current. For example

U =
∞∑
t=0

Ut · δt 0 < δ < 1 (2.14)

The practical difference between the two is that the former has a piecewise
discount function whereas the latter has a continous discount function. Thus
they can both be written as

U =
∞∑
t=0

Ut ·D(t) (2.15)

where in the case of 2.13 we get

D(t) =
{

1 t <= T

0 otherwise
(2.16)

and in the case of 2.14 we get

D(t) = δt (2.17)

In practice, however, it will be impossible to compute an infinite sum of utilities
that have to be obtained through experiments. Thus they will both need to be
calculated as

U =
T∑
t=0

Ut ·D(t) (2.18)

With δ sufficiently small or T sufficiently large, the distinction between 2.15
and 2.18 will be minimal.

We will start without a future discount on fairness and utility. This means that
we value future utility as high as present utility, and we will not favour present
fairness over future fairness. Our goal here is to derive an algorithm that will
be capable of taking better decisions over time than a greedy algorithm that
would simply optimize for the present utility and fairness. If we manage to
demonstrate that it does in fact deliver better decisions over time without any
discount on future utility and fairness we can consider adding a discount to
make the problem more diffficult.

2.5 Utility versus fairness weighting

In order to find the optimal decision we need to define how we measure optimality.
This we will do as a weighted average between the utility of the institution and a
fairness measure similarly to how we weighted balance and calibration. Instead
of using the fairness violation as we have discussed how to measure, which is
optimal when it is 0, we will define a fairness metric using the normalization

16

2.5. Utility versus fairness weighting

procedure from Section 2.5. This procedure ensures that both utility and
fairness violation are on the same scale, and are more or less within [0, 1], but
where utility is optimal at 1 and minimal at 0 and fairness violation is optimal
at 0 and minimal at 1. Instead we define fairness as the absence of fairness
violation.

F = 1− F̄ (2.19)

This gives us fairness that is optimal at 1 and minimal at 0 as utility.

Then we can define fair utility as the weighted average of fairness and utility

UF = λU + (1− λ)F (2.20)

which is similar to the definition used by Dimitrakakis et al. (2017), but adding
instead of subtracting the fairness component.1

Finding a suitable weight

One problem with weighing utility and fairness is that utility and fairness are
not measured in the same units or on the same scale. Thus setting λ = 0.5 does
not imply equal weighting of fairness and utility. The cleanest way of making
an informed weighing between the two would be to either rescale utility and
fairness to have the same range, or to rescale λ such that λ∗ = λ range(F̄)

range(U) .

Calculating the ranges, however, is not trivial. First of all there is a difference
between the theoretical range and the range we might expect them to have.
Secondly, the calculation of the maximum theoretical range is not necessarily
straightforward either.

For the utility it is quite easy to calculate the maximum theoretical range given
some parameters of the utility function.

Umin = 1
N

N∑
i=1

U(a = 1, y = 0)

Umax = 1
N

N∑
i=1

U(a = 1, y = max(y))

This, however, is not a realistic range, because regardless of the policy we cannot
expect such datasets.

1Defining UF = (1 − λ)U − λF as our objective function leads to UF decreasing with
increasing λ. This has two unfortunate consequences. First it gives the appearance of less
useful policies with higher weighting of fairness. Even though it is not true, that appearence
is unfortunate. Secondly it makes it more difficult to judge the perfomance across λs. In
addition it requires us to use the tongue-twister "deviation from fairness" when talking about
the fairness metric. The new definition makes fairness a metric we want to be higher, and it
makes the weighted average using λ more sensible in that you either try to maximize utility,
or fairness, or a combination, making UF more or less constant regardless of λ.

17

2. The Problem

Similarly for Fairness, the fairness part at the core of the formula, Pθ(x, z|y)−
Pθ(x|y)Pθ(z|y), has a theoretical maximum of 1 as they are all probabilities.
The entire formula, however, is a sum over all relevant variables, and this core
cannot be 1 for all combinations of variables. Being a sum its range is also very
much dependent on the number of possible values of a, x, y and z.

The solution we use here is to train a policy on a huge dataset using both λ = 0
and λ = 1. We then set

Umin = max(Uλ=0, Ua=0)

Umax = Uλ=1

F̄min = 0

F̄max = Fλ=1

We limit the lower value on the range of U because the policy trained with
λ = 0 will give no regard whatsoever to utility and can be wildly variable in
utility since any policy satisfying π(a = 1|x, θ) = p ∀p ∈ [0, 1] will give perfect
fairness, while the utility of the policy π(a = 1|x, θ) = 1 could be very negative.
Thus we limit how low the policy is allowed to pull the lower bound on the
range to the utility of π(a = 1|x, θ) = 0. This gives us

U ∈ [Umin, Umax]

F̄ ∈ [F̄min, F̄max]

While these ranges are not absolute, in that it is perfectly possible to measure
either metric outside of their ranges, it gives us a way to compare their magnitude
and range. Using these ranges we can then normalize both before weighing
them

U ′ = U − Umin
Umax − Umin

F̄ ′ = F̄ − F̄min
F̄max − F̄min

Giving us
U ′, F̄ ′ ∈ [0, 1]

18

CHAPTER 3

The Setting

This chapter contains first a discussion of the choice of problem setting, then a
discussion about how the data generating process was designed as well as some
graphs, algoritms and plots descrbing the process and the resulting dataset.
Finally, the model that seeks to model the data-generating process is presented,
with a discussion about the assumptions underlying the model and a derivation
of the closed-form solutions to the updates of the model to new posterior
distributions over the parameters.

We could have chosen almost any setting where decisions are to be made that
have an impact on individuals. The main point is that we need to explore/exploit
and we need to find the optimal trade-off as well as the optimal decision with
regard to the uncertainty of the model, the parameters and fairness and utility.
This is considerably easier in a setting where we generate our own data, giving
the ability to generate an arbitrary amount of data as needed.

As we are generating our own data we could have chosen any setting, and settled
on school admissions. This consists of a set of applicants with a set of known
features which is then fed into a policy taking actions, to admit or not, and
then for those applicants that are admitted we receive an outcome.

We started with a setting in which we had three features in the dataset.

• A protected variable (z in Definition 1.2.2) that the policy is not allowed
to take into account and that we use to determine the fairness of the
policy throughout Chapter 2. It is dichotomous with almost, but not
quite, 50/50-split in the applicant pool. It is not specified what this
feature is, but with the ratio gender is one possible interpretation.

• A discrete feature x ∈ [0, 4] that represents the graduation grade of the
applicant from secondary eduaction. This is the input we give to the
policy that is our decision-maker as described in Definition 4.0.1.

• A discrete feature y ∈ [0, 4] that represents the graduation grade of the
applicant, if admitted, from our tertiary education institution. This is the
outcome we use in Definition 1.2.2 and that we use throughout Chapter 2
to compute the fairness and utility of a set of decisions.

19

3. The Setting

In order to test the scalability of the algorithm we also apply a second, more
complex, setting. It is equal to the first in the protected variable z and the
outcome y, but has more dimensions and higher cardinality in the input, x,
that the policy uses to make its decisions.

3.1 Low-dimensional setting

Generating the data

The idea behind the generated data in the simple setting is that people have
different academic potential. Then they are able to live up to this potential
to different degrees in secondary education. Some underperform and others
overperform. And this performance relative to potential might not be equally
distributed between the groups even if the potential is. This could be students
with rich parents being able to hire private tutors that students with poor
parents cannot if the groups were created based on economic background. It
could be girls being better suited to how school is set up than boys. It could
be immigrant students forced to learn both the school curriculum and a new
language, or simply having to cope with a new and strange environment. The
students then go through tertiary education and we assumed then that the
advantages or disadvantages in primary and secondary education would fade,
but that better results from secondary education implies higher knowledge, and
thus an advantage in tertiary education.

Academic
ability

Academic
score

Graduation
score

Group

Figure 3.1: Graph of variables in use for the data generation. Red is the
sensitive variable, Blue is the target variable. The dashed variable is latent.
Green arrows are positive influences while red would be negative.

20

3.1. Low-dimensional setting

Figure 3.2: Pairplot of a set of 1000 generated data points grouped by the
sensitive variable. Distributions of the variable are on the diagonal while
pairwise correlations between the variables are on the off-diagonal.

The data was generated according to Algorithm 2:

Algorithm 2: Generating low-dimensional data
begin

1 for i ∈ 1 : N do
2 Sample Zi ∼ p(Z)
3 Sample abilityi ∼ N(µA(Zi), σA(Zi))
4 Sample Xi ∼ N(abilityi + advantage(Zi), σX)
5 Set E[Yi] = (1− λ)abilityi + λXi

6 Sample Yi ∼ N(E[Yi], σY)
7 Discretisize X and Y into, in expectation, almost equal batches

with some more in the middle batches

Modelling the data

The goal of our model is to predict the probability distribution for graduation
grades given admission grades and group belonging. In this we could simply
use a Dirichlet-Multinomial model and model, for each x and x, the probability
distribution of y. Multinomial is probably not the best in this case, though,
seeing how the five categories of output variables are connected (4 is closer to 5
than 1 is, it’s very unlikely that the probability of getting a 5 or a 1 are high
while 2, 3, and 4 are low).

Another approach is to use a binomial distribution with n = |Y | − 1 and
px,z ∈ [0, 1] as p(Y = y|X = x, Z = z). We could view each graduation score as
the number of correct answers to a |Y | − 1-question test where the probability
of answering correctly is px,z, with y being the number of correct answers.

21

3. The Setting

The advantage (or disadvantage) of the Beta-Binomial model is making a
connection between the probabilities of neighbouring scores. Thus if you enter
tertiary education with a 0 there is a lower probability of you graduating with
a 4 than with a 3, which again has a lower probability than a 2. With large
datasets this structure will come in both models, but a stricter model when we
can be fairly confident about the validity of the constraints posed makes our
model more robust when facing less data.

Beta-Binomial model

y ∼ Bin(n, p|x, z) n = |Y | − 1

p|x, z ∼ Beta(αyxz, βyxz)

When updating αyxz and βyxz we have regular Beta-Binomial update with αyxz(t) =
αyxz

(t−1) +
∑
X=x,Z=z y and βyxz

(t) = βyxz
(t−1) +

∑
X=x,Z=z n− y.

For p(X = x|Z = z), viewing x as the number of correctly answered questions
in a (|X| − 1)-question test where the probability of answering correctly, pz,
depends on which group the student belongs to would not give the best result as
it might be that the distribution of different values for x don’t follow a Binomial
distribution for each z.

x ∼ Dirichlet(αx)

When updating αxz we have a regular Dirichlet-Multinomial update with αxz (t) =
αxz

(t−1) +
∑
X=x,Z=z x.

This model has the following priors on the Beta-distributions:

αy, βy ∈ R|X|×|Z|

αx, βx ∈ R|Z|

Now we could quite reasonably set fairly informative priors on several of these.
It’s difficult to defend a distinction between the two groups on the priors, but we
could expect a difference in αy and βy for different values of x so that we might
choose as our priors higher αyx· for higher x and conversely for βyx·. Another
option is to set an uninformative prior of 1 on all.

3.2 Extended setting - higher dimensional input

In order to make this problem a bit harder we will increase the dimensionality
with some features that we can expect will be less directly correlated with our
target, the graduation grade of the student. According to United States District
Court 2019, pp. 18-22, Harvard uses four profile features in their admissions
process, each of which is judged on a scale 1-4 with 1 being the best and 4 being
the weakest. In addition + and - is available for each rating, giving us 12 discrete
levels1. In addition to the four profile features there are three school support

15 and 6 are also available and indicate wekaness or special circumstances giving us
potentially up to 18 rating levels for each feature, but we can stick to 1+-4-. Considering the
approach in modelling this with a Bayesian Logistic Regression it doesn’t really matter from
a computational perspective how many discrete values the features can take. In fact they
could just as well be continous.

22

3.2. Extended setting - higher dimensional input

features in the same range, indicating the strength of the recommendations the
candidates get. For our purposes we could collapse these into one, giving us
the following features:

1. Academic - Reflecting the applicant’s academic strength based on grades,
tests, recommendations, academic work and strength of high school.

2. Extracurricular - Reflecting extracurricular activities, and the potential
for those at Harvard, and may also take into account that a student may
not have had the opportunity to engage in such activites.

3. Athletic - Reflecting the activity level and the skill level of the student in
athletic pursuits.

4. Personal - An assessment about what contribution a student might give
to the school community.

5. Recommendations - An indication of the strength of the recommendations
from the student’s high school.

This gives us five features per candidate instead of one in addition to the
protected group feature z. This means that we need to create a new data-
generating process that produces for each candidate another 4 features. We
also need to update our model. Our simple Beta-Binomials models no longer
work and we need to consider how to deal with interactions and covariation
between the features. Lastly we will need to update our policies to be able to
take into account additional features. The policy is not something we need to
change dramatically or think much about, it just needs to be able to handle
additional features.

Generating the data

Our original data-generating process was built on the idea that each person
has an underlying academic ability and that their grades are a reflection of
this ability, but with some random noise and some systematic bias between
groups. Extending this with our extra features means devising mechanisms
for the connection between each of our features and academic ability. These
connections are much less obvious to identify and quantify, and any such
connection used will be far more controversial. However, it is necessary to set
them in order to get some data.

Originally we had a latent variable we called “ability” (which perhaps should
be called “academic ability”) which influenced academic performance. It was
evenly distributed between our sensitive groups. Now we will make another
latent variable we will call “energy” which describes how energetic a person
is, which will positively influence both academic (along with academic ability)
performance, extracurricular performance and athletic performance. In addition
we will add a differentiation of the latter two among the sensitive groups as
we did for academic performance. The Personal feature we will make truly
random and let be simply a noise feature while the recommendation feature

23

3. The Setting

Time
studying

Academic
knowledge

Academic
score

Extracurricular
score

Athletic
score

Academic
ability

Graduation
score

Energy

Likeability

Personal
score

Recommendation
score

Group

Figure 3.3: Graph of variables in use for the extended data generation. Red is
the sensitive variable, Blue is the target variable. Dashed variables are latent.
Green arrows are positive influences while red are negative.

will be based with some weighting on all the other features, plus a bias between
the groups. In addition to all this it is tempting to make some interactions
between the variables in order to make sure that modelling the process will
be hard and simple linear models will be imperfect. Some such interactions
could be a positive effect on academic performance from extracurricular and
athletic activities because you will learn things also there that might improve
your academic learning as well as a negative effect due to time spent on those
other activites instead of spending that time on academic pursuits. It might
also be possible to include a positive effect of personality on academic results
in order to capture a possible effect of your teachers giving you better grades
if you are more likeable. This effect should then probably be negated in the
graduation score because it is a part of the academic score that doesn’t actually
reflect ability. These last interactions might make it more difficult for the model
to learn and predict, which is a good thing, but it is also quite possible that
their effects will in any case drown in random noise and the lack of knowledge
of our latent variables.

We can then generate data according to Algorithm 3

Modelling the extended setting

We now must be careful to not let the knowledge we have of the data generating
process leak too much into our modelling process. There are two main issues
that we now have to handle that we didn’t previously. Those are interactions
and covariance between the variables.

No longer given that we have a monotonic relationship between the other

24

3.2. Extended setting - higher dimensional input

Algorithm 3: Generating high-dimensional data
begin

1 for i ∈ 1 : N do
2 Sample Zi ∼ p(Z)
3 for LF ∈ {Likeability, T ime,Energy,Ability} do
4 Sample LFi ∼ p(LF |Zi)
5 for X ∈ {Extracurricular,Athletic, Personal} do
6 Sample Xi ∼ p(X|LFi, Zi)
7 Sample Knowledgei ∼ p(Knowledge|LFi,Xi, Zi) into LFi
8 Sample Academici ∼ p(Academic|LFi, Zi) into Xi

9 Sample Recommendationi ∼ p(Recommendation|LFi,Xi, Zi)
into Xi

10 Sample Yi ∼ p(Y |LFi)
11 Discretisize X and Y into, in expectation, almost equal batches

with some more in the middle batches

Figure 3.4: Pairplot of a set of 1000 generated data points grouped by the
sensitive variable. Distributions of the variable are on the diagonal while
pairwise correlations between the variables are on the off-diagonal.

25

3. The Setting

features and our graduation grade, such as we could assume for our academic
result feature. Thus perhaps some Dirichlet is more appropriate. Ideally we
should use some more advanced modelling methods, but for computational
purposes we need updates that have closed form solutions. This constraint
applies primarily to our testing because in order to get good testing results we
will need to run this process many times. In a real application of this procedure
the computational challenges would be less relevant as we would only deal with
one optimization rather than hundreds or thousands.

As before our goal is to predict the probability distribution for graduation grades
given our features and the group belonging. Our previous model contained a
model for p(Z = z), the probability that an individual is a member of group z,
a model for X|Z = z ∼ Bin(|X|, p(z)) where p(z) ∼ Beta(αz, βz), and a model
for Y |X = x, Z = z ∼ Bin(|Y |, p(x|z)) where p(x|z) ∼ Beta(αx,z, βx,z).

In order to make this as simple as possible without adding too many constraints,
one approach is to use the same model and extend it with some more X-values.

The Model

We will number our features as follows: Academic: 1, Extracurricular: 2,
Athletic: 3, Personal: 4, Recommendations: 5.

Z ∼ Beta(α, β)

Then we don’t know how our features are distributed in each group, so it seems
sensible to use a Dirichlet-Multinomial distribution. It seems a reasonable
assumption that the strength of Recommendations is dependent on academic
ability, but for the others it’s difficult to assume any correlation. An interesting
thing would of course to somehow be able to model these features including
their correlations, but we’ll leave that for later. This gives us

Xi ∼ Dirichlet(αz) i ∈ {1, 2, 3, 4}

X5 ∼ Bin(|X5|, p(x5|x1, z)) p(x5|x1, z) ∼ Beta(αx1,z, βx1,z)

Then Y will be a combination of all five features and the group. It makes sense
again to use the features to inform a probability in a binomial distribution.
Thus p(y|x, z) is what we seek to model. Modelling this for every combination
of x like we did previously is now going to give a very slowly updating model
as we have, with each feature taking one of four discrete values, 45 ∗ 2 = 2048
combinations.

This means we might need to create another kind of model entirely. Since it is
not necessarily true that the score on the extracurricular, athletic and personal
features are linearly or monotonically correlated with our target variable they
can’t be assigned a single coefficient in a linear model. We could treat the
features as categorical variables, which will still give us a manageable number
of variables, and the academic and recommenation features will probably be

26

3.2. Extended setting - higher dimensional input

close enough to linear monotonicity that we can assign them just one coefficient,
but we lose all interaction effects unless we include them explicitly, which again
would, potentially drastically, increase the dimensionality of our model.

If we choose a simple linear regression, y = βTX + ε, we have an issue with
our target variable being discrete. While it isn’t necessarily a problem during
model fitting, it is a problem with prediction. We want to predict y from X,
but a linear model will predict a continous y. We could of course approximate
discrete y by giving each value of y a section of the continous range, but we
also need to figure out a different issue:

What we need the model for, is to calculate our expected loss for a policy. To
accomplish this we have so far taken the sum over every possible combination
of x, y, z and a of the probability of taking the action a given the input x times
the utility of outcome y with action a times the probability of outcome y given
input x and group z. In order to do that in our setting we need to compute
p(y|x, z) for every combination of x, z. This means firstly that we are not really
interested in predicting y, we are interested in p(y|x, z). Secondly it means that
we need to find a computationally efficient way of calculating our expected loss.
With 2048 combinations of x and z this means, with 5 different y and 2 groups,
that we need to compute our sum 20,480 times. However efficiently we calculate
p(y|x, z) it is becoming hard to calculate the expected loss in sub-millisecond
times, which is what we need to get any reasonable testing results.

The obvious solution to the latter problem is to sample from our 20,480 combi-
nations to get an approximation to the expected loss. The alternative is to seek
an analytical solution, but that seems difficult to obtain if even possible, and
even if it is possible, will slow down any iteration speed we might have.

The solution to the former problem could be to use a Bayesian Logistic Re-
gression to predict p in a Binomial distribution as we did before. This would
require us to transform our target from y through p to η where

η ∼ N(Xβ, σ2I)

p = eη

1 + eη

y ∼ Bin(|Y |,p)

We now need to transform our recorded target y to the target η for our Bayesian
Linear Regression. Transforming from p to η is simply taking the logit of p,
η = log

(
p

1−p

)
. When transforming y to p we have more options. One of our

main two options is to use the MLE-estimator for p, p̂ = y
|Y | , but for y = 0

and y = 4 this will give unrealistic p = 0 and p = 1. In addition to being
unrealistic, logit-transforming p = 0 and p = 1 to η would result in, in the first
case log(0)→∞, and in the second case division by zero. The other option is
to use a Bayes estimator. When using a Beta-distribution as conjugate prior
this gives a Bayes estimate for the posterior mode of p̂B = y+α

|Y |+α+β . If we

27

3. The Setting

use this option we need to choose a prior and by visually trying to minimize
D(P (y|D)‖P (y|Θ,D) |D| → ∞ we set α = β = 0.3 2

If we choose a Bayesian linear regression with a Normal-Normal update on our
coefficients we have a closed-form solution to the updates. We can find this in
(Fahrmeir, Kneib, and Lang 2009, p.151) for the model

η|β, σ2 ∼ N(Xβ, σ2I)

with prior distributions

β|σ2 ∼ N(m, σ2M) σ2 ∼ Inv-Gamma(a, b)

giving posterior update as

M̃ = (XTX +M−1)−1

m̃ = M̃(M−1m+XTy)

ã = a+ n

2

b̃ = b+ 1
2(yTy +mTM−1m− m̃TM̃−1µ̃)

Now this notation is a bit more difficult to read than necessary with both
lower-case and uppercase M signifying mean vector and Σ

σ2 reespectively. More
conventional notation would be µ for the former and we could use S for the
latter. Further, since this is an update equation over time we might improve on
∼ as signifying updated values, giving us:

η|β, σ2 ∼ N(Xβ, σ2I)

with prior distributions

β|σ2 ∼ N(µt, σ2St) σ2 ∼ Inv-Gamma(a, b)

giving posterior update as

St+1 = (XTX + S−1
t)−1

2The two most obvious options would probably be the uniform prior α = β = 1 and
Jeffrey’s prior α = β = 1

2 . There are however other considerations to take. We have generated
these data, so we know what form their distributions will take. In our model, this prior will
have a profound effect on the distribution of the different grades as they essentially control
the target probability p of each grade. Thus a high value on the priors will make the target
probabilty for a result y = 4 for the logistic regression be further from 1 than a lower value.
If we then try to simulate new data from our model, the difference between this probability
and 1 will have a significant effect on the number of y = 4 in our simulated data. The process
could easily yield a very different distribution by altering a single parameter in the data
generating process. How could we set this right in a way that doesn’t require access to a large
sample of data beforehand (which we wouldn’t have, in reality)? We could figure out a way
to have this parameter be learnable to fit the distribution we see in the data. Quick attempts
at finding closed-form solutions to this problem stranded and it was considered out of scope
for this thesis to spend much time on solving it. In a practical application where there was
no access to large amounts of simulated data to set the parameters manually we could solve
this problem without having to find a closed-form solution as computational demands would
be less heavy and time less critical.

28

3.2. Extended setting - higher dimensional input

µt+1 = St+1(S−1
t µt +XTy)

at+1 = at + nt+1

2

bt+1 = bt + 1
2(yTy + µTt S

−1
t µt − µTt+1S

−1
t+1µt+1)

This involves inverting the S matrix several times during updating. In order to
speed up updating we could reparametrize our model to use Λ = S−1 giving us

η|β, σ2 ∼ N(Xβ, σ2I)

with prior distributions

β|σ2 ∼ N(µt, σ2Λ−1
t) σ2 ∼ Inv-Gamma(a, b)

giving posterior update as

Λt+1 = (XTX + Λt)

µt+1 = Λ−1
t+1(Λtµt +XTy)

at+1 = at + nt+1

2

bt+1 = bt + 1
2(yTy + µTt Λtµt − µTt+1Λt+1mt+1)

The downside of this change is that sampling from β|σ2 requires inverting Λ,
so which of the last two versions is computationally heavier depends on how
often we sample versus how often we update. Perhaps the most efficient way
computationally is to update both and use the one we don’t have to invert
every time. This would yield

η|β, σ2 ∼ N(Xβ, σ2I)

with prior distributions

β|σ2 ∼ N(µt, σ2St) σ2 ∼ Inv-Gamma(a, b) Λt = S−1
t

giving posterior update as

Λt+1 = (XTX + Λt)

St+1 = Λ−1
t+1

µt+1 = St+1(Λtµt +XTy)

at+1 = at + nt+1

2

bt+1 = bt + 1
2(yTy + µTt Λtµt − µTt+1Λt+1µt+1)

29

3. The Setting

Prior distributions

Jeffrey’s prior for p(β, σ2) is

p(β, σ2) = p(β|σ2)p(σ2) = 1 · σ−2

With the inverse gamma distribution

p(σ2|a, b) ∝ σ−2(a+1)e−
b
σ2

giving us a = b = 0 for p(σ2|a, b) = σ−2.

p(β|σ2) = 1 is an improper prior on β|σ2. Though it has a proper posterior as
long as XTX has full rank it is unnecessary to limit ourselves to that. Using a
proper Normal prior on β|σ2 with µ0 = 0 and S0 = kI will cause our posterior
to be proper regardless of the data and is equivalent to a ridge regression where
higher k will result in less regularization.

Since we have already departed from Jeffrey’s prior by using β|σ2 ∼ N(0, kI)
in order to be able to use our model without data we might as well depart
from p(σ2|a, b) = σ−2 in order to use a, b that allows us to sample from, and
take the mean of, Inv-Gamma(a, b). The mean is b

a−1 and the distribution is
only valid for a, b > 0. Thus to be able to get a strictly positive mean we need
b > 0, a > 1 and to be able to sample from the distribution we need a > 0, b > 0.
Thus setting a = 1 + δ, b = δ where δ is an infintesimally small value we are
able to use the model even without data. This change alters the prior on σ2

to, effectively, p(σ2|a, b) = σ−2e−σ
−1 . While this is a departure from Jeffrey’s

prior, the difference will be inconsequential the moment we get data to update
the model, and so the only practical effect is to give us a proper prior, allowing
us to sample parameters with no data.

We might also here have considered some informative priors. This would be
especially relevant on the academic feature that we could quite reasonably
assume to be positively correlated with our outcome. Using an informative,
mainly positive prior on this β would make our model more likeliy to yield
better results in low-data settings as long as the assumption underlying the
choice of prior is valid.

Simulating new data from model

As for the low-dimensional model, we add functionality for simulating new data
from a model belief.

This gives a good way to visualize how well the model works, we can generate
a large dataset, train the model on that, simulate data from the model and
compare those data with the data we trained the model on.

As we see the distribution of each parameter is close to the original data, while
some of the correlations between variables are missing or different. This is to
be expected as we put a very comlex set of interactions between our generated
variables and omitted the correlations when we modelled the features. While it
might be possible to improve the model, we can never expect to have a model

30

3.2. Extended setting - higher dimensional input

Algorithm 4: Simulating high-dimensional data
begin

1 for i ∈ 1 : N do
2 Simulate zi ∼ p(z|θ)
3 for j ∈ {Academic,Extracurricular,Athletic, Personal} do
4 Sample Xij ∼ p(x|zi, θ)
5 Sample

Recommendationi ∼ p(Recommendation|Academici, zi, θ)
into Xi

6 Sample yi ∼ p(y|Xi, zi, θ)

Figure 3.5: Pairplot of a set of 1000 simulated data points grouped by the
sensitive variable. Distributions of the variable are on the diagonal while
pairwise correlations between the variables are on the off-diagonal. Compare to
the data the model was trained on Figure 3.4

31

3. The Setting

that perfectly captures the real world even if we here might be able to create
just that since we know the data generating process. Thus it seems far more
interesting to explore the performance of this algorithm in the face of imperfect
modelling.

32

CHAPTER 4

Policies

Definition 4.0.1. For a belief θ in the set of possible beliefs Θ, an input x in
the set of possible inputs X and an action a in the set of possible actions A, we
define a policy as a function π : X,Θ→ P(A) mapping a belief and an input
to a probability distribution over the possible actions.

π(a|x, θ) denotes the probability of taking the action a under the belief θ when
observing the input x.

In our case we will use a matrix of weights to to transform an input vector
to an output vector, essentially a one-layer neural net, as this mapping. This
means that when optimizing our policy we need to find the optimal values for
the parameters of our matrix.

We distinguish between two different forms of policies, adaptive and static
where they differ in that the adaptive will assign different action probabilities
to the same individuals depending on our belief about the world. Thus

πstatic(a|x′, θ′) = πstatic(a|x′, θ′′)

πadaptive(a|x′, θ′) 6= πadaptive(a|x′, θ′′)

4.1 Transforming the input

Our input x is a vector of discrete values. In order to enable our policies to
give different action probabilities for each possible value of x, even in the case
when the dimensionality of x is 1 and the cardinality is low, we transform
each element of x into a vector representation of the value, Ω through the
transformation ω : X → Ω. In its simplest form, in the case of 1-dimensional x,
this is just a transformation into a one-hot vector

Ωi =
{

1 i = x

0 i 6= x
∀i ∈ X (4.1)

but each policy will use different ω and for the adaptive policies this is typically
where θ influences the policy.

33

4. Policies

4.2 Transforming the output

In order to transform the output from the policy into a probability distribution
over actions the output is passed through the Softmax transformation such that

π(a|x, θ) = Softmaxrow(ω(x, θ)W)

where W is the matrix of trainable weights and the Softmax function over
each row ensures that the rows, and thus all the action probabilities for each
individual, sum to 1.

Softmax(Wij) = eWij∑
eWi·

(4.2)

4.3 Static policy

The primary characteristic of a static policy is that it doesn’t use θ in trans-
forming x into Ω. In it’s simplest form it is just Equation (4.1). If we wish to
make sure we have some similarity in treatment between adjacent values of xi
we use

Ωi = φ(i− x) ∀i ∈ X (4.3)

In our case this would give us, for an example input, the following transformation
from individual features to policy input, where φ(k) is the probability density
function of the standard normal distribution k standard deviations from the
mean:

Input:


0
2
4
1

→ X =


φ(0) φ(1) φ(2) φ(3) φ(4)
φ(−2) φ(−1) φ(0) φ(1) φ(2)
φ(−4) φ(−3) φ(−2) φ(−1) φ(0)
φ(−1) φ(0) φ(1) φ(2) φ(3)



≈


0.399 0.242 0.054 0.004 0.000
0.054 0.242 0.399 0.242 0.054
0.000 0.004 0.054 0.242 0.399
0.242 0.399 0.242 0.054 0.004



In both these cases W will be W ∈ R|X||d|×|A|.

4.4 Adaptive policy

An adaptive policy differs from a static policy in that it uses θ in ω. This
allows us to let new information in our simulations of the future lead to different
policies and thus hopefully to more information.

One way of doing this is letting W ∈ R|Y |×|A| and

Ωi = P (y = i|x, θ) ∀i ∈ Y (4.4)

34

CHAPTER 5

Optimization

In order to create the policy that takes the best possible actions we will need to
first define what constitutes a good action, and then to create the policy that
takes these actions. In Chapter 2 we discussed how to measure the quality of
our decisions. Since our policies are neural nets with a set of parameters, our
goal is to find the parameter values that results in the best possible decisions
according to the defined metrics of fair utility. While we could, in theory, use
most optimization algorithms, the most commonly used with neural networks to
minimize loss is Stochastic Gradient Descent. In our case we want to maximize
fair utility, which means we will use an Ascent instead of a Descent algorithm,
or we will invert our metric before runing the algorithm.

We can generalize the optimization process by splitting it into four modules:

1. Main optimization loop

2. Expected Fair Utility function

3. Optimizer stepping function

4. Convergence check

5.1 Main optimization loop

The main optimization loop is the part that controls the other three parts using
Algorithm 5. For each iteration it attempts to improve the policy a little bit
until there is no further improvement possible. This is done by computing
expected fair utility of the policy using one of the algorithms discussed below,
then numerically estimating its gradient with respect to the policy parameters
before updating the parameters in the direction of higher fair utility.

35

5. Optimization

Algorithm 5: Generalized Gradient Ascent optimizer
begin

1 for i ∈ 1 : max iterations do
2 Set UF = E[UF |π,Θ]
3 For W ∈ Rm×n compute ∂UF

∂Wij
∀i ∈ [1,m], j ∈ [1 : n]

4 Set W = step(W, ∂UF∂W)
5 if convergence then
6 break

5.2 Expected Utility functions

We will be using several different kinds of expected utility functions. The two we
explore, which we hypothesise will give the best results over time in addition to
several established expected utility functions used as baselines for comparison.

Empirical expected utility (aka. Non-Parametric marginal)

Algorithm 6 is the algorithm typically used in most applications of Stochastic
Gradient Descent optimizers. It substitutes the difficult question of "what is
the expected fair utility of this policy on future data" with the simpler "what
is the expected fair utility of this policy on the data where we know the input
and the outcome". This makes the assumption that the data we will get in the
future will resemble the data we have seen in the past, or, in the case where we
have a lot of data (here defined to be more than 1000 data points), that the
data we will get in the future will resemble a randomly sampled subset of the
data we have seen.

Because this algorithm uses only the empirical fairness and utility on the data
seen previously it will, given enough data, give an unbiased estimate of the
expected fair utility of the policy given that the data generating process does
not change over time. When used as the target function in our optimization it
will thus ensure that our policy maximizes the expected fair utility. Its weakness
is that the variance of the estimate is very high when we have little data.

Modelled marginal expected utility (aka. Parametric Marginal)

Algorithm 7 is using our models from Chapter 3, but the expected value of the
model parameters instead of a sampled value from their distributions.

In contrast to Algorithm 6, Algorithm 7 uses a parametric model of the world
to estimate the expected fair utility of a policy. This results in an estimator
with far lower variance in low-data settings, but it will be biased in so far as the
parametric model is incapable of capturing the intricacies and interactions of
the true data generating process. As a result we are optimizing our policy with
regard to a different metric than the one we will use to evaluate it in posterity,
namely the empirical fair utility.

36

5.2. Expected Utility functions

Algorithm 6: Empirical Fair Utility
begin

1 Set D′ = all historical seen data with outcome
2 if |D′| > 1000 then
3 Set Di ∼ D′ ∀i ∈ [1, 1000]
4 else
5 Set D = D′

6 Set E[U |D, π] = 1
|D|
∑
d∈D

∑
A π(a|dx) · U(a, dy)

7 Estimate p(a, z|y), p(a|y), p(z|y), p(y, z|a), p(y|a), p(z|a) empirically
from D and π

8 Set E[B|D, π] =
∑
A,Z,Y |p(a, z|y)− p(a|y)p(z|y)|P

9 Set E[C|D, π] =
∑
A,Z,Y |p(y, z|a)− p(y|a)p(z|a)|P

10 Set E[F̄ |D, π] = γE[B|D, π] + (1− γ)E[C|D, π]
11 Set E[F |D, π] = 1− E[F̄ |D, π]
12 return (1− λ)E[U |D, π] + λE[F |D, π]

Algorithm 7: Marginal Utility
begin

1 Set θ′ = E[θ|Θ]
2 Get E[U |π, θ′)] from Equation (2.4)
3 Get E[F̄ |π, θ′] from Equation (2.9)
4 Set E[F |D, π] = 1− E[F̄ |D, π]
5 return (1− λ)E[U |π, θ′)] + λE[F |π, θ′)]

Modelled sampled expected utility (aka. Parametric Shallow)

Algorithm 8 is using our models from Chapter 3, sampling parameter values
from their distributions. This is largely identical to Algorithm 7, but instead of
using the expected value of every parameter in the model it samples randomly
parameters from their distributions in order to attempt to calculate the expected
fair utility taking into account the uncertainty of our model.

Modelled sampled recursive expected utility (aka. Parametric
Deep)

Algorithm 6 tries to optimize the policy for the decision to be made at present,
while the Algorithm 7 and Algorithm 8 optimizes the policy in expectation
given our model. What new information can we hope to get that makes the
optimal policy different that isn’t already captured in our model?

One way, albeit computationally expensive, of trying to take into account the
possible information we might gather in the future and account for that when
we optimize our current policy is to apply a recursive scheme where we sample
from our model a set of probabilities, generate data as if these probabilities
represent the truth, apply the policy to the new data, update the model with

37

5. Optimization

Algorithm 8: Shallow Utility
begin

1 Set U = F̄ = 0
2 for i ∈ 1 : samples do
3 Set θ ∼ Θ
4 Get E[U |π, θ)] from Equation (2.4)
5 Get E[F̄ |π, θ] from Equation (2.9)
6 Set U+ = 1

samplesE[U |π, θ)]
7 Set F̄+ = 1

samplesE[F̄ |π, θ)]

8 Set F = 1− F̄
9 return (1− λ)U + λF

the new seen data, then sample from that model again, and go as deep as
we choose. This method is detailed in Algorithm 9 and builds on Backward
Induction as described by DeGroot (2004, pp. 277-278).

Algorithm 9: Recursive Utility function
begin

1 Set U = F̄ = 0
2 Set U ′ = F̄ ′ = 0
3 for i ∈ 1 : samples do
4 Set θ ∼ Θ
5 Get E[U |π] from Equation (2.4)
6 Get E[F̄ |π, θ] from Equation (2.9)
7 Set U+ = 1

samplesE[U |π]
8 Set F̄+ = 1

samplesE[F̄ |π, θ]
9 if depth < targetdepth then

10 Set D′ ∼ θ
11 Set a = π(a|D′x)
12 Set Θ′ = Update(Θ,D′,a)
13 for i ∈ 1 : deep samples do
14 Set U ′, F̄ ′+ = 1

deep samples · Self(Θ
′)

15 Set U = (U+U ′∗discount)
1+discount

16 Set F = 1− (F̄+F̄ ′∗discount)
1+discount

17 return (1− λ)U + λF

The problem with the approach described above is that when we compute an
expected fair utility at this point given the model that we have now, the mean
(or weighted mean if we want to discount future fair utility) of the expected
fair utility for the next T timesteps should be the same. What might change
that is to make the policy adaptive,, i.e., have the policy take different actions
for the same input if the belief about the world is different. Even so it is hard
to see why this would take into account anything the uncertainty in the model

38

5.3. Optimizer stepping functions

doesn’t already.

5.3 Optimizer stepping functions

There are several options in updating our policy to a slightly better version in
light of the results from the last iteration. Their differences are mainly in terms
of speed, number of iteratrions required to reach optimum and their ability to
navigate non-monotonous utility functions.

The most common and the simplest stepper is simply updating the weights
using some learning rate and the gradient of the utility function:

W ′ij = Wij + η
∂UF (π,Θ)
∂Wij

∀i ∈ 1 : m, j ∈ 1 : n (5.1)

where η is the learning rate and W ∈ Rm×n.

Other popular options for stepping functions are various momentum-based
functions, Adam as proposed by Kingma and Ba 2014 and lately Ranger as
proposed by Tong, Liang, and Bi 2019. The main advantage of these is that
they use the history of the gradients and the updates to aid in navigating
non-monotonous utility functions.

We have tested the convergence ability and speed of four implementations before
arriving at Ranger as being the fastest and most stable. The four tested were
the one described in Equation (5.1), one using Nesterov Momentum as discussed
in Sutskever et al. 2013, Adam and Ranger.

5.4 Convergence

In order to avoid excessive iterations during policy optimization we check, for
every 100 iterations, if there has been any significant change in any of the
utility measures. This is done by looking at each of the three measures, utility,
fairness and their combination, for, if possible, a history of 50, 100, 200, and 500
iterations. This gives us 9, and after 500 iterations 12, loss histories. We then
run a Least Squares regression on these histories and if they are not changing
over this period with a certain confidence we mark them as passed. If 10 of the
12, or 9 of the 9 checks pass, we determine the optimizer converged.

39

5. Optimization

Algorithm 10: Convergence checker
begin

1 if iteration > start and (iteration % every) == 0 then
2 for history ∈ 50, 100, 200, 500, 2000 do
3 Run OLS regression on history of Utility, Fairness and Fair

Utility last history iterations
4 if 0 is in 95% confidence interval of slope then
5 Mark loss function and history length as converged

6 if Almost all checks have converged then
Deem optimizer converged

5.5 Automating gradient calculation

The trying out different kinds of adaptive policies will require a more complicated
differentiation ∂π(a|x)

∂Wxa
. In order to avoid having to do this by hand for every new

policy we need to implement a form of automatic differentiation. By using the
pyTorch framework we get access to automatic differentiation while we compute
our fair utility in addition to the pyTorch implementations of various stepper
functions, including several momentum-based steppers, Adam and Ranger.

40

CHAPTER 6

Experiments

In order to find out whether or not there is an improvement in decision making
by applying the principles discussed so far, we will perform a set of experiments.
In order to ensure reliable and reproducible results we generated the necessary
datasets and saved them so that we could use the same datasets for each
experiment. For each setting there are two datasets, one with 5000 individuals
in each of 200 separate sets and one with 2000000 individuals in each of 5
separate sets. All the datasets also have 1000000 individuals generated in a
separate evaluation set. The smaller dataset was used for testing the methods
on small data over successive timeframes while the large dataset was used
for creating baselines for what the algorithm would be able to achieve with
unlimited data.

With 11 different λ-settings to test for, with 50 timepoints to optimize the
policy for, and wanting to run at least 10 tests for each λ this was going to
require computational power. Considering also that calculating the utility for
every timepoint involved sampling a set of beliefs, simulating data, updating
a Bayesian model, calculating utility and sometimes doing so recursively up
to 30 layers deep each iteration of the optimizer was going to take time, even
after restricting ourselves to closed-form updates of the model and optimizing
every aspect of the calculation, computational efficiency was paramount to even
being able to generate results at all.

6.1 Preparation - tuning optimizer and metrics

Before we could perform any experiments we had to know that our optimizer
would reach the optimal policies for a given set of training data within our
framework in a reasonable amount of time. This means selecting the appro-
priate optimizer. pyTorch supplies vanilla SGD and Adam along with various
Momentum-based optimizers, and there is also the separate Ranger optimizer.
It also means tuning the early stopping so that we avoid iterating on a converged
policy, and to find the right number for the maximum number of iterations
in case the early stopping failed. We had to balance the number of iterations
with the learning rate, where a lower learning rate in general ensures better
convergence, but requires more iterations and thus more time. Finally we had to
tune the stochasticity of the optimizer. For the Parametric Shallow Algorithm 8
the number of samples determines the stochasticity in our expected fair utility

41

6. Experiments

estimates. The more parameter values we sample, the less stochasticity we
will have, the more we will measure the expected fair utility from the entire
distribution, the more time it will take to calculate this, and the slower our
iteration speed will be. Thus finding the stochasticity that gives the best
convergence speed and the best convergence result was also important.

Optimizing the optimizer, learning rates, number of iterations and early stopping
criterion was done through a grid search of optimizing several datasets of different
sizes within the range we were going to be optimizing during our experiments.
The grid was three-dimensional with learning rates on one dimension, optimizers
on another dimension and number of iterations on a third, one being a dynamic
number based on the early stopping criterion. This enabled us to determine
which combination of optimizer, learning rate and number of iterations resulted
in the best and most stable results, as well as which early stopping criterion
with which setting most reliably converged at the same result as the optimum
and did so the fastest.

Tuning the stochasticity level was then performed with the best setting from
above, but in a new grid search with some variation on learning rates and
number of iterations as higher stochasticity might require lower learning rates
and more iterations.

6.2 Comparing the results

Just producing results for our method without something to compare them to
is not very useful. We have therefore generated four different sets of results for
comparison by creating two different comparison sets along two different axes.

The first axis is datasize. We generated comparison sets with both one very
large dataset in order to determine what possible fair utility we might be able to
get if we had infinite data, and in the same manner as we ran the experiments,
one small batch of data for each timepoint.

The second axis is how we calculated the expectation. In the method we are
investigating we wish to calculate the expected utility and expected fairness
violation using the entire model distribution. We wanted to compare this with
two other methods, one in which we only used the mean value of each parameter
distribution as the parameter, and one in which we used the classic technique
when optimizing neural nets - not modelling the world, but assuming that
the new individuals will be like the old individuals and therefore substitute
calculating the expected fair utility with calculating the empirical fair utility
on the individuals we have seen if the policy under evaluation was applied to
them. The latter approach has the advantage that you don’t need to build a
model, which also means you aren’t restricted by the model. In the extended
setting for example there are interactions in the data that are not modelled.
These interactions should be possible to pick up with the empirical fair utility
calculation but not with the one that is using the model. It will, however, be
more vulnerable to random variation in the data when we have few datapoints.
Thus we would expect this empirical approach to perform worse in the low data
setting, but to perform better when it has more data.

42

6.3. Simulating

6.3 Simulating

Algorithm 11: Simulator
begin

1 for λ ∈ list of λs to test do
2 for s ∈ 1 : number of simulations do
3 Initialize policy π
4 Initialize model Θ
5 Update Θ with T=0D
6 for t ∈ 1 : number of timepoints do
7 Optimize π through Algorithm 5
8 Set T=tDia ∼ π(a|T=tDix)∀i ∈ T=tD
9 Update Θ with T=tD

10 Compute E[T=tU, T=tF, T=tUF |π, λ] on a large holdout
dataset and store

The results have been generated by running Algorithm 11 for each of the three
or four different methods for calculating utility at each iteration. They are:

• Parametric shallow: This is the model and the method of calculating
utility described in Algorithm 8. It uses an explicit Bayesian model and
calculates the expected fair utility over that model.

• Parametric marginal: This method is similar to the one above, but uses
the algorithm described in Algorithm 7.

• Non-parametric marginal using Algorithm 6 to calculate utility.

• Parametric deep using the algorithm in Algorithm 9. Due to computational
cost this was not done 20 times, but 1-6 times if at all.

In addition to this, we generated two baselines to compare the above results to.
They are policies trained on very large seen datasets, with 1 million available
datapoints, run for only one timepoint (there is no reason to assume they would
show any different results on subsequent timepoints) and used to find the upper
attainable limit of utility and fairness in the given setting. Ideally then, the
low-data experiments should converge to the threshold set by these baselines as
they get more data and improve their decisions at each timepoint. There are
two, because

1. one uses the Algorithm 7 algorithm during optimization (there is no point
in using Algorithm 8 as the parameter distributions should be close to
point distributions given this much data) to provide the baseline for the
experiments using the modelling-approach, and

2. the other uses Algorithm 6. As the model is an imperfect representation
of the world there is reason to believe that it is possible to obtain even

43

6. Experiments

better results using the empirical utility of a policy when training, making
it possible for the policy to take into unmodelled interactions between
variables.

6.4 Low-dimensional with static policy

Policy

The static policy used in the low-dimensional setting is much as described in
Section 4.3. It is a "neural network" with one layer, taking input from each
individual as a vector |X| long, that is transformed from a single x-value through
Equation (4.3). This vector is then multiplied by a |X|x|A| matrix of learned
weights to produce, for each individual, |A| values that are then transformed
into action probabilities using the Softmax transformation as described in
Equation (4.2).

Results

The results show little difference between any of the utility calculation methods
or the baselines, indicating that they all perform quite similarly almost regardless
of the amount of data present. The results shown below are only the mean
of all the simulations done for each setting. The fair utility calculations used
to compare the different approaches below have been calculated as empirical
utility and fairness on a large holdout set that is separate for each simulation.

(a) Parametric baseline (b) Parametric shallow (c) Parametric deep

(d) Non-Parametric baseline (e) Non-Parametric (f) Parametric marginal

Figure 6.1: Mean fair utilty with distribution for each of the utility calculations
across all λ’s

44

6.4. Low-dimensional with static policy

(a) λ = 0.0 (b) λ = 0.1 (c) λ = 0.2

(d) λ = 0.3 (e) λ = 0.4 (f) λ = 0.5

(g) λ = 0.6 (h) λ = 0.7 (i) λ = 0.8

(j) λ = 0.9 (k) λ = 1.0

Figure 6.2: Mean fair utility over all simulation for all utility calculations at
each timepoint for each λ

45

6. Experiments

Figure 6.3: Mean fair utility across time and simulations for all optimizers for
each value of λ

6.5 Low-dimensional with adaptive policy

Policy

The adaptive policy in the low-dimensional setting is as described in Section 4.4.
It is identical to the static policy in that setting with the exception of the
transformation from x-value to network input that uses Equation (4.4) instead
of Equation (4.3).

Results

The results show little difference between any of the utility calculation methods
or the baselines, indicating that they all perform quite similarly almost regardless
of the amount of data present. The results show below are only the mean of
all the simulations done for each setting. The fair utility calculations used to
compare the different approaches below have been calculated as empirical utility
and fairness on a large holdout set that is separate for each simulation.

46

6.5. Low-dimensional with adaptive policy

(a) Parametric baseline (b) Non-Parametric baseline

(c) Parametric shallow (d) Non-Parametric (e) Parametric marginal

Figure 6.4: Mean fair utilty with distribution for each of the utility calculations
across all λ’s

47

6. Experiments

(a) λ = 0.0 (b) λ = 0.1 (c) λ = 0.2

(d) λ = 0.3 (e) λ = 0.4 (f) λ = 0.5

(g) λ = 0.6 (h) λ = 0.7 (i) λ = 0.8

(j) λ = 0.9 (k) λ = 1.0

Figure 6.5: Mean fair utility over all simulation for all utility calculations at
each timepoint for each λ

48

6.5. Low-dimensional with adaptive policy

Figure 6.6: Mean fair utility across time and simulations for all optimizers for
each value of λ

49

6. Experiments

6.6 High-dimensional with static policy

Policy

In the extended setting the static policy is structured differently. Here the input
is no longer one of |X|s discrete values, but d values from |X|e possible values.
The policy is still a single layer "neural network" without bias, but now the
input is not transformed through ω. Thus the input vector |d| long is multiplied
with a |d|x|A| matrix to produce the action logits. The big differece between
this and the simple static policy is that in this the value of each feature has a
linear effect on the action logits, while in the other there is no such linearity.

Thus in this case, we get

π(a|x, θ) = Softmaxrow(xW)

instead of
π(a|x, θ) = Softmaxrow(ω(x)W)

Results

The results show huge variance between runs, indicating that the static policy
has trouble converging properly.

The results shown below comparing the different utility calculations are only the
mean of all the simulations done for each setting. The fair utility calculations
used to compare the different approaches below have been calculated as empirical
utility and fairness on a large holdout set that is separate for each simulation.

(a) Parametric baseline (b) Non-Parametric baseline

(c) Non-Parametric (d) Parametric marginal (e) Parametric shallow

Figure 6.7: Mean fair utilty with distribution for each of the utility calculations
across all λ’s

50

6.6. High-dimensional with static policy

(a) λ = 0.0 (b) λ = 0.1 (c) λ = 0.2

(d) λ = 0.3 (e) λ = 0.4 (f) λ = 0.5

(g) λ = 0.6 (h) λ = 0.7 (i) λ = 0.8

(j) λ = 0.9 (k) λ = 1.0

Figure 6.8: Mean fair utility over all simulation for all utility calculations at
each timepoint for each λ

51

6. Experiments

Figure 6.9: Mean fair utility across time and simulations for all optimizers for
each value of λ

6.7 High-dimensional with adaptive policy

Policy

The extended adaptive policy is very different from all the others. This is more
of a true neural network, with one hidden layer. As the input transformation it
uses Equation (4.1) on each xi in x and concatenating the resulting vectors for
a d · |X| long vector of 0’s and 1’s. For the adaptive part it uses an estimate
of P (z|x, θ and P (y|x, θ) concatenated to the x-input. This gives us a total of
d · |X| + |Z| + |Y | input features to the policy. This is reduced to 16 in the
hidden layer and |A| in the last.

Results

This is in many ways the most interesting set of results as it shows the results
of the presumably best policy, an adaptive one, in the most difficult setting
with several dimensions and higher cardinality on X. Here the results show
consistently better performance from the parametric marginal utility calculation,
on par with the high-data baselines.

This indicates that there is little information to gain in our setting from
considering the whole distribution of beliefs. In fact it only adds randomness to
our decisions, deviating from optimality without any information to improve
future decisions to make it worthwhile.

We also see how the empirical utility calculation has difficulty learning when
there is little data relative to the dimensionality of the data. We also see how

52

6.7. High-dimensional with adaptive policy

(a) Parametric baseline (b) Non-Parametric baseline (c) Parametric deep

(d) Non-Parametric (e) Parametric marginal (f) Parametric shallow

Figure 6.10: Mean fair utilty with distribution for each of the utility calculations
across all λ’s

the empirical approach provides the higher baseline, indicating that when it
has enough data it will find the patterns and interactions in the data that we
could not model explicitly and that allows it to make more precise estimates of
the expected fair utility of the policies.

The results shown below comparing the different utility calculations are only the
mean of all the simulations done for each setting. The fair utility calculations
used to compare the different approaches below have been calculated as empirical
utility and fairness on a large holdout set that is separate for each simulation.

53

6. Experiments

(a) λ = 0.0 (b) λ = 0.1 (c) λ = 0.2

(d) λ = 0.3 (e) λ = 0.4 (f) λ = 0.5

(g) λ = 0.6 (h) λ = 0.7 (i) λ = 0.8

(j) λ = 0.9 (k) λ = 1.0

Figure 6.11: Mean fair utility over all simulation for all utility calculations at
each timepoint for each λ

54

6.7. High-dimensional with adaptive policy

Figure 6.12: Mean fair utility across time and simulations for all optimizers for
each value of λ

55

CHAPTER 7

Conclusion

7.1 Summary of results

In the low-data setting there is much to be gained by using an explicitly
modelled approach to estimating our objective functions, whereas in the high-
data setting the restrictions imposed by the model makes it impossible to learn
unmodelled interactions between variables, causing suboptimal performance.
This is analogous to the bias-variance trade-off ubiquitous in machine learning
problems and as such not a surprising effect.

Within the modelled approaches that seek to optimize learning we did not
see the anticipated effect of improved learning through sub-optimal decisions
that we had expected from using the whole model distribution. Rather the
information was improved at the same rate as the marginal modelled approach
and the decision taken continued to be suboptimal.

7.2 Discussion

Exploration and stochasticity

In hindsight, after seeing the results and writing up everything more carefully, it
seems that perhaps the approach of optimizing policy actions for one computed
expected fair utility is not going to help us avoid exploting patterns in the
first data points we see. We need to define what makes our decision boundary
between the two possible actions. It can be one of two, but in either case it is a
well-defined boundary.

• We have a limited number l of students we can admit. In this case we
will admit if the expected fair utility of admitting the student is positive
and higher than N − l other students.

• We have no limit. In this case we only need that the expected fair utility
of admitting the student is positive.

In both cases we are just basing our decision on the expected fair utility of
the student. In the algorithm for computing the expected fair utility based
on the entire distribution of Θ we have some stochasticity, but only in our

57

7. Conclusion

estimate of the expected fair utility in each iteration, so with a low learning
rate and many iterations it will rather be a way of calculating the expected
fair utility by integrating over the full distribution. We will still not introduce
any stochasticity into the decision-making process, for example as in Thompson
sampling(Thompson 1933), where we could choose a student with lower expected
fair utility because we randomly sampled a higher sampled fair utility than
another student.

When we use the full distribution we essentially use the entire distribution of
P (y, x)π(a|x)U(a, y). This means that if U(a, y) was highly non-linear, say

U(a, y) =


0 a = 0
y y < 4
100 y = 4

we would get a higher consideration of the possibility that a student might get
y = 4 than when just using the marginal of the Θ distributions.

Another aspect to consider is that the importance of exploration is higher
if there are promising students to admit, who will never be chosen because
there is someone else to choose that is more promising. We have never in our
experimentation explored that kind of setting, and in those settings it will be
more important to choose the less promising once in a while. In our setting we
have admitted the majority of applicants, meaning that even the least promising
mostly get a chance to get admitted, and so there is little information left on
the table from low levels of exploring.

In Appendix B we show the results of some experiments using a different kind
of policy entirely, that is trained using the marginal and empirical expected
fair utility calculations, but when taking actions it is sampling from the models
estimated P (y|x)-distribution and passing that to the policy.

7.3 Further work

Future work might look at applying the methods described here to more
difficult problems to see if that would change the conclusion. It would also
be interesting to see alternative optimization techniques used to see if more
thorough optimization would lead to better performance of the here tested
methods. This would require access to heavier computational power than I had,
or further optimization of the code. Examples of more thorough optimization
could include learning rate scheduling, lower learning rate, different stochasticity.
It would also be interesting to see more experimentation in which settings
exploration is more useful and how the stochasticity in the decision-making
from out Thompson-inspired policy differs from that of the stochastic policy
optimization we use. It would also be interesting to explore the effect a data-
generating process that changed over time would have on the usefulness of
exploratory techniques.

58

Appendices

APPENDIX A

The First Appendix

This appendix provides some further details about the implementation and the
values used for the various experimentation parameters.

A.1 Utility calculation

The utility function U(a, y) of our students is described in Equation (2.1). It
has two terms, R(y) and C which are detailed below in the form they are used
in the experiments as published in Chapter 6.

R(y) =



0 y = 0
2 y = 1
3 y = 2
4 y = 3
6 y = 4

The cost function is more complex than it appears in Equation (2.1). In reality
it is a function C(a, ρ) giving the cost of a vector of actions on a set of students
where ρ is the maximum allowed ratio of applicants to admit. Then

C(a, ρ) =
∑
a∈a

I(a = 1)C1 + f(
∑
a∈a

I(a = 1), ρ|a|) (A.1)

where f(
∑
a∈a I(a = 1), ρ|a|) is some monotonous function penalizing admitting

more students than there is room for in a way that ensures the gradients of
the penalty term is large enough to get the final solution away from the illegal
solution space, but not so large as to destabilize the optimizer. The higher the
learning rate of the optimizer the narrower the span of stable and useful penalty
functions.

In the experiments C1 was set to 2 and ρ to 1. This reduces C(a, ρ) to C = 2 in
Equation (2.1).

61

A. The First Appendix

A.2 More complex networks as policies

One might expect that networks with more layers and more complex archi-
tectures might be able to adapt better to the data, but attempts with more
information from θ and more complex networks indicate that they rather have
trouble converging to the optimal parameters. With only a few value input for
each individual there is limited possibilities for learning complex patterns.

A.3 Experiment settings

Below we give a detailed overview of the experiment parameters used

Parameter Value
optimizer ranger
learning_rate 0.03(high-dim)

1(low-dim)
max_optim_iterations 30000
gamma 1.0
datasize_per_lookahead (|D′| in Algorithm 9) 100
datasize_per_epoch (T=tD in Algorithm 11) 20(experiments)

1000000(base-
lines)

datasize_initial (T=0D in Algorithm 11) 20(experiments)
or
1000000(base-
lines)

initial_minibatch_size (initial samples in Algorithm 8 and
Algorithm 9)

4

final_minibatch_size (final samples in Algorithm 8 and Algo-
rithm 9, samples doubles each time the optimizer converges
from initial samples until it converges with final samples)

16

lookahead_horizon (targetdepth in Algorithm 9) 30(for deep)
0(for the rest)

deep_minibatches (deep samples in Algorithm 9) 1
future_utility_discount (discount in Algorithm 9) 0
future_fairness_discount (discount in Algorithm 9) 0
admit_ratio (ρ in Equation (A.1)) 1
simulations (number of simulations in Algorithm 11) 20(experiments)

1(deep) 5(base-
lines)

epochs (number of timepoints in Algorithm 11) 50(experiments)
1(baselines)

Table A.1: Experiment Parameter values

62

APPENDIX B

The Second Appendix

In light of the considerations explained in Section 7.2, we created a new type of
decision-making. Previously when taking actions after optimizing the adaptive
policy π(a|x, θ) we would take actions according to π(a|x, E[θ|Θ]). Our new
decisions are taken according to π(a|x, θ ∼ Θ), meaning we sample a set of model
parameters from Θ, use those to compute the expected reward from admitting
each student and assign action probabilities based on that. This is analogous
to Thompson sampling(Thompson 1933). It is also quite similar to how we
computed action probabilities during optimization when using Algorithm 8,
only that we now use it when taking actions.

This framework was tested out in the same fashion as above, but with only the
fastest-computed objective functions, Algorithm 7 and Algorithm 6. It was only
tested in the high-dimensional setting using the adaptive policy.

B.1 Experiment details

In order to make the problem more difficult along the lines discussed in Sec-
tion 7.2 we changed a few things. The primary difference is that we changed
the reward function to

R̃(y) =



−1 y = 0
2 y = 1
3 y = 2
4 y = 3
10 y = 4

in order to give a large reward for being able to find the best performers.
Combined with setting C = 5 we encourage low admittance rates with only the
highest y giving a positive utility. We also reduced the number of simulations
in order to reduce the computational load.

B.2 Results

We see no advantage to sampling beliefs from their distribution to stochasticize
the decision-making process. We have no more learning, and only suboptimal
decisions.

63

B. The Second Appendix

(a) Parametric baseline (b) Parametric marginal (c) Parametric Thompson

(d) Non-Parametric baseline (e) Non-Parametric marginal (f) Non-Parametric Thomp-
son

(g) Parametric shallow

Figure B.1: Mean fair utilty with distribution for each of the utility calculations
across all λ’s

(a) λ = 0.0 (b) λ = 0.2 (c) λ = 0.4

(d) λ = 0.6 (e) λ = 0.8

Figure B.2: Mean fair utility over all simulation for all utility calculations at
each timepoint for each λ

64

B.2. Results

Figure B.3: Mean fair utility across time and simulations for all optimizers for
each value of λ

65

Bibliography

Chouldechova, A. and Roth, A. (2018). “The Frontiers of Fairness in Machine
Learning”. In: CoRR abs/1810.08810. arXiv: 1810.08810. url: http://arxiv.
org/abs/1810.08810.

DeGroot, M. H. (2004). Optimal Statistical Decisions. 2nd ed. Wiley-Interscience.
John Wiley & Sons, Inc.

Dimitrakakis, C., Liu, Y., Parkes, D., and Radanovic, G. (2017). Bayesian
fairness. arXiv: 1706.00119 [cs.LG]. url: http://arxiv.org/abs/1706.00119.

Dwork, C. and Ilvento, C. (2018). “Fairness Under Composition”. In: CoRR
abs/1806.06122. arXiv: 1806.06122. url: http://arxiv.org/abs/1806.06122.

Fahrmeir, L., Kneib, T., and Lang, S. (2009). Regression: Modelle, Methoden
und Anwendungen. 2nd ed. Statistik und ihre Anwendungen. Springer-Verlag
Berlin Heidelberg, p. 151.

Green, B. and Hu, L. (2018). “The myth in the methodology: Towards a
recontextualization of fairness in machine learning”. In: Proceedings of the
machine learning: the debates workshop. url: https://econcs.seas.harvard.
edu/files/econcs/files/green_icml18.pdf.

Grove, W. M., Zald, D. H., Lebow, B. S., Snitz, B. E., and Nelson, C. (2000).
“Clinical versus mechanical prediction: A meta-analysis”. English (US). In:
Psychological Assessment 12.1, pp. 19–30. doi: 10.1037/1040-3590.12.1.19.

Gupta, S. and Kamble, V. (2018). “Temporal Aspects of Individual Fairness”.
In: CoRR abs/1812.04069. arXiv: 1812.04069. url: http://arxiv.org/abs/
1812.04069.

Kearns, M., Roth, A., and Wu, Z. S. (2017). “Meritocratic Fairness for Cross-
population Selection”. In: Proceedings of the 34th International Conference
on Machine Learning - Volume 70. ICML’17. Sydney, NSW, Australia:
JMLR.org, pp. 1828–1836. url: https://www.cis.upenn.edu/~mkearns/
papers/FairCDF.pdf.

Kingma, D. P. and Ba, J. (2014). “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980.

Kleinberg, J. M., Mullainathan, S., and Raghavan, M. (2016). “Inherent Trade-
Offs in the Fair Determination of Risk Scores”. In: CoRR abs/1609.05807.
arXiv: 1609.05807. url: http://arxiv.org/abs/1609.05807.

Kusner, M. J., Loftus, J. R., Russell, C., and Silva, R. (2017). “Counterfactual
Fairness”. In: arXiv: 1703.06856 [stat.ML].

67

http://arxiv.org/abs/1810.08810
http://arxiv.org/abs/1810.08810
http://arxiv.org/abs/1810.08810
http://arxiv.org/abs/1706.00119
http://arxiv.org/abs/1706.00119
http://arxiv.org/abs/1806.06122
http://arxiv.org/abs/1806.06122
https://econcs.seas.harvard.edu/files/econcs/files/green_icml18.pdf
https://econcs.seas.harvard.edu/files/econcs/files/green_icml18.pdf
https://doi.org/10.1037/1040-3590.12.1.19
http://arxiv.org/abs/1812.04069
http://arxiv.org/abs/1812.04069
http://arxiv.org/abs/1812.04069
https://www.cis.upenn.edu/~mkearns/papers/FairCDF.pdf
https://www.cis.upenn.edu/~mkearns/papers/FairCDF.pdf
http://arxiv.org/abs/1609.05807
http://arxiv.org/abs/1609.05807
http://arxiv.org/abs/1703.06856

Bibliography

Liu, L. T., Dean, S., Rolf, E., Simchowitz, M., and Hardt, M. (2018). “Delayed
Impact of Fair Machine Learning”. In: CoRR abs/1803.04383. arXiv: 1803.
04383. url: http://proceedings.mlr.press/v80/liu18c/liu18c.pdf.

Meehl, P. E. (1954). Clinical versus Statistical prediction. 1st ed. Vol. 1. 1.
University of Minnesota.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). “On the impor-
tance of initialization and momentum in deep learning”. In: International
conference on machine learning, pp. 1139–1147.

Sutton, R. S. and Barto, A. G. (2020). Reinforcement Learning: An Introduction.
Second. Adaptive Computation and Machine Learning. The MIT Press, p. 3.
url: http://incompleteideas.net/book/RLbook2020.pdf.

Thompson, W. R. (1933). “On the Likelihood that One Unknown Probability
Exceeds Another in View of the Evidence of Two Samples”. In: Biometrika
25.3/4, pp. 285–294. url: http://www.jstor.org/stable/2332286.

Tong, Q., Liang, G., and Bi, J. (2019). “Calibrating the Adaptive Learning
Rate to Improve Convergence of ADAM”. In: arXiv: 1908.00700 [cs.LG].

United States District Court, D. o. M. (2019). Students for fair admission,
Inc v. President and Fellows of Harvard College (Harvard Corp.) url:
https : / /www.courtlistener.com/ recap /gov.uscourts .mad.165519/gov.
uscourts.mad.165519.672.0_2.pdf (visited on 11/06/2019).

68

http://arxiv.org/abs/1803.04383
http://arxiv.org/abs/1803.04383
http://proceedings.mlr.press/v80/liu18c/liu18c.pdf
http://incompleteideas.net/book/RLbook2020.pdf
http://www.jstor.org/stable/2332286
http://arxiv.org/abs/1908.00700
https://www.courtlistener.com/recap/gov.uscourts.mad.165519/gov.uscourts.mad.165519.672.0_2.pdf
https://www.courtlistener.com/recap/gov.uscourts.mad.165519/gov.uscourts.mad.165519.672.0_2.pdf

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Why Automated Decisions
	Fairness
	Contribution
	Outline
	Definitions and Symbols

	The Problem
	The Setting
	Utility
	Fairness
	Future discount
	Utility versus fairness weighting

	The Setting
	Low-dimensional setting
	Extended setting - higher dimensional input

	Policies
	Transforming the input
	Transforming the output
	Static policy
	Adaptive policy

	Optimization
	Main optimization loop
	Expected Utility functions
	Optimizer stepping functions
	Convergence
	Automating gradient calculation

	Experiments
	Preparation - tuning optimizer and metrics
	Comparing the results
	Simulating
	Low-dimensional with static policy
	Low-dimensional with adaptive policy
	High-dimensional with static policy
	High-dimensional with adaptive policy

	Conclusion
	Summary of results
	Discussion
	Further work

	Appendices
	The First Appendix
	Utility calculation
	More complex networks as policies
	Experiment settings

	The Second Appendix
	Experiment details
	Results

	Bibliography

