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Abstract
A transition to renewable energy is needed to mitigate climate change. This transition has been

led by wind energy, and it is expected to continue to be the largest source of renewable energy

through to 2030 (Sawyer et al., 2017). Both energy demand and production are sensitive to me-

teorological conditions and atmospheric variability at multiple time scales. To accomplish the

required balance between these two variables, critical conditions of high demand and low wind

energy supply must be considered in the design of energy systems. The aim of this thesis is

twofold. Firstly, investigate the impacts of large-scale weather regimes on cold and weak wind

events during the extended boreal winter season (NDJFM). Secondly, to establish a methodol-

ogy for modeling the joint distributions without making any assumptions about the marginal

distributions.

The analysis of 38 years of hourly high-resolution ERA5 reanalysis data proves that the

weather regimes are important predictors for both low temperature and low wind speed events

over Europe. Blocking conditions, such as those observed during the Negative Phase of the

North Atlantic Oscillation and Scandinavian Blocking, are associated with cold and weak wind

events. Compound events are observed more than 10% of the days over large geographical

areas during blocking conditions. Nevertheless, high probabilities are also observed during the

Atlantic Ridge, and to some extent, during the Positive Phase of the North Atlantic Oscillation.

Dependency between cold events and weak wind events is proved to be statistically signifi-

cant. The correlations between the events are higher when computed for each month separately

compared to the entire winter season, revealing a strong seasonality. The highest correlations

values are associated with the Negative Phase of the North Atlantic Oscillation, ρ = 0.84, but

values as high as 0.7 are registered for all the regimes. A methodology for modeling the bi-

variate joint distributions of low temperature and low wind speed events is described. In this

context, the concept of Gaussian copulas is used to mathematically model the correlated nature

among them. The marginal distributions are modeled with logistic regressions defining two sets

of binary variables as predictors, the weather regimes and the months of the extended winter

season.
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1 Introduction

1.1 Motivation and Background
Affordable and clean energy is one of the UN Sustainable Development Goals (SDGs). Energy

is also crucial for achieving almost all of the other SDGs. The energy sector currently accounts

for more than two-thirds of the global greenhouse gas emissions. Consequently, a change of

the entire energy sector is required to meet the SDGs and the Paris agreement targets (Sawyer

et al., 2017). In particular, a rapid decarbonization of the global energy system is needed to limit

global warming to a maximum of 1.5 ◦C (Rogelj et al., 2015), by increasing the share of wind

and solar power generation of the total power generation. Europe is leading this transition,

although it is still one of the world’s biggest energy consumers and greenhouse gas emitters

(Liobikienė and Butkus, 2017).

The production of clean energy is highly weather-dependent; for instance, wind power prod-

ction depends on the wind speed. Meanwhile, the demand tends to increase when the weather

is cold, and electricity is needed for heating, or when it gets too hot. Therefore, the expansion

of renewable energy over Europe increases the sensitivity of power systems to meteorological

conditions and variability (H C Bloomfield et al., 2016; H C Bloomfield et al., 2018; Wohland

et al., 2017; Collins et al., 2018; Zeyringer et al., 2018; Wiel, Hannah C Bloomfield, et al., 2019

"a"), complicating the energy transition. Given that electricity production and demand depend

on the weather, they vary on multiple timescales (e.g. Sinden, 2007; Bessec and Fouquau,

2008; H C Bloomfield et al., 2016). Hence, it is important to understand how large-scale cir-

culation systems influence peaks of demand and energy production to identify periods of over-

and under-supply. It has been shown that large scale anticyclonic pressure systems over Europe

can lead to low wind and solar production and high demand, resulting in energy shortfall (H C

Bloomfield et al., 2018; Wiel, Hannah C Bloomfield, et al., 2019). Further studies are needed to

understand the impact of atmospheric variability on surface variables that simultaneously affect

energy production and demand, e.g., cold spells and low wind conditions.

Extreme weather conditions can lead to high electricity demand and low renewable power

production. How to deal with periods of low production is a big challenge in the design of

renewable energy systems. (Huber, Dimkova, and Hamacher, 2014. Subseasonal and seasonal
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forecasts help improve decision-making and planning. They are of value for power producers,

to better prepare for extreme meteorological events, and could be an important planning tool

for traders, plant operators, and investors for managing climate variability related risk (Cortesi

et al., 2019), as they provide relevant information for price forecasting (Pinson, 2013) check).

But high energy shortfall events are a combination of multiple drivers that contribute to societal

and environmental risk, and studies in this field have traditionally focused on single drivers

without considering interactions between them. Low energy production combined with high

demand due to electric heating requirements leads to high energy shortfall from November to

March. Meteorological conditions preceding high energy shortfall events - posing a risk for

European energy security - are described as anomalous high pressure systems combined with

below normal temperatures (Wiel, Stoop, et al., 2019). Nevertheless, as far as we know, no

previous research has proposed a meteorological based methodology to model the multivariate

probabilities of these events, allowing for better preparation.

A variety of indices have been constructed to describe European climate variability through

daily synoptic-scale weather patterns. A method that has been proven to be useful in weather

forecasting and climate change applications is the computation of Weather Regimes with the k-

means algorithm (e.g. Neal et al., 2016, Ferranti, Corti, and Janousek, 2015; Neal et al., 2016;

Matsueda and Palmer, 2018). In this thesis, four weather regime patterns in the Euro-Atlantic

region where derived from geopotential height in the mid-troposphere during the boreal winter

using the k-means algorithm (Michelangeli, Robert Vautard, and Legras, 1995; Cassou, 2008).

The impact of the (WRs) at the surface is also relevant for energy applications (Wiel, Hannah

C Bloomfield, et al., 2019. The four weather regime patterns derived with this methodology

can be related to the negative phase of the East Atlantic Pattern (AR), the positive phase of the

Scandinavian Blocking (SCAND) pattern, and both phases of the North Atlantic Oscillation

(NAO). The response of power systems to these patterns across the extended European region

has recently been studied, with a focus on the NAO (e.g., (Ely et al., 2013; Thornton et al.,

2017; H C Bloomfield et al., 2018, David James Brayshaw et al., 2011; Zubiate et al., 2017;

H C Bloomfield et al., 2018). Studies show that WRs are useful for subseasonal to seasonal

energy applications (Cassou, 2010; Wiel, Hannah C Bloomfield, et al., 2019).

Modeling the dependence between demand and energy production is of key importance to

understand the occurrence of energy shortfall and prevent it by redesigning the energy systems.

However, modeling multivariate distributions can be a challenge. Copulas offer a powerful and
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flexible tool to model dependency between different variables. They return the joint probability

of events as a function of the marginal probabilities of each event. This makes copulas attrac-

tive, as the univariate marginal behavior of random variables can be modeled separately from

their dependence. The semi-parametric Bayesian Gaussian copula methods used here estimate

multivariate relationships between variables with univariate marginal distributions that cannot

be well approximated with a simple parametric model (D. Hoff, 2007), as is the case of our

event variables, making it a promising candidate for modeling the joint probabilities of low

temperature and low wind speed events.

This thesis aims to propose a new methodology for modeling meteorological compound

events associated with high energy shortfall. We show that the WRs provide useful informa-

tion for predicting marginal probabilities of low temperatures and low wind speeds and that

these events are correlated. Gaussian copulas allow us to model the dependency between low

temperature and low wind-speed events as a function of their marginals, separately from their

dependence. The high spatial resolution of hourly ERA5 reanalysis is exploited to estimate

joint probabilities across Europe on a 0.25◦ ×0.25◦ grid.

The remainder of this thesis is organized as follows. An overview of the theories and con-

cepts relevant to the topic of this thesis is briefly introduced in section 2. The data and the

methodology developed to compute the probabilities of low wind speed and temperature events

are described in section 3. Results are presented in section 4 and discussed in section 5. Fi-

nally, 6, provides the conclusions. Additional figures and supporting material are available in

Appendix 8.
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2 Theory

2.1 Euro-Atlantic teleconnections and Weather Regimes
The atmospheric circulation is well-known for its variability in multiple time scales being re-

flected in weather patterns and circulation systems. Thus, the knowledge of these variability

patterns gives a certain amount of predictability in remote locations (Quadrelli and J. Wallace,

2004). There is a vast type of variability patterns described in the literature; some labeled as

Teleconnection Patterns (TLp), oscillations, clusters, seesaws, or modes, calculated using dif-

ferent analysis techniques.

Atmospheric teleconnection indices are typically derived from the first few principal com-

ponents of seasonal, or monthly, mean of upper-atmosphere geopotential height or MSLP, or by

using techniques such as Empirical Orthogonal Functions (EOFs) or Rotated Empirical Orthog-

onal Functions (REOFs). These are usually employed to assess European climate variability

(Barnston and Livezey, 1987). The NCEP’s Climate Prediction Center (CPC) publishes regu-

larly the indices computed with the REOFs method, which has gained popularity among climate

scientists. However, the associated TLp are only made available as images, which prevents com-

puting the indices from seasonal predictions or other reanalysis datasets. Another limitation of

this methodology to assess climate variability is that it imposes symmetric variability patterns.

Instead, classifying WRs on timescales of days by using the k-means algorithm provides an

alternative description of variability that does not enforce identical oscillation phases. (Cassou,

2008).

The clustered WRs and the EOFs refer, both, to the recurring and persistent large-scale cir-

culation patterns (J. M. Wallace and Gutzler, 1981). A key difference is that the patterns com-

puted from the EOFs typically last for several weeks or months and span vaster geographical

area than the WRs (Thompson and J. M. Wallace, 1998), whereas the WRs vary on time-scales

of days (Cassou, 2008). Meanwhile, the four clusters obtained resemble some of the phases

of the main TLp computed by the CPC, and are therefore discussed in this section. Two of

them are consistent with the spatial patterns of the two opposite phases of the North Atlantic

Oscillation (NAO), and are therefore called NAO+ and NAO- regimes. The third regime is

named Atlantic Ridge (AR) and resembles the negative phase of the East Atlantic Pattern (EA),
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which is represented by a positive anomaly over the Atlantic Ocean and a negative anomaly

over Scandinavia. The fourth is called Scandinavian Blocking (SCAND), and is characterized

by a strong anomalous height anomaly over Northern Europe and a weaker negative anomaly

over the Atlantic Ocean, similar to the atmospheric flow during blocking events in Europe.

2.1.1 Euro-Atlantic teleconnections (EATs)
TLp are often defined as recurrent and persistent large-scale structures with centers of opposite

sign, that vary in intensity and position at seasonal, inter-annual, and decadal time periods

(J. M. Wallace and Gutzler, 1981; Trenberth et al., 1998; Quadrelli and J. Wallace, 2004).

They are characterized by correlations between geopotential heights on a given pressure level at

widely separated locations, occurring simultaneously, and affecting the atmospheric circulation

variability. These preferred modes of low-frequency typically last for several weeks to months,

but can sometimes be prominent for several consecutive years.

TLp are associated with large-scale changes in the atmospheric wave and jet stream pat-

terns, and influence temperature, rainfall, storm tracks, and jet stream location/intensity over

vast areas. The four most prominent patterns over Europe exist over all months and are de-

nominated (a) North Atlantic Oscillation (NAO), (b) East Atlantic Pattern (EA), (c) Scandina-

vian Blocking (SCAND), and (d) Atlantic Ridge (AR), also called East-Atlantic West Russia

Pattern (EA/WR). These patterns imprint different temperature, wind speed, and precipitation

conditions that can be associated with impacts on the European energy system (David James

Brayshaw et al., 2011; Cradden et al., 2017; Zubiate et al., 2017). The following discussion

relies on information published by the CPC.

(a) NAO

One of the TLp that explains most of the atmospheric variability in all seasons is the NAO

(Barnston and Livezey, 1987), consisting of a north-south dipole of anomalies. The NAO index

is based on the surface sea-level pressure difference between the Subtropical (Azores) High and

the Subpolar Low.

The positive phase of the NAO corresponds to below-normal heights and pressure in high

latitudes in the North Atlantic and above-normal heights and pressure over the Central North

Atlantic, the Eastern United States and Western Europe (see Figure 2.1), whereas the negative

phase corresponds to the opposite patterns in these regions.

Strong NAO+ conditions are associated with above-normal temperatures in Northern Europe

and below-normal temperatures in Southern Europe (see Figure 2.2). They are also associated
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with above-normal precipitation over Northern Europe and Scandinavia and below-normal pre-

cipitation over Southern and Central Europe. Opposite patterns of temperature and precipitation

anomalies are typically observed during strong negative phases of the NAO.

This TLp presents notably intraseasonal and interannual variability, and it is common to

have prolonged periods (several months) of both positive and negative phases of the pattern.

Figure 2.1: NAO+ loading patterns for January, April, July, and October.The plotted value at

each grid point represents the temporal correlation between the monthly standardized height

anomalies at that point and the TLp time series valid for the specified month. CPC, 2012.

(b) EA

The EA pattern consists of a north-south dipole of anomaly centers spanning the North Atlantic

from east to west, displaced southeastward with respect to the NAO centers (see Figure 2.3).

These lower-latitude centers contain a strong subtropical link associated with modulations in

the subtropical ridge intensity and location, making it different from the NAO.

During a positive phase of the EA, above-average surface temperatures in Europe in all

months are expected (see Figure 2.4). This phase is also associated with above-average pre-

cipitation over Northern Europe and Scandinavia, and with below-average precipitation across

Southern Europe.

The EA exhibits very strong multi-decadal variability. The index shows a negative phase

prevailing during 1950-1976, and a positive phase, particularly strong and persistent, prevailing
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Figure 2.2: Maps showing correlation during 1950-2000 between the NAO+ index and

monthly surface temperature departures for the three months centered on the month of in-

terest. For example, the January pattern shows the correlation between the January values of

the teleconnection index and the monthly temperature departures during December, January,

and February. CPC, 2012.

from 1977.

(c) SCAND

The SCAND consists of a primary circulation center over Scandinavia, with weaker centers of

an opposite sign over Western Europe and Eastern Russia/western Mongolia (see Figure 2.5).

Positive height anomalies are typically observed during the positive phase of this pattern,

sometimes reflecting the presence of major blocking anticyclones over Scandinavia and Russia.

Over Western Europe, it is associated with below-average temperatures (see Figure 2.6). It

is also associated with above-average precipitation across Central and Southern Europe and

below-average precipitation across Scandinavia. The negative phase is associated with negative

height anomalies over Scandinavia and Russia.

(d) EA/WR

The EA/WR affects Eurasia throughout the year and consists of four main anomaly centers. The

positive phase is associated with positive height anomalies located over Europe and Northern

China, and negative height anomalies located over the Central North Atlantic and north of the
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Figure 2.3: As Figure 2.1 but for EA positive. The plotted value at each grid point represents

the temporal correlation between the monthly standardized height anomalies at that point and

the TLp time series valid for the specified month. CPC, 2012.

Caspian Sea (see Figure 2.7).

Over Europe, it is associated with above-average surface temperature anomalies (see Figure

2.8), and below-average precipitation during the positive phase.

2.2 Weather Regimes
WRs are quasi-stationary large scale circulation patterns (Reinhold and Pierrehumbert, 1982)

produced by the interaction between planetary-scale and synoptic-scale waves(Cassou, 2008),

during which the character of the synoptic storms is unusually persistent (Straus, Corti, and

Molteni, 2007). They typically persist for 6–10 days, are spatially well defined (typically the

width of an oceanic basin), and are limited in number (Cassou, 2008). Traveling synoptic sys-

tems or storms, linked to the upper-level westerly jet stream, are embedded in these WRs. They

have traditionally been used in the process of understanding the midlatitude atmospheric vari-

ability; the description of the causes of their recurrence, persistence, and transition is crucial for

medium-range and seasonal-to-interannual climate prediction (Cassou, 2008; Cassou, 2010).

They influence the weather at the surface hence influencing renewable power generation and

electricity demand (Grams et al., 2017; Thornton et al., 2017.
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Figure 2.4: As Figure 2.2 but for EA positive. The plotted value at each grid point represents

the temporal correlation between the monthly standardized height anomalies at that point and

the TLp time series valid for the specified month. CPC, 2012.

Figure 2.5: As figure 2.1 but for SCAND positive. The plotted value at each grid point rep-

resents the temporal correlation between the monthly standardized height anomalies at that

point and the TLp time series valid for the specified month. CPC, 2012.
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Figure 2.6: As Figure 2.2 but for EA positive. The plotted value at each grid point represents

the temporal correlation between the monthly standardized height anomalies at that point and

the TLp time series valid for the specified month. CPC, 2012.

Figure 2.7: As Figure 2.1 but for EA/WR. The plotted value at each grid point represents the

temporal correlation between the monthly standardized height anomalies at that point and the

TLp time series valid for the specified month. CPC, 2012.
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Figure 2.8: As Figure 2.2 but for EA positive. The plotted value at each grid point represents

the temporal correlation between the monthly standardized height anomalies at that point and

the TLp time series valid for the specified month. CPC, 2012.

WRs are traditionally obtained by using cluster analysis, more specifically, the k-means al-

gorithm with four centroids on geopotential height at 500 hPa ( (Michelangeli, Robert Vautard,

and Legras, 1995; Cassou, 2008). The algorithm used to define the WRs leads to four regimes in

the Euro-Atlantic area during boreal winters (November to March). It has been shown that tem-

poral sub-sampling (Cassou, 2008) and the use of different reanalysis data (Hannah C. Bloom-

field, David J. Brayshaw, and Charlton-Perez, 2020; Wiel, Hannah C Bloomfield, et al., 2019)

do not change the spatial structure of the regimes nor the optimal partition (k = 4). Details about

the construction of the indices are provided in section 3, Methods and Data.

Considering a winter season of five months (November to March) instead of the traditional

3-month definition of the season has two advantages (Cassou, 2008). From a statistical point

of view, since clustering is sensitive to sampling (Wilks, 2006), adding two months of data

reinforces the significance of the WR partition. On the other hand, from a physical perspective,

it fits the cycle of the Madden-Julian Oscillation consisting of the extended winter and the

extended summer seasons (Wheeler and Hendon, 2004),

In agreement with R. Vautard (1990), the regimes can be interpreted as the well-established
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TLp: the two first regimes correspond to the negative and positive phases of the NAO. The third

regime is the Atlantic ridge, and the fourth is the Scandinavian blocking (SCAND).

Cassou (2010) shows that the probability of occurrence of extreme temperature and precip-

itation events can be related to the four WRs. His work indicates that NAO+ precludes and

(NAO-) favours the occurrence of cold extremes over entire Europe. During the AR, the prob-

ability of cold events is significantly increased over the Iberian Peninsula, whereas during the

SCAND, cold events are favoured in Central Europe extending towards France.

2.2.1 Impact of the WRs across Europe during the winter season on sur-

face variables
The position of anomalous pressure systems and planetary waves- acting in different timescales

disturbs the zonal flow at 500 hPa, which in turn influences the progression of WRs that in-

fluences surface variables of relevance for energy applications, such as temperature and wind

speed. Studies confirm that, in general, blocking conditions are associated with above-average

demand and below-average wind and solar generation in Central and Northern Europe (Grams

et al., 2017; Wiel, Hannah C Bloomfield, et al., 2019 a), whilst more zonal wind conditions lead

to above-average wind generation in Central–Northern Europe and below-average generation in

Southern Europe (Grams et al., 2017).

(a) NAO+

It has been shown that the NAO has an influence over the energy demand (Ely et al., 2013;

Thornton et al., 2017; H C Bloomfield et al., 2018) and wind power (David James Brayshaw

et al., 2011; Zubiate et al., 2017; Cradden et al., 2017; H C Bloomfield et al., 2018) over

Europe, consistent with the shifting path of extra-tropical cyclones travelling across the North

Atlantic (Hurrell et al., 2003). During the NAO+, the anomalous warm and windy conditions

over Northern Europe result in reduced demand and increased wind power generation (Ely et

al.; Cradden et al., 2017; H C Bloomfield et al., 2018; Ravestein et al., 2018). In contrast,

Southern Europe experiences anomalous low wind speeds that lead to reduced wind power

generation (Jerez and Trigo, 2013; Zubiate et al., 2017). In general terms, the opposite is

expected during NAO-. The above-average generation over Northern-Central Europe and below

average generation in Southern Europe is consistent with the increased zonal flow conditions

experienced during NAO+ (Grams et al., 2017).

The results presented by Hannah C. Bloomfield, David J. Brayshaw, and Charlton-Perez

(2020) and Wiel, Hannah C Bloomfield, et al. (2019), exhibit a pattern characterized by warmer
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and windier conditions in the north, over an extensive European land mass, and slightly less

windier conditions in the south, and a weaker demand and residual load over central Europe.

(b) NAO-

Hannah C. Bloomfield, David J. Brayshaw, and Charlton-Perez (2020) and Wiel, Hannah C

Bloomfield, et al. (2019) show that Northern Europe and Britain exhibit lower than normal

winter temperatures consistent with a stronger than normal demand, whereas the areas of lower

than normal wind speeds are restricted to Northern Europe. The demand and the residual load

are near normal in most of Europe.

(c) AR

The AR pattern is related to anomalously northerly winds around the North Sea region and

cold anomalies over central Europe. However, these temperature and wind anomalies are weak

over land, and, as such, the pattern does not produce a significant large-scale response in either

demand or residual load (Hannah C. Bloomfield, David J. Brayshaw, and Charlton-Perez, 2020,

Wiel, Hannah C Bloomfield, et al., 2019).

(d) SCAND

Studies confirm that the Scandinavian Blocking is associated with above-average demand and

below-average wind generation in Central and Northern Europe (Grams et al., 2017; van der

Wiel et al., 2019a). On the other hand, Hannah C. Bloomfield, David J. Brayshaw, and Charlton-

Perez (2020) and Wiel, Hannah C Bloomfield, et al. (2019) exhibit a pattern associated with

strengthened winds in the north and weakened winds in the North Sea, the Celtic Sea, and

the Bay of Biscay; as well as anomalous warm temperatures in the north and anomalous cold

temperatures in the south. The anomalies are weak over land and, analogous to the AR pattern,

and there is no significant response in either the demand or the residual load.

2.3 K-means algorithm
The k-means is an unsupervised algorithm that iteratively finds the partition that minimizes the

ratio of the variance within clusters to the variance between clusters centroids. These clusters

are a collection of data points that are aggregated together according to certain similarities.

The target number k refers to the number of centroids, i.e., the center of the cluster. It has

to be predefined. The first step of the algorithm consists of randomly selecting an initial set

of centroids. Then, it performs iterative calculations to optimize the positions of the centroids

until the centroids have stabilized or the maximum number of iterations has been achieved.
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2.4 Joint probability distributions and dependence
When more than one random variable is defined, it is essential to distinguish between the joint

probability distribution and the marginal probability distribution. The individual probability

distribution of a random variable is referred to as its marginal probability distribution. The

joint probability distribution is a probability distribution that gives the probability that each of

the random variables falls in any particular range or discrete set of values specified for that

variable.

The joint probability mass function of two discrete random variables X ,Y is is:

p(X ,Y )(x,y) = p(X = x and Y = y) (2.1)

This is also called bivariate distribution, and, when generalizing to more than two variables,

it is called multivariate distribution.

An event is a subset of the sample space. An independent event is an event that has no

connection to the chances of another event to occur. In other words, the event noes not effect on

the probability of another event occurring. Two random variables X and Y are independent if

p(X = x,Y = y) = p(X = x)p(Y = y) (2.2)

It is necessary to highlight that, while the number of independent random events grows,

the corresponding joint probability value decreases rapidly to zero, according to a negative

exponential law.

When studying the joint behavior of random variables, it is useful to describe how they

vary together by measuring the relationship between the variables. A common measure of the

linear relationship between two random variables is the covariance. The covariance between

the random variables X and Y is defined as

cov(X ,Y ) = [E(X−µX)(Y −µY )] = E(XY )−µX µY (2.3)

Another measure of the linear relationship between random two random variables that is

easier to interpret is the correlation. The correlation scales the covariance by the standard devi-

ation (V ) of each variable, which is defined as

ρXY =
cov(X ,Y )
V (X)V (Y )

=
σXY

σX σY
(2.4)
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2.5 Copulas
The goal of this thesis is to model the probabilities of co-occurrence of cold temperatures and

weak winds. But estimating joint densities is not an easy task since only a few non-Gaussian

families are defined, and non-parametric estimation is demanding. Nonetheless, density esti-

mation in one variable is relatively easy, given the fact that many convenient families exist and

that the non-parametric approach is efficient and accurate. The copulas framework for modeling

multivariate distributions provides a flexible representation and separates univariates from the

true nature of dependence.

In the field of probability theory and statistics, a copula function C : [0,1]n→ [0,1] is defined

as a multivariate distribution

C(u1,u2, ....,un) = P(U1 ≤ u1,U2 ≤ u2, ...Un ≤ un) (2.5)

such that marginalizing gives Ui∼Uni f orm(0,1). Copulas are useful because we can trans-

form any arbitrary random variable into a uniform and back. The function that transforms

uniforms to any other univariate distribution is the inverse of the cumulative density function

(CDF). In order to do the opposite transformation, from an arbitrary distribution to the uni-

form(0, 1), we just apply the inverse of the inverse CDF, the CDF.

Let X ∼ F be a continuous random variable, then the distribution of F(x) = P(X ≤ x) is

P(F(X)≤ u) = P(F−1(F(X))≤ F−1(u))

= P(X ≤ F−1(u))

= F(F−1(u)) = u

(2.6)

Summarizing, the steps to create multivariate distributions from arbitrary marginal distribu-

tions are:

• Transform an arbitrary random variable, X to a uniform one FX(X), where FX is the CDF

of X .

• In the bivariate case, given a copula C(U,V ), U and V have uniform distributions. It is

straightforward to extend the methodology to more variables.

• Given the random variables of interest, X and Y , a new distribution can be created as

C′(X ,Y ) =C(FX(X),FY (Y )).
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2.5.1 Scope of the framework

Sklar’s Theorem

An old mathematical result known as Sklar’s theorem is the foundation of the concept of copula.

It states that given an n-dimensional CDF, F , with marginals F1,F2, ...,Fn there exists a copula

function, C, such that

FX(X1,X2, ...,Xn) =Cθ (F1(X1,),F1(X2), ...,Fn(Xn)) (2.7)

for all Xi ∈ [− inf, inf] and i = 1, ...,n.

and if the marginals, Fi are continuous, the copula, C, is unique; otherwise, C is uniquely

defined only on Ran(F1×Ran(F2)× ...×Ran(Fn) where Ran(Fi) denotes the range of the CDF.

Inversion of Sklar’s theorem

In the opposite direction of Sklar’s theorem, we have that given a copula, C, and univariate

CDF’s, F1,F2, ...,Fn. Then, F as defined in 2.7 is a multivariate CDF with marginals F1,F2, ...,Fn

2.5.2 Gaussian copula

As mentioned before, the advantage of modeling joint distributions with copulas is that, in

practice, it is often easier to estimate the distribution of the marginals than to estimate the joint

distribution. Copula theory ensures that, for every joint multivariate distribution, there exists a

unique copula. In the case of the Gaussian copula function, finding its parameters is limited to

finding the correlation matrix of the random variables we want to study.

A Gaussian copula is given by

C(u1,u2, ...,un) = ΦΣ(Φ
−1(u1),Φ

−1(u2), ...,Φ
−1(un)) (2.8)

where ΦΣ represents the CDF of a multivariate normal with covariance Σ and mean 0, and

Φ−1 is the inverse CDF for the standard normal.

Given a multivariate distribution

FX(X) = P(X1 ≤ x1,X2 ≤ x2, ...,Xn ≤ xn) = ΦΣ(x1,x2, ...,xn), (2.9)

we can extract its Gaussian copula
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Figure 2.9: Density and scatterplot of a Bivariate Gaussian Distribution. The density of

the joint distribution is obtained by joining a Gaussian Copula (ρ = 0.5) with two identical

standard Gaussian univariate distributions. Sample size: n = 275. Gräler, n.d.

FX(X) = ΦΣ(F−1
1 (F1(X)),F−1

2 (F2(X)), ...,F−1
n (Fn(X)))

= ΦΣ(F−1
1 (u1),F−1

2 (u2), ...,F−1
n (un))

= ΦΣ(Φ
−1(u1),Φ

−1(u2), ...,Φ
−1(un))

=C(Φ−1(u1),Φ
−1(u2), ...,Φ

−1(un))

(2.10)

and plug in any marginal into the copula function.

The inverse CDF transforms the uniforms to normal distributions, then, the multivariate

normal’s CDF squashes the uniform dimensions to be normally distributed. Thus, the Gaussian

Copula is a distribution over the unit hypercube [0,1]n with uniform marginals.

The density plot of the Gaussian copula, as well as a scatterplot of the data generated using

the tool <https://copulatheque.shinyapps.io/copulas/>, is provided in Figure 2.9. This figure was

generate for the parameter ρ = 0.5, which is representative of the correlation values observed

between low temperature and low wind speed events during the wintertime. The sample size

is n = 275, approximately the number of events observed in a specific month during one of the

WRs. For the same parameters, the strength of dependence and a scatterplot of the uniform

variables are represented in Figure 2.10. It is clear that there is dependence. Further, the density

is higher for (0,0) and (1,1), and lowest for (1,0) and (0,1), indicating a positive correlation.
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Figure 2.10: Density distribution and scatterplot of Gaussian copula (ρ = 0.5), with uniform

marginal distributions. Sample size: n = 275. Gräler, n.d.

2.5.3 Semiparametric copula estimation

It has already been explained that the copula framework allows us to model the multivariate

distributions by parameterizing the associations among the variables separately from their uni-

variate marginal distributions. It is often the case that the marginal distributions do not belong

to standard families. In such cases, it might be appropriate to use a semi-parametric strategy

that involves representing the associations among variables with a simple parametric approach

and estimating the marginals nonparametrically.

D. Hoff (2007) proposed an extended rank likelihood method of semiparametric inference

for copula, which is a function of the association parameters only. It can be applied without any

assumptions of the marginal distributions, making it appropriate for the joint analysis of con-

tinuous and ordinal discrete data. The package cite provides a tool for estimation and inference

for the Gaussian copula parameters via a Markov chain Monte Carlo algorithm based on Gibbs

sampling.

Let y1 and y2 be two random variables with continuous CDFs F1 and F2. The transformed

variables u1 and u2 both have uniform marginal distributions. A semiparametric copula model

includes a parametric model for the joint distribution of u1 and u2, but lacks any parametric

restrictions on F1 and F2. Details about how the likelihood function that depends on association

parameter and not on the unknown marginal distribution is derived can be found in D. Hoff

2007, more specific, in section 3 of this paper.
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2.6 Linear regression
As explained before, modeling the events’ marginal distributions is needed to model the joint

distributions with the copula function. In this work, a linear regression model is proposed to

model the univariate probabilities of low temperature events and low wind speed events.

Linear regression is a useful tool for predicting a quantitative response Y on the basis of a

set of p predictors X1,X2, ...,Xp, assuming a linear relationship. The linear regression model

takes the form:

Y = β0 +β1X1 +β2X2 + ...+βpXp + ε, (2.11)

where the intercept, β0, and the slope terms, β1, ...,βp are unknown constants. The parame-

ters are estimated using the least square approach.

2.6.1 Logistic regression
Logistic regression is a widely used linear model for binary classification. To describe this

model, it is convenient to introduce the logit function defined as the natural logarithm of the odds

ratio (log-odds). Let Y be the binary outcome variable indicating failure or success with 0,1.

Then p stands for the probability of a positive event, i.e., p = P(Y = 1), and the quotient p/(1−

p) is the odds ratio: the odds in favour of a particular event. The mathematical expression of

the logit function is:

logit(p) = log(
p

1− p
), (2.12)

The logit function takes probability values in the range [0, 1] and transforms them into

values over the entire real-number range. The reason why this transformation is applied is that

it is usually difficult to model a variable that has a restricted range.

When a logistic regression model is applied, it is assumed that the logit transformation of

the outcome variable has a linear relationship with the predictor variables. Let Let x1,x2, ...,xk

be a set of predictor variables. Then β0,β1, ...,βk are the parameters estimated via the maximum

likelihood method when performing a logistic regression of Y on x1,x2, ...,xk:

logit(p) = log(
p

1− p
) = β0,β1x1, ...,βkxk. (2.13)

We are usually interested in predicting the probability that a particular sample belongs to a

particular class. First, we exponentiate and take the multiplicative inverse of 2.13:
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1− p
p

=
1

β0,β1x1, ...,βkxk
. (2.14)

Then, partial out the fraction on the left-hand side of the equation and add one to both sides,

obtaining:

1
p
= 1+

1
eβ0,β1x1,...,βkxk

. (2.15)

Finally, we change 1 to a common denominator and take the multiplicative inverse to obtain

the formula of the probability P(Y = 1):

p =
eβ0,β1x1,...,βkxk

1+ eβ0,β1x1,...,βkxk
=

1
1+ e−(β0,β1x1,...,βkxk)

, (2.16)

denominated as logistic sigmoid function, or simply sigmoid function due to its character-

istic S-shape.

2.7 Brier Score
Forecast performance is often assessed with a scalar summary measure, which is practical but

gives an incomplete picture (Wilks, 2006). Numerous scalar measures for probabilistic forecasts

exist but the most common is the Brier Score (BS) (Brier, 1950).

It is assumed that the events only can occur in one of r classes on each of the n occasions,

and the forecast probabilities of each classes are fi1, fi2, ..., fir in one of the occasions, i. The r

classes are chosen to be mutually exclusive and exhaustive, so that

r

∑
j=1

fi j, i = 1,2,3, ...,n (2.17)

The definition of the verification score P proposed by (Brier, 1950) is

P =
1
n

r

∑
j=1

n

∑
i=1

( fi j−Ei j)
2 (2.18)

where Ei j, takes the value 1 if the event occurred in class j and 0 otherwise. In the case

of probabilistic forecasts of dichotomous events, the score averages the squared differences

between the pairs of forecast probabilities and the binary observations. Thus the equation for

the verification score is

BS =
1
n

n

∑
i=1

( fi−Ei)
2 (2.19)
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which is analogous to the equation for the mean squared error, and negatively oriented,

with perfect forecasts exhibiting BS = 0. Less accurate forecasts exhibit higher scores, but

since individual forecasts and observations are both bounded by zero and one, the range of

possible values for the BS is 0≤ BS≤ 1. The expression of the BS in (2.19) is extensively used,

but it differs from the original score introduced by (2.18), in that it averages only the squared

differences of one of the two classes.

It is important to highlight that the scores favour the use of some skill in forecasting an aver-

age departure from climatological probabilities, but in the complete absence of any forecasting

skill, predicting climatological probabilities will lead to a better score than categorically fore-

casting the most frequent class on every occasion. The BS also encourages to state unbiased

estimates of the probability of each event when the forecast cannot be exactly right.

The Brier Skill Score (BSS) is often used and, since BSper f = 0, it takes the form

BSS =
BS−BSre f

0−BSre f
= 1− BS

BSre f
(2.20)

The reference model is usually the climatology. Negative values mean that the forecast is

less accurate than the reference forecast; when the forecast presents no skill compared to the

reference BSS = 0; and a perfect skill compared to the reference forecast reflects in a skill score

equal to 1.

2.8 Permutation test
Permutation tests are a group of nonparametric test procedures. Here, they are employed to test

the null hypothesis that two independent groups come from the same distribution. They can be

performed with virtually any measure of location or scale.

Permutation tests depend on the principle of exchangeability, which implies that all the

data were drawn from the same distribution under the null hypothesis (Wilks, 2006). In other

words, under the null hypothesis (treatment = control), any permutations are equally likely. For

a two-sided test, the alternative hypothesis is defined so that the two samples are different. If

only the extreme chance results in one direction count toward the p-value, a one-tail test can be

performed.

No sampling distribution is assumed; it is instead built by resampling the observed data

without replacement. Since the samples are drawn without replacement, each of the individual

n observations is only represented once in one of the artificial samples of size n1 and n2, and

the data labels are randomly permuted for each resample. The test statistic is computed for each
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pair of these samples and is compared to the resulting distribution outcomes that form the null

distribution.

Let X1 be a sample of size n1 from an unknown distribution F , the treatment group, and let

X2 be an independent sample of size n2 from an unknown population distribution G, the control

group. Suppose that we want to use the data to test the null hypothesis that the two population

distributions are identical.

The algorithm can be implemented as follows:

• Compute the ground truth absolute difference between the samples mean (or using an-

other metric) d = |X̄1− X̄2|.

• Pool the variables into one single distribution.

• Consider any permutation of the pooled data. Compute the sample mean of the first ob-

servations and that of the sample mean using the remaining observations. Then, compute

the difference between these sample means.

• Repeat the previous step for all possible permutations of the data yielding, say, L differ-

ences: δ̂1, δ̂2, ..., δ̂L. Given that computing all the permutations is expensive, in practice,

only p pairs of random samples are considered.

• The significance value is the proportion of permuted differences higher than the ground

truth difference calculated in the first step. Here, the p-value is defined as the probability,

given the null hypothesis is true, that we obtain results that are at least as extreme as the

results we observed (the ground truth).
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3 Data and Methods
3.1 Data

3.1.1 Reanalysis

Climate reanalysis combines past observations with models to generate time series of climate

variables. In this study, ERA5 reanalysis (Hersbach et al., 2019) was chosen to represent ob-

served historical meteorological conditions, spanning the period 1980-2017. This is the lat-

est climate reanalysis produced by the European Centre for Medium-Range Weather Forecasts

(ECMWF) and replaces the ERA-Interim reanalysis, which stopped being produced in 2019.

ERA5 is based on 4D-Var data assimilation using Cycle 41r2 of the Integrated Forecasting Sys-

tem IFS. It provides hourly estimates of a large number of atmospheric and oceanic variables

together with uncertainty parameters. The data covers the Earth and is available on 37 pressure

levels and single levels, on a regular latitude-longitude grid of 0.25◦ ×0.25◦ resolution (Hers-

bach et al., 2019). All the Python scripts used to download the data files in NetCDF format are

available in the GitHub repository.

Temperature is well established as the main weather driver of electricity demand. Very cold

or warm temperatures increase the demand due to heating and cooling, respectively (Taylor and

Buizza, 2003). Here, the minimum daily temperature was calculated from hourly air temper-

ature at 2 meters above the surface of land, sea, or inland waters. This variable is computed

by interpolating between the lowest model level and the Earth’s surface, taking into account

the atmospheric conditions. Climatology values (1980-2018) of minimum daily temperature

across the extended European domain during the boreal winter season (November to March)

are presented in Figure 3.1.

Wind speed was calculated from the eastward (u) and northward (v) components of the

wind at 10 meters at an hourly frequency, and then aggregated to daily maximum values. The

ECMWF warns about taking care when comparing these parameters with observations, which

can vary on small scales and time scales, and are affected by the local terrain, vegetation and

buildings, represented only on average in the ECMWF IFS. Climatology values (1980-2018)

of maximum daily wind speed during the boreal winter season from the ERA5 dataset are

presented in Figure 3.2.
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Figure 3.1: ERA5 minimum daily temperature climatology at 2 meters height. Figure based

on ERA5data (NDJFM, 1979–2017).

Figure 3.2: ERA5 maximum daily wind climatology at 10 meters height. Colours show maxi-

mum daily wind speeds. Figure based on ERA5data (NDJFM, 1979–2017).

3.1.2 Weather Regimes

WR patterns were computed following the classification method proposed by Cassou. Z500 data

from ERA5 is used, constrained to the Euro-Atlantic region (27◦-81◦N, 85.5◦W-45◦E), during

the winter season (November to March) in the period 1980-2017. The WRs were computed
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according to Wiel, Hannah C Bloomfield, et al. (2019 and Hannah C. Bloomfield, David J.

Brayshaw, and Charlton-Perez (2020. The calculation method consists of two steps. In the

first stage, a cosine weight as a function of latitude is applied to the, data and the first fourteen

EOFs patterns are computed. The associated Principle Component (PCs) time series were used

as coordinates of a reduced phase space. Then, the PCs were clustered into four groups with

the K-means algorithm, choosing 30 random starts and a maximum of 100 iterations. Every

daily map was assigned to a centroid (fig. 3.3) based on its closest distance (Euclidian in our

case). The number of regimes k=4 was chosen as it corresponds to the more robust regime

partition during winter months (Michelangeli, Robert Vautard, and Legras, 1995). The Z500

anomalies for each cluster are exhibited in Figure 3.3, and the proportion of days in each cluster

is approximately:

• AR: 22%

• SCAND: 28%

• NAO-: 19%

• NAO+: 32%

.

3.2 Methodology
This thesis’s primary goal is to design a methodology that allows for the computation of the

joint probabilities of occurrence of low temperature and low wind speed events, in order to

identify meteorological conditions that could eventually lead to energy shortfall. The results

were achieved by defining the low temperature events as daily minimum temperatures below

the 10th percentile derived from the seasonal (Nov-March) distribution. Analogously, low wind

speed events are defined by the daily maximum wind speeds below the seasonal 10th percentile.

This is the simplest way of defining events, but other formulations can be adopted in the current

context, given that the methodology is independent of the arbitrary thresholds defined in this

thesis. A comparison of the modeled marginal probabilities for different thresholds is provided

in Appendix 8. Daily values are computed from hourly data.

Research in this field has focused on average meteorological conditions and departures

from seasonal means (e.g. Hannah C. Bloomfield, David J. Brayshaw, and Charlton-Perez,

2020;Cortesi et al., 2019; Wiel, Hannah C Bloomfield, et al., 2019. In contrast to that approach,
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Figure 3.3: Four regimes of atmospheric circulation in the North Atlantic-European do-

main,AR, SCAND, NAO-, NAO+. Colours show the Z500 anomaly (m). Area of study: 27N-

81N, 95.5W-45E. Figure based on ERA5 data (NDJFM, 1979–2017).

the methodology described in this thesis benefits from the high resolution of the ERA5 datasets

to predict the joint probabilities. For the sake of comparison, the average meteorological surface

impact for each regime was determined through composite analysis, that is, the mean over all

days classified in the regime. Anomalies were computed by subtracting the daily climatology.

Empirical marginal and joint distributions of daily temperature and wind speed events were

calculated for the entire season and for each month separately. The importance of the WRs

defined by Cassou, 2008 in the prediction of compound events is manifested in the analysis

of the marginal probabilities of occurrence of low temperature and low wind speed events.

Together with the correlations between these two variables, modeled marginal probabilities are

embedded in Gaussian copula functions employed in the generation of the joint probabilities on

a grid level.
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A logistic regression model was adopted to estimate the marginal probabilities of low daily

wind speeds or low temperatures at each location, s. For each variable, the model shows the

interaction effect of regressing the dependent variable on a set of five dummy variables for

the months in the season November-March, Mi,t,s, i ∈ {Nov, Dec, Jan, Feb, Mar} and a set

of four dummy variables represents the dependence on the four weather regimes, R j,t,s, j ∈

{AR, SCAND, NAO−, NAO+}. At any time t, in this case a day, one of the seasonal dummies

Mi,t,s will equal 1, while all the others will equal 0. No intercept term is added to the model to

avoid collinearity. The model can be expressed as

logit(P(Ŷt,s = 1)) = ∑
i, j

βi, jMi,t,sR j,t,s, (3.1)

where βi, j are the regression coefficients, and P is the probability that Ŷt,s, the variable of

interest (either the minimum daily temperature at two meters or the maximum daily wind speed

at 10 meters), is below an arbitrary threshold. In other terms, there are two possible categories

defined by the threshold, in this case, the 10th percentile.

Ŷt,s =

1, if the observation is below the threshold

0, otherwise
(3.2)

The reference model to which the results of the logistic regression model were compared to

is a simple climatology model consisting of the main effect of regressing P(Ŷt,s = 1) on Mi,t,s

as defined above, given by

logit(P(Ŷt,s = 1)) = ∑
i

γiMi,t,s, (3.3)

where γi, j are the regression coefficients.

To illustrate the importance of using in the prediction of low temperature and low wind

speed events, a logistic regression model with the WRs as the only predictors was run for the

winter season.

The univariate probabilities are estimated using cross-validation, using the leave one group

out method, being the group defined by one year of data. This means that, for each year, the

coefficients of the logistic regressions were estimated using the remaining data.

The marginal probabilities from the main model were compared to the climatology model in

terms of the BSS. The BSS was computed with one of many possible samples from the popula-

tion, therefore the sampling uncertainty affecting this metric needs to be taken into account. The
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significance of the results was assessed with a permutation test, using the BS difference between

the main model and the climatology model at each location as a metric, and running p = 1000

permutations. All the tests were performed at a 10% significance level. The methodology for

computing the permutation test at each location can be summarized as follows:

• Subset the samples by selecting the predictions that are classified in the regime that is

analyzed. For each model, the treatment group is defined by the predictions and the

control group is defined by the observed values.

• Compute the ground truth as gT = BSmainmodel−BSclimatmodel .

• For each model, pool the treatment and the control variables into one single distribution.

• Shuffle the data p = 1000 times, and store the permuted difference of BS in a new vari-

able.

• Compute the significance values as the proportion of permuted differences higher than

the ground truth.

The joint probabilities were estimated at each location using a Gaussian copula function

that takes as an input the marginal probabilities and the covariance matrix for the two variables.

Correlations are estimated using the function mcmc from the R package ’sbgcop’ (D. Hoff,

2007). This function produces MCMC samples from the posterior distribution of a correlation

matrix, using a scaled inverse-Wishart prior distribution and an extended rank likelihood. The

importance of consireing the associations between the events when modeling the joint distribu-

tions is assessed by computing the BSS using a model with no correlation as a reference and

performing a permutation test at the 10% significance level.

The code for reproducing the results is available in the GitHub repository paulina-t/msc-

thesis. The experiments are conducted on one of the servers of the Department of Geosciences

from the University of Oslo, Wessel. Its Characteristics are provided in the following table. The

Linux version installed is 3.10.0-1127.18.2.el7.
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4 Results
4.1 Mean meteorological conditions
Composites were computed for minimum daily temperature and maximum daily wind speed

anomalies. Figures 4.1 and 4.2 show the typical surface imprint of the four WRs on temper-

ature and wind speed anomalies respectively. The mean meteorological conditions illustrated

in both figures are in good agreement with previous findings in the literature (e.g. Hannah C.

Bloomfield, David J. Brayshaw, and Charlton-Perez, 2020; Wiel, Hannah C Bloomfield, et al.,

2019).

Figure 4.1: Mean meteorological surface impacts of the four WRs. Colours show maximum

daily temperature anomalies (◦C). Area of study: 20N-80N, 90W-60E. Figure based on ERA5

data (NDJFM, 1979–2017).

As expected, the regimes with the strongest impact are NAO- and NAO+. The response of

these regimes in both the temperature and the wind speed fields is symmetric. Anomalous low

surface temperatures over Europe are usual during blocking conditions, in this context, during

NAO- and SCAND. The impacts of the NAO on surface temperature (Figure 4.1) consists of a

zonal dipole with centers over Northern Europe and the Labrador Sea. During NAO-, temper-

ature anomalies are, on average, cold across Northern Europe, Scandinavia, and Northwestern

Russia, but warm across the Mediterranean countries. This results from above-average geopo-

tential heights over Iceland, allowing cold air to drain from high latitudes, and a lower than
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normal pressure system over the Azores high. These effects combined, decrease the pressure

gradient across the North Atlantic. Meanwhile, the opposite conditions yield for NAO+, and

warm anomalies cover the entire continent. A north-south gradient of mean temperature anoma-

lies can be observed during SCAND conditions, but less prominent and with the opposite sign

of the gradient associated with NAO-. The anticyclonic circulation associated with SCAND

imposes warm conditions over Scandinavia and Britain, extending over the Norwegian Sea to

Greenland, as a cold polar continental air mass develops across the rest of Europe. The lowest

climatological departures of minimum daily temperatures are observed during AR days. This

pattern consists of two centers of warm anomalies located over the North Atlantic and North-

western Russia, and cold anomalies over the European continent spanning the Norwegian Sea

and Greenland.

Figure 4.2: Mean meteorological surface impacts of the four WRs. Colours show minimum

daily wind speed anomalies (m/s). Area of study: 20N-80N, 90W-60E. Figure based on ERA5

data (NDJFM, 1979–2017).

Low wind speed conditions over Europe occur on average during blocking situations when

typically a high pressure system dominates the circulation over Europe, i.e., NAO- and SCAND

(see Figure 4.2). During NAO, a meridional wave train extends across the Atlantic and Western

Europe with an opposite sign for the positive and negative phases. During NAO+, countries

in Northern Europe are on average affected by high anomalous wind speeds, whereas Mediter-

ranean countries experience anomalous low wind conditions; the opposite yields during NAO-.

The SCAND is characterized by anticyclonic anomalies resulting in anomalous weak winds

centered over Britain and affecting most European countries. Similarly, the impacts of the AR
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on the wind speed anomaly field consists of a monopole of weak winds but, in this case, with a

center located in the North Atlantic with strong wind anomalies spanning the European conti-

nent.

4.2 Proportion of meteorological events by WR
Meteorological events are defined on each grid box as the days when the variable in concern

is below the 10th percentile. The threshold is computed at each location based on all the daily

values in the extended winter season. For the rest of the analysis, a smaller region covering the

European continent is selected. It extends from 35N to 72N and from 11W to 40E.

4.2.1 Temperature events

Figure 4.3: Total number of temperature observations by regime. Blue columns represent

observations above the 10th percentile computed for the winter season (NDJFM) on a grid

level, and orange columns represent observations below the 10th percentile. Area of study:

35N-72N, 11W-40E. Figure based on ERA5 data (NDJFM, 1979–2017).

The sum over all locations of the number of days classified in each regime is depicted in

Figure 4.3, using orange bars for the number of temperature events and blue bars for the remain-

ing days. Complementing this figure, Table 4.1 provides the percentage of days represented in

each column with respect to the total number of days classified on each cluster, together with

the ratio ( %events
%notevents ), and the total number of days in each regime. Given that the events were

defined as the number of days with temperatures below the 10th percentile, the sum of days

represented by the four orange bars is the 10% of the entire winter season. Consequently, the

values in the second column of Table 4.1 sum 10, and the values in the first column sum 90.

It can be observed that the NAO+ is the dominant pattern in Europe, accounting for almost
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Table 4.1: Proportions of events in each WR computed over the entire European domain. The

first column, %t > q, represents the percentage of the total number of days with temperatures

above the threshold over the entire grid, computed with respect to the total number of days

in each cluster. Analogously, the second column, %t < q, represents the percentage of the

total number of events in Europe. The ratio between these two columns is written in the third

column. The last column is the sum of the values in the first two columns and represents the

percentage of the number of days classified in each WR. Area of study: 35N-72N, 11W-40E.

Table based on ERA5 data (NDJFM, 1979–2017).

WR %(t > q) %(t < q) ratio sum

AR 19.11 2.40 0.13 21.52

SCAND 24.75 2.78 0.11 27.54

NAO- 15.91 3.22 0.20 19.14

NAO+ 30.21 1.60 0.05 31.81

1/3 of the days. The SCAND pattern is also frequent, as 28% of the days are classified in this

cluster. Although NAO+ is the most frequent pattern, the ratio of cold events is the lowest

among the clusters, 5:100. This supports the notion that the NAO+ is associated with above-

normal temperatures in Europe (see Figure 4.1. On the contrary, NAO- is the less observed

pattern but presents the highest ratio of events, 2:10, which is consistent with lower than normal

temperatures observed during NAO-. The SCAND is the second most frequent regime, but

the ratio of events of the AR is lower than for the NAO-. This is also in line with Figure 4.1

that shows higher temperature anomalies for both phases of the NAO compared tho the other

clusters.

4.2.2 Wind speed events

Figure 4.4 and Table 4.2 are constructed as Figure 4.3 and Table 4.1 but for weak wind events.

The last column is independent of the variable and is, therefore, the same. The number of

events is, however, different. Furthermore, there is less dispersion among the WRs in the case

of wind speed events. The clusters with the highest ratios are, as expected, the blocking patterns,

SCAND and NAO-, with proportions 14:100 and 12:100 respectively. The SCAND is also the
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Figure 4.4: As Figure 4.1 but for the wind speed variable. Area of study: 35N-72N, 11W-40E.

Figure based on ERA5 data (NDJFM, 1979–2017).

Table 4.2: As Tanble 4.1 but for wind speed events. Area of study: 35N-72N, 11W-40E. Table

based on ERA5 data (NDJFM, 1979–2017).

WR %(ws > q) %(ws < q) ratio sum

AR 19.80 1.71 0.09 21.52

SCAND 24.11 3.43 0.14 27.54

NAO- 17.02 2.12 0.12 19.14

NAO+ 29.07 2.74 0.09 31.81

pattern with the highest frequency of weak wind events, coherent with a high pressure system

covering a large fraction of Europe. The AR and the NAO+ have both ratios 9:100.

4.2.3 Joint temperature and wind speed events

Figure 4.5 and Table 4.3 are obtained by combining the results presented above. The total

number of joint events illustrated in Figure 4.5 is highest for the blocking patterns, and lowest

for the NAO+. Although the total number of events associated with NAO- and AR is similar,

the ratios are considerably different. In the case of NAO- events, the ratio is 24:1000, whereas

in the case of SCAND, it is 15:1000. In addition, the ratio of joint events for the NAO+ is an

order of magnitude smaller than for the other events. The reason why the difference in the total
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Figure 4.5: Total number of joint temperature and wind speed events by regime over the Eu-

ropean domain. The threshold is computed on a grid level for each variable separately as

the 10th percentile considering all the days in the winter season (NDJFM). Area of study:

35N-72N, 11W-40E. Figure based on ERA5 data (NDJFM, 1979–2017).

Table 4.3: As Table 4.1 but for joint temperature and wind speed events. The threshold for

defining cold events and weak wind events is the 10th percentile of each variable computed for

all the days in the winter season (NDJFM). Area of study: 35N-72N, 11W-40E. Table based

on ERA5 data (NDJFM, 1979–2017).

wr % not joint events % joint events ratio sum

0.0 21.28 0.24 0.01 21.52

1.0 27.12 0.41 0.02 27.54

2.0 18.70 0.44 0.02 19.14

3.0 31.61 0.20 0.01 31.81

number of events between the NAO+ and the rest of the clusters is not as big as the ratio is that

more days are classified as NAO+.

The results presented above confirm the hypothesis that blocking patterns lead to a higher

number of joint low temperature and low wind speed events, due to anomalous high pressures

affecting the circulation across Europe. , characterized by the opposite conditions, leads to the

lowest frequency of joint events.
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4.3 Empirical distributions
The results exhibited in the previous section are representative of the entire domain. The spatial

distribution is studied carefully in this section. Empirical marginal and joint probabilities were

computed as the observed frequencies of events relative to the number of days in each WR.

The results are provided for the winter season extending from November to March, and for

each month separately showing the seasonal behaviour. The following notation is adopted to

describe the results: p denotes the marginal probability of occurrence, and the subindices X , N,

and µ refer to the maximum, minimum, and average probabilities over all locations. The month

and/or regime is in parenthesis.

4.3.1 Marginal probabilities

Seasonality of marginal probabilities

The seasonality of the marginal probabilities of low temperature and low wind speed events was

studied at a monthly level. The results are illustrated in the present subsection.

Figure 4.6: Marginal probabilities of low temperature events. Colours show the probabilities

of occurrence of low temperature events computed as the proportion of days with the daily

minimum temperature below the 10th percentile for each month. Area of study: 35N-72N,

11W-40E. Figure based on ERA5 data (NDJFM, 1979–2017).

Temperature The temperature variable exhibits the expected pattern, with the warmest tem-

peratures in the transition months, November and March. The coldest surface temperatures over

land occur more frequently in January (pX(Jan) = 0.2328, pµ(Nov) = 0.1597), whereas the coldest

temperatures over the sea are observed in February (pX(Feb) = 0.2574, pµ(Feb) = 0.1654). The

response to heating over land is faster than over water bodies due to the water’s higher heat

capacity. A monthly lag between the distinct surfaces can be observed in Figure 4.6. November

is the warmest month, the maximum probability of low temperatures is pX(Nov) = 0.1000 and

the averages over all grid points are pµ(Nov) = 0.0188. The maximum registered in March is
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pX(Mar) = 0.1630, whereas the average is pµ(Mar) = 0.0634.

Figure 4.7: Marginal probabilities of low wind speed events. Colours show the probabilities

of occurrence of low wind speed events computed as the proportion of days with the daily

minimum temperature below the 10th percentile for each month. Area of study: 35N-72N,

11W-40E. Figure based on ERA5 data (NDJFM, 1979–2017).

Wind speed As regards the wind speed variable, the seasonality is more complex than the

described for the temperature variable. In Southern Europe, observed probabilities of low wind

speeds are high from November to January, being the highest probabilities registered in Decem-

ber (pX(Dec) = 0.2084, pµ(Dec) = 0.0978). The latitudinal gradient shifts sign in February, and the

lowest values in the south are observed in March. On the other hand, in March and November,

the warmest months of the season, probabilities are high over the ocean in high latitudes. The

maximum values observed in March are pX(March) = 0.2180 and pµ(march) = 0.0990. March is

also the month with the biggest contrasts between ocean and land. Furthermore, the probability

values are lower than for temperature events.

Marginal probabilities computed by regime

The importance considering the WRs in the study of marginal probabilities of low wind speed

and low temperatures is evident in Figures 4.6 and 4.7. Clear patterns associated with each of

the WRs are depicted in these figures.

Temperature As figure 4.8 indicates, the highest probabilities of occurrence of low temper-

atures are associated with the NAO- in Northern Europe and Scandinavia, in particular, on

the west coast of Norway, Great Britain, and Ireland. The maximum over all grid boxes is

pX(NAO−) = 0.3100, which is higher than any of the monthly maximum values in Figure 4.6. The

pattern extends from southwest to northeast, with the lowest probabilities in the Mediterranean.

During AR conditions, a maximum is visible over the North Atlantic (PX(AR) = 0.2243), and rel-

atively high probabilities are observed in the Mediterranean. However, most continental regions
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Figure 4.8: Marginal probabilities of low temperature events. Colours show the probabilities

of occurrence of low temperature events computed as the proportion of days with the daily

minimum temperature below the 10th percentile for each WR. Area of study: 35N-72N, 11W-

40E. Figure based on ERA5 data (NDJFM, 1979–2017).

show no relevant signal. The SCAND pattern illustrates a NW-SE gradient, with a maximum in

the Aegean and Black seas and no observed events in the North Atlantic (pN(SCAND)
= 0). Cold

conditions are expected to occur with less frequency during NAO+ compared with the other

clusters. The overall spatial maximum and minimum for this regime are pX(NAO+)
= 0.1556

and pNNAO+ = 0.0062 respectively. In contrast, NAO+ is the pattern with the lowest observed

frequency (pµ(NAO+)
= 0.0502).

Overall, NAO- is the pattern with the highest average of observed low temperature events

(pµ(NAO−) = 0.1685), followed by the AR. Meanwhile, the spatial distribution is considerably

different and should be taken into account in the design of energy systems. Days classified as

NAO- are characterized by the highest probabilities in Northern Europe and Scandinavia. The

SCAND shows a similar pattern, but weaker and further south. The high probabilities associated

with AR are located in the North Sea and the Mediterranean.
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Figure 4.9: Marginal probabilities of low wind speed events. Colours show the probabilities

of occurrence of low wind speed events computed as the proportion of days with the daily

maximum wind speed below the 10th percentile for each WR. Area of study: 35N-72N, 11W-

40E. Figure based on ERA5 data (NDJFM, 1979–2017).

Wind speed In agreement with previous studies, Figure 4.9 indicates that blocking condi-

tions lead to high probabilities of low wind speeds. Again, the spatial distribution of high

probabilities associated with each regime is different. The SCAND pattern presents a maxi-

mum (pX(SCAND)
= 0.2265) centered in the North Sea with high values extending across North-

ern Europe. This pattern presents, on average, the highest probabilities among all the WRs,

pµ(SCAND)
= 0.1246, but also the lowest value of the four WRs (pN(SCAND)

= 0.0493). The maxi-

mum probability over all regimes is registered during NAO- (pX(NAO−) = 0.2400). During NAO-,

the maximum is located in the North Atlantic, with high values extending to Scandinavia, and

low values in the south. An opposite gradient is inherent to the NAO+, with the lowest values in

Northern Europe and Scandinavia. On average, probabilities of low wind speeds during NAO+

are pµ(NAO+)
= 0.0862. Meanwhile, the AR pattern does not show any particular signal and has

the lowest averaged probabilities, pµ(AR) = 0.0797.

Comparing Figures 4.8 and 4.9 shows high of low temperature and low wind speed events

are located in approximately the same geographical areas, as an opposition to the AR and the
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NAO+. Moreover, departures from the 10th percentile are smaller for low wind speeds than for

low temperatures (notice the different color bars).

Seasonality of marginal probabilities by regime

It has been shown above that the observed frequencies of low temperatures and low wind speeds

have a pronounced seasonal behaviour and that the WRs proposed by Cassou are associated

with specific patterns during the winter season. In this section, both results are combined by

computing the seasonal empirical probabilities relative to each WR.

Figure 4.10: Marginal probabilities of low temperature events. Colours show the probabilities

of occurrence of low temperature events computed as the proportion of days with the daily

minimum temperature below the 10th percentile. Area of study: 35N-72N, 11W-40E. Figure

based on ERA5 data (NDJFM, 1979–2017).

Temperature On average, the probabilities of occurrence of daily minimum temperatures

below the 10th percentile increase during the coldest months, reaching a peak in February,

as shown in Figure 4.10 and Table 4.5, except for the NAO+ that reaches the highest values in

January. The maximum probabilities over all locations occur during the same months (see Table
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Table 4.4: Maximum empirical marginal probabilities of low temperature events (pX ). Area

of study: 35N-72N, 11W-40E. Table based on ERA5 data (NDJFM, 1979–2017).

AR SCAND NAO- NAO+

Nov 0.1316 0.1262 0.2294 0.0756

Dec 0.2681 0.2628 0.4180 0.2500

Jan 0.3644 0.3836 0.5280 0.2949

Feb 0.4074 0.4453 0.5789 0.2515

Mar 0.3745 0.1969 0.3004 0.1976

Table 4.5: Mean empirical marginal probabilities of low temperature events pµ). Area of

study: 35N-72N, 11W-40E. Table based on ERA5 data (NDJFM, 1979–2017).

AR SCAND NAO- NAO+

Nov 0.0196 0.0198 0.0375 0.0084

Dec 0.0915 0.0887 0.1834 0.0492

Jan 0.1721 0.1723 0.2538 0.1834

Feb 0.1997 0.1859 0.2618 0.0699

Mar 0.0196 0.0501 0.1001 0.0290

4.4). The NAO- is associated with the highest probabilities over major parts of Europe. It has

a maximum located in the region formed by the North Sea and Baltic Sea, pX(NAO−) = 0.5789.

In contrast, the lowest values, i.e., low probability of low daily minimum temperatures, are

associated with warmer than normal temperatures during NAO+. Probabilities are also high in

January and February during the SCAND over Central and Southwestern Europe, and during the

AR in the Mediterranean and the Norwegian Sea. These two patterns have, on average, similar

probability values, although located in different regions. The center of high probabilities located
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over the Norwegian Sea, associated with the AR, intensifies in March.

In summary, the spatial distribution of probabilities of low temperature events has a strong

seasonality at a regime level. NAO- has the strongest signal, whereas the opposite yields for

NAO+. High probabilities can be expected from December to February, and even in March over

the ocean during NAO-, SCAND, and AR.

Figure 4.11: Marginal probabilities of low wind speed events. Colours show the probabilities

of occurrence of low wind speed events computed as the proportion of days with the daily

maximum wind speed the 10th percentile. Area of study: 35N-72N, 11W-40E. Figure based on

ERA5 data (NDJFM, 1979–2017).

Wind speed The probability of occurrence of low wind speed events shows smaller seasonal

variations than low temperatures for all the patterns but the SCAND (see Figure 4.11 and Tables

4.6 and 4.7). Although the highest maximum value is observed in February under NAO- con-

ditions pX(NAO−,Feb) = 0.3526, on average, the probabilities of low wind speed events are higher

under SCAND conditions for all the months of the season. As numerous studies describe,

these two blocking patterns are associated with weak 10m winds. Hence, it is no surprise that
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Table 4.6: Maximum empirical marginal probabilities of low wind speed events (pX ). Area of

study: 35N-72N, 11W-40E. Table based on ERA5 data (NDJFM, 1979–2017).

AR SCAND NAO- NAO+

Nov 0.2218 0.3060 0.3059 0.2773

Dec 0.2255 0.3494 0.3484 0.3090

Jan 0.2089 0.2956 0.3494 0.2769

Feb 0.1975 0.2920 0.3526 0.2101

Mar 0.2383 0.3406 0.2767 0.2212

Table 4.7: Mean empirical marginal probabilities of low wind speed events (pµ ). Area of

study: 35N-72N, 11W-40E. Table based on ERA5 data (NDJFM, 1979–2017).

AR SCAND NAO- NAO+

Nov 0.0856 0.1372 0.1160 0.1037

Dec 0.0778 0.1249 0.1014 0.0849

Jan 0.0800 0.1217 0.1113 0.0848

Feb 0.0776 0.1131 0.1198 0.0743

Mar 0.0768 0.1248 0.1088 0.0826

the probabilities of low wind speed events are high during these patterns. The spatial distri-

bution is, however, different. High probabilities are located further north during NAO- with

respect to SCAND, as happens with the probabilities for low temperature events (see Figure

4.10. The strongest north-south gradients are observed in March, during SCAND; probabil-

ities are high across Central and Northern Europe this month, with a maximum located over

the sea (pX(NAO−,Mar) = 0.3406) and low in southern Europe (pN(NAO−,Mar) = 0.0000). It is also

evident that probabilities are higher over water bodies than over land in March. Contrarily,
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the continent is affected by anticyclonic conditions from November to January, being February

a transition month. The maximum probability observed during this cluster occurs in Decem-

ber, pX(SCAND,Dec) = 0.3494. On average, November is the month with the highest probabilities,

pµ(SCAND,Nov) = 0.1372. Although this month does not show the highest values, they are relatively

high over large parts of the domain.

Low wind speed events are also expected during NAO- at latitudes higher than 60◦N, in

particular, during February in the Atlantic and North Sea (PX(NAO−,Feb) = 0.3526). This pattern

shows very small seasonal variations, especially the spatial structure. Average values range

from pµ (NAO−,Dec) = 0.1014 in December to pµ(NAO−,Feb) = 0.1198 in February. On the other

hand, the spatial distribution of the NAO+ is the opposite of the negative phase and weaker. The

highest probabilities during NAO+ conditions occur in the south from November to January.

The highest frequency of low wind speed events peaks in December (pX(NAO+,Dec) = 0.3090)

but, on average, more events are observed in November (pµ(NAO+,NOV ) = 0.1037). The lowest

frequency of events is observed during the AR. Wind speed probabilities are, in general, lower

than temperature probabilities.

4.3.2 Joint probabilities
The main goal of this thesis is to model the co-occurrence of low temperature and low wind

speed events in the light of the WRs for each month of the winter season. Historical joint

distributions are described in this section.

Seasonality of joint probabilities

Figure 4.12: Joint probabilities of low temperature and low wind speed events. Colours show

the probabilities of occurrence of low temperature and low wind speed events computed as the

proportion of days with daily minimum temperatures and daily maximum wind speeds below

the 10th percentile for each month. Area of study: 35N-72N, 11W-40E. Figure based on ERA5

data (NDJFM, 1979–2017).

The seasonality of the combined events is summarized in figure 4.12. Joint events of low

temperatures and low wind speeds are frequently observed across the continent during the cold-
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est winter months. Already in December, some high probabilities are observed in Western

Europe and Scandinavia (pX(Dec) = 0.0793, pµ(Dec) = 0.0132), where low temperatures coin-

cide with low wind speeds. In January, the entire continent is affected by an enhanced fre-

quency of co-occurrence of extremely low temperatures and low wind speeds (pX(Jan) = 0.0741,

pµ(Jan) = 0.0218), but, in February, the highest probabilities are located over the Baltic Sea and

Northwestern Europe (pX(Feb) = 0.0775, pµ(Feb) = 0.0202). This month, Northern Europe and

Scandinavia (both landmasses and water bodies) are hit by relatively frequent joint events. In

March, only the Baltic sea is governed by frequent compound events, whereas the rest of the

domain experiences very low probabilities. Very low probabilities are observed in the month of

November (pµ(Nov) = 0.0030).

Joint probabilities computed by regime

Empirical joint probabilities were also analyzed on a WR level for the entire season (NDJFM),

showing the importance of considering the WRs in the study of compound events.

Figure 4.13: Joint probabilities of low temperature and low wind speed events. Colours show

the probabilities of occurrence of low temperature and low wind speed events computed as the

proportion of days with daily minimum temperatures and daily maximum wind speeds below

the 10th percentile. Area of study: 35N-72N, 11W-40E. Figure based on ERA5 data (NDJFM,

1979–2017).
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Table 4.8: Maximum empirical joint probabilities of low temperature events (pX ). Area of

study: 35N-72N, 11W-40E. Table based on ERA5 data (NDJFM, 1979–2017).

AR SCAND NAO- NAO+

Nov 0.0489 0.0694 0.1000 0.0224

Dec 0.1106 0.1218 0.1885 0.0899

Jan 0.1156 0.1478 0.1729 0.1205

Feb 0.1070 0.1387 0.1947 0.0858

Mar 0.0426 0.0906 0.1107 0.0472

Figure 4.13 reveals that the days on which the joint effect is most prominent are classified

as NAO-. For this pattern, the highest observed joint probabilities during the winter season

are pX(NAO−) = 0.1120, and the average is pµ (NAO−) = 0.0231, both double as high as for the

other regimes. Northern Europe and Scandinavia are the regions affected by compound events,

over land, but also over the sea. The SCAND pattern also shows relatively high probabilities of

joint events over an extended area in Central and Northern Europe, but not as prominent as the

NAO-. The maximum and mean values observed are pX(SCAND)
= 0.0584 and pµ(SCAND)

= 0.0150

respectively. During this regime, very low probabilities are observed in the Atlantic and the

Mediterranean Sea. The AR pattern consists of high probabilities in Scandinavia and Ireland,

whereas the NAO+ is not affected by the co-occurrence of low temperature and low wind speed

events.

As the marginal probabilities figures indicate, high probabilities of low temperature and

low wind speed events are located over the same area; thus, joint probabilities are high for

these blocking patterns. It is worth mentioning that the meteorological conditions impose a

more substantial effect on the joint probabilities than the seasonality, and that the color bars are

truncated at different levels.

Seasonality of joint probabilities by regime

Finally, the combined seasonal and effect on the historical joint distributions is reported.

Figure 4.14 displays the seasonality of the empirical joint probabilities for each WR. As
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Figure 4.14: Joint probabilities of low temperature and low wind speed events. Colours show

the probabilities of occurrence of low temperature and low wind speed events computed as the

proportion of days with daily minimum temperatures and daily maximum wind speeds below

the 10th percentile. Area of study: 35N-72N, 11W-40E. Figure based on ERA5 data (NDJFM,

1979–2017).

expected, joint probabilities are high when and where both marginals are high. The strongest

signal occurs during NAO-, from December to March, with a maximum in the coldest months

of the year, in Northern Europe and Scandinavia. The highest relative frequency of events is

observed in February associated with the NAO- pattern, pX(Feb,NAO−) = 0.1947 and pµ(Feb,NAO−) =

0.0357. The other three patterns reach the highest probabilities in January (see Tables 4.8 and

4.9. The SCAND has the second most prominent pattern in the winter season, with a region of

high probabilities that covers most of the continent, extending from southwest to northeast, in

January, when it reaches the maximum (pX(Jan,SCAND)
= 0.1478, pµ(Jan,SCAND)

= 0.0270). In De-

cember, the co-occurrence of low temperature and low wind speed events is favoured in northern

Spain, western France, and Britain; these high probabilities move northwest and are centered

over the Baltic Sea in February. High probabilities characterize the AR in Northwestern Eu-
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Table 4.9: Mean empirical joint probabilities of low temperature events (pµ ). Area of study:

35N-72N, 11W-40E. Table based on ERA5 data (NDJFM, 1979–2017).

AR SCAND NAO- NAO+

Nov 0.0027 0.0037 0.0055 0.0013

Dec 0.0093 0.0145 0.0246 0.0067

Jan 0.0178 0.0270 0.0348 0.0126

Feb 0.0203 0.0246 0.0357 0.0079

Mar 0.0068 0.0065 0.0143 0.0028

rope and Scandinavia in January and February. As expected, NAO+, the pattern associated with

warm anomalies across Europe, has the lowest probabilities for joint events.

The four WRs have in common that November and March are the months with the lowest

probabilities and that a strong seasonality is reflected both in the number of occurrences and

in the geographical area affected by compound events. As blocking situations lead to high

marginal low temperatures and low wind speeds in approximately the same regions, high joint

probabilities are also expected during these regimes. Despite the fact that blocking patterns are

associated with the strongest signals, the other regimes are also affected by high probabilities

in some locations during the coldest months. As seen in Figure 4.13, WRs play an essential

role in predicting joint probabilities, but Figure 4.14 shows that seasonal variations are big and

should also be considered when modeling the multivariate distributions. Furthermore, joint

probabilities calculated by aggregating the data by month and regime (Figure 4.14) are higher

than when aggregated only by month (Figure 4.12) or only by regime (Figure 4.13).

4.3.3 Independence

To conclude the study of the empirical distributions, the dependence of temperature and wind

speed events was assessed, and correlation values were computed. Events are dependent if they

affect each other.

By comparing the probabilities from the joint distributions with the product of the marginal

probabilities, the variables are proven to be dependent. The events are independent if and only if
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these two quantities are equal (Equation 2.2. The following figures show the difference between

the joint probabilities and the product of the marginals. This magnitude quantifies the strength

of the association between the events. Positive values indicate that low temperature events

favour low wind speed events, or, equivalently, that low wind speed favour low temperature

events. The opposite holds for negative values. This is, the events are negatively correlated, and

the presence of one event reduces the odds of the other event.

Figure 4.15: Seasonality of difference between the joint probabilities and the product of the

marginal probabilities. Red (blue) tones indicate that the joint probabilities are greater (less)

than the product of marginals. Area of study: 35N-72N, 11W-40E. Figure based on ERA5 data

(NDJFM, 1979–2017).).

The illustration of monthly differences between joint and product of marginal probabilities

suggests that the dependence is stronger during the coldest months when marginal probabilities

of low temperature events are highest (Figure 4.15). The biggest positive difference is observed

in January, ∆+ = 0.0481. The biggest negative difference is also registered in January, ∆− =

−0.0274. In general, the continent exhibits positive differences in areas where the empirical

joint probabilities are high. This suggests that more events occur where the dependence is

strongest. In contrast, the maritime regions are characterized by negative or close to zero values.

As Figure 4.15, Figure 4.16 shows that the differences between the joint probabilities and

the product of marginals are positive across the continent when data is aggregated by WRs. The

biggest differences occur during NAO- over Northern Europe and Scandinavia (∆+ = 0.0645),

where both events co-occur with more frequency. The most negative values are also observed

during NAO-, ∆− =−0.0273, but over the ocean.

The combined effect of WRs and seasonality can be appreciated in Figure 4.17. More often

than not, the differences are larger where the joint probabilities are highest, i.e., during the

coldest months and under blocking conditions. In particular, the NAO- is associated with large

differences, both positive and negative. This regime presents positive differences bigger than

0.9 from December to February; the biggest negative difference is observed in February and is

∆− = −0.0515. The differences are close to zero during the transition months, November and
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Figure 4.16: Difference between joint probabilities and product of marginals for each WR.

Red (blue) tones indicate that the joint probabilities are greater (less) than the product

of marginals. Area of study: 35N-72N, 11W-40E. Figure based on ERA5 data (NDJFM,

1979–2017).

March, for all the regimes.

Complementing these results, the chi-square test was performed at a 10% significance level,

confirming that the events are dependent on most of the European domain. The results are

available in the Appendix (8).

4.4 Bivariate analysis with Gaussian copula theory

4.4.1 Estimation of the copula parameters

Dependence and correlations are often treated as synonyms, but dependence is more general

than correlation. If the variables are independent, the correlation is 0, but the converse is not

true. The average posterior samples of the correlation matrix for low temperature and low wind

speed events for each WR are computed as in D. Hoff, 2007 and shown in Figure 4.18. These

correlation values are the parameters of the copula function employed to model the bivariate

distributions.

The four WRs have in common that the correlations between low temperature and low wind
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Figure 4.17: Seasonal difference between joint probabilities and product of marginals for

each WR. Red (blue) tones indicate that the joint probabilities are greater (less) than the prod-

uct of marginals. Area of study: 35N-72N, 11W-40E. Figure based on ERA5 data (NDJFM,

1979–2017).

Table 4.10: Maximum (ρX), minimum (ρN), and average (ρµ ) correlations for each regime.

Area of study: 35N-72N, 11W-40E. Table based on ERA5 data (NDJFM, 1979–2017).

WR ρX ρN ρµ

AR 0.71 -0.70 0.23

SCAND 0.67 -0.69 0.18

NAO- 0.63 -0.67 0.21

NAO+ 0.70 -0.64 0.19

speed events are positive on mainland Europe, except some high locations, such as the Alps and

the mountains in Norway. In contrast, over the sea (except the North Sea and the Baltic Sea),

low temperatures and low wind speeds are, in general, anticorrelated.

The highest correlations are observed during the AR (the maximum is X AR = 0.71). The
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Figure 4.18: Correlations (ρ) between low temperature events and low wind speed events

for the four WRs. The threshold is defined as the below the 10th percentile. Area of study:

35N-72N, 11W-40E. Figure based on ERA5 data (NDJFM, 1979–2017).

minimum and the average are also the highest compared to the other WRs (see Table 4.10) It

presents a meridional gradient over the continent. Also, the North Sea and the Baltic Sea present

the highest correlations during this pattern. The correlations are lower over Central and Eastern

Europe during SCAND and NAO+, although they are higher in the Iberian Peninsula. Over the

sea, in particular, over deep waters, the variables are anticorrelated.

Add table with average of positive values?

The seasonal changes of the correlations can be observed in Figure 4.19. November is the

warmest month of the winter season, with less low temperature events than other months. Con-

sequently, the correlations cannot be computed at every location. The most prominent contrasts

between positive and negative correlations are manifested during February and March under

AR conditions. Also, during the AR, the positive correlations over Scandinavia are exception-

ally high in January. Events occurring under SCAND conditions are positively correlated in

Eastern Europe, with a maximum by the end of the season, and in Britain. The NAO- presents

a stationary maximum over Scandinavia. Contrarily, the maximum located over Northern Eu-

rope is strongest in January. NAO+ shows a strong seasonality; in January, the maximum is
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Figure 4.19: Seasonality of correlations (ρ) between low temperature events and low wind

speed events for the four WRs. The threshold is defined as the below the 10th percentile.

Locations with no low temperature event during the selected period have no colour. Area of

study: 35N-72N, 11W-40E. Figure based on ERA5 data (NDJFM, 1979–2017).

located over Scandinavia, whereas in February, the maximum is located over Northern Europe

and Britain. Correlations over the Iberian Peninsula are highest in January and February. Notice

that the correlations are higher when computed for each month separatetly than for the entire

season (Figure 4.18).

4.4.2 Models for marginal distributions
A logistic regression model was proposed to determine the marginal probabilities of occurrence

of low minimum daily surface temperature events and low maximum daily wind speed events

on each grid box. The univariate distributions, together with the correlations, are the inputs to

the copula model.

Three different models are compared, a climatology model that only considers the month

in which the events occur; a regime model that only employs the four WRs as predictors; and

an interaction model that takes into account both sets of predictors. Given that only two sets
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of binary predictors are involved in the models, the modeled marginal probabilities show no

difference with respect to the empirical probabilities shown in the previous section. However,

the goal of this thesis is to provide a methodology for computing the multivariate probabilities,

in which case the marginal probabilities can be modeled with more complex models that the

provided here.

The results obtained with the logistic regression models are provided in the appendix, but,

as already mentioned, the figures resemble those of the odds ratios.

It has been shown in the figures for the empirical distributions that the WRs play an impor-

tant role in modeling the univariate distributions. The BSS computed for the modeled marginal

distribution with the interaction model described in section 3 compared to the climatology

model (that does not use any information about the WRs) is a measure of the relative perfor-

mance. The predicted marginal distribution with the logistic regression approach was obtained

with the cross-validation method, more specifically, by leaving one year out. In other words,

for each year, the probabilities are computed by fitting the model to the rest of the sample.

Regime model

The BSS were also computed for each WR, and the significance was assessed with a permu-

tation test at the 10% level. For this purpose, the regime model consisting of a set of binary

predictors for the regimes (described in the Methodology section 3) was employed. Positive

values indicate that the model regime model, which only considers information regarding the

WRs, scores better than the climatology model.

Temperature Significant scores for the low temperature marginals for each regime are repre-

sented in figure 4.20. The SCAND and the NAO+ score highest in regions where probabilities

of low temperature events are low. The NAO- scores high over Britain and Scandinavia, and

over the Mediterranean. The AR shows a small improvement compared to the climatology in

the North Sea.

Wind speed The NAO+ scores also highest when predicting low wind speed events, where

the probabilities are lowest. The other regimes have comparable scores, in regions where prob-

abilities are low and where probabilities are high; for instance, the SCAND scores high over

Northern Europe and the NAO- scores high in the North Sea.
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4.4. BIVARIATE ANALYSIS WITH GAUSSIAN COPULA THEORY

Figure 4.20: Significant BSS for minimum daily surface temperature for each WRs. A monthly

seasonal model was used as a reference. Colours show significant BSS values at the 10% level

that are not zero, and the color bar is truncated at BSS = 0 and BSS = 0.7. Area of study:

35N-72N, 11W-40E. Figure based on ERA5 data (NDJFM, 1979–2017).

Interaction model

The interaction model consists of two sets of predictors, one for the months of the winter season

and one for the WRs. Here, the probabilities computed with the interaction model are compared

to the climatology model, in terms of the BSS.

Temperature The BSS were also computed for each WR and month combination, and the

significance was assessed with a permutation test at the 10% level. Figure 4.22 shows a signifi-

cant improvement with respect to the climatology (values are positive) across large geographical

areas. Over land, NAO+ is the regime with the highest BSS, with an average BSS ranging from

0.16 to 0.26. The SCAND scores highest over the North Atlantic, reaching values higher than

0.9 in every month. These regions are characterized by very low probabilities for cold events

(Figure C.11. Days classified as NAO- score highest in the region conformed by Scandinavia,

Britain, and the North Sea, during the coldest months (see Table 4.11). The AR shows a great

intraseasonal variation, with high significant values over the sea and significant values over land
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Figure 4.21: As figure 4.20 but for maximum daily 10m wind speeds. Colours show significant

BSS values at the 10% level, and the color bar is truncated at BSS = 0 and BSS = 0.3. Area

of study: 35N-72N, 11W-40E. Figure based on ERA5 data (NDJFM, 1979–2017).

in February and March. In general, it is observed that the regions affected by high probabilities

of occurrence of low temperature events (see Figure 4.10 have a positive and significant BSS.

Wind speed As for the marginal temperature probabilities, the highest significant BSS values

are associated with NAO+ conditions during the coldest months, but only in a restricted area in

Northwestern Europe (see Figure 4.23 and Table 4.12. During NAO-, BSS are positive across

the Mediterranean and in the North Atlantic, coinciding with the regions where probabilities

also are high. The maximum score is BSSX ,Jan,NAO−= 0.9745. Meanwhile, during SCAND, the

significant values are located over Northern and Central Europe from November to January, and

over Northern Europe and Scandinavia by the end of the season, reaching the highest during the

coldest months. In these regions, the probability of occurrence of weak winds is also relatively

high. AR conditions lead to no significant pattern for the BSS. In general, all the significant

values are positive, meaning that the interaction model performs better than the climatology

model, i.e., the WRs are important predictors for the marginal probabilities. Furthermore, the

areas affected by high probability of occurrence of weak wind events (see Figure 4.11 present
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Figure 4.22: Seasonality of ignificant BSS for minimum daily surface temperature for each

WRs. A monthly seasonal model was used as a reference. Colours show significant BSS values

at the 10% level that are not zero, and the color bar is truncated at BSS = 0 and BSS = 0.3.

Area of study: 35N-72N, 11W-40E. Figure based on ERA5 data (NDJFM, 1979–2017).

Table 4.11: Maximum significant BSS for low temperature events. Area of study: 35N-72N,

11W-40E. Table based on ERA5 data (NDJFM, 1979–2017).

AR SCAND NAO- NAO+

Nov 0.8469 0.9027 0.5574 0.9187

Dec 0.9661 0.9853 0.3022 0.9441

Jan 0.3358 0.9887 0.4666 0.9948

Feb 0.1397 0.9885 0.3304 0.8034

Mar 0.6740 0.9893 0.8429 0.9635
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Figure 4.23: As figure 4.22 but for maximum daily 10m wind speeds. Colours show significant

BSS values at the 10% level, and the color bar is truncated at BSS = 0 and BSS = 0.3. Area

of study: 35N-72N, 11W-40E. Figure based on ERA5 data (NDJFM, 1979–2017).

also significant BSS.

The main conclusion from this section is that the WRs provide useful information for the

prediction of the marginal distributions, but the seasonality is also an important factor. For both

variables, it can be observed that the interaction model, which considers both the months and

the regimes, scores better than the regime model, which only considers the regimes.

4.5 Joint probabilities
The copula function makes it possible to generate a joint distribution from arbitrary marginal

probabilities. The joint probabilities for daily wind speeds and temperatures exceeding the

threshold defined by the 10th percentile of each variable are exhibited in this section.

Figure 4.24 is the result of applying the copula function to the uniform distribution derived

from the marginal probabilities modeled with logistic regressions. This methodology repro-

duces the results obtained for the empirical distributions because the marginal distributions

were modeled using only sets of binary predictors, thus obtaining the observed marginal prob-

abilities. As mentioned before in this document, the aim is to establish a flexible methodology

for using Gaussian copulas to model the joint probabilities. Figure 4.24 validates the use of the
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Table 4.12: Maximum significant BSS for low wind speed events. Area of study: 35N-72N,

11W-40E. Table based on ERA5 data (NDJFM, 1979–2017).

AR SCAND NAO- NAO+

Nov 0.5407 0.1142 0.3772 0.4761

Dec 0.5120 0.1486 0.4877 0.9849

Jan 0.3966 0.2521 0.9745 0.7880

Feb 0.5991 0.2067 0.9008 0.7919

Mar 0.8024 0.1337 0.6980 0.6526

methodology proposed.

Finally, the importance of considering the associations between the variables when mod-

eling the joint distributions is documented. For this purpose, the BSS were computed for a

Gaussian model with dependence (modeled as in D. Hoff, 2007) relative to a model that as-

sumes that the events are independent.

Significant BSS computed for each WR are exhibited in figure 4.25. The regimes with the

highest scores are NAO- and AR. Both regimes have positive and significant scores in Scan-

dinavia and Northern Europe, indicating that the model accounting for associations between

low temperature and low wind speed events performs better than the independent model. The

SCAND presents a noisier signal in Central and Northern Europe, although large continental

areas have a positive skill as well. The dependent model also scores better during NAO+ but val-

ues are smaller than for the other regimes. The BSS are negative in regions were the dependent

model doe not improve the independent model. For instance, in the North Sea, during SCAND

conditions, or in Central Europe during NAO-. These are also regions where joint probabilities

are low (see figure 4.13), i.e., where chances of both events occurring simultaneously are low.

The seasonality of significant BSS is illustrated in Figure 4.26. The transition months and

the NAO+ regimes are excluded because they register very few low temperature events. An

important intermonthly variation is observed, which explains why the scores computed on a

monthly basis are higher than those for the entire season (Figure 4.25). The seasonality of the
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Figure 4.24: Seasonality of joint probabilities from the copula model for each WR. Colours

show the probabilities of occurrence of low temperature and low wind speed events computed

with the copula model for minimum temperatures and daily maximum wind speeds below the

10th percentile. Area of study: 35N-72N, 11W-40E. Figure based on ERA5 data (NDJFM,

1979–2017).

scores is in line with that observed for the join probabilities (see Figure 4.24), showing the

potential of the Gaussian copula framework in the estimation of joint meteorological events and

the importance of considering associations between variables when modeling joint distributions.

However, the values are low, meaning that there is room for improvement, defining, for instance,

a more complex model for the marginal probabilities.
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Figure 4.25: Significant BSS at the 10% level for joint probabilities modeled with Gaussian

copulas and logistic regressions, aggregated by WRs. An independent model, with no cor-

relation between the temperature and the wind speed events, was employed as the reference

model. Colours show significant BSS values that are not zero, and the color bar is truncated

at BSS = 0.03. Area of study: 35N-72N, 11W-40E. Figure based on ERA5 data (NDJFM,

1979–2017).
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Figure 4.26: Significant BSS for joint probabilities modeled with Gaussian copulas and lo-

gistic regressions, aggregated by WRs (AR, SCAND, NAO-)and month (DJF). An independent

model, with no correlation between the temperature and the wind speed events, was employed

as the reference model. Colours show significant BSS values that are not zero, and the color

bar is truncated at BSS = 0.03. Area of study: 35N-72N, 11W-40E. Figure based on ERA5

data (NDJFM, 1979–2017).
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5 Discussion
This section summarises the findings and contributions made while comparing the results to

those of older studies. Interesting research questions for future research are also discussed.

A framework for modeling monthly multivariate distributions of meteorological variables

associated with low electricity production and high demand conditioned to the occurrence of

large-scale atmospheric circulation is proposed in this thesis. Joint probabilities of low temper-

ature and low wind speed events occurring during the extended boreal season (NDJFM) on the

European domain are characterized. Atmospheric variability is represented by the Wintertime

North Atlantic weather regimes. These regimes are computed using the k-means algorithm for

k = 4 clusters, obtaining atmospheric circulation patterns that can be viewed as the positive and

negative phases of the NAO, which are essentially a measure of the variability of the zonal flow

over the North Atlantic; the positive phase of the SCAND, and the positive phase of the AR

(R. Vautard, 1990, Hurrell et al., 2003; Cassou, 2008). Compared to other papers (e.g., Cassou,

2008; Wiel, Hannah C Bloomfield, et al., 2019), the mean circulation patterns derived for each

WR do not show any considerable differences, although the period selected for the computa-

tion or the reanalysis data is different. For this work, the WRs were computed for the first 14

of Z500 from ERA5 for the period 1980-2017. The difference in the percentage of the num-

ber of days, representing the mean frequency of occurrence of each regime, is greatest for the

NAO+ and the AR compared with the regimes computed by Cassou (2008) and Wiel, Hannah C

Bloomfield, et al. (2019) respectively. In both cases, the difference is equal to 2%. The rest of

the WRs show a maximum difference of 1%. Despite the difference in the percentage of days,

all three studies agree that the most frequent pattern is the NAO+, followed by the SCAND.

For sake of comparison, mean average temperature and wind speed conditions were de-

termined for each WR, replicating the results obtained by Hannah C. Bloomfield, David J.

Brayshaw, and Charlton-Perez (2020) and Wiel, Hannah C Bloomfield, et al. (2019). This con-

firms the robustness of the methodology followed for the computation of the WRs, on which

the rest of the analysis is based. Looking at the fields of mean meteorological conditions de-

termined for each WR (Figures 4.1 and 4.2), it is evident that the impacts of the NAO- and

the SCAND on near-surface variables are associated with cold and weak wind conditions, in

line with previous studies. As a consequence, it is expected a higher frequency of events for
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days classified in these two clusters. The study of observed odd ratios confirms this hypothesis.

It expands our knowledge about meteorological events associated with the WRs by providing

an insight into how many events we can expect given the defined threshold, instead of only

focusing on the departures from average conditions.

It follows from the observed frequencies of joint events classified in each WR (Table 4.3)

that the percentage of the total number of joint events is 1.29%, and the NAO- and the SCAND

together count for 0.84%. These numbers represent average percentages over the entire grid,

and should not be confused with local maximums. From the spatial distribution of joint events,

manifested in figure 4.13, it is evident that high probabilities are constrained to restricted regions

of the domain. Thus, much higher values are expected at specific locations. In the case of

the NAO-, the geographical region that exhibits high observed frequencies of joint events is

restricted to Northern Europe and Scandinavia. At some locations, the frequency of observed

joint events exceeds 10% of the total number of days, which is an order of magnitude higher

than the computed over all grid boxes. It is also important to consider intraseasonal variability,

as the results show that the percentage is even higher when computed for each month separately

than for the entire season. For days classified in the NAO- cluster, a maximum value equal

to 19.47% in February, but well over 15% from December to March at various locations. It

is common to all the regimes that the maximum occurs during the coldest months because the

threshold was computed for the entire season. November and March are the warmest months;

hence, they register less cold events. During SCAND, high frequencies are located mostly

in Northern and Central Europe, but values are lower than for the NAO-. Joint probabilities

are high during the AR mainly over Scandinavia and Northwestern Europe. On average, the

lowest ratio of events is observed during NAO+, the WR associated with warmer than normal

conditions. Nevertheless, at some locations in the south where winds are weak and temperatures

are cold, frequencies are relatively high.

It is fairly clear from Figure 4.14 that the geographical distribution of the joint probabilities

not only varies among the regimes but also intraseasonal. For instance, during SCAND condi-

tions, the high probabilities of joint events move from southwest in December to northeast in

February, covering the largest region in January. In the case of the NAO-, high probabilities are

located in Northern Europe and Scandinavia during, extending over a bigger region in January.

Only a few locations are affected by high probabilities in the transition months. As can be

seen, the probability values and local maximums’ locations also present a substantial seasonal
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variation.

Overall, Figure 4.14 illustrates that both sets of predictors, the months and the regimes,

provide relevant information for modeling the joint probabilities. At the same time, the regions

where high probabilities are found are located over the continent or coastal areas, coinciding

with the location of wind farms. A high density of wind farms is situated over Northern Europe,

mostly over Germany, Denmark, and Britain. These regions are the most affected by joint events

during NAO- and SCAND in the coldest months of the year.

Cold events and weak wind events are statistically dependent, meaning that the occurrence

of one of them affects the occurrence of the other. Dependence is proven by verifying that they

do not satisfy the mathematical definition of independence and by applying the chi-square test

for independence, which shows that the events are independent for a 10% level of confidence

over most of the domain. Correlation is a measure of how two or more variables are related to

one another. It is useful because it can indicate a predictive relationship that can be exploited

in practice. In this case, it motivates the study of the joint probabilities of low temperature

and low wind speed events by the analysis of Gaussian copula functions. Figures 4.18 and

4.19 show that cold events and weak wind events are positively correlated over land (except

some high altitude regions) and at the coasts and shallow waters. Examples of these regions are

the North Sea, which is located mostly on the European Continental shelf, and the Baltic Sea.

Seasonal variations of correlation values are in general small. In regions where no cold event has

been registered, correlations cannot be computed. This frequently happens in November when

temperatures are higher than during the other months of the season. The SCAND pattern shows

higher probabilities in Britain, France, and the Iberian Peninsula in December and January,

whereas the highest correlations over Scandinavia take place in February. During the NAO-,

Scandinavia presents high correlations from December to March, but a peak is observed over

Finland and Northwestern Europe in December, and over Northern Europe in January. These

correlation patterns are reflected in the illustrations of joint probabilities (4.14).

Marginals are modeled with logistic regressions using two sets of binary predictors, one

for the months considered in the winter season and one for the WRs. Given that these are the

only explanatory variables, the modeled marginals are equal to the observed frequencies. The

bss are computed with respect to a seasonality model that only considers the set of monthly

predictors. Positive values indicate that large-scale systems impact extreme temperature and

wind speed events and, as a consequence, on the peaks of demand and production of energy.
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The significance of the scores is assessed with a permutation test, and significant values at

the 10% level are exhibited in Figures 4.22 and 4.23. These figures show that considering the

WRs improves the performance of the models for marginal probabilities over large geographical

areas. In particular, in the regions that we are interested: where the joint probabilities are high.

The high correlations between cold events and weak wind events in regions where marginal

probabilities are high motivate the selection of the Gaussian copula framework for modeling

joint extreme events. This thesis describes a flexible methodology that can be adapted to differ-

ent models for marginal distributions. The applicability of the methodology has been tested on

the marginals modeled with logistic regression. The BS computed for modeled joint probabili-

ties with respect to the observations is a measure of how well the observed data fit the modeled

probabilities. The BSS were computed with respect to a model without correlations. To assess

the significance of the results, a permutation test was performed at the 10% level. For the NAO-,

the pattern with the highest probabilities, the BSS are, in general, positive in Scandinavia and

Northern Europe, with a maximum in January, located over Northern Europe, where correla-

tions also have a local maximum. The scores computed for the SCAND have a noisier signal,

tend also to be positive where high probabilities are modeled. In the case of the AR, BSS are

positive over major parts of Europe, not only in Scandinavia, where joint events are expected to

happen more frequently. The positive values for the BSS computed for a reference model with

no correlation between the events indicate that considering the dependency between the events

improves the performance. These are promising findings and inspire further research.

It is important to remark that the results presented in this thesis depend strongly on the

dataset used. There is an unavoidable degree of uncertainty affecting reanalysis datasets, being

the most significant disagreements in DJF encountered within continental areas (Ramon et al.,

2019). Reanalyses have good coverage and long records, but the long-term means of wind

speeds at hub height derived from ERA5 are biased compared to tall tower observations. Rep-

resentativeness can also be a problem because wind farms are often located in places where the

wind is higher than its surroundings, and thus the mean value of the grid box might be inaccu-

rate. It is expected that the higher resolution of the ERA5 dataset compared to other reanalyses

provides more accurate results.

One of the challenges of working with wind speed data from reanalyses is that it is available

at 10 meters, whereas typical hub heights are 80-120 meters. To estimate hub height winds

from surface winds, an extrapolation method is typically used. The power law, as in Wiel,
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Stoop, et al. (2019), was tested for the computation of marginal low wind speed probabilities

(not shown), but discarded because it adds even more uncertainty to the wind-speed data, which

is already biased. Ramon et al. (2019) discourage the use of global reanalyses to estimate mean

winds because of the high uncertainty derived from the comparison with tall tower seasonal

averages. In spite of that, they show that ERA5 outperforms all other reanalysis datasets com-

pared in their paper (ERA-Interim, the Japanese 55-year Reanalysis (JRA55), the Modern Era

Retrospective Analysis for Research and Applications-2 (MERRA2), and the National Centers

for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) Re-

analysis 1 (R1)). Future research should investigate the potential effects of using reanalysis data

in a copula framework.

The methodology provided can be adapted to different definitions of thresholds. The skill

can potentially be improved by modeling the marginal probabilities with more complex algo-

rithms and taking into account more variables. Future studies should also aim to explore how

solar energy can complement wind power in situations where probabilities of co-occurrence of

cold and weak wind events are high, in order to avoid energy shortfall. Future research could

also examine the applicability of this methodology to variables such as energy demand and en-

ergy shortfall, modeled as in Wiel, Stoop, et al. (2019) and Hannah C. Bloomfield, David J.

Brayshaw, and Charlton-Perez (2020).

Overall, the results confirm that the dependence between the variables plays an important

role in modeling compound meteorological events, and evidence that low frequency circulation

patterns control parts of the distribution of extreme events is provided. The occurrence of

these WRs is preconditioned by the Madden-Julian Oscillation (Cassou, 2008), allowing for

its medium-range predictability. This means that the range for predicting the probabilities of

occurrence of joint events exceeds the limit of around one week, and the promising skill could

be of value for decision-makers in the energy sector.
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6 Summary and Conclusions
An increase in the share of renewable energy is crucial to move to less carbon-intensive economies.

Wind energy has led the recent growth in renewable-based capacity, and it is expected to con-

tinue to be the largest source of renewable energy through to 2030 (Sawyer et al., 2017). Both

electricity demand and wind power generation are sensitive to meteorological conditions and

their variability at several time scales. To guarantee the supply of energy in a high-renewable

system, some critical conditions must be considered. This study provides a versatile methodol-

ogy for assessing the probability of compound meteorological events that will potentially lead

to high electricity demand and low wind energy production. In addition, the co-occurrence of

low temperature and low wind speed events over Europe conditioned by large-scale atmospheric

circulation patterns is characterized. The atmospheric variability is described in terms of Euro-

Atlantic WRs constructed with clustering techniques. The events are studied during the winter

season, when the WRs are more persistent Cassou, 2008.

Cold temperatures and weak wind speed conditions are associated with high energy demand

and low supply; thus, understanding their joint distribution is decisive for preventing energy

shortfall. Instead of focusing on average departures from normal conditions, as most studies do,

a baseline for modeling multivariate probabilities is established, and historical probabilities are

characterized. These is accomplished by analysing hourly reanalysis data. It is well known that

persistent anticyclonic circulation patterns over Europe, such as the observed during NAO- and

SCAND, impact surface variables, causing colder than normal temperatures and weak winds.

The results in this work show that compound events are most likely to occur during blocking

conditions, as previous research indicates, although the occurrence during other WRs should not

be underestimated. Frequencies higher than 15% of the days are observed associated with the

NAO- from December to February. The NAO+ is characterized by being the circulation pattern

with the lowest rate of compound events. The study of the observed frequencies reveals that

the monthly decomposition of the events leads to higher probabilities compared to studying the

occurrence during the whole winter season. In general, probabilities are highest during NAO-

in Northern Europe and Scandinavia from December to March, peaking in February. During

SCAND, high probabilities are observed already in December at some locations. The maximum

is reached in January when high probabilities are expected over all Europe except Scandinavia.
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In both cases, the maximum over land is reached in January, whereas the is mostly affected in

February. On the other hand, the AR presents higher probabilities in the Mediterranean and the

North Atlantic. Compound events can, however, also be expected over land with relatively high

frequency. Overall, November is the month with the lowest observed frequencies, while some

events can be expected in March over the sea during NAO- and AR.

Modeling marginal distributions with logistic regressions confirms that the WRs control

the occurrence of both low temperature and low wind speed events. The BSS computed with

respect to a simple climatology model are significant at the 10% level in regions where marginal

probabilities are high, where compound events are more likely to occur. The model scores

highest where probabilities are very low, in particular, during NAO+.

High correlations (exceeding ρ = 0.7) between temperature and wind speed events are found

during all the regimes, motivating the second part of this thesis. A flexible framework for com-

puting the joint probabilities of low temperatures and low wind speed events is described and

applied to reanalysis data from ERA5, replicating the observed odds ratios. The methodol-

ogy consists of computing the Gaussian parametric copulas by estimating the parameters with

MCMC (D. Hoff, 2007). Marginal probabilities are computed with a logistic regression con-

sisting of two sets of binary variables, one for the months in the winter season and one for the

WRs. The marginal probabilities model can easily be adapted to a broader set of explanatory

variables and thresholds to define the events. The BSS computed with respect to a model that

considers independent variables, shows promising skill where compound events occur more

frequently. This aspect of the research suggested that correlations are essential for modeling the

occurrence of compound events.

This thesis concludes by arguing that the occurrence of large-scale WRs conditions the oc-

currence of joint events over Europe during the wintertime, and that these present a strong

seasonality. Cold temperature and weak wind events are correlated, and the dependence be-

tween the events is statistically significant. A flexible method to compute the joint distribution

by parameterizing the correlations independent from the marginal distributions is documented.

It is applied to the reanalysis data, but future research should focus on more complex models

for the marginals.
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A Challenges of working with big datasets
The framework explored in this thesis relies on the availability of high resolution-data, but

working with big datasets imposes challenges related to storing and processing it. Given that

the spatial resolution of the ERA5 data set is 0.25◦×0.25◦ and that the domain selected covers

the region defined by−35◦N−72◦N,11◦W −40◦E, the grid on which the results were accom-

plished has size 149×205, this is, 30545 locations. On the time dimension, 47 years of hourly

data are processed and aggregated to daily level. This can lead to space and time efficiency

problems since learning methods are computation- and memory-intensive.

Some particular issues addressed during this study are:

• Data integration: since the data analyzed comes from different sources, i.e., the ERA5

reanalysis data and the WRs provided. Data formats are different and required different

libraries for the analysis.

• Resampling: permutation tests are conceptually simple but computationally expensive,

and storing the results is related to upscaling troubles.

• Picking the right formats and libraries: the experiences obtained during this work point

toward that R is fast and allows to parallelize operations at a high level. When it comes

to Python, xarray is adequate for processing NetCDF data (which is a standard format

for geophysical data), and scikit-learn and scipy are useful tools for statistical analysis of

data. The problem with these libraries is that they do not integrate well, and conversion

to numpy arrays is needed. Pandas DataFrame were tested, but indexing operations are

too slow, and the performance is not acceptable for the purpose of this thesis.
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B Software
The Python code used to generate the results in this thesis is available in this Github repository:

paulina-t/msc-thesis. The code runs on Python version 3.6.7.

B.1 Python packages
The Python package selected for working with the NetCDF is xarray, an open-source project

that makes working with labelled multi-dimensional arrays simple. It works on top of NumPy-

like arrays and integrates with dask to support parallel computations and streaming computation

on datasets that do not fit into memory. Dask divides arrays into many small pieces, called

chunks, that fit into memory. This is necessary given the size of the ERA5 files containing the

reanalysis data in the Euro-Atlantic domain. Unlike NumPy, which has an eager evaluation,

operations on Dask arrays are lazy. The actual computation is controlled by a multi-processing

or thread pool, allowing Dask to take full advantage of multiple processors available. In our

case, the code runs on 32 CPUs. Statistic analysis is performed with the package Scikit-Learn,

which is built upon SciPy. The Scikit-Learn library provides a set of standard algorithms and

efficient tools for machine learning and statistical modeling.

Table B.1 lists the dependencies required to run the code.

B.2 R packages
Associations between variables were computing using the R package Semiparametric Bayesian

Gaussian Copula Estimation and Imputation, sbcop, version 0.980 ( D. Hoff (2007). The code

runs on R version 3.6.0 (2019-04-26).

The function sbgcop.mcmc estimates semiparametrically the parameters of the Gaussian

copula. It takes as an imput an n× p matrix (missing values are allowed), and returns an array

of size p× p×nsamp, consisting of posterior samples of the correlation matrix.
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B.2. R PACKAGES

Table B.1: Python dependencies.

Package Version Reference

numpy 1.16.2 Van Der Walt, Colbert, and Varoquaux, 2011

pandas 0.23.4 team, 2020

matplotlib 2.2.3 Hunter, 2007

cartopy 0.17.0 Met Office, 2010 - 2015

xarray 0.10.9 Hoyer and Hamman, 2017

scikit-learn 0.20.3 Pedregosa et al., 2011

scipy 1.2.1 Jones, Oliphant, Peterson, et al., 2001–

patsy 0.5.1
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C Complementary results
All the figures and tables provided in this thesis can be generated with the notebooks in the

GitHub repository.

C.1 Logistic Regression

C.2 Coefficients
The coefficients used to compute the predict the probabilities with the logistic regression models

are illustrated in this section.

Climatology model

Temperature

Figure C.1: Seasonality of coefficients of modeled minimum daily surface temperature below

the 10th percentile. Colours show coefficients, β from the logistic regression model; the color

bar is truncated at β = 0 and β =−0.6. Area of study: 35N-72N, 11W-40E. Figure based on

ERA5 data (NDJFM, 1979–2017).

Temperature

Figure C.2: As C.1 but for maximum daily wind speed at 10 meters. Colours show coefficients,

β , and the colorbar is truncated at β = −0.1 and β = −0.5. Area of study: 35N-72N, 11W-

40E. Figure based on ERA5 data (NDJFM, 1979–2017).
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C.2. COEFFICIENTS

Wind speed

Regime model

Temperature

Temperature C.9

Figure C.3: Coefficients of modeled minimum daily surface temperature below the 10th per-

centile for each WR. Colours show coefficients, β from the logistic regression model; the color

bar is truncated at β = 0 and β = 0.6. Area of study: 35N-72N, 11W-40E. Figure based on

ERA5 data (NDJFM, 1979–2017).

Wind speed

Interaction model

Temperature

Wind speed
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APPENDIX C. COMPLEMENTARY RESULTS

Figure C.4: As C.3 but for maximum daily wind speed at 10 meters. Colours show coefficients,

β from the logistic regression model; the color bar is truncated at β = −0.1 and β = −0.6.

Area of study: 35N-72N, 11W-40E. Figure based on ERA5 data (NDJFM, 1979–2017).

C.2.1 Probabilities

Climatology model

The climatology model consists of a set of dummy variables for each month of the winter

season. The monthly probabilities computed with this model are illustrated in Figures C.7 for

the temperature variable and C.8 the wind speed variable. The results are very similar to the

observed frequencies because the only predictors employed is a set of binary variables for the

months of the extended winter season.

Temperature
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C.2. COEFFICIENTS

Figure C.5: Coefficients of modeled minimum daily surface temperature below the 10th per-

centile for each month and WRs. Colours show coefficients, β from the logistic regression

model; the color bar is truncated at β = 0 and β = 0.6. Area of study: 35N-72N, 11W-40E.

Figure based on ERA5 data (NDJFM, 1979–2017).

Wind speed

Regimes model

Modeled probabilities for each regime were computed using only a set of dummy variables for

the four WRs. These results are also similar to the ones derived from the empirical distributions,

showing a clear preference for the NAO- in Northern Europe and Scandinavia in the case of tem-

perature (Figure 4.8) and high probabilities of low wind associated with anticyclonic circulation

in Northwestern Europe during NAO- and Northern and Central Europe during SCAND (4.9).

Temperature C.9

Wind speed
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APPENDIX C. COMPLEMENTARY RESULTS

Figure C.6: As C.5 but for maximum daily wind speed at 10 meters. Colours show coefficients,

β from the logistic regression model; the color bar is truncated at β = −0.1 and β = −0.6.

Area of study: 35N-72N, 11W-40E. Figure based on ERA5 data (NDJFM, 1979–2017).

Figure C.7: Seasonality of modeled probabilities of occurrence of minimum daily surface

temperature below the 10th percentile for each month. Colours show probabilities, p, from

the logistic regression model; the color bar is truncated at p = 0.5. Area of study: 35N-72N,

11W-40E. Figure based on ERA5 data (NDJFM, 1979–2017).

Interaction model

The seasonality of the marginal probabilities for low temperature events(C.11) and low wind

speed (C.12) events was modeled for each regime. Again, the results are similar to the observed
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Figure C.8: As C.7 but for maximum daily wind speed at 10 meters. Colours show probabili-

ties, p, and the colorbar is truncated at p = 0.35. Area of study: 35N-72N, 11W-40E. Figure

based on ERA5 data (NDJFM, 1979–2017).

Figure C.9: Modeled probabilities of occurrence of minimum daily surface temperature below

the 10th percentile for each WR. Colours show probabilities, p, from the logistic regression

model; the color bar is truncated at p = 0.5. Area of study: 35N-72N, 11W-40E. Figure based

on ERA5 data (NDJFM, 1979–2017).

frequencies.

Temperature Illustration C.11 and Table C.1 show that the model estimates low tempera-

tures (lower than the 10th percentile) at least 20% of the days over large continental areas from
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Figure C.10: As C.9 but for maximum daily wind speed at 10 meters. Colours show probabil-

ities, p, and the colorbar is truncated at p = 0.35. Area of study: 35N-72N, 11W-40E. Figure

based on ERA5 data (NDJFM, 1979–2017).

Table C.1: Maximum probabilities of low temperature events (pX ). Area of study: 35N-72N,

11W-40E. Table based on ERA5 data (NDJFM, 1979–2017).

AR SCAND NAO- NAO+

Nov 0.1385 0.1321 0.2363 0.0824

Dec 0.2723 0.2661 0.4194 0.2530

Jan 0.3669 0.3851 0.5275 0.2971

Feb 0.4089 0.4460 0.5773 0.2547

Mar 0.3766 0.2012 0.3037 0.2017
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Figure C.11: Modeled probabilities of occurrence of minimum daily surface temperature be-

low the 10th percentile for each month and WRs. Colours show probabilities, p, from the

logistic regression model; the color bar is truncated at p = 0.5. Area of study: 35N-72N,

11W-40E. Figure based on ERA5 data (NDJFM, 1979–2017).

November to February under NAO-, SCAND, and AR conditions. NAO- is the WR with the

strongest temperature signal over the continent, followed by the SCAND and the AR. Probabil-

ities are highest during NAO-, increasing from December to February, reaching values as high

as pX(Feb,NAO−) = 0.5773 in Northern Europe, and a spatial average equal to pµ(Feb,NAO−) = 0.2675

(on average, more than 1/4 of the days are expected to be extremely cold). Values are particu-

larly high over large water bodies such as the North Sea, The Baltic Sea, and the Bay of Biscay.

In contrast, in January, the probabilities are in general higher over land and coastal zones than

over the open ocean in high latitudes. In the case of the SCAND, large continental areas are

expected to experience low temperatures in January and February. The first cold events of the

season appear in December, in lower latitudes, over land. The highest probabilities over land are

observed in January, with a maximum equal to pX(Jan,NAO−) = 0.3851 in Eastern Europe, but over

the sea, the maximum is reached in February and equals pX(Jan,NAO−) = 0.3851 and the highest
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spatial average among all the months equals pµ(Feb,NAO−) = 0.4460 in the Eastern Mediterranean

Sea and the Black Sea. This model predicts low probabilities over Scandinavia during the entire

season for NAO- days. An important difference between the NAO- and the SCAND, besides

the magnitude, is that during NAO- high probabilities are located in high latitudes and low

probabilities are located in low latitudes, whereas the opposite takes place during SCAND. The

AR presents a zonal band of low probabilities extending from 45N to 60N approximately, with

higher probabilities outside this band. A center of relatively high probabilities is situated over

the Norwegian Sea during AR in February, intensifying in March. In general, the model pre-

dicts low probabilities in November and March, and, in the case of NAO+, throughout the entire

winter season.

Figure C.12: As C.11 but for maximum daily 10m wind speeds. Colours show probabilities, p,

and the color bar is truncated at p = 0.30. Area of study: 35N-72N, 11W-40E. Figure based

on ERA5 data (NDJFM, 1979–2017).

Wind speed Probabilities of occurrence of low maximum daily wind speed for each month

and WR are shown in Figure C.12. In general terms, probabilities are higher during NAO-
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Table C.2: Maximum probabilities of low wind speed events (pX ). Area of study: 35N-72N,

11W-40E. Table based on ERA5 data (NDJFM, 1979–2017).

AR SCAND NAO- NAO+

Nov 0.2264 0.3085 0.3106 0.2800

Dec 0.2307 0.3513 0.3509 0.3112

Jan 0.2147 0.2983 0.2984 0.2794

Feb 0.2032 0.2951 0.3558 0.2139

Mar 0.2431 0.3427 0.2804 0.2249

and SCAND compared to AR and NAO+, and seasonal variations are small. The model shows

that both the NAO- and the SCAND have, on average, probabilities between 0.1 and 0.15, but

in large regions, 20% of the days are expected to have week winds. The SCAND presents

the highest probabilities over the continent, reaching values as high as pX ,Dec,SCAND = 0.3513.

Furthermore, the signal is noisier and seems to depend more on the topography than in the

case of low temperature events. The Arctic and Southern Europe are affected by the lowest

probabilities during SCAND. The model predicts more extreme wind speed events over land,

central and northern Europe for the SCAND in December and January. Contrarily, in March, the

model predicts that more days with low wind speeds occur over the ocean in high latitudes and

very low probabilities in Southern Europe. The NAO- exhibits a meridional pattern with lower

(less than 0.1) probabilities in Central and Southern Europe, and higher probabilities (greater

than 0.1) in Northern Europe. Seasonal changes during NAO- are small, although probabilities

in the North Atlantic are high from November to February, and decreasing in March. The

NAO+ exhibits a weaker and opposite pattern, with higher probabilities in the south and lower

probabilities in the north. This pattern is observed from November to February. In March, low

probabilities (below 0.1) cover the European continent almost in its totality. The probability

field presents a maximum in December in Southern Europe. During AR, from November to

March, the model predicts less than 10% of the days with maximum daily wind speeds below the

10th percentile in most parts of the domain. Northern Scandinavia shows higher probabilities
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in January and February.

C.3 Comparison of thresholds

C.3.1 Probabilities

As mentioned in the document, the methodology is independent of the arbitrary threshold that

defines the events. Here, the marginal probabilities for two different thresholds, the 15th and

the 5th percentiles are shown.

Interaction model

Figure C.13: Modeled probabilities of occurrence of minimum daily surface temperature be-

low the 15th percentile for each month and WRs. Colours show probabilities, p, from the

logistic regression model; the color bar is truncated at p = 0.5. Area of study: 35N-72N,

11W-40E. Figure based on ERA5 data (NDJFM, 1979–2017).

Temperature

Wind speed
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C.4. INDEPENDENCE

Figure C.14: Modeled probabilities of occurrence of minimum daily surface temperature be-

low the 5th percentile for each month and WRs. Colours show probabilities, p, from the

logistic regression model; the color bar is truncated at p = 0.5. Area of study: 35N-72N,

11W-40E. Figure based on ERA5 data (NDJFM, 1979–2017).

C.4 Independence
Independence of cold and weak wind events was quantified by running a chi-square test on each

grid box for each regime, for the entire winter season and for each month separately.

C.5 Copula
The joint probabilities calculated for each regime on the entire winter season are replicated

using the Gaussian copula approach.

Figure C.21 is generated by computing the copula function from the empirical marginal

probabilities for each of the WRs. Coherent with the illustrations of the frequencies of observed

events, Figure C.21 shows that NAO- favours the co-occurrence of low temperatures and low

wind speeds in the winter season (Nov-Mar) in Northern Europe and Scandinavia, contrasts

with the NAO+ that does not show any signal over the domain. During SCAND conditions,
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Figure C.15: Modeled probabilities of occurrence of maximum daily 10m wind speeds below

the 15th percentile for each month and WRs. Colours show probabilities, p, from the logistic

regression model; the color bar is truncated at p = 0.5. Area of study: 35N-72N, 11W-40E.

Figure based on ERA5 data (NDJFM, 1979–2017).

probabilities are higher in Central and Northern Europe, in particular, in France and Britain.

The AR pattern presents some signal in Northern Scandinavia and Ireland.
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Figure C.16: Modeled probabilities of occurrence of maximum daily 10m wind speeds below

the 5th percentile for each month and WRs. Colours show probabilities, p, from the logistic

regression model; the color bar is truncated at p = 0.5. Area of study: 35N-72N, 11W-40E.

Figure based on ERA5 data (NDJFM, 1979–2017).
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Figure C.17

Figure C.18: Independence between low temperature an low wind speed events by regime.

Colours show p-values obtained with the chi-square test. Area of study: 35N-72N, 11W-40E.

Figure based on ERA5 data (NDJFM, 1979–2017).
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Figure C.19

Figure C.20: Independence between low temperature an low wind speed events by regime and

month. Colours show p-values obtained with the chi-square test. Area of study: 35N-72N,

11W-40E. Figure based on ERA5 data (NDJFM, 1979–2017).
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Figure C.21: Joint probabilities from copula model for each . Colours show the probabilities

of occurrence of low temperature and low wind speed events computed with the copula model

for minimum temperatures and daily maximum wind speeds below the 10th percentile. Area of

study: 35N-72N, 11W-40E. Figure based on ERA5 data (NDJFM, 1979–2017).
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