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Abstract
Point defects in solids are promising single-photon sources with application in quantum
sensing, computing and communication. Herein, we describe a theoretical framework for
studying electric field effects on defect-related electronic transitions, based on density
functional theory calculations with periodic boundary conditions. Sawtooth-shaped electric
fields are applied perpendicular to the surface of a two-dimensional defective slab, with
induced charge singularities being placed in the vacuum layer. The silicon vacancy (VSi) in
4H-SiC is employed as a benchmark system, having three zero-phonon lines in the
near-infrared (V1, V1′ and V2) and exhibiting Stark tunability via fabrication of Schottky
barrier or p-i-n diodes. In agreement with experimental observations, we find an
approximately linear field response for the zero-phonon transitions of VSi involving the decay
from the first excited state (named V1 and V2). However, the magnitude of the Stark shifts are
overestimated by nearly a factor of 10 when comparing to experimental findings. We discuss
several theoretical and experimental aspects which could affect the agreement.

Keywords: silicon carbide, first-principles calculations, Stark effect, single-photon emission,
silicon vacancy, point defects

(Some figures may appear in colour only in the online journal)

1. Introduction

Point defects in semiconductors are rapidly becoming con-
tenders for a host of quantum applications, with properties
such as spin manipulation and single-photon emission at room
temperature, enabling technologies that range from quantum
sensing and information processing to quantum cryptogra-
phy and communication. Hitherto, the nitrogen-vacancy (NV)
center in diamond has been at the forefront, enabling high-
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sensitivity magnetometers with nanoscale resolution [1], and
exhibiting both coherent spin manipulation at room tempera-
ture [2] and entanglement between two NV center spins [3].
However, as far as device processing and fabrication is con-
cerned, diamond technology lacks maturity, the fraction of the
total NV emission channeled into the zero-phonon line (ZPL)
is low (at about 4%) [4], and coupling NV centers to waveg-
uides to enhance emission intensities was shown to have a
detrimental effect on spin and emission stability [5, 6].

Over recent years, silicon carbide (and the 4H polytype in
particular) has emerged as a competitive alternative to dia-
mond, offering a more mature fabrication technology and
greater ease of combining defect centers with various devices
[7]. Several candidate defects exist, with the silicon vacancy
(VSi), the silicon-carbon divacancy (VSiVC), the nitrogen-
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Figure 1. (a) Schematics of the one-electron configurations involved in the luminescent transitions from exited states, 4A∗
2 and 4E, into the

4A2 ground state. Arrows (pointing upwards and downwards) and circles correspond to electrons (with spin-up and spin-down) and holes
bound to V−

Si . The symmetry character of the one-electron states is also indicated. Hatched areas represent crystalline states limited by the
valence band top (Ev) and conduction band bottom (Ec). (b) Isosurfaces of the a1 and e states in the gap for ψ = ±0.03 at k = Γ. Si and C
atoms are represented as white and gray spheres, respectively. The location of the missing Si atom is indicated as a black dot.
(c) Configuration coordinate diagram representing two possible luminescent transitions from the 4A∗

2 excited state into 4A2 ground state. The
system either combines a radiative decay (with energy Erad) with a non-radiative relaxation step (releasing a Franck–Condon energy EFC),
for instance via multi-phonon emission, or it undergoes a zero-phonon transition maximizing the energy of the emitted photon (EZPL).

vacancy center (NCVSi) and the carbon-antisite vacancy pair
(CSiVC) all being room-temperature single-photon sources and
exhibiting millisecond spin coherence times under cryogenic
conditions [8–13]. However, only one charge state of each
defect center exhibits the required properties, with the oth-
ers remaining dark and without the option of optically con-
trolling and reading out the spin state. For the case of the Si
vacancy, the bright charge state is the negative one (represented
as V−

Si).
Charge-state control over qubit contender defects in 4H-

SiC was first demonstrated for VSi and VSiVC by employing
dual excitation [14], but the optical approach lacks the option
of selective and controlled toggling between specific defect
charge states. Recently, electrical charge-state control over VSi

and VSiVC was optically detected by monitoring the photo-
luminescence (PL) emission intensity from defects situated
within 4H-SiC membranes in the vicinity of electrodes [15]
or in the intrinsic region of 4H-SiC p-i-n diodes [16, 17], and
embedded within the depletion region of Ni/4H-SiC Schottky
barrier diodes (SBDs) [18]. The electrical approach is par-
ticularly interesting as it enables control over not only the
intensity, but also the energy, of single-photon emission from
qubit defects via the Stark effect [19]. This has been demon-
strated for defects such as NV in diamond [20, 21], and also VSi

[18, 22] and VSiVC [15, 17, 23] in 4H-SiC.
Importantly, emission from solid-state systems is highly

susceptible to local fluctuations related, for instance, to strain
and electromagnetic fields. Thus, local inhomogeneities sur-
rounding a defect center will diminish the uniformity of pho-
ton energies originating from that specific emitter. Emission
tuning, for example via the Stark effect, therefore presents
a means towards obtaining high-fidelity and identical pho-
tons from solid-state light sources, enabling integration with
present and future quantum technologies and facilitating oper-
ation of relevant defects as electric field sensors. Moreover, the
nature of the Stark shift may help to elucidate defect-related

properties such as the local environment, the defect symmetry
and the degeneracy of its electronic states. With that in mind,
we report on a theoretical method for studying Stark shifts of
transitions between electronic states of defects in semiconduc-
tors. We will use the negatively charged Si vacancy in 4H-SiC
as a model system, and compare the results with observations
reported in the literature.

A Si vacancy can inhabit two distinct lattice locations in
4H-SiC, namely the hexagonal (h) and pseudo-cubic (k) sites.
These sites have C3v point group symmetry and essentially
differ on the relative positions of their second neighbors and
farther atoms. In the ground state, both the V−

Si(h) and V−
Si(k)

defects have spin 3/2 and adopt a 4A2 spin-quartet state [24].
To simplify our analysis, we will disregard any fine struc-
ture of the many-body states due to spin–orbit and zero-field
effects. Within a one-electron picture, the ground state corre-
sponds to a a↑

1e↑↑ configuration as shown on the left-hand side
of figure 1(a), with the corresponding one-electron states being
depicted in figure 1(b). Besides the singlet and doublet states
in the gap, the four carbon radicals of VSi (represented as gray
spheres) give rise to a fourth one-electron state which is reso-
nant with the valence band, and is labeled a1,R. This state does
not participate in the optical activity of the center.

Three different zero phonon lines (ZPLs) are attributed to
V−

Si in 4H-SiC. They are labeled V1 and V1′, arising from
the decay of two different but close-lying excited states of
the same defect center, and V2. V1/V1′ and V2 have been
assigned to the h and k configurations of VSi, respectively [25].
The corresponding ZPL energies fall in the near-infrared range
(860–916 nm), and are thus better suited for integration with
fiber optical communication than, e.g., the NV center in dia-
mond which emits in the red. All three lines have been inter-
preted as arising from spin-down channel radiative transitions
involving two close-lying excited states, namely 4A∗

2 and 4E.
Their corresponding one-electron configurations are depicted
in figure 1(a). While 4A∗

2 → 4A2 transitions, which involve
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V−
Si(h) and V−

Si(k), give rise to the V1 (EZPL = 1.438 eV)
and V2 (EZPL = 1.352 eV) ZPLs, respectively, 4E → 4A2 in
V−

Si(h) leads to the V1′ emission line (EZPL = 1.443 eV) [26].
It is expected that analogously to V−

Si(h), V−
Si(k) should produce

a V2′ counterpart. So far, and despite many attempts, such a
signal has escaped detection.

In figure 1 we suggest that the excited states of V−
Si pos-

sess a pseudo-acceptor character. Accordingly, they consist
of an electron strongly bound to V−

Si (red colored downward
arrows) whose negative charge secures a weakly bound hole
(red circles). This picture, where the 4A∗

2 state is effectively a
double negatively charged vacancy (V=

Si ) perturbed by a dif-
fuse hole, is coherent with the fact that the V1 and V2 ZPL
energies are very close to the calculated energy difference
between the first and second acceptor levels of VSi in 4H-
SiC, E(= /−) − E(−/0) = 1.4 eV [18, 27] (the small dis-
crepancy being accounted for by a meV-range hole binding
energy).

In reference [18], a pronounced quadratic Stark shift was
shown for the V1′ ZPL upon application of a bias to SBD
devices along the hexagonal crystallographic axis (0001). Sim-
ilar behavior was subsequently reported in reference [22], but
now adding the effect of the electric field applied along the
crystallographic basal direction as well. Here, the observation
of a two-fold splitting of the V1′ line nicely accounted for
the double degeneracy of the 4E excited state. A Stark shift
was also reported for the V1 ZPL [22]. In this case, approx-
imately linear and quadratic shifts were observed when the
field was along the main axis and parallel to the basal plane,
respectively.

Despite several reports on the calculation of Stark shifts
using first principles methods (see for instance reference [28]
on C–O and C–N bonds in small molecules and references
[29, 30] about hexagonal boron nitride), this effect has not been
addressed for the case of defects in solids. In principle, the
combination of reasonable accuracy with the ability to account
for the electronic structure of thousands of atoms makes the
Kohn–Sham formalism to density functional theory (DFT) the
method of choice for such a calculation. However, a major dif-
ficulty arises upon the incorporation of a macroscopic field
into the Hamiltonian, which desirably should be constructed
from first-principles, and mostly uses three-dimensional peri-
odic boundary conditions. Additionally, since we may be deal-
ing with defects with open-shell or metallic-like states, we
cannot employ the Berry-phase theory of polarization [31].
While a possible approach involves the incorporation of a
sawtooth-shape potential across the periodic cell [32], in the
case of a solid, numerical instabilities hamper the calculations
due to the superposition of strongly varying potential ‘teeth’
with the atomic potentials. Note that according to the Poisson
equation, this method effectively translates into placing two
parallel sheets of high charge density with opposite sign within
the supercell. Of course, the above is not an issue for the cal-
culation of molecules within open boundary conditions [28],
not even for defects in surfaces and 2D-materials calculated
in 3D-supercells [29, 33], where the potential ‘teeth’ can be
placed within vacuum regions.

Herein, we propose that Stark shifts of defect states in
bulk semiconductors can still be evaluated using 3D peri-
odic boundary conditions. To that end, we use periodic slabs
separated by thick vacuum layers wherein we place the field
‘teeth’ (section 2). Semi-local and hybrid DFT calculations are
employed to investigate the effect of macroscopic fields on the
ground and excited states of V−

Si(h) and V−
Si(k). We describe

a calibration step that should be performed for the case of
non-centrosymmetric materials (like 4H-SiC), where a polar-
ization is induced by the asymmetric slab surfaces (section 3).
The field dependence of the 4A∗

2 → 4A2 zero-phonon transi-
tion energies is obtained within the delta-self consistent field
approach (Δ-SCF), and the results are compared to experi-
mental data (section 4). Finally, we draw several remarks and
conclusions in section 5.

2. Methodology

The calculations reported below employ the Kohn–Sham
density functional method as implemented in the Quantum
ESPRESSO software [34, 35]. Importantly, this particular
code allows for simultaneously (i) constraining the occupa-
tion of the one-electron states (needed for studying ground and
excited states of V−

Si), (ii) the use of supercells with arbitrary
shape (hexagonal for the case of 4H-SiC), (iii) applying an
external periodic electric field, (iv) solving the Kohn–Sham
problem self-consistently (subject to the external field and
occupancy constraints), (v) the use of charged supercells,
and finally (vi) calculating the forces on atoms, relaxing the
atomistic structure and finding the total energy. Most results
reported below employ the semi-local functional of Perdew,
Burke and Ernzerhof (PBE) [36] for describing the many-
body electronic interactions. A limited number of calculations
were carried out using a non-local hybrid functional as pro-
posed by Song, Yamashita and Hirao [37], and in this case
they are flagged with the ‘Gau-PBE’ label. Unfortunately, due
to the complexity of the calculations, numerical instabilities
frustrated any attempt to obtain self-consistent hybrid-DFT
energies for the excited states when subject to electric fields.
Hence, calculated transition dipole and polarizability values
were found within the PBE level.

The effect of core electrons was accounted for by using
norm-conserving pseudopotentials [38, 39], whereas the
valence was described by a plane-wave basis. Accordingly,
energy cut-offs of Ewf

cut = 680 eV and Epot
cut = 4Ewf

cut were found
sufficient to provide convergence with respect to the quality of
the Kohn–Sham wave functions and potential/density fields,
respectively. An external electric field with magnitude E was
applied by adding a sawtooth term to the local potential along
the z-coordinate (parallel to the c-axis of 4H-SiC). The slope
of the sawtooth potential was −E across the whole cell, except
within a short 0.1 Å interval where it ramped-up to comply
with the periodic boundary conditions. In order to avoid the
superposition of artificial charge density singularities (induced
by the potential ‘teeth’) with the SiC electronic states, we
employ vacuum-separated 4H-SiC periodic slabs with Si and
C surface atoms saturated by hydrogen. The potential ‘teeth’
were therefore placed inside the vacuum region.
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Figure 2. (a) Side view of a hydrogen-terminated h-plane centered 4H-SiC slab used in this study with a VSi(h) defect located in the middle
(black dot). The limits of the supercell are indicated by the box. Primitive lattice vectors (a1 and a3), crystallographic directions and positive
direction of the applied electric field (E) are also shown. Silicon, carbon and hydrogen atoms are represented as white, gray and black
spheres, respectively. (b) Analysis of the electrostatic potential across a pristine slab for zero electric field (left) and when the applied field is
E ≈ Ecal (right, see text). The data presented includes the xy-averaged electrostatic potential energy (φxy), the rolling-averaged potential
(φRA) and the macroscopic potential in the slab (φm) as found from a linear fit to the φRA data near the center of the slab. (c) Calculated local
field in the middle of h- and k-centered pristine slabs against the applied electric field, F(E). Best linear fits to the data are also shown (see
equation (2)).

Figure 2(a) shows a side view of a hydrogen-terminated
slab used in this study with a hexagonal (h) lattice plane
at its center. The figure also shows a VSi(h) defect as indi-
cated by a black dot. An analogous slab with a pseudo-cubic
middle layer was employed to study VSi(k). The limits of the
whole supercell are indicated by the box, which in the case
of a pristine slab encloses a total of 300 atoms, including 25
hydrogen atoms on each face. The primitive lattice vectors of
bulk 4H-SiC (a1 = a2 and a3) and positive direction of the
applied electric field are also shown. The lateral size of the
supercell was 5a1 = 15.356 Å, whereas the axial length was
2a3 = 20.103 Å. The vacuum width was about 1/3 of the total
length of the supercell. For sampling the Brillouin zone, we
used a 2 × 2 × 1 mesh of k-points for all PBE-level calcu-
lations, while Γ-sampling was used for the hybrid Gau-PBE
calculations.

The coordinates of the hydrogen atoms saturating the sur-
faces were optimized in a first step (keeping all SiC atoms
locked to their crystalline coordinates). This avoided the
appearance of any spurious gap states due to residual strain
in the Si–H and C–H bonds. During all subsequent atomic
relaxations, the Si–H and C–H surface pairs were kept frozen
and only inner layer atoms were allowed to move. Further con-
straints included the charge state (negative), the one-electron
occupancy (for excited states) and the presence of the external
field. Tolerances for the largest force during ionic relaxations
and for the self-consistent total energy were 0.01 eV Å−1 and
1 μeV, respectively. Finally, we computed the ZPL energy,
EZPL, according to the delta-self consistent field (Δ-SCF)
method [40–42]. As depicted in figure 1(c), EZPL is found
from the energy difference between the minimum energy
configurations of excited and ground states under the effect
of an external field. This approach naturally accounts for
any Frank–Condon relaxation contribution, EFC, to the ZPL
energies.

3. Electric field calibration

The effect of the polarization induced by the asymmetric slab
surfaces can be seen on the left-hand-side graph of figure 2(b),
where we plot the xy-averaged electrostatic potential, φxy(z),
across a pristine slab (red line) and its rolling average, φRA(z),
obtained within a window of width a3 = 10.05 Å. The pres-
ence of an induced dipole is demonstrated by a non-vanishing
slope of φRA within the slab under zero-field conditions
(E = 0). Here, any defect introduced into the slab will be
subject to a local macroscopic field

F = −dφm/dz, (1)

where φm is the macroscopic electrostatic potential across the
slab. In the present context, the expression macroscopic refers
to a space-averaged quantity that is free of atomic-scale varia-
tions. We foundφm from a linear fit to φRA in the central region
of the slab (straight black line in figure 2(b)).

To first order (linear media), a change in an externally
applied electric field (ΔE = E − E0) induces a proportional
variation in the local field within the slab (ΔF = F − F0),

F − F0 =
E − E0

ε
, (2)

where E0 and F0 are arbitrary and ε is the effective slab screen-
ing constant. For the sake of convenience we rewrite the above
as

F =
E
ε
+ Fbi, (3)

where we set E0 = 0 and F0 = Fbi, the latter representing the
built-in field induced across the slab mentioned above. Both
ε and Fbi can be found by linear fitting of equation (3) to a
set of (E ,F ) data points from defect-free slab calculations.
Importantly, we can calibrate the applied field, that is, we can
find the field Ecal = −εFbi which neutralizes the built-in field,
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as well as its effect on defects introduced in the slab. The
result of this condition is shown on the right-hand-side plot
in figure 2(b). Of course, calibration of E is only necessary
when the slab surfaces induce an internal field (e.g., slabs made
of non-centrosymmetric materials). Although not unique, the
procedure can be summarized by the following steps:

(a) From a zero-field calculation (using a pristine slab), esti-
mate the spurious built-in field as ˜Fbi ≈ −dφm/dz;

(b) Find an estimate for Ecal as Ecal = −εs
˜Fbi, where εs is

the static dielectric constant of the material. For SiC we
employ εs = 10;

(c) Chose a local field range ±δF and corresponding applied
field range Ecal ± εs δF (see below for further details);

(d) Calculate from first-principles a set of (E ,F ) data points
within the selected E-field range;

(e) Fit equation (3) to the calculated data points, extract Fbi

and ε, and finally obtain Ecal = −εFbi.

After obtaining the values ofFbi and ε (for h- and k-centered
slabs), we are ready to introduce a silicon vacancy into the slab
and probe its response to an arbitrary field F . For that, we set
the applied field to E = ε(F − Fbi) and monitor the Stark shift
using a second-order expansion in the local field,

ΔEZPL = −ΔμF − 1
2
ΔαF2, (4)

where Δμ and Δα are the respective changes in dipole
moment and polarizability between the excited and ground
states [43]. Although in general the dipole moment and polar-
izability of a defect state are, respectively, vectorial and
second-rank tensorial quantities, equation (4) is reduced to a
scalar form, reflecting the fact that we will analyze the Stark
shifts for fields along the c-axis of the crystal.

Figure 2(c) shows the best linear fits to the calculated
F (E) data points obtained for h-centered and k-centered pris-
tine slabs. The built-in fields in the slabs, as found from
the fittings to equation (3), are Fbi = −3.4 MV m−1 and
−2.6 MV m−1 (horizontal dashed lines), while the slab dielec-
tric constants are ε = 10.1 and 11.4 for the h- and k-centered
slabs, respectively. The calculated values of ε are rather close
to the measured static dielectric component parallel to the c-
axis for bulk 4H-SiC (ε‖ = 10.03 [44]). We emphasize that the
geometry of the inner layers of the slabs were fully relaxed
for each value of E . This implies that the screening response
accounts for both electronic polarization (ion-clamped condi-
tions) as well as for ionic polarization effects.

The bare field that has to be imposed in order to offset
the local field to zero is Ecal = −εFind = 34.3 MV m−1 and
29.6 MV m−1 for h- and k-slabs, respectively (vertical dashed
lines in figure 2(c)). Hence, if we consider probing VSi defects
with fields |F| � 10 MV m−1, the applied field E will be in
the range |E − Ecal| � 100 MV m−1.

Before moving on to the results section, we leave a few
remarks regarding accuracy issues. According to experiments
[18, 22], local fields of up to about |F| ∼ 50 MV m−1 lead to
Stark shifts of the V1 and V1′ lines in the meV range. These
correspond to changes in the electric dipole and polarizability
on the order of Δμ ∼ 1 D and Δα ∼ 103 Å3. From the point

of view of conducting the calculations, the convergence toler-
ance of the total energy should be tight enough as to provide
us with a sub-0.1 meV numerical error in energy differences.
Among the most important issues to take care of, we single out
(i) keeping the Si–H and C–H units frozen during all calcula-
tions and (ii) when finding the ground state of a defect under a
particular field, one should start the self-consistent calculation
with the solution found from a previous calculation, ideally
from one with a close electric field.

Another important issue is to make sure that electrons do
not leak out from nor get poured into defect states upon the
application of the field (ex. into surface states or into excited
states). This can be inspected by closely monitoring the popu-
lation of the band structure, to ensure that the V−

Si defect state
ordering envisaged in figure 1(a) is maintained throughout the
calculations.

Due to electronic confinement along the direction perpen-
dicular to the slab surfaces, the calculated band-gap (within
PBE) is Eg = 2.6 eV. This is considerably larger than the gap
width of bulk 4H-SiC (Eg = 2.0 eV using the same theory
level), but closer to the experimental figure (3.2 eV). This
artificial, albeit convenient, effect is expected to reduce the
overestimated and detrimental resonances between gap states
and crystalline states that typically affect local and semi-local
calculations.

Single determinant calculations of EZPL values usually yield
absolute accuracies of around ∼0.1 eV [45]. This figure is
at least two orders of magnitude larger than the largest Stark
shifts observed for V1/V1′ and V2 lines [18, 22]. However, we
are actually interested in the shift ΔEZPL, whose calculation
involves the energy difference between two systems which dif-
fer only by a slight perturbation of the electron density, due to
a small change in the electric field magnitude. As for other dif-
ferential quantities, such as vibrational mode frequencies with
typical error bars of a few tens of cm−1, the geometries and
electronic structure of the differentiating states remain very
similar and the results benefit from cancellation of systematic
errors (e.g., due to finite size effects or basis incompleteness).

Finally, the nearly linear behavior ofF (E) in figure 2(c) and
the screening response of the slabs to external fields (showing
values of ε close to the experimental figure) give us confidence
in the method.

4. Results and discussion

We now report on the application of the above methodology
for the case of VSi in 4H-SiC. After calibration of the field, we
calculated the change in the zero-phonon transition energies
with the local field amplitude. The one-electron occupancy
was kept fixed to enforce the electronic configurations of the
S = 3/2 states of V−

Si (see figure 1(a)). The optical transitions
referred to as V1/V1′ and V2/V2′, respectively attributed to
V−

Si(h) and V−
Si(k), are spin-conserving and involve changes in

the occupancy of the minority-spin channel. Although V2′ has
not been detected experimentally, possibly due to a lifetime-
or dynamical-related broadening effect or overlap with the
phonon-side bands of V1 and V2, we still consider it in our
analysis for the sake of completeness.

5
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Table 1. Calculated (Calc.) excited-to-ground state transition
energies EZPL for the 4A∗

2 → 4A2 and 4E → 4A2 transitions of V−
Si(h)

and V−
Si(k). Quantities outside parentheses were obtained from the

total energies of fully relaxed defects in the ground and excited
states of V−

Si . The ZPL energies within parentheses were found from
energy differences between the unoccupied and occupied
Kohn–Sham eigenvalues within the band gap of the respective
ground state. Assignments of V1/V1′ and V2 to the experimental
data (Exp.) are also included [47]. ND stands for not detected. All
values are in eV.

Defect Transition Calc. Exp. ZPL

V−
Si (h) 4A∗

2 → 4A2 1.32 (1.38) 1.438 V1
4E → 4A2 (1.44) 1.443 V1′

V−
Si (k) 4A∗

2 → 4A2 1.26 (1.35) 1.352 V2
4E → 4A2 (1.39) ND V2′

V1 and V2 arise from 4A∗
2 → 4A2 transitions, whereas V1′

and V2′ involve 4E → 4A2 transitions. The ground state orga-
nizes as 4A2 ≡ Γv(↑↓) + [a1(↑) + e(x ↑, y ↑)], while first and
second excited states are 4A∗

2 ≡ Γv(↑◦) + [a1(↑↓) + e(x ↑, y ↑)]
and 4E ≡ Γ v(↑ ◦) + [a1(↑) + e(x ↑↓, y ↑)], respectively [46].
In this notation, localized states in the forbidden gap are
enclosed within square brackets, upward and downward
arrows stand for occupied spin-up and spin-down states,
respectively, while the small circle refers to the lack of an elec-
tron which has been promoted to a higher-lying state. Doublet
states are resolved into x and y components. The labelΓ v iden-
tifies a state that results from mixing between valence band
states with a resonating a1,R state of the defect (see figure 1(a)).
In the excited state configurations, Γ v holds a diffuse hole
overlapping the vacancy. In practice, Γ v is taken as the highest
occupied valence band state of the pristine slab, i.e., just below
a1 in the energy scale. Notably, the V1′ and V2′ luminescent
transitions involve a degenerate and open-shell initial (excited)
state. In this case, a Jahn–Teller distortion is expected to take
place. To account for that, we allowed the structures to relax
without symmetry constraints. The distortion is not affected by
the electric field—the latter is invariant with respect to all oper-
ations of the C3v point group of the VSi defect. Further details
of this problem have been addressed elsewhere [26] and fall
outside the scope of the present work.

Table 1 reports the calculated ZPL energies for the
4A∗

2 → 4A2 and 4E → 4A2 transitions of V−
Si(h) and V−

Si(k) in
the slabs. The calculations reported in table 1 were all car-
ried out with F = 0, i.e., the field in the vacuum layer was
E = Ecal. Quantities outside parentheses were obtained accord-
ing to the Δ-SCF method using fully relaxed structures. On
the other hand, results within parentheses were found from the
energy difference of two spin-down Kohn–Sham eigenvalues
of the 4A2 ground state, which involve the electron exchange
during the transition. Unfortunately, self-consistency of the
Kohn–Sham problem proved exceedingly difficult to achieve
for excited state calculations. While this was still possible
for the lower energy 4A∗

2 → 4A2 transitions, 4E → 4A2 transi-
tion energies could not be obtained, except when using the
Kohn–Sham energies from V−

Si ground states alone (quantities
enclosed in parentheses in table 1). Within the latter approach,
we found a ∼50 meV monoclinic splitting of the two degen-

erate 4E → 4A2 transitions due to Jahn–Teller unfolding of
the e-states. Table 1 reports only the lower transition energy
counterpart.

The experimental values from reference [47] are shown
next to the calculations in table 1. In general, the calculated
figures match rather well the experimental data and they dif-
fer by less than 10%. As discussed at the end of section 3,
this agreement benefits from the artificial opening of the band
gap due to the slab boundary conditions. Notably as well, in
agreement with the experiments, all calculated ZPL energies
related to VSi(h) are invariably higher than the analogous quan-
tities for VSi(k). Hybrid-DFT calculations of the 4A∗

2 → 4A2

transitions using the Gau-PBE functional overestimate exper-
imental data by about 0.2 eV. For the sake of comparison,
we calculated selected ZPL transition energies using bulk
orthorombic (hexagonal) supercells without vacuum compris-
ing 96 (400) atoms. We computed VSi(h) transition energies
of 1.414 eV (1.412 eV) for the 4A∗

2 → 4A2 transition, and
1.428 eV for 4E → 4A2. Comparing with the literature, our
zero-field transition energies land slightly below other com-
puted values [25, 26], but show similar agreement (below
∼10% difference) with experiment. Indeed, the slight under-
estimation of experimental data found herein (see table 1)
can be attributed to the use of a semi-local functional. Refer-
ence [25] reported hybrid-level values of 1.541 eV for V1 and
1.443 eV for V2, the overestimation likely arising from the use
of the HSE06 functional. Reference [26] computed ZPL ener-
gies of 1.450 eV and 1.385 eV for V1 and V2, respectively, but
reported higher transition energies for the second electronic
4E → 4A2 excitations at 1.792 eV and 1.953 eV, respectively,
for V1′ and V2′.

Regarding the Kohn–Sham based results, besides being
derived from quantities with a weak physical meaning, they
do not account for a small Franck–Condon relaxation energy
in the excited state. This explains why they slightly overes-
timate their Δ-SCF counterparts. Despite the insufficiencies,
they reproduce the observed V1 and V2 energy ordering and
they allow us to suggest that the V2′ transition energy is a few
tens of meV below V1′ and close to V1.

Figure 3 represents the field dependence of the 4A∗
2 → 4A2

transitions of V−
Si at h- (figure 3(a)) and k-sites (figure 3(b))

as calculated using the Δ-SCF method at PBE level. The solid
lines represent the best fits of equation (4) to the first-principles
data (black circles). Considering the magnitude of the fields
applied, approximately linear Stark shifts were found for both
VSi(h) and VSi(k). A strictly linear Stark effect is often not
observed in non-centrosymmetric defects. A notable example
is the NV center in diamond [20]. The weak parabolic depen-
dence of ΔEZPL on F could be explained by field-induced
couplings of defect and crystalline states [43]. From the fittings
to the data we found variations of the electric dipole moment
and polarizability as Δμ = 1.46 D and Δα = −640 Å3

for VSi(h), and Δμ = 3.92 D and Δα = −920 Å3 for VSi(k)
(1D = 3.34 × 1030C m and 1 Å

3
= 4πε0 × 10−28 C m2V−1).

The relative error bars for dipole and polarizability changes are
less than 1% and about 10%, respectively. We note that because
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Figure 3. Calculated Stark shift (black circles) of the 4A∗
2 → 4A2

zero-phonon transition involving the decay from the first excited
state into the ground state of (a) VSi(h) and (b) VSi(k). Solid lines
represent the best fits of equation (4) to the data, from which the
transition dipole moment and polarizability changes (Δμ and Δα,
respectively) were extracted.

of the nearly linear dependence of EZPL(F ), the offset applied
to the field of Fbi ≈ −3 MV m−1 during the calibration step
(see section 3) has little impact on the results.

Our results indicate little contribution from the polarizabil-
ity change to the Stark effect, instead hinting towards a dom-
inance of the dipole moment difference between excited and
ground states. While a small Δα value (which leads to an
approximately linear character) has been observed for V1 with
the field along the c-axis [22], the calculated value of Δμ for
VSi(h) overestimates the respective measured figure for V1 by
about a factor of 10.

We can only hypothesize several reasons for the above dis-
crepancy. Firstly, it is possible that the slab employed is too
thin (additional SiC layers should be included) or the vacuum
width should be increased. Further, the semi-local treatment
of the many-body electronic exchange correlation interactions
could be insufficient to accurately describe the difference in
coupling of the electric field to the 4A2 and 4A∗

2 electronic
configurations. Another possibility is the inherent inaccuracy
of the simple single-determinant wave functions to describe
excited states. These are among the issues that need to be

addressed in the future in order to further investigate the appli-
cability of the present method for the calculation of Stark shifts
of electronic transitions for defects in semiconductors.

In comparison to other centers, we note that the calculated
Δμ values are close to those observed for the divacancy in
4H-SiC (Δμ ≈ 2 D) [15] and to the NV center in diamond
(Δμ ≈ 0.8–1.5 D) [20, 21]. Regarding the polarizability, we
know that small molecules [48] and quantum dots [49] usually
yield positive values for Δα. This is in line with the view that
excited states are generally nodal and therefore more polariz-
able than ground states. However, we found Δα < 0 for the
4A∗

2 → 4A2 transitions of V−
Si in 4H-SiC. Considering the error

bars of the measurements, we cannot consider a disagreement
with the observations [22]. As a matter of fact, negative values
for Δα are also possible for defects in semiconductors, one
prominent case being NV in diamond [20].

Finally, we should keep in mind that the theoretical approx-
imations and limitations discussed above are not exclusively
accountable for the discrepancies between theory and mea-
surements. Several difficulties affect the measurement of Stark
shifts as well. Perhaps the most severe is the determination of
the electric field that is actually acting on a specific defect.
For instance, the often used Lorentz local field approximation
may turn out to be inadequate, or the complexity of the sample
structure combined with the scatter of the defect distribution
can easily frustrate an accurate quantification of Δμ and Δα.

5. Concluding remarks

We present a first-principles methodology to calculate Stark
shifts of electronic transitions of defects in semiconductors
using periodic boundary conditions. The method is applied to
the silicon vacancy in 4H-SiC, with the electric field response
of its PL transition energies being investigated by DFT within
the Δ-SCF method.

Our approach involves the use of a periodic supercell com-
prising a semiconductor slab adjacent to a vacuum layer. The
surfaces of the slab were passivated by hydrogen termina-
tion, and an external electric field with variable amplitude was
applied along the surface normal (in parallel to the (0001)-
or c-axis). To this end, we added a sawtooth potential to
the Hamiltonian, placing the potential ‘teeth’ in the vacuum
region to avoid the superposition of induced charge density
singularities with the electronic states of the slab.

For the case of non-centrosymmetric materials (like 4H-
SiC), the presence of inequivalent surfaces on the 4H-SiC slab
induce a built-in field. A calibration of the external field is car-
ried out to neutralize the built-in field and find the zero-field
condition in the slab bulk.

The calculated zero-field transition energies for VSi(h) and
VSi(k) account for the experimental data (V1/V1′ and V2 PL
lines) within an error bar of about 0.1 eV. The energy ordering
of the transitions are also in line with the measurements. Such
an agreement exceeds the expectations for the present level
of theory—typical semi-local approximated exchange correla-
tion functionals underestimate excitation energies by a factor
of 0.5–0.6. We suggest that the agreement artificially profits
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from the opening of the band gap due to electronic confinement
in the slab terminated by hydrogen and vacuum.

Regarding the Stark shifts, within the range of electric
fields considered (|F| < 10 MV m−1), we found approxi-
mately linear Stark shifts for the 4A∗

2 → 4A2 transitions of both
VSi(h) and VSi(k). These corresponded to transition dipole
changes ofΔμ = 1.46 D and Δμ = 3.92 D, respectively, with
a numerical error bar below 1%. While an approximately lin-
ear Stark shift was observed for V1 [22], the calculated Δμ
overestimates the measurement by about a factor of 10. We
discuss several reasons which could affect the quality of the
theory and should be addressed in the future (for instance,
slab geometry and exchange–correlation description level),
but also aspects that impact on the interpretation of the obser-
vations, in particular the knowledge of the magnitude and
direction of the field directly affecting the defects.
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Baranov P G, Dyakonov V and Astakhov G V 2014 Nat.
Phys. 10 157

[10] Simin D, Kraus H, Sperlich A, Ohshima T, Astakhov G V and
Dyakonov V 2017 Phys. Rev. B 95 161201(R)

[11] Koehl W F, Buckley B B, Heremans F J, Calusine G and
Awschalom D D 2011 Nature 479 84

[12] Christle D J, Falk A L, Andrich P, Klimov P V, Hassan J U,
Son N T, Janzén E, Ohshima T and Awschalom D D 2015
Nat. Mater. 14 160

[13] Castelletto S, Johnson B C, Ivády V, Stavrias N, Umeda T,
Gali A and Ohshima T 2014 Nat. Mater. 13 151

[14] Wolfowicz G, Anderson C P, Yeats A L, Whiteley S J, Niklas J,
Poluektov O G, Heremans F J and Awschalom D D 2017 Nat.
Commun. 8 1876

[15] de las Casas C F, Christle D J, Ul Hassan J, Ohshima T, Son N T
and Awschalom D D 2017 Appl. Phys. Lett. 111 262403

[16] Widmann M et al 2019 Nano Lett. 19 7173
[17] Anderson C P et al 2019 Science 366 1225
[18] Bathen M E, Galeckas A, Müting J, Ayedh H M, Grossner U,

Coutinho J, Frodason Y K and Vines L 2019 npj Quantum
Inf. 5 111

[19] Stark J 1914 Ann. Phys. 43 965–983
[20] Tamarat P et al 2006 Phys. Rev. Lett. 97 083002
[21] Acosta V M et al 2012 Phys. Rev. Lett. 108 206401
[22] Rühl M, Bergmann L, Krieger M and Weber H B 2020 Nano

Lett. 20 658
[23] Miao K C et al 2019 Sci. Adv. 5 eaay0527
[24] Mizuochi N, Yamasaki S, Takizawa H, Morishita N, Ohshima T,

Itoh H, Umeda T and Isoya J 2005 Phys. Rev. B 72
235208

[25] Ivády V, Davidsson J, Son N T, Ohshima T, Abrikosov I A and
Gali A 2017 Phys. Rev. B 96 161114(R)

[26] Udvarhelyi P et al 2020 Phys. Rev. Appl. 13 054017
[27] Hornos T, Gali A and Svensson B G 2011 Mater. Sci. Forum

679–680 261
[28] Garrett B F, Azuri I, Kronik L and Chelikowsky J R 2016

J. Chem. Phys. 145 174111
[29] Noh G, Choi D, Kim J-H, Im D-G, Kim Y-H, Seo H and Lee J

2018 Nano Lett. 18 4710
[30] Sajid A, Ford M J and Reimers J R 2020 Rep. Prog. Phys. 83

044501
[31] Souza I, Íñiguez J and Vanderbilt D 2002 Phys. Rev. Lett. 89

117602
[32] Kunc K and Resta R 1983 Phys. Rev. Lett. 51 686
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