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Deep learning, due to its unprecedented success in tasks such as image classification, has emerged as a new tool
in image reconstruction with potential to change the field. In this paper we demonstrate a crucial phenomenon:
deep learning typically yields unstable methods for image reconstruction. The instabilities usually occur in
several forms: (1) certain tiny, almost undetectable perturbations, both in the image and sampling domain, may
result in severe artefacts in the reconstruction, (2) a small structural change, for example a tumour, may not
be captured in the reconstructed image and (3) (a counterintuitive type of instability) more samples may yield
poorer performance. Our new stability test with algorithms and easy to use software detects the instability
phenomena. The test is aimed at researchers to test their networks for instabilities and for government agencies,
such as the Food and Drug Administration (FDA), to secure safe use of deep learning methods.

There are two paradigm changes currently happening: (1) AI is
replacing humans in problem solving, however, (2) AI is also re-
placing the standard algorithms in computational science and en-
gineering. Since reliable numerical calculations are paramount,
algorithms for computational science are traditionally based on
two pillars: accuracy and stability. This is in particular true of
image reconstruction, which is a mainstay of computational sci-
ence, providing fundamental tools in medical, scientific and in-
dustrial imaging. This paper is the first to demonstrate that the
stability pillar is typically absent in current deep learning and
AI-based algorithms for image reconstruction. This raises two
fundamental questions: how reliable are such algorithms when
applied in the sciences, and do AI-based algorithms have an un-
avoidable achilles heel: instability? This paper introduces a com-
prehensive testing framework designed to demonstrate, investig-
ate and ultimately answer these foundational questions.

The importance of stable and accurate methods for image
reconstruction for inverse problems is hard to over estimate.
These techniques form the foundation for essential tools across
the physical and life sciences such as Magnetic Resonance Ima-
ging (MRI), Computerised Tomography (CT), fluorescence mi-
croscopy, electron tomography, Nuclear Magnetic Resonance
(NMR), radio interferometry, lensless cameras etc. Moreover,
stability is traditionally considered a necessity in order to secure
reliable and trustworthy methods used in, for example, cancer
diagnosis. Hence, there is an extensive literature on designing
stable methods for image reconstruction in inverse problems [1]–
[4].

Artificial intelligence (AI) techniques such as deep learning
and neural networks [5] have provided a new paradigm with new
techniques in inverse problems [6]–[14] that may change the
field. In particular, the reconstruction algorithms learn how to
best do the reconstruction based on training from previous data,
and through this training procedure aim to optimise the quality of
the reconstruction. This is a radical change from the current state
of the art both from an engineering, physical and mathematical
point of view.

AI and deep learning has already changed the field of com-
puter vision and image classification [15]–[18], where the per-

formance is now referred to as super human [19]. However, the
success comes with a price. Indeed, the methods are highly un-
stable. It is now well established [20]–[24] that high perform-
ance deep learning methods for image classification are subject
to failure given tiny, almost invisible perturbation of the image.
An image of a cat may be classified correctly, however, a tiny
change, invisible to the human eye, may cause the algorithm to
change its classification label from cat to a fire truck, or another
label far from the original.

In this paper we establish the instability phenomenon of deep
learning in image reconstruction for inverse problems. A poten-
tial surprising conclusion is that the phenomenon may be inde-
pendent of the underlying mathematical model. For example,
MRI is based on sampling the Fourier transform whereas CT is
based on sampling the Radon transform. These are rather dif-
ferent models, yet the instability phenomena happen for both
sampling modalities when using deep learning.

There is, however, a big difference between the instabilities
of deep learning for image classification and our results on in-
stabilities of deep learning for image reconstruction. Firstly, in
the former case there is only one thing that could go wrong: a
small perturbation results in a wrong classification. In image re-
construction there are several potential forms of instabilities. In
particular, we consider three crucial issues: (1) instabilities with
respect to certain tiny perturbations, (2) instabilities with respect
to small structural changes (for example a brain image with or
without a small tumour), (3) instabilities with respect to changes
in the number of samples. Secondly, the two problems are totally
unrelated. Indeed, the former problem is, in its simplest form,
a decision problem, and hence the decision function ("is there
a cat in the image?") to be approximated is necessarily discon-
tinuous. However, the problem of reconstructing an image from
Fourier coefficients, as is the problem in MRI, is completely dif-
ferent. In this case there exist stable and accurate methods that
depend continuously on the input. It is therefore paradoxical that
deep learning leads to unstable methods for problems that can be
solved accurately in a stable way (see §1.E in the Supplementary
Information (SI)).

The networks we have tested are unstable either in the form
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Original |x| |x + r1| |x + r2| |x + r3| SoA from Ax

DM f(Ax) DM f(A(x + r1)) DM f(A(x + r2)) DM f(A(x + r3)) SoA from A(x + r3)

Figure 1: Perturbations rj (created to simulate worst-case effect) with |r1| < |r2| < |r3| are added to the image x. Upper row
images (1)-(4): original image x and perturbations x+ rj . Lower row images (1)-(4) reconstruction from A(x+ rj) using the Deep
MRI (DM) network f , where A is a subsampled Fourier transform (33% subsampling), see Methods and SI for details. Rightmost
column: reconstruction from Ax and A(x + r3) using a state-of-the-art (SoA) method, see Methods for details. Note how the
artefacts (red arrows) are hard to dismiss as non-physical.

|x + r1 + v| |x + r1 + v| (cropped) f(A(x + r1 + v) (cropped) SoA: A(x + r1 + v) (cropped)

Figure 2: A random Gaussian vector e ∈ Cm is computed by drawing (the real and imaginary part of) each component independ-
ently from the normal distribution N (0, 10). We let v = A∗e, and rescale v so that ‖v‖2 = 1

4‖r1‖2, where r1 is the perturbation
from Figure 1. The Deep MRI network f reconstructs from the measurements A(x + r1 + v) and shows the same artefact as was
seen for r1 in Figure 1. Note that in this experiment A ∈ Cm×N is a subsampled normalized discrete Fourier transform (33%
subsampling), so that AA∗ = I i.e. e = Av.

of (1) or (2) or both. Moreover, networks that are highly stable in
one of the categories tend to be highly unstable in the other. The
instability in form of (3), however, occur for some networks but
not all. The new findings raise two fundamental questions:

(i) Does AI, as we know it, come at a cost? Is instability a
necessary by-product of our current AI techniques?

(ii) Can reconstruction methods based on deep learning al-
ways be safely used in the physical and life sciences? Or, are
there cases for which instabilities may lead to, for example, in-
correct medical diagnosis if applied in medical imaging?

The scope of this paper is on the second question, as the first
question is on foundations, and our stability test provides the
starting point for answering question (ii). However, even if in-
stabilities occur, this should not rule out the use of deep learning
methods in inverse problems. In fact, one may be able to show,
with large empirical statistical tests, that the artefacts caused by
instabilities occur infrequently. As our test reveals, there is a
myriad of different artefacts that may occur, as a result of the
instabilities, suggesting vast efforts needed to answer (ii). A de-
tailed account is in the conclusion.

The instability test

The instability test is based on the three instability issues men-
tioned above. We consider instabilities with respect to the fol-
lowing:

Tiny worst-case perturbations

The tiny perturbation could be in the image domain or in the
sampling domain. When considering medical imaging, a per-
turbation in the image domain could come from a slight move-
ment of the patient, small anatomic differences between people
etc. The perturbation in the sampling domain may be caused by
malfunctioning of the equipment or the inevitable noise dictated
by the physical model of the scanning machine. However, a per-
turbation in the image domain may imply a perturbation in the
sampling domain. Also, in many cases, the mathematical model
of the sampling reveals that such a sampling process implies an
operator that is surjective onto its range, and hence there exists a
perturbation in the image domain corresponding to the perturb-
ation in the sampling domain. Thus, a combination of all these
factors may yield perturbations that in a worst case scenario may
be quite specific, hard to model and hard to protect against unless
one has a completely stable neural network.
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The instability test includes algorithms that do the follow-
ing. Given an image and a neural network, designed for im-
age reconstruction from samples provided by a specific sampling
modality, the algorithm searches for a perturbation of the image
that makes the most severe change in the output of the network
while still keeping the perturbation small. In a simple mathem-
atical form this can be described as follows. Given an image
x ∈ RN (we interpret an image as a vector for simplicity), a
matrix A ∈ Cm×N representing the sampling modality (for ex-
ample a discrete Fourier transform modelling MRI) and a neural
network f : Cm → CN , the neural network reconstructs an ap-
proximation x̃ to x defined by y = Ax, where x̃ = f(y). The
algorithm seeks an r ∈ RN such that

‖f(y +Ar)− f(y)‖ is large, while ‖r‖ is small,

see the methods section for details. However, the perturbation
could, of course, be put on the measurement vector y instead.

Small structural changes in the image

By structural change we mean a change in the image domain
that may not be tiny, and typically significant and clearly visible,
however still small (for example a small tumour). The purpose
is to check if the network can recover important details that are
crucial in, for example, medical assessments. In particular, given
the image x ∈ RN we add a perturbation r ∈ RN , where r is
a detail that is clearly visible in the perturbed image x + r, and
check if r is still clearly visible in the reconstructed image

x̂ = f(A(x+ r)).

In this paper we consider the symbols from cards as well as let-
ters. In particular, we add the symbols ♠,♥,♦,♣ and the letters
CAN U SEE IT to the image. The reason for this is that card

symbols as well as letters are fine details that are hard to detect,
and thus represent a reasonable challenge for the network. If
the network is able to recover these small structural changes it is
likely to recover other details of the same size. On the other hand,
if the network fails on these basic changes, it is likely to fail on
other details as well. The symbols can, of course, be specified
depending on the specific application. Our choice is merely for
illustration.

Important note: When testing stability, both with respect to
tiny perturbations and with respect to small structural changes,
the test is always done in comparison with a state-of-the-art (SoA
abbreviated) stable method in order to check that any instabilities
produced by the neural network is due to the network itself and
not because of ill-conditioning of the inverse problem. The state-
of-the-art methods used are based on compressed sensing and
sparse regularisation [25]–[27]. These methods often come with
mathematical stability guaranties [28], and are hence suitable as
benchmarks (see the Methods for details).

Changing the number of samples in the sampling device
(such as the MRI or CT scanner)

Typical state-of-the-art methods share a common quality; more
samples imply better quality of the reconstruction. Given that
deep learning neural networks in inverse problems are trained
given a specific sampling pattern, the question is how robust is
the trained network with respect to changes in the sampling. The
test checks whether the quality of the reconstruction deterior-
ates with more samples. This is a crucial question in applic-
ations. For example the recent implementation of compressed
sensing on Philips MRI machines allows the user to change the
under sampling ration for every scan. This means that if a net-
work is trained on 25% subsampling, say, and suddenly the user
changed the subsampling ratio to 35% one would want an im-
proved recovery. If the quality deteriorates or stagnates with

more samples, this means that one will have to produce networks
trained for each and every combination of subsampling that the
machine allows for. Finally, due to the other instability issues,
every such network must individually be empirically statistically
tested to detect whether the occurrence of instabilities is rare or
not. It is not enough to test on only one neural network, as their
instabilities may be completely different.

Testing the test
We test six deep learning neural networks selected based on their
strong performance, wide range in architectures, difference in
sampling patterns and subsampling ratios, as well as their differ-
ence in training data. The specific details about the architecture
and the training data of the tested networks can be found in the
supplementary information (SI).

Important note: The tests performed are not designed to test
deep learning against state-of-the-art in terms of performance on
specific images. The test is designed to detect the instability phe-
nomenon. Hence, the comparison with state-of-the-art is only to
verify that the instabilities are exclusive only to neural networks
based on deep learning, and not due to an ill-conditioning of the
problem itself. Moreover, as is clear from the images, in the
unperturbed cases, the best performance varies between neural
networks and state-of-the-art. The list of networks is as follows:

AUTOMAP [6]: This is a neural network for low resolution
single coil MRI with 60% subsampling. The training set consists
of brain images with added white noise to the Fourier samples.

DAGAN [12]: This network is for medium resolution single
coil MRI with 20% subsampling, and is trained with a variety of
brain images.

Deep MRI [11]: This neural network is for medium resolu-
tion single coil MRI with 33% subsampling. It is trained with
detailed cardiac MR images.

Ell 50 [9]: Ell 50 is a network for CT or any Radon transform
based inverse problem. It is trained on images containing solely
ellipses (hence the name Ell 50). The number 50 refers to the
number of lines used in the sampling in the sinogram.

Med 50 [9]: Med 50 has exactly the same architecture as Ell
50 and is used for CT, however, it is trained with medical images
(hence the name Med 50) from the Mayo Clinic database. The
number of lines used in the sampling from the sinogram is 50.

MRI-VN [13]: This network is for medium to high resolution
parallel MRI with 15 coil elements and 15% subsampling. The
training is done with a variety of knee images.

Stability with respect to tiny worst-case perturba-
tions
Below follows the description of the test applied to some of the
networks where we detect instabilities with respect to tiny per-
turbations.

Deep MRI: In this test we perturb the image x with a se-
quence of perturbations {rj}3j=1 with |r1| < |r2| < |r3| in order
to simulate how the instabilities continuously transform the re-
constructed image from a very high quality reconstruction to an
almost unrecognisable distortion. This is illustrated in the lower
row of Figure 1. Note that the perturbations are almost invis-
ible to the human eye as demonstrated in the upper row of Fig-
ure 1. The rj perturbations are created by early stopping of the
algorithm iterating to solve for the optimal worst case perturba-
tion. The purpose of this experiment is to demonstrate how the
gradual change in perturbation create artefacts that may be hard
to verify as non-physical. Indeed, the worst case perturbation r3
causes clearly a reconstruction that, in a real world situation, can
be dismissed by a clinician as non-physical. However, for the
smallest r1 we have a perturbation that is completely invisible
to the human eye, yet it results in a reconstruction that is hard
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Original x |x + r1| |x + r2| |x + r3| |x + r4|

AUTOMAP f(Ax) AUTOMAP f(A(x + r1)) AUTOMAP f(A(x + r2)) AUTOMAP f(A(x + r3)) AUTOMAP f(A(x + r4))

SoA from A(x) SoA from A(x + r1) SoA from A(x + r2) SoA from A(x + r3) SoA from A(x + r4)

Figure 3: Perturbations r̃j (created to simulate worst-case effect) are added to the measurements y = Ax, where |r̃1| < |r̃2| <
|r̃3| < |r̃4| and A is a subsampled Fourier transform (60% subsampling). To visualise we show |x+ rj | where y+ r̃j = A(x+ rj).
Upper row: original image x with perturbations rj . Middle row: reconstructions from A(x + rj) by the AUTOMAP network f .
Lower row: reconstructions from A(x+ rj) by a state of the art method (see Methods for details). A detail in form of a heart, with
varying intensity, is added to visualise the loss in quality.

to dismiss as non-physical, and provides an incorrect represent-
ation of the actual image. Such examples could potentially lead
to incorrect medical diagnosis. Note that state-of-the-art meth-
ods are not affected by the perturbation as demonstrated in the
rightmost column of Figure 1. However, although this network
is highly unstable with respect to certain tiny perturbations, it is
highly stable with respect to small structured changes, see the
4th row of Figure 5. Note also that the instabilities are actually
stable. In particular, in Figure 2 we demonstrate how a random
Gaussian perturbation added to the perturbation r1 still yields a
substantial artefact (see also §1.H in SI).

AUTOMAP: This experiment is similar to the one above,
however, in this case we add r̃1, . . . , r̃4 to the measurements
y = Ax, where |r̃1| < |r̃2| < |r̃3| < |r̃4| and A is a subsampled
discrete Fourier transform. In order to illustrate how small the
perturbations are we have visualised |x + rj | in the first row of
Figure 3, where y + r̃j = A(x + rj). To emphasise how the
network reconstruction completely deforms the image we have,
inspired by the second test on structural changes, added a small
structural change in form of a heart that gradually disappears
completely in the network reconstruction. This is demonstrated
in the second row of Figure 3, and the third row of Figure 3 con-
tains the reconstruction done by a state-of-the-art method. Note
that the worst case perturbations are completely different to the
ones failing the Deep MRI network. Hence, the artefacts are also
completely different. These perturbations are white-noise like
and the reconstructions from the network provide a similar im-
pression. As this is a standard artefact in MRI, it is, however, not
clear how to protect against the potential bad tiny noise. Indeed,
a detail may be washed out, as shown in the experiment (note the
heart inserted with slightly different intensities in the brain im-
age), but the similarity between the standard artefact may make
it difficult to judge that this is an untrustworthy image.

MRI-VN: In this case we add one perturbation r1 to the im-
age, where r1 is produced by letting the algorithm searching
for the worst perturbation run until it has converged. The res-
ults are shown in the first two columns of Figure 4, and the
conclusion is the same for the MRI-VN net as for Deep MRI
and AUTOPMAP; perturbations barely visible to the human eye,
even when zooming in, yield substantial misleading artefacts.
Note also that the perturbation has no effect on the state-of-the-
art-method.

Med-50: Here we add a perturbation r2 that is also produced
by running the algorithm until it has converged, and the results
are visualised in the last two columns of Figure 4. The Med-
50 network is moderately unstable with respect to tiny perturb-
ations compared to Deep MRI, AUTOMAP and MRI-VN, how-
ever, severe artefacts are clearly seen. It is worth noting that this
network is used for the Radon transform, which is, from a sta-
bility point of view, a more unstable operator than the Fourier
transform when considering its inverse.

Stability with respect to small structural changes

Instabilities with respect to small structural changes are docu-
mented below.

Ell-50: This network provides a stark example of instability
with respect to structural perturbation. Indeed, none of the de-
tails are visible in the reconstruction as documented in the first
row of Figure 5. This may not be entirely surprising, given that
the network is trained on ellipses.

DAGAN: This network is not as unstable as the Ell-50 net-
work with respect to structural changes. However, as seen in the
second row of Figure 5 the blurring of the structural details are
substantial, and the instability is still critical.
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Original x x + r1 Original x̃ x̃ + r2

MRI-VN f(Ax) MRI-VN f(A(x + r1)) MED 50 f̃(Ãx̃) MED 50 f̃(Ã(x̃ + r2))

SoA from Ax SoA from A(x + r1) SoA from Ãx̃ SoA from Ã(x̃ + r2)

Figure 4: Perturbations r1, r2 (created to simulate worst-case effect) are added to the images x and x̃ in the first row. The recon-
structions by the network f (MRI-VN), from Ax and A(x+ r1), and the network f̃ (MED 50), from Ãx̃ and Ã(x̃+ r2) are shown
in the second row. A is a subsampled discrete Fourier transform and Ã is a subsampled Radon transform. State-of-the-art (SoA)
comparisons are shown in the last row.

MRI-VN: This is an example of a moderately unstable net-
work when considering structural changes. Note, however, how
the instability coincides with the lack of ability to reconstruct de-
tails in general. This is documented in the third row of Figure
5.

Deep MRI: To demonstrate how the stability with respect to
small structured changes coincides with the ability to reconstruct
details, we show how stable the Deep MRI network is. Observe
also how well the details in the image are preserved in the fourth
row of Figure 5. Here we have lowered the subsampling ration
to 25% even when the network is trained on 33% subsampling
ratio. We want to point out that none of the symbols, nor any
text, has been used in the training set.

Stability with respect to more samples
Certain convolutional neural networks will allow for the flexibil-
ity of changing the amount of sampling. In our test cases all of
the networks except AUTOMAP have this feature, and we report
on the stability with respect to changes in the amount of samples
below and in the last row of Figure 5:

Ell 50/Med 50: Ell 50 has the strongest and most fascinating
decay in performance as a function of an increasing subsampling
ratio. Med 50 is similar, however, with a less steep decline in
reconstruction quality.

DAGAN: The reconstruction quality deteriorates with more
samples similar to the Ell 50/Med 50 networks.

VN-MRI: This network provides reconstructions where the
quality stagnates with more samples as opposed to the decay in
performance witnessed in the other cases.

Deep MRI: This network is the only one that behaves aligned
with standard state-of-the-art methods and provides better recon-
structions when more samples are added.

Conclusion
The new paradigm of learning the reconstruction algorithm for
image reconstruction in inverse problem, through deep learning,
typically yields unstable methods. Moreover, our test reveals nu-
merous instability phenomena, challenges and new research dir-
ections. In particular:

(1) Certain tiny perturbations lead to a myriad of different
artefacts. Different networks yield different artefacts and in-
stabilities, and as Figures 1, 3, 4 reveal there is no common
denominator. Moreover, the artefacts may be difficult to detect
as non-physical. Thus, several key questions emerge: given a
trained neural network, which types of artefacts may the network
produce? How is the instability related to the network architec-
ture, training set and also subsampling patterns?

(2) Variety in failure of recovering structural changes. There
is a great variety in the instabilities with respect to structural
changes as demonstrated in Figure 4, ranging from complete re-
moval of details to more subtle distortions and blurring of the fea-
tures. How is this related to the network architecture and training
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Original x1 + r1 Original x1 + r1 (zoomed) Ell 50 f1(A1x1 + r1) SoA from A1(x1 + r1)

Original x2 + r2 Original x2 + r2 (zoomed) DAGAN f2(A2x2 + r2) SoA from A2(x2 + r2)

Original x3 + r3 Original x3 + r3 (zoomed) MRI-VN f3(A3x3 + r3) SoA from A3(x3 + r3)

Original x4 + r4 Original x4 + r4 (zoomed) Deep MRI f4(A4x4 + r4) SoA from A4(x4 + r4)

Ell 50/Med 50 DAGAN VN-MRI Deep MRI

Figure 5: First four rows: Images xj plus structured perturbations rj (in the form of text and symbols) are reconstructed from
measurements yj = Aj(xj + rj) with neural networks fj and state-of-the-art (SoA) methods. The networks are: f1 = Ell 50,
f2 = DAGAN, f3 = MRI-VN, f4 = Deep MRI. The sampling modalities Aj are: A1 is a subsampled discrete Radon transform,
A2 is a subsampled discrete Fourier transform (single coil simulation), A3 is a superposition of subsampled discrete Fourier trans-
forms (parallel MRI simulation with 15 coils elements), A4 is a subsampled discrete Fourier transform (single coil). Note that Deep
MRI has not been trained with images containing any of the letters or symbols used in the perturbation, yet it is completely stable
with respect to the structural changes. The same is true for the AUTOMAP network (see first column of Figure 3). Last row: The
figures show PSNR as a function of the subsampling rate for different networks. The red line indicates the subsampling ratio that
the networks were trained for.
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set? Moreover, does the subsampling pattern play a role? It is im-
portant, however, to observe (as in the 4th row of Figure 5 and 1st
column of Figure 3) that there are perfectly stable networks with
respect to structural changes, even when the training set does not
contain any images with such details.

(3) Networks must be retrained on any subsampling pattern.
The fact that more samples may cause the quality of reconstruc-
tion to either deteriorate or stagnate means that each network
has to be retrained on every specific subsampling pattern, sub-
sampling ratio and dimensions used. Hence, one may in prac-
tice need hundreds of different network to facilitate the many
different combinations of dimensions, subsampling ratios and
sampling patterns.

(4) Instabilities are not necessarily rare events. A key ques-
tion regarding instabilities with respect to tiny perturbations is
whether they may occur in practice. The example in Figure 2
suggests that there is a ball around a worst-case perturbation in
which the severe artefacts are always witnessed. This suggests
that the set of ’bad’ perturbations have Lebesgue measure greater
than zero, and thus, there will typically be a non-zero probabil-
ity of a ’bad’ perturbation. Estimating this probability may be
highly non-trivial as the perturbation will typically be the sum
of two random variables, where one variable comes from gen-
eric noise and one highly non-generic variable is due to patient
movements, anatomic differences, apparatus malfunctions, etc.
These predictions can also be theoretically verified, as discussed
in §1.H in SI.

(5) The instability phenomenon is not easy to remedy. We de-
liberately choose quite different networks in this paper to high-
light the seeming ubiquity of the instability phenomenon. The-
oretical insights (see §1.H in SI on the next generation of meth-
ods [29]–[33]) also support the conclusion that this phenomenon
is nontrivial to overcome. Finding effective remedies is an ex-
tremely important future challenge.
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