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Abstract

Network APIs are moving towards protocol agility, where applications express their
needs but not a static protocol binding, and it is up to the layer below the API to
choose a suitable protocol. The IETF Transport Services (TAPS) Working Group is
standardizing a protocol-independent transport API and offering guidance to imple-
menters. Apple’s recent “Network.framework” is specifically designed to allow such
late and dynamic binding of protocols. When the network stack autonomously chooses
and configures a protocol, it must first test which protocols are locally available and
which work end-to-end (“protocol racing”). For this, it is important to know the set of
available options, and which protocols should be tried first: Does it make sense to offer
unchecked payload delivery, as with UDP-Lite? Is a UDP-based protocol like QUIC
always a better choice, or should native SCTP be tried? This paper develops answers
to such questions via i) a NAT study in a local testbed, ii) bidirectional Internet tests,
iii) a large scale Internet measurement campaign. The examined protocols are: SCTP,
DCCP, UDP-Lite, UDP with a zero checksum and three different UDP encapsulations.
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1. Introduction

Latency has become the dominant metric that most application developers and net-
work designers strive to optimize today. In some cases this has made TCP less suit-
able, even when data must be reliably transferred. For example, multiplexing appli-
cation streams over TCP with HTTP/2 can produce head-of-line blocking delay; this
is one of several issues that the “Quick UDP Internet Connections” (QUIC) protocol
addresses [1]. BitTorrent’s μTP (with LEDBAT congestion control [2]) is another ex-
ample of a protocol that was developed to bypass a shortcoming of TCP: its inability to
offer a lower-than-best-effort (LBE) service that would suit a bulk data transfer, while
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limiting the delay incurred on other traffic. Generally, applications now have much
more diverse needs than TCP can support.

To provide a broader service set to applications while facilitating the use of non-
TCP protocols, the IETF Transport Services (TAPS) Working Group defines an API
that eliminates the static compile-time binding between applications and transport pro-
tocols [3]. This enables a network stack to try one mechanism or protocol but fall back
to a “safe” default protocol (usually TCP or UDP) in case of failure. Such opportunistic
ways of using protocols and protocol mechanisms are increasingly common; they can
be seen, for example, in iOS devices, in the form of “Happy-Eyeballing” (also called
“racing”) between IPv6 and IPv4 [4]. The Chrome browser falls back from QUIC
(over UDP) to TCP if the connection setup fails with QUIC, and WebRTC allows to
opportunistically set the DiffServ Code Points (DSCP) [5]. Here, measurement studies
have shown that such DSCP usage is generally not harmful, but it is recommendable
to fall back to DSCP zero in case of permanent failure (“black-holing”) [6, 7]. Rather
than hard-coding a specific racing method in each application, a TAPS transport sys-
tem uniformly takes care of protocol racing and configuration below the API. The
NEAT library [8] is a prototypical implementation of a fully-fledged TAPS system that
eliminates the static binding between applications and transport protocols or network
mechanisms (e.g., DSCP value).

To support this increasing protocol agility of network stacks, this paper investigates
how well protocols other than TCP could work across Internet paths. Specifically, our
focus is on the native transport protocols SCTP, DCCP and UDP-Lite, as it is frequently
assumed that these protocols do not work (e.g., in IETF conversations), while, to the
best of our knowledge, no measurement study exists that could either confirm or reject
this claim. We would like to understand whether a TAPS transport system should try
to make use of UDP-Lite or DCCP at all; whether, in case UDP-Lite does not work,
UDP with a zero checksum would be a viable alternative; whether native or UDP-
encapsulated SCTP should be tried first, or whether SCTP is hopeless anyway, making
protocols such as QUIC or RTMFP that run over UDP without requiring a specific port
number strictly preferable even if an application does not need all of their new features.

In the next section, we begin with an investigation of the potentially most trou-
blesome part of an end-to-end Internet path: home gateways with their common NAT
functionality. As we will see, there is only very little explicit support for these proto-
cols in the tested off-the-shelf equipment as well as the Linux and FreeBSD Operating
Systems. NAT software could be upgraded over time if these protocols are found to be
useful, but this first requires a significant level of deployment and positive experience
with them—which, in turn, may be prevented by current NAT behavior. It is therefore
important to assess how these protocols would operate through current NAT software.

After assessing how SCTP, DCCP, UDP-Lite and UDP with a zero checksum (which
might be a possible alternative to UDP-Lite) operate over some NAT devices and the
Linux and FreeBSD Operating Systems in a local testbed, Section 3 presents results
from bidirectional Internet tests where we see NAT behaviors “in the wild”. In Sec-
tion 4, we take a further look at Internet path traversal with a large-scale one-sided
Internet measurement campaign using a customized version of Tracebox [9]. The lat-
ter study, while unable to traverse middleboxes such as NATs, provides insights into the
drop-or-forward behavior of ASes. We discuss related work in Section 5, and Section 6



concludes.

2. NAT Interference: Local Tests

We begin this section with a brief description of NAT-relevant aspects of the tested
transport protocols; Appendix A gives a brief overview of the general operation of
NATs and Network Address and Port Translators (NAPTs).

SCTP uses port numbers just like TCP and UDP. However, SCTP is multi-homed,
allowing connections between different IP addresses but using the same port number
pair to jointly be controlled as part of an “association”. Adding and removing connec-
tions is done using an “ASCONF” message. Each SCTP packet contains a so-called
“verification tag” (Vtag), which identifies connections within an SCTP association [10,
Subsection 8.5]. The Vtag is negotiated during connection establishment with “INIT”
and “INIT ACK” messages. By making connections fully identifiable, the Vtag elim-
inates the need for a pseudo header. The SCTP checksum is thus not affected by IP
layer changes.

DCCP has the same port number and checksum fields as TCP or UDP, but incor-
porates a partial integrity check as in UDP-Lite (which we discuss below). DCCP is
unreliable yet connection-oriented. “DCCP-Request” and “DCCP-Response” packets
are used to establish a connection, and connection termination is done with “DCCP-
CloseReq”, “DCCP-Close” and “DCCP-Reset” packets. The corresponding NAPT
procedures involve port number changes as well as checksum updates [11]. Like for
TCP and UDP, the checksum is calculated over a pseudo-header including the IP ad-
dresses. Since NAPT devices with DCCP support are very uncommon, UDP encapsu-
lation for DCCP has been defined [12]. In this case, a common UDP NAPT can handle
encapsulated DCCP traffic.

While the UDP checksum covers the whole UDP packet (plus pseudo header), or
nothing in case of a zero checksum, UDP-Lite provides a configurable checksum cov-
erage. The UDP-Lite header and the pseudo header are always covered by the check-
sum. Like UDP, UDP-Lite uses port numbers; a NAPT therefore needs to recompute
the checksum.

2.1. Test setup
To understand how NATs handle SCTP, DCCP and UDP-Lite, we set up a local

testbed in which we studied a number of off-the-shelf gateways as well as a host con-
figured to forward packets, running either Linux or FreeBSD. Our testbed consists
of a multi-homed Linux client and a multi-homed Linux server, interconnected via
a NAT as shown in Fig. 1. Being multi-homed on both sides lets us emulate situ-
ations where multiple physical clients behind the same NAT communicate with one
or multiple servers. In addition, this set up allows us to test SCTP multi-homing.
Except for the SCTP multi-homing tests, for which we ran a specific SCTP test pro-
gram1, the client and the server ran the fling tool. fling [13], which is available from
http://fling-frontend.nntb.no, allows to test whether an arbitrary sequence of packets

1https://www.petanode.com/blog/posts/sctp-multi-homing-in-linux.html.

http://fling-frontend.nntb.no
https://www.petanode.com/blog/posts/sctp-multi-homing-in-linux.html


can be exchanged between a client and a server using pre-defined pcap and json files.
This makes it easy to exchange sequences of packets that are crafted for a particular
measurement purpose. We will describe fling in more detail in Section 3, where it is
used for Internet tests.

Tested Home Gateway (NAT) Multi−homed Server
Multi−homed Client

Figure 1: Our local testbed for NAT analysis.

To assess how a NAT handles several end-to-end transport flows for UDP-Lite,
SCTP and DCCP, we ran the following tests for each of these protocols:

a) a client with a single interface, communicating with a single-interface server listen-
ing on port 443;

b) two clients communicating at the same time with a single-interface server listening
on port 443;

c) two clients communicating at the same time with two servers (each listening on a
different interface, on port 443).

For reference, Table 1 summarizes all NAT observations that we made, both in local
tests and Internet tests. In the following, we will refer to these observations by their
number.

Obs. Description
1 NA(P)Ting, a UDP zero checksum remains unchanged
2 IP layer NAT’ing, i.e. no transport header update
3 Forwarding of packets without NA(P)T’ing
4 Dropping

5
NAPTing, which updates the transport header

checksum, but a wrong checksum remains wrong

6
Correct NAPTing, which updates the transport

header checksum for protocols using a pseudo-header

Table 1: NAT observations

2.2. Off-the-shelf equipment tests
Table 2 lists the NAT boxes used in our first set of tests. We reset each device

and used their existing and the latest versions of firmwares in our measurements. We



Vendor Model Firmware OS Tag Obs. timeout (s)

Dlink

DIR 655 (A3)
v1.10EU Linux dl1 Obs-2 >1200
v1.37NA Linux dl2 Obs-2 >1200

DIR 655 (A2) v1.35EU Linux dl3 Obs-2 >1200
DIR 655 (A4) v1.31EU Linux dl4 Obs-2 >1200
DIR 655 (B1) v2.09 Linux dl5 Obs-2 50
DIR 619 (Ax) v1.00 Linux dl6 Obs-2 90
DI-614+ (B2) v3.44 ThreadX dl7 Obs-3 *

Jensen
AL WBR 7954 v3 2.11.3 Unknown js1 Obs-3 *
AL 1000Gv2 (A) v1.16 Linux js2 Obs-2 90
AL WBR 7954 v2 v3.1.0 Unknown js3 Obs-3 *

Linksys
E2500

v1.0.07 Linux ls1 Obs-2 600
v2.0.00 Linux ls2 Obs-2 600

WRT54G/
GL/GS v1.1

v24-sp2(ddwrt) Linux ls3 Obs-2 600
v4.30.18 Linux ls4 Obs-2 600

v1.28(tomato) Linux ls5 Obs-2 600
WRT54G v7 VxWorks ls6 Obs-4 *

E4200 v2 Linux ls7 Obs-2 600

Netgear
WGR 614v7

v1.0.13
VxWorks

ng1 Obs-4 *
v2.0.30 ng2 Obs-4 *

WGR 614v9 v1.2.30 VxWorks ng3 Obs-4 *
WNDR3400 v1.0.0.38 Linux ng4 Obs-2 600

Topcom
WBR 254G v1.3.1e

Unknown
tp1 Obs-3 *

BR 604 v1.10 tp2 Obs-3 *

TP-LINK TL-MR3020 v1
3.17.2 Build Linux tl1 Obs-2 600

OpenWrt Linux tl2 Obs-2 600
TL-WR703N OpenWrt Linux tl3 Obs-2 600

3G modem WR3G050-02 v4.34 Linux 3g Obs-2 600

ZyXEL
P8702N 1.00(AAJX.14) Linux zy1 Obs-2 600

P-2812HNU-F3 V3.11 (BLN.21) Linux zy2 Obs-2 600
Edimax BR-6574N (A) v1.24 Linux em1 Obs-2 120

Xiaomi Router 3C v2.14.37
OpenWRT

MiWiFi xi1 Obs-2 600

Table 2: 26 home gateway devices and the observed behavior with SCTP, DCCP, UDP-Lite and
UDP with a zero checksum (the table contains 31 lines to account for tested firmware updates).
For UDP with a zero checksum, in all these tests, we saw observation 1: NA(P)Ting with a zero
checksum. * means no idle-timeout due to Obs-3 and Obs-4.

also installed OpenWRT, DD-WRT and Tomato Linux based firmware distributions on
some of these devices.

Every device consistently showed the same behavior irrespective of the trans-
port protocol. We wanted to better understand if this uniform per-device behavior was
specific to the protocol, or if it is generic when a protocol is unknown. To this end,
we also crafted a test where we transmitted packets with random IP payload, using the
unassigned IP protocol number 143.

In test-case a), we observed that except dl7, js1, js3, tp1, tp2, ng1, ng2, ng3 and ls6,
all boxes perform NAT (but not NAPTing!) for all the tested transport protocols. All
transport protocols, except SCTP use a pseudo-header in their checksum calculation



and hence need their header checksum to be updated by the NAT. However, our NATs
did not update this checksum, which means that they will cause DCCP or UDP-Lite
packets to be dropped at the receiver. Because the SCTP checksum does not include
a pseudo-header, at this point, we do not know whether the NATs explicitly support
SCTP. The NATs dl7, js1, js3, tp1, and tp2 do not provide address translation for these
protocols, i.e. they forward packets with their private addresses. The NATs ng1, ng2,
ng3 and ls6 drop packets from any of these transport protocols. These were manufac-
tured by different vendors, but all were based on the VXWorks OS.

In test-case b), we observed a similar result to test-case a), but for all tested proto-
cols, only the first client was able to successfully use the NAT. The failure of the second
client indicates IP-level NAT’ing, in which case the second client’s arrival causes a col-
lision with an already existing entry in the NAT table. Finally, test-case c) failed for
DCCP and UDP-Lite, but both tests succeeded for SCTP for all cases of IP-level NAT-
ing (observation 2 in Table 2). This means that multiple clients behind a NAT could
use SCTP when the clients communicate with different remote addresses.

In principle, the functionality of UDP-Lite could be emulated by using UDP with a
zero checksum, effectively disabling the checksum calculation in accordance with the
standard. Checksums over a subset of the data could be implemented in the payload; in
the case of IPv6, this would have to include additional mechanisms and/or restrictions,
e.g. to prevent leakage of traffic from one UDP application to another [14]. NATs
should not modify a zero checksum of the UDP header [15]. To check whether our
NATs operate in line with this rule, we ran UDP tests with a correct checksum and a
zero checksum, and found that the NAT boxes indeed kept the zero checksum intact,
and communication worked flawlessly in all three test-cases.

Table 2 summarizes our findings in the controlled measurements, using the obser-
vation numbers from Table 1. There is only one observation number per line because
the behavior was uniform for all protocols. None of the NAT devices fully support
SCTP, DCCP or UDP-Lite (i.e. perform transport-layer functions such as port trans-
lation or, in the case of SCTP, correct mapping of connections to a table based on the
Vtag). With all devices, the behavior appears generic, because it also matched the
behavior observed when using an unassigned protocol number (143).

For IP layer NATing (observation 2), the chance a host suceeds to use a protocol
also depends on the idle-timeout—the time during which the NAT retains a mapping
after seeing a packet with an IP address. To determine the value of this timeout, we
conducted an experiment where a multi-homed client (with two IP addresses) tries to
establish an SCTP connection to a server. First, it sends an SCTP INIT packet using
its first source IP address. In response, it receives an ABORT message from the server
(because there was no application listening to SCTP there). Then, once per second, the
client sends an SCTP INIT packet using its second source IP address, until it receives
an ABORT message. The difference between the two ABORT messages is the upper
bound of idle-timeout, shown in Figure 2.

Only four devices (from vendors Dlink, Jensen and Edimax) showed an idle-timeout
of less than two minutes. All the IP-level-NAT’ing devices from Linksys have an idle-
timeout of ten minutes, which is the default value in their Linux kernel. We also notice
that most Dlink NAT devices set a higher timeout value (greater than 1200 s). In the
case of device ng4, during this timeout interval, response packets for any attempt by



later clients are wrongly delivered to the first client, causing an update of the timer for
the first client.
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Figure 2: Idle-timeout of NAT devices that carry out IP layer NAT’ing, prohibiting later connec-
tions from other local hosts during this interval.

Table 2 shows that many of the tested NAT boxes use a Linux kernel. To better
understand how manually enabling support for these protocols could play out in a NAT
box, we now take a closer look at the two open source OSes at our disposal: Linux and
FreeBSD.

2.3. Linux
We installed our own customized Linux kernel (version 3.18.109 for MIPS archi-

tecture) in the TP-Link TL-MR3020 NAT box, using OpenWRT. The NAT needs two
modules: CONNTRACK (connection tracking) for creating a NAT entry, and NAT, which
is responsible for setting a new port and performing the checksum update. When a NAT
box receives a packet from its local network, then, if the CONNTRACK module supports
the protocol, it knows the packet formats and tracks the state of the connection. In this
case, CONNTRACK first verifies the packet based on a policy (e.g., correctness of check-
sum or some field value) and creates a NAT entry. Then, if the NAT also supports NAT
for that protocol, it can provide the port-mapping and checksum update. In the follow-
ing, we examine the effects of various combinations of support for a protocol X (SCTP,
DCCP or UDP-Lite) by the CONNTRACK PROTO X and NAT PROTO X modules; we
will simply refer to them as CONNTRACK and NAT. The results are summarized in Ta-
ble 3; this table includes various cases with artificially constructed errors because they
will be useful later, in Section 3.



CONNTRACK
nf

conntrack
checksum

NAT Test description Obs.

7 - 7
All tests; also: a packet with unknown

proto. number in IP header Obs-2

3 7 7 All tests

3 7
All tests except (UDP, UDP-Lite, DCCP)

with invalid checksum

7 3

(UDP, DCCP) with invalid checksum
UDP-Lite with valid checksum
coverage and invalid checksum

Obs-5

3 7/3
(UDP, UDP-Lite, DCCP) with

invalid checksum Obs-3

7/3 7/3
SCTP with non-zero Vtag

UDP-Lite with invalid
checksum coverage or zero-checksum

7/3 3

(UDP, UDP-Lite, DCCP) with
correct checksum;

SCTP with zero Vtag
Obs-6

UDP with zero checksum Obs-1

Table 3: Linux behavior of UDP, DCCP, SCTP and UDP-Lite, with various artificially created
errors; cases of correct protocol usage are shown in boldface text. nf conntrack checksum is a
sysctl variable that enables/disables validating the checksum.

2.3.1. No CONNTRACK and no NAT
In all tests (SCTP, DCCP, UDP-Lite and an unknown protocol number), the NAT

treated protocol X as unknown and created a NAT entry, based only on the IP
layer (observation 2). Thus, for packets of protocol X , Linux performs NAT’ing for
the first IP address. Packets arriving later from a different local address to the same
server are dropped while the first client is active and during a following idle-timeout
interval of 10 minutes; this is consistent with RFC 4787[16], which recommends a
default value of five minutes or more. We obtained this idle-timeout value from the
source code.

2.3.2. CONNTRACK but no NAT
Enabling CONNTRACK means that the NAT knows the transport protocol format

and can create a NAPT entry based on the transport protocol. When the protocol is
not supported X in NAT no port-mapping will be created and the checksum will not
be updated. A collision of ports can then result in packet drop. Because only IP-level
NATing works, this behavior is also categorized as observation 2. CONNTRACK verifies
the packet’s transport header before creating a NAT entry. If the verification fails, no
NAT entry is created and no NAT mapping is set up (the packet will be forwarded with a
private address). NAPT entries are created for correct initial UDP-Lite, SCTP and
DCCP packets. Indicating support for these protocols by the CONNTRACK module,
no NAPT (or even NAT!) entries were created in the following erroneous cases:

• UDP-Lite: invalid checksum coverage, zero checksum (not permitted [17]), or an
invalid checksum (but having the nf conntrack checksum sysctl variable set).



• SCTP: non-zero Vtag ( [10] requires INIT packets to contain a zero Vtag).

• DCCP: invalid checksum (but having the nf conntrack checksum sysctl variable
set).

As expected, when the protocol was unknown, NAT’ing was the same as without CON-
NTRACK, i.e., based on only the IP layer.

2.3.3. CONNTRACK and NAT
For correct initial packets from all the tested transport protocols, the NAT cor-

rectly updates the port and checksum values. As before, for unknown protocols, it
performs NAT’ing at the IP layer. The NAT appears to track the state of DCCP: unex-
pected incoming packets are dropped and unexpected outgoing packets are forwarded
without NAT’ing. For example, after the NAT forwards a DCCP-Reset packet from the
server to the client, it does not allow any further packets from the server to the client
except for another DCCP-Reset packet. Similarly, in another case, the client sends a
request packet and the NAT maintains the state. Until it sees the response packet in
the reverse direction, no further packets are NAT’ed, except for another request packet
from the client, e.g., an ACK packet sent at this point, was forwarded without NAT’ing.

With SCTP, the NAT translates the ports and recomputes the checksum. This port
translation is, however, not uniformly applied across an entire association. This is a
problem for SCTP multi-homing [18, 19, 20, 21].

2.4. FreeBSD
We installed FreeBSD 11.2 in a x86 64 PC to make a NAT and tested IPF, PF and

IPFW (the three different firewall variants of FreeBSD [22, Chapter 30]). For PF, we
used the FreeBSD distribution PFSENSE2 separately to study the NAT behavior. Table 4
presents the behavior of transport protocols with IPFW, IPF and PF.

Protocols IPFW PF IPF
UDP, zero
checksum Obs-1 / Obs-1 Obs-1 / Obs-1 Obs-1 / Obs-1

DCCP,
UDP-Lite Obs-2 / Obs-2* Obs-2 / Obs-4 Obs-2 / Obs-3

SCTP Obs-6 / Obs-6 Obs-2 / Obs-4 Obs-2 / Obs-3

Table 4: Behavior of transport protocols across FreeBSD NAT firewalls for first / later clients (*:
all response packets are forwarded to the last client).

IPF: SCTP, DCCP and UDP-Lite are considered as unknown protocols by IPF [22,
Section 30.5]. As with Linux, the NAT only performs IP layer NAT’ing, serving the
first client and dropping packets from other clients when there is a collision (observa-
tion 4), detected within an idle-timeout of 65 seconds. This short interval goes against
the “five minutes or more” recommendation in RFC 4787 [16], but is explicitly allowed

2PFSENSE: https://www.pfsense.org/.

https://www.pfsense.org/


for destination ports in the range 0-1023; thus, this behavior is also in line with this
RFC. After the 65 second interval, the next communication attempt succeeds, creating
a new NAT entry and starting a new 65 second interval.

PF: Similar to IPF, PF [22, Section 30.3] considers SCTP, DCCP and UDP-Lite
as unknown protocols. Again, the NAT only serves the first client. However, after a
collision it forwards the packets with their private addresses for later clients, with an
idle-timeout of 30 seconds (observation 3).

IPFW: For IPFW [22, Section 30.4], we loaded the ipfw nat module, which loads
the libalias (the in-kernel NAT support) module. The libalias module implements the
code that supports specific transport protocols. We observed that only SCTP support3 is
available, and enabled by default. Because IPFW is the only FreeBSD NAT module that
explicitly supports SCTP, we further tested SCTP’s multi-homing capabilities with it
(as we mentioned before, SCTP support in Linux re-writes port numbers per connection
rather than association, which breaks SCTP’s multi-homing).

Our proposed method with

NAT BNAT AClient Server

ASCONF (B1)

HEARTBEAT

MISSING STATE ERROR

Client NAT A ServerNAT B Client NAT A Server

INIT

INIT−ACK

COOKIE−ECHO

COOKIE−ACK
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COOKIE−ECHO

INIT−ACK

ASCONF (0)
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NAT B

IPFW/libalias NAT
Linux end systems with Proposed method in Internet−draft

Figure 3: Sequence diagrams showing SCTP multi-homing support, using Linux end systems
and a FreeBSD IPFW/libalias NAT.

2.4.1. Multi-homing with ipfw
We first set up one multi-homed client and one multi-homed server with no NAT

in between to confirm that the end-hosts successfully use SCTP multi-homing. We re-
frained from testing multi-homed clients through a single NAT because such a scenario
requires the NAT to use two public IP addresses [20]. Instead, we added a second NAT
box with the same FreeBSD setup running IPFW, such that each of the two connections
of the SCTP association goes through a different NAT. The client is connected to one
NAT called NAT A via address A1, and to another NAT called NAT B via address B1.
The server is similarly connected to each NAT.

3SCTP Over NAT Adaptation (SONATA) [23]:
http://caia.swin.edu.au/urp/sonata/downloads/INSTALL.txt.

http://caia.swin.edu.au/urp/sonata/downloads/INSTALL.txt


The sequence diagrams in Figure 3 show the client uses IP address A1 to create the
first connection of the SCTP association to the server through NAT A, with a 4-way
handshake. It then attempts to set up the second connection of the same association
with its second IP address, B1, via NAT B, to investigate the SCTP multi-homing
support in the presence of NATs. The leftmost sequence diagram shows that the current
implementation of SCTP in the Linux client sends the ASCONF message to NAT A
instead of NAT B. IPFW/libalias in NAT A forwards the packet without verifying the
IP address, B1, placed inside the ASCONF message. However, the response packet,
ASCONF ACK, will never reach the client because address B1 is a private address.
We observed that the first packet reaching NAT B is a HEARTBEAT message. NAT B
directly responds to the client with a missing state error cause message, using the Vtag
and the destination address (as the source address) from the HEARTBEAT message,
failing multi-homing support.

To support SCTP multi-homing, the most recent IETF proposal [21] recommends
that the client should add each IP address using ASCONF chunks sent via their re-
spective NATs and wildcard addresses to be filled in the address fields in the ASCONF
message (see the middle sequence diagram in Figure 3). However, this requires an up-
date to the existing NAT code. Moreover the SCTP implementation in the client does
not allow it to send ASCONF(0) via NAT B. Using fling, we tried ASCONF(0) on the
second NAT, but then received a missing state error cause message.

We explored how to perform SCTP multi-homing with the existing IPFW NAT code.
Instead of the ASCONF message, another INIT message could be sent via the second
path after the first 4-way handshake (this idea deviates from the SCTP specification).
There are two ways to make the new path a part of the existing association and allow
the server to validate it. The first is the client sending the internal Vtag. The second is
to use a value from an arithmetic operation (e.g. XOR) of internal and external Vtags,
allowing the server to validate the connection as part of the existing association. This
method (see Figure 3) would require changes to both the SCTP client and server. Using
fling, we found our approach to work through the IPFW/libalias NAT.

As with the other FreeBSD firewalls, support for DCCP and UDP-Lite is not im-
plemented in IPFW. Thus, packets from these protocols are treated as unknown by
the NAT. Similar to Linux, for unknown protocols, IPFW acts like a NAT (not NAPT!)
for all outgoing packets from all clients behind it. The IP layer NAT state is kept for
an idle-timeout of 60 seconds. However, this interval does not play a role because
the NAT does not correctly treat incoming traffic (it always sends all DCCP or UDP-
Lite responses to the last active client). We confirmed this behavior by checking the
FreeBSD kernel code. This is different from IPF, PFSENSE/PF and Linux, where later
communication attempts during the idle-timeout interval deterministically failed.

2.5. Discussion
Before turning to Internet measurements, we briefly summarize our key findings

from local tests with home gateways:

• Neither DCCP nor UDP-Lite are supported by any of our studied NAT boxes—
packets from these protocols are NATed at the IP layer only (which then causes
a failure of the transport checksum), forwarded without NATing, or dropped.



• All the measured NAT boxes, as well as Linux and FreeBSD correctly work with
UDP, even when the checksum is zero. Single-homed SCTP often works only
because of a common default behaviour to apply IP-level NAT’ing in the face of
an unknown protocol.

• For IP-level NAT’ing, Linux (which appears to be the OS used by most commer-
cial middleboxes) and FreeBSD with IPF and PF correctly handle (i.e. reject) a
second connection request when the first connection is ongoing, and within an
ensuing idle-timeout. This idle-timeout ranges between 30 seconds (FreeBSD
PF) and 10 minutes (Linux); the latter value was a particularly common choice
in our tested NAT boxes in Table 2 as well.

Altogether, our local tests give us some hope about the occasional usefulness of
SCTP as well as UDP with a zero checksum—and little hope about other protocols
whenever a NAT with default configuration is in use. This rules out DCCP and UDP-
Lite from the list of recommendable choices for protocol racing when a NAT is in
use. This does not provide any information about whether these protocols pass through
a real Internet path, in particular using IPv6, where our NAT results may not matter.
Also, we have not yet considered UDP encapsulations, because UDP generally works
through the tested devices.

We also tested the multi-homing code in the FreeBSD IPFW/libalias implementa-
tion. We found that this works with a slightly altered end system behavior, where an
INIT (instead of ASCONF) message is sent on the second connection of the associ-
ation. A Linux NAT, however, can also change SCTP port numbers, which breaks a
fundamental SCTP assumption and will make multi-homing fail. In an additional test,
we confirmed that multi-homing (following [21], which avoids inserting an address
into the SCTP chunks) also works for one client with both Linux and FreeBSD (with
IPF or PF). This is where SCTP is treated as an unknown protocol and the NAT only
operates at the IP layer. Thus, while turning on SCTP support in the NAT can enable
multiple clients to talk to the same server at the same time, with the current Linux and
FreeBSD (IPFW/libalias) code base, it comes at the disadvantage of harming SCTP’s
multi-homing support.

At this point, we note that these conclusions are derived from one-sided connection
establishment attempts because our study does not consider NAT traversal techniques,
such as Interactive Connectivity Establishment (ICE) [24] that are common for peer-
to-peer communication, e.g. for WebRTC.

3. Bidirectional Internet Tests

We used our generic client-server reachability test tool fling to better understand
how the tested protocols and UDP encapsulations operate using Internet paths. A fling
test specification consists of a json file and a pcap file. These files are uploaded to
fling servers. fling clients are pre-configured to regularly pull new tests from fling
servers via HTTPS/TCP and run the tests. Each json file describes a communication
sequence (using packets in the pcap file), which is repeated three times in the case of a
failure. These repetitions enabled us to detect “random” misbehavior that could occur
sporadically; for instance, a drop that was caused by a temporary outage, or was due



to congestion. We consider a test to “fail” if any packet of the test was consistently
dropped in all three iterations. When a test is finished (or failed), paths are probed
from both sides, similar to Tracebox [9], and the final client test result is submitted
to the server via the HTTPS/TCP signaling channel. A detailed description of fling is
given in [13].

We hosted fling servers on 36 IPv4 and 19 IPv6 nodes. All of them except two IPv4
nodes, belong to a subset of the NORNET4 testbed called NORNET CORE, covering
4 countries (v4/v6: 25/15 Norway, 4/2 Germany, 3/1 China, 2/1 USA). The remaining
two IPv4 servers were in India and the USA. We ran the fling client tool from 186 IPv4
/ 69 IPv6 ARK5, PLANETLAB6 and NORNET CORE nodes. 138 of the IPv4 addresses
are public and 48 addresses (14 PLANETLAB and 34 ARK) are behind NAT boxes.
114 of the clients (114 IPv4 and 50 IPv6 addresses) belong to CAIDA’s ARK platform.
These nodes, located in people’s homes, universities and offices, are spread across
6 geographic regions (v4/v6: 46/20 North America, 33/15 Europe, 13/3 Africa, 9/6
Asia, 7/5 Oceania, 6/1 South America). 36 IPv4 nodes (located in universities) belong
to PLANETLAB. With all clients connecting to all servers, our measurements, which
were run in May 2017, covered a total of 6696 (IPv4) / 1311 (IPv6) bidirectional paths.
In all tests, fling’s HTTPS/TCP based signaling channel worked flawlessly, ensuring
connectivity on all paths.

We tested SCTP, DCCP, UDP-Lite and UDP, using communication sequences that
emulate client-server connection attempts. For SCTP, our tests perform association
establishment. In the DCCP test, the client sends a DCCP Request packet, and the
server answers with a Response packet; the client then answers with an Ack and a
DataAck packet containing 256 bytes of data, and the server responds with an Ack.
We designed two types of UDP-Lite tests: in test 1, we check whether the protocol
“works” through the path, by sending a UDP-Lite packet with checksum coverage =
0, containing 12 bytes of data. In test 2, we try to deduce if UDP-Lite works due to a
lucky accident or genuine support of the protocol: the client sends a UDP-Lite packet
with an illegal checksum coverage (7, which is less than the allowed minimum of 8).
In both tests, the server responds with a similar UDP-Lite packet (but flipped ports).

All UDP tests consist of single-packet requests (but, as with all tests, trying up to
three times in case of a timeout) that are answered with a single packet having flipped
ports. We included three types of UDP encapsulations: i) SCTP over UDP, which uses
UDP port 6511 [25]; ii) DCCP over UDP, which uses UDP port 9899 [12]; iii) Four
random bytes over UDP, with destination port 443, with a normal checksum and with
a zero checksum. This is meant to represent any protocol that is encapsulated in UDP
without requiring a specific port mapping—for example, QUIC [26], RTMFP [27], an
alternate proposal to encapsulate DCCP [28], and a proposal to use TCP over UDP [29].
Such common ports can sometimes represent many more applications [30].

Since we did not test different types of UDP content, our measurements implicitly
assume that middleboxes do not parse the UDP payload. This assumption may well

4NORNET: https://www.nntb.no.
5ARK: https://www.caida.org/projects/ark/.
6PLANETLAB: https://www.planet-lab.org.

https://www.nntb.no
https://www.caida.org/projects/ark/
https://www.planet-lab.org


Protocol number
with transport header chksum Obs-1 Obs-2 Obs-3 /

Obs-4 Obs-5 Obs-6

UDP (all UDP encapsulations) - - - - 48
UDP with zero chksum 44* - - - -

SCTP N/A 31 17 - -
DCCP with correct chksum N/A 26 17 - 5
DCCP with invalid chksum N/A 26 20 2 -

UDP-Lite with correct chksum coverage N/A 27 19 - 2
UDP-Lite with illegal chksum coverage N/A 27 21 - -

Table 5: Observed transport protocol pathologies across 48 NATs on Internet paths (*: The
remaining 4 NATs randomly switched between computing the full checksum and keeping it
unmodified).

be wrong, but testing this would require extensive measurements at the application
layer, which is beyond the scope of our measurement campaign. Since UDP packets
with absolutely no payload would be exceptionally strange, yet larger payloads would
unnecessarily increase the load on the network in our tests, for the tests with raw UDP
and no encapsulated packet header in its payload, we added artificial random payload
of the smallest possible size that fits in a packet without padding (4 bytes). All tests
used 48001 as the source port, and initial client requests used 443 as the destination
port in all the other tests above (SCTP, DCCP, UDP-Lite).

3.1. NAT interference
First, complementing our local NAT measurements, we test the interference of

NATs with the studied transport protocols (there were 48 NATs; all the 48 clients be-
hind NATs had different public addresses), using the observation numbers from Ta-
ble 1. We present an overview of the results in Table 5. If a packet is forwarded by a
NAT box without address translation (observation 3) or dropped (observation 4) before
reaching the destination, then this behavior can not be differentiated from the packet
being dropped by that NAT box. In this case, even the Tracebox-like-test in fling can
not detect the location of the drop because the ICMP responses will never arrive at the
fling host. Table 5 does therefore not distinguish between observations 3 and 4.

Table 5 contains an interesting surprise: there were some cases of DCCP and UDP-
Lite seemingly working through a NAT (as shown by the Obs-5 and Obs-6 columns). In
these cases, different from plain IP-level NAT’ing which ignores the transport header,
the transport header checksum was updated by the NAT. In our local measurements in
the previous section, we have seen that Linux can enable support for UDP-Lite and
DCCP. The transport header checksum update for these protocols therefore gives us
a hint that the NAT may run a Linux OS. We therefore decided to obtain a further
indication of the NAT OS running Linux, as this may indicate true support for DCCP
and UDP-Lite.

The result for UDP with an invalid checksum provides this hint, as Table 3 shows.
The sysctl variable nf conntrack checksum is disabled, causing Linux to perform
NAPT’ing on such packets, updating the checksum but resulting in a checksum error
(observation 5). We also saw this behavior with FreeBSD. If, however, nf conntrack checksum
is enabled, a Linux host will forward the packet without any form of NAT’ing (obser-



vation 3). Therefore, the lack of a response to an invalid UDP packet indicates that the
NAT probably runs Linux rather than FreeBSD (or any of its derivatives).
How do NATs interfere with UDP?
All the NAT boxes performed NAPTing when sent UDP packets with a correct UDP
checksum (observation 6). When we set packets with a UDP checksum of zero, 44
NATs kept this zero value intact. The remaining 4 NATs reacted strangely to the UDP
packets with a zero checksum. They sometimes passed packets with a zero checksum,
but also sometimes they recomputed it. This was done randomly for the same source
and destination— noting that every test was carried out 3 times, plus we ran Tracebox,
and saw multiple different results in the ICMP responses. This recomputation did not
use a checksum adjustment algorithm, because that algorithm would have produced
a wrong result. To obtain a stronger hint that this behavior indeed stems from single
devices, we confirmed that these NATs were all one TTL hop away from their fling
clients and consistently exhibited the same MAC address in the L2 header of their
responses to the clients (which all were ARK nodes).
Do NATs block protocols other than UDP?
DCCP, UDP-Lite and SCTP packets were either dropped (observation 4), or were for-
warded without address translation (observation 3) by 17 NATs, corresponding to 14
PLANETLAB and 3 ARK nodes. Another 2 NATs also followed this behavior with
UDP-Lite packets, but not with DCCP and SCTP packets. This leaves 29 NATs re-
quiring further study for UDP-Lite and 31 NATs requiring a further analysis for DCCP
and SCTP. In the case of SCTP, all the the remaining NATs exhibited observation 2
(IP-level NATing), which permits SCTP to work to some degree, as discussed in the
previous section.
Are the NATs aware of DCCP?
31 NATs passed DCCP packets. 26 of the NATs (the ARK nodes) followed observation
2, which means that the DCCP packets were correctly received by our fling peer, but
would normally be dropped at the receiver due to a checksum error. 5 of the 31 NATs
updated the checksum correctly along with address translation (observation 6). To ob-
tain an indication of whether these 5 NATs run Linux or some other OS, we tested both
DCCP and UDP with a invalid checksum. 3 of the 5 NATs obeyed observations 3 or 4
in this case, which matches Linux with an enabled nf conntrack checksum variable.
The remaining 2 NATs forwarded with NAPT’ing with an invalid checksum (observa-
tion 5), which could mean that they run Linux with a disabled nf conntrack checksum
variable (default); as shown in Table 4, FreeBSD would only forward these packets
with IP-level NAT’ing (observation 2).

Are NATs aware of UDP-Lite?
29 NATs passed UDP-Lite packets. 27 of them forwarded them with IP-level

NAT’ing, without updating the transport checksum (observation 2—as with DCCP, this
would normally provoke a drop at the receiver). The remaining 2 NATs updated the
checksum correctly along with address translation (observation 6). Another measure-
ment explored the result when clients sent packets with an illegal checksum coverage
value of 7. This found that these two NAT boxes then exhibit observation 3 or 4.
This behavior matches that of Linux in Table 3; however, an additional test using UDP
with an invalid checksum produced no conclusive results (i.e., if the NATs ran Linux,
the nf conntrack checksum variable was disabled). Either way, because the cor-



rect checksum coverage value of 0 would be incorrect if the packets were interpreted
as UDP, this result is a strong hint that these two NATs indeed support the UDP-Lite
protocol.

How do these findings compare with local tests?
The previous study [31] that documented interference of NATs with SCTP and

DCCP protocols examined 34 NAT devices from 15 vendors. 18 of the 34 devices
(∼ 53%) passed SCTP packets with only IP-level NATing (observation 2). In our local
tests in Section 2, counting devices with updated firmware as new devices, 22 out of
31 devices from 10 vendors passed SCTP packets with observation 2 (∼ 71%). In our
fling study, 31 of the 48 NATs (∼ 65%) passed them with observation 2. Altogether,
SCTP worked in this limited fashion in more than half of the cases in all tests. None of
the 18 devices in [31] passed DCCP packets, and we found that all of our 31 devices
followed observation 2 in Section 2, eliminating DCCP and UDP-Lite support because
they break the transport checksum (UDP-Lite was not tested in [31]). Somewhat sur-
prisingly, in our Internet study, we observed that DCCP worked correctly through 5
NATs, and obtained a strong hint that 2 of these 5 NATs support UDP-Lite.

3.2. Non-NAT middlebox interference
All but two of the fling clients with public IP addresses were able to reach the

fling servers with the tested transport protocols. One of the affected clients only has
an IPv4 address, and it belongs to AS12816 (the Leibniz-Rechenzentrum network; this
Autonomous System (AS) is known to have various restrictions [32]). We observed that
SCTP, DCCP and UDP-Lite packets were blocked at a distance of 2 hops (the router at
TTL = 2 responded with a “time exceeded” ICMP error message; for TTL ≥ 3, the
same router responded with a “destination unreachable” (“port unreachable”) ICMP
error message). The other affected client was blocked on its IPv6 interface only, and
we found this blocking to occur in its access network (AS680, an educational network
in Germany).

In the reverse direction, i.e. the server responding to the client, we saw some re-
strictions that were not visible in the client-server direction. With IPv4, we noticed
that 22 PLANETLAB nodes were able to receive SCTP and DCCP packets, but UDP-
Lite and all UDP encapsulations were dropped. At 6 ARK nodes, incoming SCTP and
UDP-Lite packets were blocked, and DCCP was blocked for 5 of these 6 nodes. Addi-
tionally, none of the tested protocols (including all UDP encapsulations) worked on the
reverse path for one ARK node, and this node exhibited the same behavior with IPv6.

With IPv6 (only available on ARK and NORNET), two more ARK nodes experi-
enced dropping of all packets in all protocol tests, including all UDP encapsulations.
A node for which SCTP, UDP-Lite and DCCP were blocked in IPv4 also saw blocking
of (only) SCTP with IPv6. Three more nodes experienced dropping with IPv6 only,
affecting SCTP, DCCP and UDP-Lite in two cases and SCTP, and UDP-Lite in one
case. For all tests, with IPv4 and IPv6, we confirmed that packets were able to pass up
to (and including) the neighboring ASes of the client AS for PLANETLAB nodes and
the client AS for all other (ARK and NORNET) nodes.

We observe that the number of clients experiencing protocol-specific failures that
were not due to a NAT is less than 20.3% with IPv4 and less than 10.1% with IPv6,
although the IPv6 tests exclude PLANETLAB nodes where IPv6 was not available,



which resulted in significant IPv4 dropping of the UDP variants. In conclusion, we now
have an indication that, in the absence of NATs, even native DCCP or UDP-Lite may
work in some special cases—and the number of paths with per-protocol limitations, in
particular along the backward path, is significant.

In the outset, we have mentioned that the IETF TAPS Working Group is defining an
API for an agile transport system [3]. Such a system offers the broader set of services
that applications may need, while hiding the complexity of testing, configuring and
using the various possible transport protocols from the application programmer. Pro-
tocol racing (testing which protocols work) is an important element of this machinery
which has to be backed up by an informed policy. The results in this section provides
important insight on how to configure the racing policy for use in the present Internet.

We now turn to measurements that will show how common protocol-specific be-
havior is in the wider Internet when we do not initiate connections at the client.

4. Large-scale Internet Path Traversal Tests

To carry out measurements at a larger scale for SCTP, DCCP, UDP-Lite and UDP,
we implemented the packet header formats and constructed the headers in LIBCRAFTER7.
We then modified Tracebox to build the packets and invoke the following tests (again
using destination port 443 except for the UDP encapsulations):

• TCP (as a baseline): A SYN packet.

• SCTP: A SCTP INIT packet.

• DCCP: A DCCP Request packet.

• UDP-Lite: A UDP-Lite packet.

• UDP0: A UDP packet with a zero checksum.

• UDP: A general UDP packet (e.g., QUIC).

• SCTP over UDP: A SCTP INIT packet in a UDP packet with UDP source and des-
tination ports set to 6511 [25].

• DCCP over UDP: A DCCP Request packet in a UDP packet with UDP source and
destination ports set to 9899 [12].

The goal of these measurements is to understand the path traversal behavior of
Internet ASes regarding these packets. Thus, to identify Tracebox destinations, we
obtained 52112 different ASes using the WHOIS database (IP-to-AS mapping) from
the dataset collected in [33] and retrieved one IP address per AS from this dataset.

In the period from January until April 2019, we ran our Tracebox tests from 15
IPv4 NORNET CORE nodes (out of the set of NORNET CORE nodes mentioned in Sec-
tion 3), which were located in China, Korea, Germany and Norway. We then collected

7LIBCRAFTER: https://github.com/runabk/libcrafter.

https://github.com/runabk/libcrafter


Line # of paths
considered Section (page) Comments

1 625766 Sect. 4.1 (18)

141 removed from total: protocol-specific policies
observed in some first-hop ASes when the destination

ASes belong to peer or customer networks of the
measurement source’s ASes or the second-hop ASes.

2 607390 Sect. 4.1 (18)
18376 removed from line 1: No ICMP responses
received after a few hops from the vantage points

for the baseline protocol, TCP.

3 597997 Sect. 4.1 (18)
9393 removed from line 2: No ICMP responses
received for any of the tested protocols outside

the measurement source’s ASes.

4 541421 Sect. 4.1 (18)

56576 removed from line 3: Encountered
communication failures that were not related to the

tested protocols (e.g. routing errors, as indicated with
an ICMP “network unreachable” message).

5 510708 Sect. 4.1 (18)

30713 removed from line 4: Appeared for some but
not all of the different protocol tests. This may be
due to missing ICMP messages, but it may also

indicate the effects of
router load balancing (e.g. ECMP).

6 510050 Sect. 4.1 (18) Paths with three or more AS-hops.
7 456142 Sect. 4.1 (18) Paths with four or more AS hops.
8 289464 Sect. 4.2 (22) Destinations reachable with at least one protocol.

Table 6: Overview of the number of paths used throughout the paper. For reference, the total
number of paths from all measurements was 625907.

the data and extracted all the IPv4 addresses, the ICMP types and codes including
the responses from the destinations IPs. For IP-to-AS mapping, we used the WHOIS
database provided by TEAM CYMRU.8 We also took care not to analyze bogons9 in
our dataset. We retrieved neighboring ASes and AS-relationships (peer, provider or
customer), from a CAIDA dataset.10

4.1. AS-level analysis
In the following, we will explain how we had to gradually reduce the number of

considered paths in our dataset. For better clarity, Table 6 gives an overview of all these
reductions, and presents the different total path numbers.

To avoid biasing the dataset due to filtering behavior in the ASes of the vantage
points, we began our study with an analysis of the first-hop AS; this includes the bor-
der link to the second-hop AS. As a result, we only found 141 paths (source- destination
IP address pairs) with protocol-specific policies in some first-hop ASes when the desti-
nation ASes belong to peer or customer networks of the client ASes or the second-hop
ASes. For example, one first-hop AS only forwarded TCP and SCTP packets when

8TEAM CYMRU: https://www.team-cymru.org/IP-ASN-mapping.html.
9We used this list to identify bogons: http://data.caida.org/datasets/bogon/

10AS relationships: http://data.caida.org/datasets/as-relationships/

https://www.team-cymru.org/IP-ASN-mapping.html
http://data.caida.org/datasets/bogon/
http://data.caida.org/datasets/as-relationships/


the destination IP address belongs to a specific customer’s AS. We removed these 141
paths from our dataset.

There was a larger number of paths that we had to remove due to overall commu-
nication failures. On 18376 paths, we did not receive ICMP responses after a few hops
from the source for our baseline protocol, TCP. We have also observed 9393 paths
where we received no ICMP responses for any of the protocols outside the source’s
ASes. On 56576 paths, we encountered communication failures that were not related
to the type of protocol chosen (e.g. routing errors, as indicated with an ICMP “network
unreachable” message). After removing all of these 84345 paths, we were left with a
total of 541421 paths to analyze further.

These paths include a total of 56494 ASes. Seven of these ASes contain the 15
nodes from which the tests were run; we call them “source ASes”. We call the 50473
ASes that contain the destinations “destination ASes”. Many ASes were destination
ASes in one test, but appeared on the way towards the destination AS in another test;
we call them “transit ASes”.
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Figure 4: The number of times an AS is contained in the 510708 paths.

In 30713 out of our 541421 paths, we found ASes to appear for some but not all
of the different protocol tests. This may be due to missing ICMP messages, but it
may also indicate the effects of router load balancing (e.g. ECMP), which might let us
draw wrong conclusions as we compare our results per tested protocol. We therefore
removed these paths from our dataset, leaving us with a total of 510708 paths covering
50969 ASes. ASes in all of these paths appear in the same sequence, irrespective of the
transport protocol. Figure 4 shows that most of these ASes were transit ASes—e.g.,
70% of the ASes were traversed by 10 or more paths.

Almost all of the remaining paths (99.9%) traversed three or more ASes. Figure 5
shows successful AS traversal, categorizing ASes as either “destination” or “transit”.
All protocols were able to traverse the first-hop AS in our filtered dataset. When a
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Figure 5: Success of traversing different types of ASes (percentage of 510050 paths with three or
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first-hop AS (“source ASes”). The results are a lower limit: lack of a response does not always
mean that a path could not be traversed.

packet is dropped, it is not necessarily accompanied by an ICMP error message, so
we cannot reliably know the AS of the router performing the drop. However, we can
observe successful traversal of an AS when the next AS is reached. Accordingly, in
Figure 5, a case of successful traversal of the destination AS means that the packet
reached the destination; successful traversal of the transit AS means that the packet
reached any later AS (e.g., the destination AS, and possibly the destination too, in the
case of a path with 3 AS-hops).

We found 100% traversal for the source AS, but reduced probability of traversal
further along the path. The number of successful traversed ASes is smaller for desti-
nation ASes—50% to 60% of packets that reached the destination AS also verifiably
reached the destination. Only TCP and SCTP are positive exceptions, respectively with
close to half and roughly a quarter of destinations responding.

The results in Figure 5 present a lower limit for successful AS traversal, indicated
by receiving a response from a node further along the path. Drops may be silent, so it
is incorrect to assume that the 37% success rate for SCTP transit AS traversal indicates
that 63% of packets had been dropped. The low fraction of successful traversal for UDP
to destination ASes could seem like a significant result for QUIC—however, these



are cases where the destination host did not respond to UDP. This may be a natural
behavior when no application is listening on UDP port 443 (and our destinations did
not necessarily operate a server). We also note that the pre-defined IP address dataset
that we used (one IP address per routable BGP prefix) may contain a large number of
unreachable destinations: the authors of [33] report only 75% ping reachability for this
dataset. This makes the TCP column in Figure 5 a baseline for our tests rather than
indicating true “Internet reachability”.

To better understand where drops occured, we took a closer look at the transit ASes
of paths that contain four or more AS hops (456142 paths). The tests showed that
97.8% of all transit ASes could be traversed, with the exception for all protocols being
the last AS. This is a clear indication that the majority of drops were either in the
destination AS or the AS immediately prior to the destination. This could be an
indication that our tested destinations do not have an active server configured for the
protocol being tested. If that is the case, then it would seem reasonable that when
such a service is provided, the host may respond, and that any intervening middlebox
(firewall, virus-scanner, load-balancer, etc) would have the policy updated to reflect the
new service being offered.

To further analyze the location where a drop occurred using a particular proto-
col, we sought to predict the router that followed the router that sent a TTL-Exceeded
message in the transit AS. This utilised the router address obtained with a success-
ful protocol using the same path (source-destination IP address pair). For example, if
SCTP was dropped in the penultimate AS, we could observe the following router from
measurements using TCP. From this analysis, we found that on 72% of the paths the
following router belonged to the destination AS.

It is tricky to identify the router that drops a packet when the drop is silent—in
contrast, some routers explicitly notify the drop by sending ICMP “Communication
prohibited”, “Protocol unreachable” and “Port unreachable” messages. For most pro-
tocols, we received ICMP responses in 25-29% of cases (but only 4.2% with TCP, and
17.6% with SCTP). With the exception of TCP, where, according to the received ICMP
messages, roughly half the drops were in the last and penultimate AS, 70% or more
of the ICMP error messages come from the destination AS, with most of them (79.5-
89.3%) coming from the destination host. This appears to confirm our earlier result,
that many drops occur in the destination AS, and specifically the destination host—but,
given the small number of returned ICMP messages, this may also only mean that these
were the locations that were more likely to produce ICMP messages instead of silently
dropping packets.

The small fraction of returning ICMP messages has ramifications for an agile trans-
port system that would “race” protocols: such a system should not be designed to
heavily rely upon receiving ICMP error messages. This has analogies to the way Path
MTU Discovery (PMTUD) had to be changed to no longer rely on ICMP messages
(the newer version is called “Packetization Layer PMTUD” (PLPMTUD)). Generally,
it seems that endpoints can no longer trust routers on paths to provide signaling via
ICMP. Instead they need to actively send probes to understand what the path supports.



Figure 6: Paths (source-destination IP address pairs) where the destination was reachable with
at least one protocol. Responses: +: TCP: SYN/ACK or RST, SCTP: ABORT; #: ICMP port
unreachable; *: ICMP protocol unreachable; &: Other ICMP error message; @: the destination
was not reachable with the specific protocol, but it was reachable with another protocol. The
results are a lower limit: lack of a response does not always mean that a path could not be
traversed.

4.2. End system study
We received a response from the destination with at least one protocol on 289464

(53.5% of all) paths. In terms of destination ASes, 25972 (51.5%) were reachable with
at least one protocol. Fig. 6 shows a destination analysis for all of these paths. As
with Fig. 5 before, the shown responses constitute a lower limit for path traversal—not
receiving a response does not always mean that packets of a particular protocol did not
reach the host. Also note that, since our investigation focused on path traversal rather
than analyzing the host software, we picked a destination host per AS, giving us a mix
of servers and regular client hosts (rather than servers only, which would be a more
natural choice for a destination analysis); this may further bias these results.

As one would expect, TCP won this race, with a missing response from the desti-
nation on only 5.3% of the paths. After TCP, surprisingly, not UDP but SCTP was the
next best protocol when it comes to seeing a response at all (50.6% of the paths). This
implies that native SCTP could sometimes be a better choice than SCTP over UDP
(which provoked a response across 36.2% of the paths), provided that both end hosts
are known to support it.

DCCP and UDP-Lite packets stood the smallest chance of eliciting a response from
the destination (28.7% and 27.6% of the paths, respectively), but UDP-Lite looks bet-
ter in this set: first, it saw a significant number of ICMP “port unreachable” messages,
which may indicate support of the protocol by the destination host. Second, different
from DCCP’s connection establishment handshake, the lack of a response is not a def-
inite indication of the host not supporting UDP-Lite. DCCP over UDP appears to be a
good substitute for native DCCP. UDP0 performed equal to UDP in our test, and hence



Figure 7: Working protocol combinations per path. Results indicate path traversal and host
support; for example, on 1.2% of the paths, TCP packets were dropped or (more likely) no active
service was listening on TCP port 443.

was better than UDP-Lite.
Next, to derive advice for a TAPS transport system (protocol racing), we investigate

correlations between protocols per path, shown in Fig. 7. The three most important
results (largest cake pieces) in this figure contain one somewhat surprising result: On
21% of the paths, TCP and SCTP worked, but nothing else. To better understand
whether “drop everything but TCP and SCTP” was truly a policy or whether it was
simply the result of consecutive packet drops affecting different transport protocols
along the path (e.g., DCCP and UDP-Lite early in the path and the UDP encapsulations
later), we examined the ASes on these paths. There were 2955 ASes that appeared to
directly drop everything but TCP and SCTP (we received responses for all of these
protocols up to these ASes, but not beyond them). These 2955 ASes, which appeared
on 53578 (86.45%) of the 61973 paths where only TCP and SCTP worked, make up
5.23% of the total ASes in our study—a surprisingly large number of ASes where a
generally restrictive policy seems to be in place that nevertheless allows SCTP, perhaps
in support of telephony signaling (this it what SCTP was originally designed for, and it
still is an important use case).

There were also some seemingly strange cases where several protocols worked but
TCP did not elicit a response—e.g., the “all except TCP” category. All of these cases
make up a small fraction of the total (TCP did not elicit a response on only 15342
(5.3%) out of the 289464 paths), and in 97.2% of these cases, TCP worked through the
transit AS. Thus, these failures may just be due to a limiting policy at the destination
AS (or a firewall at the destination itself) which does not allow incoming TCP packets
on port 443.

We remind the reader that per-protocol responses only indicate lower limits for path
traversal; even considering per-path protocol correlations as in Fig. 7, we do not have
a comprehensive picture of “network support” for a certain protocol. For example,
from the results that we have seen so far, it appears that native SCTP has a better
chance to reach a host than UDP, which would by itself be a devastating result for
QUIC. However, this would be a wrong interpretation. First, the apparent lack of



UDP support can point at the usage of connection-tracking firewalls which would allow
incoming UDP packets only after seeing an outgoing one from a matching source port
first—indeed, we saw much wider support for UDP in the bidirectional measurement
campaign in the previous section. Second, the lack of a response to a UDP packet may
not always indicate that the UDP packet did not reach the host at all; it is possible that
many of the tested hosts simply ignored incoming UDP packets instead of answering
with an ICMP error message.

All in all, we can not conclude from this destination analysis that UDP works
poorly, but we can conclude that native SCTP works surprisingly well, and we
have indications that it may even work in some cases where UDP does not work.
Also, (keeping in mind that they are a mix of clients and servers) we have indica-
tions that hosts are better prepared to deal with UDP encapsulations than with
native packets of type SCTP, UDP-Lite or DCCP (from best to worst, in order of
appearance).

5. Related Work

To the best of our knowledge, Internet traversal of native UDP-Lite, DCCP or SCTP
has not been measured in any prior research. Besides TCP, which was not our focus, re-
lated work has covered UDP, application-layer interference of middleboxes and NATs.
NAT studies have primarily examined TCP and UDP; there is only one study which
has also considered SCTP and DCCP in a local testbed, but not SCTP multi-homing,
UDP-Lite or UDP with a zero checksum. In this study, Hätönen et al. [31] found that
53% (18 out of 34) of the measured NAT boxes passed SCTP packets and all the 34
NATs dropped DCCP packets. 4 NAT boxes simply forwarded the SCTP and DCCP
packets without NAT’ing.

UDP: our large-scale investigation could not answer question around the cause of
UDP traversal failures: were incoming packets dropped by connection-tracking fire-
walls? Did packets reach the host, but the host simply did not answer when no ap-
plication was listening on the UDP port? From our local tests in Section 2, we know
that—as one would expect—UDP works seamlessly through NATs; our smaller-scale
bidirectional study in Section 3 gives us reason to believe that UDP encapsulations, in-
cluding direct communication with port 443, work well when usage is initiated by the
client. This is confirmed by a recent study of QUIC [34], which documents that QUIC
already accounts for 7.8% of the traffic seen by a European Tier-1 ISP, and even 9.1%
in the mobile network of a large European ISP (but somewhat less in two other traces).
Despite being only an indirect indication of success in using the protocol, such traf-
fic shares can probably only be produced by payload, which indicates a large success
rate of negotiating QUIC. The traffic share of QUIC is also discussed in [35]: a steady
growth is seen from 2015 in a traffic trace from a nation-wide ISP in Italy, culminating
in a traffic share exceeding 12% in October 2017.

A more direct answer to the origins of UDP failures is given in [36]: using mea-
surements between PLANETLAB and Digital Ocean nodes, a quite low UDP blocking
rate of roughly 1-5% is identified. Complementing this positive finding, a keynote at
the CoNext 2018 EPIQ workshop [37] mentioned that Facebook saw a 93% use rate
of QUIC with an improved racing algorithm. Most other studies on QUIC, e.g. [38]



have focused on the operation of the protocol itself or server-side behavior [39] as well
as observed performance [40]. Our measurements did not focus on performance, but
this is an important direction for future work. For example, a decision for native or
UDP-encapsulated use of a transport protocol should probably not only be based on
reachability but also on the expected impact of traffic shaping (which has also been
investigated for UDP in [36]).

Application layer: performance can also depend on the application layer [41],
which we have considered beyond the scope of our study. However, application-layer
interference by middleboxes is common, and it can take various forms, e.g. HTTP
header injection [42, 43]. Racing itself also has a performance impact, e.g. by poten-
tially overloading a busy server; this is considered for TCP and SCTP, with and without
TLS encryption, in [44]. Racing (“happy eyeballing”) was further investigated for TCP
over IPv4 and IPv6 in [45, 46].

NAT: as already mentioned, many other middlebox studies exist, mostly focusing
on TCP (e.g. [47, 48]) or other forms of interference, e.g. with values of the DiffServ
Code Point (DSCP) in the IP header [49, 6, 7, 50]. The body of such related work is
large, yet only loosely related to the present paper, which is specifically focused on non-
TCP-protocols. An experimental evaluation of NAT traversal for TCP and UDP, with
NAT devices from different vendors, is described in [51]. NAT traversal of TCP and
UDP has been extensively studied in the context of peer-to-peer communication [52,
53, 31, 54, 55]. Some work has focused on NAT detection via ICMP messages, such
as Tracebox [9] and “smart traceroute” [56].

One limitation of our work concerns the choice of destinations in our large-scale
Internet study: we focused on covering a large number of ASes, and hence we did not
pick the most common Internet servers, which may have drawn quite a different picture
for the end host analysis (in related work, the Alexa top 1M list is often used, see for
example [38]). Today, much of the Internet’s traffic does not traverse a long distance,
instead, Content Distribution Networks (CDN) are common, and the probability of suc-
cess to reach a CDN server can be very different from the data that we have presented.
Analysing CDNs is therefore definitely recommendable as future research.

6. Conclusion

The intention of this study was to arrive at some hints for a flexible transport system
that tests (“races”) protocols. Specifically, we focused on SCTP, DCCP and UDP-Lite,
and asked: “Should they be a part of the set of transports that are tested, and used if
they are available?” To obtain an answer, this paper has described a NAT analysis with
home gateways, examined Linux and FreeBSD, performed bidirectional Internet tests
(some of which involved more NATs), and did a one-sided large-scale study to better
understand path traversal chances across the Internet.

Table 7 provides an overview of our key findings (together with findings from [31],
the most closely related previously published work) regarding NATs. The take-away
is: all UDP encapsulations work, DCCP and UDP-Lite hardly ever work, UDP with a
zero checksum works quite often. Regarding SCTP, it seems common (around 2/3 of
the tested devices—71 out of 113 total) that this protocol is treated as unknown, leading
to IP layer NATing. This can enable communication for one SCTP source-destination



Protocol test

Off-the-
shelf NAT

tests
(31 devices)

[31]
(34 devices) Linux FreeBSD

Internet
NAT
tests

(48 devices)

SCTP
22/31

IP layer
18/34

IP layer

Full support
or

IP layer only,
depending on
configuration

Full support
or

IP layer only,
depending on
firewall used

31/48
IP layer

SCTP
multi-homing - -

Only when
configured for

IP layer
NATing

Only when
configured for

IP layer
NATing

-

DCCP 7 7 3 7 5/48
UDP-Lite 7 - 3 7 2/48

UDP0 3 - 3 3 44/48
UDP

(encapsulations) 3 3 3 3 3

Table 7: Overview of NAT findings. “-” cases were not tested; X/Y means a positive result for
X out of Y devices.

pair at a time, but it is disastrous for DCCP and UDP-Lite due to their checksum’s
pseudo-header. In our own tests, we found second SCTP connection attempts to fail
without harming the first ongoing SCTP communication. With (and only with) IP layer
NATing, as we confirmed with the Linux and FreeBSD analysis, SCTP multi-homing
also works.

Our analysis of protocol blocking considered a smaller-scale bidirectional study
and found only minimal limitations from the client to the server, but more significant
limitations from the server to the client (despite the fact that our emulated connec-
tions were client-initiated, i.e. this is not the result of a connection-tracking firewall).
Blockage differed between IPv4 and IPv6, and was larger with IPv4.

The large-scale study found that the majority of protocol-specific drops occur i) at
the destination, ii) in the destination AS, or iii) in the penultimate AS. Our analysis of
ICMP messages showed that for non-TCP protocols, the destination host itself is most
likely to drop the test message and produce an ICMP error message. We also learned
that roughly two-thirds of consistent protocol-specific drops are silent—this means that
a protocol “racing” system should be designed to not heavily rely upon receiving ICMP
error messages.

Finally, our destination host analysis—while limited in scope because the destina-
tion hosts were chosen to cover a large number of ASes rather than selecting the most
commonly used servers—also indicated that SCTP works surprisingly well, and that it
could even work in cases where UDP does not work (yet UDP generally seems to work
better than SCTP, DCCP or UDP-Lite).

Putting all our findings together, we can now formulate some recommendations for
a transport system seeking to race multiple transport protocols. Generally, we recom-
mend trying UDP encapsulations first (all seem to work equally well). For native use
of the protocols, we can conclude that for the current Internet:



SCTP: With an above-average probability of working through a NAT with IP layer
NAT’ing, and given that there are (arguably rare) cases where SCTP appears to
work, but UDP does not, we recommend falling-back to SCTP after trying SCTP
over UDP. Since most NATs would apply IP layer NAT’ing, even multi-homing
may work (“true” SCTP NAT support in Linux and FreeBSD can in fact create
problems for multi-homing).

DCCP: There are cases where DCCP works through a NAT, and we even have a result
where 22 of our PLANETLAB clients saw all incoming UDP and UDP-Lite pack-
ets dropped but SCTP and DCCP succeeded. However, these situations where
DCCP succeeds are so rare that they should probably be regarded at this time
as corner cases, leading us to recommend against trying native DCCP unless the
goal is to prefer a native deployment of DCCP.

UDP-Lite: Our recommendation is the same as for DCCP—both protocols have low
probability of traversal. For IPv4 it is possible to emulate the functionality of
UDP-Lite by using UDP with a zero checksum. This is an attractive alternative
when no payload protection is needed, because traversal for UDP paths and home
gateways did not seem to be hampered by having a zero checksum. Constraints
remain on appropriate use of a zero UDP checksum with IPv6.

IPv6 constitutes a small part of our data, but from the data available, we saw that
all tested protocols worked better across networks using IPv6. Thus, a transport sys-
tem could be designed to be more “daring” when protocols operate over IPv6—and
additional IPv6 measurements are encouraged to complete this picture.

This paper has strictly focused on the traversal of Internet paths and home gate-
ways, not on performance—but now, equipped with some knowledge about the types
of protocols and encapsulations that can work across the Internet, it would make sense
to carry out a performance analysis. Such an analysis should not only cover the trans-
port layer but also the impact of port numbers and data at the application layer. As a
result of our findings, this research could be limited to native SCTP and UDP in case
of IPv4, while in the case of IPv6 it probably should consider the whole set of SCTP,
DCCP and UDP-Lite together with UDP.

Appendix A. NAT/NAPT and their operations

The term “NAT” commonly refers to a middlebox function that interconnects a
private/local network with the global Internet. Using a NAT is frequently necessary,
since the public IPv4 address space is exhausted. A NAT usually maps many private
(internal) IP addresses to public (external) IP addresses. A home router could map
all internal addresses to a single public IP address. Carrier-grade NATs, deployed by
Internet service providers, interconnect a larger set of internal addresses using multiple
public addresses. This can easily lead to scenarios where there are multiple NATs on a
single end-to-end path.

NATs only work at the IP level, i.e. a NAT would only share a set of public ad-
dresses with a limited number of simultaneously active internal devices. To enable



multiple parallel transport connections from different internal devices, a Network Ad-
dress and Port Translators (NAPT)11 [58] translates the local IP address and port num-
ber pair into a global one. A NAPT needs to have higher-level protocol knowledge and
needs to either implement a specific behavior for each supported transport protocol, or
to implement a generic behavior that assumes that, e.g., port numbers always look the
same.

In order for the private addresses to be reachable, the NAT box rewrites them with
an external public address (or, if there is a chain of NATs, the last NAT rewrites to
a public address). During the address translation, it must validate and update the IP
header checksum. Similarly, incoming TCP and UDP connections to a NAPT are
mapped from the external IP address and port pairs to an internal address and port
number, and vice versa in the return direction. When a NAPT updates the port num-
bers or even only IP addresses, it needs also to update the checksum in the transport
protocol’s header because this checksum usually includes a “pseudo header” that pro-
tects the integrity of the IP addresses [59, 60]. Since the transport layer checksum
usually covers the payload, its calculation is resource-consuming. NATs therefore of-
ten use a checksum adjustment algorithm [15] for this update. The checksum algorithm
is Internet-16 [61], which can be computed efficiently in either software or hardware.

NATs, by their nature, create problems for protocols or applications that transmit
IP addresses in the IP payload. FTP is an example of an application that does this [58],
prompting NAT vendors to implement special support for the FTP protocol. Mod-
ern applications should not need to transmit IP addresses. For example, Multi-Path
TCP (MPTCP) [62] is a multi-homing and multi-path transport TCP extension that
eliminates the need for applications to build such functions on top (which would re-
quire them to signal IP addresses), and the MPTCP implementation in the Linux kernel
has been found to work flawlessly through NATs [63, 64].
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