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Chapter 1
Introduction

The theme of this thesis lies in the field of motivic homotopy theory. More
precisely, we study various motivic cohomology theories—or rather categories of
motives, which are the homes of motivic cohomology theories—from two different
points of view: on the one hand we aim to provide a few foundational results on
various categories of motives via the study of the underlying geometric properties
of motivic cohomology theories; on the other hand, we study some manifestations
of motivic cohomology theories in number theory. We focus in particular on
Milnor-Witt K-theory, which blends quadratic forms into the number theoretic
information contained in Milnor K-theory, and which can be thought of as
the initial motivic cohomology theory. In summary, this thesis investigates
interactions between geometry, number theory, cohomology and quadratic forms
that take place in motivic homotopy theory. In this introduction we aim to make
this statement more precise by presenting some of these interactions via examples
that ultimately lead to the definitions of the main characters of motivic homotopy
theory. We will also shed light on what we mean by “motivic cohomology theories”
and explain the title of the thesis in more detail. Along the way we mention how
the results of this thesis fit into the picture.

1.1 Pythagorean triples

An ancient problem bearing Pythagoras’ name provides a first glimpse at how
geometry, arithmetic, cohomology and quadratic forms complement each other,
interact with each other and are, in some sense, unified in the motivic world.
Thus, before we move on to defining the main objects of motivic homotopy
theory, let us take a look at the problem of finding all Pythagorean triples—that
is, finding all integer solutions to the equation

2y =2 (1.1)

Asking for solutions of an equation over the integers is intrinsically a number
theoretic problem. On the other hand, an equivalent formulation of the problem
is to ask for rational points on the unit circle 2 4+ y? = 1, which is a geometric
question. This point of view can be further translated into finding the kernel
of the norm homomorphism N: Q(i)* — Q* given by a + ib — a® + b%. But
this is now a cohomological question: indeed, if we let o denote the generator of
the Galois group G := Gal(Q(7)/Q), then ker(N)/(c — 1)Q(4)* is isomorphic to
the first Galois cohomology group H'(G, Q(i)*) IT Example 1.20]. Now
Hilbert’s Theorem 90 asserts that this cohomology group is trivial, which implies
that an element o € Q(i)* lies in the kernel of the norm map if and only if

1



1. Introduction

a = of/p for some 5 € Q(i)*. Writing § = a + ib, we then have

ﬂ_a—ib_aQ—lﬁ_i 2ab
B a+ib  a?+0b2 a? 4+ b2’

This computation shows that the Pythagorean triples are parametrized by
(z,y,2) = (a® — b*,2ab, a* + b%);

furthermore, it illustrates that it can often be fruitful to translate a mathematical
problem into a question concerning cohomology groups.

Yet another take on the problem of finding Pythagorean triples is to view
the equation as asking whether the quadratic form 22 + y2? — 22 is isotropic
over Q, i.e., whether it has a nontrivial rational zero. This point of view allows
for a local-global principle to enter the picture: the form 22 + y? — 22 defines an
element in the Witt ring W(Q) of equivalence classes of quadratic forms over Q,
and we can then apply the celebrated Hasse-Minkowski theorem which states
that the natural homomorphism

wQ) - P WQ) (1.2)

2<p<oo

into the Witt rings of all completions of Q is injective. In particular, this
means that a quadratic form over Q is isotropic if and only if it is isotropic over
Qo = R and over Q,, for all primes p. This principle gives another way to solve
quadratic Diophantine equations similar to (1.1)): if we can find a solution in
R as well as a solution modulo a power of any prime number, then there is a
solution over Q.

We have now seen that the problem of finding Pythagorean triples can be
tackled from a geometric, arithmetic, cohomological, and quadratic forms point
of view. In 1970 Milnor published the paper [Mil70] in which he conjectured
that all the different perspectives on the equation above can in general be
neatly linked together via the object KM(Q) now known as Milnor K-theory.
More precisely, Milnor’s conjecture states that for any field k there are natural
isomorphisms

K)'(k)/2
/ S (1.3)
(k)

1% (k) /1 H, (%, 15™)
for each n > 0. Here, I(k) denotes the ideal of even dimensional quadratic forms
in the Witt ring of &k, and H, denotes the étale cohomology groups generalizing
the Galois cohomology group we encountered above.

Several years after Milnor stated the conjectural relationship between coho-
mology, quadratic forms and Milnor K-theory, Morel and Voevodsky provided a
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Correspondences, transfers and motives

natural environment to study these objects via the introduction of motivic homo-
topy theory and the motivic stable homotopy oo-categorg,ﬂ SH(k) .
In fact, both the Milnor K-groups and the étale cohomology groups above are
examples of motivic cohomology groups, which are represented in SH(k) by the
motivic Eilenberg-Mac Lane spectrum HZ. Milnor’s conjecture was eventually
settled by Voevodsky [Voe03} [Voelll [Voe96b| and Orlov—Vishik—Voevodsky
IOVVO07] (see also [RO16] for an alternative proof) by means of, among other
things, constructing power operations on HZ. This success was the first major
achievement of motivic homotopy theory.

Below we will explain some of the basic constructions in the theory of motives
and motivic homotopy theory as well as revisit the groups encountered above.
For simplicity we work over a field k, although many of the constructions are
valid in a more general setting. We let Smj denote the category of smooth,
separated schemes of finite type over k.

1.2 Correspondences, transfers and motives

Above we have seen several examples of cohomology theories arising from a
geometric or arithmetic origin; in particular, we saw the étale cohomology groups
and their relation to Milnor K-theory and Witt groups. Etale cohomology,
introduced by Grothendieck in the 1960’s 7 has proved to be an enor-
mously powerful tool in the study of algebraic varieties—mnotably via the vital
role these cohomology groups played in connection with the Weil conjectures.
The structural properties of the étale cohomology groups further fuelled the
advent of other cohomology theories, such as ¢-adic cohomology used by Deligne
to settle the final part of the Weil conjectures. In the wake of this outburst of
various cohomology theories in algebraic geometry, Grothendieck observed several
similarities between the different theories: they are all contravariant functors
satisfying a version of Poincaré duality, Kiinneth- and Lefschetz theorems, and
they come equipped with cycle class maps from Chow groups Chap-
ter 1]. Cohomology theories satisfying these properties are nowadays referred
to as Weil cohomology theories. In light of these observations, Grothendieck
crystallized in a letter to Serre from 1964 the idea that there should be an
underlying structure giving rise to all Weil cohomology theories. More precisely,

'In this thesis we have chosen to work in the language of co-categories |Lur09]. We do
so in order to streamline the notation With where Lurie’s co-categorical version of
the Barr-Beck theorem |Lurl7, Theorem 4.7.3.5] is needed. This choice moreover allows us
exploit the universal property of SH(—) Corollary 2.39], and furthermore allows for the
discussion in on the distinctions between discrete and nondiscrete co-categories of
correspondences. Note however that we will mainly work with presentable co-categories
Definition 5.5.0.1]. By |Lur09, Proposition A.3.7.6], any presentable co-category is equivalent
to the underlying co-category of a model category, and any adjoint pair of such co-categories
comes from a Quillen adjunction. By §1.3], the motivic unstable and stable homotopy
oo-categories we will consider are the underlying co-categories of the corresponding model
categories of motivic spaces or spectra as constructed by Morel and Voevodsky . Thus,
whenever we discuss motivic categories and adjunctions between such, the reader who wishes
may safely think in terms of model categories rather than oco-categories.



1. Introduction

Grothendieck speculated upon the existence of the motif of a variety—an object
which should contain the essence of all cohomological information of the variety
. The name motif, or motive, is inspired from art and iconography
in which a motif is an element that in a sense constitutes the essence of the image
and is often seen repeated in other works. Carrying this notion to the world of
algebraic varieties, the motive of a variety should thus be an object representing
the common cohomological information revealed each time a Weil cohomology
theory is applied to it. In other words, a motive should be a universal cohomology
theory on algebraic varieties.

The actual construction of a category of motives was also initiated by
Grothendieck. More precisely, he constructed the category of pure motives
from the category of smooth projective varieties over k by means of enlarging the
mapping sets, allowing certain types of correspondences between varieties, and
then performing an idempotent completion. See for details. Whether
or not this category has all the desired properties, however, relies on several
existence conjectures on algebraic cycles now known as the standard conjectures
. Furthermore, Grothendieck envisioned the existence of another category,
that of mized motives, which should define the motive of any variety. The
construction of the category of mixed motives is still an open problem [MNP13].

In 1987 Beilinson offered through a series of conjectures an alternative
approach to the theory of mixed motives [Bei87]. Instead of trying to construct
the category of mixed motives directly, one could try to construct a derived
category of motivic complexes equipped with a hypothetical t-structure whose
heart should consist of mixed motives. This point of view was later taken
up by Voevodsky in [Voe96a] and ultimately led to Suslin and Voevodsky’s
construction of the derived category of motives DM (k) [VSFO00]. Although there
is in general no desired t-structure on DM(k) giving rise to mixed motives
Proposition 4.3.8], the category DM(k) nevertheless allows for a
definition of the sought-after universal cohomology theory on smooth varieties
over k. This cohomology theory is now referred to as motivic cohomology. Suslin
and Voevodsky’s construction of DM (k) relies in particular on the notion of
homotopy invariant presheaves with transfers, which may in some sense be
thought of as an abstraction of some of the properties satisfied by Chow groups
and other Weil cohomology theories, and which constitutes a central tool in
this thesis. Below we take a closer look at the notion of homotopy invariant
presheaves with transfers before we explain Suslin and Voevodsky’s construction
of the derived category of motives DM (k) in more detail.

1.2.1 Why homotopy invariant presheaves with transfers?

In the spirit of let us return to questions concerning sums of two
squares, this time in a more geometric setting. Take a smooth affine curve X
over k equipped with a finite surjective morphism 7: X — A'. Suppose we are
given an invertible regular function f on X which we know to be a sum of two
squares away from a closed point of X, say f|x\, = g7 + ¢35 € k[X \ z]. Then
one can ask, is f a global sum of two squares?

4



Correspondences, transfers and motives

When dealing with sums of squares in we saw that the norm
homomorphism N: Q(i)* — Q* was particularly useful, suggesting that it might
be worthwhile to try a similar approach in order to answer the question above.
In fact, since the scheme X is finite over A' we do have a norm homomorphism
also in this geometric setting, namely the map

N: k[X]* — E[A1]*
given by fiber integration, i.e.,
Nw) = [[ w.
yem—1(t)

Now, the invertible regular functions on A! are just the constant functions, i.e.,
k[A']* = k. In particular, N(f) is constant. Say m(z) = 0, and let {xa,...,2,}
be the remaining points in the fiber over 0. Let also 7 1(1) = {y1,...,ym} be
the points in the fiber over 1. Then, since N(f) is constant, it follows that

f@)f(xg) - fan) = N(f)(0) = N(f)(1) = Fyr) - f (Ym)-

In other words,

F@)=Fy) - flym) fx2) ™" flaa) 7

The right hand side being a product of sums of two squares, it follows that f(z)
is the sum of two squares as well.

The above computation concerns sections of the sheaf of units O*; it essen-
tially demonstrates that the restriction homomorphism O*(X) — O*(X \ z) is
injective. The argument exploits two special properties of this sheaf:

(i) It is homotopy invariant—or A'-invariant—on smooth k-schemes, i.e.,
OX(Y x AY) =2 O*(Y) for all Y € Smy.

(ii) Tt comes equipped with norm maps, or “wrong way maps”
N: O*(Y) - O*(Y")
for any finite and surjective morphism Y — Y in Smy.

A presheaf of abelian groups on smooth k-schemes possessing the two properties
aboveEl is called a homotopy invariant presheaf with transfers. More succinctly,
a presheaf with transfers can be defined as a presheaf on a certain enlargement
Cory, of the category Smy that allows more morphisms. Following , let
Cory, denote the additive category whose objects are the same as those of Smy,
and whose morphisms are given as

Corp(X,Y) := @ Z,
T

2In addition, we should assume that the presheaf carries finite coproducts to finite products.

5



1. Introduction

where the direct sum is taken over all closed irreducible subsets T' of X x Y
which become finite and surjective over a component of X when equipped with
the reduced scheme structure. The abelian group Cory(X,Y) is called the group
of finite correspondences from X to Y. We can think of finite correspondences
as multivalued maps taking only finitely many values. Composition in Cory can
be defined by pulling back finite correspondences to a triple Cartesian product,
intersecting and then pushing forward; see Lecture 1] for more details.
The resulting category Cory is additive and symmetric monoidal with respect
to the Cartesian product. We refer to this category as the category of finite
correspondences, and the homotopy invariant presheaves on this category satisfy
several remarkable properties generalizing the injectivity result for the map
O*(X) = O*(X \ ) we considered above:

Theorem 1.2.1 ([Voe00al). Suppose that k is a perfect field and let .F be a
homotopy invariant presheaf with transfers over k. Then the following hold:

1. For any smooth k-scheme X and any dense open subscheme U of X, the
restriction map F(X) — F(U) is injective.

2. The associated Zariski sheaf Fz., can be extended to a presheaf with
transfers in a unique way.

3. The Zariski- and the Nisnevich sheafification of F coincide, i.e., Fzay =
<Q\Nis'

4. For each n > 0, the cohomology sheaves HY, (—, Fnis) are homotopy
invariant presheaves with transfers.

The main point of the above theorem is that being a homotopy invariant
presheaf with transfers is preserved under Nisnevich sheafification. This is one of
the two fundamental properties shared by homotopy invariant presheaves with
transfers, the other one being a cancellation property with respect to smashing
with the group scheme G,,,. Although the formulation of the cancellation theorem
requires some notation that will be explained in the next subsection, we state it
here for future reference:

Theorem 1.2.2 ([Voel0)]). Let k be a perfect field. Then for any two effective
motives K, L € DM (k), the natural map

(K, Llpwven gy = [K(1), L(1) ] paveer )
is an isomorphism.

As we will see below, the homotopy invariant presheaves with transfers
constitute the main ingredient in Suslin and Voevodsky’s construction of the

oo-category DM (k) [VSF00]; Theorems and above ensure that their

construction results in a well behaved stable co-category in which we can define
motivic cohomology.

6



Correspondences, transfers and motives

1.2.2 Motives

We will now provide some details on the construction of Suslin and Voevodsky’s
derived category of motives DM (k). As mentioned above, the category DM (k)
should contain the (co)homological information of any smooth k-scheme X. In
particular, there should be a functor from Smj; mapping a scheme X € Smy
to a complex M(X) which computes the motivic cohomology of X. In order
to motivate the construction of this complex, let us draw some parallels from
topology.

Recall that the singular homology groups of a topological space X are
computed as the homology of the singular chain complex

Sing,(X) = (-++ = Z[Mapmp,, (A", X)] = Z[Mapqp,, (A" X)] = - ),

where A™ denotes the standard n-simplex. In algebraic geometry there is an
analog of the topological n-simplex, namely A} := Spec(kl[to, ..., t,|/(>; ti—1)).
However, the analogous complex

- = Z[Mapgy, (A}, X)] = Z[Mapg,,, (A7 X)) = -

does not define any interesting homology groups of a scheme X. This is because
there are, in general, too few morphisms in the category Smy; for example, if
X is a smooth projective curve of positive genus then X receives only constant
maps from A},

In order to define a singular homology theory on schemes, we can instead
draw inspiration from the Dold-Thom theorem. Let X and Y be topological
spaces, and define the set Map,,, 1 (Y, X) of multivalued maps from'Y to X as
the set of those subsets T'C Y x X for which the projection to Y is a covering.
Then there is a bijection

Mapmult ()/? X) = Map()/a Symoo (X))

between multivalued maps from Y to X and the set of maps from Y to the infinite
symmetric product of X VII §78]. By the Dold-Thom theorem, the
homotopy groups m; (Sym™ (X)) of Sym™ (X)) are precisely the reduced homology
groups ﬁi(X ) of the space X. This suggests another approach to the definition
of singular homology of schemes: instead of using the free abelian group on
Mapg,,,, (A%, X), we should consider the free abelian group on multivalued maps
from A} to X. In other words, we should use the group Cory (A7}, X) of finite
correspondences. The resulting complex

M(X) := (- — Corg (AL x (-),X) — Cork(A271 X (=), X)— )

is referred to as the motive of X, or the Suslin complex of X. The motive of X
is a complex of presheaves with transfers that contains homological information
about the scheme X. In fact more is true: each presheaf Cory (A} x (=), X) is
a sheaf in the Nisnevich topology Lemma 6.2], and the cohomology
presheaves of M(X) are homotopy invariant Corollary 2.19]. Any

7



1. Introduction

complex satisfying these properties is referred to as an effective motivic complez,
and these complexes constitute the objects of an co-category DMeH(k) [VoeOOb]|,

§14]. The symmetric monoidal structure on finite correspondences extends
to DM (k), whose unit object is the motive of a point, M(Spec(k)). For this
reason, we write Z for the unit motive M(Spec(k)). Moreover, in DM (k) the
motive of the projective line splits into a copy of Z and the shifted Tate motive
Z(1), ie.,

M(P') = Z & Z(1)[2]

This splitting reflects the fact that in classical topology, the singular cohomology
of the projective line is concentrated in degrees 0 and 2. By Theorem
4.1], the motivic complex Z(1) may alternatively be described as Z(1) ~ O*[-1].
Using the Tate motive Z(1) we can define, for any n > 0, the Tate twist .7 *(n)
of a motivic complex .Z* as Z#°*(n) := .F°* ® Z(1)®". We can think of the Tate
twist as analogous to smashing with a sphere in the unstable homotopy category.
Hence, similar to how the stable homotopy category is constructed from the
unstable one by inverting the smash product with the circle, we can invert the
Tate twist and obtain the derived category of motives

DM(k) := DM (k)[Z(1)®71)].

This procedure yields a presentable, symmetric monoidal, stable co-category
DM(k) equipped with a functor M: Sm, — DM(k) that sends a smooth k-
scheme X to its motive M(X) € DM(k). By the cancellation theorem, the
natural functor DM®¥ (k) — DM(k) is fully faithful. The key point is now that
in DM(k) we can define, for any pair of integers p and ¢, the motivic cohomology
groups of X in bidegree (p,q) as

HP(X, Z) := [M(X), Z(q)[pllpmk) = o Mappry (M(X), Z(q)[p])-

Suslin and Voevodsky’s definition of motivic cohomology is believed to be a
satisfactory construction of a universal cohomology theory as envisioned by
Grothendieck. Furthermore, several well known invariants appear as motivic
cohomology groups. For example, the diagonal motivic cohomology groups of the
base field recover the Milnor K-groups, i.e., H""(k,Z) = KM (k) N889|; .
On the other hand, there is an isomorphism from H?"" (X, Z) to the Chow group

CH"(X) for any X € Smy, [MVWO06, Lecture 17].

1.3 Motivic homotopy theory

After Suslin and Voevodsky’s construction of the derived category of motives
DM(k), the foundations of a “nonlinear” version of the theory were laid by
Morel and Voevodsky in the works [Voe98]. More precisely, Morel and
Voevodsky introduced the motivic unstable and stable homotopy oco-categories
H(k) and SH(k) which serve as homotopical counterparts to the homological
DM (k) and DM(k). Below we briefly review the construction of these oo-
categories.
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Motivic homotopy theory

1.3.1 Homotopy invariant theories

As we have seen above, the sheaf of units O* is homotopy invariant on smooth
k-schemes, that is, O* (X x A') = 0*(X) for any X € Smy. In fact, we have
seen that O* is a homotopy invariant presheaf with transfers. As a sheaf on
Smy we can identify O* with the sheaf of algebraic K-groups K; and note that,
by V Theorem 6.3], the phenomenon of homotopy invariance remains
true for all higher K-groups as well: for X € Smy we have K, (X x Al) =2 K, (X)
for any n > 0. However, the sheaf K,, does not possess the structure of presheaf
with transfers in general Example 2.7]. Therefore algebraic K-theory
is not represented in DM (k). On the other hand, in topology we have the stable
homotopy category and the Brown representability theorem which provide a
convenient setting to study topological K-theory. Thus we can ask if there is a
more general construction than that of DM(k) providing a homotopy theoretic
framework to study sheaves like algebraic K-theory. This is accomplished in the
work . Indeed, one of the features of Morel and Voevodsky’s motivic
homotopy theory is that algebraic K-theory, as well as many other interesting
invariants of smooth k-schemes, becomes representable in the motivic stable
homotopy oo-category SH(k).

1.3.2 Motivic unstable and stable homotopy theory

In order to construct SH(k) we start with the category Smy, consisting of smooth,
separated schemes of finite type over k. This category is however poorly suited
to do homotopy theory. For example, as taking colimits is a ubiquitous maneuver
in homotopy theory we need to enlarge the category Smy by freely adjoining all
small colimits. By Corollary 5.1.5.8], the operation of freely adjoining
small colimits to Smy, is equivalent to instead considering presheaves of spaces—
or co-groupoids—on Smy. Let Spc denote the co-category of spaces, for which we
can use Kan complexes as a suitable model. We can then consider the oco-category
PSh(Smy) := Fun(Sm,;”, Spc) of presheaves of spaces on Smy, and note that we
are now in a position to impose A'-invariance as mentioned above. We call a
presheaf .# € PSh(Smy) homotopy invariant, or Al-invariant, if the projection
X x A' = X induces an equivalence .Z(X) — .Z (X x A') for any X € Smy.
The inclusion PSha1(Smy) < PSh(Smy,) of the full subcategoryEl of homotopy
invariant presheaves admits a left adjoint L a1 : PSh(Smy) — PSha:(Smy), which
we refer to as Al-localization.

As a result of the above procedure we have forced the affine line A' to play
a role analogous to that of the unit interval in topology. However, in topology
we also have coverings by open sets. In order to capture local phenomena
we should specify a topology also in the motivic setting. There is a lot of
room for choice here, but for the purposes of this thesis the Nisnevich topology
Lecture 12] is the most suitable. Thus we consider the inclusion
Shvyis(Smy ) < PSh(Smy) of the full subcategory of Nisnevich sheaves on Smy.

3TFollowing the terminology of Lurie [Lur09, Remark 1.2.11.1] we use the term “subcategory”
rather than “sub-co-category”.
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This inclusion admits a left adjoint Lyis: PSh(Smy) — Shvyis(Smy ) referred to
as Nisnevich localization. The motivic unstable homotopy oo-category H(k) is
then the full subcategory of PSh(Smy) spanned by homotopy invariant Nisnevich
sheaves. The objects of H(k) are referred to as motivic spaces, and the localization
Lot : PSh(Smy) — H(k) is called the motivic localization functor. For X € Smy,
we write X also for the motivic space represented by the scheme X.
Parallelling the role of pointed spaces in topology, we obtain a pointed variant
H, (k) of the above construction by defining He (k) to be the undercategory
H(k),,, where * := Spec(k) is the final object of H(k). There is a functor
(=)+: H(k) — Hq(k) given by adding a base point, i.e., X} := X IT Spec(k). In
the oo-category H, (k) we have the object S!:= A!/9A! pointed by the class of
OA!, and the object GA! := (G,,, 1) pointed by 1. Both play a role resembling
that of the circle S in topology. The smash powers of these objects form a
bigraded family of motivic spheres SP-7 := SP=9 A G24, and smashing with the
sphere 5?7 defines an endofunctor on He (k) denoted by X-7. By considering
the colimit of the diagram A' + G,, — A! along with the fact that A' is
contractible in H(k), we find that there is a string of equivalences

S§21 = SLAGA ~ (P!,00) ~ AT/A'\NO =T

in Hq (k). The object T above, known as the Tate object, can be thought of as
analogous to the Tate motive Z(1)[2] of DM(k); stabilizing with respect to it
yields the motivic stable homotopy oo-category SH(k), i.e.,

SH(k) := He(k)[T ]

We refer to [Rob15|, Corollary 2.22] for more details on this stabilization process.
We have an adjunction

5% Ho(k) = SH(k) : QF

in which the left adjoint sends a scheme X € Smy to its suspension spectrum
Y2 X whose n-th space is X1 A T"". In particular, the suspension spectrum
of Spec(k) gives the unit for the symmetric monoidal structure on SH(k), that
is, the motivic sphere spectrum

1 := 37 (Spec(k)+) € SH(k).

In addition to the sphere spectrum, the co-category SH(k) contains an abundance
of interesting objects; rather than listing those here let us only note that, as
promised in algebraic K-theory is representable by a spectrum
KGL € SH(k) [PPR09]. Furthermore, the motivic stable homotopy category
enjoys a fully fledged formalism of six functors Hoy17]. In fact, SH(k)
is in a certain sense initial among the categories possessing Grothendieck’s six
operations: by Corollary 2.39], the co-category SH(k) is universal among
the presentable, symmetric monoidal co-categories & that are equipped with a
functor F': Smy — & for which the following is satisfied:

10



Milnor-Witt K-theory and cohomology theories with quadratic forms

e The functor F' is homotopy invariant and satisfies Nisnevich descent.

o The cofiber of the map F(Spec(k)) — F(P') induced by the rational point
oo acts invertibly on 2.

In particular, there is a functor v* from SH(k) to the derived category of motives
DM(k). In fact, the functor v* constitutes the left adjoint of a free-forgetful

adjunction |CD19| §10.1]
~*: SH(k) = DM(k) : .. (1.4)

Applying the sphere spectrum to the unit id — ~,+* of this adjunction we obtain
the motivic Eilenberg—Mac Lane spectrum

HZ := ~v.~v*(1) € SH(k)

we encountered in [Section 1.1] The spectrum HZ represents motivic cohomology
groups, that is,
HPY(X,Z) = [T Xy, SPTHZ] sk

for any X € Smy. Parallelling the fact that the derived category of abelian
groups is equivalent to the category of modules over the classical Eilenberg—Mac
Lane spectrum , the main theorem of asserts that there is an
equivalence

DM(k) ~ Moduz /¢ (SH(E)).

Here e denotes the exponential characteristic of the field k.

1.4 Milnor-Witt K-theory and cohomology theories with
quadratic forms

One of the most basic questions in stable homotopy theory is, what are the
stable homotopy classes of endomorphisms of the sphere? More generally, what
are the stable homotopy groups of the sphere spectrum? In the motivic world,
the analogous question means to compute the groups

Tp,q(1) == [EP91, 1]spp).-

More generally, given any spectrum E € SH(k) we can ask for its homotopy
groups 7y 4(E) = [EP91, Elgp) for any p,q € Z. However, one key property
on which motivic homotopy theory differs from classical homotopy theory is
that a spectrum in SH(k) need not be cellular [DI05]. For example, if X is the
spectrum of a nontrivial field extension of k then X, € SH(k) is not cellular
§1]. As a consequence, the motivic homotopy groups do not in general
detect equivalences. The notion of motivic stable homotopy sheaves has been
introduced in order to remedy this problem. These objects are Nisnevich sheaves
of abelian groups on Smy, which generalize the homotopy groups we encountered
above in the sense that they allow maps out of any smooth k-scheme, not only

11
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Spec(k). In more detail, the sheaf m,(E), of motivic homotopy groups of a
spectrum E € SH(k) is defined as the Nisnevich sheaf associated to the presheaf
7p(E), on Smy, given by

mp(E)q(U) = [ZPOSFUL, BT Elsp )

for U € Smy. Thus the homotopy groups we encountered above are given as global
sections of the sheaves of homotopy groups, i.e., m,(E)q(Spec(k)) = mp—q,—¢(E).

Having defined motivic homotopy groups and sheaves of such, the main
question is how to compute them. The first main result in this direction is
Morel’s calculation [Mor04a, Theorem 6.4.1] which shows that

(1) 2 KNV (k)
for any integer n. In terms of sheaves of homotopy groups, the result reads
mo(1)—n = Kl\—/lr\z}v

The groups KMW(k) are referred to as the Milnor-Witt K-groups of the field
k, and can be defined as follows Chapter 3]. Take the free graded
associative Z-algebra on one generator [a] of degree +1 for each unit a € k™, as
well as one generator n of degree —1, and impose the following relations:

The resulting graded ring is the Milnor-Witt K-theory of k, denoted KMW (k).
By |[Mor12, Lemma 3.6 (1)], the symbols [ay,...,a,] := [a1] - - [a,] € KMW (k)
generate KMW (k). As the name suggests, the Milnor-Witt K-theory of k blends
quadratic forms coming from the Witt ring of k& with the Milnor K-theory of k.

More precisely, by [Mor04b|, the group KMW (k) fits in a pullback square

KW (k) —— K} (k)

| |

(k) —— I"(k) /1" (k),

where 1" (k) is the n-th power of the fundamental ideal in the Witt ring of k.
The map p is given by killing n, while the left hand vertical homomorphism
is given by mapping [a1,...,ay] to the Pfister form (ai,...,a,) € I"(k). In
particular, the negative Milnor-Witt K-groups of k are all isomorphic to the
Witt group of k, while K}!W (k) recovers the Grothendieck-Witt group GW (k) of
k Lemma 3.10]. In fact, the Milnor-Witt K-groups define an unramified
Nisnevich sheaf KMW of abelian groups on the category Smy, Chapter 2].

12
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Keeping in mind that the Chow groups CH"(X) of a smooth k-scheme X can
be defined in terms of the cohomology of the Zariski sheaf on Smy, associated to
the presheaf of Milnor K-groups U — KM (U) , taking the cohomology
of the sheaf KMW allows us to define a version of Chow groups that take into
account quadratic form theory. However, in order to obtain proper pushforward
maps we need to twist by local coefficient systems Remark 3.21]. For
any line bundle .Z on X € Smy, the n-th Milnor—Witt sheaf on X twisted by £
is defined as
K)'W(2) =KW @ga,,) Z[L7].

Here Z[G,,] and Z[.£*] denotes the Nisnevich sheaves associated to U +—

Z|0O*(U)] and U — Z[Z(U) \ 0], respectively. We refer to CF17b, §1.2] for
more details. We can now define the Chow-Witt groups cH" (X Z) of a scheme
X € Smy, twisted by .Z, as

CH' (X, .%2) = HE, (X, KMWY(2)).

Similarly we can define Chow—Witt groups with support GﬁTZL(X ,-Z) on closed
subsets Z C X by taking cohomology with support. The upshot is that we
obtain pushforward maps

——n-+dim Y —dim X

for any morphism f: X — Y such that f|z is proper Corollary 5.30].
This construction results in a theory similar to that of Chow groups whose
geometric significance lies in the fact that the Chow—Witt groups detect splittings
of vector bundles. Indeed, for any oriented rank n vector bundle £ on X there is
a corresponding Euler class e(£) in é\ﬁn(X ) with the property that £ splits off a
trivial line bundle if and only if e(¢) = 0. We refer to §8.2] and
for more details on the construction and basic properties of the Euler class.
The introduction of Milnor-Witt K-groups and Chow—Witt groups has
sparked off several branches of research in motivic homotopy theory, around
many of which the topics of this thesis revolve. The basic idea is to blend the
theory of quadratic forms into classical topics using Milnor—Witt K-groups. In
this direction there is a substantial program, initiated by Barge—Morel, Fasel,
Hoyois, Kass—Wickelgren, Levine, Wendt and others [BM00; DJK18; [Fas07}
Hor+19; Hoy14; KW17; [Lev18; SW19; Wen18], which aims to incorporate the
theory of quadratic forms into intersection theory and enumerative geometry.
To give a few examples, Hoyois obtained in a quadratic version of the
Grothendieck—Lefschetz fixed point formula, while Kass and Wickelgren counted
in the number of lines on a smooth cubic surface by using quadratic
forms instead of the integers. The result of Kass and Wickelgren contains
information on the number of lines of hyperbolic and elliptic type, and gives
back the classical well known answer 27 by taking ranks of the quadratic forms
involved. In a similar direction, Levine’s work sets up a framework for
enumerative geometry with quadratic forms. Although this is not precisely the
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path we will tread in this thesis, it is very much related. Indeed, it is possible
to attach quadratic forms to finite correspondences and then try to parallel the
whole construction of Suslin and Voevodsky’s derived category of motives. This
was initiated and completed by Calmeés-Déglise-Fasel in [CF17b; [DF17a; [DF17b]
and has been the starting point as well as a central theme of this thesis. We will
therefore elaborate a bit further on this matter.

1.4.1 Milnor-Witt correspondences

Recall that a finite correspondence, in the sense of Suslin and Voevodsky, amounts
to a closed subset of a Cartesian product of schemes, along with an integer
attached to each irreducible component of the closed subset. In other words, the
group Cory(X,Y) of finite correspondences from X to Y can be described as a
colimit of Chow groups with support,

Corg(X,Y) = lim CHF™Y (X xY).
T

Here the colimit is taken over all closed subsets T" of X x Y such that each
irreducible component of the reduced subscheme associated to T is finite and
surjective over a component of X. Assuming that k is a perfect field of char-
acteristic different from 2, Calmes and Fasel replace Chow groups by
gvhovvf\Nitt groups and show that this defines a new category of correspondences
Cory, baptized the category of finite Milnor—Witt correspondences. The mapping
sets of Cor are given as

— ——dimY
COI‘k(X,Y) = hgl CHT (X X Y7p>;’wY/k:)7
T

where py: X XY — Y is the projection, and the colimit runs over the closed
subsets T'C X X Y as above. A finite Milnor—Witt correspondence thus consists
of an ordinary finite correspondence along with a quadratic form defined over
the function field of each irreducible component of the support of the correspon-
dence. By taking the rank of these quadratic forms we obtain an ordinary finite
correspondence. In fact, this defines a forgetful functor Cory — Cory.

Given the category é&“k one can try to perform similar constructions as for
the classical category Cory. In[Paper ]]we prove that the analog of
is true for homotopy invariant presheaves of abelian groups on the category Cory,.
On the other hand, the cancellation theorem for Milnor—Witt correspondences
was established by Fasel-Ostveer in . As a result, Voevodsky’s construction
of the derived category of motives DM (k) can be carried out in the setting of
Milnor-Witt correspondences; the resulting co-category m(k) of Milnor—Witt
motivic complezes was constructed by Déglise and Fasel in [DF17a]. The oo-
category ﬁd(k) is in some sense closer to SH(k) than DM(k); for example,
the group of endomorphisms of the unit object in ﬁ\//I(k) is isomorphic to the
endomorphisms of the sphere spectrum 1 € SH(k) . As is the case for
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DM(k), there is an adjunction
3* : SH(k) = DM(k) : 7. (1.5)

to the motivic stable homotopy category, and the resulting motivic Eilenberg—
Mac Lane spectrum HZ := 7,5*(1) represents Milnor—Witt motivic cohomology
HY4, (X, Z). In particular, the diagonal motivic homotopy groups of HZ satisfy

T nHZ = HE (k, Z) =2 KM (k)

for any n € Z |CF17a). Moreover, the results of show that the adjunction
(1.5)) realizes DM (k) as the oo-category of highly structured modules over the

Eoo-ring spectrum HZ after inverting the exponential characteristic of k.

1.4.2 Milnor-Witt K-theory and number theory

Above we have discussed some examples on how Milnor—Witt K-theory allows
us to blend quadratic form theory and geometry, in the setting of refined
enumerative geometry and finite Milnor-Witt correspondences. In we
aim to take a few steps in a similar direction in number theory, thus providing
for the “arithmetic” part of the title of this thesis. We will now explain this in
more detail. To do so, let us start by first recalling some classical results on the
relations between number theory and K-theory.

One of the most fundamental objects of study in algebraic number theory
is the class group Clj, of a number field k. It measures the extent to which the
ring of integers Oy, in k fails to be a unique factorization domain. Furthermore,
the exact sequence

10 -k - P Z % Cl - 1
pESpec(Of )™

shows that the class group is linked to another fundamental invariant in number
theory, the group of global units O, . Both of these invariants are manifestations
of K-theoretic phenomena. Indeed, from the characterization of finitely generated
projective modules over Dedekind domains it follows that the class group of
k is precisely the torsion subgroup of the zeroth algebraic K-group Ko(Oy) of
O §1]. On the other hand, the group of units O} appears as the first
algebraic K-group K;(O) §2.3]. The study of K5 of a number field and
its number theoretic properties was initiated by Tate who computed that

K2(Q) = Z/20 HF;. (1.6)

p>2

The calculation involves an induction argument over the prime numbers which
Tate remarks is lifted directly from the first proof of the quadratic reciprocity
law given by Gauss p. 102]. To explain Tate’s computation, it can be
useful to keep the analogous case of K;(Q) = Q* in mind: by extracting from
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a nonzero rational number its sign along with its valuation at each prime p we
obtain an isomorphism

Ki(Q) = z/26 Pz

p>2

For the group K3(Q) we have Matsumoto’s theorem asserting that Ks(Q)
is additively generated by symbols {z,y} for z,y € Q*, subject only to the
bilinearity relation {zy, z} = {x, z}+{y, 2z} and the Steinberg relation {z,1—x} =
0. The local Hilbert symbols at the various primes provide “2-dimensional analogs”
of the maps on K;(Q) defined by the sign and by p-adic valuation: for p an odd
prime, the local Hilbert symbol at p is given by

(z,y)p = (=1)vr@ e W) gve W)y =vp(@)  (mod p),

while for the infinite place of Q, the Hilbert symbol (z,y) is given as —1 if
both z and y are negative, and +1 otherwise IT §7]. These symbols
define a map from K5 (Q) to the right hand side of which Tate proved to
be an isomorphism. By the universality of Ky with respect to Steinberg symbols,
Tate’s result gives rise to the product formula for Hilbert symbols on Q,

H ($7y)p =1,

2<p<oco

which is an equivalent formulation of the law of quadratic reciprocity II
Example 3.4.2, IT Theorem 7.8.1.2]. The above discussion can be packaged into
the assertion of Moore’s theorem on uniqueness of reciprocity laws over the field
Q IT Theorem 7.6], which states that there is an exact sequence

0 Ka(Q) = 2/20 P u(Qy) — 2/2 — 0. (1.7)

p>2

The map h is the global Hilbert symbol, whose components are the local Hilbert
symbols at the different places of Q. Tate’s computation and Moore’s exact
sequence shed light on the relationship between number theory and Ks by
showing that Ky is intimately linked to reciprocity laws.

In [Paper V] we investigate similar properties for Milnor-Witt K-theory, so
that we in a sense blend quadratic forms into the picture. In particular, we
define Hilbert symbols on Milnor—Witt K-groups and show an analog of Moore’s
reciprocity sequence . Over the field Q we can perhaps think of this as a
“quadratic” quadratic reciprocity law: namely, we have an exact sequence

0—KYW(Q) 5 ze P uQ,) — 2/2 -0,
p>2

where hMW is the global MW-Hilbert symbol.
The above exact sequences are examples of “local-global principles” par-

allelling the Hasse-Minkowski theorem (1.2]) we encountered in [Section 1.1
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Another example of a local-global principle is given by Hasse’s norm theorem:.
This classical result states that if L/k is a finite cyclic extension of number fields,
then an element of k* is a norm from L* if and only if it is a local norm at every
place of k. We can think of this result as a norm theorem for the functor Kj.
In [BR84], Bak and Rehmann extended Hasse’s norm theorem to Ko. In fact,
their result is valid for any finite extension of number fields L/k. It states that
an element of Ky (k) lies in the image of the norm map Ny, ;. : Ko(L) — Ky (k) if
and only if its image in each Ks(k,) lies in the image of the map

PDNL. ik, KoL) = Kalky).
wlv wlv

By [BR84, p. 4], this result can be reformulated as the exactness of the sequence

) Ni/k Kg(k’) ®v62L/k o @ Z/2—>0- (18)

UGEL/IC

Ko (L

Here X7 /5, denotes the set of infinite real places of k that are complexified in the
extension L/k, and h, denotes the local Hilbert symbol at v. The final result of
aims to extend Bak and Rehmann’s result to the setting of Milnor-Witt
K-theory. More precisely, we show that there is an exact sequence

MW TL/k MW 69"’EEL/k h}l\’iw
KYW (L) T KW () — T @z,
’UEEL/;C

where 77,/ denotes the transfer map on Milnor-Witt K-theory, defined similarly
as the norm maps on Milnor K-theory [Mor12, Chapter 3], and the right hand
map is given by the local Milnor-Witt Hilbert symbols.

1.5 Correspondences arising from other cohomology
theories

In we encountered the notion of finite Milnor-Witt correspondences,
which is a variant of Suslin and Voevodsky’s finite correspondences. The derived
category of motives DM (k) associated to Cory provides a better approximation
to the motivic stable homotopy category and is well suited for computations. In
fact, constructions of variants of Suslin and Voevodsky’s DM(k) have proved so
fruitful that it has resulted in a menagerie of different correspondence categories.
To give a few examples, let us first mention the category of Ky-correspondences
introduced by Walker in and further studied by Suslin . By
proving that the category of Kg-correspondences satisfies properties similar
to that of Cory, Suslin identified Grayson’s motivic cohomology with
ordinary motivic cohomology and established the motivic Atiyah—Hirzebruch
spectral sequence

EYT=HP 979X, Z) = K_, ,(X) (1.9)
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which computes algebraic K-theory from motivic cohomology. One of the main
features of DM(k) is that it gives an analogous picture for Hermitian K-theory.
To explain this, first recall that the co-category ]5\1\7[(1{:) gives rise to the Milnor—
Witt motivic cohomology groups H}j% (X, Z). The work of Bachmann and Fasel

[Bac17; BF18] shows that these cohomology groups occur at the E'-page of
the very effective slice spectral sequence for the Hermitian K-theory spectrum

KQ € SH(k),

E} g = Tpuwsq(KQ) = m,p.0(KQ).
See for example for details on the spectrum KQ. The symbol s, above
denotes the wvery effective slice functor . This spectral sequence is a
Hermitian analog of the above motivic Atiyah—Hirzebruch spectral sequence
Introduction].

As a final example of a correspondence category and its applications we
offer the category of framed correspondences Fr, introduced by Voevodsky and
studied by Ananyevskiy, Garkusha and Panin [AGP18; |GP18a; |GP18b|. This
results in an co-category of framed motives that classifies motivic infinite P*-loop
spaces [Elm+19)].

Now, for each new category of correspondences one needs to prove analogs
of Theorems [[.2.1] and [I.2.2] on homotopy invariance and cancellation. The
topic of is to provide an axiomatic approach to these results for a
certain class of correspondence categories, namely those that arise from some
cohomology theory on Smy. Examples of correspondences of this sort include
the original Cory, which can be defined using Chow groups, and Milnor-Witt
correspondences Cory, which are defined via Chow—Witt groups. In particular,
generalizes the results of For any appropriate cohomology
theory A* on smooth schemes, we define in a correspondence category
Cor‘,;1 of finite A-correspondences and construct an associated derived category
of motives DM 4 (k) satisfying properties similar to that of DM (k) and ]3\1\//1(19)
We obtain an adjunction

74 : SH(k) = DM (k) : 12

analogous to and , as well as an associated motivic Eilenberg-Mac
Lane spectrum HZ 4 € SH(k) representing a variant of motivic cohomology. By
the results of the co-category DM 4 (k) is equivalent to the co-category
of modules over HZ 4 after inverting the exponential characteristic of k. In
we identify DM 4 (k) for various choices of A and furthermore prove
that the spectrum HZ 4 belongs to the heart of the effective homotopy t-structure
on SH(k)® ie.,

HZ, € SH(k)*™.

We recall that SH(k)*f denotes the full subcategory of SH(k) generated under
colimits by =98 X, for X € Smy, n > 0 [BH18| §13], and that the effective
homotopy t-structure on SH(k)* is defined by

SH(k‘)erf) = {E € SH(k)*T : 7, (E)o = 0 for all n < 0},
SH(k)¥ := {E € SH(k)*" : 7, (E)o = 0 for all n > 0}.
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The heart of the effective homotopy t-structure is then the abelian category
SH(k)*™" := SH(k)%[, N SH(k)%).

Thus the results of give rise to a parametrized family of £.-ring
spectra in SH(k)*®Y. Conversely, we show in that we can start with
an Eo-ring spectrum F in SH(k)*®Y and define a cohomological correspondence
category CorkE from it. In other words, we can attach to each cohomological
correspondence category a ring spectrum in SH(k)*¥ and vice versa.

1.6 What is a motivic cohomology theory?

Having explored some of the main characters of motivic homotopy theory we
can now return to the title of this thesis and explain in more detail what we
mean by a “study of various motivic cohomology theories”.

As envisioned by Grothendieck, the category of motives should be the home
of a universal cohomology theory on Smy. Although the category of mixed
motives is still out of reach, the cohomological properties of mixed motives
depend only on its derived category for which Voevodsky’s DM (k) provides
a good candidate. As we have seen, the oo-category DM(k) gives rise to the
motivic cohomology theory HZ. However, as discussed in there
are also other variants of the derived category of motives; in fact, there is a
parametrized family DM 4 (k) of such. Each oo-category DM 4 (k) defines a
spectrum HZ 4, not necessarily equivalent to HZ, but nevertheless sharing many
of its basic properties. We therefore regard the various spectra HZ 4 € SHeHY
as motivic cohomology theories as well. Conversely, as mentioned in [Section 1.5]
any ring spectrum £ in the heart of the effective homotopy t-structure on SH(k)
gives rise to a derived category of motives DMg(k). Hence, the ring spectra
contained in SH(k)*™“ correspond to various motivic cohomology theories. But
what about other motivic spectra? The work constructs, for any
ring spectrum E € SH(k), a category hCorrj which is conjectured to be the

homotopy category of an co-category CorrkE of finite E-correspondences. By
Lemma 4.1.21, Remark 4.1.22] the category CorrkE is a 1-category—
i.e., discrete —if and only if E € SH(k)*™%, in which case CorrY coincides
with the category Corf as defined in What is the significance of the
assertion that CorrkE is discrete? From topology, we know that for an £.-ring
spectrum F in the classical stable homotopy category, the functoriality of the
Becker—Gottlieb transfer on E may introduce higher homotopies; to obtain strict
functoriality one needs to pass to modules over the classical Eilenberg-Mac Lane
spectrum and hence to ordinary cohomology. In motivic homotopy theory we
can think of the correspondences in the category Corrf as encoding a sort of
Becker—Gottlieb transfer. By the above discussion, the analogous procedure in
motivic homotopy theory to strictifying the functoriality of the transfers would
therefore be to pass to SH(k)*H".

To summarize, a ring spectrum E € SH(k) should define a motivic cohomol-
ogy theory if and only if Corr’,{;E is discrete, and this latter condition is again
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equivalent to demanding F € SH(k)*%. We therefore propose to think of a
motivic cohomology theory as an E..-ring spectrum in the category SH(k)*t:®.
With this definition, we can make precise the statement made in the beginning
of this introduction that Milnor-Witt K-theory is the initial motivic cohomology
theory. Indeed, the truncation of the motivic sphere spectrum 1 € SH(k) to the
heart of the effective homotopy t-structure is Egﬁ(l) ~ foKMW  the effective
cover of the homotopy module of Milnor—Witt K-theory . Hence the
initial ring spectrum in SH(k)*™" is given by Milnor-Witt K-theory. Further-
more, by the spectrum foKMW coincides with the Milnor-Witt motivic
cohomology spectrum HZ as defined via the oo-category ﬁ/,[(k) we encountered
in Thus, the category (’]E)Jrk. of finite Milnor-Witt correspondences
constitutes the initial 1-category of correspondences §1] and is in this
sense the initial motivic cohomology theory.

1.7 Geometric and arithmetic properties of motivic
cohomology theories

To conclude this introduction we may now summarize the above discussion as
well as the title of the thesis as follows. Our main objects of study are motivic
cohomology theories, i.e., £o-ring spectra in SH(k)*®Y. From a geometric point
of view we study these ring spectra in terms of correspondence categories and
their associated derived categories of motives, highlighting how each such category
gives rise to a motivic cohomology theory. This is the main topic of Papers I} [}
[ and [V} From an arithmetic point of view, we study in some of the
number theoretic information contained in the initial motivic cohomology theory,
i.e., in Milnor—Witt motivic cohomology HZ. We can consider the results of
as an extension of the classical arithmetic properties of Milnor K-theory,
and ordinary motivic cohomology HZ, to the quadratic setting of Milnor-Witt
K-theory. Hence, this thesis investigates interactions between geometry, number
theory, cohomology and quadratic forms, that take place in motivic homotopy
theory.

1.8 Summary of papers

This thesis consists of five papers. The first four papers concern the geometric
properties of motivic cohomology theories, while the last paper deals with the
arithmetic properties. Each paper is summarized below.

concerns the basic properties of presheaves on the category 60/rk
of finite Milnor-Witt correspondences. Specifically, we show that for
any homotopy invariant presheaf % on Cory, the associated Nisnevich
sheaf Zy;s is also homotopy invariant. For the proof we follow a similar
path as Druzhinin’s proof in the case of Witt- and Grothendieck—Witt

correspondences [Drul4; Drulg| and as Garkusha—Panin’s proof in the case
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of framed correspondences ; it consists of showing various excision
results as well as a moving lemma for the presheaf .%. Having these results
at hand, the preservation of homotopy invariance under sheafification
follows by a formal argument.

The excision results for the presheaf .# roughly read as follows. Suppose
that i: V < U is an inclusion of open subschemes of the affine line. If z is
a closed point contained in V', then the map ¢ induces an isomorphism

o FU\z) =2 F(V\2)
T2 (0) Z(V)

L

We also show a similar result for étale neighborhoods. Finally, the moving
lemma for .# can be formulated as follows. Pick a scheme X € Smy, along
with a closed point z € X and a closed subscheme Z C X containing z. If
s is a global section of the homotopy invariant presheaf .# on Cor which
vanishes at X \ Z, then s, = 0 in the stalk of .# at z.

We note that the result on homotopy invariance of %5 was obtained in
as well, by using the fact that there exists a functor from the
category of framed correspondences to (/Jak along with the fact that the
result holds in the former category by the work of Garkusha and Panin

|GP18b]. The point of is however to give a proof internal to the

category of Milnor—-Witt correspondences.

is joint work with E. Elmanto and concerns the following question:
which stable co-categories can be realized as categories of modules over
some motivic ring spectrum? We give an axiomatic approach using Lurie’s
oo-categorical version of Barr-Beck’s monadicity theorem Theorem
4.7.3.5]. Being equivalent to modules over the motivic Eilenberg—Mac Lane
spectrum HZ, Voevodsky’s category DM(k) provides the first example
of such a module category . Inspired by this result we axiomatize
the properties of the category Cory of finite correspondences in order
to produce a family of derived categories of motives, all of which will
then, after inverting the residue characteristic, be a module category over
a motivic spectrum. In particular, this result applies to the categories
DM 4 (k) constructed in ensuring that each such category is a
module category over the associated motivic Eilenberg—Mac Lane spectrum
HZ,.

A similar axiomatization is obtained by Garkusha in , however,
using different methods. Finally, in the last part of the paper we adopt
Cisinski and Déglise’s techniques from to extend the results to
Noetherian base schemes that are regular over a field.

Paper IT]| is joint work with A. Druzhinin in which we introduce a class of
correspondence categories parametrized by suitable cohomology theories
on smooth schemes. We generalize the results of by showing
that homotopy invariance is preserved under Nisnevich sheafification for
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presheaves on these cohomological correspondence categories. We further-
more show that the analog of Voevodsky’s cancellation theorem holds
for these types of correspondences and use the results to construct their
associated derived categories of motives. Finally, we note that each such
cohomological correspondence category Corf defines an associated motivic
Eilenberg-Mac Lane spectrum HZ 4 € SH(k)*®Y.

We contend that it should be possible to extend the results of this paper to
more general cohomology theories—in particular, to cohomology theories
for which one needs to twist by arbitrary virtual vector bundles in order to
have a proper pushforward. This would allow one to replace the cohomology
theory A* with any E-ring spectrum F in SH(k). However, according
to Lemma 4.1.21, Remark 4.1.22], the discrete correspondence
category CorkE depends only on the truncation 7§ (E) of E to the effective
heart SH(k)*™“. In the case of the sphere spectrum, 7§ (1) is the Milnor-
Witt motivic cohomology spectrum Hz, and hence, we reconstruct 6\(&;C
which is already a cohomological correspondence category in the sense of
this paper. In this regard, the theory of is the most general
theory we can obtain without passing to nondiscrete co-categories of
correspondences.

is a continuation of [Paper IIl] where we study the derived category

of motives DM 4 (k) and the motivic Eilenberg-Mac Lane spectrum HZ 4
associated to a cohomological correspondence category Cor’,;‘ in more
detail. In particular, we give a proof that HZ 4 is effective and compare
the categories DM 4 (k) for various choices of the cohomology theory A*.

investigates number theoretic properties of Milnor-Witt K-theory, in

22

the sense that we establish analogs of classical number theoretic results for
Milnor-Witt K-groups. We focus in particular on the lower Milnor-Witt
K-groups KMW and K}™W. For the functor K}MW applied to a number field
we define valuations, ideles and relate the associated idele class group to
the classical one. For the functor KYW on number fields we define Hilbert
symbols and show an analog of Moore’s reciprocity sequence. We also
discuss KYW of rings of integers and a Hasse type norm theorem for K}™W.

There are many possible further questions in this direction. For example,
we can ask if there is a variant of the Galois group that receives a reciprocity
map from the Milnor—-Witt ideles, giving an enhanced Artin reciprocity
law. Another direction is to investigate whether one can connect the zeroth
Milnor-Witt homology group HY'™W (X) JAN19] of a smooth curve X over a
field of positive characteristic with variants of tame coverings of X .
One may also look for generalizations of the results to Milnor—Witt motivic
cohomology groups or higher Hermitian K-groups.
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1.8.1 Notational and editorial remarks

In order to fit the format used for Ph.D. theses at the University of Oslo, the
papers have been lightly edited compared to their online arXiv versions. The
notation used in the papers is for the most part consistent throughout.
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Abstract

The category of finite Milnor—Witt correspondences, introduced by Calmes
and Fasel, provides a new type of correspondences closer to the mo-
tivic homotopy theoretic framework than Suslin—Voevodsky’s finite cor-
respondences. A fundamental result in the theory of ordinary correspon-
dences concerns homotopy invariance of sheaves with transfers, and in
the present paper we address this question in the setting of Milnor—Witt
correspondences. Employing techniques due to Druzhinin, Fasel-@stvaer
and Garkusha—Panin, we show that homotopy invariance of presheaves
with Milnor—Witt transfers is preserved under Nisnevich sheafification.
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|. Homotopy invariance of MW-sheaves

.1 Introduction

A stepping stone toward Voevodsky’s construction of the derived category of
motives DM(k) [Voe0Ob] is the notion of finite correspondences between smooth
k-schemes. Such correspondences are in a certain sense multivalued functions
taking only finitely many values. By considering finite correspondences instead
of ordinary morphisms of schemes, one performs a linearization which allows
for extra elbowroom and flexibility, and which in turn makes it possible to
prove strong theorems. One of the “fundamental theorems” in the theory of
correspondences concerns homotopy invariance, and is crucial for constructing
the theory of motives.

Theorem I.1.1 ([Voe00al, Theorem 5.6]). For any homotopy invariant presheaf
F on the category Cory, of finite correspondences, the associated Nisnevich sheaf
Fis 18 also homotopy invariant.

In , Calmes and Fasel introduce a new type of correspondences called
finite Milnor-Witt correspondences (or finite MW-correspondences for short).
Milnor-Witt correspondences provide a setting that is closer to the motivic
homotopy theoretic framework than Suslin—Voevodsky’s correspondences; for
example, the zero-line of sheaves of motivic homotopy groups of the sphere
spectrum do not admit ordinary transfers, but they do admit MW-transfers
. Roughly speaking, a finite MW-correspondence amounts to an ordinary
finite correspondence along with an unramified quadratic form defined on the
function field of each irreducible component of the support of the correspondence.
We briefly recall some results in the theory of MW-correspondences below. Our
present goal is to prove a homotopy invariance result similar to
for sheaves with MW-transfers:

Theorem 1.1.2. Let k be a field of chafggteristiclﬂ 0. Then, for any homotopy
invariant presheaf F on the category Cory of finite MW -correspondences, the
associated Nisnevich sheaf Fnis 18 also homotopy invariant.

We note that this result is already known by work of Déglise and Fasel
Theorem 3.2.9]. Their proof uses the fact that there is a functor Fr, (k) — Cory,
from the category of framed correspondences to MW-correspondences. As
the analog of is known for framed correspondences by work of
Garkusha and Panin |G -, it follows that the desired result also holds for Cory.
The purpose of this paper is to give a more direct proof by using geometric
input provided in 8, §13] to produce homotopies in Cor;c Along the way
we obtain results on MW-correspondences of independent interest. The proof

strategy is due to Druzhinin |[Drul6] and Garkusha-Panin [GP18|, and uses
techniques developed in [FO17].

IThe assumption on the characteristic is there because Milnor-Witt correspondences are
currently not defined over nonperfect fields. The only place where this assumption is used is
in where we need to consider Milnor—Witt correspondences defined over function
fields of smooth k-schemes, which may in general be nonperfect. Otherwise, all excision results
are valid for infinite perfect fields of characteristic different from 2.
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Recollections on Milnor—Witt correspondences

The Milnor-Witt K-groups KMW (k) of a field k arose in the context of motivic
stable homotopy groups of spheres. More precisely, in [Mor04] Theorem 6.4.1]
Morel established isomorphisms

Tl =2 KMW(E) (L1)

for all n € Z, where 1 € SH(k) denotes the sphere spectrum. The groups
KMW (k) admit a description in terms of generators and relations:

Definition 1.1.3 (Hopkins-Morel). Let k be a field. The Milnor-Witt K-theory
KMW(E) of the field k is the graded associative Z-algebra with one generator [a]
for each unit a € k*, of degree +1, and one generator 7 of degree —1, subject to
the following relations:

(1) [a][l —a] =0 for any a € k* \ {1} (Steinberg relation).
(2) nla]l =la]n  (n-commutativity).

(3) [ab] = [a] + [b] + nla][b] (twisted n-logarithmic relation).
(

4) (2+n[-1])n =0 (hyperbolic relation).

We let KMW (k) denote the n-th graded piece of KMW (k). The product [a1] - - - [ay]
in KMW(k) may also be denoted by [ay,...,a,].

Under the isomorphism (L.1)) above, the element [a] € KW (k) corresponds
to a class [a] € m_1,_11. A representative for [a] is given by the pointed map

[a]: Spec(k)+ — (G, 1)

sending the non-basepoint to the point a € G,,. On the other hand, the element
€ KMW(k) corresponds to the motivic Hopf map 7 € 71 11 represented by the

natural projection [Mor04} §6]
n: A*\ 0 — PL.

As the sphere spectrum is initial in the category of motivic ring spectra, the
homotopy groups m, 4(E) of a motivic ring spectrum E inherit the relations of
Tp,ql via the unit map 1 — E. Thus Milnor-Witt K-theory is a fundamental
object in motivic homotopy theory. In , Calmes and Fasel employ sheaves
of Milnor-Witt K-theory to set up the theory of MW-correspondences. Based
on the fact that the group Cori(X,Y) of finite correspondences from X to Y
can be expressed as a colimit of Chow groups with support,

Ju—

=

Corp(X,Y)= li HY (X x Y, K))

Y)
CHY (X x Y),
Y)

il

Te

>

(

i
TeA(

Is
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|. Homotopy invariance of MW-sheaves

Calmes and Fasel replace Milnor K-theory (and Chow groups) with (twisted)
Milnor-Witt K-theory (and Chow—Witt groups), and define the group of finite
MW-correspondences from X to Y as

Cory(X,Y) = lim HPY (X x VK3, pywy i)
TEA(X,Y)

. v *
= hﬂ CHT (X X Y7prY/k)a
TeA(X,)Y)

where py : X XY — Y is the projection. Here Y is assumed to be equidimensional
of dimension dy, and A(X,Y) is the partially ordered set of closed subsets T' of
X XY such that each irreducible component of 7' (with its reduced structure)
is finite and surjective over X. Moreover, KMW is the n-th unramified Milnor—
Witt K-theory sheaf, as defined in §5]. We note that the Nisnevich
cohomology groups H? (X, KMW, 2) of the Milnor-Witt sheaf KMW(.2) twisted
by a line bundle . can be computed using the Rost—Schmid complex [Mor12)
Chapter 5], which provides a flabby resolution of Kg/lw(f ). Recall that the p-th
term of the Rost—Schmid complex is given by

CP(X,K)'W, 2) = @ KW (k(z), AP (g /m2)Y ®p(a) ZLa),
zeX(®)

where X () denotes the set of codimension p-points of X. We let (/JE)Jrk denote
the category of finite MW-correspondences. The category Cory is symmetric
monoidal, and comes equipped with an embedding Smy — Corj, from smooth
k-schemes, as well as a forgetful functor Cory — Cory to Suslin—Voevodsky’s
correspondences; see |CF17] for details.

Let PSh(k) denote the category of presheaves with MW-transfers, i.e., addi-

. . ~—op .

tive presheaves of abelian groups .% : Cor,, — Ab. As noted in |[CF17], there are

more presheaves on 6&% than on Corg. One example is of course provided by
the sheaves KMW, which admit MW-transfers but not ordinary transfers |[CF17].

Among the various presheaves with MW-transfers, the homotopy invariant ones
will be of most interest to us.

Definition 1.1.4. A presheaf .7 € I%Tl(k) with MW-transfers is homotopy invari-
ant if for each X € Smy, the projection p: X x A! — X induces an isomorphism

p*: F(X) = F(X x Al). Equivalently, the zero section ip: X — X x Al
induces an isomorphism ij: Z (X x Al) =N F(X).

Let us also mention that by Lemma 1.2.10], the Nisnevich sheaf
Fnis associated to a presheaf & € fTSvh(k) comes equipped with a unique MW-
transfer structure. This result follows essentially from Lemma 1.2.6],
which states that if p: U — X is a Nisnevich covering of a smooth k-scheme X,
and if ¢(X') denotes the representable presheaf ¢(X)(Y') := Corg(Y, X), then the
Cech-complex ¢(U%) — ¢(X) — 0 is exact on the associated Nisnevich sheaves.
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Extending presheaves to essentially smooth schemes

In this paper we will consider two closely related ways to extend presheaves

on Cory to essentially smooth schemes over k. This allows us to formulate
statements also about local schemes or henselian local schemes.

1. The first method is the standard way of defining the value of a presheaf

on limits of schemes as a colimit of the presheaf values, and will be
used in Sections We briefly recall some details on this matter,
following §5.1]. Let P be the category consisting of projective
systems ((Xx)aer, fan) such that X\ € Smy, and such that the transition
morphisms fy,: Xy — X, are affine and étale. By §5.1], the limit
of such a projective system exists in the category of schemes Sch. Moreover,
the functor P — Sch sending a projective system to its limit defines an
equivalence of categories between P and the full subcategory Smy, of Sch
consisting of schemes over k that are limits of projective systems from P

§5.1].

Now let .Z be a presheaf on Smj. We can extend .% to a presheaf .Z on
Smy, by setting .Z ((Xx)aer) = lim F(Xy). By §5.1] this gives
a well defined presheaf on Smy, that coincides with % when restricted to
Smy. In particular, we can extend the presheaf Cory(—, X) to Smy.

The above construction can furthermore be carried out for Chow—Witt
groups with support. Roughly speaking, we can define a category P
consisting of projective systems of triples (Xy, Zy,-%\) of a smooth k-
scheme X, a closed subscheme Z, of X, and a line bundle %\ on X,. If
the limit (X, Z, %) of such a projective system is such that X is regular,
then the pullback induces an isomorphism Lemma 5.7

lig CH ,, (X5, -4) = CH(X, 2).
A

This allows us to pass to Chow—Witt groups of local schemes U in order
to produce MW-correspondences on U, which will be needed in Sections
[[9HLI2} However, in order to unburden our notation we may drop the bar
both from .# and Smj, when evaluating presheaves on limits of schemes.

. A second method of extending presheaves will be carried out in
in order to show that certain results that hold for open subsets of A,lC are
also valid for open subsets of Al where K is some finitely generated field
extension K of the ground field k. This trick was suggested to the author

by I. Panin, and involves extending a presheaf on Corj to a certain full
subcategory of Corg. See[Section 1.8 for details.

Outline
In we establish some notation and collect a few lemmas needed later
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|. Homotopy invariance of MW-sheaves

In we review how Cartier divisors give rise to finite Milnor—Witt
correspondences, following |[F(?17|. This gives a procedure to construct desired
homotopies in the later sections.

In [Section I.4] we prove the first main ingredient of the proof of
which is a Zariski excision result for MW-presheaves. More precisely, in [Theo]

we show that if V' C U C A! are two Zariski open neighborhoods of a
closed point € A', then the inclusion i: V < U induces an isomorphisnﬂ

. FWU\D) = F(V\a)
CTZ(U) Z(V)

1

for any homotopy invariant .7 € lséil(k) The proof of Zariski excision consists

of producing left and right inverses in Cory, of 7 up to homotopy. This is done in
Sections [[L6] and

In we extend the results of [Section 1.4] to open subsets of Al
where K is a finitely generated field extension of the ground field k.

In [Section 1.9 we prove a “moving lemma” for MW-correspondences (see
[Theorem 1.9.1)), which can be informally stated as follows. Let X € Smy, and
pick a closed point z € X along with a closed subscheme Z C X containing the
point . Then, up to A'-homotopy, we are able to “move the point = away from
77 using MW-correspondences. See for more details.

In[Section T.10] we prove the last main ingredient of the proof of
namely a Nisnevich excision result. The situation is as follows. Given an
elementary distinguished Nisnevich square

Vi —— X’

| ln

V — X

with X and X’ affine and k-smooth, let S := (X \ V)yeq and S" := (X' \ V');eq.
Suppose that x € S and 2/ € S are two points satisfying II(z') = z, and
put U := Spec(Ox ;) and U’ := Spec(Ox ). Then the map II induces an
isomorphis
1 FUNS) = SO\ S)
- F(U) F(U')

1w

for any homotopy invariant .% € 15ST1(k) Again the proof consists of producing
left and right inverses to II up to homotopy, which is done in Sections [.11] and
12!

Finally, in [Section I.13] we will see how homotopy invariance of the associated
Nisnevich sheaf .Zy;s follows from the above results.

2We show inthat the restriction maps .#(U) — .Z#(U\z) and #(V) — .Z(V\x)
are injective, justifying the notation used in the formulation of Zariski excision.

31t follows fromthat the restriction maps Z#(U) — .Z(U \ S) and .Z(U’) —
F (U’ \ §') are injective, justifying the notation used in the formulation of Nisnevich excision.

See for details.
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Conventions

Throughout we will assume that k is an infinite perfect field of characteris-
tic different from 2. In Sections and k is furthermore assumed to
be of characteristic 0. We let Smy, denote the category of smooth separated
schemes of finite type over k. All undecorated fiber products mean fiber prod-
uct over k. Throughout, the symbols ig and i; will denote the rational points
ig,i1: Spec(k) — A given by 0 and 1, respectively.

We will frequently abuse notation and write simply f € é\o/rk (X,Y) for 7y,
where 7 is the image of a morphism of schemes f: X — Y under the embedding

y: Smy — a\o/rk of §4.3]. We let ~1 denote A'-homotopy equivalence.
Following Calmés—Fasel [CF17], if py: X x Y — Y is the projection, we may
write wy as shorthand for pj-.wy/;, if no confusion is likely to arise. Note that
wy is then canonically isomorphic to wx xy,x. In general, given a morphism of
schemes f: X — Y we write wy := wy/, ® f*w;ﬁ/k,.
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.2 Pairs of Milnor-Witt correspondences

We will frequently encounter the situation of a pair U C X of schemes, and we
will be led to study the associated quotient .7 (U)/im(.#(X) — Z#(U)) for a

given presheaf .% on Corj. It is therefore notationally convenient to introduce a

category Corzr of pairs of MW-correspondences.

Following we let SmOp, denote the category whose objects are
pairs (X,U) with X € Smy and U a Zariski open subscheme of X, and whose
morphisms are maps f: (X,U) — (Y, V), where f: X — Y is a morphism of
schemes such that f(U) C V. Below we extend this notion of morphisms of pairs
to MW-correspondences.

Definition 1.2.1 ([GP18, Definition 2.3]). Let (/]‘Erzr denote the category whose
objects are those of SmOp,, and whose morphisms are defined as follows. For
(X,U),(Y,V) € SmOp,, with open immersions jx: U — X and jy: V — Y, let

Cory ((X,U), (Y, V)) := ker ((’:&k(x, Y) @ Corg (U, V) 22297 Cor, (U, Y)).
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|. Homotopy invariance of MW-sheaves

——pr

Thus a morphism in Cor;, is a pair (a, /), where a € (/J;rk(X, Y) and § €
Cor (U, V), such that the diagram

X —“25Y

.ij Jy
v v

commutes in Cor. Composition in 6&? is defined by (o, ) o (7,0) := (o
Y, B048).

The category SmOp; contains Smj as a full subcategory, the embedding
Smj; — SmOp,, being defined by X +— (X,&). Moreover, the embedding
Smyj — SmOp, induces a fully faithful embedding Cork — Corz which on
morphisms is given by a — (a,0).

Proposition 1.2.2 (|GP18| Construction 2.8]). Suppose that & is a presheaf on
Corg. For any (X,U) € SmOpy, let F(X,U) := Z(U)/im(F(X) — F(U)).
Then, for any (o, ) € Corz (X,U),(Y,V)), F induces a morphism

(o, B)": F(Y, V) — Z(X,U).

Definition 1.2.3 (|GP18| Definition 2.3]). Define the homotopy category hCory,
of Cory as follows. The objects of hCory are the same as those of Cory, and the
morphisms are given by

hCorg(X,Y) := Corg(X,Y)/ ~as
= coker((ﬁrk(Al * X,Y) 75 Cory(X, Y))

Similarly, let hé\oirzr denote the category whose objects are those of 60??, and
whose morphisms are given by

hCory, ((X,U),(Y,V)) :=

coker(é&ir(Al x (X, U), (Y,V)) 275, Cory (X, U), (Y, V))).

Here A x (X, U) is shorthand for (A x X, A xU). Ifa € (r]‘\o/l"k(X, Y') is a finite
MW-correspondence, we write @ for the image of o in hé\oJrk(X ,Y). Similarly, if
(c, B) is a morphism in é\o/rzr from (X, U) to (Y, V), write («, 8) for the image of
a in h(?o/rir((X U),(Y,V)). Note that a presheaf on Cory, is homotopy 1nvar1ant
if and only if it factors through hCork Moreover, the embedding Cork — Cork
induces a fully faithful embedding hCory, — hCor,C .

Next we record a few observations that will come in handy later on:
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Pairs of Milnor—Witt correspondences

Lemma 1.2.4. Suppose that « is a finite MW -correspondence from X to Y.
Let Ty, ..., T, be the connected components of the support T of . Then, for
each i =1,...,n there are uniquely determined finite MW -correspondences «;
supported on T; such that o =), 0.

Proof. Since a € @D, ¢(xxy)ay) KMW(k(z), A% (m,/m2)Y @ (wy),), we may

write o = Zi «; where «; is supported on T;. To conclude we must show that
—d

a; € CHTj (X x Y,wy), i.e., that 9(a;) = 0 for all i. Now 9, (a;) = 0 for all

xz € X XY except perhaps for x € T;. But since 7; is disjoint from the other

T;’s and 0(a)) = 0 by assumption, we must have d,(co;) =0 also for x € T;. W

Lemma 1.2.5. Let X be a smooth scheme, let q € Z be an integer, and let £ be
a line bundle over X. Let j: U — X be a Zariski open subscheme, and suppose
that T C U is a subset which is closed in both U and X. Then the map

7 HL (X KYY, 2) - HL(U K 7 .2)

s an isomorphism for each p € Z, with inverse j,., the finite pushforward of

§3).

Proof. The map j* is an isomorphism by étale excision [CF17, Lemma 3.7]. The
composition j*j, is the identity map on the Rost—Schmid complex supported on
T, which implies the claim. [ |

Corollary 1.2.6. Let X, Y € Smy, and let j: V — Y be a Zariski open subscheme.
Suppose that o € (To/rk(X, Y) is a finite MW -correspondence such that supp o C
X x V. Then there is a unique finite MW -correspondence 3 € é&k(x, V) such
that j o = a. In fact, we have = (1 x j)*a.

Proof. Let T := suppa, so that by we have mutually inverse

isomorphisms
nx Ay v .
(I1x4):CHy (X xY,wy) =2 CHp (X X Viwy) (1 X j).

—d
with o € CH, (X x Y,wy). Thus, if 8 := (1 x j)*(a) then (1 x j),8 = a. We
conclude the equality (1 X j).0 = j o from [CF17, Example 4.18]. [ ]

Lemma 1.2.7. Suppose that jx: U — X and jy:V — Y are open subschemes
of smooth connected k-schemes X, Y. Assume further that o € Corp(X,Y)
is a finite MW -correspondence such that the support T := suppa satisfies
TNUXY)CUxV. Let o := (jx x jy)*(«). Then we have

(a,0") € Cory (X, U). (Y, V).
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|. Homotopy invariance of MW-sheaves

Proof. First we show that o € (To/r;f(U7 V). By contravariant functoriality of
Chow—Witt groups we may write o' = (1 X jy)*(jx x 1)*(«). Now

(jx x 1)*() = a0 jx € Corg(U,Y)
by |CF17, Example 4.17]. By |CF17, Lemmas 4.8, 4.10], supp(jx X 1)*(«) =

TN (U xY) is finite and surjective over U. Since TN (U xY) C U x V, we have

—d
o’ € CHyrya) (U x V, (1 ) wy),
where dy := dimY. As jy is an open embedding we have
(1 x jy ) wy Zwy;

hence o is a finite MW-correspondence from U to V.
Next we show that the diagram

X “25Y

W

’

U—=2-vVv

commutes in Corg. As T N (UxY)=TnN (U x V), the morphism (jx x 1)*
factors as

4 i Xy ) med
CHy (X % Y,y ) 22 CHLY 1) (U % Vi)

——dy
CHpnwxyy (U X Y, wy).

Hence
Jyoad =(1xjy)(ix xjy) () = (jx x1)"(a) = aojx
by |[CF17, Examples 4.17, 4.18]. [ |

Relative Milnor-Witt correspondences

For later reference, let us also briefly mention the notion of finite Milnor-Witt
correspondences relative to a base scheme S € Smy.

Definition 1.2.8. Let S € Smy be a smooth k-scheme. For any X,Y € Smg, let
p: X XgY — X denote the projection, and let d denote the relative dimension
of p. We define the group of finite relative MW -correspondences from X to Y as

__ )
Corg(X,Y) := h_;)nCHT(X xsY,wp,),

where the colimit runs over all closed subsets T of X xg Y such that each
irreducible component of T.q is finite and surjective over X.
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One can show that the groups CA/ors(X ,Y) define the mapping sets of a
category 6&5 of finite relative MW -correspondences. However, below we will
only need the definition of the groups 6\/or5 (X,Y), and so we will not pursue
the study of the category (f]:)JrS in further detail here.

Lemma 1.2.9. Let S € Smy, be a smooth k-scheme, and let X,Y € Smg. Then
the canonical morphism f: X xgY — X XY induces a homomorphism

fu: Corg(X,Y) — Corg(X,Y)
given as the pushforward on Chow-Witt groups.

Proof. Let dy :=dimY and dg := dim S. Then the projection p: X xg¥V — X
has relative dimension dy — dg, and the pushforward map on Chow—Witt groups
is given as

ds(

—dy — —d
fo: CHp (X x5 Y,wp) = CH gy (X x Y, wy),

for any admissible subset T'. Since f is finite, f(T") is also an admissible subset.
Hence, composing with the canonical map to the colimit Cor(X,Y) on the right
hand side, we obtain the desired homomorphism. |

1.3 Milnor-Witt correspondences from Cartier divisors

Let us recall from §2] how a Cartier divisor gives rise to a finite MW-
correspondence. Suppose that X € Smy, is a smooth integral k-scheme, and let
D = {(U;, fi)} be a Cartier divisor on X, with support |D|. We can associate a
cohomology class

div(D) € Hip (X, K}, 0x (D)) = CHp (X, Ox (D))

to D as follows. If z € X1 is a codimension 1-point on X, choose i such that
x € U;. Consider the element

[fil @ f7 e KW (k(X), Ox (D) ® k(X))
Definition 1.3.1 ([FO17, Definition 2.1.1]). In the above setting, define
ordy (D) = 0u((fi] @ 1) € K™ (k(), (mq/m3)” @i(a) Ox (D)),

and
ord(D):= Y ordy(D) € C'(X, KM, 0x(D)).
zeXMN|D|
By Lemma 2.1.2], the definition of SEI(D) does not depend on the
choice of U;, and by Lemma 2.1.3] we have 8(&&(D)) = 0. Therefore
the element B;E(D) defines a cohomology class in é\ﬁllDl(X ,Ox (D)), which we
denote by div(D).
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|. Homotopy invariance of MW-sheaves

Lemma 1.3.2. Let X € Smy, be a smooth integral k-scheme and suppose that D
and D' are two Cartier divisors on X such that

e the supports of D and D' are disjoint, and
e there are trivializations x: Ox — O(D) and X': Ox — O(D').
Then x and X' induce an isomorphism
CHpy, p (X, O(D + D')) = CH\p, (X, O(D)) @ CH, (X, O(D')).
Under this isomorphism we have the identification
div(D + D') = div(D) + div(D").
Proof. Since O(D + D") = O(D) ® O(D’), x and x’ furnish a trivialization
x®x':O(D+ D) =0x.
As |D 4+ D'| = |D| 11 |D’|, we thus obtain isomorphisms
ClH, .y pr (X, O(D + D)) = CH, (X, O(D + D')) @& CH, s, (X, O(D + D))
~ CH,p(X) & CH,p (X)
~ CH, (X, O(D)) & CH, (X, O(D')).

To show the last claim, let D and D’ be given by the data {(U;, f;)} respec-
tively {(U;, f)}, so that D + D’ = {(U, f;f1)}. Let x € X() 0 |D|, and choose
an 4 such that « € U;. Since the vanishing loci of f; and f/ are disjoint we may
assume that f/ € T'(U;, O%), shrinking U; if necessary. Hence 9, ([f/]) = 0, and
we obtain

O ([fif @ (fif))™Y) = 0o (([f1 + (SDLLD @ (fif) ™)
= (FINUD ([l ® 7Y
- a:r([fz] ® fi_l)'

Thus 9. ([fif]] @ (fif])™") = ord, (D). A similar argument shows that
On([fifl) @ (fif}) ™) = ordo(D)
for all 2 € X N |D’|, and the result follows. |

If we require a condition on the line bundle O(D) and on the support of D,
the class div(D) does indeed give rise to a finite MW-correspondence:

Lemma l.3.3. Let X and Y be smooth connected k-schemes with dimY = 1. Let
D be a Cartier divisor on X XY . Suppose that
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Milnor—Witt correspondences from Cartier divisors

o there is an isomorphism x: Oxxy (D) =N wy, and

o cach irreducible component of the support |D| of D is finite and surjective
over X.

Then the image of &I\//(D) under the isomorphism
—1 ~ ——1
CH|p|(X XY, 0xxy (D)) = CHp|(X x Y,wy)

induced by x defines a finite MW -correspondence &RI(D,X) € (/J\o/rk(X, Y).
Proof. By assumption, |D| is an admissible subset, hence the claim follows. W

Lemma 1.3.4. Assume the hypotheses of|Lemma 1.5.3, and let f: X' — X be a

morphism of smooth k-schemes. Then
div(D,x) o f = div((f x 1)*D, (f x 1)"x) € Corp(X,Y).

Proof. As aR/(D, X)of=(fx 1)*&57(D, X), the claim follows from the fact that
(f x 1)* commutes with the boundary map 9 in the Rost-Schmid complex. W

For later reference, let us also state the version of for Cartier-

divisors:

Lemma 1.3.5. Assume the hypotheses of[Lemma 1.3.3. Suppose moreover that
Jj: V=Y is a Zariski open subscheme of Y such that support |D| is contained

in X x V. Then there exists a unique finite MW -correspondence 3 € Cor(X,V)
such that j o § = div(D, x). In fact, B is given by

B =div((1xj)"D, (1% j)"X).
Proof. By the same argument as in the proof of we have
(1 x j)*div(D, x) = div((1 x j)*D, (L x j)"x)-
Hence the claim follows from [ |

The above lemmas give a procedure to construct a morphism of pairs from a
Cartier divisor:

Lemma 1.3.6. Assume the hypotheses of [Lemma I1.3.3, and let jx: U — X and
Jy: V. =Y be open subschemes. Let D' := D|yxy be the restriction of D to

U x Y. Suppose that |D'| CU x V. Then
(div(D, x). div((jx % jv)* D, (jx x jv)*x)) € Cory (X, U),(Y.V)).

Proof. By [Lemma 1.3.4] div((jx x jy)*D) = (jx x jy)*div(D), hence the claim
follows from [Lemma L.2.171 ]
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|. Homotopy invariance of MW-sheaves

We will frequently make use of the following well known fact in order to
determine if the support of a given principal divisor satisfies the hypotheses of

Lemma T.3.3t

Lemma 1.3.7. Let A be a ring, and suppose that P is a monic polynomial in
Alt]. Then Spec(A[t]/(P)) — Spec(A) is finite, and every irreducible component
of Spec(AJt]/(P)) surjects onto Spec(A).

Proof. Write P(t) = t" + a,_1t" "' + -+ + ag, and let M := A[t]/(P). Then M
is generated as an A-module by 1,¢,...,t" =1 hence Spec(A[t]/(P)) — Spec(A)
is finite. As A[t]/(P) is integral over A, it follows that the morphism is surjective
as well. |

1.4 Zariski excision on the affine line

The aim of this section is to prove the following excision result:

Theorem 1.4.1. Let z € A be a closed point and suppose that V C U C Al are
two Zariski open neighborhoods of x. Let i: V — U denote the inclusion, and
let 7 € PSh(k) be a homotopy invariant presheaf with MW -transfers. Then the
induced map

o FWUN2)  F(V\2)
T Z () Z(V)

is an isomorphism.

The proof of Zariski excision proceeds in three steps. First we prove:

Theorem 1.4.2 (Injectivity on the affine line). With the notation as in
there exists a finite MW -correspondence ® € Cory (U, V') such that

506: idU

implies that ®* o i* = id gz for any homotopy invariant
Z € PSh(k), i.e., that ¢* is injective. In particular, letting V' = U \ y for a closed
point y of U, this means that #(U) is a subgroup of # (U \ y), justifying the
notation of [Theorem 1.4.7] o

The next step is then to extend to the category Corzr of pairs.
By abuse of notation, write ¢ also for the inclusion i: (V,V \ ) — (U,U \ z) in
SmOp,. By |Proposition 1.2.2] ¢ induces a map

FW\w) _ F(V\2)
FO) W)

ko

on the quotient, and the following theorem tells us that i* is injective:
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Theorem 1.4.3 (Injectivity of Zariski excision). There exists a finite Milnor—Witt
correspondence ® € Corzr((U7 U\ x),(V,V\x)) such that

i0® =idy,u\m

. pr
in hCory, .

In the final step we establish surjectivity of i*:

Theorem 1.4.4 (Surjectivity of Zariski excision). With the notation as in
there exist finite MW -correspondences W € Corzr((U, U\z),(V,V\z))
and © € Corir((V7 V\z), V\z,V\z)) such that

E o g - jT/ o @ = id(V,V\;z;)
in h(’JB/rzr, where jy: (V\z,V\x) < (V,V\z) denotes the inclusion in SmOpy,.
We note that is a consequence of Theorems [[[4.3] and [.4.4}

Proof of [Theorem 1.].1} As ® is a morphism of pairs by [Theorem 1.4.3] [Propo]
tells us that ® induces a morphism on the quotient
L WA\ FU\
F (V) F(U)

Moreover, ®* o i* = id by [Theorem I.4.3] hence ¢* is injective.
On the other hand, as © maps to (V' \ z, V' \ ) by [Theorem 1.4.4] it follows

that jy o © induces the trivial map on the quotient. Hence

F(V\2)  FV\2)
7wy FV)

"o U =id:

so that ¢* is surjective. |

It is therefore enough to prove Theorems [[[4.2] [[4.3] and [[4.4]

.5 Injectivity on the affine line

We continue with the same notation as in [Theorem 1.4.1] Thus V C U C A!

are two Zariski open neighborhoods of a closed point z € A!, with inclusion
i: V. — U. In order to produce the desired MW-correspondence ® € Cory (U, V)
of [Theorem 1.4.2] we will need to consider certain “thick diagonals”

A,, € Cory(U,U),

constructed as follows.
Let UxU C A? have coordinates X and Y, respectively, and let A := A(U) C
U x U denote the diagonal. For each m > 1, let f,,, denote the polynomial

fn(X,Y) = (Y — X)™ € k[U x U].
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|. Homotopy invariance of MW-sheaves

As f,, is monic in Y, it follows from that the support of the divisor
Dy =V(fm) ={fm =0} CUxU

is finite and surjective over U. Moreover, as D,, is a principal Cartier divisor on
U x U, there is a trivialization O(D,,,) = Oy given by f,.1 +— 1. We further

obtain an isomorphism y,,: O(D,,) = wy by f,! — dY. By [Lemma 1.3.3] it

follows that the divisor D,, gives rise to a finite MW-correspondence from U to
U.

Definition 1.5.1. For each m > 1, let
Ay = div(Dpn, Xm) € Corg (U, U)

be the finite MW-correspondence defined by the data D,, and x,, above.

Remark 1.5.2. By the definition of (i\i;/(Dm, Xm), we see that A, is given by the
total residue

A = O([fun] @ dY) € CH, (U x U, wy)

of the element [f,,] ® dY € KMW(k(U x U),wy). Thus the support of the
MW-correspondence A, is the diagonal A = D; CU x U.

Lemma 1.5.3. For any m > 0 we have
Ami1 — Ay = (=1)™ - Ay € Cory,(U,U),
with Al = idU.

Proof. Since A,, is supported on the diagonal A C U x U, it suffices to compute
the residue 0y ([f,,]®dY’) at the codimension 1-point y € (UxU)(!) corresponding
to the diagonal.

Recall from [Morl2, Lemma 3.14] that for any integer n > 0 we have
[a™] = nfa] in KW, where n. = > ((—1)""1). We thus get

Oy([fm] @ dY) = me ® (Y — X)dY € K™ (k(y), (my /m})" @ (wir)y)-

For m = 1, this reads A; = (1) ® (Y — X)dY = idy. In the general case we
obtain

Apr1—Ap=((m+1)e—m) @ (Y — X)dY = {((—1)™) -idy,
using that Ay =idy € (%}k(U, U). [ |

Our next objective is to prove the following:

Lemma 1.5.4. For m >0 there exists a finite MW -correspondence ®.,: U — V/
such that i o @, = A,, in hCory(U,U).
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Injectivity on the affine line

Having established these properties of A,,, and ®,,,, we will set & := &, 11 —
®,, and show that we then have 1 0 ® ~1 idy provided m is an even integer
> 0. To define ®,,,, we will need to ensure the existence of polynomials with
certain specified properties.

Lemma 1.5.5 (|GP18, §5)). Let A:= A*\ U and B:=U\V. For m > 0, there
exists a polynomial G,, € k[U][Y] = k[U x A'], monic and of degree m in 'Y,
satisfying the following properties:

(1) Gu(Y)|luxp =1.
(2) Gm(Y)luxa =Y = X)"[uxa.
(3) Gm(Y)|U><;c = (Y - X)m|U><w.

Remark 1.5.6. The above polynomials, as well as those in Sections[[.6]and [[.7] are
all constructed using variants of the Chinese remainder theorem, allowing us to
find polynomials with specified behavior at given subschemes. The requirement
that the desired polynomial be monic can be thought of as specifying its behavior
at infinity. For example, the Chinese remainder theorem establishes a surjection

kU x AY] — k[U x A] @ k[U x B], from which we can deduce [Lemma L.5.5

Lemma 1.5.7. Let D¢, be the divisor on U x U defined by G,,, and let
¢m: O(Dg,,) = wu
be the isomorphism determined by choosing the generator dY for wy. Then
div((1 x i)*De, , (1 X i)*¢pm) € Cor(U, V).

Proof. Since G,, is monic in Y, the support V(G,,) of D¢, is finite and surjec-
tive over U by [Lemma 1.3.7] Using the trivializations of O(Dg,, ) and of wy,

|Lemma I.3.3| implies that div(Dg, ., m) € Cory(U,U). Now, the polynomial
G, satisfies the following:

o Gmluxa € k[U x AJ*. This follows from the fact that U x A = U x (A1\U)
contains no diagonal points.

o Gmluxp € k[U x B]*. This is obvious, as G, luxp = 1.

The above properties imply that V(G,,) C U x V. Hence the claim follows from
LCemma T3 |

Definition 1.5.8. For m > 0, we define
®,, == div((1 x i)*Dg,,, (1 X i)*¢) € Corg(U, V).

We now aim to define a homotopy #%,: i o ®,, ~a1 A,,. Consider the
product A' x U x A', where 6 is the coordinate of the first copy of A!, U has
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|. Homotopy invariance of MW-sheaves

coordinate X and the last A! has coordinate Y. Let Hy € k[A! x U x A'] be
the polynomial
Hy(Y):=0G,,+(1-0)(Y —X)™.

Since U x A contains no diagonal points, the restriction
Gm(YV)loxa = (Y = X)"|uxa
does not vanish on U x A. It follows that
Ho(Y)|arxuxa = (Y = X)™|a1xvxa € k[A! x U x A%

Hence V(Hy) € A! x U x U. Let Dp, be the principal Cartier divisor on
Al x U x U defined by Hy, and let ¢: O(Dpy,) = wy be the isomorphism given
by choosing the generator dY for wy.

Lemma 1.5.9. Let 7, := div(Dp,,1). Then #, € Cory(Al x U,U).

Proof. As G, is monic and of degree m in Y, it follows that the linear combina-
tion Hy of G, and (Y — X)™ is also monic and of degree m in Y. Therefore
the support V(Hy) of Dy, is finite and surjective over A! x U by
The result then follows from []

Lemma 1.5.10. Let J%,, | := 7, 0ig, |1 := Hi 0ty € (fj\o/rk(U, U) denote the
respective precompositions of H,, € Cory(Al x U, U) with the rational points
ig,i1: U — Al x U. Then #,|o = Ay and H,|1 = i0 @y,

Proof. By we have
Ho = div((io x 1)* Dy, (io x 1)*1) = div(Dyy, Xom) = Apy.
On the other hand,
A = div((i x 1) Dy, (i x 1)) = div(Dg,,, ¢m) =i 0 B,

by T

We are now ready to prove the injectivity of the induced morphism

it F(U)— F(V),

for any homotopy invariant .% € ?S/h(k')

Proof of [Theorem 1.].3. Let m > 0 be an integer large enough so that the
polynomial G, of [Lemma 1.5.5] exists. If ® := @9, 1 — Py, we then have

i0® ~ar (Aopp — Aop) = ((—1)*)idy = idy

by'!Zemma !.5.3l As .7 is homotopy invariant, this yields ®* oi* = id # (), hence

5k

1™ is injective. [ ]
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1.6 Injectivity of Zariski excision

We wish to extend |Theorem 1.4.2[to the category of pairs aarzr—in other words

to produce a morphism
(@, @7,) € Cory, (U,U\2), (V,V \ z)
and a homotopy
(Hn, H2) € Cor, (A' x (U, U\ ), (U,U \ z))
from A, to (i,iy\z) © (P, ®F,). This establishes

Let jy and jy denote the respective open immersions jy: U \ # — U and
vV \ z— V.

Lemma I.6.1. Let

@7, = div((ju X jv)" Da,,, (Ju X jv )" ¢m)-
Then (@, PE)) constitutes a morphism in 6&? from (U, U\ z) to (V,V \ z).

Proof. By [Lemma 1.3.6] it suffices to show that the support of (jy x 1)*Dg,, is
contained in (U \ ) x (V' \ x). As we already know that

V(Gn)N(U\x)x AY) C(U\2z) xV,
it is enough to check that G,, does not vanish on (U \ z) x z. By condition
(3) of [Lemma 1.5.5) G, (Y)|uxe = (Y — X)™|uxz. As (U \ z) X x contains no
diagonal points, it therefore follows that G, |(\z)xz € k[(U \ ) x x]*. Hence
V(Gm)N((U\x) x A) C(U\ z) x (V\z). [ ]
Lemma 1.6.2. Let 7" := div(((1 x ju) X ju)*Da,, (1 X ju) x ju)*¥). Then
(4, A5") € Corl (Al x (U.U\ ), (U,U\ ).
Proof. In light of it remains to check that
V(Hg) N (A x (U \ z) x AY) C A x (U\ z) x (U\ z).
It is sufficient to show that Hy does not vanish on A! x (U \ x) x z. But
HG(Y)‘Alx(U\x)Xm =0-(Y-X)"+(1-0)- (Y -X)" = (Y_X)m|A1><(U\:c)><am

and (Y — X)™|a1x(0\2)xe € K[AY X (U \ 2) x 2] as (U \ ) x  contains no
diagonal points. Whence the claim. |

Proof of [Theorem 1.7.3 By a similar argument as in the proof of [Lemma 1.5.10]
(A, ;") is a homotopy from A, to (i,i]y\z) © (Prm, PF,). Thus the same proof

as that of applies. [ ]
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|. Homotopy invariance of MW-sheaves

.7 Surjectivity of Zariski excision

We proceed to prove To begin with, we interpolate polynomials
in a similar fashion as [Lemma L5.5

Lemma 1.7.1 ([GP18| §5]). For m > 0 there exists a polynomial
Gn(Y) € K[U][Y] = k[U x A'],
monic and of degree m in'Y , satisfying the following properties:
(1) Gm(Y)luxp = 1.
(2) Gu(Y)luxa = (Y = X)[uxa.
() Gu(¥)luxe = (Y = X)|uxa-
Lemma I.7.2 ([GP18| §5]). For m > 0 there exists a polynomial
Fr1(Y) € k[V][Y] = k[V x A1,
monic and of degree m — 1 in Y, satisfying the following properties:
(1) Fpoa(M)yxs = (Y — X)~t € k[V x B]*.
(2") Fnoa(Y)lvxa=1.
(3") Fna(Y)law) =1.

Remark 1.7.3. As B =U\V, the set V x B does not contain any diagonal points.
Hence the function Y — X is invertible on V' x B, so (1”) makes sense.

Definition 1.7.4. Set
Epi= (Y = X)-F,_1 € k[V][Y]

and
Hy :=0Gy, + (1 - 0)E,, € k[A! x V][Y],

where 6 is the coordinate of Al.

Observe that the divisor V(E,,) satisfies
V(Em) = V(Y = X)UV(Fo1) = AV)UV(Ep-1).

In fact, by (3"), this union is a disjoint union. Moreover, using the definition of
F,,_1 we see that F,, enjoys the following properties:

(1) En(Y)lvx =1=Gn(Y)|vxs-
(2g) En(Y)lvxa = = X)|lyxa =Gn(Y)|vxa-
(3E> Em(Y)lVXa: = (Y - X>|V><w = G’I’I’L(Y)‘VXZE
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The last property (3g) implies:
BE) Em(Y)lona)xe = Gm(Y)(v\o)xa € E[(V \ ) x 2]*.

Let us first construct the finite MW-correspondence ¥ € CAC;};C(U, V) using
the polynomial G, offor m > 0. By V(Gy) CUXV,
and we may consider the principal divisor D¢, on U x V defined by G,,. Let
Y: O(Dg,,) = wy be the isomorphism determined by choosing the generator
dY for wy .

Lemma I.7.5. Put .
U= diV(DGm,w)

and

U = div((ju % jv) Da,., (v % jv)"¥).
Then -
(U, 0%) € Cory, (U,U\ z),(V,V\x)).

Proof. Since G, is monic in Y, V(G,,) is finite and surjective over U by
[Cemma 1.3.7] Thus [Lemma 1.3.3] ensures that ¥ is a finite MW-correspondence
from U to V. Moreover, as Gp(Y)|uxe = (Y — X)|uxa, it follows that
G| (\a)x= is invertible on (U \ x) x x. Hence there is an inclusion

V(G) N ((U\2) x V) C (U \z) x (V\ z).

By it follows that (¥, U'”) is a morphism of pairs from (U, U \ ) to
(V,V\z). |

In order to define the desired homotopy, we proceed in a familiar fashion.
By (1g) and (2g), Hy is invertible on A! x V x B and A' x V x A. Hence
V(Hy) C Al x V x V, and we may consider the divisor Dy, on Al XV x V.
We let x: O(Dp,) = wy be the isomorphism given by choosing the generator
dY for wy.

Lemma I.7.6. Let 5% = &R/(DHG,X) and

Ay = div(((1 % jv) X jv)* Dy, (1% jv) % jv)"x).

Then
(A4, 47 € Cory, (AL x (V,V\ 2),(V,V \ ).

Proof. To see that . is a finite MW-correspondence from A' x V to V, note
that both G,, and E,, are monic and of the same degree in Y. Therefore the
linear combination Hy of GG,, and E,, is also monic in Y, and it follows that

the support V(Hy) of Dy, is finite and surjective over Al x V by

Hence ) € éark(Al x V, V) by |Lemma 1.3.3
Turning to 4", we must show that
V(Hg) N (A x (V\z)x V) C A x (V\z) x (V\x).

51
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We already know that Hy is invertible on A! x (V\z)x A and on A! x (V\z) x B.
It remains to check the set A x (V' \ z) x . But by (3g) and (3%;) we have

Em(Y)|(V\x)><:r = Gm(Y)|(V\z)><m = (Y - X)|(V\w)><z7

which is invertible as (V' \ ) x x does not intersect the diagonal. Therefore
the linear combination Hy of E,, and G,, is also invertible on (V' \ z) x z, and
the claim follows. Using [Lemma I.3.6] this shows that (/43, .7;") constitutes a
morphism of pairs from A" x (V,V\ z) to (V,V \ z). |

Let us compute the start- and endpoints 74, 77 of the homotopy 7—that
is, the precomposition of 7% with the rational points ig,i1: V — Al x V.

Lemma I.7.7. We have 54 = idy + jy o © where © € (/]\o/rk(V, V\z). On the
other hand, 764 = W o i, where i: V < U is the inclusion.

Proof. By [Lemma 1.3.4we have 4 = div((iy x 1)*Dy,, (i1 x 1)*y) = U oi. As

for 773, we have
Ay = div((ig x 1)* D, (io x 1)*x) = div(Dg,,, (io x 1)*x),

where Dp_ is the principal Cartier divisor on V' x V defined by the polynomial
E,,. Let Dp, _, be the principal divisor on V x V defined by F,,_1. As

V(Ep) = A(V) I V(Fy—-1), [Lemma 1.3.2] tells us that
Ay =Ny +div(Dp,, ., (io x 1)*X).

Here A; is the divisor defined in [Definition L.5.1] satisfying A; = idy. As
V(Fn-1) €V x (V \ z), Lemma 1.3.5 ensures that there is a unique element

—1
9 S CHV(mel)(V X (V \ .’I:),(,dv\m)

such that jy 0 © = div(Dg,,, (ip x 1)*x). By [Lemma 1.7.2] V(F,,_1) is finite

and surjective over V' \ z, and hence © € Cor,(V,V \ z). |
Proof of [Theorem 1./.4, The result now follows directly from [Lemma L.7.7] W

1.8 Zariski excision on A},

We now aim to extend the results of [Section I.4| to open subsets of Al , where

K = k(X)) is the function field of some integral k-scheme X € Smy. This can be

achieved by the following trick, which was suggested to the author by I. Panin:

given a presheaf .F € @(k), we can extend .# to a presheaf .ZX on a certain

full subcategory of Cor K, and then use Zariski excision for presheaves on Cor K-
In this section, the field k is assumed to be of characteristic 0.
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Remark 1.8.1. Notice that the results of show that Zariski excision on
Al holds for any homotopy invariant presheaf on Coryx by simply letting the
ground field be K. The point of this section, however, is to show that we can
obtain Zariski excision on AL also for homotopy invariant presheaves on Cory.

Definition 1.8.2. Let X € Smy, be a smooth integral k-scheme, and let K := k(X)

X
be the function field of X. We define the category Corj as follows. Its objects
are pairs (Y,V C Yk) consisting of a smooth k-scheme Y € Smy, along with

—X
an open subscheme V of Y :=Y xj Spec(k(X)). The morphisms of Corj are
given as

Hom o x (Y, V), (Y, V")) := Corg (V, V).
orK

X
Abusing notation, we may write simply V' for an object (Y, V') of Cory.

X
Remark 1.8.3. Since any open subscheme V' of Yy is K-smooth, Cor K is equiv-

alent to the full subcategory of CorK whose objects are those V & CorK for
which there exists Y € Smy, along with an open embedding V' — Y.

Let us fix some notation:

X
Definition 1.8.4. If (Y, V) € Corg, we define the following subschemes of Yy
and Y %, X:

o Z:=Yr\V;

o ¥ := 7, the Zariski closure of Z in Y x, X;

o V=Y x, X))\ Z.
Let also ¥k = ¥ xx Spec(K) denote the generic fiber of the projection
pxlv: ¥ — X. Note that we then have ¥ = V. Furthermore, for each
open subscheme X; of X, set

Y(X;) =¥ nN (Y X Xi),

the intersection being taken in Y x, X. Then we have V = ¥ = hm VY (X:),
where the limit runs over all nonempty open subsets of X. In particular,

v =9 (X).
__ X
Definition 1.8.5. Let .# € PSh(k) be a presheaf. For any V' € Cory, we set
FX(V) = lim F (¥ (X5)).
In particular, if (Y,V) = (A}, AL), then

FX(V) = F(Ak) =l F (AL xx Xy).
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Remark 1.8.6. Notice that if & € PAS/h(k) is homotopy invariant, then we have
FX(AL) = FX(K).

X X
Our goal is now to promote .# % to a presheaf on Cory. For U,V € Cory, this
means that we need to define a natural restriction map o*: ZX(U) — FX(V)

— X
for any a € Corg (V,U). To do this we need some preparations. First, recall
that we can write U = lim, w(X;), V= lim, YV (X;), where %, ¥ and X, are as
in [Definition T84l

Lemma 1.8.7. With the notations as above, we have a natural isomorphism

lim Corx, (¥ (X;), % (X;)) = Corg (V, U).

K2

Proof. Rewriting U as % X x Spec(K), we obtain the chain of natural isomor-
phisms
Corg (V,U) = Corg (V,% x x Spec(K))
= Corx (V. %)
= lim Corx (¥ (X,), %)

12

lig Cor, (#(X:), % (X.).

Here the penultimate isomorphism follows from a similar argument as that of

|CF17, Lemmas 4.6 and 5.10]. |

For any o € é\ojrﬁ(V, U), we can now define a natural map
ot FXU) = FX(V)
as follows. Using [Cemma I.8.7] we may choose a representative
a; € Corx, (V(X,), % (X))
mapping to a. Let
fir V(Xi) xx, % (X;) = V(X;) x5, % (X;)
denote the canonical morphism. By fi induces a homomorphism
(fi)«: (T&Xi(”//(xi),%(xi)) — Corg (¥ (X)), U (X;)).

Definition 1.8.8. With the notations as above, set

o = lim((fy). ()" s ZX(W) = FX(V),

jzi
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Injectivity for local schemes

For any pair of indices ¢ < j, the following commutative diagram in CA/ork7

V(Xj) —— V(X))
(fj)*(aj)l l(fi)*(oﬁ)
U(X;) —— U (Xa),

shows that the definition of a* does not depend on the lift «;.
Lemma 1.8.9 (Injectivity on A}). Let (A},U) and (A}, V) be two objects of

— X
Cory such that V' is nonempty and V-C U. Writei: V — U for the inclusion.

Then the induced map
it FXU) = FX(V)

is injective for any homotopy invariant presheaf F € @1(1@)

Proof. Injectivity on the affine line gives a homotopy ® € @K(U, V') such that
X —
io® ~p1idy. Since ® is a morphism in Cory and .Z ¥ is a presheaf on Cor,
the result follows. u
Lemma 1.8.10 (Zariski excision on A};). Let x € A}, be a closed point, and let
— X

(A},U) € Corg be such that x € U. Denote by i: U — Al the inclusion. Then
i induces an isomorphism

FX(Af\1) = FX(U\ )

FX(Ak) FX(U)

-3

[

1w

for any homotopy invariant presheaf F € IS\S/h(k)

Proof. This follows similarly as in above. [ |

1.9 Injectivity for local schemes

The goal of this section is to prove the following theorem.

Theorem 1.9.1. Let X be a smooth k-scheme and x € X a closed point. Let
U := Spec(Ox ) and write can: U — X for the canonical inclusion. Suppose
that i: Z — X is a closed subscheme of codimension > 1 in X satisfying x € Z.
Let j: X \ Z — X denote the open complement. Then there exists a finite

MW -correspondence ® & a)/l"k(U7 X\ Z) such that the diagram

X\Zz

P

U can X
commutes in hCory,.

55



|. Homotopy invariance of MW-sheaves

For homotopy invariant presheaves on (To/rk we immediately obtain:

Corollary 1.9.2. Suppose that .F € Ff’é/h(k) is a homotopy invariant presheaf with
MW-transfers. If s € F(X) is a section such that s|x\z = 0, then s|y = 0.

Let X° C X be a Zariski open neighborhood of the point z, and let Z° :=
Z N X°. As noted in §8], it is enough to solve the problem for the triple
U, X° and X°\ Z°. In particular, we may assume that X is irreducible and
that the canonical sheaf wx/y is trivial. In fact, we will shrink X so that we
are in the situation of a relative curve over a quasi-projective scheme. The
advantage of this approach is that it turns problems regarding subschemes of
high codimension into problems regarding divisors, which is a much more flexible
setting. For the shrinking process we refer to the following theorem, which is
originally due to M. Artin.

Theorem 1.9.3 ([PSV09, Proposition 1]). Let X, Z and x € Z be as in[Theo]
rem 1.9.1 Then there is a Zariski open neighborhood X° C X of the point x,
an open immersion X° —» YO, a Zariski open subscheme B of PY™ X1 gnd q
commutative diagram

satisfying the following properties:

(1) p is a smooth projective morphism, whose fibers are irreducible projective
curves.

(2) X, =X\ X°, and poo: X2, — B is finite étale.
(3) The morphism plznxo: Z N X° — B is finite (where the intersection is
taken in X°).
The morphism p: X° — B is called an almost elementary fibration.

Following §8], we may shrink X such that there exists an almost
elementary fibration p: X — B and such that wx/, and wp/; are trivial, i.e.,
wx/k = Ox and wp/k = Op. Let Z :=X xgU and & := Z xg U. Let also
px: Z — X and py: £ — U be the projections onto X and U, respectively,
and let dx denote the dimension of X. Finally, let A denote the morphism
A= (can,id): U —» Z .

Lemma 1.9.4 (|[GP18| Lemma 8.1]). There exists a finite surjective morphism
Hy = (hg,pU): Z — 141 x U

over U, such that if we let 2y := Hy *(1 x U) and Py := Hy *(0 x U) denote the
scheme-theoretic preimages, then the following hold:
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Injectivity for local schemes

) nCcx\Z.
(2) 20 = AU)T D} with 9, C X\ Z.
We will use to produce the desired MW-correspondence ®.
The aim is to define ® as the image (Hy x 1).(px) of the projection px €
E\ﬁﬁfx (Z x X,wx) under the pushforward map

(Hp x 1).: CHp, (2 x X,wp,x1 ®wx) — CH(stl)(F,,X)(Al x U x X,wx).

To this end, we need a trivialization of Wi, x1 = wa x x/x @ (Ho X 1)*wy, WU Xk
Now, as U is local we have wyy/, = Op. Keeping in mind the discussion preceding

it follows that the relative bundle wp, x1 is also trivial. Thus we
may choose an isomorphism x: Ox = wp, x1-

Definition 1.9.5. Let px € (T&k(%,X) denote the projection. Using the

trivialization x above, we let S € aark(Al x U, X) denote the image of
px € Corg (2, X) under the composition

dx

— ~ ——d

CHFPX(%' X X,OJX) — CHF:X(% X X,wHexl ®wx)
Hox1). —7=d
% CH(;GXU(FPX)(AI x U x X,LUX)

Lemma 1.9.6. The morphism Hy x 1 maps I'y,, = 2 isomorphically onto its
image. Let AL = Ay oig and A" 1= Ay oiy. Identifying 2 with its image in
A xU x X, we then have supp #,;* = 2, supp #;* = Dy, and supp X = D).

Proof. If y = ((z,u),z), ¥y = ((2/,v'),2") € T'p, is such that
(Ho x 1)(y) = (ho(z, u),u, ) = (Hp x 1)(y) = (ho(2",u'), v, 2"),

it follows that x = 2’ and u = v/, hence y = 3’. Thus we can consider 2~
as a subscheme of A! x U x X by (z,u) — (hg(z,u),u,x). Now, the MW-
correspondence px is supported on Ty, hence supp ;% = (Hp x 1)(Tp, ) = 2.
We turn to the restrictions J4° and % of the homotopy ¢, By m,
Example 4.17] we have J¢* 0 i, = (ic X 1) (), where € = 0, 1. It follows that
supp SX = (i X 1)_1((H9 x 1)(T'p4)), and this closed subset is determined by
those points (x,u) € 2 satisfying hg(z,u) = e. In other words, supp .7ZX =
D.. [ |

Lemma 1.9.7. There is an invertible reqular function X on U such that
H = cano (\) +j o 0}

and
S = jo Dy,

where ®), ®; € Corg(U, X \ Z) and (\) € KMW(U).
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|. Homotopy invariance of MW-sheaves

Proof. By Lemmas we have supp ¢ = A(U) I %[, where
Dy C X\ Z. By we may therefore write J* = a + 8 where
a € éa"k(U,X) is supported on A(U) and f € éak(U,X) is supported on
P Since supp 8 = 25 C X\ Z, ensures that there exists a
unique finite MW-correspondence ®f € Ck(U,X \ Z) such that j o ®f = S.
Hence %" is of the form 4% = a + j o @) for ¥ € Cory, (U, X \ Z). The
same reasoning shows that, since supp 4 = 21 C 27\ Z, there is a unique
MW-correspondence ®; € (To/rk(U,X \ Z) such that J£X = j o ®;.

It therefore only remains to understand the finite MW-correspondence o €
a\ﬁdA)EU)(U x X,wx ). Recall that, by definition,

G = (o x 1)"(Hg x 1)+ (Tpx )+ ((1)).

Let in() and ig, denote the respective inclusions iny: A(U) € 2" and
igy: P20 C Z . The base change formula [CF17, Proposition 3.2] applied to the
pullback square

(AU x X 20 9« x

Hg‘@oxlj/ J/H9><1

Ux X — 0 Al Ux X

reveals that o = (Hg|a(w) x1)«(ia@w)x1)*(Ipy )«((1)). Using that A: U — 27 is
an isomorphism onto its image and that Hy|x): A(U) — U is an isomorphism,
we may write @ = (A x 1)*(T',, )«((1)). Next, consider the pullback diagram

v—=2 7

o [ros

UxX —2% 2« X.

Using base change once more, we obtain & = (Ican)+«A*((1)). Comparing this
expression with the definition Yean ‘= (Fean)«({1)) of Yean, We see that two
possibly different trivializations of the line bundle wy are involved. Letting
A € E[U]* be the fraction of these two trivializations, it follows that o =
Fean © (A). |

Proof of[Theorem 1.9.1 In the notation of [Lemma 1.9.7 define 7 := X o
(A1) and @ := (9, — D)) o (\!). By |Lemma 1.9.7] % provides a homotopy
can ~a1 jo . |
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Nisnevich excision

.10 Nisnevich excision

The setting of this section is as follows. Suppose that X, X’ € Sm;, are smooth
affine k-schemes such that there is an elementary distinguished Nisnevich square

V/ X/

| | (12)

V — X.

Define the closed subschemes S := (X \ V)peq € X and 5" := (X" \ V')ea € X'.
Let € S and 2’ € S’ be two points satisfying I1(z') = x. Moreover, we set
U := Spec(Ox ;) and U’ := Spec(Ox ). Let can: U — X and can’: U’ — X’
be the canonical inclusions and let 7w := 1|y : U’ — U. We can summarize the
situation with the following diagram:

ca

V/ X/ n’ U/

| bk =

V—— X <57 U

The main result of this section is the following excision theorem for Nisnevich
squares.

Theorem 1.10.1 (Nisnevich excision). Let % be a homotopy invariant presheaf

on é\o/rk, Given any elementary distinguished Nisnevich square as , the
induced morphism
FWU\S)  ZU\S)

FO) T FO)

*
™ol

is an isomorphism.

The proof of relies on the two following results, establishing

respectively injectivity and surjectivity of 7*:

Theorem 1.10.2 (Injectivity of Nisnevich excision). With the notations in (L.3)),
there exist finite MW -correspondences

o € Cor, (U, U\ S), (X', X'\ 5))

and
0 € Cor, (U,U\9),(X\5,X\5))
such that
Mo®—jy 0O =rcan
in hCory, (U, U\ S), (X, X\ S)). Here jx: (X \ S, X\ S) = (X,X\S) is the

inclusion.
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|. Homotopy invariance of MW-sheaves

Theorem 1.10.3 (Surjectivity of Nisnevich excision). Keep the notations as in
(L.3]). Then there exist finite MW -correspondences

¥ € Cor, (U,U\ S), (X", X"\ 5))
and o
= € Cory, (U, U\ §"),(X"\ 5", X"\ 9")
such that - -
VoT —jy 0= = can’
n hé&ir((U’,U’\S’),(X’,X’\S’)). Here jx/: (X'\S", X'\ 9") — (X', X"\ 9)
is the inclusion.

Assuming Theorems [[10.2] and [[.10.3] [Theorem [.10.1] now follows:

Proof of[Theorem 1.10.1l Let .# be a homotopy invariant presheaf with MW-
transfers. First, note that implies that the restriction maps
FU) - FU\S) and F(U') — F(U'\ S’) are injective. Indeed, suppose
that s, € . (U) maps to 0 in .# (U \ S). We may assume that s, is represented
by a section s € .% (W) for some Zariski open neighborhood W of z, such that

slw\g = 0. But then s, = 0 by [Corollary I.9.2l Hence . (U) — F(U \ S) is
injective. It follows similarly that % (U’) — % (U’ \ S’) is injective.
Now, as the MW-correspondence O of [Theorem I1.10.2l maps to (X \ S, X'\ 5),

jx o © induces the trivial map

F(X\5) | FU\S)
Z(X) Z(U)

(Jx 0©)" =0:
Hence ®* o IT* = can*. Similarly, Z* = 0 and hence 7* o ¥* = (can’)*. We use
this to show that 7* is an isomorphism.
To show that 7* is injective, let us assume that s, € F(U \ S)/.Z(U) is a
germ such that 7*(s,) = 0. As

FWUN\S) . FW\S)
FU) 5, FW) 7
we may assume that s, is represented by a section s € .#(W'\ S)/.# (W) for some
affine k-smooth Zariski open neighborhood W of z. Thus s is a section satisfying
can*(s) = s, and 7*(s;) = 0. Now, since 7*(s,) = 0 in F(U'\ 5")/FU’),
there is some affine k-smooth Zariski open neighborhood W’ of 2’ in X’ x x W
such that IT*(s)|w~ = 0. Replacing X by W and X’ by W', we may then apply
to obtain a finite MW-correspondence ¢ € (’jak(U, X') such that
®* o IT* = can*. But then s, = can*(s) = ®*(II*(s)) = 0. Hence 7* is injective.
To show surjectivity, let s7, € F(U'\ 5')/%(U’). Similarly as above, we
may assume that s/, is represented by a section s’ € F# (X' \ S")/F(X'), i.e.,
(can’)*(s') = s.,. By there is a finite MW-correspondence
U € Cory(U, X') such that 7* o U* = (can’)*. We then have

sy = (can’)"(s") = 7" (W*(s')),
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Injectivity of Nisnevich excision

and thus 7* is surjective. |

We proceed to prove Theorems [.10.2] and [[L10.3]

.11 Injectivity of Nisnevich excision

In this section we aim to prove As preparation, we need to
perform a shrinking process similar to that in [Section 1.9} By |GP18| Lemma

9.4], there is a Zariski open subscheme X° C X along with an almost elementary
fibration q: X° — B such that wp,;, = Op and wxo/, = Oxo. By §9]
we may replace X by X° and X’ by II71(X°). We regard X’ as a B-scheme via
the map g o II.

Let A denote the morphism A := (id,can): U — U xp X, and let px and
paixy denote the projections from A x U x g X onto X respectively Al x U.

Proposition 1.11.1 (|[GP18, Proposition 9.9]). Let 6 be the coordinate of Al.
There exists a function hg € k[A' x U x g X] such that the following properties
hold for the functions hg, ho := hgloxuxzx and hy = hglixuxpx-:

(a) The morphism Hg := (parxu,he): A x U xg X — Al x U x Al is finite
and surjective. Letting Zy = he_l(O) C A' xU xp X, it follows that Zy is
finite, surjective and flat over A' x U.

(b) Let Zy == hy'(0) C U xp X. Then there is the equality of schemes
Zo=AU)IG, where G CU xpg (X \95).

(¢) The closed subscheme V((idy x I1)*(hy)) C U xp X' is a disjoint union of
two closed subschemes Z1 11 Z3. Moreover, the map (idy x II)|z; identifies
Z with Zy := h*(0).

UxpX 20 Uxpx —M 4 Al

] J

7l — = 7y =V(hy)

(d) We have Zg N (A! x (U \ z) x5 X) C Al x (U\ z) xp (X \ 2).
Corollary 1.11.2 ([GP18, Remark 9.10]). We have the following inclusions:

(1) ZoN (AL x (U\ S) x5 X) CA x (U\ S) x5 X\ S.

(2) ZoN((U\S) xp X)C (U\S) x5 (X\S).

3) Z1N((U\S) x5 X) C(U\S) %z (X\8).

4) 21N ((U\S) xp X') C(U\S5) xp (X"\5).
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|. Homotopy invariance of MW-sheaves

Definition 1.11.3. Choose a trivialization x of wg,x1. We define the homotopy
A € Corp (A x U, X)

——d
as the image of the projection px € CHF:X (A x U xp X x X,wy) under the
composition

—dx 1
CHFPX(A xUxpX x X,wx)

& —d
= CHFZ{ (A'x U xp X x X,wiyx1 ®wx)

(Hox1), ——dx
9—>CH(H@><1)( )(1&1 ><(]><1A1 XX7[,L}X)

Ty
(1xigx1)*

—d

CHy (A' x U x X,wx),

where dx = dim X, T := (1 x ig x 1)71((Hg x 1)(T'py)), and where the first
isomorphism is induced by x.

Lemma I.11.4. The finite MW -correspondence " is supported on Zy. More-
over, for e = 0,1 we have supp X = Z, (where X := Ay o).

Proof. Let T denote the support of #;*. As indicated in [Definition I.11.3] we
have T' = (1xigx1)~!((Hp x1)(I'x)). By the same argument as in[Lemma 1.9.6]
Hy x 1 injects ', onto its image, hence (Hy x 1)(T'p) £ A! x U x g X. Thus
T consists of those points (t,u,r) € A! x U x g X such that hy(t,u,z) =0, i.e.,
T = Z,.

Turning to the support of JZX, note that JZX is the image of px under the
map

—d ———d
@ﬂQJAlxeBXVLKwa%CHgm%g&xlixX¢w)

given as the composition (i X 1)*o (1 xigx 1)*o(Hp x 1),. By the same reasoning
as above, pulling back along i, x 1 amounts to substituting # = € in hy, which
yields the desired result. n

Lemma I.11.5. There are finite MW -correspondences © € (/]&k(U, X\ S) and

P e évork(U, X') along with an invertible reqular function X on U such that
HG = cano (\) +jx 0O and X =110 ®.

Proof. By [Proposition I1.11.1] (b), we can write J4* = a + ©’, where ©' €
Cory (U, X) is supported on G and « € Cory (U, X) is supported on A(U). Using
[Proposition I.11.1] (b), [Lemma I.2.5| ensures that there is a unique finite MW-

correspondence © € Corg (U, X \ S) such that © = jx 0 ©. We proceed similarly
for 7%: by [Proposition 1.11.1] (¢), the pullback

* —rydx
(I x M)*(A7") € CH(1xmy-1(2,) (U x X' wx)
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Surjectivity of Nisnevich excision

is supported on Z] I Z3, and (1 x II)|z is an isomorphism from Z] onto Z;. It
follows that we have an isomorphism

——d ~ ——d
(1 x10),: CHy, (U x X', wxs) = CHy, (U x X,wx).

Hence ® := (1 xI1);1(5X) = (1xI1)*(S£Y) € Cory(U, X') satisfies [To® = X,
It remains to show that a = can o (\), the proof of which being similar as in

the proof of [Lemma 1.9.7] As
(1xigx1)o(igx1)=(igx1xigx1):UxX = A xU x A x X,

we can write A = (ip x 1 X ig x 1)*(Hg x 1).(I',)«((1)). Using the base
change formula twice as in we find that

a = (Holaw) x D«(iaw) x 1) (Fpx)«((1)) = (Cean)«((1)) 0 (A) = Fean © (),

where A € k[U]* is the fraction of two trivializations of wyr, and ia@y: A(U) —
U x g X is the inclusion. [ ]

Lemma LL11.6. Let jy: U\ S < U, jx: X\ S — X and jx: X'\ 8 — X’
denote the inclusions, and set:
A7 = (1 x ju x jix) (A7Y) € Corg (Al x (U §), X\ S).
5 := (ju x jx/)*(®) € Corp(U\ S, X'\ S).
05 := (ju x 1)*(©) € Corp(U \ S, X \ ).

Then we have:

(5%, #59%) € Cory (A x (U, U\ ), (X, X\ 9)).
(®,8%) € Cor, (U, U\ S), (X", X'\ 5)).
(0,0%) € Cor, (U, U\ 5),(X\S.X\8)).

Proof. Tn light of [Corollary T.1T:3} this follows from [Comma 12,7} m

Proof of [Theorem 1.10.3 Replacing ", © and ® by the respective precompo-
sitions with (A=1), it follows from Lemmas |[.11.5| and |[l.11.6 that we have the

identity

Mo®—jy 0O =rcan

——pr

in hCory, . u

.12 Surjectivity of Nisnevich excision

We proceed to prove Performing a similar shrinking process
as in we may assume that there is an almost elementary fibration
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|. Homotopy invariance of MW-sheaves

q: X — B such that wp/, = Op and wx/, = Ox. Since Il is étale, it follows
that OJX//k = OX/.

Let A’ := (id,can’): U' — U’ xp X', and let px, and paixys denote the
projections from A' x U’ x g X’ to X’ respectively A' x U’. First we recall the
following fact from |GP18]:

Proposition 1.12.1 ( Proposition 11.6]). Let Al have coordinate §. There

exist functions F € k[U x X'] and hj € k[A' x U’ xp X'] such that the

following properties hold for the functions F, hy, h = hploxu'xzx/, and
1= hglixvrxpxr:

(a) The morphism Hj = (paixu:, hy): A xU' xp X' — A x U’ x Al is
finite and surjective. Letting Zj := (hy)~1(0) C A' x U" xg X', it follows
that Zj is finite, surjective and flat over A x U'.

(b) Let Z} = (h{)~1(0). Then there is the equality of schemes
ZH=AN(U)I&,
where G' C U xp (X'\ 5.
(¢) Wy = (m x idx/)*(F). We write Z| := (h})~*(0).
(d) Zyn (A x (U'\S") xp X') CTA x (U'\ 9) xp (X"\9).

(€) The morphism (pry, F): U x X" — U x Al is finite and surjective. Letting
Zy = F~Y0), it follows that Z; is finite and surjective over U.

(f) Zn((U\S) x X') € (U\S) x (X"\5).
Corollary 1.12.2 (|GP18| Remark 11.7]). We have the following inclusions:

(1) Z, N (A x (U'\ ) x5 X') C A x (U'\ ) x5 (X'\ ).
(2) Zyn((U'\S") xp X') C(U"\S') xp (X'\5).

(3) Zin((U'\S) xp X)) C(U"\S) xp (X"\S).

(4) Zin(U\S) x X') S (U\S) x (X"\ 9.

Definition 1.12.3. Choose a trivialization x of wpyx1. We define the homotopy
X € Corg(A' x U, X')
—d
as the image of the projection px: € CHF:X, (A x U’ xp X' x X',wx/) under
the composition

——d
CHy, (A'xU'xp X' x X' wxr)
X/

& —d
;CHFX (A'x U xp X' x X’,wHéxl ® wxr)
Px

(HYx1), ——dx
9—> CH(HéXl)(FpX,)(Al X UI X Al X XI,OJX/)

. R
X, CHyy (A x U' x X7, wx),
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where 7" := (1 x ip x 1)7*((Hj x 1)(T',.,)), and where the first isomorphism is
induced by x’.

The same argument as in readily yields:

Lemma 1.12.4. The finite MW -correspondence ;< is supported on Zy. More-
over, for € = 0,1 we have supp HX = Z! (where, as usual, X := A}  oi.).

Lemma 1.12.5. There are finite MW -correspondences W' € é\O/I‘k(U, X') and
= € Corg (U, X'\ 8") along with an invertible reqular function X' on U’ such
that ¢ = can’ o (N') 4+ jx/ 0 E and H* = V' oT.

Proof. The claim about J2° follows from an identical argument as in the proof
of [Lemma I.11.5| by using [Proposition 1.12.1] (b), so let us turn our attention to
4. By [Proposition 1.12.1] (¢), the morphism 7 x 1 identifies Z] with Z;. By
étale excision |CF17, Lemma 3.7], 7 x 1 induces an isomorphism

o

—d ——d
(% 1)*: CHy, (U x X', wx/) = CHy, (U' x X', wx).

Arguing similarly to the proof of [Lemma [.11.5] it follows that there exists a
——d e

unique element ¥’ € CHZ?(U’ X X', wxs) C Corg(U’,X’) such that X =

U’ o1, |

Let us check also that the finite MW-correspondences constructed above are
in fact morphisms of pairs:

Lemma 1.12.6. Let jy: U'\ S’ — U’ denote the inclusion, and define:
A5 = (1 % jur % jixo)*(HX) € Corg(AY x (U'\ §'), X"\ §").

U5 = (ju x jx/)*(¥) € Corp(U \ S, X'\ ).

=5 1= (jur x 1)*(2) € Corp(U'\ &', X"\ ).

Then
(A%, A7) € Cory (A x (U, U\ §), (X', X7\ §").
(W, 05") € Cor, (U, U\ S), (X', X'\ ).
o ——pr
(2,2%) € Cor, (U,U'\S),(X"\ S, X"\ S).
Proof. By[Corollary I.12.2] the supports of the given MW-correspondences satisfy
the hypothesis of [ |

We are almost in position to prove However, as opposed to
the situation in [Section I.11] we cannot immediately precompose the homotopy
;% of [Definition 1.12.3 with ((\')~') and obtain a homotopy of the desired
form. In order to remedy this, we need the following lemma (see also
Proof of Proposition 6.7]):
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|. Homotopy invariance of MW-sheaves

Lemma 1.12.7. Let X, S, U and can be as in[Theorem L.10.1], and suppose that
X € k[U)* is an invertible reqular function satisfying Nluns = 1. Then
can o (\) ~a1 can € Crl\&zr((U, U\S), (X, X\9)).

Proof. The germ A is represented by an invertible section p on some smooth
affine Zariski open neighborhood W of x in X. Moreover, by assumption there
is some affine Zariski open neighborhood W’ C W of z such that p|snw: = 1.
Replacing X by W', we may assume that p is an invertible regular function on
the smooth affine k-scheme X satisfying pls = 1.
Define an étale covering IT: X’ — X by letting
X' = Spec(k[X][t]/(* — p)).
Consider the closed subscheme S’ := Spec(k[S][t]/(t — 1)) of X'. As II induces

an isomorphism S’ =5 , it follows that we have an elementary distinguished
Nisnevich square

X'\ — X'

L s
X\S — X.
Thus provides us with a finite Milnor-Witt correspondence
® € Cory(U, X')
such that ITo ® ~a: can as correspondences of pairs. But then
can o (\) = (u) o can
~ar (p)ollo®
Mo (IT (1)) o @
=1Ilo <t2> o®d
=1ITo® ~p1 can,

where we have used the left and right actions of K} on finite Milnor—Witt
correspondences |CF17, Example 4.14], along with the fact that (a?) = 1 in
KW, |

Proof of [Theorem 1.10.3 Using that k(z) = k(z’), we can find an invertible
regular function v on U such that 7*(v)(z') = N (2')~*. Then put

Ay = Ao (7 (v)
and
V=0 o (v).
By Lemmas [[[12.5] and [[.12.6], .»% provides a homotopy of correspondences of
pairs

can’ o (N - 7 (v)) ~ar ¥ omo (7" (v)) =¥ o (v)or =TVom.

We conclude by noting that can’ o (X - 7*(v)) ~a1 can’ by [Lemma I.12. [ ]
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.13 Homotopy invariance

In this section we show, following Proof of Theorem 2.1] and [Drul4],
how homotopy invariance of the sheaves %z, and Fyis follows from the excision
theorems along with injectivity for local schemes. Throughout this section %
will denote a homotopy invariant presheaf with MW-transfers, and X € Smy, will
denote a smooth irreducible k-scheme with generic point 7: Spec(k(X)) — X.
Write K := k(X)) for the function field of X.

In this section, the field k is assumed to be of characteristic 0.

Homotopy invariance of .7,

Below we will use Zariski excision along with injectivity for local schemes to
show homotopy invariance of the Zariski sheaf .%,, associated to .#. Let x € X
be a closed point of X. We may write .# (Spec(Ox ,)) or F(Ox ;) for the stalk
F, of F at x in the Zariski topology.

Lemma 1.13.1. The natural map n*: F(Ox ) — F(K) is injective.

Proof. For U := Spec(Ox,y) we have Z(U) = lim,_ Z(V), and .F(K) =
hﬂw;ﬁz F(W). Let s, € #(Ox,) be a germ mapping to 0 in .% (K). This
means that there is some nonempty open W C X such that sl = 0. If

x € W then s, =0 in .#(Ox ) and we are done. So suppose that 2 ¢ W, and
let Z denote the closed complement of W in X. Then S|X\Z = 0, and thus

Corollary 1.9.2] applies, yielding s; = 0 in #(Ox 3). |

Corollary 1.13.2. The map n*: Fpar(X) — Fzar(K) is injective.

Proof. Suppose that s € Fz,:(X) maps to 0 in Fyz, (K Bym the
germs s, € %, of s vanish at all closed points of X, Wthh yields s = 0.

Corollary 1.13.3. For any nonempty open subscheme i: V < X, the map
1*: Fpar(X) = Fzar (V) is injective.

Proof. We know that K = k(V'), hence [Corollary 1.13.2| ensures that there are
injections Fzap(X) — F(K) and Fz,, (V) — Z(K) induced by the generic
point. Since Fz,,(X) — F(K) factors through .Fz,,(V), the result follows. W

X
For the next lemma we will need to pass to the presheaf .# X on Corj,, defined

in [Section [.8
Lemma 1.13.4. Let = be a closed point in AL, and write U, = Spec((’)Ak,x)
for its local scheme. Then the restriction map
FX(Ag\2) = FX(U,\2)
FX(Ak) FX(Us)

1w

is an isomorphism.
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|. Homotopy invariance of MW-sheaves

Proof. We have
FXWND) L FXW\ )
FX(Uy) _Waz FX(W) 7

and so Zariski excision on Al (Lemma 1.8.10) applied to the pair x € W C Al

yields an isomorphism

T (AR \z) = FXW\2)
FX(AK) FX(W)

The isomorphism is given by the pullback along the inclusion, so it is compatible
with the transition maps in the directed system. It follows that the natural
map from FX (AL \ z)/FX(AL) to the colimit FX(U, \ z)/FX(U,) is an
isomorphism. |

Lemma 1.13.5. The sheafification map ¢: FX(AL) — FX

~ (ALY is an isomor-
phism.

Proof. Let & be the generic point of AL.. Since stalks remain the same after
sheafification, the commutative diagram

~

FX(EK) — 7X(AL)
\ |v
~  Fiu(Ak)

ls
Z o (K)

(in which p* is an isomorphism by [Remark 1.8.6) shows that ¢ is injective. It

remains to show surjectivity.
Let s € Zwr(A1 ) be a section, mapping to the germ s¢ € J’g at the generic
point ¢ of A under the morphism ¢*: 7% (AL) — ngX As

= i FX(V),

VCAL

yX

we can find a nonempty Zariski open V C Al and a section s’ € X (V) such
that ¢(s") = s|y € yz);r( ). Thus s, = s, for any v € V. The idea from here is
to extend the section s’ € .ZX (V) to a global section s” € FX(AL).

We may assume that V = AL \ z, where z is a closed point. Indeed, the
general case follows by induction since V' is then the complement of finitely many

closed points. For U, := Spec((’)A}Om), the commutative diagram

U \z —— AL \z

l [

U, — AL
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induces a commutative diagram

)
=
=
2

N
Py
&
—
2

Here the upper horizontal arrow is an isomorphism by Moreover,
note that .#X (U, \ z) and .Z X (U,) are both stalks, as X (U, \ z) = ﬁsx Thus

we have the isomorphism

Zar

FXUe) — Fo(Un)

FX(U,\a) o, P U\ 1)

We want to lift s’ € ZX (V) to #X(AL), which is possible if and only if s’ maps
to 0 in the cokernel of the map F~ (AL) — .ZX (V). But s’ maps to s¢ under the
map ZX (V) — FX(U, \z) by the choice of s’. Moreover, s¢ € 9§X is the image
of the germ s, € ZX(U,) of s at z. Hence s¢ vanishes in ZX (U, \ z)/.Z*(U,).
By the excision isomorphism we conclude that s’ vanishes in ZX(V)/ZX(AL),
and hence there is a section s” € FX(AL) such that s”|y = s'.

Finally, we need to check that s” € #%(AL) maps to s under the morphism
v FX(AL) = F5 (AL). Tt suffices to show that the germs of s” and s coincide

Zar
at every point of AL.. For the points v € V we know that s|y = ¥(s') = ¥(s”|y),
so it remains to check that s” = s, in Z*(U,). By |[Lemma 1.13.1] we have an
injection

& FX(Uy) = FEE
Since £*(s,) = £*(s%) = s¢, we conclude that s? = s,. [ |
Theorem 1.13.6. If 7 < f’éi(k) is a homotopy invariant presheaf with MW -
transfers, then Fz., is homotopy invariant.

Proof. Let iy be the zero section ig: X — X x A, and write K for the function
field k(X) of X. We then have p oiy = idx, where p: X x Al — X is the
projection. Hence the induced map i%: Fz. (X x Al) — Fz..(X) is split
surjective, and it remains to show that ¢j is injective. Consider the commutative
diagram

Fan(X x AY) T 2, (ALY =—— FX (AL)
igl lié l(iff *
yZar<X) 7]4*> yZar(K) - ‘?Z)ghr(K%
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|. Homotopy invariance of MW-sheaves

where the right hand vertical map is the map on ﬂ‘z);r induced by the zero
section. The homomorphisms n* and (nx 1)* are injective byand
Corollary 1.13.3] respectively. Now, notice that (i )* = 4 by the definition of the
presheaf .Z~ . Hence the right hand square is commutative, and thus it suffices to
show that the map if: Z,5 (AL) — ZX (K) is injective. Using [Lemma 1.13.5]
along with homotopy invariance of the presheaf .FX (see |Remark I.8.6|} we find

T (Ak) = T X (AL) = FYEK) = T, (K).

Hence the right hand vertical map is an isomorphism. We conclude that
it Frar(X x Al) — Fz..(X) is injective. [ ]

Homotopy invariance of .7 ;s

We proceed to prove homotopy invariance of the associated Nisnevich sheaf
FNis, the proof being similar to the one for Zariski sheafification using Nisnevich
excision. If A is a local ring, let A" denote the henselization of A. We may write
ﬁ(Spec(O’}(J)) or 35((9&%) for the stalk of .7 at z in the Nisnevich topology.
Thus .7 (0% ) = lim .7 (V), where the colimit runs over the filtered system
of étale neighborhoods of = in X, i.e., étale morphisms p: V' — X such that
piH(z) .

Lemma I.13.7. For U} := Spec(O% ), the natural map F(Ul) — .7 (k(U})) is
injective.

Proof. Suppose that s € .Z(U") maps to 0 in .Z (k(U")). This means that there
is some étale neighborhood p: W — X such that s|y = 0. Replacing W by its
open image, we may assume that W C X. Let Z be the closed complement of W

in X. If z € W then s = 0 in .Z (UP); if not then z € Z, and thus [Corollary 1.9.2

shows that s|y = 0 for some Zariski neighborhood V of z. Since V is also an
étale neighboorhood, it follows that s = 0 in . (U"). |

The next two corollaries follow from similarly to the Zariski

case.
Corollary 1.13.8. The map n*: Fnis(X) = Fnis(K) is injective.

Corollary 1.13.9. For any nonempty open subscheme i: V. < X, the map
i*: Fnis(X) = Fnis(V) is injective.

Lemma 1.13.10. Let = be a closed point in AL,. Write U, := Spec(Oa1 ) and
Ul :=Spec(Oh, ). Then there is a natural isomorphism
K

- FX(UI\2)
FX0) T FNUD
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Proof. We have

FUN) _ o FEW
FEUR)  wliay X( )
e e FEOD)
W—>A}( wW'Ccw X(W/)
_ ZX(Spec(Ow.z) \ z)
WAl ﬁX(SpeC(OW@'))
= FXUN\z)  FXU N\ )
B Ao A i

Here W runs over all étale neighborhoods of x in Al; W’ runs over all Zariski
open neighborhoods of x in W; and the fourth isomorphism is given by Nisnevich
excision. |

Lemma 1.13.11. The sheafification map ¢: FX(AL) — FX (AL) is an iso-
morphism.

Proof. Let £ be the generic point of A}.. By the same reasoning as in the proof
of [Lemma 1.13.5| the map ZX(AL) — Zg (AL) is injective, and it remains

to show surjectivity. Let s € #g (AL ) be a section. Since the stalks 355)( and

(FZ)e coincide, there exists a Zariski open subscheme V' C AL and a section
s € FX(V) such that ¢(s') = s|v in FE, (V). We wish to extend s’ € FX(V)
to a global section s” € ZX(AL). Considering one point at a time, we may
assume that V = AL \ z for some closed point x. Let U, := Spec(OA1 ) and

Ul :=Spec(Oh, ). Alift of s’ to a section of ZX(AJ) exists if and only if s’
K
maps to 0 in the quotient .#X(V)/ZX(AL). Consider the sequence

FX(V) o FXUN\z) o FXUM\2) o FE U\ )
FX(AL) T X,y | FxXuhy «%isw;)

Here the left hand map is an isomorphism by the middle map is
an isomorphism by [Cemma 1.13.10} and the right hand map is an isomorphism
since both ZX (Ul \ x) and .F X (U!") are stalks in the Nisnevich topology. Thus
it is enough to show that s’ € .ZX(V) maps to 0 in FE_(UP\ 2)/FX(U!). But
this follows from the commutativity of the diagram

1R

FXWV) —— FXUE\2)
FX(Ak) —— FXWD).

Hence we can lift s’ to s” € ZX(AL). It remains to check that s” maps to
s € FE(AL). Knowing that ¢(s"|y) = s|lv € FZ(V), it remains to show
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I. Homotopy invariance of MW-sheaves

that s = s, € g (UM = FX(UF). As FX(U") injects into FX (Ul \ 2) =
FX(k(UM) by it is sufficient to prove the equality in the latter
stalk. This follows from the commutativity of the above diagram, using that
both s and s” map to s|y in FZ. (V). |

Theorem 1.13.12. If .7 is a homotopy invariant presheaf on éa"k, then Fnis 18
also homotopy invariant.

Proof. We must show that the map i: Fnis(X x Al) — Fnis(X) induced by
the zero section is injective. As in the proof of we consider the

commutative diagram

Fris(X x AY) U 22X (AL

- .
loJ{ J{Zo

Fris(X) —— FE(K).

The homomorphisms n* and (n x 1)* are injective by [Corollary 1.13.8| and [Corol{
respectively. Using[Lemma I.13.11]along with homotopy invariance of

the presheaf #X | we find that the right hand vertical map 4 is an isomorphism.

Hence if: Fris(X x Al) — Fnis(X) is injective. [ |
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Abstract

We provide an axiomatic framework that characterizes the stable oco-
categories that are module categories over a motivic spectrum. This is
done by invoking Lurie’s co-categorical version of the Barr—Beck theorem.
As an application, this gives an alternative approach to Rondigs and
Dstveer’s theorem relating Voevodsky’s motives with modules over motivic
cohomology and to Garkusha’s extension of Rondigs and @Dstveer’s result
to general correspondence categories, including the category of Milnor—
Witt correspondences in the sense of Calmes and Fasel. We also extend
these comparison results to regular Noetherian schemes over a field (after
inverting the residue characteristic), following the methods of Cisinski and

Déglise.
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1.1 Introduction

In and , Rondigs and @stvaer employed the technology of motivic
functors developed in to prove an important structural result regarding
motivic cohomology, namely that there is an equivalence of model categories
between motives and modules over motivic cohomology (at least over fields of
characteristic zero). In particular, this implies that Voevodsky’s triangulated
category of motives, introduced in [Voe00], is equivalent to the homotopy category
of modules over the motivic Eilenberg—Mac Lane spectrum. This result has
been extended to bases which are regular schemes over a field in the work of
Cisinski-Déglise on integral mixed motives in the equicharacteristic case .
More recently, Rondigs and @Ostvaer’s result was extended to general categories
of correspondences over a field by Garkusha in [Gar19]. These theorems provide
pleasant reinterpretations of Voevodsky’s category of motives as modules over a
highly structured ring spectrum. The analog in topology is the result that chain
complexes over a ring R are equivalent (in an appropriate model categorical
sense) to modules over the Eilenberg-Mac Lane spectrum HR. This result was
first obtained by Schwede and Shipley in as part of the characterization
of stable model categories in loc. cit

In the present paper, we aim to provide a general axiomatic approach to the
above results. More precisely, by making use of Lurie’s co-categorical version of
the Barr—Beck theorem we derive a characterization of those stable co-categories
that are equivalent to a module category over a motivic spectrum. These
categories are instances of motivic module categories as defined in Definition [[T.3.1]
Examples include DM(k) in the sense of Voevodsky and DM(k) in
the sense of Déglise—Fasel . Our characterization then reads as follows:

Theorem II.1.1 (See Theorem|[I1.5.2)). Let k be a field of exponential characteristic
e, and suppose that 4 (k) is a motivic module category on k. Then there is an
equivalence of presentably symmetric monoidal stable oco-categories

M (k) [L] ~ ModR/ﬂ[%](SH(k)L

where R_y is a motivic Exo-ring spectrum in SH(k) corresponding to the monoidal
unit in A (k). In particular, the associated triangulated categories are equivalent.

We remark that an co-categorical treatment of Schwede and Shipley’s results can be found
in |[Lurl7, Theorem 7.1.2.1].
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In fact, we formulate a parametrized version of motivic module categories
and, under further hypotheses, we show that Theorem [[.1.1] extends to regular
schemes over fields (see Theorem [IL5.5)). The proof of the latter follows the
approach of Cisinski-Déglise |[CD15|, while the proof of Theorem breaks

down into three steps:

(1) Invoke the Barr-Beck-Lurie theorem to prove that a motivic module category
A (k) on k is equivalent to the category of modules over some monad on
SH(k).

(2) Produce a functor from modules over the monad to modules over a corre-
sponding motivic spectrum (Lemma [I1.3.6)).

(3) Determine when this functor is an equivalence.
In practice, the proof of item (3) above breaks further down into two steps:

(3a) Show that the functor is an equivalence under the assumption of the

projection formula (see [Definition 11.3.4]). This is done in [Theorem II.3.5

(38b) Verify the projection formula in the relevant cases, which we do in Sec-

tion [[L5

After proving Theorem we proceed to give a way to engineer several
examples of motivic module categories via the notion of correspondence categories,
to which one can apply the usual constructions of motivic homotopy theory.

II.1.1 Overview

Here is an outline of this paper:

e In Section [[T.2] we collect some background material on the Barr-Beck—
Lurie theorem, on compact rigid generation in motivic homotopy theory,
and on premotivic categories.

o In Section[[T.3] we provide an axiomatic framework characterizing the stable
oo-categories that are module categories over motivic spectra.

o In Section [[T.4] we move on to discuss examples of categories satisfying
the axioms of Section [[.3] The most prominent example are those arising
from some sort of correspondences.

o Finally, in Section[[T.5] we prove that the axioms of Section [[I.3]are satisfied
for the correspondence categories constructed in Section in various
situations.
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I1.1.2 Conventions and notation

We will rely on the language of oco-categories following Lurie’s books
and . By a base scheme we mean a Noetherian scheme S of finite
dimension. We denote by Sch the category of Noetherian schemes, and by
Smg the category of smooth schemes of finite type over S. The symbol T will
denote the Thom space of the trivial vector bundle of rank 1 over the base S.
Thus we have the standard motivic equivalences T ~ A'/A'\ 0 ~ P. We set
SPd = (§1)®(P=9) @ GE4 and XPIM = SP4 @ M, suitably interpreted in the
category of motivic spaces or spectra. We reserve the symbol 1 for the motivic
sphere spectrum in SH(k) and write X1 for the (p, ¢)-suspension of 1. If 7 is
a topology on Smg, we write H.(S) (resp. SH,(S)) for the unstable (resp. the
T-stable) motivic homotopy oco-category. If 7 = Nis we may drop the decoration.

.L1.3 Acknowledgments

We would like to thank Paul Arne @stveer for suggesting to us the problem,
and Shane Kelly for useful comments and suggestions. We would especially like
to thank Tom Bachmann for very useful comments that changed the scope of
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to deriving a long time ago, and Maria Yakerson for teaching him about
MW-motives. Kolderup would like to thank Jean Fasel and Paul Arne @stveer
for their patience and for always being available for questions.

1.2 Preliminaries

I1.2.1 The Barr—Beck—Lurie Theorem

Let us start out by recalling the Barr—-Beck—Lurie theorem characterizing modules
over a monad, in the setting of co-categories. We use the terminology of
§3.7].

Let F: 4 &= 2 : G be an adjunction. Then the endofunctor GF': ¢ — € is
a monad, and the functor G: ¥ — € factors as

2 S IModar(%) % %,

where v is the forgetful functor. Moreover, the functor G**: 2 — LModgr (%)
admits a left adjoint

Ferl: LModgr(%) — 2.

1.2.1.1

The net result is that the adjunction F : 4 = & : G factors as
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F

e

Freegp ((5) fenh

LMOdGF .

Here the functor Freegp: € — LModgp(%) is simply the left adjoint to the
functor v appearing in the factorization of G above, and thus deserves to be
called the “free GF-module” functor.

1.2.1.2

The Barr-Beck—Lurie theorem provides necessary and sufficient conditions for
the functor G*"': 2 — LModgr(%) to be an equivalence. Before stating
the theorem, recall first that a simplicial object Xo: A°? — & is split if it
extends to a split augmented object; in other words it extends to a functor
U: A — 2. Here A_, is the category whose objects are integers > —1, and
where Homa ___ (n,m) consists of nondecreasing maps n U {—oo} — m U {—o0}.
Every split augmented simplicial diagram is a colimit diagram so that the map
colim X, — X_; is an equivalence. If G: 2 — ¥ is a functor, we say that a
simplicial object X, in Z is G-split if G o X, is split.

Theorem 11.2.1 (Barr—Beck—Lurie [Lurl7, Theorem 4.7.3.5]). Let G:  — € be
a functor of co-categories admitting a left adjoint F: € — 2. Then the following
are equivalent:

1. The functor G™® and F® are mutually inverse equivalences.

2. The functor G is conservative, and for any simplicial object Xo: AP —
9 which is G-split, Xo admils a colimit in 9. Furthermore, any extension
Xo: (A°P)> — D is a colimit diagram if and only if G o X, is.

Any adjunction (F,G) satisfying the equivalent conditions above is called
monadic.

I.2.2 Compact and rigid objects in motivic homotopy theory

We now recall some facts about compact-rigid generation in motivic stable
oo-categories.

1.2.2.1

For now we work over an arbitrary base S. Denote by:

1. SH¥(S) the full subcategory of SH(.S) spanned by the compact objects,
and
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2. SH"®(S) the full subcategory of SH(S) spanned by the strongly dualizable
objects.

The co-category SH(S) is generated under sifted colimits by X1X5° X, where
X is an affine smooth scheme over S and ¢ € Z Proposition 4.2.4].
Furthermore, each generator is a compact object in SH(S) since Nisnevich
sheafification preserves filtered colimits (see, for example, Proposition
6.4] where we set the group of equivariance to be trivial). Hence the oo-category
SH“(S) is generated under finite colimits and retracts by L4LX° X, , where
q € Z and X is affine. In particular the unit in SH(S) is compact and we have
an inclusion

SH"8(S) C SHY(S). (IL.1)
Over fields this inclusion is an equality—at least after an appropriate localization:

Lemma Il.2.2. Let k be a field and suppose that £ is a prime which is coprime
to the exponential characteristic e of k. Let Liy: SH(k) — SH(k) be the
localization endofunctor at £. Then (IL.1) induces equalities

SH"®(k) ) = SH” (k) s

and
SH"®(k) [1] = SH“ (k) [1].

Proof. Since SH" (k) is generated as a stable subcategory which is closed under
retracts by 33X, where X is a smooth affine scheme, SH* (k) ) is generated
by the image of the same objects under L. Now, X5 X is dualizable whenever
X is smooth and proper by 7 hence it suffices to prove that L) (33X )
is a retract of some L, (XY, ), where Y is a smooth projective k-scheme. If
k is perfect then this is Corollary B.2]. We note that this result is
extended to the case of arbitrary fields in Theorem 3.2.1]. The result for
e-inverted motivic spectra follows. |

Example 11.2.3. If S is a positive dimensional base scheme, we should not

expect (IL.1) to be an equality in general even after localization; see [CD12
Corollary 3.2.7].

1.2.2.2
We adopt the following terminology:

Definition 11.2.4. Let & be a field and suppose that L: SH(k) — SH(k) is a
localization endofunctor. We say that L(SH(k)), or simply L, has compact-rigid

generation if (IL.1)) is an equality after applying L.
Hence Lemma [[1.2.2{tells us that SH(k) ) and SH(k) [£] have compact-rigid

generation.
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1.2.3 Premotivic categories and adjunctions

Lastly, we recall Cisinski and Déglise’s notion of a premotivic category [CD19].
For a detailed treatment of this notion using the language of co-categories we
refer the reader to the thesis of Khan [Khal6|. In particular, the results used in
this paper can also be found in Chapter 2, Section 3.6].

Suppose that . is a full subcategory of the category Sch of Noetherian
schemes, and let &2 denote a class of admissible morphisms §1]. In fact,
the only example we care about is when & is the class of smooth morphisms.
As in §1] (see also Appendix A] for a more succinct discussion),
a functor

M P — Cato

is called a &-premotivic category over . if for each morphism f: T — S in
.7, the induced functor f*: .#(S) — .#(T) admits a right adjoint f., and if
f is admissible, it admits a left adjoint fu. The left adjoints are furthermore
required to satisfy the Z2-base change formula, i.e., the exchange morphism
Exl:qupg™ — f*ps is an equivalence whenever

4q>X

Y
|
[

is a Cartesian diagram in .¥ such that p is a &-morphism. See §1.1.9]
for details.

If the context is clear, we simply refer to .# as a premotivic category. We may
also speak of premotivic categories taking values in other (large) co-categories
such as the oo-category of symmetric monoidal co-categories Cat® , or the oo-
category of stable co-categories Cato stan. Another candidate that will often
appear is the co-category Pr” of locally small presentable co-categories
Definition 5.5.0.1]. We recall that an co-category € is presentable if and only if
it is an accessible localization of the co-category of presheaves on some small

oo-category [Lur09, Theorem 5.5.1.1].

1.2.3.1

We also have the appropriate notion of an adjunction between premotivic cate-
gories (see Definition 1.4.6], Definition A.1.7]). Indeed, if .# and
' are premotivic categories, then a premotivic adjunction is a transformation
~v*: M — A" such that

1. for each S € .7, the functor v§: 4 (S) — .#'(S) admits a right adjoint
VS

2. For each morphism f: T — S € ., the canonical transformation fuv§ —
vi f# is an equivalence.
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Furthermore, we say that a premotivic adjunction v* is a localization of premotivic
categories (or, simply, a localization) if for each S € . the functor ~g. is fully
faithful, i.e., a localization in the sense of Definition 5.2.7.2]. We say
that a localization of premotivic categories is smashing if g, preserves colimits.
Suppose further that .# takes values in Catg%. In particular, the functors f*
are strongly symmetric monoidal. Then a localization L is symmetric monoidal
if given any S € . and any FE € .#(S) that is L-local, then for any E' € .#(S),
E®E'is L-local as well. This last condition implies that the symmetric monoidal
structure on . (S) descends to one on the subcategory of L-local objects and
that the localization functor is strongly symmetric monoidal Proposition
2.2.1.9].

11.2.3.2

We recall two conditions on .# which will be relevant to us later. In order to
formulate them, we will now assume that .# takes values in stable co-categories.
Let S € .7 be a scheme. Suppose that i: Z — S is a closed subscheme, and let
j: U — S be its open complement.

Definition I11.2.5. Let .# : .7°P — Catoo stab be a premotivic category, and let
Z % 8 < U be as above. We say that .4 satisfies (Loc;) if

M(Z) = (8) s )

is a cofiber sequence of stable co-categories. We say that .# satisfies (Loc) if
(Loc;) is satisfied for any closed immersion i.

Now let ¢ = (¢q)acr be a collection of Cartesian sections of .# (the only
case we consider is {¥P71},, c7z). We denote by .#.(S) C .#(S) the smallest
thick subcategory of .#(S) which contains fu f*cs x for any smooth morphism
f: T — S. Following [CD15, Definition 2.3], we call objects in .#.(S) c-
constructible. We say that .# is c-generated if for all X € . the stable
oo-category . (S) is generated by .#.(S) under all small colimits.

Definition 11.2.6. Let .7 : .7°P — Catoo stab be a premotivic category. Suppose

that o7 C .72 is a collection of morphisms in .. We say that .# is continuous
with respect to </ if the following holds. Suppose that X : I — . is a cofiltered
diagram in . whose transition maps belong to ./ and whose limit X :=
limyey X, exists in .. Then the canonical map

M(X) — lin} Me(Xeo)-
ac
is an equivalence.

1.3 Motivic module categories

In this section we formulate the notion of motivic module categories and relate
it to categories of modules over a motivic £,,-ring spectrum.
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11.3.0.1

Let . be a full subcategory of Sch. By [Ayo07; |CD19| we then have a premotivic

category
SH|y: /P — PrsLt’a%)
whose value at S € .7 is the motivic stable homotopy category SH(S) over S.

Here Prftfé denotes the co-category of presentably symmetric monoidal stable
oo-categories [Lur09, Definition 5.5.0.1], Definition 2.0.0.7].

Definition 11.3.1. Let . be as above, and suppose that L: SH| s — L(SH)|.»
is a localization which is symmetric monoidal in the sense of §I.2.3.1] We then
define the following:

1. Let S € . An L-local motivic module category on S is a presentably
symmetric monoidal stable co-category .# (S) equipped with an adjunction

Vs« LISH(S)) = . (S) : vs»

such that the left adjoint v§ is symmetric monoidal, and the right adjoint
g« 1s conservative and preserves sifted colimits.

2. An L-local motivic module category over . (or, simply, a motivic module
category if the context is clear) is a premotivic category

. op L,®
M SV — Pr

valued in presentably symmetric monoidal stable co-categories, along with
a premotivic adjunction

7" LSH)|» — ;S (y5: LISH(S)) = #(5)),

which evaluates to an L-local motivic module category . (S) on S for
each S € .7.

If L is the identity functor, then we simply say that .#Z is a motivic module
category. When the localization L is clear, we may denote a motivic module cat-
egory by a pair (SH|.s,.#). Moreover, if the scheme S is implicitly understood,
we may drop the S from the notation (v§,vs«)-

In §IT:4) we will give a way to construct motivic module categories using very
general inputs.

Lemma I1.3.2. Let S € .77, and let 1s € SH(S) denote the motivic sphere
spectrum over S. If . is an L-local motivic module category, then the spectrum
Ly.v*(1s) € SH(S) is an Exo-ring spectrum.

Proof. As ~, is lax symmetric monoidal, it follows that -y, preserves E,-algebras.
Since v* is symmetric monoidal, v*(1g) is the unit object in .# and is thus
an Exo-algebra. As L is symmetric monoidal, we conclude that v,v*(1g) is an
Eoo-ring spectrum. |

83



II. On modules over motivic ring spectra

11.3.0.2

The Barr-Beck—Lurie theorem ensures that a motivic module category on S is
always equivalent to modules over a monad, as the following lemma records. We
will subsequently investigate when we can further enhance this equivalence to
modules over the E-ring spectrum Lvy,y*(1g).

Lemma I1.3.3. If .#(S) is a motivic module category on S, then the induced

adjunction
e LMod,, - (L(SH(S))) = /() : 4™

is an equivalence of co-categories.

Proof. By assumption, the conditions of Theorem [[I.2.1] are satisfied. |

1.3.1 Motivic module categories versus categories of modules

The following definition will be essential in relating a motivic module category
to a category of modules over a motivic E,-ring spectrum.

Definition 11.3.4. Suppose that .# is an L-local motivic module category over .
and let S € .. We say that the pair (SH| ., .#) admits the projection formula
at S if there is an equivalence

77 (1) ® (=) = 7y”

of endofunctors on L(SH(S)). If (SH|.», #) admits the projection formula at
any S € .7, we say that (SH|»,.#) admits the projection formula.

Theorem 1.3.5. Let .# be an L-local motivic module category over .. Suppose
that S € . is a scheme such that (SH| o, #) admits the projection formula
at S. Then there is an equivalence of presentably symmetric monoidal stable
oo-categories

AM(S) ~ Modp,, 4 14)(SH(S)).

Consequently, if (SH|.s,.#) admits the projection formula, then we have an
equivalence of premotivic categories

M~ MOdL'y*ﬂy*(l) (SH(—))

1.3.1.1

In light of Lemma we can prove Theorem by means of relating
modules over the monad 7.7* with modules over the motivic spectrum v.y*(1g).
Thus, given S € . our task is to formulate a relationship between the two
oo-categories

LMOdry*,\/* (SH(S)) and LMOd,Y*A/*(ls)(g(,)(SH(S)).
To do so, it suffices produce a map of monads
c: vy (1s) @ (=) = 7™,

84



Motivic module categories

which will induce a functor
*: LMod,, 4+ (15)e(— (SH(S)) — LMod,,~+ (SH(S)).

For this, we appeal to a general lemma.

Lemma Il.3.6. Let €, 2 be symmetric monoidal co-categories and suppose that
we have an adjunction F : € = 9 : G such that F' is symmetric monoidal (so
that G is lax symmetric monoidal). Then there is a map of monads

c: GF(1) ® (=) = GF, (I1.2)

which gives rise to a commutative diagram of adjunctions

Freegp
T
% u LModgr (%)
GF(l)@(%\\LMd //
odagr(1

Proof. Since F is monoidal and G is lax monoidal, the functor GF is lax monoidal.
Hence GF(1) is an algebra object of ¢, and thus GF(1) ® (—) is indeed a monad.
We construct the map of monads ¢: GF(1) ® (—) = GF(—) by letting ¢ be the
composite of the following maps of monads:

GF(1)® (=) ~ (GF(1) @ (=)) oid
% (GF(1) @ (=) 0 GF(-)
2 G(F(1) © F(-))
~ GF.

Here € is the unit of the adjunction (F,G). The transformation € is a map of
monads via the triangle identities, and the map id o € is a map of monads since
we are o-tensoring two maps of monads. The map p is given by the lax monoidal
structure of G; more precisely, we note that the endofunctor G(A ® F'(—)) is
a monad for any algebra object A, and so G(F(1) ® F(—)) is in particular a
monad. We have a canonical equivalence of monads

(GF(1)® (=)o GF (=) ~ GF(1) ® GF(-).
The lax structure of G then provides a morphism of endofunctors
GF(1)®@ GF(—) = G(F(1) ® F(-)) ~ GF(-),

and the lax structure also verifies that this is a map of monads. This gives rise
to a functor ¢, : LModgr (%) — LModgr(1)g(—)(¢), which has a left adjoint by
the adjoint functor theorem.

85



II. On modules over motivic ring spectra

To obtain the desired factorizations, we note that we have the following
commutative diagram of forgetful functors

\ LModgr (%)
LMOdGF(1)®
Thus the left adjoints also commute. |

11.3.1.2

We can now apply Lemma [[T.3.6] to prove Theorem [[T.3.5]

Proof of Theorem[II.5.5 We claim that the adjunction of Lemma [[T.3.6]
c* : LMod,,_ «(14)(SH(S)) = LMod,,,~(SH(S)) : c.,

is an equivalence. By the construction in the proof of Lemma the above
adjunction arises from a map of monads given by ¢: v,v*(1s)®(—) — 7.7*. Since
(SH|, #) satisfies the projection formula, we conclude that the adjunction
(c*, c.) is an equivalence.

Now, note that Theorem and Lemma are phrased for £;-algebras
and left modules. However, as v,7*(1) is an E,-ring spectrum by Lemma
the oo-categories of left and right v,7*(1)-modules are equivalent. We thus
conclude that there is an natural equivalence

MOdfy*'y*(ls)(SH(S)) ~ .//(S)

of oo-categories, which carries 7,7*(1g) to the unit object v*(1g) of .Z(S5).
Finally, if .# satisfies the projection formula at any S € .¥, then the naturality
of the above equivalence furnishes the equivalence of premotivic categories
M ~ Mod,,_ +1)(SH(—)). |

Remark 11.3.7. In fact, the above reduction can be achieved using a more refined
version of Lurie’s Barr-Beck theorem |Lurl7, Proposition 4.8.5.8].

Remark 11.3.8. We were also informed by Niko Naumann that the above result
is a consequence of [MNN17], Proposition 5.29].

In the following Sections [[T.4] and we will provide examples for which the
hypotheses of Theorem are satisfied.

1.4 Correspondence categories

The prime examples of motivic module categories are built from various notions
of correspondences. In this section we will give an axiomatization of co-categories
that behave like the category of framed correspondences asin |[E ; Suslin—
Voevodsky’s category of finite correspondences [VSF00], [MVWO06, Chapters 1
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and 2]; Calmes and Fasel’s finite Milnor—Witt correspondences ;
Grothendieck—Witt correspondences ; and, more recently, the categories
of correspondences studied in [DK20| and |[Elm+20]. These examples will be
discussed in To begin with, consider the discrete category Schg, whose
objects are S-schemes of the form X := X IT S and morphisms which preserve
the base point. We consider the subcategory Smg; C Schg, spanned by smooth
S-schemes of finite type. We will use heavily the nonabelian derived co-category
PShy (%) associated to an co-category € with finite products; more detailed
treatments of this construction can be found in Chapter 1] and
§5.5.8].

Definition 11.4.1. A correspondence category (over a base scheme S) is a pread-
ditiveEl oo-category € equipped with a graph functor

ve: Smgy — € (IL.3)
satisfying the following conditions:

1. The functor ~¢ is essentially surjective and preserves finite coproductsEl
so that we get an induced functor

Yz« : PShy(¢) — PSh(Smg); F — F ovye.

2. The composite functor
Smg, — € — PShx(%) ™% PShy(Smgy) (11.4)

has a right lax Smg-linear structure. We abusively denote the compos-
ite (I1.4) by 4 (—); the context will always make it clear what is meant.

The oo-category CorrCat of correspondence categories is defined as a full subcate-
gory of the (large) oo-category PreAdd. sm, ; of small preadditive oco-categories
and functors that preserve finite coproducts equipped with a finite coproduct-
preserving functor from SmS+E|

1.4.0.1

We begin with a couple of clarifying remarks and an example.

Remark 11.4.2. Informally, the Smg-linear structure on 4 (—) encodes, for any
X,Y € Smg, maps
Xi @7e(Ys) = e (X4 @ Yy)

2Recall that a preadditive co-category is one that is pointed, has finite products and
coproducts, and is such that the map X IIY — X X Y is an equivalence for all X,Y € %.

3By requiring the functor ¢ to preserve finite coproducts we include also the empty
coproduct, ensuring that y¢ preserves the base point of Smg .

4More succinctly, CorrCat is the pullback of co-categories PreAdd X atll {Smg }, where

Cat" denotes co-categories with finite coproducts and finite coproduct-preserving functors.
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in PShy(Smgy ) ~ PShy(Smg). which are subject to various compatibilites. For
example, if f: X, — Z, is a map in Smg, then we have a 2-cell witnessing the
commutativity of

Xt @1e(Ys) — (XL @Y,

f®idl l’)’%(f@id)

7y @ye(Yy) —14(Z4 ®Yy).

Similarly, if g: Y4, — Z4 is a map in Smg; then we have a 2-cell witnessing the
commutativity of

Xy ®7¢(Yy) ——19(Xp @ Yy)

id®gJ( Lﬁg(id®g)

Xy ®@v¢(Z1) — e (X ® Z3).

These cells are required to satisfy an infinite list of coherences.

Remark 11.4.3. The Smg-linearity assumption will be satisfied if ¢ has a
symmetric monoidal structure and the functor v« is symmetric monoidal. In more
detail, we denote by CorrCat® the co-category of preadditive co-categories with
a symmetric monoidal structure such that the graph functor y4: Smgy — € is
symmetric monoidal, essentially surjective and preserves finite coproducts. There
is a forgetful functor CorrCat® — CorrCat; the second part of Definition
is obtained from the strong symmetric monoidality of 7. This is the case in
the examples considered in this paper, but we include it as an axiom to clarify
proofs of certain properties.

Example 11.4.4. Let Corg denote the discrete category whose objects are smooth
S-schemes and morphisms are spans X < Y — Z. This is a preadditive category
by [BH18, Lemma C.3]. The graph functor witnesses Corg as a correspondence
category.

1.4.0.2

We now provide some elementary properties of a correspondence category.

Proposition 1.4.5. Let € be a preadditive co-category equipped with an essential
surjection
Y¢ - Sms — €

which preserves coproducts, and let v¢. denote the induced functor
Yz« : PShg (%) — PShy(Smg); F — F ovye.
Then the following properties hold:

1. The co-category PShs(€) is presentable and preadditive.
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2. The functor y¢. preserves sifted colimits.

3. The functor vyg.« is conservative.

Proof. Presentability of PShy (%) is Proposition 5.5.8.10 (1)], while PShy,
applied to a preadditive oo-category is again preadditive by Corollary
2.4]. The functor . preserves sifted colimits since sifted colimits are computed
pointwise (a direct consequence of parts (4) and (5) of Proposition
5.5.8.10]), while 4. is conservative since 7 is essentially surjective. |

11.4.0.3

The composite of 74 with the Yoneda functor Smg, £ 4 % PShy (€¢) has a
canonical sifted colimit-preserving extension 7% : PShy(Smg, ) — PShy(%). It
is easy to check that . is the right adjoint to 7% and thus v preserves all
small colimits. As a result, we have an adjunction

ve : PShy(Smgy) & PShg (%) : v (I1.5)

It is also easy promote the Smg-linear structure given by the second axiom of a
correspondence category to a PShy (Smgy )-linear structure so that the functor

Y+ 0 it PShy(Smg, ) — PShy(Smg)

extends to a right lax PShy(Smg )-linear functor.

1.4.0.4

Now we would like to do motivic homotopy theory on €. Recall that if XY €
PShyx(Smg, ), then X is Al-homotopy equivalent to Y if there are maps f: X —
Y,g: Y — X and A'-homotopies H : Al+ ®X — X, H: A}r ®Y =Y from gf
and fg to the respective identity morphisms. We note that any A'-homotopy
equivalence is an L z1-equivalence §2 Lemma 3.6].

Lemma 11.4.6. The functor vy4: PShy(Smgy) — PShg(Smg,) preserves Al-
homotopy equivalences.

Proof. Suppose that we have a homotopy H : Al+ ® X4+ — Y between maps
f,9: X = Y. We obtain, using the right lax-structure, a homotopy

AL @74(X) = 79(A x X) = 7¢(Y)
between v (f) and y¢(g). [ |

Lemma I1.4.7. The functor y¢: PShs(Smgy) — PShy(Smgy) preserves Lz -
equivalences.
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Proof. By definition the class of L o1-equivalences is the strong saturation, in the
sense of Proposition 5.5.4.5], of the maps in PShy(Smg ) by the (Yoneda
image of) Al-projections mx: (A' x X); ~ AL ® X; — Xy for X € Smsg.
According to Lemma 2.10] the class of La1-equivalences is then generated
under 2-out-of-3 and sifted colimits by maps of the form 7x Il idy, where
Y € Smg.

Since 7y is an A'-homotopy equivalence, it follows from Lemma that
y¢(mx) is an Al-homotopy equivalence. Since 74 preserves coproducts by
assumption, the same is true for the morphism

’y<g(7TX 1T idy+) ~ ’y<g(7Tx) 1T ’}/cg(idy+).
The functor y¢ clearly preserves the 2-out-of-3-property. Lastly, the functor ¢
preserves sifted collimits by definition and sifted colimits are computed valuewise
in PShE(SmL%_)A . Hence we conclude that 4 preserves L a1-equivalences. W

1.4.0.5

Now we take into account a topology that we might want to put on Smg,,
namely, the topology of coproduct decomposition. This is a topology on Smg
defined by a cd-structure, denoted by II, generated by squares

S——U,
Ve —— X,

where U and V' are clopen subschemes of X such that UII'V = X. Sheaves with
respect to the topology generated by this cd-structure is precisely the nonabelian
derived category on %. In other words we have

ShVH(Sms+) >~ PShZ (Sms+)

by [BH18| Lemma 2.4]. Hence all topologies 7 considered in this paper satisfy
Sth(SmS+) Q PShE(SmS+)

Definition 11.4.8. Let 7 be a topology on Smg, and let € be a correspondence
category with graph functor y¢: Smgy — €. Then € is compatible with 7 if for
every T-sieve U — X in Smg, the natural map

Ve (Ur) = v (X4)
is an L.-equivalence in PShy(Smgy ).

Lemma 11.4.9. Suppose that € is a correspondence category which is compatible
with 7. Then the functor

Y€ : PShg(Sm5+) — PShg(Sms+)

preserves L -equivalences.
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Proof. By definition, the class of L -equivalences is the strong saturation, in
the sense of Proposition 5.5.4.5], of the maps in PShy(Smg, ) by the
(Yoneda image of the) maps i, : Uy — X, where X € Smg and i is a 7-
sieve. According to Lemma 2.10], the class of L, -equivalences is then
generated under 2-out-of-3 and sifted colimits by maps of the form 7x ITidy,
for Y € Smg. By the same reasoning as in Proposition [[.4.7] we need only check
that v¢ (Uy) — v¢(X4) is an L-equivalence which is true by hypothesis. W

From now on, whenever we consider a correspondence category % we make
the following assumption on the topologies we discuss:

o The topology 7 is at least as fine as the Nisnevich topology and is compatible
in the sense of Definition [L4.8l

1.4.0.6

If @ is a correspondence category, then we can construct its unstable motivic
homotopy oco-category in the usual way, as we now do. We consider two full
subcategories of PShy (%) spanned by objects # satisfying the following two
axioms on homotopy invariance and 7-descent:

(Htpy) The presheaf .7 o y¢: Sme® — Spc is Al-invariant. We denote the
oo-category spanned by such Z’s by PSha:1(%).

(r-Desc) The presheaf .Z o y¢: Smy — Spc is a 7-sheaf. We denote the
oo-category spanned by such %’s by Shv,(€).

Since PShy (%) is preadditive by Proposition , we have a canon-
ical equivalence CMon(PShy (%)) ~ PShy(%’). The co-category of unstable
% -motives, denoted by H, (%), is then defined as PSha1(%) N Shv, (%) C
PShy(%). As usual we have localization functors L? : PShy (%) — Shv, (%),
L%, : PShy(%) — PShai (%) and LY, _: PShy (%) — H.(%). From the con-
struction of these localizations and the assumption on 7, the adjunction
descends to an adjunction

Yo :Hr(Smgy) ~H (S), @ H () : e (11.6)

Lemma 11.4.10. The co-category H(€) is preadditive. Hence we have a canon-
ical equivalence CMon(H(¢)*) ~ H.(%).

Proof. The oco-category H, (%) is closed under finite products by checking that
the conditions (Htpy) and (7-Desc) are preserved under taking products which
are computed pointwise. The statement follows since PShy (%) is preadditive by

Proposition [[T.4.5 [ |

Definition 11.4.11. The oo-category of effective €-motives H. (% )8 is defined
to be the full subcategory of H, (%) spanned by the grouplike objects, in the

sense of [GGN15, Definition 1.2].
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1.4.0.7

The next proposition captures the main property of categories of correspondences
from the point of view of motivic homotopy theory.

Proposition 11.4.12. Suppose that € is a correspondence category which is com-
patible with 7. Then the functor

V€ HT(%) - HT(S)*

preserves sifted colimits and is conservative. Furthermore, H.(%€) is canonically

an H(S).-module.

Proof. For the first claim it suffices, after Proposition [[.4.5 to check that
Y€+ - PShg(%) — PShZ(SmS+) ~ PShz(Sms)*
sends Lzow—equivalences to Limot,r-equivalences. This holds by Lemma

and Lemma [IT.4.9] The assertion that H, (%) is an H(S).-module follows from
the right lax structure of ve.. ]

Remark 11.4.13. If 7 is a topology finer than the Nisnevich topology, then the
fully faithful functor H,(S). — H(S). need not preserve colimits. Hence the
composite H, (%) — H,(S) need not preserve colimits.

11.4.0.8

From the above point of view, we see that v¢, is very close to preserving all
colimits—we need only show that it preserves finite coproducts. The universal
way to enforce this is to take commutative monoid objects on both sides with
respect to Cartesian monoidal structures. We can do this for H,(S5), since
it has finite products, and CMon(H,(%)*) ~ H, (%) since it is preadditive
Proposition 2.3]. We remark that the symmetric monoidal structure
on PShy;(Smgy) given by Day convolution is not Cartesianﬂ
Thus, to see that ¢, preserves all colimits, consider its left adjoint

’Y%: H.(9)« — H- (%),

which preserves all small colimits. According to the universal property of CMon
[GGN15|, Corollary 4.9] we obtain an essentially unique functor

v%: CMon(H,(5))) — H, (%)

50n the other hand, the symmetric monoidal structure on PShy(Smg) given by Day
convolution is Cartesian, and the natural sifted-colimit preserving functor PShy(Smg) —
PShs(Smg4 ) is symmetric monoidal.
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since H, (%) is preadditive by Proposition 1. This functor admits a right
adjoint v : H-(¢) — CMon(H,(S5);) which fits into a commutative diagram

CMon(H
= (J

+(5)3) (IL7)
H,(¢) ———H.(S)..

In other words, the functor v¢. factors through the forgetful functor
CMon(H,(S))) — H.(9)..

We use this to conclude:

Proposition 11.4.14. Suppose that € is a correspondence category which is com-
patible with 7. Then the functor

Yeu: He (€) — H-(9).
preserves all small colimits and is conservative.

Proof. By the diagram , the diagonal functor y¢, preserves sifted colimits
because the horizontal arrow preserves sifted colimits by Proposition [[T.4.12]
and the vertical arrow preserves sifted colimits as a special case of
Proposition B.4]. Since it is a right adjoint it preserves finite products, but
since its domain and codomain are preadditive it preserves finite coproducts
as well and we are done by Lemma 2.8]. The conservativity statement
follows from Proposition and the fact that the forgetful functor from

commutative monoid objects is conservative. |

1.4.0.9 T-stability

We now introduce the notion of T-stability along with the weaker notion of
T-prestability. This is inspired by the treatment of [Lurl8, Appendix C] on
prestable co-categories.

Definition 11.4.15. Let ¢ be an H(S),-module in Cats,. Then € is T-prestable
if the endofunctor
T®(-):¢—% (IL.8)

is fully faithful. The oco-category ¥ is T-stable if the endofunctor (IL.8) is
invertible.

Remark 11.4.16. The notion of a T-stable co-category is a familiar one in motivic
homotopy theory; indeed, the motivic stable homotopy category SH(S) is T-
stable. In fact, T-prestability is a familiar concept as well: it is inspired by
Voevodsky’s cancellation theorem which asserts that DM (k, Z) is T-
prestable for any perfect field k. The analogous statement holds for Milnor—Witt
motives as proved in . For the oco-category of framed motivic spaces,
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cancellation holds by Theorem 3.5.8], which in turn relies on the
cancellation theorem of Ananyevskiy, Garkusha and Panin . Moreover,
for any base scheme S, the subcategory SH(S)*® C SH(S) of effective motivic
spectra is T-prestable.

11.4.0.10

From now on we assume that the correspondence category € is such that H(%).
is prestable. The thesis of Robalo provides a way to invert T and obtain
a symmetric monoidal stable co-category—in fact one that is a module over
SH(S). We define the stable oo-category of € -motives simply by

SH.. () i= H,(€)[T%"],
with notation as in Definition 2.6]. We then have the basic adjunction
YT H(¢) = SH,(F) : QT .
The following summarizes the basic properties of SH,(%):
Proposition I1.4.17. If € is a correspondence category, then the following hold:

1. The oo-category SH.(€) is a presentably symmetric monoidal stable co-
category, and

2. is generated under sifted colimits by objects of the form

{T®n ® E%?%X}nGZ,XG%-

3. The oco-category SH.(€) is computed as the colimit in Modgy(smy)., (Prh)
of

TR(—) TR(—) TR(-)

H, (%) H(7) 2L H, () 22 (I1.9)

4. The functor
Y€ - SHT(%) — SHT(Sms)

is conservative and preserves colimits.

Proof. Stability follows from the standard equivalence T ~ S' ® G, in SH(S),
which remains true for modules over SH(S). The second assertion follows from
the third via Lemma 6.3.3.7] and the fact that H. (%) is generated under
sifted colimits by representables which are smooth affine by the argument of
Proposition 2.2.9] (which works for any topology 7 finer than Nis), while
the third comes from Corollary 2.22]. The last assertion follows from

Proposition [ |

1.4.0.11

The last part of Proposition [[I.4.17] is the main point of our axiomatization:
the adjunction SH,(S) = SH, (%) is monadic. In particular, if 7 = Nis, then
SH(S) = SH(%) is monadic.
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I.4.1 From categories of correspondences to motivic module
categories

Suppose that we have a functor
€. .7°P — CorrCat®

which carries a morphism of schemes f: T — S to f*: €5 — %r. By naturality
of the preceding constructionsﬂ we obtain a functor

SH, 0 ¢: .7°P — Pr®

stab

equipped with a transformation SH|» — SH, 0 ¥. We impose an additional
assumption on %, inspired by |[CD19, Lemma 9.3.7]:

o For each p: T'— S, a smooth morphism in .¥, the functor p* admits a left
adjoint py such that the transformation pyy4, — Yyspx is an equivalence.

In this case, we say that € is adequate.

1.4.1.1

We employ the following additional notation: if L: SH(S) — SH(S) is a
localization, denote by L(SH,(%s)) the subcategory of SH,(%s) spanned by
objects X such that y4.(X) is L-local. Since 4. preserves limits, the inclusion
L(SH,(%s)) — SH,(%s) is closed under limits and there is a localization
functor (by the adjoint functor theorem)

L<gS: SHT(%S) — L(SHT(CKS))
rendering the following diagram commutative (since their right adjoints com-

mute):

*

Yeg
SH(S) — = SH.(€5)

% le

Y%
L(SH(S)) — L(SH,(%5)).
Proposition 1.4.18. If ©: .7°P — CorrCat® is adequate, then the following
hold:
1. We have premotivic adjunctions SH|y = SH, 0 €.

2. If L is smashing and a symmetric monoidal localization of SH| &, then we
have a premotivic adjunction L(SH)|.» S L(SH o %).

6The most nontrivial of which is the universal property of T-stabilization for which we can
appeal to [BH18| Lemma 4.1].
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3. If 7 is a topology such that for each S € 7, the functor L(SH,(S)) —
L(SH(S)) preserves sifted colimits, then the premotivic adjunction

L(SH)|s» = L(SH, 0 %)
is a motivic module category (in particular, this holds when 7 = Nis).

Proof. The proof of (1) follows as in the case of Grothendieck abelian categories
Corollary 10.3.11] and Voevodsky’s € = Cor (in the sense of §9]);
we give only the main points. Since % is adequate, we get that the equivalence
DuY6r — YVés P4 DPersists on the level of T-stabilizations. What we need to verify,
just as in Proposition 10.3.9], is that the transformation L,yeg. ~ Yy« L+
is an equivalence on the unstable level, i.e., the “forgetful” functor H, 0% — H|»
preserves T-local objects. This is given by Lemma [[T.4.9 under the standing
assumption that ¢ is compatible with 7. The next two statements are then
immediate from the definition of motivic module categories and the last statement

of Proposition [ |

1.4.2 Examples
We now discuss examples of the above constructions and results.

Example 11.4.19. Let . = Schg and suppose that F is an £,,-ring spectrum in
SH(S). Then Modg = (E ® (—)) o SH furnishes the first examples of motivic
module categories. We can also consider further localizations of the premotivic

category Modg, such as in [ElIm+19b| where .% = Schz[%] the localization

functor is given by the composite of /~-completion and étale localization, and F
is MGL; see loc. cit. for more details where results in this paper are used to
describe the oo-category of modules over étale cobordism.

Example 11.4.20. Consider a localization L: SH|» — L(SH|»). If L is smash-
ing, then L(SH| ) is a motivic module category. Examples of these smashing
localizations are given by periodization of elements; we refer the reader to
Section 3] for an extensive discussion in our context. For example, a
theorem of Bachmann proves that periodizing the element p yields real
étale localization. Consider x: 3791 — 1. Then the results of §3] (or
apply |[Bacl8, Lemma 15]) tell us that 1[z71] is an £, -ring and the projection
formula holds, hence the category of x-periodic motivic spectra are modules over
1z~

Example 11.4.21. The basic example of a category of correspondences is Voevod-
sky’s category of finite correspondences Corg in the sense of [MV WO m Appendix
1A], [CD19, §9], which is defined for any Noetherian scheme S 9, §9.1].
When S is essentially smooth over a perfect base field, the category of finite
Milnor-Witt correspondences Cors of Calmes and Fasel |C is defined and is
also a category of correspondences. Over a perfect field (where both categories
are defined), these categories are generalized by Garkusha’s axioms in .
When defined, these categories are adequate in the sense of All of these
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are examples of categories of correspondences, and thus give rise to motivic
module categories.

Example 11.4.22. Let k be a perfect field. Given any S € Smj and any good
cohomology theory A on Smg in the sense of DK2 DK20, §2], then [DK20], §3] defines
an adequate category of correspondences Corg on Smg.

Example 11.4.23. The oo-category of framed correspondences of is
another example of a category of correspondences and is defined for any qcgs
scheme S. The main theorem of asserts that the corresponding motivic
module category is equivalent to SH(.S), relying on the “recognition principle”

of |[Elm+19a].

Example 11.4.24. If £ € SH(S) is a homotopy associative ring spectrum, then
|[Elm+-20] defines an hSpc-enriched category hCorE of finite E-correspondences,

which the authors expect to be the homotopy category of an co-category CorgJ
whenever E is an As-ring. Setting € = Corg, the co-category SH(%) in this
paper corresponds to DM¥(S) in loc. cit. We will return to this example in the
next section.

I.5 Module categories over regular schemes

In this section we show that the hypotheses of Theorem are satisfied for
module categories over a field k, and more generally for module categories over
regular k-schemes.

I1.5.1 The case of fields

We start by verifying that the projection formula holds at a field k. In this case,
we can use the following computation to reduce to the case of compact-rigid
generation:

Lemma II.5.1. Suppose that we have an adjunction of symmetric monoidal co-
categories

F:¢=92:G
such that F' is strongly symmetric monoidal. Let 1 € € denote the unit object of

€. If E € € is a strongly dualizable object, then the map ¢: GF (1)@ E — GF(E)
s an equivalence.

Proof. This follows from a standard computation: let E' € € be arbitrary, then
we have a string of equivalences

Map (E',GF(1) ® E) ~ Map(E’' ® EY,GF(1))

~ Map,,(F(E'® EY), F(1))

~ Mapg, (F(E') @ F(E)", F(1))

(F(E

( /

~ Mapy, (F(E'), F(E))
~ Map4(E',GF(E)),
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which shows the claim. | |

1.5.1.1

Thus, if SH(S) is generated by strongly dualizable objects, it follows that the
projection formula holds:

Theorem 11.5.2. Let k be a field. Suppose that £ is a prime which is coprime to
the exponential characteristic e of k and let A be a motivic module category on
k. Then we have the following equivalences of presentably symmetric monoidal
stable co-categories:

Ly (A (k) ~ Mod, .~ (15)(SH(E)),

and

A (k) [] ~ Mod SH(k)).

%«'v*(l)[%}(

Proof. In light of Theorem we need to verify the appropriate projection
formulas. By assumption, the functor v, preserves sifted colimits and thus the
functors 7,7*(1s) ® (—) and 7.7*(—) do as well. Now Lemma[[L.5.1] tells us that
the projection formula holds for strongly dualizable objects in SH(k) (). Thus we

will be done if we can prove that the inclusion of (ILI]), SHrig(k’)(g) C SH* (k) ),
is an equality. This amounts to showing that SH(k) () is in fact generated under
sifted colimits by strongly dualizable objects. But this follows by Lemma
which also verifies the theorem for the e-inverted case. |

1.5.1.2

We now obtain the following extension of [RO08, Theorem 1], [HK®17, Theorem
5.8], Theorem 5.3] and [BF18| Lemma 5.3]:

Corollary 11.5.3. Let k be a field of exponential characteristic e and let
Yg: Smy — €

be a correspondence category over k. Then there is an equivalence of presentably
symmetric monoidal stable co-categories

SH(%) [1] ~ Mod SH(k)).

v (1)[ 2] (

I.L5.2 The case . = Reg;,

Following we can extend the previous result to the category Reg,, of
finite dimensional Noetherian schemes that are regular over a field k, provided
that we impose some additional assumptions on .#Z. For the rest of this section,
we will therefore assume that .# is a motivic module category which in addition
satisfies the following property:
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o The premotivic category .# satisfies localization (Definition [II.2.5) and
continuity (Definition [I1.2.6)).

Lemma 11.5.4. Suppose that f: T — S is a morphism in Reg,. In the following
cases, the transformation

I v = v f™

s an equivalence:

1. The scheme T is an inverse limit lima T. of S-schemes T, such that the
transition maps T, — Tz are dominant, affine and smooth.

2. The map f is a closed immersion and S = l'ma S«, where each S, is a
smooth, separated k-scheme of finite type with flat affine transition maps.

Proof. Under the continuity and localization assumption on .#, the proof in
[CD15, Lemma 3.20] for the case of .# = DM(—, R) applies verbatim. [ |

11.5.2.1
We now have the following extension of Theorem |[[1.5.2

Theorem I1.5.5. Let k be a field of exponential characteristic e, and let .4 be
a motivic module category on Regy,. Then the functor v*: SH — .# induces a
canonical equivalence

Mod SH(-)) = . [1]

€

%'v*(l)[%](

of premotivic categories on Regy,.

Proof. After Theorem our goal is to verify that (SH|geg, ,#) satisfies
the projection formula. Suppose that S € Regy,, and let E € SH(S). We claim
that the map

77" (1s) @ B — 77" (E) (11.10)
is an equivalence. To show this, we follow closely the logic of |[CD15| Theorem
3.1].

First, assume that S is an essentially smooth scheme over a field. For each
x € S, we write S, for the localization of S at x. Then the family of functors

{SH(S) — SH(S,)}

is conservative by |[CD19, Proposition 4.3.9]. Hence we are reduced to proving

that the map ([I.10) is an equivalence in the case S is furthermore local. In
this case, let i: © — S, be the closed point and write j: U, — S, for the open
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complement. By our assumption on S, U, has dimension < dim S. We consider
the following commutative diagram, where the rows are cofiber sequences:

N (Ls) @ J°E) —— 77" (15) @ B —— i, (" 77" (15) ® i* E)

J J |

31 (E) —————= %7 () ——————— "7 (E)

| | !

§y T E ——————— 1y E 5 i,y i E.
(I1.11)
Now,

o The left vertical composite is an equivalence because (1) j* commutes with
v« by definition of a morphism of premotivic categories, and (2) by the
induction hypothesis.

o The right vertical composite is an equivalence using (1) Lemma [I1.5.4]2
and (2) the case of fields, Theorem [[1.5.2

It therefore remains to show that f; and fo are equivalences.
e The map f; is an equivalence because j* commutes with ..
o That f> is an equivalence follows from Lemma [[I.5.4]2.

Now, following the “General case” of , we explain how the bootstrap
to regular k-schemes work. By continuity (appealing to Proposition
4.3.9] again), we may again assume that S is a Henselian local regular k-scheme.
As explained in loc. cit., there is a sequence of regular Noetherian k-schemes

such that the following hold:

o The scheme S’ has infinite residue field and the functor ¢*: SH(S) [1] —
SH(S') [1] is conservative.

o The scheme T is the oo-gonflement of I'(S’, Og/) [CD15| Definition 3.21]
and the functor f*: SH(S') [1] — SH(T) [1] is conservative.

o Both f and ¢ satisfy the hypotheses of Lemma [[T.5.4]1, and thus f* and
q* commute with ~,.

Hence, to check that the map is an equivalence it suffices to check that it
is an equivalence after applying (¢f)*. Since T is, by construction, the spectrum
of a filtered union of its smooth subalgebras we invoke continuity of SH to
conclude. |
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1.5.2.2

Lastly, we provide the following class of examples of motivic module categories for
which localization and continuity holds. We will make the following assumption:

o for a base scheme S and an A..-ring spectrum E € SH(S), there exists an
oo-category Corg such that its homotopy category is the hSpc-enriched

category hCorg of |[EIm+-20].

With this assumption in play, any motivic A,-ring spectrum F gives rise to the
motivic module category DMP¥ as explained in Example |II.4.24| and ﬂElm—i—QOﬂ.
While this makes the next results conditional, we will explain unconditional
instances of these results in Example

Proposition 11.5.6. Let . C Schg. Then, for any As-ring spectrum E €
SH(S), the premotivic category DMP%: .7°p — Cats satisfies continuity for
dominant affine morphisms.

Proof. We first claim that the analog of Proposition 9.3.9] holds for finite
E-correspondences. Let (X;);csr be a cofiltered diagram of separated S-schemes
of finite type with affine dominant transition morphisms. Let X = im, X, which
is assumed to exist in Schg and is assumed to be Noetherian. Then we claim
that for any separated S-scheme Y of finite type, the map

colim Corg (X;,Y) — Corg (X, Y) (IL12)
is an equivalence.

To do so, we use the dual of Lemma 4.1.26]. Denote by cx, (resp.
cx ) the filtered poset of reduced subschemes of X; XgY (resp. X X gY") which are
finite and universally open over X; (resp. X). Furthermore, we denote by Sub(cx)
the poset of full sub-posets of cx. We then have a functor K: I — Sub(cx)
given by i — K, := cx,, where cx, is regarded as a full sub-poset in the obvious
way. By continuity of SH, the functor EBM(—/X): cx — Spc of Borel-Moore
E-homology spaces [Elm+20| §2] restricts to a functor EBM(—/X;): ex, — Spc.
Hence the map (II.12) is, by [Elm+20, Definition 4.1.1], equal to the map

colim colim E®M(Z;/X;) — colim EPM(Z/X),
Iop cx, Zecx

which we claim is an equivalence. The hypotheses of Lemma 4.1.26]

follow easily (under the hypotheses that the transition maps are affine and

dominant) by Propositions 8.3.6, 8.3.9]. Hence the desired claim follows.

The rest of the proof follows as in the case of DM from Theorem

11.1.24]. [ |

Proposition I1.5.7. Let k be a field and let E € SH(k) be an A -ring spectrum.

Then the premotivic category DMY : .7°P — Cato satisfies (Loc;) whenever i
s a closed immersion of reqular schemes.
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Proof. Since DM¥ is constructed from Nisnevich local objects, it is Nisnevich
separated. By Proposition 6.3.14], it has the weak localization property,
i.e., it has (Loc;) for any closed immersion with smooth retractions. Arguing
as in |[CD19, Corollary 6.3.15], it has the localization property with respect
to any closed immersion between smooth schemes. The rest of the argument
then follows as in Proposition 3.12], which uses the continuity results
established in Proposition [[T.5.6] as above. [ |

11.5.2.3
From this we conclude:

Corollary I1.5.8. Let k be a field of exponential characteristic e and let E € SH(k)
be an Aso-ring spectrum. Then we have a canonical equivalence

DM 1] = Mod,_. ;3] (SH(-)

of premotivic categories on Reg,.

Example 11.5.9. As explained in §4.1.19], the hypothetical co-category
Corg is equivalent to hCorg whenever S is essentially smooth over a perfect
field k£ and FE is pulled back from the heart of the effective homotopy t-structure
SH(k)*®Y over k. Hence Theorem holds unconditionally whenever F is
pulled back from the prime subfield of k£ and lies in the heart of the effective
homotopy t-structure there.

Examples of such spectra include the motivic cohomology spectrum HZ and
its Milnor—Witt counterpart HZ. Furthermore, in Proposition 4.3.6]
(resp. Proposition 4.3.19]) it is proved that DM"#(S) ~ DM(S) (resp.
DM"%(S) ~ ]51\7[(5 )) whenever S is essentially smooth over a Dedekind domain
(resp. essentially smooth over a perfect field) [Elm+20| Proposition 4.3.8] (resp.
[Elm-+20, Proposition 4.3.19]). By the continuity result of Proposition
we can enhance the comparison results for DM to regular schemes over fields.
While DM(S) is not defined outside of smooth schemes over perfect fields,

8

Corollary |I1.5.8 promotes the comparison results between DM and modules over
HZ of [IGar19|] and ||BF18|] at least to smooth schemes over fields. We contend,

however, that DM™%(S) is a decent definition for DM(S) in general.
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Abstract

‘We prove that homotopy invariance and cancellation properties are satisfied
by any category of correspondences that is defined, via Calmes and Fasel’s
construction, by an underlying cohomology theory. In particular, this
includes any category of correspondences arising from the cohomology
theory defined by an MSL-algebra.
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1.1 Introduction

Originally envisioned by Grothendieck, the theory of motives was set in new
light by Beilinson’s conjecture on the existence of certain motivic complexes,
from which it should be possible to derive a satisfactory motivic cohomology
theory. This point of view ultimately led to Suslin and Voevodsky’s construction
of the derived category of motives DM(k) over any field k . The basic
ingredient of this construction is the category Cory of finite correspondences over
k. Finite correspondences define an additive category, and presheaves on this
category—Dbaptized presheaves with transfers—are exceptionally well behaved.
Indeed, presheaves with transfers carry a very rich theory, satisfying fundamental
properties such as preservation of homotopy invariance under sheafification
7 and a cancellation property with respect to smashing with G,,, [Voel0].
These results are crucial in order to obtain a good category of motivic complexes.

Shortly after Suslin and Voevodsky’s introduction of motivic complexes, a
“nonlinear” version of DM(k) was defined by Morel and Voevodsky
in the context of motivic homotopy theory. In this more general setting, the
motivic stable homotopy category SH(k) was constructed, most notably via
the Al-localization and the P!-stabilization process. The category SH(k) is
equipped with an adjunction

v* : SH(k) = DM(k) : 7 (ITL.1)

such that the image of the unit for the symmetric monoidal structure on DM (k)
is mapped to the motivic Eilenberg-Mac Lane spectrum HZ in SH(k) under ..
In fact, this adjunction exhibits DM(k) as the category of modules over the ring
spectrum HZ (at least after inverting the exponential characteristic of k) [RO08§].
Furthermore, the restriction of -, to the heart of the homotopy t-structure on
DM(k) is fully faithful. In fact, with rational coeflicients, the category SH(k)q
splits into a plus part and a minus part, where the plus part is equivalent to
DM(k, Q) [CD19]. Informally we can think of DM(k, Q) as consisting of the
oriented part of SH(k)q.

Several alternative and refined versions of the category of correspondences
have been introduced in the wake of Suslin and Voevodsky’s pioneering work,
many of which attempt to provide a better approximation to the motivic stable
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homotopy category than DM(k). In particular, it is desirable to construct
correspondences that capture also the unoriented information contained in
SH(k). Examples include

o the category ZF.(k) of linear framed correspondences, introduced by
Voevodsky and further developed by Garkusha and Panin [GP18a];

. Kga— and Ky-correspondences, studied by Suslin and Walker in [Sus03
'Wal96];

o the category é\o/rk of finite Milnor—-Witt correspondences, introduced by
Calmes—Déglise—Fasel |[CF17; [DF17al; and
o the category GWCory, of finite Grothendieck—Witt correspondences defined

by the first author in [Drul8b|.

To exemplify to what extent the above categories succeed in providing better
approximations to SH(k), let us mention that framed correspondences classify
infinite P'-loop spaces \| and the heart of the category ﬁ\/d(k) associated
to Cory, is equivalent to the heart of SH(k) (with respect to the homotopy t-
structure) [AN19].

Along with the introduction of each new category of correspondences follows
the need to prove fundamental properties like strict homotopy invariance and
cancellation in order to produce a satisfactory associated derived category of
motives. For the above examples, this is achieved in [AGP18; [DF17a; Drul8a;
Drul8c; [FO17; |GP18b; |[Sus03]. The aim of this note is to establish these
properties simultaneously for a certain class of correspondence categories, namely
those that are defined by an underlying cohomology theory (see [Definition I11.3.1|
for the precise meaning). This includes Voevodsky’s finite correspondences—
which can be defined using the cohomology theory CH" of Chow groups—as well
as finite Milnor-Witt correspondences Cory, which are defined using Chow—Witt

groups CH . More generally, any ring spectrum F € SH(k) that is an algebra
over Panin and Walter’s algebraic cobordism spectrum MSL [PW18| gives rise
to a cohomological correspondence category.

lll.1.1 Outline

In [Section IT1.2] we introduce the axioms for a cohomology theory A* needed
to build the associated category Cor‘,;1 of finite A-correspondences. The defi-
nition of the category Cor‘,;1 is given in In addition we give in
Section III.3| a number of constructions in the category Corf. Most notably,
Construction I11.3.11] ensures that a regular function on a smooth relative curve
along with a trivialization of the relative canonical class gives rise to a finite A-
correspondence; this construction is used to define all the finite A-correspondences
needed to prove strict homotopy invariance and cancellation.

ection ITI.4] is a brief comparison between our construction of finite A-
correspondences and framed correspondences. This is done by constructing a
functor from the category of framed correspondences Fr, (k) to Cory.
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Sections [[TL.5], [ITT.6] [ITL.7] and [[TL.§] are devoted to the proof of the strict
homotopy invariance property of homotopy invariant presheaves on Cor,‘?. The
proof breaks down into several excision results as well as a moving lemma, each
of which is treated in its own section.

In[Section IT1.9 we show the cancellation theorem for finite A-correspondences,
following the technique in Voevodsky’s original proof [Voel0)].

Finally, in we use the previous results to establish a well
behaved category of motivic complexes DM 4 (k) associated to the category
Cor?, and we show several properties expected of this category. In particular,
we define A-motivic cohomology in this category, and show that DM 4 (k) comes
equipped with an adjunction to SH(k) parallelling . Note that these
constructions are for the most part standard. For this reason we keep it rather
brief on certain formal aspects of the constructions, and refer the interested
reader to, e.g., [IMVWO06; [Voe00b] or [DF17a] for further details.

is a collection of the geometric results used in the proofs of the

excision theorems.

lll.1.2 Relationship to other works

In the independent project , the construction of the category CorkE
of [Section ITI.3.1.1] is generalized to arbitrary ring spectra in SH(S) over a
base scheme S. Let us also mention that functors from the category of framed
correspondences to other correspondence categories have been considered by
several authors. The original construction of a functor Fr,(k) — Corj from
framed correspondences to finite Milnor—Witt correspondences was given by
Déglise and Fasel in [DF17a]. In [Elm+20, §4.2], the functor of Déglise and Fasel
was refined to an hSpc-enriched functor ®¥: hCorr™ (Schg) — hCorr” (Schy)
from the homotopy category of the co-category of framed correspondences to
finite E-correspondences.

l11.1.3 Conventions and notation

Throughout, the symbol & will denote a field, and the symbol G, := Spec(k[t*])
will denote the multiplicative group scheme over k. In certain sections we will
also need to put some restrictions on the field k; this will be stated in the
beginning of the relevant section.

By a base scheme we mean a noetherian scheme of finite Krull dimension. If
S is a base scheme, we let Smg denote the category of schemes that are smooth,
separated and of finite type over S. By an essentially smooth scheme we mean
a scheme that is a projective limit of open immersions of smooth ones. We
denote the category of essentially smooth schemes by EssSmg. If f: X — Y
is a morphism in Smg (or EssSmg), we let wy = wy,g ® f*w;/ls denote the
relative canonical sheaf. Moreover, we may write simply wy for wx y/x. In
the case of smooth (or essentially smooth) schemes X,Y € Sm;, (or EssSmy)
over a field k, we will often abbreviate X x; Y to X xY; A} to A" and P}
to P”. Throughout, we will let 7y and 7; denote the zero- respectively the unit
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section ig,i;: Speck — Al. If we for example need to emphasize that A? has
(z,y)
coordinates (x,y), we may for brevity denote this by A2 . This notation will in

particular be used in the tables in Sections [[TL.5] [[TT.6], [[TT.7] and [[TL.8]

If Z is a line bundle on a scheme X and s € I'(X,.%) is a section of .Z,
we will denote by Z(s) C X the vanishing locus of s. We say that a section
s € I'(X,.%) is invertible if the homomorphism Ox — £ defined by s is an
isomorphism.

We denote by Map.(X,Y) the mapping spaces of an co-category ¢, and
write [X, Y] := mo Map (X, Y). If ¢ is any category, we denote by PSh(%) :=
Fun(%°P, Spc) the co-category of presheaves on %, and for a ring R we denote
by PSh(%’; R) the oo-category of presheaves of R modules on €. Moreover, we
let PShy (%) denote the full subcategory of PSh(%) spanned by presheaves that
carry finite coproducts to finite products §5.5.8].

lll.1.4 Acknowledgments
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and Paul Arne @stveer for helpful discussions and comments. We would also like
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lll.2 Twisted cohomology theories with support

Let S be a base scheme. We denote by SmOpIé the category of triples (X, U, %),
where X € Smg is separated, smooth and of finite type over S, U is an open
subscheme of X and .Z is a line bundle on X. A morphism (X,U,.%) —
(Y, V,.#) in SmOpY consists of a pair (f, @) of a morphism of S-schemes f: X —
Y such that f(U) C V, and an isomorphism «: & =N f*A. Note that
there is an embedding Smg — SmOp% given by X — (X, @, Ox). For any
(X,U,92) € SmOpIg7 we will write i;; for the inclusion iy : U — X and jy for
the inclusion jy: (X,9,.%) — (X,U,.%¢). In the case when U = &, we will
often denote the triple (X, @,.#) € SmOp5 simply by (X,.2).

Definition lIl.2.1. A twisted pre-cohomology theory is a graded functor
A*: (SmOp%)°P — Ab%
which satisfies the following properties:

111



Ill. Cohomological correspondence categories

(a) (Localization) There is a natural transformation
0: A*(X,U, %) — AU, i;,.2)

of degree +1 which fits into an exact sequence
A(X,.2) Y AU, in.2) S AHX, U2 1 AKX, 2).

(b) (Etale excision) Suppose that f: X — Y is an étale morphism of smooth
S-schemes. Assume moreover that Z C Y is a closed subset such that
fly-1(zy: f~Y(Z) = Z is an isomorphism. Then the pullback homomor-
phism

frrANYYNZ,Z) - ANX X\ fU(2), [ 2)

is an isomorphism for any line bundle . on Y and any n € Z.

If (X,U, %) € SmOp%, let Z := X \ U be the closed complement of U. We
then write A% (X, %) = A*(X,U,Z). The map jj;: Ay (X, %) - A*(X,Z) is

called the extension of support-homomorphism.

Remark 111.2.2. [Definition TT1.2.T]is but a twisted version of Panin and Smirnov’s
definition of a cohomology theory considered for example in , except that
for our purposes we need not assume the axiom of homotopy invariance. In the
case of oriented homotopy invariant theories, our definition coincides with Panin
and Smirnov’s definition.

Remark 111.2.3. The axiom of étale excision in [Definition [II.2.1}implies that there
is a canonical isomorphism A} 1, (X, %) = A}, (X, Z)® A (X, Z), ie., that
the cohomology theory A* also satisfies Zariski excision. In fact, Zariski excision
is enough to prove most of the results below. The only places where we need
étale excision are in the construction of the functor from framed correspondences
to A-correspondences in and in the proof that A-transfers are
preserved under Nisnevich sheafification (Theorem III.10.1)). Furthermore, the
latter case only requires étale excision on local schemes. In [Corollary ITI.8.5| we
show that a homotopy invariant cohomology theory satisfying Zariski excision
will automatically satisfy étale excision on local schemes.

Definition ll.2.4. Let A* be a twisted pre-cohomology theory. Suppose that we
in addition are given the following data:

1. (Pushforward) For any morphism f: X — Y € Smg of smooth equidimen-
sional S-schemes of constant relative dimension d, and any closed subset
Z C X such that f|z is finite, we have a pushforward homomorphism

for AG(X,wp @ [*.2) = A} 5V, .2)

for any n > 0 and any line bundle .Z on Y.
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2. (External product) The cohomology theory is a ring cohomology theory,

i.e., there is an associative product structure
Ay (X, L)@ AZ (Y, M) — A%T;"SZQ(X xs Y, LR M)

and a unit 1 € A%(S).

We say that a pre-cohomology theory A* equipped with the homomorphisms
f+ and the product x as above forms a good cohomology theory if the following
properties hold:

3.

d.

(Pushforward functoriality) The hOHlOInOI‘phlbInb f« are functorial in the
sense that id, = id, and if (Xl,Uhgl) (XQ,UQ,XQ) (X3,Us, %)
are composable morphisms in SmOpI§ finite on the supports Z; := X; \ U;,
then the diagram

A

)(XQan ® g L) L AT (X:s,o%)

A%l (Xl,LUf (9 f*gg)

f(Z1 gf(Zl

is commutative. Here dy, d, and dgy are the respective relative dimensions
of the morphisms.

(External product functoriality) The external product x commutes with
pullbacks in the sense that if f: (X, f*%) — (Y, %) and g: (X', 9*.¢") —
(Y, £") are morphisms in SmOplg7 then the diagram

AMNY, L)@ AM(Y'!, L) —Z s AVPT(Y xg Y, L R.YL)

f*®g*l l(fxg)*

AMX, f* L)@ A™(X, g* L") X AT (X x o X! f* L R g* L")
is commutative.

(Base change) For any strongly transversal square (defined in
[(ion TIT.2.6)) that is equipped with a set of compatible line bundles (defined
in [Definition II1.2.7) the diagram

An Y/7%/) i A d’ (X/7$/)

(Z)( (63" (2))

¢;T T¢;

ALY, M) — s ATH(X, ),
is commutative.
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6. (Projection formula) Suppose that f: X — Y and Z C X satisfy the
hypotheses of (1), and let W C Y be a closed subset. Let moreover .Z
and .# be two line bundles on Y. Given any two cohomology classes

acAL(X,wr@ f*Z) and 8 € AW (Y, A), we then have
fila) — B = fula— f*P).

7. (Graded commutativity) For any oo € A%Z(X,.%) and § € A% (X,.Z), we
have

a— f= (="~ a)
Here (—1) € A°(S) is given as the pushforward (—1) := (idg, —1).(1); see
[Definition I11.3.16| Hence the ring A*(S) is (—1)-graded commutative.

Remark TI1.2.5. The existence of an external product x as in [Definition I11.2.4]
(2) is equivalent to the existence of a cup product

— A (X, L) @ A (X, M) — AY, (X, 2 @ M):;
see Definition 1.5] for further details on this.
Definition 111.2.6. Let

v s X
"SYJ, J{‘i’ . (I11.2)
y —— X
be a Cartesian square of smooth S-schemes. The square is called transver-
sal if the corresponding sequence

is exact, where g := ¢x o4’ =i o ¢y. Note that for any transversal square, the

isomorphism d¢y induces an isomorphism d¢y : ¢j-w; = Wi
A transversal square (I11.2]) is called strongly transversal if one of the following
two conditions are satisfied:

¢ The morphisms 7 and i’ are closed embeddings.

e The morphisms ¢x and ¢y are smooth and surjective.

Definition lll.2.7. Suppose that the square ([11.2)) is strongly transversal. Then

a compatible set of line bundles on the square (II1.2) consists of the following
data:

o Line bundles ., %", # , #' on respectively X, X', Y and Y.

e Isomorphisms of line bundles

a: ¢§(.$i>.$’; v:i* L R w; i///;
Bl =y S5 (i) L @wi > M
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We furthermore require that (o ¢3(y) corresponds to d o ((i')*(a) ®id,,, ) under
the isomorphism

Homo, ., (¢31"ZL ® ¢3wi, #") = Homo, ., ((i')" %L @ wir, . A")

induced by the canonical isomorphism ¢3-w; = w;s for the transversal square.

ll.3 Cohomological correspondences

We are now ready to extend Calmes and Fasel’s definition of finite Milnor—Witt
correspondences [CF17| to our setting:

Definition Ill.3.1. Let S be a connected base scheme, and suppose that A* is
a good cohomology theory on SmOpg. Assume further that p: X — S is a
smooth map of constant relative dimension d. Denote by Ay(X/S) the set of
admissible subset{l] of X relative to S—that is, closed subsets T' of X such
that each irreducible component of T,.q is finite and surjective over S via the
morphism p. The set Ay(X/S) is partially ordered by inclusions. As the empty
set has no irreducible components, it is admissible. If X is connected, we define
the group of finite relative A-cycles on X as

CAX/S) = lm AL(X,wx/s)
TeAo(X/S)

If X is not connected, we may write X = ]_[j X where the X;’s are the connected
components of X. We then set C{'(X/S) := I, Ci(X;/9).

Now let k be a field, and suppose further that S € Smy. Let Corg denote
the category whose objects are the same as the objects of Smg, i.e., smooth
separated schemes of finite type over S, and morphisms defined as follows. Let
X,Y € Smg, and suppose first that X and Y are connected. We define the
group of finite relative A-correspondences from X toY as

Corg (X,Y) := C{{(X xg Y/X).

Note in particular that Corg(X,S) = A%(X) for any X € Smg. If X or Y is
not connected, let X =J[; X; and Y =[], Y; denote the connected components
of X and Y. Then we put Corg(X,Y) := I, Corg(X;,Y;). If S = Speck, we
refer to Corﬁ (X,Y) simply as the group of finite A-correspondences from X to
Y.

Composition of finite relative A-correspondences is defined in an identical
manner as [CF17, §4.2]. Indeed, if a € Corg(X,Y) and 3 € Corg (Y, Z), we put

Boa:=(pxz)«(Pxya — pyzh). (ITL.3)

INote that for any X,Y € Smy we have Ao(X x Y/X) = A(X,Y), where A(X,Y) is the
set of admissible subsets of X X Y in the sense of |[CF17, Definition 4.1].
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Here we write pxy for the projection pxy : X XgY xgZ — X xgY, and similarly
for the other two maps. An identical proof as that of [CF17 m Lemma 4.13] then
shows that the groups Cor4 5 (X,Y) form the mapping sets of a (discrete) category
Corg whose objects are the same as those of Smg. We refer to Corg as the
category of finite relative A-correspondences. In the case when S = Spec k, we
refer to Corﬁ simply as the category of finite A-correspondences.

Finally, we define the homotopy category @g of Cor‘é as follows. The

objects of @3 are the same as those of Cor?, and the morphisms are given by
Corg (X,Y) 1= Cor(X,Y)/ ~ar

= coker (Coré(A}g xs X,Y) i N Cora(X, Y))

——A
We write [a] for the class in Corg of a finite relative A-correspondence « from
X toY.

11.3.0.1 Graph functors

We define a graph functor y4,s: Smg — Coré similarly as §4.3]: the
functor 4, is the identity on objects, and if f: X — Y is a morphism in Smg,
we let v4,5(f) :=1+(1). Here i: I'y — X xg Y is the embedding of the graph of
fyand i,: ATy, Op,) — Al‘iime(X X g Y,wy) is the induced pushforward. If
S = Spec k, we will write y4 for the graph functor. We will often abuse notation
and write simply f instead of v s(f).

1l1.3.0.2 Symmetric monoidal structure

Defining X Y := X 1Y turns COI‘? into an additive category with zero-object
the empty scheme. Moreover, Corg is symmetric monoidal, with tensor product
® defined by X ® Y := X XgY on objects, and given by the external product
on morphisms.

Lemma lll.3.2. The category Cor,‘? is a (discrete) correspondence category in the

sense of [EK20, Definition 4.1] (see also §2)).

Proof. This follows from [EK20, Proposition 4.5]. |

11.3.0.3

For S a smooth k-scheme there is a functor extg: Cory — Corg defined as
follows. For any X € Smy, let Xg := X x; S. Let X,Y € Smy; by working
with one connected component at a time, we may assume that X and Y are
connected. By the universal property of fiber products we have a morphism
f: Xg xgYs — X xY, which induces a pullback morphism

f Ad1mY(X><YwY>_>A1m( (XS XSYSaf wY)
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for any T € Ap(X x Y/X). As finiteness and surjectivity are preserved under
base change we have f~1(T) € Ay(Xs xsYs/Xs). Moreover, the canonical sheaf
wx/k; pulls back over X5 to wy /s, and similarly for wy /. Hence f*wxyy/x =
WxsxsYs/Xs- oince pullbacks commute with extension of support, we get an
induced map on the colimit

extg: COI“;?(X, Y) — Cgl(Xs X g Ys/Xs) = COY‘S(XS7YS).

It follows from the base change axiom applied to the diagram

XS ><5YS sts % XS X5YS

fXYZJ/ J/fXY

XxYxZ 2 xxYy

that the map extg preserves composition of finite A-correspondences. Thus we
obtain a functor extg: Cory — Corg.

111.3.0.4

In the opposite direction there is a “forgetful” functor resg: Corg — Cor,‘?
induced by pushforwards. Indeed, let X,Y € Smg. Then there is a Cartesian
diagram

XxgY X5 X xY

|

Ag —" 8% 8,

where Ag C S x S denotes diagonal. Moreover, we have isomorphisms

-k —1 ~ ~ ~  ,—1
Wxxgy QlixyWxyy = Wiyy = Wi = Wg .

Thus there is, for any T € Ay(X xg Y/X), a pushforward homomorphism
(ixy)*: Ag«imsy(X XgY, wY/S) — A?;(?{T)(X X Kwy).
Passing to the colimit, we obtain a map resg: Corg(X,Y) — Corj (X,Y). To

show that this homomorphism preserves composition in the category Corg, first
note that the commutative diagram

X xgY xsZ X% X YV xZ

pxxszl lpxz

XxgZ —272 L XxZ

vields (ixz)«(Pxxsz)x = (Pxv)«(ixyz)«. By decomposing the morphism ixy z
as
ixyz: X XsY xsZ 5 X xYxsZ 5 XXxYxZ

and applying the projection formula twice, we obtain the claim. Hence the maps
resg above define a functor resg: Corg — Corj.
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111.3.0.5

For any X € Smg, Y € Smy, and any admissible subset 7" of X x Y we have a
natural isomorphism

AFmY (X x Ywy) 2 AP (X xs Yo, wxxsvs/x)-

These isomorphisms define a natural isomorphism Cory (X,Y) 2 Corg (X, Ys).
Similarly as in |[CF17, §6.2] we deduce from this that the functors resg and extg
form an adjunction resg : Corg = Corj : extg.

ll.3.1 Examples of cohomological correspondence categories

Different choices for the cohomology theory A* recover various known corre-
spondence categories, as well as new ones. For example, if A* = CH" is the
theory of Chow groups, then the definition of Cor? gives back Voevodsky’s
category Cory, of finite correspondences. If the ground field k is perfect and of
characteristic not 2, then we can let A* be Chow-Witt theory, L.e., A" = CH . In
this case we obtain Calmes—Déglise—Fasel’s category Cory, of finite Milnor—Witt
correspondences. On the other hand, we can also define a good cohomology
theory A* by letting A%(X,.Z) := H}(X,I",.Z), where I" is the Nisnevich sheaf
of powers of the fundamental ideal. Then Corﬁ is the category WCory, of finite
Witt-correspondences considered in Remark 5.16]. Note that WCory,
thus defined differs from the category of Witt correspondences defined in ;
however, arguing similarly as in [BF18| one can show that the associated derived
categories of motives are equivalent after inverting the exponential characteristic
of the ground field.

l.3.1.1 Algebras over MISL

More generally, we claim that any ring spectrum E € SH(k) that is an algebra
over MSL defines a cohomological correspondence category. Here MSL € SH(k)
denotes the ring spectrum constructed by Panin and Walter in [PW1§].

In order to show this, let us first recollect a few notions from the formalism
of six functors. Let X € Smy, and suppose that i: Z C X is a closed subscheme.
Let moreover p: X — Speck be the structure map. We then have adjunctions

p*: SH(k) = SH(X) : p.

and
i : SH(Z) = SH(X) : 7.

If ¢: £ - X is a vector bundle on X, let s: X — & denote the zero section.
Recall from [Hoyl7, §5.2] that this defines Thom transformations

¥€ = gys. : SH(X) 2 SH(X) : s'¢* = 27,
In fact, these functors are defined for any ¢ € K(X) [BH18| §16.2].
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Definition 111.3.3 ([DF17b; [EIm+20]). Let E € SH(k) be a spectrum and let X,
Z be as above. Let furthermore £ € K(Z). The &-twisted cohomology of X with
support on Z and coefficients in E is the space

Ez(X,€) := Mapggyg) (Lx, pir 5% p* E),

where 15, € SH(k) denotes the motivic sphere spectrum. The associated bigraded
twisted cohomology groups with support are then given as

EYI(X,€) = [1y, BP0 254'p* Elsu -

Proposition ll.3.4. Suppose that E € SH(k) is an MSL-algebra. Let X € Smy,
and suppose that i: Z C X is a closed subscheme. For any line bundle £ on X,

set
ALX, L) = EJ"(X,i* L)
Then A% (X,.Z) defines a good cohomology theory and hence a cohomological

correspondence category CorkE .

Proof. The proposition follows from the six operations on SH(k), as explained
in [DF17b; [DJK18] or [Elm+20|. Indeed, for the contravariant functoriality we

refer to [DF17b| §2.2], and for the definition of the cup product, see [DF17b

§2.3.1]. The pushforward is given by the Gysin map

fii Ez(X, "6+ Ly) = Epz)(Y,6),

where Ly € K(X) is the cotangent complex of f; see [DJK18; [ElIm+20]. In
particular, for MSL we have the Thom isomorphism

YEMSL ~ p2rk&rkEpdet &~ON Q.
see [BH18, Example 16.29]. When £ is a line bundle .Z, this gives the pushforward

for AR(X wp® f12) = AT A (V.2).

For the base change and projection formulas, see [DF17bl Proposition 2.2.5] and
[DF17bl, Remark 2.3.2]. [ |

.3.2 Presheaves on Corj

Our basic object of study is the co-category PShg(Cor?; Z) of presheaves of
abelian groups on Corf that take finite coproducts to finite products. More
generally we may of course also consider, for any coeflicient ring R, the oo-
category PShy (Corﬁ ; R) of presheaves of R-modules. For notational simplicity
we will however mostly work with R = Z.

Definition 1I1.3.5. The objects of PShy;(Cory'; Z) will be referred to as presheaves
with A-transfers.
A presheaf with A-transfers .# € PShy, (Cor?; Z) is homotopy invariant if for

any X € Smyg, the map pr*: .7 (X) =, Z (X x A') induced by the projection
pr: X x A = X is an isomorphism.
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l.3.2.1

The oco-category PShg(Cor? ; Z) inherits a symmetric monoidal structure from
that on Corﬁ via Day convolution. Moreover, the graph functor v,4: Smy —
Cory defines a “forgetful” functor v : PShy(Corj'; Z) — PShy(Smy) given by
VA(F) := F oya. Similarly as in §1.2], we deduce that the functor v
admits a left adjoint v} which is symmetric monoidal.

I.3.2.2 Sheaves on Cor;j’

For any Grothendieck topology 7, we define the oco-category ShVT(Corf;Z)
consisting of those presheaves .Z € PShy(Cory; Z) such that 42 (%) is a 7-sheaf
on Smy,. The adjunction (v%,7Z) above then defines an adjunction

~v% : Shv,(Smy,) = Shv,(Cory; Z) : 424,

and the symmetric monoidal structure on PSh(Corj; Z) restricts to a symmetric
monoidal structure on Shv,(Cor; Z).

1.3.2.3

In this text, we will almost exclusively work with the case when 7 = Nis is the
Nisnevich topology. We show below (see|Theorem III.10.1)) that the full inclusion
i Shvyis(Cory; Z) — PShy(Cory; Z) admits a left adjoint

anis: PShy(Corj'; Z) — Shvyis(Cory'; Z).
In particular, the Nisnevich sheafification of a presheaf on Cor‘,:1 comes equipped
with A-transfers in a canonical way. Hence we can make the following definition:

Definition IlI.3.6. Let X € Smj, be a smooth k-scheme. Following the notation
of |CF17], we let c4(X) € PShy(Cory; Z) denote the representable presheaf on
Corj given by U ~— Cori (U, X). Moreover, we let

ZA(X) == anis(ca(X)) € Shvnis(Corp; Z)

denote the Nisnevich sheaf associated to the presheaf c4(X).

l.3.3 Correspondences of pairs

In the excision theorems of Sections [[TL.6] and [[TI.§ we are always in the setting of
a pair of schemes j: U C X, and we are led to consider the associated quotient
coker(j*: F(X) — F(U)) for a given presheaf with A-transfers. In particular,
if U = X and j is the identity, then the associated quotient is zero. The notion
of a correspondence of pairs provides a natural setting to study these objects.

Definition 111.3.7. Let Coré’pr denote the category whose objects are those of
SmOpg and whose morphisms are defined as follows. For (X,U),(Y,V) €

120



Cohomological correspondences

SmOpg, with open immersions jx: U — X and jy: V — Y, consider the
complex

Cord(X, V) 2% Cord(X,Y) & Cor(U, V) & Cord(U,Y)

in which dy = ((jy)s Jj%) and di = j% — (Jy)+. We define the group
Cor‘g’pr((X, U),(Y,V)) of finite relative A-correspondences of pairs as the ho-
mology of this complex, i.e.,

COI-?J"((X’ U)7 (Y> V)) := ker dl/ im do.

In particular, if U = X, then Corg™ ((X,X),(Y,V)) = 0. We denote the
elements of Corg™™ ((X,U), (Y,V)) by (a, 3), where a € Corg(X,Y) and § €
Cor?(U, V). If B is implicitly understood, we may write simply « instead of
(a, B). The composition in Cora™ is defined by (a, 8) o (v,8) := (a0, B0 d).

sPr

Finally, we define the homotopy category @Q"" of Corg as follows. The

. A . .
objects of Corg " are the same as those of Cor’g’pr, and the morphisms are given
by

Cors ™ ((X,U), (Y, V)) := CoraP (X, U), (Y, V))/ ~as

- coker(Cor?’pr(A}g xs (X, U), (Y, V) 275, Cor P ((X,U), (Y, V))) :

Here A§ xs (X,U) is shorthand for (AL xg X, A§ xg U). If
(o, B) € Corg™ ((X,U), (Y, V))

is a finite relative A-correspondence of pairs, we write [(«, 8)], or simply [, for
the image of («, 8) in @2’”((){, U),(Y,V)).

ll.3.4 Correspondences between essentially smooth schemes

We will frequently encounter local- and henselian local schemes, and we need to
consider correspondences also between such objects. The definitions and results
below take care of this. We remind the reader that the definition of an étale
neighborhood can be found in [Definition III.A.4]in the appendix.

Definition l11.3.8. Let X = lim X, € EssSmg be an essentially smooth S-scheme.
Consider a closed subscheme T = l'LnTa of X, where T, is a closed subscheme
of X,, for each a. Define

AU xg X, wx) = hénAgﬂa(U X5 Xo,Wx,)-

Furthermore, for any U = l'gla U, € EssSmg, and for any X € Smg, we define

Corg (U, X) := lim Cor§ (Ua, X).
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Finally, for any X € Smg, any point € X, and any U € EssSmg, we put

Corg (U, X 1) == lim Corg (U, X').

Here the limit ranges over all étale neighborhoods v: (X', z) — (X, z) of z in X.
Lemma lIl.3.9. For any X € Smg of relative dimension d over S, and for any

henselian local scheme U € EssSmg, we have

AT (U xs X,wx) = @ AL, (U x5 Xowx) = @ Afs (U x5 X[, wxr)
rzeX rzeX

forany T € Ag(U xs X/U). Here x ranges over the set of all (not necessarily
closed) points of X, and Ty :=T xx Xp; Tl :=T xx X!,

€T

Proof. Since U is henselian local and T' € Ag(U xg X/U) is finite over U, it

follows that 7" is a semi-local henselian scheme. In fact, T =[] 77, where z
ZET(O)
ranges over the set of closed points in 7. Hence T'= [[ T, and T = [[ T7,
rzeX reX

where x ranges over the set of all points of X. In particular we have T, = T".
We note that T/ is semi-local henselian, but not necessarily local. By Zariski
excision, we obtain

AU x5 X,wx) = @ AT, (U x5 X, wx),
reX

and
A} (U xg X' wx) = A% (U x5 X,wx)

for any open X’ C X containing z. This implies the first claim.

For the second equality, note that since the scheme T is semi-local henselian
for any x € X, it follows that T is isomorphic to its preimage under any étale
neighborhood v: (X’,z) — (X, ). Hence it follows from étale excision that
AdT;L(U xs X,wx) = AdT;L(U xg X', wx), and consequently A%Q(U xg X,wx) =
AdT;L (U xg X%, WX§)~ So the second equality follows. |

Lemma lI.3.10. Let X € Smg be as in[Lemma I1I1.3.9 Then, for any point

x € X and for any henselian local scheme U € EssSmg we have

Corg (U, X,) = lim ALU x5 Xz, wx, ),
TeA(UxsX,/U)

Cor§ (U, X3) = lim AU xs X7 wxn)-
TeAo(UxsXh/U)
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Proof. The first claim follows from the first equality of by the

following computation:

Corg (U, X,) = lim li AL(U x5 X' wx)
v TEAG(UxgX'/U)
:@ h_1>n @ A%z/(U XSX;HWX;,)
v TEA(UxsX'/U) 2’ €X'
= lim limy AT (U x5 Xg,wx7))
v aeX! TEAN(Ux X', /U) ’
= lim lim ANU xs XL, wx:) = AR (U x5 Xy, wx, ).

v TEAN(UxsXL/U)

Here v: (X', z) — (X, x) ranges over the set of Zariski neighborhoods of z in X.
The second equality of the claim follows in a similar manner from the second

equality of [Lemma I11.3.9[ with X, replaced by X", and with v ranging over the

set of étale neighborhoods of x in X. [ |

ll.3.5 Constructing correspondences from functions and
trivializations

From now on we will assume that the base scheme S is the spectrum of a field
k. Later on we will also have to put more restrictions on k (e.g., infinite or
perfect); the appropriate assumptions will be stated in the beginning of each
section where they are needed.

111.3.5.1

We will now describe how to construct a finite A-correspondence from the data of
a regular function on a relative curve together with a trivialization of the relative
canonical class. This construction can be thought of as an analogous statement

to the defining axiom of a pretheory in the sense of Voevodsky [Voe0O0Oa], and
will be used throughout.

Construction 11l.3.11. Suppose that there is a diagram

c 15 A

NN (IT1.4)
I

in Smy, satisfying the following properties:
1. p: C — U is a smooth relative curve, and g: C — X is any morphism.

2. Z(f) =212, with Z finite over U.

o

3. There is an isomorphism p: Oc — wev-
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We can then define finite A-correspondences
diviy(f)% € Cory(U,C);  div?(f) € Cory (U, C);
divir (f)? € Corpr(U, X);  div*(f)y? € Cory (U, X)

as follows:
Let Ty denote the graph of the morphism f, with embedding if: I'y < Cx Al
Consider the pushforward homomorphism

(if)*i AO(Ff’OFf ®wz‘f) - A%f(c X AlaOCXAl)a

and let dT': Oa1 = w1 be the trivialization defined by the coordinate function
T on A'. Using the trivializations —dT and p we then obtain a homomorphism

iyt AO(Ff,Orf) — Allﬂf(c X Al wex At/ uxar)-
Consider the image
i.(1) € A%f(C X A wewar/uxar)

of 1 € A%(I'y,Or,) under the map i,.
Next we may pull back along the zero section,

28 : Allﬂf (C X A17WC><A1/U><A1) — Alz(f) (C, wc/U).
Since Z(f) = Z 1 Z' we have Alz(f)(C,wc/U) = Alz(C,wc/U) ® Alz,(C,oJc/U) by
We define the finite relative A-correspondence
divi (f)y € Corg(U,C)
as the image of i,(1) € A%f (C x Al,chAl/U) under the composite homomor-
phism
Ap (€ x Al weyu) = Ay (Cowew) = AL (Coweyu) = Corg (U, C).

Here the second map is the projection to the first coordinate, and the last map is
the canonical homomorphism to the colimit. By composing with the morphism
g we obtain the finite relative A-correspondence

diviy (f)? := g o divir(f)h € Corp(U, X).

We readily obtain a nonrelative A-correspondence by applying the functor resy.
More precisely, we define

divA (f)%? == g o resy (divir (f)%) € Corp (U, X).

If it is clear from the context, we might drop the trivialization p or the map g
from the notation. Moreover, if Z = Z(f) and Z is finite over U, we may also
abbreviate div® (f)zep) to div®(f). We think of div*(f)’ as a divisor supported
on Z whose multiplicity at each component of Z is given by an A-cohomology
class.
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Lemma W.3.12. Let C, Z, p, [ and g be as in[Construction IIL.3.11. Then
divA(Af) Y9 = divA(f)%9 for any A € T(U, OF).

Proof. For any smooth U-scheme X, any closed subscheme Z C X, and any line

bundle .Z on X, define the automorphism Ay : A% (X,.%) — A% (X,.Z) as the

map induced by the automorphism £ — .Z given by multiplication by .
Consider the homomorphisms

iv: A%(Ty,Or,) = Ap,(C x AY wexarju),

2P AYDyy, Ory,) — A%Af(c x AY weyxarv)

in the constructions of div?(f)%? and div* (Af)}*?. Let moreover i* denote
the homomorphism

i A%(Ty, Or,) = Ap, (€ x Al wexarv)
given by the trivialization dT" ® Ap. Define automorphisms
H*: A'xC— A' x ¢, (T,z)— (\T,x),
H A" xC— A xC, (T,z)— (\"'T, ).
Then H* '(Dyf) =Ty, and H) ' (dT) = A~'dT. Hence
HY oM = (Agyar)toidt =iy,
and the claim follows. |

Lemmallll.3.13. Let C, Z, p and f be as in ([11.4]) and suppose that Z = Z1 11 Zs
with both Zy and Zs finite over U. Then

div (f)? = div ()77 +div* ()7,
Proof. The claim follows from the definition and [ ]

Definition l11.3.14. Let C, U, p, Z, X, p, f and g be as above and suppose that
U’ CU and X’ C X are open subschemes such that Z xy U’ C g~ 1(X’). Write
/= f|c><UU’ and ¢’ := g|C><UU" This data defines a correspondence of pairs

(v ()57, div? (7152, ) € Corf™ (U.U"), (X, X))
Suppose furthermore that m: (C’', Z") — (C, Z) is an étale neighborhood (see

[Definition IIT.A.4) satisfying Z’ x U’ C v=(X’), where v := g o 7. Then this
data defines a finite A-correspondence of pairs

divA(f)%" e Cori P (U, U"), (X, X")),

where f := m*(f) and fi := 7*(p). If the morphism 7 is implicitly understood
from the context, we may sometimes abuse notation and write simply divA( N?

for this A-correspondence.
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Lemma lIl.3.15. Let C, U, u, Z, X, p, [ and g be as above and suppose that
U' C U and X' C X are open subschemes. If ZNg 1 (X \ X') = @, then
div?(f)}? = 0 € Cor, P (U, U"), (X, X")).

Proof. The correspondence div®(f)%? € Corjt (U, X') defines the diagonal in
the diagram

AN

Moreover, the vertical arrows in the above diagram define the correspondence of
pairs div? (f)%9 € Corg® (U, U"), (X, X")); it follows that div*(f)%? factors
through (X', X’) and is therefore zero. |

Definition IlI1.3.16. Let U € Smy and suppose that A is an invertible regular
function on U. We can then consider the morphism

(id,\): (U x U,wy) = (U x U,wy)
in SmOpI,;. We denote by
(\) € Corg (U, U)

the image of idy € Cor,?(U, U) under the corresponding pushforward map
(id, A)«. In particular, if A = —1, we will write € for the finite A-correspondence
€ :=—(—1) € Cor (U, U).

Example 1l.3.17. Suppose that A* = Gﬁ*, so that Cor? is the category of
finite Milnor-Witt correspondences. Then (\) € Cori (U, U) is the Milnor-Witt

correspondence () -idy € (fjg}k(U ,U) given by multiplication with the quadratic
form (\) € KW (U). In particular, the finite A-correspondence ¢ coincides with
the usual € defined in Milnor-Witt K-theory.

Lemma lll.3.18. Let U, C, p, f and g be as in (IIL.4). Suppose also that p
induces an isomorphism Z(f) =2 U, so that Z(f) defines a section s: U — C of
p. Then the following hold:

(a) There is an invertible reqular function X on U such that
diVA(f)?(gf) =goso(\)
in Cori}(U, X).

(b) If moreover p| 75y = df , where df denotes the trivialization of the normal
bundle Ny s)jc defined by f, then div* ()¢, = gos.

Proof. (a) Let j: Z(f) = Ty, jy: Z(f) = C and if: I'y — C x A denote the
closed embeddings. Consider the following diagram consisting of two squares of
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varieties equipped with compatible sets of line bundles (in which we have also
included the relevant line bundles in the notation):

(Z(f),Ozs)) L), (Z(f),wz(p)v) —r (C,weyv)

b T L

id, %
(s, Or;) S OAN (Ty,wr;/v) —L s (Cx Al wexar ).

The first square is evidently transversal (and strongly transversal). To prove
that the second one is (strongly) transversal, it is enough to note that the
homomorphism k[C][T] = k[C x A'] — k[C] given by T + 0 takes the function
f — T to f and induces an isomorphism

Nr,jexar ® k[C x 0] = (f = T)/(f — T)* @ K[C][T]/(T) = (f)/(f)* = Na(s)c-
Hence the base change axiom gives us the following commutative diagram:

(if)«
AO(Ff7OFf) —t AO(F.erf/U) — A%f(c X A17WC><A1/U)

g g i,

(“ )*
AYZ(f), Oz)) =25 AZ(f), w0 @ wj) — 2 AL (Coweyu @ wi)

(V) lidT
Az p(Coweyv).

Here j* and i are defined via the canonical isomorphisms j*(wr ; Ju) 2wz u®
w; and ig(wexat/v) = weju ®wy, induced by the short exact sequences of vector
bundles
0— TZ(f) — j*(TFf> — NZ(f)/Ff — 0

and

0 — Texo =+ ip(Texar) — Nexosexar — 0.
Moreover, the homomorphism fiz(s) is given as the composition of u|zs) and
the isomorphism j*wr, ,ur = wz () ® wj; the homomorphism (jy). is defined
via the isomorphism j% (wiy) = w; induced by the canonical isomorphism I'y =
C; and the diagonal homomorphism (j¢,v). is induced by some trivialization
v: Oz(p) = wz(p)/v-

It follows from the construction that diVA(f)Z(f) = —dT(i§(if)p(1)). Since
the diagram is commutative we thus obtain divA(f)’é(f) = (jf,v)+J*(1) = so(N),
where ) is given as the fraction of v and the canonical isomorphism wy sy, = Oy
induced by the isomorphism p: Z(f) 2u.

(b) A straightforward computation with isomorphisms of line bundles shows
that (js)« is given as the product of the canonical isomorphism Oz (s = wz(5) /v
with the invertible function 'U"Z(f)®df_1’ where df : Oz(p) = wz(y),v denotes the
trivialization induced by the choice of the generator — f of the ideal (f) = I(Z(f)).
So A =1, and the claim follows. [ |
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l.3.6 Some homotopies

We now give a computation with A-correspondences that will come in handy
later on, especially in the proof of

Lemma lI1.3.19. Suppose that the base field k is infinite. Let U be an essentially
smooth local scheme over k and let X € T'(U, Of). Suppose that X\ = w? for some
invertible section w on U. Then

(A) ~a1 idy € Corp (U, U).

Similarly
(\) ~ar idyy € Corp ™ (U, V), (U, V)

for any open subscheme V C U.

Proof. Assume first that V = @ and A(z) # 1, where x € U is the closed point.
Let a := (A — 1)1, and define the regular function

hi=(1—-v)a(t—N)(t—1)+valt —w)* e F(Gm x U A1 ,0).
Keeping the notation of (II1.4]) in mind, consider the following diagram:

m><U><A1*>A1

Lo

Ux Al

Here the morphisms p and pr are the projections. We aim to apply
to this diagram. To this end, notice that h is a polynomial in ¢ with
leading term «, which is invertible on U. Moreover, the substitution ¢ — 0 takes
hto (1—v)al+vaw? = a), which is invertible too. Hence Z(h) C G,,, x U x A!
is finite over U x A'. Using the trivialization tdt of the canonical class of G,,,
we get from [Construction IT1.3.11] a finite relative A-correspondence

0 := divir (h)!PT € Corft(U x AL, U).

Let ig,i1: U — U x A! denote the zero- and unit sections. We then have

= divit(at — A)(t — 1))tdter
= diviH (A — )7 (= At — D)SP s divi(—(1— N7 (= At — 1)

On the other hand,
Oo il = dlv‘g(a(t _ w)2)tdt,pr — dlvé(aw_l(t _ w)Q)dt7p1‘7
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where the second equality follows from Thus we see that
(A) 4 (=1) ~ar divid(aw ™ (t — w)?) P e Corp (U, U).

We now construct yet another homotopy similar to the one in the proof of

|GP18bl Lemma 13.15], which is in turn inspired by [Nes18, Lemma 7.3]. Put

o/ := aw™!. Consider the regular function

t

W= (1-v)d(t—w?+vd(t—o HteT(A xUx A',0),

along with the diagram

Al x U x Al — 4 Al

| S
1 U

Ux A

in which p’ and pr’ are the projections. As I’ is a polynomial in ¢ with leading
term o/, which is invertible on U, it follows that Z(h') C A! x U x A! is finite
over U x A'l. Using the trivialization dt of the canonical class of A!, we then
get from [Construction TI1.3.11] a finite A-correspondence

O’ := divit (h) P € Cort(U x A, U).
By definition of h’, the A-correspondence ©' satisfies
0’ oy = divir (o (t — w)?) 4P,
0 oiy = divi(o/(t — o/ M )t)drr
= divij (o' (t — o/ TR divi (el (= TG
= (1) + (-1).
Thus we see that
diviy (o (t — w)?) P ~pr (1) + (—1) € Corg(U, U).
Now, since divir (o (t — w)?) 4P = divi (o (t — w)?) P we get
(A) + (=1) ~a1 (1) + (1) € Cor(}(U, ).

Thus the claim follows from the fact that (1) = idy.

We have now proved the claim in the case A(x) # 1. In the general case when
A € T'(U,0p), consider a function u € I'(U, Op5) such that u(z) # w(z)~* and
u(x) # 1. Such a function exists, since the base field is infinite by assumption.
Then we have by the above that (Au?) ~a1 idy and (u?) ~a1 idy in Corjr(U, U).
Thus, since (Au?) = (A\) o (u?), the claim follows.

So the claim of the lemma is done for V' = @. The case of a pair (U, V) with
V' # @ follows, since all the constructed homotopies are relative homotopies over
U, i.e., they are elements of Corjr (U x A',U). Consequently all the homotopies
defined are elements in Coryy™ (U, V) x A, (U, V)) as well. ]
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lll.4 Connection to framed correspondences

Using similar techniques as in [Construction TII.3.11] we can define a functor

Y: Fr,(k) — Corj from the category of framed correspondences |[GP18a)] to
i-El

the category Cor?. See also [EIm+20] for an alternative approach using Thom

classes [Elm+20, Lemma 4.3.24].

Construction lll.4.1. Let ® = (Z,V,¢;9) € Fr,,(X,Y) be an explicit framed
correspondence. Thus Z is a closed subset in A x X = A%; (V,Z) — (A%, 2)
is an étale neighborhood of Z in A%; ¢ = (¢;), where the ¢;’s are regular
functions on V such that Z = Z(¢); and ¢ is a morphism ¢g: V — Y. For any
unit A € k* we define a finite A-correspondence Ty (®) € Corj (X,Y) in the
following way.

Let dt: war = Oa1 denote the standard trivialization of the canonical class,
and consider further two trivializations 1, p2: wan = Oan given by puy = (dt)™"
and p1g = A"pp. Let I' denote the graph I' € A% xx V = A" x V of the relative
morphism ¥V — A% over X. Then there is a canonical projection I' — A'.
Denote by ix: X — A% and ip: V — A" x V the embeddings given by the
zero sections. Let furthermore ¢’: ¥V — X x Y denote the product of g and the
projection to X. The following diagram summarizes the situation:

Y
d
AP XV EE—V — 5 A% (ITL5)
Lo
A" X X 2 X
We then define Tx(®) := g (i},(T'«(1))), where we use the trivialization z; of the
canonical class wan, and the trivialization of wy,x defined by the pullback of
we along the étale morphism V¥V — A™ x X.

In other words, the finite A-correspondence Y (®) is obtained as the image
of i3,(I'«(1)) € A%(V,wy,x) under the composition

AL (V,wy/x) — Cory (X, V) =25 Corg (X, V) 25 Corjt (X,Y)

in which the last map is given by composition with g.

Theorem lll.4.2. For each unit A € kX, |Construction III.4.1| defines a functor
Ty: Fr,(k) — Corj that carries the framed correspondence

o= (0,A't,pr: A’ — pt) € Fr;(pt, pt)

to () € Corj)(pt,pt). Moreover, Ty factors through the category ZF,(k) of
linear framed correspondences.

Proof. [Construction TIT.4.1] gives rise to a map Y, depending on the fraction
A € kX of the two trivializations of the canonical classes. To show that T is in
fact a functor, we need to check the following;:
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(1) Equivalent explicit framed correspondences give rise to the same finite
A-correspondence.

(2) Let idx € Fro(X, X) be the identity morphism in the graded category
Fr.(k). Then T (idx) is equal to the identity morphism in the category
Cor‘,?.

(3) For any ®; € Fr,, (X1, X3) and ®; € Fr,, (X5, X3), we have Ty (P20®1) =
T,\((I)Q) OT)\((I)l).

(4) For any ® = (Z,V, ¢;g) € Fr, (X1, X2) such that Z = Z; I Zs, we have
Tk((b) = T)\(Z17V7¢; g) + TX(Z27Va¢; g)

All points are straightforward from the properties of the cohomology theory
A*. |

Remark 111.4.3. Note that [I'heorem [II.10.3| on strict homotopy invariance
of presheaves on Cory follows from the existence of a functor from framed
correspondences to Corj along with the fact that this theorem holds for framed

correspondences by work of Garkusha—Panin |[GP18b|. Below we will however
give an explicit proof not relying on framed correspondences.

.5 Injectivity on the relative affine line

In this section we prove the following theorem, which is the first in a series of
ingredients necessary to establish strict homotopy invariance (Theorem III1.10.3)):

Theorem lI.5.1. Let U be an affine smooth k-scheme, and suppose that
ViCVaC A}

are two open subschemes such that Allj \ Vo and Vo \ V1 are finite over U. Let
1: V1 C V4 denote the inclusion. Then, for any homotopy invariant presheaf with
A-transfers F € PShx(Corj'; Z), the restriction homomorphism

i F(Va) = F (V1)
15 injective.

111.5.0.1
We deduce[Theorem IIT.5.1] from the following result, which ensures the existence

of a left inverse to i*:

Lemma lll.5.2. Suppose that Vi C Vo C A}, are open subschemes as in
rem I11.5.1 Then there is a finite A-correspondence ® & Cor,‘?(Vg, V1) such that
[i 0 ®] = [idy,] € Corp (Va, Va).
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Proof. To prove the claim we must construct a finite A-correspondence ® €
Cor’,?(Vg, V1) along with a homotopy © € Cor,‘? (Al x V5, V3) satisfying © o iy =
i0® and © o iy =idy,. To do this, we will make use of the following functions:

Y (z,u) Y (z,u) A (z,u)
J € AL x V] heklAl x Vo x A] g kAL x T3]
f=y"+ay" '+ +a, h=y"+by"" 1+ by g=y" ey i en
hlAleZXOZf h!Alez“:(y—x)g 1
f|(Ab\Vl)XUV2 =1 h|(Allj\V2)><UV2 =1 9 (AL\V2) XV = (y - I)

9 (Vz\Vl)XUV'z =
I z2(y—2) =

The functions f and g can be constructed for any n big enough by using the
Chinese remainder theorem Having f and g we then put

hi= (1= Nf + Ay —2)g.

We now aim to apply [Construction 111.3.11| to the regular functions f and h.
Keeping the notations as in ([I1.4]), consider the following diagrams:

Vi xu Vo — Al Vs xu Vo U8 A

V17 V2,

y z
Vo xpr Vo xAl — 5 Al

Lo

x
Vo x Al V.

Here pri? pr2? and pr, are projections. Since f, (y — z)g and h are monic
polynomials in the variable y, it follows that Z(f), Z((y — x)g) and Z(h) are
finite over V5 and A x V5, respectively. Hence |[Construction I11.3.11|yields finite
A-correspondences

' = divA ()T € Corfl (Va, Vi),

0 = diVA(h)Céy(,fr2 € Corp (A! x Va, Va).
The properties of f and h above imply that
© oig=1io0d,

292 22
O oiy = divA((y — 2)g) "2, + divA((y — 2)g) 50 .
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Excision on the relative affine line

Now, according to [Lemma TIT1.3.18] the first summand in the last equality is
equal to (v) € Corj, (Va, Va) for some invertible function v. Therefore, if we let
® := &+ — &, where

_ _ . dy,pr3? -
=0 h), @ = leA((y_x)g)Zy(gp) o (),

it follows that
lidv,] = divA((y — 2)g) 2P o (v=1) = [i 0 ®] € Tory (Va, Va),

as desired. [ |

111.5.0.2

We will need the following two particular cases of

Corollary lII.5.3. Suppose that F is a homotopy invariant presheaf with A-
transfers over a field k. Then, for any pair of open subschemes Vi C Vo C A},
the restriction homomorphism F(Va) — F (V1) is injective.

Corollary lll.5.4. Let .% be a homotopy invariant presheaf with A-transfers
over a field k, and let U be an open subscheme of G,, X G,, such that the
complement (G, X G,,) \ U is finite over the first copy of G,,. Then the
restriction homomorphism F (G, X G,,) — % (U) is injective.

1.6 Excision on the relative affine line

The aim of this section is the prove the following excision result for open subsets
of a relative affine line:

Theorem IIl.6.1. Suppose that U € Smy, is an affine scheme, and let
ViV, C Ay

be a pair of open subschemes such that Oy € Vi. Let i: Vi C V5 denote the
inclusion. Then, for any homotopy invariant presheaf with A-transfers F €
PShg(Corf; Z), the restriction homomorphism i* induces an isomorphism

o

it F(Va\Ou)/F (Vo) = F(Vi\O0u)/F (V).

Remark 111.6.2. By [Theorem II1.5.1] the restriction maps % (V;) — #(V; \ 0)
are injective for ¢ = 1,2, which justifies the notation .#(V; \ 0y)/Z# (V;).

111.6.0.1

To prove the above theorem, we will show that ¢* is injective and surjective, which
amounts to constructing appropriate correspondences of pairs up to homotopy.
Let us first show that i* is injective:
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Lemma l1.6.3. Suppose that i: V C A}, is an open subscheme with Oy € V.
Then there is a finite A-correspondence of pairs

® € Cory ™ (A, Ay \ 0), (V,V \ 00))
such that
i @] = lid(ay,ap 0] € Coric ™ (Al Al \ 00). (Al Af \ 00)).
Proof. We need to construct a finite A-correspondence of pairs
® & Cor ™ (AL, Ay \ 0u), (V,V\ 00))
along with a homotopy
© € Cory ™ (A' x (Af, A\ 00), (AL, Al \ 00))

such that @ oip =io® and ©®oci; = id(Alu,Ab\Ou)' To do this, we will make use
of the following sections:

[to: toc] [to: toc] [to: too)
ser P! =, 0(n) ser( pt . 2,0(n) ser| P! = ,0(n—1)
UxAl UxAl

UxAlxAl

=9 §|P1><U><A1><1 = (to—Itoc)S

§| xUxAIx0
é|((P1><U)\V)><A1 = tg 5|:>o><U><A1><A1 15 s’ coxUxAl t371
é|0><U><A1 =1 71(t0_l’t°°) 5| XUXA'xAl — tggl(to_wtm) SI{OXUxAl :tggl
s’ Z(to—ztos)xU =t

Since U is affine, it follows that O(1) is ample on P* x U x A! and P! x
U x A! x A'. Hence, for n big enough7 Serre’s theorem ensures the
existence of the sections s and s’ as above. Having s and s’, we then put
=(1—=XN)s+ Aty — vt

It follows bym Lemma I11.A.7| that Z(s) and Z(3) are finite over U x A! and
U x A' x A respectively. Let g := to/t be the coordinate on the affine line
A' C P!, and consider the trivialization dy of the canonical class of Al. Let
moreover p: Al x V — A}] denote the composition of the projection onto V
followed by the inclusion V' C AlU7 and let p': A’ x Al x U x Al — A,lj x Al
be the projection onto the last two coordinates. Applying [Construction II1.3.11]
to the diagrams

Vox Al Sl Al Al xUx Al x A1 /%, Al

pl \ p,l \

a: - T A T
U V, Allj x Al Allj,

we thus obtain finite A-correspondences
@ = div? (s/t) WP € Corf P (AL, AL\ 0p), (V,V \ 0p)),
O := div* (3/t™) WP € Corp P (A x (A}, AL\ On), (AL, AL\ 0n)).
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It then follows from the properties of s and § above that

@/ o i() =10 CI)/,

0’ oiy = div'((y — 2)9) 2(y—r) + div* ((y — 2)9) 2(0),
where g 1= s'/t"! € k[A! x A' x U]. By [Lemma I1I.3.18| the first summand
in the last equality is equal to (v) for some v € k[A};]*. The second summand,
div?((y — 2)9)z(g), is zero by [Lemma I11.3.15[since Z(g) N (0 x A' x U) = @.
Now we define @ := & o (v=1) and © := ©" o ((¢v~!) x ida1). Then ©' 0 iy =
id(Ab,Ab\ko and the claim follows. |
111.6.0.2
The next step is to show surjectivity of i*:

Lemma lI.6.4. Suppose that i: V C A}, is an open subscheme with Oy € V.
Then there is a finite A-correspondence of pairs

W e Corp ™ (A, AL\ 0p), (V,V \ 0p))
such that
. . ——A,pr
(W 0 4] = [id(v,v\0p)] € Cor, ™ (V. V \ 0p), (V, V' \ 0py)).

Proof. To prove the claim we need to construct a finite A-correspondence of
pairs

W e Corp ™ (A, AL\ 0p), (V,V \ 0p))

along with a homotopy
0 € Cor P (A x (V,V\ 0p), (V,V \ 0pr))

such that © o9 = Woi and © oy = id(y,y\0,)- We do this via the following
sections:

[to: too] [to: too] [to: too]
sel’| P! « ,0(n) ger( pt ., ,,0n) ser| P! &,O(nfl)

UxAl VxAl

§|P1><Vx0 =S §|Pl><V><1 = (to - zto")sl
8|D><A1 =1y g!DxVxAl =1y 9] prar =16t — Ttoo)
S|oxuxar = to — oo Hoxyxar = to — Tte 8y = the
s/|Z(t0—wtoc) =t

Here D := (P! x U) \ V denotes the reduced closed complement, g := s/t €
E[AY x V], and Z(tg — 2te) € P! x V denotes vanishing locus of the section

to — wte € (P x V,0(1)),

with [to: te] being coordinates on P!, and x the one on V. Since U is affine, it
follows that O(1) is ample on P! x Al x U and P! x A x U x A!. Hence Serre’s
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theorem ensures the existence of the sections s and s’ as above, provided
n is big enough. Having s and s’, we then put § := (1 — \)s + A(tg — xtoo)s’

Next, it follows by [Lemma ITL.A.7 that Z(s) and Z(3) are finite over U x A’
and V x Al respectively. Let y := tq/t be the coordinate on the affine line
A! C P!, and let us use the trivialization dy of the canonical class of Al.
Consider the diagrams

Vo AL i, Al Uoo 1 x AL M A
Al v
U b

Here the map pr: A' x V. — V is the projection, while the map pr’: Al x
V x A' — A}, is the composition of the projection onto V followed by the
inclusion V' C A},. Applying [Construction I1I.3.11| to these diagrams we get
finite A-correspondences of pairs

W' i= divA (s/t2) " € Con ™ (AL, Ay \ 0u), (V,V\ 0v)),
O == divA (5/t )W € CorP' (AL x (V,V\ 0p), (V,V \ 0)),
The properties of s and s’ above imply that
O oip =" o4,
0 0iy = div*((y — 2)9) z(y—a) + div* ((y — 2)9) 2()-

By |Lemma II1.3.18] the first summand in the last equality is equal to (v) €
Cor, P ((V,V\ 0p), (V, V' \ 0p)) for some v € k[V]*. The second summand is

zero by [Lemma IT1.3.15] since Z(g) N (0 x V') = &. Hence the A-correspondences
U= (1) o U and © := (v7!) 0 © have the desired properties. |

Proof of|[Theorem I11.6.1]. [Lemma [II.6.3| and [Lemma III.6.4] immediately imply
the claim for the case of Vo = A},. In general, it follows that we have natural
isomorphisms

F(Va\0y)/F (Vo) = F(Ay \ 0v)/F (Ap) = F (Vi \ 0u)/F (V1)

which shows the claim. | |

111.6.0.3

Arguing similarly as in the proof of we obtain also an excision
result for a nonrelative affine line:

Theorem llIl.6.5. Consider the function field K := k(U) of some integral scheme
U € Smy. Let z be a closed point in A}(, and let i: Vi C V5 be an inclusion of
two open subschemes of Ak such that z € Vy. Then, for any homotopy invariant
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presheaf with A-transfers F € PShg(Corﬁ; Z), the restriction homomorphism
i* induces an isomorphism

i F(Va\2)/F (Vo) = F(Vi\ 2)/F (V).

Proof. The proof is parallel to the proof of All we need to do
is to replace the line bundle O(1) by O(d), where d := degy k(z); the section

to € T(P4, ,O(1)) by a section v € ['(P}, ,O(d)) such that Z(v) = z x Aj;
K K
and the section t., by t2_. |

ll.L7 Injectivity for semilocal schemes

In this section we will assume that the base field & is infinite.

Theorem llIl.7.1. Let X be a smooth k-scheme and let x1,...,x, € X be finitely
many closed points. Let U := Spec Ox 4, 4, and write j: U — X for the
canonical inclusion. Let Z < X be a closed subscheme with x1,...,x. € Z, and
leti: U\Z — U be the immersion of the open complement to the semilocalization
of Z at the points x1,...,x,.. Then, for any homotopy invariant presheaf with
A-transfers F € PShy(Cory; Z), the homomorphism i*: Z(U) — F (U \ Z) is
injective.

111.7.0.1

eorem [I1.7.1]is an immediate consequence of the following moving lemma:

Lemma lIl.7.2. Assume the hypotheses of [Theorem III.7.1. Then there exists a
finite A-correspondence ® € Corp (U, X \ Z) such that the diagram

X\ Z

SN

U—— X

commutes up to homotopy.

111.7.0.2

We prove by constructing an appropriate relative curve C over U
along with a good compactification C of C. The desired finite A-correspondence
will then be defined by using certain sections on C.

Lemma lIl.7.3. Assume the hypotheses of [Theorem II1.77.1l. Then there exists a

diagram
x&ehechu

in EssSmy,, satisfying the following properties:
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(1) p: C — U is a relative projective curve, j: C — C is an open immersion,
and the composition p o j is smooth.

(2) The map poj admits a section A: U — C. By abuse of notation, we write
A also for the image of the morphism A.

(3) Let Z:=v"Y(Z) CC. Then Z is finite over U.
(4) D :=C\C is finite over U.
(5) The relative curve C has an ample line bundle Oz(1).
(6) There is a trivialization p: Oc =N we U -
Proof. We apply with 7 = id: X — X. [ |

Proof of [Lemma TII.7.3 First of all we apply Then it follows
from Serre’s theorem that there is an integer [ > 0 and a section
d € T(C,O(l)) such that D C Z(d), Z(d)N Z = & and Z(d) is finite over U. For
notational simplicity, let us redenote O(l) by O(1), and redenote D := Z(d).
Now our aim is to construct the following sections:

A
sel(C,0(n)) 3el(Cx A,0O(n)) s el(C,0n)®L(A)~Y) §el(C,Z(A))
Z(S‘ZHD) =g §|E><0:S Z(5/|ZHDHA) =g Z(é):A
g|5><1 =s'®0
§|D><A1 = S

To do this, let § be a section of .Z(A) with Z(§) = A, and choose, using
an integer n > 0 such that the restriction maps

IC,0(Mn)®.L(A) ) - T(ZIIDIIA,On) @ L(A)™),
I'(C,0(n)) — T(Z1 D,0(n))

are surjective. We can then find a global section s’ of O(n) ® Z(A)~! such
that s'|znpma is invertible. Let s be a lift of s'd|znp € T'(Z 11 D, O(n)), and
define 5:= (1 — \)s+ s’ ® 6. We now aim to apply [Construction III1.3.11|to the
diagrams

s'®5/d"

— <t A! Cx Al T Al

¢ /
s/d"™
pojl \ (POj)XAll vopr
U

X, U x Al X.

Here pr: C x A' — C is the projection. By [Lemma III.A.7} the vanishing loci

Z(s) and Z(3) are finite over U and U x A, respectively. Hence we obtain finite
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A-correspondences

= divA(s/d")L"

¢ Cory

7(s) — divA(s' @ 6 /d™)"

X\ 2),

Z(s")

Z(s)

U
x Al 1
— dlvA(g/dn)u,vopr o diVA(S/ ® 5/dn)/é(1;/) o prng
(U x AL, X).

¢ Cory

Then the properties of the sections above imply that ©' o ig = 7 0 &', and

Lemma II1.3.18| implies that © o i; = j o (v) for some v € k[U]*. Now let

® := &' o (v 1). Then © := O’ o (v~ 1) gives the required homotopy, satisfying
Qoiyg=i0®P and j = O oiy. [ |

1.8 Nisnevich excision

In this section we assume that the base field is infinite. The main result of
the section is the following Nisnevich excision result for homotopy invariant
presheaves with A-transfers:

Theorem ll1.8.1. Let X € Smy, and suppose that w: (X', Z") — (X, Z) is an étale
neighborhood of Z in X. Assume also that z € Z and 2’ € Z' are two closed points
such that w(z') = z. Write U := X, = Spec Ox_, for the corresponding local
scheme, and similarly U’ := X’ Then, for any homotopy invariant presheaf
with A-transfers % € PShy (Cor,c i Z), the map 7* induces an isomorphism

T F(XNZ2) ) F(X) = F (XN Z0) ) F(XL).

111.8.0.1

The proof of relies on some geometric input. Our main tool for
this is we refer the reader to the appendix for details around

this construction.

Having [Lemma IIT.A75| at hand, we start out by showing that the map 7* is

injective:

Lemma lIl.8.2. Under the assumptions of |Theorem II1.8.1| there is a finite A-
correspondence ® € Corf(U7 X') satisfying mo® ~a1 i, where i: U — X denotes
canonical embedding.

Proof. Applying|Lemma ITI.A.5|we obtain a morphism of relative curves w: ¢’ —

C over U, with compactification %: C' — C, and subschemes D,A,Z C C,
D' A, Z’ C (7 as in|Lemma IILA5| Let 6 € F(C, Z(A)) be a section such that
Z(8) = A. Our first aim is to prove that there is an integer N such that for all
n > N, there exist sections satisfying the following conditions:
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seT(C,0n) 35el(Cx A\l,O(n)) s €T(C,0(n)® L(A)1)

8z, = e =d@s
Z(S}D)ZQ Z(§|DXA1)=pr*(s)
s|Z:(5®S’ §‘ZXA1:6®S’ Z(s'|z):®

Z(NZ(d) =92

In addition, we will require that Z(s) = Zy II Z| and that there exists a regular
map [: Zy — C' satisfying w ol = idz,. Here pr: C x Al — C is the canonical
projection.

To do this we start the following preparations. Let Oc¢/ (1) := " (O(1)).
Then, since % is finite, O¢/(1) is an ample bundle on C’. Since @ induces
isomorphisms Z’ = Z and A, 2 A x¢ Z, there is a section ¢’ € I'(2’,.Z") such
that Z(6") = A/, for some line bundle .’ on Z’. Since Z’ is a finite scheme over a
local scheme U, Z’ is semilocal and any line bundle on Z’ is trivial. Hence there is
an isomorphism £’ = Oc/(m)| ;, for any m € Z. Similarly, since the subscheme
D' C (' is finite over U, for any m € Z, the line bundle Oc/(m) e s trivial.
Now, applying to the morphism % : C’ — C and the subschemes
D’ and Z we construct, for some m € Z, a section & € T'(C', O¢/(m)) such that
there is a closed embedding Z(¢) — C, and such that Z(f|a,1(z)) = A’,. Define
Zy :=w(Z(€)) CC CC and put .£ = £ (Z). Let ¢ € T'(C,.%£) be a section
with Z(¢) = Z. Then Z(¢| ) = Az.

Using Serre’s theorem we can choose an integer N € Z such that for
all n > N, the restriction homomorphisms

I'C,0n)® L Y -T(ZID,0(n) L1,
T'(C,0(n)) = T'((ZUA)II D, O(n))

are surjective. Then, since Z II D is semilocal, there is a section
¢ er(C,0n) oL

such that (”ZHD is invertible. Define s := ¢ ® ¢’ € T'(C, O(n)).
Now choose a section s; € I'(C, O(n)) such that 81’A =0 and 31|2 =s. We
then put §:= (1 — \)s 4+ Asy. Since 31|A = 0, there is a section

s €T(C,0Mn) LA™

such that s; = 6 ® s/, where § € I'(C,.Z(A)) satisfies Z(§) = A. Moreover, since
by construction Z(sllz) =Ay = Z((S’Z), it follows that s’|z is invertible and
S0 Z(s”z) = &. Hence the desired sections s, §, and s’ are constructed. It now
follows by that Z(s) and Z(3) are finite over U and U x Al
respectively.

By construction, the morphism w induces an isomorphism between the closed
subschemes [(Zy) C C" and Zy. Since w is étale, it follows that =1 (Zy) = 1(Zo)11
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Zy. Hence we can define an étale neighborhood @t : (C\ Zo, 1(Zy)) — (C, Zy)
such that w™*(Zy) = 1(Zp). Consider the diagrams

AN Cx Al T Al
pOjowJ \ (pOj)XAll \Om
U X/, U x Al X,

where pr: C x A' — C is the projection. Applying |Construction II1.3.11|to these
diagrams we obtain finite A-correspondences

o = divi(w(s/d") 5, P € Cort P (U, U\ Z xx U), (X', X'\ Z')),
0" = div*(5/d")"P" € Corp ™ (A x (U,U\ Z xx U), (X, X \ 2)).

It follows from the list of properties above, |[Lemma [11.3.18] and [Lemma IT1.3.15|
that © o3 = i o (v) for some invertible function v € k[U]*. If we let & :=
® o (v1) and © := ©' o (v 1), it follows that © 0i; = i. So to prove the lemma
it is enough to show that @ o iy ~a1 mo P.

Since @ is finite, it is affine. Hence for some Zariski neighborhood V' of I(Zy)
inC’"\ 20, the restriction w|v is affine. Then, for some Zariski neighborhood V' of
Zy in C, there is a closed embedding c: V" C A" x V', where V" := V' Nw(V),
which is such that ¢(I(Zy)) = 0 x Zy. Let fi,..., fr € E[A” x V] be functions
satisfying fl| =0 and fi| Arxze = Ty where the x;’s denote the coordinate

V)
functions on A”. For ¢ = 1,...,r, let ﬁ = (1 — \)fi + \z; and consider
the closed subscheme Z(f,...,f,) € A" x V x Al. Then the projection
pr: Z(fi,....fr) = V x Al is étale over Zy x A'. Let W C Z(f1,..., fr)
be a Zariski neighborhood of 0 x Zy x A! such that the restriction of the
projection pry, : W — V' x Al is étale. Furthermore, let ¢ be the pullback of
s/d™ from V to W, and let iy : V — C denote the open embedding. Applying
|Construction III.3.11f to the diagram

W —t 5 Al
U x Al X,

we obtain a homotopy

divA ()P WPV € Cor P (AL x (U, U\ Z xx U), (X, X \ Z))

connecting 7o & = div? (w*(s/d"))® “@)v°% and © o iy = div?i(s/d")**. N

111.8.0.2

Before we move on to the surjective part of Nisnevich excision, we need the
following lemma:
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Lemma II.8.3. Suppose that chark # 2, and let X € Smy. Let Z C X be a
closed subscheme and z € X a closed point. Write U for the essentially smooth
local scheme U := X" = Spec (’)?(72, and let A € kE[U]* be an invertible regular

function satisfying /\}ZXXU =1. Then
io(\) ~arie Cort P (U U\ Z xx U), (X, X\ 2)),
where i denotes the canonical morphism i: U — X.

Proof. Lift X to an invertible section on some affine Zariski neighborhood V' C X
of the point z € X. Then )\|Z><XV’ = 1 for some other Zariski neighborhood
V! CV of z; shrinking X to V/ we may assume that A € k[X]* with )\|Z =1.
Consider the étale covering 7: X’ — X, where X’ = Spec k[X][w]/(w? — \).
Let Z’ be the closed subscheme of X’ given by Z’ := Spec k[Z][w]/(w—1), so that
7'~ Z. Then (X', Z') — (X, Z) is an étale neighborhood. By [Lemma IIL.8.2]

there exists a finite A-correspondence of pairs
® € Corp P (U, U\ Z xx U), (X', X"\ Z))

such that mo ® ~a1 4 in Cor?’pr((U,U \Z xx U),(X,X\Z)). On other hand,
emma [[[.3.19]implies that

Nom=mo(r*(\)) =70 (w?) ~a1 7€ Cor?’pr((X,X \2),(X, X\ 2)).
Hence i o0 (i*(\)) = (A) oi ~a1 (A)omo® ~p1 mo D ~pr i, |

Lemma lll.8.4. Let i': U' = X!, — X' denote the canonical embedding. Then
under the assumptions of |Theorem II1.8.1}, there exists ® € Cor’,?(U7 X') such
that ® o ~ a1 7.

Proof. Using [Lemma III.A.5  we construct relative projective curves p’: c - U,

p": [ 5 , along with the other data related to the first two rows of the
diagram .

Since U’ is essentially smooth, we have A” = U’. Moreover, since p”: C" —
U" is a smooth morphism with fibers of dimension one, it follows that A’ is a
smooth divisor on C”. Hence it is a smooth divisor on C as well and there is
an invertible bundle .Z(A”) on C" and a section § € I‘(@H, Z(A")) such that
Z(6) = A".

Since Z’ is finite over the local scheme U, Z’ is semilocal. Let ¢’ € k[Z’] be a
regular function such that ¢’ A, = 0, and such that ¢’ is invertible on the closed

points of Z’ outside A’,. Then the closed fibers of Z(¢") and A’, coincide. Now
Z(4") is finite over U since it is a closed subset in Z’. Moreover, Ay is finite
over U since Ay is isomorphic to the closed subscheme U x x Z in U. Hence
Z(0") = Az by Nakayama’s lemma.

Using the notations of [Lemma IIT.A.5, define O (1) := @™ (O(1)) and
Oz (1) := @@*(O(1)). Then, since O(1) is ample and &, @" are finite, it
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follows that Og/ (1) and Og~ (1) are ample. Serre’s theorem [II1.A.2| then tells us
that there is an integer n € Z such that the restriction homomorphisms

I'(C,0(n)) = T(2"11D",0(n) & L(A")), (I11.6)
1’ 0mn) e Z(A") = T(2'11D",0(n) ® L(A")) (I1L.7)

are surjective. As mentioned above, Z and D are finite over U, so it follows that
Z’ and D’ are semilocal, and moreover that there are trivializations £7: Oz —

Oz(1)| 5, and {p: Opr 5 Oz (1)| /- Now using surjectivity of the map (LIL6)
we ﬁnd a section
s € F(@,O(n))7 S z = 6®§§)n7 s D’ = %n

By the same reason as above there is some trivialization

§/Z: Ozn i g(AH)

Z

Then by = @*(§') and by = 6 @ &), " are two regular functions on Z” such that
Z(by) = Z(ba) = A. Hence there is an invertible function v € k[Z2”]* such that
w* () =0® S’Z_l. Indeed, v is uniquely defined by the equality biv = by on
the closed subscheme Z(I) C Z”. Here I := ker(mb), where m®* € End(k[Z"])
is defined as multiplication by b;. Moreover, the equality b;v = by implies that
v is invertible on Z(I), and any lift of v to a regular function on Z” satisfies the
equality byv = by as well. So it is enough to choose a lift such that v is nonzero
at the closed points of Z”\ Z(I).
Using surjectivity of the second map , we find a section

s eT(C,0Mm)eL(A)), &

=z :ﬁl*(52>®nl/7 S/

D//_w ( )®6

D"

Note that the section & _ o is well defined since A” N D" = @. Now define
= (1—-X)s+ As’. Then we have:

SET(@.0m) FeT@x ALOM) s €@, 0m) o LAY

§FX0=w/*(S) . EWXIZ(S@S/
Z(s|p) =2 Z(8|p,) = pr*(@' (s))
SZ,XUZ:(S’@:S' 8l snar =0@5 Z(s'| ;) =2

We now aim to apply [Construction II1.3.11]to the diagrams

S

s/d"™
/ / 1 ! % Al
’
P'oj'i \)/4 (p"' o5’ XA\L Ypr
U X/, "x Al
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Here pr: C” x A* — C” is the projection. By [Lemma IIT.A.7 Z(s) and Z(3) are
finite over U and U’ x A, respectively. Hence [Construction II1.3.11| yields finite
A-correspondences

P = divA(s/d™)*" € Corp (U, X'),
0’ = div*(5/d")= )P € Cor (U x A', X7).
Then, by construction,
O oig=d om,
O oiy = divA (@ s'/d")Z, " +divi(@ @ s /dn) g 40
By we have

divi( @' /d")g *;> —0€ Cor™™ (U, U'\ Z' xx U, (X', X'\ Z')).

Furthermore, [Lemma I11.3.18| tells us that div*(§ @ s’/d”) O o ()
for some N € E[U’]*. Let w € k[U]* be an invertible functlon on U satisfying

7 (w)(z) = N(2)7!. Define ® := & o (w) and © := O’ o (7*(w)). Then
©oiy =1 o (N 71*(w)) and so [Lemma III.8.3| yields the claim. |

Proof of [Theorem III.8.1 Lemmas [[T[.8.2] and [[IT.8.4] establish respectively in-

jectivity and surjectivity of the map 7*. |

111.8.0.3

We finish this section with a result on the interplay between Zariski excision,
Nisnevich excision, étale excision and homotopy invariance for the cohomology
theory A*.

Corollary lll.8.5. Suppose that A* is a graded presheaf of abelian groups that
satisfies all properties of a good cohomology theory except the étale excision axiom.
Instead, assume that A* satisfies Zariski excision and homotopy invariance. In
other words, for any X € Smy, any line bundle £ on X, any open subscheme
j: U C X and any closed subscheme Z C X such that Z C U, the maps

pri: AM(X, %) = A™M(X x Al pr* &),
P AMX, X\ 2, %) = ANU U\ Z,j* %)

are isomorphisms.
Then A* satisfies the étale excision axiom on local schemes. In other words,

forany X € Smy, Z C X, m: (X', Z") = (X,Z), 2 € Z and 2’ € Z’' as in
the morphism m induces an isomorphism
T AN(X, X\ Z.) = AN(XL, XL\ ZL).
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Proof. Consider the category Cor,‘? of correspondences built from A* in the sense
of [Definition TTT.3.1] First of all we see that the proofs of Lemmas and
[11.8.4] (as well as [Construction 111.3.11)) do not use the étale excision axiom for
A*. Thus we have morphisms ®;, ®, € Cor,‘?(U, X') such that 7o ®, =4, and
®, o =14'. Then ®; induces a right inverse A*(X.,, X/, \Z.,) - A*(X., X\ Z.)
to ¥, and ®,. induces a left inverse. |

1.9 The cancellation theorem

In this section we show the cancellation theorem for A-correspondences by suit-
ably adapting Voevodsky’s proof for the case of Cory, [Voel0); see[Theorem I11.9.8]
For the sake of brevity we will omit the steps that are identical to Voevodsky’s
original proof, and rather focus on the details that are specific to our situation.
We refer the interested reader to for the remaining formal aspects of the
proof.

Definition 111.9.1. The Karoubi envelope of Corﬁ is the preadditive category
whose objects are pairs (X, p) with X € Smy, and p € Corj (X, X) an idempotent.
The morphisms are given by

Corf (X, p), (X',p)) = im (Cori?(X, X7 2 ord(x, X’>>-

Any object X € Smy, can be considered as an object of the Karoubi envelope of
Corj by X ~— (X,idx). By abuse of notation, we will write Corj also for the
Karoubi envelope of Corf.

Definition 111.9.2. Define X A G/\! := ker(pr;: X x G,, — X) as an object of
the Karoubi envelope of Cor’. Let pr’: G2 — G2 denote the canonical
projection, and let " : GA? — G2 denote the canonical injection. Note that
prit o = idgn2. The external product on A-correspondences defines a functor

(=)AGAL: Coryt — Cori! given by X — X AGAL a — ax idgy1. Furthermore,
for any X € Smy, we let c4(X) A G)! denote the presheaf

U Cord (U A Gy X A Gpp).

Lemma 11.9.3. Let 7% : G2 — G2 denote the twist automorphism given by

m
7(x1,22) = (22,21), and let

N i=prtorX 0N G2 5 GIZ
Then 1" is A'-homotopic to e = —(—1) € Cory (GA2, GA?).

Proof. Let (x1,73) denote the coordinates on GX2. Denote by A C GX2 the

A~

diagonal, and by A C G? the anti-diagonal, i.e.,

A= Z(wryt = 1), A= Z(zize —1) C GX2
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Let us first show that pr*o7* 0 j ~a1 € 0], where j: GX2\ (AU A) — GX2

m

denotes the inclusion and € = —(—1) € Corj (G2, GX?). To do this, consider
the diagram

t x1
G, x((G. \(AUR) —L 5 Al
(G x G\ (AUA) X G

in which g(t,21,22) := (t,z129t~1). Then p is a smooth relative curve whose
relative canonical class is trivialized by dt. Applying [Construction I11.3.11] to
this diagram we obtain a finite A-correspondence

divA (/)% € Corf (G2 \ (AU A), GX2)

for any regular function f whose vanishing locus Z is finite over Gﬁf\(AUA). For
simplicity, let us skip dt and ¢ in the notation. Then the required A'-homotopy
is given as follows:

(4 (=1)) o j

= (divA((t = @1)(t = 22)) 2(1—az) + div* ((t = 21)(t = 22)) 20-21)) © G 0 (w2 — 71) ")

= div*((t — 21)(t —@2)) 0 jo (w2 —21) ")

~ar divA (¢ — zim2)(t—1)) 0 j o (w2 — 21) ")

= (divA((t —zx2)(t — 1)) z—1)

+ divA((t —z1m2)(t — 1))Z(t—zlzz)) ojo((wra— 351)_1>

= (1 +wm)oio((l—aza)(zma —21) ) € Corf (GL2\ (AUA), GL2).
Here v1: G2 — G2 is the morphism (21, 22) — (7122, 1), while the morphism
vo: G2 — GrX2 is defined by (991,1'2) (1,z122). Since pr”or; = 0 and
pr oy = 0 in Corjr (GX2\ (AU A) G/2?), it follows that

pr o(r* + (1)) 0 j = 0 € Cory (G52 \ (AUA), GL?).

Now [Corollary II1.5.4] yields that

pr” o(7X + (~1)) = 0 € Cory (GX2, G12), (I11.8)

——A
since Cory, (—, G/?) is a homotopy invariant presheaf with A-transfers. Finally,
since

e=—pr’o(—1) 0" € Corg (GA2, G1?),
we get the claim upon composing ([IL.8]) with /. |
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Definition 111.9.4. Let G,,, x G,,, have coordinates ({1, t2). For any n > 1, define
the functions g;7, g,, € k|G, X G,] by

gy =ty +1, g, =t} +ta.

Moreover, let Z:* denote the support of the principal divisor Z(g¥) on G,, x G,
defined by g-.

Remark T11.9.5. The functions g,7 /g, differ by a sign from Voevodsky’s functions
g, defined in §4]. However, the same proof as that of Lemma
4.1] goes through to show that for any closed subset T of G,,, x X X G,,, X Y
finite and surjective over G,, x X, there is an integer N such that for all n > N,
the divisor of g /g, intersects T' properly over X, and the associated cycle
is finite over X. The only reason for our choice of functions is to make the
finite A-correspondence in [Lemma 111.9.7 homotopic to (1), and not (—1). Of
course, in the situation of :V0e10 this choice does not matter, as Voevodsky’s
correspondences are oriented.

Definition l11.9.6. Let Y € Smy, and recall from [Definition II1.9.2 the definition
of the presheaf c4(Y) A GAL. Given any integer n > 1, we will construct maps
of presheaves

(4
CA(Y) ? CA(Y) AN Gﬁll

as follows.
Let X € Smyg, and let T be any admissible subset of X x Y. Then the
homomorphism

0: APV (X x Y,wy) — AFRVE!

TYA(G )(X X G XY X G, wyxa,,)

is defined by

0:=(—) xidg,, = (=) x AL(1),
where A: G,,, — G,,, X G,, is the diagonal. Since for any admissible T"in X x Y
the subset T' x A(G,,,) is admissible in X x G,,, X Y x G,,, the map 0 is well
defined. It follows that 6 induces a map of presheaves 0: cA(Y) — ca(Y) A GAL
On the other hand, the map

pn: ARPYTHX X Gy X Y X Gy wy xa,,) — A;ig‘(’Z’IUZ;)(X XY, wy)

is defined in the following way. By applying [Construction II1.3.11] to the diagram

i1
mXG *>A1

1
\tl

we obtain finite A-correspondences div*(gE) € Corj (G, Gy). We then define
pn by the formula

po =2 ((2) = 0 (aiv(g) —divi (7)) ).
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where p and ¢ are the projections
p: X xXG, XY XG, > XXY, ¢:XxG,xYxG,—G,xG,.

Thus p,, is defined whenever the subset TN(Z,7UZ,) is admissible in X xY". Now,
note that for any f: X’ — X and ® € A%imyH(X X G XY X Gy, wyxa,, ),
the element p,,(f*(®)) is defined whenever p,, (®) is defined, and p,, (f*(®)) =
F*(pn(®)). Secondly, for any &, ¥ € ATV (X x G,, x YV X G, wyxa,,)
the element p, (® + ¥) is defined whenever p,,(®) and p,(¥) are defined and
(@ + ) = pp(P) + pn(P). In this regard we refer to p, a partially defined
map of presheaves.

111.9.0.1

The maps p,, form an exhausting sequence of partially defined homomorphisms
in the sense that for any finite subset F' C Corj (X A G, Y A G,y,), there is an
integer N(F) such that for all n > N(F'), p,(«) is defined for all @ € F. Indeed,

this condition is satisfied by [Remark TIT.9.5]
Lemma lll.9.7. Let ¢': G,, x G,, — Speck denote the projection, and let

A: G, — G, x Gy,
be the diagonal. Then there is an A'-homotopy
o, (A (divh (A (g)) = divA(A*(g;))) ) ~ar (1) € A°(Speck, Ospec)-

Proof. We deduce the claim from the following computation:

¢, (A (divt(Aa*(gh) - divi(A*(g,)))) (IIL9)
= divA(A*(g))P" — divA (A% (g7 )P (I11.10)
= it (AT ()R vt A )R (1)
— divA(Em + PR — divA (e + t)‘;(:_ o (ITL.12)
~ar divA (17 + t)?g oy — VA + t)‘;rgzl_l 11 (I11.13)
= divA (" + t)‘;(:) = (1). (I11.14)
Here the homotopy is given by t" + Mt + (1 — \) € k[A! x A1]. |

111.9.0.2

We are now ready to prove the cancellation theorem for A-correspondences.
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Theorem II1.9.8. For any X,Y € Smy, the map 0 = (=) A GAl induces a
quasi-isomorphism of complexes of presheaves with A-transfers

C.(0): Cor(A® x X,Y) ~ Corj (A® x X) AGAL Y AGAL).

Here A® denotes the standard cosimplicial scheme over k, whose n-simplices A™
are given by Speck[xo, ..., x,]/(>, xi —1).

Proof. The proof follows the same approach as Voevodsky’s cancellation theorem
for the category Cory, . Thus many aspects of the proof will be the same
as those of Voevodsky’s proof, and we will therefore focus on the details that
are specific to our context.

To prove that C, () is a quasi-isomorphism it is enough to show that the
maps p, and 6 are inverse to each other up to natural A'-homotopy. To this
end, first note that the functions g and g, enjoy the following properties:

(1) g |x =t"+aat" ' tanat+1 and g, | | =" +bit" " by ot +t

(in fact, g |, =t"+ 1 and g, |, =" +1);

la [

(2) g;HGmxl = th‘Gmxl 7& 0.

Let p and ¢ be the projections
p: X XG, XY xG, > XxY, ¢XxG,xYxG,— G, xG,,.

Moreover, denote by p’: X x Y — Speck and ¢': G,,, X G,, — Speck the
structure maps. Thus we have a pullback square

X X G xY X Gy —25 Gy X G,

/| ok

XxY —2 5 Speck.

Property (1) along with [Lemma II1.9.7| then implies that the composition p,, o 0

is Al-homotopic to the identity, by the following computation:

p (0 % 8.(1) = g* (aivA(g) — divi(g,)))
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Here the equality (II1.17) follows from the projection formula, (III.18]) follows
|

from base change applied to the diagram above, and the homotopy (I11.20) is
given by [Lommma T

Similarly, property (2) implies that for any a € Cor? (X,Y), the classes
pn((axidg,, )oix), pn(iy o (a xidg,,)oix) and p,(iy o (o X idg,, )) are equal
to 0 up to natural homotopy, where ix: X - X x G,, and iy: Y =Y x G,
denote the morphisms given by the rational point 1: Speck — G,,. Thus we

see that p, 00 ~a1 ide, (v)-

Finally, |[Lemma II1.9.3|implies that p,, is also right inverse up to A'-homotopy
by the same argument as [VoelO, Theorem 4.6] (see also [AGP18, Lemma
7.5]). |

.10 The category of A-motives

In this section we assume that the base field k is infinite, perfect and of charac-
teristic different from 2.

11.10.1 Nisnevich localization

Theorem WI.10.1. The category of Nisnevich sheaves with A-transfers is abelian.
The Nisnevich sheafification Fnis of any presheaf with A-transfers F is equipped
with A-transfers in a unique and natural way, and there is a natural isomorphism

EXtéhVNis(Corf;Z) (ZA(X)’ Lg.NiS) = H%\Iis(Xa Lg.Nis)'
Proof. By |[Drul8b, Theorem 3.1] it is enough to show that

Cor (U, X) = P Corji (U, X}!),
rzeX

where © € X ranges over the set of all (not necessary closed) points. Let dx
denote the dimension of X. Then we have

Cor (U, X) = lim AP (U x X,wx)
TeAy(UxX/U)
=l AN K X
TeA(UxX/U) zeX *
= ling AP(U x X wyn) = @ Cory (U, X)),
zeX TEA(UXXI/U) reX
where the isomorphism in the second row is given by and the
isomorphism in the last row follows from [Lemma III.3.10 |

Remark 111.10.2. The category of finite A-correspondences Cor’,;1 is a strict
V-category of correspondences in the sense of |[Garl9, Definition 2.3], and a V-
ringoid in the sense of |[GP14, Definition 2.4]. So, alternatively, [Theorem II1.10.1]
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can be proved by using the technique of . Note also that the proof
of [Theorem TIT.10.1] could be obtained by following the original approach of
Suslin and Voevodsky , that is, showing that the cone of the morphism
caU®) — ca(U) is acyclic. Here c4(U®) is the Cech complex associated to a
Nisnevich covering U — U of a smooth k-scheme U.

1.10.2 Strict homotopy invariance
Theorem II1.10.3. Let .F € PShg(Corf; Z) be a homotopy invariant presheaf
with A-transfers. Then the associated Nisnevich sheaf Fnis is strictly homotopy
invariant, i.e., the projection p: X x A' = X induces an isomorphism

p* B (X, Pris) = Ho(X < A, )
for all X € Smy, and all n > 0.

Proof. The theorem is a consequence of the injectivity and excision theorems
proved in Sections [[TT.5] [[TT.6] [[T1.7] and [[IT.§] The deduction of strict homotopy
invariance from these results is formal; see for example [GP18b| or [Drul8c|. W

I11.10.3 Effective A-motives

Definition I11.10.4. The oo-category DM (k) of effective A-motives is the lo-
calization of the derived co-category D~ (Shvyis(Cory'; Z)) with respect to the
morphisms of the form X x A — X. Let

M<fE: Smy, — DM (k)
be the functor defined as the composition of the localization
D~ (Shvyis(Cory'; Z)) — DM (k)
with the functor
Smy, — D~ (Shvyis(Cory; Z))

given by X + Z(X)[0]. For any X € Smy, we refer to Mf(X) as the effective
A-motive of X. If X = Speck, we abbreviate M (Spec k) to Z 4. Finally, we
define the Tate object Z4(1) as

Za(1) := cofib(Z 4 — MG (G,,))[-1],
where Z4 — M%Y(G,,) is the map induced by the rational point 1: Speck —
G,,.

Remark 111.10.5. Equivalently, DM‘ff(k) can be defined by starting with the
oo-category of presheaves of spaces PShE(Cor,‘?) and then performing a motivic
localization as in §14]. Indeed, since Corj is additive, presheaves of
spaces and presheaves of abelian groups agree.
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1l.10.3.1

Note that there is a symmetric monoidal structure on DM (k) inherited from
that on Shvyis(Corp; Z), satisfying M (X) @ MYT(Y) ~ M (X x Y). The
motive of a point, Z 4, is then the unit for this monoidal structure. For any
n > 1, we can use the monoidal structure to define Zs(n) := Z 4(1)®".

Theorem I11.10.6 (cf. [MVWO06, Theorem 14.11]). The oo-category DM (k) of
effective A-motives is equivalent to the full subcategory of D_(Sthis(Corf; Z))
spanned by motivic complexes, i.e., complexes whose cohomology sheaves are
strictly homotopy invariant.

Theorem II1.10.7 (cf. [MVWO06| Proposition 14.16]). Let X € Smy, and let F°

be a motivic complex. Then there is a natural isomorphism
M (X), Z°[i]lp- (Shvria(Cortiz)) = HY, (X, .7°)

for each i > 0.

1.10.4 The category of A-motives

As in the classical case, we obtain the category DM 4 (k) of A-motives via a
stabilization process with respect to tensoring with the Tate object.

Definition 111.10.8. The oco-category DM 4 (k) of A-motives is obtained from
DM (k) by @-inverting Z 4 (1). There is then a canonical functor

2 DMY (k) — DM 4(k),
and we define the functor M 4: Smy — DM 4 (k) as the composition of M?f and
o0,
11.10.4.1

It follows similarly as in |[DF17a] that DM 4 (k) is a presentably symmetric
monoidal stable co-category equipped with an adjunction

2 DMY (k) = DMy4(k) : Q.

111.10.4.2

The following result is a consequence of the cancellation theorem for finite
A-correspondences:

Theorem lI.10.9. The canonical functor °: DM (k) — DMy (k) is fully
faithful, and for any X € Smy, and any motivic complex

F* € D™ (Shvyis(Cory; Z)),
there is a natural isomorphism

MA(X), 2 F lpmap) = Hi (X, Z°).
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Definition 111.10.10. Let X € Smy. For any pair of integers p, q € Z, we define
the A-motivic cohomology of X in bidegree (p,q) as

HYY(X,Z) == [Ma(X),Za(q)[p]lDMA (k)-

11.10.4.3

The adjunction 7% : PShy(Smy) = PShy,(Cori}; Z) : v descends to an adjunc-
tion
74 : SH(k) = DMy (k) : v (I11.22)

of stable oo-categories, which allows us to compare DM 4 (k) with the motivic
stable homotopy category SH(k).

Definition I11.10.11. Denote by 1 € SH(k) the motivic sphere spectrum. In the
adjunction (II1.22)) above, let HZ,4 € SH(k) denote the Eilenberg-Mac Lane
spectrum HZ 4 = v2~%(1).

*

Lemma l1.10.12. The spectrum HZ 4 is an Exo-ring spectrum in SH(k).

Proof. As the right adjoint v is lax symmetric monoidal, it follows that it
preserves E-algebras. Now the left adjoint 77 is symmetric monoidal, so
45 (1) is the unit in DM 4(k) and hence an E-algebra. We conclude that
HZ 4 = vA9% (1) is an E-ring spectrum. |

111.10.4.4

The cancellation theorem for A-correspondences implies that HZ 4 is an Q-
spectrum in SH(k) which represents A-motivic cohomology. More precisely,
for any X € Smy, and any pair of integers p, ¢, there is a natural isomorphism
[(EF X4, XPIHZ Alsu) = HYY(X, Z).

11.10.4.5

The combination of [Lemma III.3.2| and [EK20, Theorem 5.2] shows moreover
that in the above adjunction (ILL.22), the right adjoint is monadic:

Theorem I11.10.13. Let e denote the exponential characteristic of k. Then there
is an equivalence of presentably symmetric monoidal stable co-categories

MOdHZA[l/e](SH(k’)) >~ DMA(k‘, Z[l/e}),

where Modnz ,11/¢) (SH(k)) denotes motivic spectra equipped with an action from
HZ4[1/€].

Remark 111.10.14. Recall that the oco-category SHeH(k) of effective spectra is
the stable subcategory of SH(k) generated under colimits by P!-suspension
spectra of smooth k-schemes. We note that Bachmann and Fasel’s effectivity
criterion Theorem 4.4] applies in our setting, showing that the spectrum
HZ 4 € SH(k) is effective. G. Garkusha and I. Panin communicated to us orally
that they proved this result independently using the category ZF, (k) of linear
framed correspondences.
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Appendix lllLA Geometric ingredients

In this section we summarize the geometric facts and constructions used in the
text. In particular, we formulate a version of Serre’s theorem on the existence of
sections satisfying relevant properties, which is used in the proofs in Sections
[[IT.6] [TTT.7] and [[TT.§] We then provide the construction of the relative curves
used in Sections [[IL.7] and Finally, we formulate a few lemmas that imply
the finiteness conditions on the vanishing loci of the functions constructed in
Sections [[TL.6}, [[T1.7] and [[TL.8

All schemes considered in this appendix are assumed to be noetherian and
separated.

Proposition ll.LA.1. For any étale morphism e: U — Y there is a decomposition

UL X 5 Y with powu = e, in which u is a dense open immersion and p is
finite.

Proof. This follows Zariski’s Main Theorem [Har77, IIT Corollary 11.4]. |

III.LA.0.1 Serre’s theorem

The following lemma is a consequence of [Har77, IIT Theorem 5.2], and is used
in Sections [[TT.6] [[T.7] and [[TL.8] In the text we refer to this result simply as
Serre’s theorem.

Lemma lll.LA.2 (Serre). Let O(1) be an ample invertible sheaf on a scheme X,
and £ be an invertible sheaf on X. Then there is, for any closed subscheme
Z C X, an integer N € Z such that the restriction homomorphism

NX,2(1)—-TZ2(1)

is surjective for alll > N. Here Z(l) := £ @ O(1).

Example Ill.A.3 (Chinese remainder theorem). Let U be an affine scheme. Sup-
pose that Z C Allj is a closed subscheme, and that v € Oy is a regular function
on Z. Then, for all large enough n there is a monic polynomial f € Oy[t] = O AL

of degree n such that f|Z = .

IlILA.0.2 Construction of relative curves

We now formulate the construction of relative curves used in the proofs of the
Nisnevich excision theorems. For the proof we refer to [Drul8c, Lemma 3.7].
Before stating the result, let us first recall the notion of an étale neighborhood:

Definition lll.LA.4. Let X be a scheme and suppose that Z C X is a closed
subscheme. If 7: X’ — X is an étale morphism and Z’ C X' is a closed

subscheme such that 7 induces an isomorphism Z’ =z , then we say that
m: (X', Z") = (X, Z) is an étale neighborhood of Z in X.
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Lemma lll.A.5 ([Drul8c, Lemma 3.7]). Let k be a field and let X be a smooth
k-scheme. Suppose we are given a closed subscheme Z C X along with an étale
neighborhood w: (X', Z') = (X, Z) of Z in X. Let moreover z € Z and z' € Z'
be closed points such that w(2') = z, and write U := X, and U’ := X/, for the
corresponding local schemes. Then there is a commutative diagram

1 11

j C// v’

-]
AN

X

p

H

in Smy, such that the following properties hold:

a

(I11.23)

g \

(1) p, p', p" are relative projective curves; 7, 7', j are open 1mmersions;
w, w' are étale; @, T are ﬁmte and poj, p'oj,p’ oj" are smooth.
Moreover, C" =C' xy U’; c'=C xy U'; and there are trivializations of
the relative canonical classes p: Oc = weyy and p': Ocr = wery

(2) The schemes Z :=v=1(Z), Z' :=v'"Y(Z') and Z" := """ (Z') are finite
over U and U’, respectively.

(3) There are closed subschemes Ay C Z, A/, C Z' and A’é C Z" such that
p, p' and p” induce isomorphisms w: Ay 2 Z' xx U, w': A, 2 Z xx U

~ z -1
and w": A} =2 7' xx, U'. Moreover,v|zow —prZXXU, ", ow' ™ =
Z'x xU —1 2% 51U
T, © pry, XY, and v”‘z,, ow" " =pry ¥

(4) There are closed subschemes A C C and A" C C" such that A Xy Z = Ay,
A xyr Z' = A7 and such that p and p’ induce isomorphisms p|A: A=U

and p”’A/: A= U’. Moreover, the compositions v 0p|;1 and vOp"|;,1 are
equal to the canonical morphisms U — X and U’ — X', respectively.

(5) The schemes D :==C\C, D' := c \C" and D" :=C"\C" are finite over U
and U’ respectively. Furthermore, D" =%~ (D), and D' 2 @ (D).

(6) There is an ample line bundle O(1) on C and a section d € T'(C,O(1)) such
that Z(d) = D.

llLA.0.3 Finiteness of vanishing loci

The following lemmas are used to prove that the zero loci of the functions
constructed in Sections [[T.6} [[T1.7] and [IT1.8| are finite over the relevant schemes.
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Lemma lI.LA.6 ([Drul8c, Lemma 4.1]). Let U be a local scheme, and let x € U
denote the closed point. Suppose that the residue field k := k(z) is infinite. Let

Dt "¢
NA
U
be a commutative diagram such that
e p' and p are projective morphisms of relative dimension one;
e 1 1s a closed immersion, and
o mandp oi are finite.
Suppose furthermore that we are given the following data:
e an ample line bundle O(1) on C';
e a section d € T'(C",O(1)) such that Z(d) C D';
o an invertible section so € T'(D’,O(1));

e a closed subscheme Z C C satisfying 2' N D' = @, where Z' := m~1(2)
C';

N

e a section sz € T'(Z',0(1)) such that 7 induces an isomorphism Z(sz/) =
W(Z(SZ/)).

Then there is an integer L € Z such that for all | > L, there is a section
s e I(C',O()) satisfying

(1) s|D, =sl,s == szd ™1

(2) 7 induces an isomorphism Z(s) = n(Z(s)).

Lemma NLA.7. Let U be a scheme and suppose that C — U is a projective
morphism of pure dimension one. Let £ be an ample line bundle on C. Then,
for any pair of sections d,e € I'(C,.Z) such that Z(d) N Z(e) = @, the vanishing
loci Z(e) and Z(d) are finite over U.

Proof. We prove that Z(e) is finite over U; the case of Z(d) follows by symmetry.
Since C is projective over U, the same holds also for the closed subscheme Z(e).
As C is of pure dimension one, it follows that Z(e) is finite over U unless Z(e)
contains at least one irreducible component C' of the fiber C x ¢ x for some point
x € U. But since .Z is ample, $|C is nontrivial and hence Z(d‘c) # 3. So Z(e)

cannot contain an irreducible component of the fiber C xy; . |
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