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ABSTRACT

Seismic exploration in complex geological settings and shallow geological targets 

has led to a demand for higher spatial and temporal resolution in the final migrated image. 

Both conventional marine seismic and wide azimuth data acquisition lack near offset 

coverage, which limits imaging in these settings. A new marine source over cable survey, 

with split-spread configuration, known as TopSeis, was introduced in 2017 in order to 

address the shallow-target problem. However, wavefield reconstruction in the near offsets 

is challenging in the shallow part of the seismic record due to the high temporal 

frequencies and coarse sampling that leads to severe spatial aliasing. We investigate 

deep learning as a tool for the reconstruction problem, beyond spatial aliasing. Our 

method is based on a convolutional neural network (CNN) approach trained in the wavelet 

domain in order to reconstruct the wavefield across the streamers. We demonstrate the 

performance of the proposed method on broadband synthetic data and TopSeis field data 

from the Barents Sea. From our synthetic example, we show that the CNN can be learned 

in the inline direction and applied in the crossline direction, and that the approach 

Page 1 of 82 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Geophysics 2

preserves the characteristics of the geological model in the migrated section. In addition, 

we compare our method to an industry-standard Fourier-based method, where the CNN 

approach shows an improvement in the root mean square (RMS) error close to a factor 

of two. In our field data example, we show that the approach manages to reconstruct the 

wavefield across the streamers in the shot domain, and displaying promising 

characteristics of a reconstructed 3D wavefield.  

Page 2 of 82GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Geophysics 3

INTRODUCTION

Seismic processing and imaging of the subsurface in the Barents Sea is 

challenging for several reasons. The large uplift and erosion of the area manifest itself in 

rocks with high seismic velocities at shallow depth. These large velocity contrasts set up 

complex multiples and allows only a narrow cone of the reflected energy from the seismic 

sources to penetrate and illuminate the subsurface targets (Lie et al., 2018). The 

conventional 3D seismic spread lack the near offsets, which are important for imaging 

shallow parts of the subsurface and of great benefit for multiple attenuation (Vinje et al., 

2017). A conventional 3D acquisition does therefore not represent an optimal setup in 

these environments. In order to address the shallow-target seismic-imaging issue, CGG 

and Lundin Norway proposed in 2017 a tailored acquisition solution, known as TopSeis 

(Vinje et al., 2017), yielding improved recording of the near offsets. This acquisition 

solution utilizes a split-spread, source-over-cable configuration, reduced streamer 

separation, wider source separation and the deployment of two or more sources. Still, 

near offsets are sparse, and suffer from spatial aliasing due to high temporal frequencies 
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and coarse sampling across the streamers. The interpolation and reconstruction problem 

of aliased data is considered an under-determined system, as there are infinite solutions 

to which the aliased seismic data could fit the dense. Hence, a priori information about 

the wavefield, such as seismic velocities, or assumptions concerning local linearity, 

sparsity or matrix rank are needed in order to reconstruct the wavefield. However, in the 

presence of severe aliasing these assumptions may not hold. In this paper, we investigate 

the potential use of deep learning as a tool to reconstruct the wavefield across the 

streamers in the shallow part of the seismic record where temporal frequencies are high 

and spatial sampling is coarse.

Several seismic interpolation methods exist. Wave-equation based methods 

(Fomel, 2003) may deal with irregular and regular sampling in presence of aliasing, but 

are computationally heavy and need a velocity model as a precondition. Some techniques 

assume local linearity and interpolate data in the frequency-space domain (Spitz, 1991; 

Porsani, 1999; Crawley, 2000; Naghizadeh and Sacchi, 2008). Some methods may 

reconstruct in the presence of mild degree of spatial aliasing under the assumption that 
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the interpolation problem becomes a matrix completion (rank-reduction) problem (Trickett 

et al., 2010), minimum weighted norm inversion of the subsampling operator (Liu and 

Sacchi, 2004) or least squares fitting of sinusoids (Ghaderpour et al., 2018; Ghaderpour, 

2019). In case of high temporal frequencies and coarse sampling in the near offsets, 

where seismic events display conflicting dips and highly curved events, the linear 

assumption breaks down and these methods are therefore not optimal. Some methods 

deals with the interpolation problem by means of predefined sparse transforms, such as 

Fourier (Xu et al., 2005, 2010; Zwartjes and Sacchi, 2006; Schonewille et al., 2009; 

Naghizadeh and Sacchi, 2010a), Radon (Ibrahim et al., 2015), Curvelet (Naghizadeh and 

Sacchi, 2010b), Seislet (Gan et al., 2015) and Focal (Kutscha et al., 2010). The 

interpolation problem is then solved in combination with sparse optimization algorithms 

such as matching pursuit (Mallat and Zhang, 1993), basis pursuit (Boyd and 

Vandenberghe, 2004) or projection on to convex sets (Abma and Kabir, 2006). However, 

it is challenging to find a single transform that sparsifies all events such as diffractions 

and reflections in both shallow and deep, and some events are not optimally sparse 

(Turquais et al., 2018). Rather than relying on a predefined sparse transforms other 
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sparse approximation methods such as dictionary learning, which assume that the 

seismic data is a sparse linear combination of atoms defined from an over complete 

dictionary (Turquais et al., 2017, 2018; Zhu et al., 2017). Alternatively, complementary 

information from multicomponent data in combination with sparse optimization 

(Robertsson et al., 2008; Özdemir et al., 2010; Vassallo et al., 2010), crossline 

reconstruction beyond aliasing is possible. An alternative path to the seismic interpolation 

problem are the use of data driven approaches such as machine learning (Jia and Ma, 

2017) and deep learning (Wang et al., 2018; Mandelli et al., 2019), which has drawn much 

attention recently. Deep learning based on CNN can be view as special case of the 

traditional sparse approximation based methods, but instead of optimizing each 

component separately, all components are jointly optimized (Dong et al., 2015), which 

allows for a fast and efficient data driven approach to the reconstruction problem.  

 Our approach to the seismic wavefield reconstruction problem may be seen as an 

analogy to inverse problems in image scaling where low-resolution digital images are 

transformed into their corresponding high-resolution counterparts. These set of 
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techniques are commonly referred to as single-image super-resolution (SISR), or image 

restoration, and dates back to the mid-eighties and work of  Tsai and Huang (1984). 

Popular SR imaging methods can be categorized into four main types (Yang et al., 2014): 

prediction models (Irani and Peleg, 1991), edge based methods (Sun et al., 2010), 

statistical methods (He and Siu, 2011; Efrat et al., 2013) and example/patch/learning 

based methods (Chang et al., 2004). The deep learning-based methods have in recent 

years shown increased popularity in image reconstruction problems because of their 

improved efficiency and state-of-the-art performance compared to aforementioned 

methods (Yang et al., 2019). Deep learning approaches are specifically designed to 

automatically learn an end-to-end mapping between the low and high-resolution 

examples (Dong et al., 2015), where the non-linear representations are learned from large 

image databases. 

In learning-based SISR, the low-resolution examples are commonly modelled from 

their corresponding high-resolution examples through blurring and downsampling 

followed by upsampling to the same size using conventional interpolation method, such 
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as bicubic interpolation (Dong et al., 2015; Guo et al., 2017). The SISR model is then 

applied to remove the blurring effect. To reduce computational complexity and to 

accelerate learning and application, the sub-optimal interpolation prior to learning can be 

skipped, and the upsampling operation is moved to within or toward the end of the network 

(Dong et al., 2016; Shi et al., 2016). In addition, methods such as bicubic interpolation do 

not bring additional information to the reconstruction problem (Shi et al., 2016).  However, 

if the image contains complex structures and patterns, state-of-the-art CNNs applied 

directly in the image-domain are still inferior to other traditional methods (Bae et al., 2017). 

By transforming the low and high-resolution examples into a feature space prior to 

learning, such as wavelet-domain, increases the performance of the learning algorithm 

due to the simplification of the image structure (Bae et al., 2017; Guo et al., 2017; Liu et 

al., 2018).

The proposed wavefield reconstruction approach, which is inspired from two deep 

learning CNN-based techniques (Shi et al., 2016; Guo et al., 2017), considers the low 

(subsampled) and high-resolution (target) seismic gathers as training examples, and 
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transform them into the wavelet domain where we learn the upsampling function. The key 

advantages of this method are: (1) reduced computational complexity due to smaller size 

of the input in combination with time-space compression from the wavelet transform, (2) 

the wavelet domain simplifies the structure of the seismic gather, which could potentially 

increase performance in presence of complex structural patterns and (3) our approach is 

not dependent on any prior interpolation method to learn from, it is only limited to the 

available bandwidth in the domain from which we train the upsampling function. In 

addition, we hypothesize that the nonlinear relationships between the subsampled 

wavefields and their corresponding target wavefields can be learned along one direction 

–where the spacing between sensors are adequately dense– and then use the trained 

function to reconstruct the wavefield in a coarser direction (Greiner et al., 2019). In the 

synthetic data example, we use offset gathers in the inline direction as the dense cases, 

and attempt to reconstruct the much coarser crossline direction. In the field data example, 

we use marine shot gathers with split-spread geometry, illustrated in Figure 1, in the inline 

direction to reconstruct across the streamers where sampling is much coarser.  
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This paper is organized as follows: first, we introduce learning based SISR and 

discusses how SISR can be employed within seismic wavefield reconstruction. Here we 

also present the proposed methodology and approach. In the 2nd section, we demonstrate 

the performance of the method on synthetic broadband data and compare the approach 

to an industry-standard method. In the 3rd section, we apply the approach to field data 

from the Barents Sea by reconstructing the 3D wavefield in the shot domain. Finally, a 

discussion and a set of conclusions are given. 
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LEARNING-BASED WAVEFIELD RECONSTRUCTION

Learning-based super-resolution 

The resolution limitation in seismic data is affected by the available bandwidth, the 

geometry and density of the sampling array. If a subset of the data is not sampled 

according to the Nyquist sampling criterion, aliasing will take place, as in the case for the 

undersampled crossline data. To model the crossline resolution problem, consider the 

underdetermined system of linear equations 

                                                                              𝑫𝒀 = 𝑿,                                                                             (1)

where  denotes the target, represented by a seismic gather of size ,  𝒀 ∈ ℝ𝑀 × 𝑁 𝑀 × 𝑁

where  is the number of time samples and  is the number of traces. The subsampled 𝑀 𝑁

counterpart  is decimated by the known operator , where  is 𝑿 ∈ ℝ𝑀 ×
𝑁
𝑟 𝑫:ℝ𝑀 × 𝑁→ℝ𝑀 ×

𝑁
𝑟 𝑟

the subsampling factor. To illustrate the action of the operator , let  represent 𝑫 𝒀 ∈ ℝ3 × 4

a two-dimensional seismic signal with four traces  and three time samples [𝑦0𝑖,𝑦1𝑖,𝑦2𝑖,𝑦3𝑖]
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 downsampled by a ratio of . The decimation operation in equation (1), with 𝑖 = 0,1,2 𝑟 = 2

 represented in vector form, becomes𝒀

                            (1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

)(
𝑦00
𝑦01
𝑦02
𝑦10
𝑦11
𝑦12
𝑦20
𝑦21
𝑦22
𝑦30
𝑦31
𝑦32

) = (𝑥00
𝑥01
𝑥02
𝑥20
𝑥21
𝑥22

).                     (2)

It is obvious in equation (2) that the operator  is singular and has no inverse. Since 𝑫

seismic signals are highly structured and smoothly varying, we might still be able to 

estimate an inverse valid for this subspace. We try to establish this relation between the 

subsampled and the target seismic gathers, by the functional relationship 

                                                                            𝒀 = 𝑓(𝑿) + 𝜀,                                                                   (3)

where  represents the noise. In our case, we seek an approximate function 𝜀 𝑓(𝑿):𝑿 ∈

 where  is the predicted seismic output from the learned function . ℝ𝑀 ×
𝑁
𝑟→𝒀 ∈ ℝ𝑀 × 𝑁 𝒀 𝑓( ∙ )
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Figure 2 shows an example of a 2D shot gather in the inline direction, which is extracted 

from a 3D marine split-spread shot gather and cropped in time and space. 

In case of shot-domain reconstruction across the cables, the 2D split-spread gathers 

along with the subsampled counterpart (Figure 2), will then define the training data 

 for  number of examples in the training data, from which we propose to {(𝒀[𝑖],𝑿[𝑖])}𝐾
𝑖 = 1 𝐾

learn the function . Our assumption is that the decimated wavefield in the inline 𝑓( ∙ )

direction is representative for the wavefield in the crossline direction. We expect this to 

be a reasonable assumption, especially considering split-spread geometry (Figure 1), 

which yield near offset data giving similar inline-crossline characteristics, as seen in 

Figure 2b and 2d.

Employing wavelet-domain learning 

 Following Bae et al. (2017), Guo et al. (2017) and Liu et al. (2018), we propose to 

learn the function  in the wavelet domain. In 2D discrete wavelet transform (DWT), 𝑓( ∙ )

digital filters are introduced that are characterized by their scaling function  and wavelet 𝜑

Page 13 of 82 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Geophysics 14

basis . These are used to convolve a 2D signal  into sub-band information represented 𝜓 𝒀

by wavelet coefficients (Mallat, 1989). The simplest filters are the Haar filters, which could 

be represented by four 2D convolution kernels as

                 𝑔𝐴 =
1
2[1 1

1 1],𝑔𝐻 =
1
2[ 1 1

―1 ―1],𝑔𝑉 =
1
2[1 ―1

1 ―1],𝑔𝐷 =
1
2[ ―1 1

1 ―1].                   (4)

In a wavelet decomposition of level 1, the target 2D signal  is convolved with 𝒀 ∈ ℝ𝑀 × 𝑁 𝑔𝐴,

 yielding the four-band representations  respectively, where 𝑔𝐻,𝑔𝑉,𝑔𝐷 𝒅𝐴,𝒅𝐻,𝒅𝑉,𝒅𝐷 ∈ ℝ𝑚 × 𝑛

 and . The four-band representation is schematically illustrated in Figure 𝑚 = 𝑀/2 𝑛 = 𝑁/2

3a with their respective convolutional kernels.  In equation (4) we see that the filter  𝑔𝐴

acts as a low-pass filter on , and is therefore commonly referred to as the approximation, 𝒀

while ,  and  represent the horizontal, vertical and diagonal detail respectively. 𝒅𝐻 𝒅𝑉 𝒅𝐷

Figure 3b shows an example of a four-band split of a seismic source gather. We will use 

the following compact notation for forward wavelet transform and inverse wavelet 

transform

                                                               𝒀 = 𝝍H𝒀 and 𝑿 = 𝝍H𝑿,                                                             (5)
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                                                               𝒀 = 𝝍 ∗
H 𝒀 and 𝑿 = 𝝍 ∗

H 𝑿,                                                            (6)

where subscript  denotes the Haar filter, the superscript * denotes the adjoint, H

and  and  denote respectively the decomposition of the 𝒀 ∈ ℝ𝑚 × 𝑛 × 4 𝑿 ∈ ℝ𝑚 ×
𝑛
𝑟 × 4

subsampled gather. In this case,  denotes the input to the CNN and  denotes the target 𝑿 𝒀

we want to predict from the learned function . Wavelet decomposition and 𝑓( ∙ )

reconstruction was performed using PyWavelet (Lee et al., 2019).   

Convolutional neural network (CNN) architecture

Convolutional neural networks are a special case of artificial neural network 

architectures that incorporates knowledge about the invariance of the object shapes by 

using local connection patterns and by imposing constraints on the learnable parameters 

(LeCun et al., 1998). A CNN consists of  layers of linear convolutions and non-linear 𝐿

transforms. The computational transition from an arbitrary layer  to layer 𝑙 ∈ {0,1,2,…,𝐿}

 within the network consists of computing a set of convolution operations on the 𝑙 + 1

values  to give the linear output , where  and  can be considered as 3D 𝒂𝑙 𝒛𝑙 + 1 𝒂𝑙 𝒛𝑙 + 1
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objects consisting of 2D features. The non-linear output is then given by non-linear 

transforms on  to give the values . A simple illustration of the convolution 𝒛𝑙 + 1 𝒂𝑙 + 1

operation is given in Figure 4 where the input has two features. We will now discuss our 

network architecture, which is schematically represented in Figure 5. There are four types 

of transforms in our design: 

1. Standard convolutional layers. These layers do not alter the dimension of the 

2D features due to zero-padding, but might change the number of features.

2. Periodic upsampling to increase the 2D features size. This resampling operator 

upsamples the 2D feature space and reduces the number of features.  

3. Non-linear transforms, i.e. activation functions.

4. Residual layers with single skip connections (He et al., 2016). Does not alter 

the dimension of the 2D features, but need same number of features for the 

input and residuals. 

Let  denote the number of time samples,  the number of traces in the target,  𝑚 𝑛 𝑟

the decimation factor, and  the number of features in layer . The CNN is characterized 𝑐𝑙 𝑙
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by a set of filters  and biases  for each transition from {𝒘𝑙 + 1
𝑘 ∈ ℝf × f × 𝑐𝑙}𝑐𝑙 + 1

𝑘 = 1 {𝑏𝑙 + 1
𝑘 ∈ ℝ}𝑐𝑙 + 1

𝑘 = 1

a layer to the next. The dimension of the filters  denotes the size of the 2D convolution f × f

kernels and  is the feature number in the output, i.e. layer . The linear output from 𝑘 𝑙 + 1

the convolution operation of feature  can be written as𝑘

                                                               𝒛𝑙 + 1
𝑘 = 𝒘𝑙 + 1

𝑘 ∗ 𝒂𝑙 + 𝑏𝑙 + 1
𝑘 ,                                                             (7)

where  denotes the convolution operation∗

                                          (𝒘𝑙 + 1
𝑘 ∗ 𝒂𝑙)𝑥,𝑦 =

𝑐𝑙

∑
𝑖 = 1

f/2

∑
𝑢 = ―f/2

f/2

∑
𝑣 = ―f/2

𝑤𝑙 + 1
𝑢,𝑣,𝑖,𝑘𝑎𝑙

𝑥 ― 𝑢,𝑦 ― 𝑣,𝑖,                               (8)

where the pair of indexes  defines each pixel position and the pair  define the (𝑥,𝑦) (𝑢,𝑣)

kernel position. We can think of the convolution equation (8) as a special case of 

convolution, where the  output is computed by a sum of 2D convolutions, which implies 𝑘𝑡ℎ

employing a convolution kernel on each input feature and superimposed with the bias in 

each pixel position. Thus for a given layer there are as many biases as there are features 

in the next layer, i.e. . The number of weights are dependent on the kernel size and 𝑐𝑙 + 1

the number of input and output features. To simplify the notations, let 𝑾𝑙 + 1 ∈
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 and  denote all the weights and biases in layer  respectively.  ℝf × f × 𝑐𝑙 × 𝑐𝑙 + 1 𝒃𝑙 + 1 ∈ ℝ𝑐𝑙 + 1 𝑙 + 1

As seen in Figure 5, the first layer weights have the dimensionality , where 7 × 7 × 4 × 112

 denotes the kernel size, 4 denotes the number of input features, i.e. , 7 × 7 𝒅𝐴,𝒅𝐻,𝒅𝑉,𝒅𝐷

and 112 are the number of output features. 

In order to introduce non-linearity,  is passed through an 𝒛𝑙 + 1 = [𝒛𝑙 + 1
1 ,…,𝒛𝑙 + 1

𝑐𝑙 + 1]

activation function  

                                                                       𝒂𝑙 + 1 = 𝜙(𝒛𝑙 + 1).                                                                     (9) 

A popular approach in deep networks is to introduce layers with residual mapping, where 

activations from a previous layer is skipped over one layer and added to the next (single-

skip). In case of residual mapping, a non-linearity in equation (9) is replaced by:  

                                                             𝒂𝑙 + 1 = 𝜙(𝒛𝑙 + 1 + 𝒂𝑙 ― 1).                                                               (10)

The main advantage of introducing residual layers is that it allows for training deeper 

networks, because optimizing the residual is easier than optimizing the target by a plain 

stack of non-linear layers (He et al., 2016). In our case, the non-linear function  is 𝜙( ∙ )
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given by the Leaky Rectified Linear Unit (Maas et al., 2013) or Leaky ReLU, which is 

defined as

                                                                 𝜙(𝒛) = max(𝒛,𝛼𝒛),                                                                (11)

where  is the slope for negative arguments. In order to go from the subsampled 0 < 𝛼 < 1

space to the original 2D space we use a periodic upsampling operation within the network. 

We will refer to this layer as the spatial periodic resampling  layer, which in our case (𝑆𝑃𝑅)

can be mathematically defined as   

                                                              𝑆𝑃𝑅(𝒂)𝑥,𝑦,𝑘 = 𝒂⌊𝑥
𝑟⌋,𝑦,𝑐 ∙ mod(𝑥,𝑟) + 𝑘

,                                          (12)

where ,  and  are the pixel coordinates starting at ,  is integer division 𝑥 𝑦 𝑘 𝑥,𝑦,𝑘 = 0 ⌊𝑥/𝑟⌋

and  is the remainder of this division. From equation (12) we see that mod(𝑥,𝑟) 𝑆𝑃𝑅( ∙ ):

 is an operator that simply rearranges the columns of  to upsample ℝ𝑚 ×
𝑛
𝑟 × 𝑐r  →ℝ𝑚 × 𝑛 × 𝑐 𝒂

the 2D features by reducing the number of features, which is illustrated in Figure 6 

resampling from  to . 𝑚 ×
6
2 × 4 𝑚 × 6 × 2

Optimization problem
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In deep learning, the optimization problem is typically solved by minimizing and/or 

maximizing an objective function using first-order gradient-based optimization algorithms, 

i.e. gradient descent/ascent, in combination with a learning-based procedure known as 

backpropagation (Rumelhart et al., 1988). Learning the weights  and biases  is then 𝑾 𝒃

done by minimizing the following objective function: 

                                                             min
𝑾,𝒃

{𝐿(𝒀,𝑿;𝑾,𝒃) + 𝜆𝑅(𝑾)},                                                (13)

where  is the loss term,  is the regularization term and λ is the 𝐿(𝒀,𝑿;𝑾,𝒃) 𝑅(𝑾)

regularization parameter defining the tradeoff between the loss and the regularization. In 

order to minimize equation (13) by a gradient-based method we need to compute the 

partial derivatives w.r.t each weight and bias within the network. The optimization problem 

was solved by stochastic gradient descent using subsamples (mini-batches) using a 

version of the Adam optimizer defined in (Loshchilov and Hutter, 2018) as

                             𝑾𝑙
[𝑡] = 𝑾𝑙

[𝑡 ― 1] ― 𝜂(∇𝑾𝑙𝐿(𝒀,𝑿;𝑾,𝒃)[𝑡] + 𝜆∇𝑾𝑙𝑅(𝑾)[𝑡 ― 1]),                         (14)
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where   is the fixed learning rate,  is the partial derivatives of the regularization 𝜂 ∇𝓦𝑙𝑅(𝑾)

term and  is the partial derivatives of the loss using the Adam optimizer ∇𝑾𝑙𝐿(𝒀,𝑿;𝑾,𝒃)

rule (Kingma and Ba, 2014). In our case, the loss in equation (13) is given by the  norm 𝐿1

  and the regularization on the weights is given by the  𝐿(𝒀,𝑿;𝑾,𝒃) = ‖𝒀 ― 𝒇(𝑿;𝑾,𝒃)‖1

1
𝐿2

norm penalty . The biases are updated in the same manner excluding the 𝑅(𝑾) =
1
2‖𝑾‖2

2

regularization term. Neural network implementation and training was performed in python 

using the Numpy and Tensorflow libraries (Abadi et al., 2016). 

Network design, training and regularization

The optimization problem in deep learning is challenging due to being non-convex, 

overparameterized and unstable. Careful selection of hyperparameters, parameter 

initialization, and network design through trial and error is necessary in order to get the 

model to train and converge to a proper local minimum. Initialization of the weights were 

done using He-initialization (He et al., 2015), which is particularly designed for dealing 

with rectifier nonlinearities, and the biases were initialized to zero values. The hyper-

parameters of the Adam optimizer were set to default, as we observed no improvements 
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by using other values. The network depth and width (number of layers and number of 

filters in each layer) were found by trial and error, along with the rectifier nonlinearities 

slope  and learning rate , which were set to  and  respectively. 𝛼 𝜂 0.1 0.001

 The computational model and network design used in our study –summarized and 

schematically illustrated in Figure 5– consists of three single-skip connection residual 

layers in subsampled 2D space, an  operation after layer 8 for upsampling followed 𝑆𝑃𝑅

by two non-linear layers and a standard linear output. The two first convolution layers, in 

addition to the two convolution layers after upsampling, consists of  followed by  7 × 7 5 × 5

kernels. The other convolution layers have  kernels. Similar to Dong et al., (2015), 3 × 3

we found that by using larger kernel size in the start of the network improved the 

reconstruction and structural definition of the prediction. However, since larger kernels 

increase computational complexity, the choice of kernel size should be a tradeoff between 

performance and speed.     

Prior to training, the training data are split randomly into three datasets, which we will 

refer to as the training, validation and test set. Each example in all sets were scaled to 
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have a maximum absolute value of . The training set is used to fit the model to the data, 1

the validation set is used for model selection, i.e. selection of the regularization parameter 

, and the test set is used for model assessment for final evaluation.  𝜆

For model selection, we used a cross-validation (CV) approach in combination with 

an early stopping algorithm. The goal of regularization and early stopping is to avoid 

overfitting in an overparameterized model. The early stopping approach avoids overfitting 

by storing the parameters that shows the best performance in one training phase, and 

stopping after a predefined number of iterations if the validation loss has not decreased. 

Regularization constrains the size of the weight parameters during training, which 

depends on the value of regularization parameter . CV is performed by training with 𝜆

different  values, i.e. different models, and selecting the model that shows best 𝜆

performance on the validation set. We used a selection of , 𝜆 ∈ {10 ―3,10 ―4,10 ―5,10 ―6,0}

where  and  denotes highest- and lowest model complexity respectively. 𝜆 = 0 𝜆 = 10 ―3

We found  to be a good choice in both the synthetic example and field example. 𝜆 = 10 ―5
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An example from the loss during training from the field data example is shown in Figure 

A-1 in Appendix A.
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SYNTHETIC DATA EXAMPLE

In order to evaluate the performance of our wavelet CNN and inline- learning to 

crossline-reconstruction approach, we have designed a synthetic 3D model and applied 

a diffraction modelling method similar to what is described in Jaramillo and Bleistein 

(1999) to create synthetic broadband data. For comparison, we use a 3D Fourier-based 

interpolation method (Xu et al., 2005), which is similar to currently applied approaches in 

the industry. We will refer to this method as 3D Fourier in the following.  

As can be seen from Figure 7, the model consists of a rugose water bottom from 

bathymetry in the Barents Sea and a 2D grid of equally spaced diffraction lines at a depth 

of . The water bottom and diffraction lines in this model will give a complex data set 518 m

with strong aliasing and conflicting dips which is a challenge to any interpolation 

algorithm.

In Figure 8a, we show the survey setup, where we model 64 constant-offset, zero-

azimuth data cubes on a  grid with offset spacing of  and a time 6.25 × 6.25 m 12.5 m
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sampling of  . The source signal is zero phase with a flat frequency spectrum from 4 2 ms

to 175 Hz. We assume no external noise in this experiment, constant velocity of 1480 m/s 

and no anelastic attenuation.  

In the following, we will refer to the densely sampled  cubes as the 6.25 × 6.25 m

ground truth. We then decimate the ground truth to create a new subsampled data set, 

where we have removed three of four traces to get a sampling of  as shown 6.25 × 25 m

in Figure 8b. An example of the ground truth and the subsampled counterpart used for 

training in the inline direction, zoomed at the water bottom and diffraction lines are 

displayed in Figure 9. The subsampled data defines the training data , 𝐷 = {(𝒀[𝑖],𝑿[𝑖])}𝐾
𝑖 = 1

where  is an offset class along one inline and  is the subsampled counterpart, consists 𝒀 𝑿

of 162 inlines, which gives  examples for the 64 offset classes. Training data 𝐾 = 10368

size were doubled by augmentation, by flipping the data to give negative offsets. A subset 

of  examples were then used as training data, which were further split into 𝐾 = 15900

training set and validation set of 14900 and 1000 respectively. The crossline section will 
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then represent the test set for final assessment. Using 400 time samples, the size of each 

training example is  and  for the target and subsampled data 400 × 640 400 × 160

respectively. The wavelet CNN is then trained along the inline direction where the 

sampling is dense and applied to the coarsely sampled crossline direction. The training 

phase run for 58700 iterations (19 epochs) before early stopping initiated, which took 

approximately 10 hours on a modern GPU (NVIDIA Tesla V100 SXM2 32GB). When the 

training phase is complete the run-time for each crossline section ( ) takes 600 × 162

approximately 0.2 s.

From the ground truth in Figure Figure 9a and 10a we observe that the rugose 

water bottom creates a complex reflected wavefield with myriads of diffraction-like events 

causing strong interference. Deeper down, at around 0.7 s in Figure 11a, we see the 

regular hyperbolic events from the diffraction lines parallel to the inlines, and the linear 

events from the diffraction lines parallel to the crosslines. The decimated data shown in 

Figure 10b and 11b is strongly aliased and the 3D Fourier interpolation shown in Figure 

10c and 11c struggles to resolve the conflicting dips and the aliasing. The wavelet CNN 
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in Figure 10e and 11e does a much better job in reconstructing conflicting dips and aliased 

events, with some minor ‘striping’ artifacts. These ‘striping’ artifacts represent input traces 

where wavelet CNN have not managed to learn a suitable pattern for reconstruction. In 

case of reconstruction of the deeper part, the diffraction lines are equal in both inline and 

crossline direction, the model is therefore ideal for our assumptions of interchanging inline 

and crossline and gives an optimistic impression in contrast to the top inference, which is 

realistic. 

To compare the two different methods ability to reproduce and preserve the 

geological features and patterns, we migrate the ground truth and the results from the 3D 

Fourier interpolation and wavelet CNN reconstruction, using Kirchhoff migration, which 

are displayed in Figure 12. We see that compared to the 3D Fourier interpolation, the 

wavelet CNN reconstruction shows less footprints, clearer structural definition and less 

migration noise. For a quantitate measurement and comparison we compute the RMS 

error and peak signal to noise ratio (PSNR) of the entire interval of the pre and post 

migrated sections, which are listed in Table 1. The PSNR of the data  is computed as 𝒅
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                                                           PSNR = 10log10  ( max (𝒅2
ref)

1
𝑀‖𝒅ref ― 𝒅‖2

2
).                                                    (15)

where  is the reference data and  is the number of samples. Here we see that the 𝒅ref 𝑀

wavelet CNN RMS error shows an improvement close to a factor of two compared to the 

3D Fourier RMS error, which implies a considerable uplift for the CNN approach.

Table 1. RMS error and PSNR from the pre and post migrated crossline section from 
the entire interval. 

3D Fourier Wavelet CNN

RMS PSNR RMS PSNR

Pre migration 0.0086 41.3434 0.0047 46.4906

Post migration 0.0124 38.1423 0.0068 43.3990
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FIELD DATA EXAMPLE

We tested the proposed method on TopSeis (Vinje et al., 2017) field data from the 

Barents Sea. The seismic data contained  3D shot gathers displaying complex 901

wavefield setting in addition to a difficult noise setting. Each shot was recorded by  14

streamers separated by approximately , employing a temporal sampling rate of  50 m 2 ms

and receiver separation along the streamer of . Each 3D shot gather were split into 12.5 m

14 2D shot gathers, one for each cable. The 2D shot gathers were cropped to a size of 

 (number of temporal- and spatial samples) and decimated in order to adapt to 250 × 80

the crossline sampling interval for input. The subsampled and target gathers define the 

training data  for  training examples. In addition, we used 𝐷 = {(𝒀[𝑖],𝑿[𝑖])}𝐾
𝑖 = 1 𝐾 = 12614

data augmentation in order to increase the size of the training set, first by horizontal 

translation and second by horizontal flipping, increasing the number of examples in the 

training set to .  An example of subsampled-vs-target gathers with 𝐾train = 72648

corresponding frequency-wavenumber plot is displayed in Figure 13. In Figure 13d, we 

see that the subsampled example with a 50 m spatial sampling interval gives rise to 
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severe aliasing in the frequency-wavenumber domain compared to the target example in 

Figure 13c. The subsampled example in Figure 13b is displayed with nearest neighbor 

interpolation, only for visual comparison. We extracted one example from the test set to 

visually compare the reconstructed and target gather. The target, subsampled and 

reconstructed gathers along with the reconstruction error and the RMS-amplitude 

spectrum, are shown in Figure 14. The DWT of the target and predicted DWT from the 

test set in Figure 14 are displayed in Figure C-1 in Appendix C. 

In this example, the model is capable to reconstruct a complex wavefield with 

difficult structural patterns. Overall, the reconstruction error increases with depth where 

the 2D structure becomes more complex. The model struggles with frequencies above 

50 Hz, and at high wavenumbers, which we can observe in the corresponding frequency-

wavenumber spectra in Figure 14. Similar to the synthetic example we observe ‘striping’ 

artifacts in this example, which are present in the deeper part of the seismic record.  

The loss of frequencies above  implies a smoother reconstruction than the 50 𝐻𝑧

target. However, we would expect the model to struggle with the high-frequency part due 
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to both complex noise setting. In order to have a quality measure between the different 

data sets, we computed the RMS error and PSNR. The average RMS error and PSNR of 

the three data sets are listed in Table 2. The RMS error and PSNR of the example in 

Figure 14 is  and 26.0673 respectively. The RMS error and PSNR for all the shots 0.0497

in the test set are displayed in a scatterplot in Figure B-1 in Appendix B. The RMS error 

from the test set reconstruction is close to the RMS error in the validation set, which 

implies a good generalization from the proposed method. The training set shows a lower 

RMS error, which we expect since the model is fitted on this data set.
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Table 2. Average RMS error and PSNR comparison of the different sets. 

Test set Validation set Training set

RMS PSNR RMS PSNR RMS PSNR

0.0448 27.1471 0.0449 27.1318 0.0442 27.2670

The method manages to unwrap the signal at high frequencies and wavenumbers 

for curved events, linear events and conflicting dips, in addition to preserving the 

characteristics of the wavefield in 3D. The characteristics of the 3D wavefield is more 

evident on time slices. We sorted the 3D shot gather presented in Figure 16 into time 

slices, and extracted four slices corresponding to . The 𝑡 ∈ {460 , 480 ,500 , 520 } ms

timeslices –before and after reconstruction– are shown in in Figure 17, where we observe 

in Figure 17e to 17h a high resolution wavefield with clear wavefield patterns implying a 

promising 3D wavefield reconstruction from the proposed method. Still, we observe the 

same ‘striping’ artifacts and loss of high frequencies as seen the inline case and the 

synthetic cases.
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DISCUSSION

One advantage of the proposed method is that there is no need for manual 

labeling, pre-interpolation to learn from or any interpretation, leading to minimal human 

interference. Once the wavelet domain CNN is learned, reconstruction of the 3D wavefield 

is achieved automatically by applying to individual 2D crossline sections. In our approach, 

the introduction of wavelet transform adds additional complexity to the CNN approach as 

the wavelet basis of choice is to be considered an additional network hyperparameter. 

We experimented with different types of wavelets from the DWT filter bank, such as Haar, 

coiflets and symlets, where the Haar basis gave more stable results than the other 

wavelet basis. The stability of the Haar basis might relate to its short support, i.e. length 

of the wavelet, since the crossline section in the shot domain has only 14 traces for input. 

We could also consider using different wavelet basis in each direction, i.e. Haar in the 

space domain and another discrete –or continuous– wavelet in the temporal direction, 

which could potentially improve the method in presence of low signal to noise ratio.  
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The method is not dependent on any prior knowledge about the wavefield, such 

as velocities, and can therefore be trained on data comprised of multiple and ghost 

reflections. This implies a broader use of the method, such as a tool for wavefield 

reconstruction in an earlier stage of the processing flow, and therefore potentially used in 

demultiple and deghosting workflows and prior to migration. Early stage processing 

potential might be a topic for further investigation for application purposes. However, for 

the method to work optimally it require that the statistical properties of the wavefield in the inline 

direction are representative for the crossline direction. 

As shown in the field data example in Figure 13 and 14, the method suffers from 

loss of energy at high frequencies and wavenumbers, which optimally would be restored 

by the model.  From our tests, the introduction of wavelet domain learning contributed 

slightly to restoring more of the high frequencies. Other tests, by using different objective 

functions such as  or  loss in combination with  or  regularization, the  loss gave 𝐿2 𝐿1 𝐿1 𝐿2 𝐿1

the most significant improvement in reconstruction at high frequencies. Similar results 

were reported by Zhao et al. (2016), where they investigated the difference between  𝐿2

and  loss in image restoration problems. They argued that the  loss gets more easily 𝐿1 𝐿2
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stuck in a local minimum while the  loss may be guided towards a better minimum, most 𝐿1

likely due to the smoothness of the function and local convexity properties of the  vs. 𝐿2

. If the problem is related to a difficult noise setting, a potential solution could be to 𝐿1

introduce more data in order to reduce uncertainty and increase robustness in presence 

of noise. Alternatively, preprocessing of the data to remove some of the noise before 

training could also be a potential option. 

Another potential challenge is in situations where streamer feathering and/or 

streamer fanning causes large deviations in streamer spacing. The CNN approach is 

dependent on the learned characteristics of the wavefield given by the relationship 

between target and subsampled counterpart. Augmenting the training data by 

subsampling with different trace spacing can potentially improve its robustness in these 

circumstances. Another potential challenge is the well-known problem in deep-learning 

for image super-resolution are reconstruction artifacts caused from instabilities due to 

carefully constructed noise, i.e. adversarial attack (Antun et al., 2019). As we have not 
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considered problems related to aforementioned challenges, this might be a potential topic 

for further research. 

  Concerning our hypothesis –using the densely sampled inline direction to learn 

non-linear representations for reconstruction of the wavefield in the crossline direction– 

we consider the seismic wavefield as highly structured and smooth 3D signals 

represented by local geometrically shaped patterns. Even though the wavefield 

represents high complexity in terms of aliasing, conflicting dips the seismic structure is 

determined by wave phenomena rather than geology. In this case, even though the inline 

and crossline differ in terms of geological features and patterns, we consider it reasonable 

that the wavefield patterns and features are locally similar in both directions. A challenge 

in field data is where the wavefield structures and patterns could be damaged by low S/N 

ratio and processing artifacts from various workflows down the processing pipeline. 

Differences in anisotropy, dispersion and other wave phenomena effects in addition to 

large difference in structural dip could also potentially play a role for the inline-to-crossline 

application. All these effects, which are not considered in our synthetic example, increase 
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the complexity and difficulty of learning a robust representation for wavefield 

reconstruction in different directions. In order to address the challenges related to inline-

to-crossline application, a much more comprehensive synthetic example should be 

employed, by introducing realistic noise, more wave phenomena complexity and strong 

structural differences in inline compared to crossline, followed by a complete processing 

flow, in order to produce a total imaging impact of the approach. However, this type of 

study is beyond the scope of this paper, and is therefore planned for future research.

CONCLUSION

In this paper, we propose to use a deep CNN, trained in the wavelet domain, as a 

tool for seismic wavefield reconstruction beyond aliasing, where non-linear wavefield 

representations are learned on densely sampled seismic gathers –in the inline direction– 

in order to learn an upsampling function, which is applied on the undersampled wavefield 

in the crossline direction. We tested the wavelet domain based CNN method on synthetic 

data and field data where it manages to unwrap high frequencies at high wavenumbers. 
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In the synthetic case we compared the wavelet CNN to a Fourier-based industry standard 

method, where the wavelet CNN approach gave an improvement in RMS error close to a 

factor of 2. The deep-learning approach in this paper has proven to be an effective tool 

for seismic wavefield reconstruction, and an approach that allows for a fast and efficient 

reconstruction of aliased seismic data. However, to improve robustness of the model, 

more data should be included by introducing more seismic gathers in combination with 

different augmentation approaches. In addition, solutions related to the loss of high 

frequencies and wavenumbers is yet to be solved, and should be considered in future 

research. 
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APPENDIX A

TRAINING AND VALIDATION LOSS DURING TRAINING FOR FIELD DATA

An example from the loss during training from the training set batches (black curve) and 

validation set (red curve) is displayed in Figure A-1 with logarithmic scale on the x-axis. 

In this example, early stopping was set to train for 20000 iterations without improvement 

in the validation loss before initiating.   
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APPENDIX B

RMS AND PSNR PLOTS FOR FIELD DATA

The PSNR and RMS for all shots in the test set are displayed in Figure B-1, with the 

larger blue triangle indicating the test set shot shown in Figure 14.   
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APPENDIX C

WAVELET DOMAIN

The DWT of the target and predicted wavelet domain model from the test set shown in 

Figure 14 are displayed in Figure C-1.
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LIST OF FIGURES

Figure 1. An illustration of a split-spread design employing both a streamer vessel 

source vessel with three sources.   

Figure 2. An illustration of inline training data and the crossline reconstruction 

problem. The two panels to the left, a) and b), show a single training example in the shot 

domain where a) the target in the inline direction is subsampled to give b) the crossline 

representation. The inline targets and the subsampled counterparts in the training data 

are then used to learn the function , in order to reconstruct c) the crossline target 𝑓( ∙ )

from d) the undersampled crosslines using the learned function . 𝑓( ∙ )

Figure 3. A simplified illustration of the wavelet decomposition, where a) is a 

schematic representation of the four-band split with their respective convolution kernels (

, ) and b) an example where a seismic source gather is gray = 1/2 white = ―1/2

decomposed using the Haar filter. 
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Figure 4. Simplified illustration of the convolution operation on an input with two 

features and  being convolved with a 2D kernel and superimposed with the bias 𝐚1 𝐚𝟐

parameter, to give the linear transform . A different set of 2D kernels and biases are 𝐳1

then used to compute the linear transforms . k = 2,…,cl + 1

Figure 5. Our example network for the wavelet CNN. The network consists of three 

residual blocks, indicated by the connecting arrows, an  to upsample the 2D space SPR

followed by two non-linear layers before output without nonlinearity.    

Figure 6. Simple illustration of the SPR operation using four input features to output 

two features by periodic resampling.  

Figure 7. Barents Sea water bottom modeled from bathymetry data from side-scan 

sonar and diffraction lines used in the modelling, defined on a grid size of . 6.25 × 6.25 m

The water depth varies from 325 – 360m while the regular grid of perpendicular diffraction 

lines (in blue) are located at a constant depth of 518m. Red rectangle depicts the 

modelling area.  
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Figure 8. Zoomed section of bin locations, position and grid size of modelled 

constant offset and zero-azimuth data. a) ground truth and b) after decimation with three 

of four traces removed in the crossline direction.

Figure 9. Zoomed section of the diffraction modelled data displayed in the inline 

direction where a) is the ground truth and b) is the subsampled counterpart.    

Figure 10. This figure shows reconstruction results in the crossline direction from 

the shallow section of the wavefield, i.e. the water bottom. From a) the ground truth we 

observe a complex wavefield setting, which follows that b) the subsampled crossline 

direction yields a challenging wavefield to reconstruct. From c) the 3D Fourier and e) the 

wavelet CNN, we observe more residual energy within the d) 3D Fourier interpolation 

error than the f) wavelet CNN reconstruction error.   
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Figure 11. This figure shows reconstruction results in the crossline direction from 

the deeper section of the wavefield, i.e. the diffraction lines. From a) the ground truth we 

see a much simpler wavefield setting than the water bottom in Figure 10, which follows 

that b) the subsampled crossline direction gives a simpler pattern to reconstruct. From c) 

the 3D Fourier and e) the wavelet CNN, we observe more residual energy within the d) 

3D Fourier interpolation error than the f) wavelet CNN reconstruction error.   

Figure 12. This figure shows the migration results from a crossline section and a 

time slice through 450 ms, where a) and b) represents the migration result of the ground 

truth, c) and d) represents the migration result of the 3D Fourier interpolation and e) and 

f) represents the migration result of the wavelet CNN reconstruction.  

Figure 13. An illustration of a single training example a) and b) in the shot domain 

and their corresponding frequency-wavenumber plot in c) and d) respectively. 

Figure 14. Reconstruction result from the inline direction from one arbitrary 

example in the test set where a) is the target gather, b) the subsampled, c) the 
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reconstruction, d) the reconstruction error, i.e. difference between a) and c), and e) the 

RMS amplitude spectrum of a), b) and c).

Figure 15. Reconstruction result displayed in the frequency-wavenumber domain 

from the test set presented in Figure 14 where a) is the target gather, b) is the 

subsampled, c) is the reconstruction and d) is the reconstruction error, i.e. difference 

between a) and c).       
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Figure 16. Reconstruction result in the crossline direction from an arbitrary shot 

gather extracted from the training data, where a) the input from the 3D shot gather with 

14 traces and b) the reconstruction result along with e) the RMS-amplitude spectrum and 

c), d) their respective frequency-wavenumber spectra. 

Figure 17. Timeslice view of the input and reconstructed 3D shot gather displayed 

in Figure 16, where a), b), c) and d) are the inputs with 14 cables and e), f), g) and h) are 

the reconstruction results output with 53 cables.

Figure A-1. The  loss during training up to early stopping for the training set 𝐿1

batches and the validation set on the field data.

Figure B-1. Scatterplot of the RMS error and PSNR of all the shots in the test set.

Figure C-1. The DWT of the target data and predicted DWT from the test set 
displayed in Figure 14.
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Figure 1. An illustration of a split-spread design employing both a streamer vessel source vessel with three 
sources.   
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Figure 2. An illustration of inline training data and the crossline reconstruction problem. The two panels to 
the left, a) and b), shows a single training example in the shot domain where a) the target in the inline 
direction is subsampled to give b) the crossline representation. The inline targets and the subsampled 
counterparts in the training data are then used to learn the function f(∙), in order to reconstruct c) the 

crossline target from d) the undersampled crosslines using the learned function f (∙). 
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Figure 3. A simplified illustration of the wavelet decomposition, where a) is a schematic representation of the 
four-band split with their respective convolution kernels (gray=1/2, white=-1/2) and b) an example where a 

seismic source gather is decomposed using the Haar filter. 
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Figure 4. Simplified illustration of the convolution operation on an input with two features a_1and a_2 being 
convolved with a 2D kernel and superimposed with the bias parameter, to give the linear transform z_1. A 

different set of 2D kernels and biases are then used to compute the linear transforms k=2,…,c_(l+1). 
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Figure 5. Our example network for the wavelet CNN. The network consists of three residual blocks, indicated 
by the connecting arrows, an SPR to upsample the 2D space followed by two non-linear layers before output 

without nonlinearity.     
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Figure 6. Simple illustration of the SPR operation using four input features to output two features by periodic 
resampling.   
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Figure 7. Barents Sea water bottom modeled from bathymetry data from side-scan sonar and diffraction 
lines used in the modelling, defined on a grid size of 6.25×6.25 m. The water depth varies from 325 – 360m 

while the regular grid of perpendicular diffraction lines (in blue) are located at a constant depth of 518m. 
Red rectangle depicts the modelling area.   

104x60mm (400 x 400 DPI) 

Page 67 of 82 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 8. Zoomed section of bin locations, position and grid size of modelled constant offset and zero-
azimuth data. a) ground truth and b) after decimation with three of four traces removed in the crossline 

direction. 
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Figure 9. Zoomed section of the diffraction modelled data displayed in the inline direction where a) is the 
ground truth and b) is the subsampled counterpart.     
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Figure 10. This figure shows reconstruction results in the crossline direction from the shallow section of the 
wavefield, i.e. the water bottom. From a) the ground truth we observe a complex wavefield setting, which 
follows that b) the subsampled crossline direction yields a challenging wavefield to reconstruct. From c) the 
3D Fourier and e) the wavelet CNN, we observe more residual energy within the d) 3D Fourier interpolation 

error than the f) wavelet CNN reconstruction error.   
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Figure 11. This figure shows reconstruction results in the crossline direction from the deeper section of the 
wavefield, i.e. the diffraction lines. From a) the ground truth we see a much simpler wavefield setting than 

the water bottom in Figure 10, which follows that b) the subsampled crossline direction gives a simpler 
pattern to reconstruct. From c) the 3D Fourier and e) the wavelet CNN, we observe more residual energy 

within the d) 3D Fourier interpolation error than the f) wavelet CNN reconstruction error. 
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Figure 12. This figure shows the migration results from a crossline section and a time slice through 450 ms, 
where a) and b) represents the migration result of the ground truth, c) and d) represents the migration 
result of the 3D Fourier interpolation and e) and f) represents the migration result of the wavelet CNN 

reconstruction.   
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Figure 13. An illustration of a single training example a) and b) in the shot domain and their corresponding 
frequency-wavenumber plot in c) and d) respectively. 
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Figure 14. Reconstruction result from the inline direction from one arbitrary example in the test set where a) 
is the target gather, b) the subsampled, c) the reconstruction, d) the reconstruction error, i.e. difference 

between a) and c), and e) the RMS amplitude spectrum of a), b) and c). 
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Figure 15. Reconstruction result displayed in the frequency-wavenumber domain from the test set presented 
in Figure 14 where a) is the target gather, b) is the subsampled, c) is the reconstruction and d) is the 

reconstruction error, i.e. difference between a) and c).   
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Figure 16. Reconstruction result in the crossline direction from an arbitrary shot gather extracted from the 
training data, where a) the input from the 3D shot gather with 14 traces and b) the reconstruction result 
along with e) the RMS-amplitude spectrum and c), d) their respective frequency-wavenumber spectra. 
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Figure 17. Timeslice view of the input and reconstructed 3D shot gather displayed in Figure 16, where a), 
b), c) and d) are the inputs with 14 cables and e), f), g) and h) are the reconstruction results output with 53 

cables. 
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Figure A-1. The L_1 loss during training up to early stopping for the training set batches and the validation 
set on the field data. 
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Figure B-1. Scatterplot of the RMS error and PSNR of all the shots in the test set. 
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Figure C-1. The DWT of the target data and predicted DWT from the test set displayed in Figure 14. 
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Table 1. RMS error and PSNR from the pre and post migrated crossline section from 
the entire interval. 

3D Fourier Wavelet CNN

RMS PSNR RMS PSNR

Pre migration 0.0086 41.3434 0.0047 46.4906

Post migration 0.0124 38.1423 0.0068 43.3990
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Table 1. Average RMS error and PSNR comparison of the different sets. 

Test set Validation set Training set

RMS PSNR RMS PSNR RMS PSNR

0.04484 27.1471 0.04487 27.1318 0.04418 27.2670
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