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Abstract

IPython parallel is a python package that’s used for distributed and
parallel computing. It enables users of IPython and Jupyter Notebooks to
interactively run computations in parallel on a local machine or remotely
on traditional supercomputers or in the cloud. The way this is done is that
the user sets up a cluster of IPython Parallel engines. These are wrappers
around the IPython kernel, a process that executes arbitrary python code
and reports the results. The engines communicates with the clients through
a set of schedulers and executes python coded that the user has requested.
The package has already seen wide usage. However, there are some limits
to how many engines the IPyton Parallel package can use efficiently. As the
need to do more expensive computation that demand ever higher number
of processes running in parallel keeps increasing, it was suggested that
the package could be improved upon with new schedulers that makes
the performance scale better with the number of engines so that more
processing power becomes available. This thesis explores the current
state of the package and describes the architecture of the system. Some
analysis of the performance characteristics that show how the performance
scales with the number of engines are presented. Then the details
of the new scheduler implementations are explained. Some different
benchmarks simulating typical usage are explained and results from these
benchmarks are shown. The benchmarks show that for some cases the new
scheduler implementations are a significant improvement on the existing
ones when it comes to scaling with a higher number of engines. The
results from the benchmarks also show some cases where the existing
scheduler implementations perform better. Because IPython Parallel is an
open source project the work done for this thesis has been submitted to be
merged into the main branch of the package. One of the early optimizations
has already been submitted and merged into the Jupyter Client. A is
a package that is used among others, by IPython Parallel and Jupyter
Notebook.
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0.1 What this Thesis is About

This thesis explores the IPython Parallel package and the problems it has
relating to how the performance scales with the number of engines. The
main problems are that a lot of duplicate work is being done in the Client
and that all the work in the scheduler is being done sequentially. When the
number of engines increases past a certain limit, the mentioned problems
cause the package to be inefficient and hinders the users from getting better
performance by using more processors.

The questions this thesis is trying to answer is how the problems of
duplication and sequential code execution can be solved in a way that
makes it possible to scale parallelism efficiently in IPython Parallel. One of
the new scheduler implementations described in this thesis, the Coalescing
BroadcastView tries to solve the problems of duplication by putting more
of the work on the scheduler instead of the Client. The new scheduler
tries to solve the problem of sequential code execution by using several sub
schedulers running in parallel to distribute the work load in between them.
The results show that the performance of the Coalescing BroadcastView
scales much better for some of the benchmarks, but also that the existing
scheduler is better for some scenarios.

Chapter 1 (Background) gives an overview of the architecture of IPyton
Parallel, how it works and how it relates to Project Jupyter.

Chapter 2 (Motivation for the Project) explains why it’s beneficial to
scale parallelism. There is a detailed explanation of why the performance
doesn’t scale well and the problems that this project wants to solve are
explained in detail. At the end of the chapter some theory about why
parallelism can be used to improve performance is explained.

Chapter 3 (Planning the Project) states the goals for this project and how
the goals will be achieved. The most important software tools used in this
project are presented. Then the strategies for identifying bottlenecks for
performance are given. At the end of the chapter new strategies for scaling
parallelism are explained.

Chapter 4 (Analazying the Current Performance) is all about how the
performance characteristics of the existing schedulers were analyzed. Then
the results from the analysis are shown and explained.

Chapter 5 (Investigating New Scheduler and View Implementations)
explains how the strategies for the new schedulers were implemented and
exactly how they work.

Chapter 6 (Results) shows and explains the results from benchmarking
the new scheduler implementations, when and why the new schedulers are
better and when they are not.

Chapter 7 (Future work) brings up some of the questions that arose
during the project that could be interesting to explore in a new project.

3
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Chapter 1

Background

To be able to understand the reason for the IPython Parallel project to exist
and the value it provides, its important to understand it’s place in the
IPython and Jupyter software ecosystem and the niche that it fills.

1.1 Project Jupyter

Project Jupyter is a non-profit, open-source project that was born out of
the IPython Project in 2014. "Project Juypter exists to develop open-source
software, open-standards, and services for interactive computing across
dozens of programming languages."[1]. For this project, the key Jupyter
tecnhology is the Jupyter messaging protocol. This protocol is based on
request/reply pattern, where on one side you have a kernel that executes
code, and on the other side you have frontends that connects to the kernel
as illustrated in 1.1 . The protocol defines a communication design and
message specification for how to develop kernels that communicate with
Jupyter frontends. This different in comparison to traditional REPLs (read-
eval-print-loop) in that it’s based on a two-process communication model.
This allows the evaluation part of the REPL to happen in it’s own process.
The default Jupyter kernel is the IPython Kernel. The IPython kernel
provides an alternative interpreter for Python and a ZeroMQ transport
layer used to send and receive messages. One such message is the
execute_request. This message type is used by a frontend to execute
code on the kernel. After the code is executed, the kernel returns an
execute_reply to the client with the results of running the code. This
architecture makes it possible to have a kernel running on one machine
and multiple clients connecting to it enabling the creation of applications
that execute code remotely. One of the most popular Jupyter frontends
is the Jupyter Notebook. The Jupyter Notebook is an open-source web
application that among other things, allows users to write code in the
browser that is executed on the connected kernel that is running locally
on a the users machine or remotely.
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Figure 1.1: Connection diagram showing multiple Jupyter frontends
connecting to an IPython kernel

1.1.1 IPython

IPython is a a collection of projects that has a goal of improving interactive
and exploratory computing with python. IPython provides an interactive
shell for the users to interact with that connects to a kernel that evaluates
input from the shell. Using the Jupyter messaging protocol, multiple clients
can connect with an IPython shell to the IPython kernel to evaluate code.

Figure 1.2: Connection diagram showing multiple Jupyter frontends
connecting to multiple IPython kernels with IPython Parallel
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1.2 IPython Parallel (IPP)

IPython Parallel [2] is a standalone package developed and maintained
by the Jupyter team that is used for parallel and distributed computing.
IPython Parallel builds on the Jupyter messaging protocol, but reverses
the connection direction. Instead of having mutliple clients connecting to
one kernel, IPP has multiple kernels connecting to one controller process
which clients also connect to. "The architecture abstracts out parallelism in
a general way to support many different styles of parallelism"[3]. What this
quote means is that IPython Parallel has abstracted out the parallelism in a
modular way as classes and services that are part of the architecture. For
the users that find the provided implementations of parallel programming
patterns insufficient, the architectural choices and the fact that the project is
open-source enables the users to extend and change parts of the package to
support different styles of parallelism. This can be done by adding new
views and schedulers to the package. IPython Parallel can be used in
any python code, but it’s especially powerful when used together with the
IPython shell because from there users can use the package in an interactive
way.

Figure 1.3: ipyparallel architecture overview [3]

1.2.1 Architecture Overview

The IPython Parallel architecture consist of four components:

• The IPython engine

7



• The IPython hub

• The IPython schedulers

• The IPython client

The IPython Engine

The IPython engine wraps an IPython kernel and adds some functionality
that allows it to talk to the controller and schedulers using the ZeroMq
protocol defined by the kernel. By modifying the connection direction of
the kernel, the engine can connect to the Hub and Schedulers instead of
listening for frontend connections. By reversing the connection direction
of the IPython kernel implementation, multiple engines can connect to a
client instead of having multiple clients connecting to an engine. The job of
the engine is to listen to requests over the network, evaluate the code from
the requests and returns the results. Each engine has its own namespace
where it can store variables independently, this means that code that is run
on the engines can return different values if they reference variables that
are defined on the engine. Each engine is a separate process, so that when
multiple engines are started, parallel and distributed computing becomes
possible.

The IPython Controller

"At a general level, the controller is a collection of processes to which the
engines and client can connect. The controller is composed of a hub and
a collection of schedulers. The schedulers are typically run in separate
processes on the same machine as the hub."[3] The Client class is used to
connect to the schedulers. The Client implements different interfaces that
the users can use to access the IPython cluster. At the start of the project,
the two primary models for interacting were:

• "A Direct interface, where engines are addressed explicitly" [3]

• "A Load Balanced interface, where the scheduler is entrusted with
assigning work to appropriate engines." [3]

The Direct Interface (DirectView)

The DirectView is the simplest interface for interacting with the engine
cluster. The DirectView communicates with the engines through a
multiplexing-scheduler. Together, this scheduler and the view can be
understood as an implementation of the SPMD(Single Program, Multiple
Data) parallel programming pattern. The DirectView is implemented as
a class that can be accessed through a method on the Client. Using the
ids of the connected engines, the users can select all engines or a subset
of engines to use as targets to execute code. Its most important method is
apply. apply takes a function as the first argument and optional positional-
and keyword arguments to call the provided function with. When calling

8



the apply method, the arguments are serialized and sent in messages, one
message per target, to the multiplexing-scheduler which then relays the
messages to the targeted engines. When the function is finished, the results
are returned from the engines to the scheduler and relayed back to the
client. apply returns an AsyncResult object immediately after the message
is sent. By using the non-blocking version of apply, the user doesn’t have
to wait for all the results to come back before doing anything with them,
instead the user can iterate through the results from the AsyncResult object
and act on the partial results as they arrive.

The Task Interface (LoadBalancedView)

The LoadBalancedView is the second interface for users to interact with
the engine cluster. The LoadBalancedView together with the task sched-
uler implements the task-farming style of parallelism. Contrary to the
DirectView, the LoadBalancedView doesn’t let the users select which en-
gines to target. Instead, the LoadBalancedView leaves that responsibility to
the task scheduler. The view presents the same functions to the users as the
DirectView, but the implementation of these functions differ slightly. One
of the differences is how the apply sends messages to the connected sched-
uler, instead of sending one message per target for each call to apply, the
LoadBalancedView only sends one message to the scheduler for each call,
adding a list of available engine ids to the metadata field of the message.
In addition, this view allows the users to set functional dependencies and
graph dependencies for the tasks. That makes it possible to control the or-
der in which the tasks are executed and/or setting certain conditions that
must be satisfied for the task to run.

The Schedulers

All messages that the are sent from the Client to the engine go through
a scheduler. A scheduler in IPP can be defined as a service to which the
engines and clients connect, that implements a messaging pattern between
them. "While the engines themselves block when user code is run, the
schedulers hide that from the user to provide a fully asynchronous interface
to a set of engines"[3]. At the start of this project, there were two different
scheduler implementations available.

The Multiplexing-Scheduler (mux)

The mux-scheduler is a scheduler used for explicit addressing. The mux-
scheduler is implemented purely in C using the libzmq library. The
scheduler does direct routing from the client to individual engines. Built
on ZeroMQ routing id, it enables sending messages to specific destinations
using an identity prefix contained in the headers of the messages. The
way the mux-scheduler works is that the DirectView creates one message
per target engine that the user has selected to execute a task on. The
messages are sent from the client to the scheduler and the scheduler relays

9



the messages to the engines. The engines replies to the scheduler and
the scheduler returns the messages to the client. Because the scheduler
is implemented in C, it avoids run-time overhead from python code, that
makes it very fast for a lot of common use cases. Another advantage of
the scheduler is that it’s continuously returning replies from the engines as
soon as they come in. That means that the user can get partial results of
parallel tasks without having to wait for all the engines to finish. The mux-
scheduler is a light-weight relay for the DirectView, when used with the
DirectView the bottleneck is the view itself. Because the implementation
is so simple, it makes it hard to improve the bottleneck in the DirectView
without also changing the scheduler for another one.

The Task Scheduler

The task scheduler implementation selects the target engines for the
users. This scheduler monitors the work load of the engines and evenly
distributes the incoming work so that no engine is overloaded or idling
when there is work to do. The scheduler also keeps track of which tasks
succeeds, so that if a tasks fails it can try to run the task again. Because the
scheduler monitors the status of the tasks and evenly distributes the work
load, this implementation is more fault tolerant and load balanced than the
multiplexing-scheduler. Like the mux-scheduler, because the scheduler is
running in one process only, it suffers from some of the same performance
limitations when running on a high number of engines. Additionally the
scheduler is implemented in Python, adding some performance overhead
compared to the mux-scheduler.

The IPython Hub

"The hub is the process that keeps track of engine connections, schedulers,
client as well as all task requests and results. The primary role of
the hub is to facilitate queries of the cluster state, and minimize the
necessary information required to establish the many connections involved
in connecting new clients and engines."[3]
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Chapter 2

Motivation for the Project

The amount of digital information generated in the world keeps increasing
faster and faster every year. Similarly, the demand for more insight and
more knowledge gained from this data keeps increasing, demanding more
and more computational power to handle today’s challenges. For a while
the demand for better computing could be met with the development of
faster processors. However, we have now passed the point where the laws
of physics makes it unfeasible to significantly increase the performance of
single core processors. To overcome this setback, engineers are developing
ways of making processors with more and more cores and are creating
huge computing clusters that are able to connect very large amounts
of processors. To be able to fully take advantage of these computer
architectures and keep evolving performance in computation, we have to
develop smarter algorithms for highly parallel computing that are easy to
use and available for the people who needs it. IPython Parallel aims to
make it easy to set up a cluster of IPython kernels, distributed or local,
and access them through different interfaces. This makes it possible to
do highly parallelized computing in an interactive way. The package has
already seen a lot of use, and has shown that it works well for many
different use cases. However, it has some scaling limits that could possibly
be better by improving the architecture.
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Figure 2.1: Shows a example of what a the message flow between a Client
and the engines looks like with DirectView

2.1 Scaling Parallelism

The existing DirectView interface and mux-scheduler is very fast when
the number of engines stays low, but due to some limitations with the
implementation it doesn’t scale well for large numbers of engines. There
are two main reasons why it doesn’t scale well. The first is that there is a
lot of duplicate work being done by the client. The second reason is that
the scheduler itself relays messages sequentially.

2.1.1 The Problem With Duplication

The DirectView does a lot of duplicated work. For each call to apply, it has
to create 1 message per targeted engine. When the messages are created,
the provided functions and arguments has to be converted to byte strings
along with the metadata and header for the message. The only difference
between these messages are the targeted engine id in the headers. This
means that the DirectView is doing the same work over and over again
and could be optimized. After the messages are created, they are sent one
by one to the multiplexing-scheduler. Again the content of the messages
being sent is the same, the only difference is the targeted engine id in the
header of the message . Sending messages over the network adds a lot of
overhead to the run time of the program, especially when the scheduler and
the client sending the message are not necessarily on the same machine or
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network. When the engines reply, the scheduler has to relay the messages
back to the client, where each reply message is then deserialized, adding
additional expensive operations. This is not a problem when connecting to
small amounts of engines as the number of messages is small, but for the
users that want to run tasks on high numbers of engines they will see that
it doesn’t scale well as a lot of time is being spent in the client just getting
the tasks to and from the engines that execute them. The run time of the
DirectView scales linearly with the number of engines, the fact that most of
the work is duplicated suggests that there exists an alternative that scales
better. By implementing a new scheduler, it could be possible to change the
number of messages sends and serialize/deserialize operations between
the client and scheduler from 2n sends and serialize for n engines, to just 2
messages and serialize/deserialize operations for each call to apply.

2.1.2 The Problem With Sequential Code Execution

Even if the number of messages sent to the multiplexing-scheduler is
drastically reduced, the scheduler itself has to send 1 message per engine
to the engines. Since sending messages is slow and everything inside the
scheduler happens sequentially, this scales linearly with the number of
engines. Because the messages are sent one by one from the client through
the scheduler to the engines, the last targeted engine in the list of targets
can’t start before all the other engines have received their messages as
well. Furthermore, the scheduler has to listen for messages as well, creating
interruptions on the sends and adding additional delay. This is illustrated
in Figure 2.1 where you can see the scheduler is receiving and relaying
reply 0 from the engine to the client before being finished with relaying the
other messages to the engines. In the example on the figure there are only 4
engines so it wouldn’t be a problem, but imagine if there were 1000 engines
and it’s clear that it doesn’t scale. IPython Parallel is a project that aims
to speedup computation by doing the computation on multiple engines
running in parallel instead of just one engine sequentially. Theoretically,
2 engines should be able to run a task twice as fast as 1 engine. 4 engines
should be able to run 4 times as fast as 1 engine etc. In practice, the speedup
is never that good because usually there will be parts of the tasks that has to
run sequentially as described by Amdahl’s law [13]. However, we can get
a significant speedup by running code in parallel if the code uses suitable
algorithms. Using that line of thinking, it should be possible to improve the
performance of sending messages by using multiple schedulers instead of
just one and distribute the work between them. Using multiple schedulers
would make it possible to send messages to multiple engines concurrently,
and the work required by each scheduler would significantly decrease and
similarly decreasing the delay caused by interruptions.
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Figure 2.2: Results from a benchmark showing the run time of Dir-
ectView.apply() for different number of connected engines for messages per
engine per second.

2.1.3 Applying Amdahl’s Law to Gain Perfomance Improve-
ments by Parallalelization

Amdahl’s law states that the possible performance improvement gained
by adding more processors is limited to the run time of the parts of the
program that can’t be parallelized. Amdahl’s equation for speedup by
parallelism can be formulated as Speedupmax(N) = 1

(1−P)+ P
N

where N is

the number of processors and P is the percentage of the total run time
of the program that can be parallelized. As N grows the actual speedup
becomes Speedupmax(N) = 1

1−P . What can be learned from this equation
is that to gain performance improvements by parallelism, P should be as
large as possible. Data serialization and sends in the client is not a good
candidate for parallelization, however by getting rid of the duplication
in the client the scale factor of these operations can be reduced from N
for N engines to just 1 for N engines. What remains then is the time it
takes for the scheduler to sequentially relay messages between the client
and the engines. The scheduler is a good candidate for parallelization, so
making a new scheduler that can relay multiple messages simultaneously
will increase P significantly.
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Part II

The project
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Chapter 3

Planning the project

3.1 Project Goals

The goal of this project is to scale parallelism in IPython Parallel with
regards to performance. This will be done by using tools to analyze the
run time performance of the program to identify the paint points of the
program. Strategies to optimize these paint points will be explored. The
focus will be to optimize current bottlenecks, develop and implement new
scheduler algorithms in order to explore ways of scaling parallelism to
enable performance gains from using higher numbers of processes running
in parallel. If successful these new optimizations and sheduler algorithms
will be merged into the IPython Parallel code base. This will enable
users of IPython and Jupyter to run more computationally expensive tasks
because the increase in the number of available engines to use for parallel
computing will make larger problems faster to solve.

3.2 Software Tools

To be able to answer the research questions, measure progress and organize
the code developed, some smart software tools were needed. One of the
big advantages to working with python as a programming language is it’s
open source nature. This has fostered a large community of developers
who create and maintain very high quality software tools that are useful
for research projects and software development. That made it easy to find
and select the necessary software tools to work with the project.

3.2.1 GitHub

Since this project is focused on developing code, one of the first things
that had to be established was a way to access and organize the codebase
and the new additions. The main branch of the IPython Parallel project
lives on the IPython GitHub repository, so to be able to work on the code
independently from the main branch, a fork of IPython Parallel [4] was
created. Using GitHub to host the forked repository was the natural choice,
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as the graphical interface makes it very easy to get an overview of the
commits and to compare it with the original repository.

3.2.2 py-spy

To be able to identify targets for optimization, a tool for profiling the
run time of the different parts of the program was needed. After some
consideration of different alternatives, py-spy [5] was selected. py-spy is a
sampling profiler for python programs. It was selected for its ease of use,
it’s extremely low overhead and because it has a very nice output in the
form of interactive .svg files. py-spy makes it possible to attach a profiler
to a running python process, i.e. a scheduler, and measure in detail the run
time of the different parts of the program.

3.2.3 airspeed velocity (asv)

While py-spy is very useful for deeply analyzing the performance of
python programs, another approach was needed to do a more high-level
analysis of performance to make it possible to compare different parts and
iterations of the program code. To this end, airspeed velocity [6] was
selected as the best candidate. Asv makes it possible to run benchmarks
and collect timing measurements of the benchmarks in an easy way. This
can be used to measure the performance of new schedulers under different
parameters and contexts. The collected measurements makes it possible to
compare different versions of the code and different schedulers in IPython
Parallel.

3.2.4 Jupyter

To be able to understand the results from benchmark- and profiling results
in a useful way and to document the project as it progresses, a good tool for
interpreting and visualizing data is needed. Jupyter [1] notebooks were the
natural choice for that because it has some great options for managing and
visualizing data that are tightly integrated with the notebooks. Pandas [7]
used together with altair [8] in Jupyter notebooks is a winning combination
for visualizing the type of tabular data produced by our parameterized
benchmarks. These libraries makes it very easy to manage the results from
benchmark runs and produces some excellent interactive visualizations
that are shown directly in the notebook.

3.3 Identifying Bottlenecks for Performance

Once the necessary tools were decided on, the first step was to identify
some low hanging fruit that could be easily optimized in order to get
familiar with the codebase. Tests were created that simulates typical usage
scenarios for the DirectView with the mux-sceduler. Running those tests
while profiling the scheduler with py-spy revealed that a lot of time was
unnecessarily being spent parsing date/time metadata in serialize and
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deserialize functions and too much time was being spent creating unique
message ids by the Jupyter client. Identifying and solving these proved to
be a great starting point for working with the code, as it was a good target
for optimization and a good opportunity to get familiar with the workflow
of contributing to the IPython and Jupyter repositories. The improvements
were quickly accepted upstream, and now all the Jupyter users are benefit
from them.

3.4 Developing Strategies for Scaling Parallelism

Initially it was hypothesized that one of the reason that the performance of
the DirectView doesn’t scale well with the number of engines is because
of the way the DirectView does sends sequentially. The main reason
being that to apply 1 task, the DirectView has to send N messages to the
scheduler for N engines, and then the mux-scheduler has to relay these
messages 1 at the time to all the targeted engines. As explained in the the
paragraph 2.1 on page 12, while the scheduler is sending messages to the
engines, it is also receiving replies from the engines that it has to return
to the client. When N is high, (> 100), this can cause a lot of disruptions
for the scheduler. Keeping this in mind, some strategies for new scheduler
implementations were devised.

3.4.1 BroadcastView

In order to reduce the number of messages sent between the client and
the scheduler from one message per engine per task, to just one message
per task, a broadcast scheduler was suggested. The idea was to create a
scheduler that receives only one message per task from the client, then
forwards the message to each engine defined as a target in the metadata
of the message. The hypothesis was that this will decrease the time spent
in the client for sending messages to the scheduler, and possibly also
reduce the number of times that the scheduler is interrupted while sending
messages to the engines by limiting the number of messages received from
the client. Two different implementations of this was suggested:

• One that immediately forwards replies from the engines to the client,
hereby referred to as the Non Coalescing scheduler

• One that waits all the engines to reply, accumulating the partial
results, then returns the merged partial results as one reply to the
engine. This approach would also reduce the number of replies
returned to the client from one per engine to just one per task. This
strategy is hereafter referred to as the Coalescing scheduler.

3.4.2 Spanning Tree Scheduler

To really scale the number of engines a task can run concurrently on,
making a parallelised scheduler was suggested as a possible strategy.
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Instead of having only one scheduler running in one process, it could be
possible to have multiple levels of sub-schedulers running concurrently
in separate processes. Splitting the work of the scheduler into several
smaller units and distributing them to sub-schedulers create less work to
do for each scheduler and allows for speed up of the scheduler work by
parallelism.

3.4.3 BroadcastView + Spanning Tree Scheduler

By using the BroadCastView with the Spanning Tree Scheduler it could
be possible to get a speed up from parallelism but with the added cost of
some extra latency. Comparing how long the last engine needs to wait
to receive it’s message it becomes clear that theSpanning Tree has some
advantages. Using the DirectView the last engine has to wait for N serialize
and send at the client and N relays at the scheduler for N engines. With the
BroadcastView there is only 1 serialize and send at the client. Then it takes
2D+1 − 2 sends to get to the leaf + N

2D sends at the leaf when N is the number
of engines and D is the depth of the Spanning Tree.
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Chapter 4

Analyzing the Current
Performance

To really understand the pain points of IPython Parallel and how it could
be optimized, some deep analysis of the performance characteristics of the
program were required. In order to simulate typical usage patterns, some
benchmarks were created using the airspeed velocity(asv)[6] package.
These were ran and measured to get an understanding of the run time
perfomance and limitations under different constraints. After getting an
overview, py-spy[5] was used to profile the program under similar contexts
to figure out which specific parts of the code were creating bottlenecks.

4.1 Reproducible Testing Environment Using Google
Cloud

In order to really test the performance of IPython Parallel and to measure
performance gains attained from parallelism, an environment with a high
number of available processors were needed to be able to run high numbers
of engines in parallel. The Abel computer cluster at the University of Oslo
was considered, but ultimately Google Cloud Compute Engine(GCE)[9]
was chosen as it was more available and simpler to use. Using GCE it
was easy to set up an instance template that made it possible to spin up a
computing node running linux with a high number of processors available
to use for running benchmarks and then shutting it off again when the
benchmarks were finished. In addition to being able to run IPython Parallel
with a high number of processors available, using GCE had the added
benefit of having an environment that made it possible to get accurately
reproducible results so that run time statistics from benchmark runs taken
on different days could be compared with confidence. As soon as the GCE
instance configuration was set up, running the benchmarks and collecting
the results became easy as all it took was to run a script that started an
instance on GCE, installed the right python packages, pulled the relevant
repositories from GitHub, ran the benchmarks and uploaded the results
afterwards.
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4.2 Benchmarking IPython Parallel

Because the benchmarks were starting a high number of processes and
were generating and sending large amounts of data, a new instance on
GCE was instantiated for each benchmark to avoid hitting process and
memory limits of the OS. When running benchmarks in asv a new python
environment will be created each time asv runs. Every benchmark is
repeated 10 times, then the mean of the run times of all the repetitions is
taken as the result for the benchmark run.

4.2.1 Timing DirectView.apply()

Figure 4.1: Benchmarked run time of DirectView.apply() for different
number of targeted engines for messages per engine per second. Same as
Figure: 2.2

To get an understanding of how the performance scales with increasing
number of engines, a benchmark was created to measure the elapsed time it
takes for the DirectView.apply method to send a message to each targeted
engine. This benchmark runs a loop calling DirectView.apply N times for
M engines, collecting the asynchronous results and then after finishing all
the sends, the benchmark waits until all the targeted engines have replies.
The message contains the echo function:

def echo(x):
return x

and a 1kB NumPy[10] array as an argument for the echo function. The
message is sent to the engines, where each engine calls the echo function
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from the message with the array as an argument and returns the result of
applying the function on the array in a new message. What can be learned
from this benchmark is how long it takes to send 1kB of data to all the
targeted engines and back again to the client when using the DirectView.
The results from this benchmark is shown in Figure: 4.1. The data for
this figure is based on how long it took to send 20 messages to each of
the targeted engines, and then using that to calculate how many messages
are sent per engine per second. Here it becomes apparent just how badly
the performance of DirectView.apply scales with the number of engines.
It starts out good, with just one engine as the target the DirectView is able
to send more than 300 messages per second. With 1024 engines connected
however, the results are unsatisfactory as it is shown that the DirectView
is only able to send less than 2 messages per second to each of the targeted
engines.

Figure 4.2: Showing measured time for sending N messages per engine for
M engines. Here it can be seen that sending 20 messages per engine to two
engines takes about ~66µs. For 1024 targeted engines it takes 1300µs to
send 20 messsages to each. Missing data points for the two upper lines is
because the benchmark timed out. If DirectlView.apply perfectly scaled
with the number of engines these lines would be overlapping.

The results can be seen in more detail in Figure: 4.2. In the figure each
line represent a different number of targeted engines used as a parameter
for the benchmark, the x-axis is the number of messages sent to each engine
and the y-axis is the duration it took to get a reply from all the targeted
engines. What can be seen in this figure is that the DirectView is quick
when only connected to a small number of engines, it takes 297µs to send
100 messages when targeting only two engines. The yellow line however
shows how much worse the performance is when connected to 256 engines.
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It shows that sending 100 messages to 256 engines and receiving the replies
takes ~16.2 seconds. With 512 targeted engines it takes ~25 seconds for only
75 messages, with 100 messages the benchmark stops working and times
out after 180 seconds. With 1024 targeted engines the benchmark stops
working and times out already for 50 messages.

4.3 Profiling IPython Parallel

Figure 4.3: Profiling execution of LoadBalanced.apply on the client

After having some insight into how the performance characteristics of the
DirectView looked like with different numbers of engines, it was decided
that a more detailed analysis was needed. A script simulating the same
usage patterns as the benchmark explained in 4.2.1 were created. Using the
py-spy profiler to attach to the client process and the scheduler process
the run time of the different functions of the code could be measured.
For profiling, the mux-scheduler did not prove very interesting. Because
the mux-scheduler uses a compiled function provided by pyzmq, the
profiler wouldn’t be able to measure what is actually happening inside
that function. The other reason why the mux-scheduler was not so
interesting to profile is because a new scheduler would most likely have to
be implemented in python to have more control over the message relaying.
So for this analysis the LoadBalancedView and the task scheduler were
considered more interesting as the task scheduler is implemented in python
and more likely to be similar to a new scheduler implementation. The
results from profiling the client can be seen in Figure: 4.3. Each bar is a
function call and the width of the bar represents how much time was spent
in total during profiling from the function was called until it returned.
As was expected, the charts show that the function where the most time
was spent during execution were the functions that handle sending and
receiving messages. What was surprising however is that the profiling
showed that a significant amount of time was spent by the client creating
new messages ids.
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4.3.1 Optimization of the Message Id Creation

With the profiling results as the motivating factor, a deep dig into the code
base revealed what was causing such a large amount of time being spent
creating message ids. Each instance of the Client class gets an instance of
the Session class from Jupyter Client[11]. This Session instance is used
by the views to create and send messages. Analyzing the Session code it
turned out that the reason why so much time was spent there was because
the msg_id() method was creating an id string consisting of 16 random
bytes as hex-encoded text for every new message created. These ids are
guaranteed to be random, but they come with a cost because they are
expensive to compute. The Session instance on the Client already has
a unique id, adding a total messages counter to the session and appending
the message number to the session id and using that as the message
id saved some time from having to compute the unnecessarily robust
randomness of the original implementation.

Function Measured runtime
msg_id() before patch 5.06 µs ± 376 ns
msg_id() after patch 1.26 µs ± 149 ns
Session.serialize() before patch 53.2 µs ± 3.54 µs
Session.serialize() after patch 42.3 µs ± 3.48 µs

Table 4.1: Comparing the run time of the original and the new msg_id().
Numbers are mean ± std. dev. of 7 runs, 10000 loops each

Table 4.1 shows that even though the change was small, the speed up
gained was significant. The msg_id() numbers comes from timing the
runtime of the original msg_id() and the new one with timeit[12]. The
Session.serialize() numbers comes from measuring how long it takes to
create a new message and serialize it using the original and the optimized
version of Session.serialize with timeit. The optimized functions were
included in a pull request to the Jupyter Client repository and already
millions of users are benefiting from this change as the Session class is
used in a lot of different context.
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4.3.2 Profiling the Task Scheduler

Figure 4.4: Profiling execution of LoadBalanced.apply on the task sched-
uler

To get some ideas about how to implement a new scheduler, the Task
Scheduler was also profiled with py-spy. The results are shown in Figure:
4.4. As can be seen on the wide bars on the bottom of the figure most
of the time spent in the scheduler is spent parsing dates. That was a
surprising and interesting result as there isn’t really any good reason
why the scheduler would be doing that. Digging deep into the code
it was discovered that as part of deseralizing the header of received
messages, the scheduler was spending a lot of time trying to parse the
date fields of the header. Again the Jupyter Client Session class was the
reason for why the performance was worse than expected. Specifically
the extract_dates() function used in Session.deserialize() was slowing
down the scheduler significantly. The reason why the scheduler needs to
deserialize the message header is so that it can retrieve the message id so
that it knows where to relay the message, but the date fields in the header
is not actually needed for the scheduler. To optimize the performance
of the task scheduler a plan for rewriting the actual extract_dates()
or Session.deserialize() functions was considered. This optimization
could not be merged into the Jupyter Client repository because it would be
a backward-incompatible change in a widely used library. The solution was
then to only apply the opimization when Session.deserialize is used
in the IPython Parallel schedulers. The functionality of extract_dates()
was replace with the echo function that just returns the date unparsed
dates and some extra checks were added to the places in the code base
that actually needed to know about dates, parsing them only if necessary.
This reduced the time spent deserializing message headers to a negligible
amount and was a good way to get really familiar with how the task-
scheduler implementation works.
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Function Measured runtime
Session.deserialize() before patch 174 µs ± 22.4 µs
Session.deserialize() after patch 32.2 µs ± 3.6 µs

Table 4.2: Comparing the run time of the original and the new
Session.deserialize(). Numbers are mean ± std. dev. of 7 runs, 10000
loops each
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Chapter 5

Investigating New Scheduler
and View Implementations

After having gotten familiar with the current view and scheduler imple-
mentations and having analyzed their performance characteristics to figure
out their pain points, 3 different strategies for dealing with the problems of
duplication and sequential code execution were planned out. To solve the
problem of duplication, a BroadcastView that only sends 1 message to the
scheduler per call to BroadcastView.apply() was suggested as a possible
solution. Using this view, two different scheduler implementations were
suggested:

1. A Coalescing scheduler that accumulates replies from the engines
and sends one accumulated reply to the Client

2. A Non Coalescing scheduler that relays the replies to the Client as
soon as they arrive at the scheduler

To overcome the problem of sequential code execution in the scheduler a
third scheduler implementation was suggested, a Spanning Tree Scheduler
where multiple schedulers run in parallel and distribute the workload
among themselves. This chapter will explain in detail how the new view
and the suggested new schedulers were implemented and their advantages
and disadvantages.
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Figure 5.1: Message flow for the DirectView. The Client sends 100
messages to the scheduler which is then relayed to 100 engines. The replies
from the engines are relayed directly back to the Client.

5.1 Implementing a New View

For the implementation of the new BroadcastView, the DirectView imple-
mentation was used as a starting point. The way the DirectView.apply
works is as follows: apply takes a function f and optional arguments and
keyword arguments to call f with. apply serializes the function, the op-
tional arguments and the keyword arguments. Then a list of the targeted
engine ids for the messages is created and for every targeted engine id a
new message is created by packing the provided function f and its argu-
ments. Some metadata is appended to the message and the targeted en-
gine id is put in the header. The Client.send_apply_request() method is
called to actually send the message. This method returns a future object
containing the message id and is stored in a list. Once a message is sent for
every targeted engine, the DirectView creates an AsyncResult object with
the list of futures and waits, either blocking or non-blocking depending
on the configuration, to get a reply from all the targeted engine. When a
reply comes in, the Client checks if the message id from the parent header
of the message maches any outstanding future objects, if it does it resolves
the matched future with the result from the message. The Client knows
that it has gotten all the expected replies for an apply call when all the out-
standing futures of the AsyncResult object for that call has been resolved.

The Number of Messages Sent Using the DirectView

Using the DirectView with N targeted engines, 1 call to DirectView.apply
sends N messages to the scheduler, the scheduler relays the N messages
to the engines. The engines then reply N messages and the scheduler
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relays the N messages back to the Client. This means that in total 4N
messages are sent between the Client and the engines for each call to
DirectView.apply.

5.1.1 BroadcastView

The largest bottleneck of the DirectView is that it has to send 1 message
per targeted engine, this is because of the way the Multiplexing Scheduler
is implemented as just a simple relay for messages. Because the message
content is the same for all the messages sent to the engines, with a
more complex scheduler implementation 1 message should be enough.
Reducing the number of messages from 1 per engine to just 1 per call
to apply was the first improvement applied for the BroadcastView. The
scheduler still needs to know which engines to relay the messages to, so
the targeted engines ids is included as a list in the metadata of the message.

BroadcastView for a Coalescing Scheduler

def coalescing_apply(self, f, args, kwargs, block):
msg_content = serialize(f, args, kwargs)
targets = self.get_target_ids()
metadata = {"targets": targets, "is_coalescing": True}
message_future = self.client.send_apply_request(

msg_content,
metadata

)
self.client.outstanding.add(message_future.msg_id)

result = AsyncResult(self.client, message_future)
return result.get() if block else result

The above pesudocode describes how apply looks like for the Coalescing
Scheduler. After having sent the message, the Client has to wait for
all the replies to return from the engines. For the Coalescing scheduler
this part is simple, because the BroadcastView is sending only 1 message
and expecting only 1 reply, it could be done in the same way as in the
DirectView. The downside of this implementation is that the Client has
to wait for all the replies to come back to the scheduler before getting the
accumulated reply, this makes it different from the DirectView where the
Client can use the partial results as soon as they arrive from the engines.

BroadcastView for a Non Coalescing Scheduler

def non_coalescing_apply(self, f, args, kwargs, block):
msg_content = serialize(f, args, kwargs)
targets = self.get_target_ids()
metadata = {"targets": targets, "is_coalescing": True}
message_future = self.client.send_apply_request(
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msg_content,
metadata

)
futures = []
for targeted in targets:

msg_id = f'{message_future.msg_id}_{target}'
future = self.client.create_message_future(msg_id)
self.client.outstanding.add(new_msg_id)
futures.append(future)

result = AsyncResult(self.client, futures, targets=targets)
return result.get() if block else result

Figuring out how to deal with replies from the Non Coalescing Scheduler
proved to be slightly more complicated than for the Coalescing Scheduler
because the Client will receive N replies for N targeted engines while
just sending 1 message to the Scheduler. The solution here was to send
1 message to the scheduler and create N message futures for messages
that are not sent, but only used to identify expected replies. This was done
by using the message id from the one message that is actually sent to create
1 future for each targeted engine. Using the message id from the original
message and the targeted engine id as a message id for the future allows
the Client to identify which AsyncResult the incoming replies belong to.
These futures are then added to the AsyncResult object in the same way
as the other cases. With the Non Coalescing Scheduler the replies from the
engines will be relayed immediately to the Client in the same way that is
done with the DirectView. This is makes it possible to use partial results as
they arrive and is a possible advantage over the Coalescing Scheduler.

5.1.2 New Schedulers

In order to investigate possible new scheduler implementations, 3 different
scheduler were made and benchmarked to figure out how to best optimize
IPython Parallel. The BroadcastView and the new schedulers are all
implementations of the SPMD (Single Program, Multiple Data) parallel
programming pattern. The DirectView with the Multiplexing Scheduler
can also be understood as an implementation of the same pattern, but the
new schedulers and view should scale better with the number of engines
in terms of performance.
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5.1.3 Non Coalescing Scheduler

Figure 5.2: Message flow for the Non Coalescing BroadcastView. The
Client sends 1 messages to the scheduler which is then relayed to 100
engines. The replies from the engines are relayed directly back to the Client.

The first and least complex new scheduler that was implemented was the
Non Coalescing Scheduler. The idea that brought this scheduler to life was
that it could be possible to save a lot of time on the Client by avoiding the
duplicate work done by reducing the number of messages sent from the
Client to the scheduler. For this to be possible, the new scheduler had to be
implemented in Python. There already exists a Scheduler implementation
for IPython Parallel written in Python, the Task Scheduler, so this was
used as starting point. The Task Scheduler had implemented a lot of the
functionality that would be useful for the new schedulers, so this was
generalized and reused for the new implementations. The Non Coalescing
Scheduler listens for messages from the Client over a ZMQ stream and
for replies from the engine on another stream. When a message arrives
from the Client, the scheduler gets the list of targeted engine id from the
metadata of the message. Then for every targeted engine, the targeted
engine id is appended to the original message id and used as the message
id for a new message for the engine. The new message is then relayed to
the targeted engine over the engine stream. When the replies arrives from
the engine, they are relayed back to the Client immediately.

The Number of Messages Sent Using the Non Coalescing BroadcastView.

Using the Non Coalescing BroadcastView with N targeted engines, 1
call to BroadcastView.apply sends 1 message to the scheduler. The
scheduler then sends N messages to the engines and receives N messages
back. When the replies arrive at the scheduler from the engines they
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are relayed back to the Client as soon as they come in. This adds
up to a total of 1 + 3N messages sent for N engines for each call to
BroadcastView.apply. This means that when targeting many engines, the
Non Coalescing BroadcastView is sending close to 25% less messages than
the DirectView (1 + 3N vs 4N).

5.1.4 Coalescing Scheduler

Figure 5.3: Message flow for the Coalescing BroadcastView. The Client
sends 1 messages to the scheduler which is then relayed to 100 engines.
The replies from the engines are accumulated in the scheduler and relayed
as 1 message back to the Client.

To investigate if there would be a significant performance difference gained
by replying only 1 message for each call to apply to the Client instead
of 1 reply per engine, a Coalescing Scheduler was developed. The Non
Coalescing Scheduler was used as a starting point as they would be very
similar. The key difference on the relaying from the Client to the engines
between the Coalescing and the Non Coalescing Scheduler is that the
Coalescing Scheduler keeps track of which messages has been sent to the
targeted engines. When the Coalescing Scheduler receives a reply from an
engine, it saves the message buffers from the reply. Once all the engines has
returned a reply, the scheduler merges all the accumulated replies together
into 1 new message and relays it to the Client.

The Number of Messages Sent Using the Coalescing BroadcastView.

Using the Coalescing BroadcastView with N targeted engines, 1 call to
BroadcastView.apply sends 1 message to the scheduler. The scheduler
then sends N to the engines and receives N messages back. The messages
are accumulated and merged at the scheduler and sent back to the Client.
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This adds up to a total of 2 + 2N messages sent for N engines for
each call to BroadcastView.apply. When N is high this means that the
Coalescing BroadcastView is sending close to half as many messages as
the DirectView (2 + 2N vs 4N) .

5.1.5 Spanning Tree Scheduler

Figure 5.4: Message flow for the BroadcastView with the Spanning Tree
Scheduler with depth = 2 and 1000 targeted engines. The Client sends
1 message to the root scheduler (RS), the root relays the message to two
sub schedulers (SS). The sub schedulers then relays the the message to the
leaf schedulers (LS). Finally the leaf schedulers relays the message to the
engines, sending to 250 engines each.

The Multiplexing Scheduler is extremely fast because it’s implemented in
C and it’s only relaying messages without doing anything to them. That’s
why the bottleneck in terms of performance with this scheduler/view
combination is in the DirectView and not the scheduler for most cases.
With having significantly reduced the amount of work done by the
BroadcastView compared to the DirectView, this bottleneck was removed.
Using the Non Coalescing and Coalescing Schedulers the new bottleneck
would be in the scheduler itself because Python is inherently slower
than C and because the new schedulers are doing more work parsing
the messages. To solve this bottleneck a Spanning Tree Scheduler was
suggested. This scheduler would consist of multiple schedulers sharing
the workload and running in parallel. There would be some additional
overhead to the runtime from having to do more sends over the network
between the schedulers, but the performance gains from having multiple
schedulers working in parallel should make up for that when the number
of targeted engines increases past a certain threshold.

The Coalescing Scheduler was used as the starting point for the
Spanning Tree Scheduler, the main difference being that instead of having
only 1 scheduler running in 1 process, the Spanning Tree Scheduler can
have multiple scheduler running in separate processes. A Spanning Tree
Scheduler with depth = 0, will work in the same way as the Coalescing
Scheduler. As illustrated in Figure 5.4, the BroadcastView sends one
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message to the root scheduler. Then the root scheduler gets the list of
targeted engines id from the metadata, splits the list in two equal halves
and sets each half as a new targeted engine ids list for two new messages.
The two messages are then relayed to the two next sub schedulers in the
tree. If there are more sub schedulers in the tree, the sub schedulers does
the same as the root scheduler and relays the two new messages to the
next schedulers in the tree. When a message reaches a leaf scheduler, the
leaf schedulers uses the targeted engine ids list to relay the message to the
targeted engines. When the replies comes back from the engines, they are
accumulated and merged on each level until the scheduler has received
their expected replies from the engines or the sub schedulers they are
connected to. Then the accumulated reply is relayed back to the previous
scheduler in the tree until it hits the root scheduler which relays the final
accumulated message back to the Client.

The Number of Messages Sent Using the Spanning Tree

Using the Spanning Tree scheduler with N targeted engines, 1 call to
BroadcastView.apply first sends 1 message to the root scheduler. Then
the is copied and sent sent down the tree, each sub scheduler sending two
messages to their connected sub schedulers until the messages reaches the
leaf schedulers. The leaf schedulers then sends a total of N messages to the
engines and receives N messages back. When the replies arrive at the leaf
schedulers from the engines they are accumulated until all the replies have
returned. Then they are merged and sent back to the sub schedulers. The
sub schedulers accumulate and merge their two replies and sends them
back as one. The root scheduler finally sends an accumulated messages
containing all the replies back to the Client. The number of messages
sent from the root to the leaves is 2D+1 − 2 where D is the depth of the
Spanning Tree. The same number of messages are returned from the leaves
to the root. Using the Spanning tree the same number of messages is sent
between the Client and the schedulers and the schedulers and the engines
as the Coalescing BroadcastView. This means that the total messages sent
is 2(2D+1) + 2 + 2N for N engines. For lower numbers of D and high
numbers for N this is still a significantly smaller number than the 4N for
the DirectView.

Using a Non Coalescing version of the Spanning Tree, the number
of messages sent from the root to the leaves is still 2D+1 − 2. The Non
Coalescing version relays the messages immediately back through the
spanning tree. That means that the number of sends for the replies
going back through the Spanning Tree is N ∗ D. This gives a total of
1 + 2D+1 − 2 + N ∗ D + 2N messages for the BroadcastView with a Non
Coalescing scheduler. That means more messages than the DirectView
when D is ≥ 2.
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Part III

Conclusion
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Chapter 6

Results

To confirm that the new scheduler implementations are actually better than
the existing one, a number of different benchmark simulating different
typical usage patterns were made to compare how the performance scales
with then number of engines for the BroadcastView vs the DirectView.
The first benchmark tests the performance of sending large messages to
the engines, but returning nothing. The second benchmark tests the
performance of sending large messages to the engines and returning them
back to the scheduler. The last important benchmark that will be presented
in this chapter shows the performance when the Client sends multiple
messages to many engines.

6.1 Comparing the DirectView vs the BroadcastView

Figure 6.1: Benchmark results showing how long it takes to send a
~2MB message to different numbers of engines. The yellow line shows
how the DirectView scales with the number of engines compared to the
BroadcastView.
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After having developed and tested the Non Coalescing, Coalescing and
Spanning Tree scheduler it was decided that because they are so similar,
it would be better to have just one Broadcast Scheduler that could be
configured to replicate and combine the functionality of the three different
implementations. Merging the schedulers also makes sense because it’s
easier to maintain and develop just one scheduler. This also makes it easier
to run tests as instead of having to run tests on three different schedulers
the tests can test one scheduler running with different configurations.

6.1.1 Pushing Large Messages

class PushMessageSuite:
params = [

[1, 2, 16, 64, 128, 256, 512, 1024],
[

DirectView,
CoalescingBroadcastView,
NonCoalescingBroadcastView

],
[1000, 10 000, 100 000, 1 000 000, 2 000 000]

]
def time_large_message(self, engines, View, bytes):

view.targets = range(engines)
reply = View.apply(

lambda x: x,
np.array([0] * bytes, dtype=np.int8)

)
reply.get()

The above pseudocode describes how this benchmark works. The view
Client sends a message to each of the targeted engines, varying the sizes
of the messages and the number of targeted engines. This benchmark was
made just to measure and compare how long it takes for the different
schedulers to send a message of different sizes to the engines, but not
receiving anything back. That’s why the function provided as an argument
for apply here only returns None. The usage pattern simulated here is the
one of the best possible scenarios in terms of scaling performance for the
BroadcastView because only the messages on the way from the Client to
the scheduler have a significant size.

Using an example where each message is 1MB and the Client is
targeting 1000 engines really illustrate why the BroadcastView is expected
to perform much better here. With the DirectView the Client is first
sending 1000 messages to the scheduler, then the scheduler relays each of
these messages to the engines. That’s 2 * 1000 messages of 1MB each, in
total 2GB of data sent from the Client to the engines. The BroadcastView
sends 1 message to the root scheduler. The root scheduler then relays the
message sto 2 sub schedulers each. The sub schedulers relays them to
2 more sub schedulers and this continues until the messages gets to the
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leaf scheduler where they are relayed to the engines. For this benchmark
the BroadcastView was configured to have depth = 2. Using the formula
described section 5.1.4: 2(2D+1) + 2+ 2N the total amount of bytes sent can
be calculated. However since the Client is only sending big messages one
way, the amount of messages being sent to the engines is the interesting
thing so the formula is divided by 2. That means that to send a 1MB
message to 1000 engines, the Client has to send (22+1 − 2) + 1 + 1000
messages of 1MB each. That’s a total of 1007 messages or 1.007GB of data,
almost half the amount of bytes compared to how much the DirectView
has to send. In addition to that the gains from parallelism from having
multiple leaf scheduler relaying messages at the same time should make
the BroacastView the clear winner here. Since the engines are returning
None, the time spent getting replies here will be negligible for large
messages compared to the time spent sending messages to the engines.
Figure: 6.1 confirms that the performance of the BroadcastView is indeed
scaling much better for the case of large messages pushed to many engines.

Figure 6.2: This chart shows the runtime for the push benchmark for
different message sizes for 1 targeted engine. The blue bar is the Coalescing
BroadcastView, the yellow is the DirectView and the red is the Non
Coalescing BroadcastView.

For the most basic case in this benchmark, when the Client is only
targeting 1 engine, the results are as expected and not very interesting.
All of the schedulers are very fast for this easy case and there are only
insignificant differences in the runtime between them. Since there is only
one engine, the amount of messages sent between the Client and the
engines is very low for all the implementations, so the times spent sending
data is not the a big factor for this case. For the smaller messages the
results show that the DirectView is slightly faster, what is seen here is the
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Bytes DirectView Non Coalescing Broadcast Coalescing Broadcast
1000 6.30 8.62 8.63
10 000 8.15 9.29 9.52
100 000 12.97 17.08 17.56
1000 000 81.41 82.77 87.12
2000 000 158.57 157.45 168.06

Table 6.1: Duration in µs for the push benchmark when targeting 1 engine.

overhead caused by having to send messages between the sub schedulers
for the BroadcastView.

Figure 6.3: This chart shows the runtime for the push benchmark for
different message sizes for 256 targeted engines.

Bytes DirectView Non Coalescing Broadcast Coalescing Broadcast
1000 169.39 150.14 40.72
10 000 170.86 150.79 41.75
100 000 197.12 157.77 50.58
1000 000 360.79 231.87 126.82
2000 000 663.57 321.71 316.71

Table 6.2: Duration in µs for the push benchmark when targeting 256
engines.

For the case with 256 the Coalescing BroadcastView really shows its
advantage over the other schedulers. For the 4 smallest message sizes, it
is much faster than the DirectView and the Non Coalescing DirectView.
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This is because the DirectView and Non Coalescing BroadcastView are
relaying back 256 messages to the Client and handling many replies is
much slower than sending just one small message. The Non Coalescing
BroadcastView is slightly faster than the DirectView here for the 3 smallest
messages and significantly faster for the 2 larger messages because it’s just
sending 1 message to the Client when the DirectView is sending 256. For
the ~2MB message the Non Coalescing and the Coalescing BroadcastView
is almost equally fast. This is because in this case the amount of data sent
is so large that the time spent sending it from the Client to the engines is
much higher than the time spent handling replies.

The DirectView is sending 2 * 256 2MB messages, a total of 512MB
of data. Using the formula from 5.1.4 again to calculate the amount of
bytes being sent, the BroadcastView is only sending 1 + (22+1 − 2) + 256
2MB messages, a total of 263MB. From this it would be expected that the
BroadcastView is slightly less than twice as fast as the DirectView in this
case. The numbers show that it is actually slightly more than twice as fast,
this is because the speedup from parallelism in the leaf schedulers.

Figure 6.4: This chart shows the runtime for the push benchmark for
different message sizes for 1024 targeted engines.
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Bytes DirectView Non Coalescing Broadcast Coalescing Broadcast
1000 660.04 577.71 164.12
10 000 647.8 598.62 164.27
100 000 787.68 597.03 173.36
1000 000 1381.59 666.1 284.16
2000 000 2613.55 806 718.34

Table 6.3: Duration in µs for the push benchmark when targeting 1024
engines.

Figure: 6.4 shows that the performance scales in the same way for 1024
engines as in figure: 6.3. In this chart the speedup from parallelism is much
more apparent, for such a large number of engines the BroadcastView is
more than 3 times as fast as the DirectView for the 2MB message.

6.1.2 Sending and Receiving Large Messages

After having measured the performance of the push benchmark, another
benchmark was created to measure how the performance changes when
the data is also returned from the engines back to the scheduler. The
BroadcastView performs really well for the push benchmark because it
sends much less bytes to the engines, but it doesn’t have a way of reducing
the amount of bytes that comes back. The Client handling of replies
is known to be a bottleneck, so for this benchmark it the speedup from
pushing messages on the BroadcastView might not be enough to make a
difference.

Another disadvantage here for the BroadcastView is that the replies are
sent multiple times between the sub schedulers to reach the Client. To
receive a 1MB reply from 1000 engines, the DirectView receives first 1000 *
1MB of data from the engines to the scheduler, then the 1000 * 1MB of data
is relayed to the engine. In total the DirectView is transmitting 2GB of data
here. For the BroadcastView with a depth = 2, 1GB of data is received at
the leaf schedulers. Then 1GB is relayed to the sub scheduler, that relays
it further to the root scheduler before finally being relayed to the Client.
So for the BroadcastView a total of 4GB of data is transmitted in this case,
the extra data transmitted here compared to the DirectView means that the
speedup from pushing data probably won’t be enough.
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class ThrougputSuite:
params = [

[1, 2, 16, 64, 128, 256, 512, 1024],
[

DirectView,
CoalescingBroadcastView,
NonCoalescingBroadcastView

],
[1000, 10 000, 100 000, 1 000 000, 2 000 000]

]

def time_large_message(self, engines, View, bytes):
view.targets = range(engines)
reply = View.apply(

lambda x: None,
np.array([0] * bytes, dtype=np.int8)

)
reply.get()

Figure 6.5: This chart shows the runtime for the benchmark for different
message sizes for 1 targeted engine. The blue bar is the Coalescing
BroadcastView, the orange bar is the DirectView & the red bar is the Non
Coalescing BroadcastView
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Bytes DirectView Non Coalescing Broadcast Coalescing Broadcast
1000 4.58 9.45 8.85
10 000 5.56 9.47 9.69
100 000 12.88 17.83 17.9
1000 000 77.96 89.25 86.69
2000 000 148.14 172.51 164.8

Table 6.4: Duration in µs for the benchmark when targeting one engine.

Figure: 6.5 shows that when the views are targeting only one engine, the
DirectView is faster for all messages sizes. This is to be expected as there is
nothing to gain from parallelism with only 1 targeted engine because only
one message is sent. The difference in runtime here shows the overhead
from running Python code and the extra delay from having to relay the
message between the sub schedulers for the BroadcastView.

Figure 6.6: This chart shows the runtime for the benchmark for different
message sizes for 512 targeted engines.

Figure: 6.6 show the benchmark results for 512 connected engines. As
was expected, the Coalescing BroadcastView outperforms the DirectView
for the smaller messages because of the accumulated reply that lightens the
workload on the Client. The results for the 1MB message is interesting.
In this case the Non Coalescing BroadcastView is the winner performance
wise, while the Coalescing BroadcastView is slightly slower than the
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Bytes DirectView Non Coalescing Broadcast Coalescing Broadcast
1000 337.34 316.77 84.11
10 000 329.62 314.19 110.52
100 000 397.27 341.05 173.32
1000 000 813.7 617.82 884.62
2000 000 1590 2062.45 2253.55

Table 6.5: Duration in µs for the benchmark when targeting 512 engines

DirectView. What can be learned from this case is that the Non Coalescing
BroadcastView is faster than the DirectView because because the speedup
from pushing the data faster makes up for the disadvantage the Non
Coalescing BroadcastView has when receiving replies. The Client is able
to handle the large messages faster than they are being received, that’s why
the DirectView is faster here than the Coalescing BroadcastView because
the Coalescing BroadcastView waits for all the replies from the engines
before relaying 1 very large accumulated message (~512MB) back to the
Client. For the case when the message size is ~2MB the DirectView
outperforms the BroadcastView because the BroadcastView ends up
transmitting significantly more data on the reply than the DirectView and
the speedup on pushing the data doesn’t make up for it.

Figure 6.7: This chart shows the runtime for the benchmark for different
message sizes for 1024 targeted engines.
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Bytes DirectView Non Coalescing Broadcast Coalescing Broadcast
1000 677.21 617.38 176.21
10 000 661.01 619.59 221.57
100 000 760.47 652.45 354.27
1000 000 1979.3 1132.67 1699.83
2000 000 3942.04 4143.3 4317.67

Table 6.6: Duration in µs for the benchmark when targeting 1024 engines

Figure: 6.7 shows the result for the case when the benchmark was
run with 1024 targeted engines. For the smaller messages the Coales-
cing BroadcastView clearly outperforms the others again. For mes-
sages of ~1MB the difference between the Coalescing BroadcastView
and the DirectView is very small though. For this case the Non Co-
alescing BroadcastView is the fastest. What can be seen here is that
the Client is not the bottleneck and that the gains from parallelism
makes the BroadcastView faster than the DirectView. The Non Coales-
cing BroadcastView is faster than the Coalescing version because the
Client handles 1024 ~1MB replies faster than it takes the Coalescing
BroadcastView to accumulate all the replies and relay ~1GB message to the
Client. For the 2MB message case, the DirectView is again faster than the
BroadcastView, but only by a small margin. Because there are so many
targeted engines, the speedup from parallelism is high enough that the
BroadcastView is only slightly slower than the DirectView because of the
penalty of transmitting more data on the reply.

6.1.3 Sending Multiple Empty Messages

To compare the message flow between the different scheduler implement-
ations a benchmark was made to measure the runtime of apply when the
Client sends multiple messages to multiple engines. The benchmark is il-
lustrated in the pseudocode bellow. The view sets N targeted engines, then
sends M ~1kB messages to each engine. After sending all the messages, the
benchmark waits until all the replies have come back.

class ManyMessagesSuite:
params = [

[1, 2, 16, 64, 128, 256, 512, 1024],
[

DirectView,
CoalescingBroadcastView,
NonCoalescingBroadcastView

],
[1, 5, 10, 20, 50, 75, 100]

]
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def time_async_apply(self, engines, View, messages):
view.targets = range(engines)
replies = []
for i in range(messages):

reply = View.apply(
lambda x: x,
np.array([0] * 1000, dtype=np.int8)

)
replies.append(reply)

for reply in replies:
reply.get()

Figure 6.8: Benchmark for sending multiple smaller messages to the en-
gines shows that the Non Coalescing BroadcastView performs only slightly
better than the DirectView. However the Coalescing BroadcastView
clearly performs better when number of targeted engines is ≥ 16

Engines DirectView Non Coalescing Broadcast Coalescing Broadcast
1 342.06 330.36 337.89
2 302.57 287.07 312.70
16 89.57 94.63 229.73
64 24.08 27.65 136.15
1024 1.54 2.24 8.18

Table 6.7: Number of messages sent per second per engine for the different
schedulers.

Table: 6.7 and Figure: 6.8 shows the results of this benchmark. The
numbers are calculated from the time it took to send 20 messages to
each engine. For 1 targeted engine, the DirectView has got the best
performance. In this case the BroadcastView is slower because the
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scheduler is implemented in Python, because the scheduler is doing some
parsing with each message and because of the added delay of sending the
message between the sub schedulers. When there is only one message
being sent there is nothing to gain from parallelism. The way the scheduler
is implemented, all the 20 messages will take the same path through the
spanning tree each time, this means that the same scheduler is relaying
all the messages to the engines. A more intelligent implementation could
possibly improve on this by doing some load balancing and spreading the
20 messages over different schedulers, but it’s not clear if this effort will
make a difference or if the gains from load balancing will make up for the
added cost of having more complex logic in the scheduler.

Already with 16 targeted engines the Coalescing BroadcastView shows
a huge improvement on the DirectView by being able to send more than
twice the amount of messages per second. Interestingly the Non Coalescing
BroadcastView is performing almost as bad as the DirectView in this case.
Because there is such a big difference between the performance of the
Coalescing and Non Coalescing BroadcastView, what can be learned here
is that for the case when the Client is sending 20 small messages to the
engines the bottleneck must be in the way the Client handles replies and
because the Coalescing BroadcastView is sending less messages in total
than the Non Coalescing BroadcastView. For 20 messages per engine
for 16 engines is 320 messages sent from the schedulers to the engines
and 320 messages received at the schedulers from the engines. The only
difference between the Non Coalescing and the Coalescing scheduler is that
the Non Coalescing scheduler relays all the 320 replies immediately, while
the Coalescing scheduler accumulates all the 320 messages and relays them
as just one message to the Client. This shows that the Client is not able to
process the messages as fast as they come in and that the Client is faster
when processing just 1 bigger message instead of 320 smaller ones even
though it has to wait longer for the 1 bigger message. For 1024 engines
the DirectView was only able to handle 1.54 messages per second per
engine. The Coalescing BroadcastView was able to handle 8.18 messages
per second per engine for 1024 messages, this shows that for this case the
Coalescing BroadcastView is a huge improvement on the DirectView with
being able to handle ≥ 5 times as many messages per engine per second.
Using the forumla from 5.1.4 again to calculate the the total number of
messages sent for the case with 20 messages being sent to 1024 targeted
engines. For the DirectView the formula is 4N where N is the number of
engines, so 20 ∗ 1024 ∗ 4 = 81920 messages sent for the DirectView. For the
Coalescing BroadcastView the formula is 2(2D+1)) + 2 + 2N. With D = 2,
the total number of messages sent is 20 ∗ (2(22+1 + 2 + 2 ∗ 1024) = 41320.
This shows that the Coalescing BroadcastView is sending almost half the
amount of total messages, with the parallelism in the leaf schedulers also it
makes sense that it is much faster here.
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Figure 6.9: This charts shows the runtime of the benchmark when
connected to 256 engines. The x-axis is the number of messages being
sent to each engine. The orange bar is the DirectView, the red bar is
the Non Coalescing BroadcastView and the blue bar is the Coalescing
BroadcastView. Notice how much better the Coalescing BroadcastView
scales with the number of messages being sent.
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Figure 6.10: This charts shows the messages per engine per second for
different numbers of messages sent with the DirectView. The lines
represent different numbers of targeted engines. Blue line is 1 engine,
orange line is 2 engines.

Figure 6.11: This charts shows the messages per engine per second for
different numbers of messages sent with the Coalescing BroadcastView.

Figures: 6.10, 6.11 & 6.12 shows how many messages per engine per
second the different views are able to handle. If the performance scales
perfectly with the number of messages, the lines would be totally flat.
The lines representing high number of engines are mostly flat, and that
is good news. What is interesting with these charts though is that for the
lower numbers of targeted and engines, and especially for the Coalescing
BroadcastView, the performance seems to increase when the number of
messages sent increases.
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Figure 6.12: This charts shows the messages per engine per second for dif-
ferent numbers of messages sent with the Non Coalescing BroadcastView.

6.2 Figuring Out the Depth for the Spanning Tree

Figure 6.13: Benchmarked runtime of Broadcast Scheduler set to Coales-
cing and with different depth configurations. It shows that if the number of
engines is less than 16 the performance gained by parallelism doesn’t out-
weigh the added overhead of sending messages between the schedulers.
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Depth 1 engine 64 engines 512 engines
0 4.48 27.49 444.02
2 7.12 17.01 103.34
3 8.51 16.7 82.23
4 9.97 17.92 76.6

Table 6.8: Measured runtime in µs for the Broadcast Scheduler set to
Coalescing.

Figure 6.14: Benchmarked runtime of Broadcast Scheduler set to Non
Coalescing and with different depth configurations.

To figure out what the optimal number of concurrently running schedulers
is a benchmark were made to test when the performance gains from
adding more engines makes up for the added cost of having more sends
between the schedulers. To do this a benchmark was made that runs
BroadcastView.apply with the echo function and and a 1kB NumPy array
as arguments. This benchmark measures how long it takes to send and
recieve a message with a ~1kB payload to all the targeted engines. At depth
= 0, there is 1 scheduler running and it’s relaying the messages directly to
the engines.
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class DepthTestingSuite:
params = [

[1, 2, 16, 64, 128, 256, 512],
[0, 2, 3, 4],
[true, false]

]
def time_spanning_tree_depth(

self,
number_of_engines,
tree_depth,
is_coalescing

):
self.view = BroadcastView(is_coalescing, tree_depth)
self.view.targets = range(number_of_engines)
reply = self.view.apply(

lambda x: x,
np.array([0] * 1000, dtype=np.int8)

)
reply.get()

The pseudocode illustrates how the depth of the Spanning Tree was
benchmarked, running the time_spanning_tree_depth() with the defined
parameters. What can be seen in Figure 6.13 is that when there’s only one
targeted engine there is nothing to be gained by having more than one
scheduler. This makes sense because there is only 1 leaf engine doing any
work in that case so there is nothing to gain from parallelism. What is
interesting with these numbers is that they show that the additional latency
gained from adding more levels is approximately 1.5µs per level. That
means the gains from parallelism must be larger than that number. With 64
targeted engines the gains from parallelism makes up for the added delay
of having 2 or 3 levels, but 4 levels is still slightly slower. With more than
64 engines the advantage of having more schedulers becomes apparent,
especially with 512 engines where the run time for depth = 0 is 444.02µs
vs 76.6µs for depth = 4. These numbers are similar for the Non Coalescing
configuration as well. However as can be seen in Figure: 6.13 and Figure:
6.14 the difference between depth = 2 and depth = 4 is not very significant,
at least in the case that was benchmarked. So for the other benchmarks the
depth for the Broadcast Scheduler was set to 2.

6.3 When to Choose the BroadcastView Instead of the
DirectView

As can be seen in the benchmark results the Coalescing BroadcastView
shows a clear speedup compared to the DirectView in many cases. The
Non Coalescing BroadcastView shows some speedup compared to the
DirectView, but significantly less so than the Coalescing BroadcastView
in most cases.
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When the number of targeted engines is very low (> 16), the DirectView
is shown to be faster. The C implementation of the Multiplexing
Scheduler is extremely fast and hard to beat for simple cases with anything
implemented in Python. For small numbers of targeted engines the amount
of duplicated serialization and sends done by the Client doesn’t take
long enough for the BroadcastView to be faster. When the number of
targeted engines increase above 16 the performance of the Coalescing
BroadcastView is shown to scale much better for some cases. In the cases
where the Client wants to send many smaller messages (<1MB) to a
large number of engines, the Coalescing BroadcastView is faster because
the Client is doing much less work. 4N sends using the DirectView vs
2(2D+1)) + 2 + 2N with the Coalescing BroadcastView.

For the case where the number of targeted engines is ≥ 128 and
the Client is sending many smaller messages, the Non Coalescing
BroadcastView is shown to be significantly faster than the DirectView.
This speedup comes from the parallelism in the scheduler that enables it
to relay messages from multiple schedulers to the engines simultaneously.
The Multiple Empty Messages benchmark also shows that when the
number of targeted engines is really high (≥ 512) and the number of
messages sent is ≥ 50 the DirectView seems to stop working as the
benchmark doesn’t finish. For 1024 targeted engines the Coalescing
BroadcastView is the only implementation that is able to handle sending 75
and 100 messages to each engine and even then for 100 messages it’s only
taking slightly less than 12 seconds. The Send and Receive Large Messages
benchmark show that when the Client wants to send large messages ( ≥
1MB) the DirectView is the fastest implementation, even when for large
number of connected engines. The Push Large Messages benchmark shows
that for a Coalescing BroadcastView should be selected when the Client
needs to only send data to the engines, without caring about receiving
anything in the replies.
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Chapter 7

Future Work

During the development of the new schedulers some new questions came
up and there was some suggestions for further improvement that would be
interesting to look at. This chapter will present the main topics that came
up.

7.1 Smart Defaults

The BroadcastView in it’s current state is very configurable. The user can
set the depth of the spanning tree, set the scheduler to be Coalescing or
Non Coalescing and select how many engines to target. This works well
when the user knows very well how the view and the scheduler works
and understand the problem they are trying to solve well enough to apply
the right configuration. The downside of configurability is that it can be
confusing for users that don’t want to spend a lot of time getting familiar
with how it works. Something that could interesting would be to have the
depth of the spanning tree adapt to the number of connected engines so
that the tree grows if a lot of new engines are connected. Another idea
that would be interesting to explore but is more complicated, is to have the
scheduler switch between Coalescing and Non Coalescing based on what
kind of tasks the user wants to execute. Finally it could be really interesting
to explore if it’s possible to merge the DirectView and the BroadcastView
into just one view that automatically selects which scheduler to use based
on how many engines the Client wants to target and the size of the
message that the Client wants to send. In the benchmark it was shown
that the DirectView is faster when the number of targeted engines is low
or if the message size is large, so this should be possible to automate in
some smart way.

7.2 Fine Grained Performance Measurements

Instead of using benchmark tools and profiling to measure the performance
of the scheduler, another approach could be to use timestamps applied
to the metadata of the messages at different stages to get really detailed
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overview of the performance of the different schedulers. One approach
could be to add a timestamp each time a message is sent from the
Client, each time it’s relayed by a scheduler or sub scheduler and when
it’s received and sent at the engines. Then using the timestamps and
calculating the difference between them it would be possible to know
very deeply how long each stage of the process of sending and receiving
messages is taking.

7.3 Benchmarking Real World Examples

The schedulers were benchmarked with benchmarks simulating typical
usage patterns. However, these were mostly the best case and worst case
scenarios and used to measure different specific parts of the schedulers and
view implementations. Actual real-world applications might be using the
scheduler in a totally different way. Finding and benchmarking som real
world applications using IPython Parallel could be very interesting as they
would give a more realistic view of how these new implementations will
affect users compared to the synthetic benchmarks that might not really
represent how the users are working with IPython Parallel.

7.4 Compare Benchmarks With Other Tools

While the benchmarks show that for certain cases the new schedulers are
a significant improvement on the existing one, we don’t learn anything
about how the performance of the schedulers compare to other similar
tools. Making some benchmarks to compare IPython Parallel to tools like
Dask.distributed and pyspark would be very interesting because it would
show if IPython Parallel is better or worse than the alternatives.

7.5 The Partially Coalescing Broadcast Scheduler

The Coalescing BroadcastView was shown to be faster than the Coalescing
BroadcastView in most of the cases that were benchmarked. The
Coalescing BroadcastView is faster because it relays only 1 message back
to the Client when the Non Coalescing BroadcastView relays N messages
fro N engines. When the Coalescing BroadcastView is accumulating
replies from the engines, the Client sits idle waiting for the accumulated
reply. This is wasted time when it could have been processing partial
results. Something that would be interesting to explore is if the Coalescing
BroadcastView could be faster if the scheduler relays partial results, for
instance every time it has accumulated a certain number of messages or
on some time interval. This could possibly be a real speed up especially
since the accumulated message can get very big and slow to send over the
network, but also because the Client could already be finished processing
most of the replies before the last reply from the engine to the scheduler.
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7.6 Getting the Code Into the Main Repository

The new scheduler implementation has been tested and shown that it
works well. At the time this thesis was submitted, the code has been
included in a pull request to the main IPython Parallel repository. Before it
is actually merged into the master branch it needs a little bit more work.
Mainly there are some code that’s left over from when there was three
different schedulers implement before they were merged together as one.
Also there needs to be some tests and documentation before it’s completely
ready.

59



60



Bibliography

[1] URL: https://jupyter.org/ (visited on 02/06/2020).

[2] URL: https : / / ipyparallel . readthedocs . io / en / latest/ (visited on
02/06/2020).

[3] URL: https://ipyparallel.readthedocs.io/en/latest/intro.html.

[4] URL: https://github.com/tomoboy/ipyparallel (visited on 04/08/2020).

[5] URL: https://github.com/benfred/py-spy (visited on 04/08/2020).

[6] URL: https : / / github . com / airspeed - velocity / asv (visited on
04/08/2020).

[7] URL: https://pandas.pydata.org/docs/ (visited on 04/08/2020).

[8] URL: https://github.com/altair-viz/altair (visited on 04/08/2020).

[9] URL: https://cloud.google.com/compute/docs/gcloud-compute (visited
on 16/08/2020).

[10] URL: https://numpy.org/ (visited on 17/08/2020).

[11] URL: https : / / github . com / jupyter / jupyter _ client (visited on
18/08/2020).

[12] URL: https : / / docs . python . org / 3 / library / timeit . html (visited on
24/08/2020).

[13] G. M. Amdahl. ‘Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities, Reprinted from the
AFIPS Conference Proceedings, Vol. 30 (Atlantic City, N.J., Apr.
18–20), AFIPS Press, Reston, Va., 1967, pp. 483–485, when Dr. Amdahl
was at International Business Machines Corporation, Sunnyvale,
California’. In: IEEE Solid-State Circuits Society Newsletter 12.3 (2007),
pp. 19–20.

61

https://jupyter.org/
https://ipyparallel.readthedocs.io/en/latest/
https://ipyparallel.readthedocs.io/en/latest/intro.html
https://github.com/tomoboy/ipyparallel
https://github.com/benfred/py-spy
https://github.com/airspeed-velocity/asv
https://pandas.pydata.org/docs/
https://github.com/altair-viz/altair
https://cloud.google.com/compute/docs/gcloud-compute
https://numpy.org/
https://github.com/jupyter/jupyter_client
https://docs.python.org/3/library/timeit.html

	I Introduction
	What this Thesis is About
	Background
	Project Jupyter
	IPython

	IPython Parallel (IPP)
	Architecture Overview


	Motivation for the Project
	Scaling Parallelism
	The Problem With Duplication 
	The Problem With Sequential Code Execution
	Applying Amdahl's Law to Gain Perfomance Improvements by Parallalelization



	II The project
	Planning the project
	Project Goals
	Software Tools
	GitHub
	py-spy
	airspeed velocity (asv)
	Jupyter

	Identifying Bottlenecks for Performance
	Developing Strategies for Scaling Parallelism
	BroadcastView
	Spanning Tree Scheduler
	BroadcastView + Spanning Tree Scheduler


	Analyzing the Current Performance
	Reproducible Testing Environment Using Google Cloud
	Benchmarking IPython Parallel
	Timing DirectView.apply()

	Profiling IPython Parallel
	Optimization of the Message Id Creation
	Profiling the Task Scheduler


	Investigating New Scheduler and View Implementations
	Implementing a New View
	BroadcastView
	New Schedulers
	Non-Coalescing Scheduler
	Coalescing Scheduler
	Spanning Tree Scheduler



	III Conclusion
	Results
	Comparing the DirectView vs the BroadcastView
	Pushing Large Messages
	Sending and Receiving Large Messages
	Sending Multiple Empty Messages

	Figuring Out the Depth for the Spanning Tree
	When to Choose the BroadcastView Instead of the DirectView

	Future Work
	Smart Defaults
	Fine Grained Performance Measurements
	Benchmarking Real World Examples
	Compare Benchmarks With Other Tools
	The Partially Coalescing Broadcast Scheduler
	Getting the Code Into the Main Repository



