
Ethernet shim DIF for Recursive
Inter-Network Architecture Simulator

(RINASim)

Karl H. Totland

Thesis submitted for the degree of
Master in Informatics: Programming and System

architecture
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2020

Ethernet shim DIF for Recursive
Inter-Network Architecture

Simulator (RINASim)

Karl H. Totland

© 2020 Karl H. Totland

Ethernet shim DIF for Recursive Inter-Network Architecture Simulator
(RINASim)

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

In a rapidly changing world with larger and larger volumes of data being
transmitted each day, the internet should be continually improved to be as
efficient as possible. However, fundamental problems with the architecture
have been revealed, that require additional solutions to be built on top of
the already existing infrastructure.

Recursive Inter-Network Architecture (RINA) is a new clean-slate architec-
ture designed with the aim of solving many of the fundamental problems
that exist in the Internet today, with several working implementations that
are already being used as part of research projects. RINA is built on the con-
cept that all networking is Inter-Process Communication (IPC), where the
central component that delivers IPC is the Distributed IPC Facility (DIF),
which is analogous to the layers of TCP/IP and can be stacked recursively
over different scopes. Adopting RINA as an architecture requires additional
work however, which is where the work presented in this thesis comes in.

The aim of this thesis is to define and implement a translation layer for
Ethernet that works with the interface supplied by a DIF in the simulation
model library RINASim. The shim DIF is required for reusing legacy
infrastructure in new networks, and as an addition to RINASim it will be
useful for simulating realistic migration use-cases.

i

Preface

First of all, I want to thank my supervisor Michael Welzl and my co-
supervisorMarcel Marek for their unlimited patience andwillingness to help
even when I barely contacted them until the end.

I also want to thank Thor and Jess for feeding me during the weeks before
the deadline, and the help I got with proof-reading along the way.

iii

Contents

Abstract i

Preface iii

Contents v

List of Figures ix

1 Introduction 1

1.1 Motivation and purpose . 2

1.2 Structure . 3

2 Recursive Inter-Network Architecture 5

2.1 Nature of Applications and Application Protocols 7

2.2 Naming and addressing . 7

2.3 Security . 9

2.4 Networking in RINA . 9

2.5 Deployment . 12

3 Design of the Ethernet shim DIF 13

3.1 Inter-Process Communication in Ethernet 13

v

CONTENTS

3.2 Ethernet shim layer . 16

3.2.1 Ethernet frame header 17

3.2.2 IPCP API in the Ethernet shim DIF 18

3.2.3 State diagram . 19

3.2.4 Notes on state machine 23

4 Simulation framework and model libraries 25

4.1 OMNeT++ . 25

4.2 RINASim . 28

4.2.1 Distributed IPC Facility in RINASim 29

4.3 INET . 35

4.3.1 Integration into RINASim 35

5 Implementation of the Ethernet shim DIF 39

5.1 Required changes to RINASim 39

5.1.1 Testing . 39

5.1.2 Required changes . 40

5.2 Contents of a shim IPCP . 41

5.3 ShimFA . 45

5.3.1 API . 46

5.4 EthShim . 47

5.4.1 API . 48

5.5 RINArp . 50

5.5.1 API . 51

6 Evaluation of implementation 53

vi

CONTENTS

6.1 Output of a simulation . 53

6.2 Simulation configurations 54

6.2.1 Simple relay example 54

6.2.2 Three CSs on a switch 55

6.2.3 Two DIFs on a switch 56

6.2.4 DIFs over switches and a router 57

6.3 Discussion . 57

7 Conclusion 59

7.1 Future work . 60

Glossary 61

Acronyms 63

Bibliography 64

vii

List of Figures

2.1 An example of a RINA network spanning multiple scopes,
from Trouva, Grasa, Day, et al. [7] 6

2.2 Components of an IPC Process (IPCP), from [12] 10

3.1 The IEEE 802.1Q Virtual Local Area Network (VLAN) tag . . 14

3.2 Unreliable Quality of Service (QoS) cube supplied by Ether-
net shim DIF, based on the QoS cube definition of the shim
DIF over IEEE 802.1Q of Investigating RINA as an alternative
to TCP/IP (IRATI)[14]. 15

3.3 An Logical Link Control (LLC) header 15

3.4 An illustration of an Ethernet shim DIF as a peer-to-peer
DIF[12] . 16

3.5 Ethernet II frame header format 17

3.6 Ethernet shim DIF state diagram 20

4.1 The Qtenv simulation environment 27

4.2 The components of an IPCProcess in RINASim[20] 29

4.3 The FlowAllocator module, with two FAIs 30

4.4 The ResourceAllocator module 31

4.5 The EFCPModule module . 32

4.6 The Enrollment module . 33

4.7 The RIBDaemon module . 34

ix

LIST OF FIGURES

4.8 The RelayAndMux module 34

4.9 . 37

5.1 The Ethernet shim IPCP module 42

5.2 A host running over an Ethernet shim DIF, with one applica-
tion process . 43

5.3 Additional parameters supplied to the EthernetInterface
submodule. 43

5.4 Configuration settings for VLAN-aware switch 44

5.5 The enum containing the Ethernet shim IPCP port states . . 44

5.6 The ShimFlowAllocator module of the IPCProcessShim,
with two ShimFAIs . 45

5.7 A connection entry corresponding to a port ID. 48

5.8 Address Resolution Protocol (ARP) packet, as per the specifi-
cation[23] . 50

5.9 RINArp packet, with ARPOpcode being one of ARPRequest or
ARPResponse. 51

6.1 The connections map from EthShim, with two entries in the
allocated state. 53

6.2 Example of a dropped Ethernet frame due to incorrect VLAN
ID in the Qtenv enivronment. 54

6.3 A router and two hosts utilising Ethernet shim DIFs. 54

6.4 An Ethernet shim DIF over a switch with three Computing
Systems (CSs). 55

6.5 Two Ethernet shim DIFs over the same Ethernet segment. . . 56

6.6 Two Ethernet shim DIFs over the same Ethernet segment. . . 57

x

Chapter 1

Introduction

In the second half of the 20th century, multiple organisations and academic
institutions were heavily involved in developing systems for distributed
computing. At the forefront of these systems was the network ARPANET,
which is widely regarded as the foundation of the current Internet. The
initial goal for ARPANETwas to demonstrate the viability of packet-switched
networks for allowing simultaneous data transfer to different nodes on a
network[1], but this goal alone did not incentivise correct architectural
decisions. Even though ARPANET seemed to have several deficiencies in
its architecture, the TCP/IP protocol suite1 adopted many of the same
principles.

The Internet has changed surprisingly little over the last few decades.
There are only two transport protocols2 that are supported universally, and
middleboxes[2]make it very difficult tomake use of non-standard protocols.
Since there is little to no room for further developing or changing existing
features[3], growing routing tables[4], a very limited address space[5],
and no inherent security mechanisms as part of its core architecture[6],
the current Internet is not well-suited to tackle networking on a global
scale. The separated scopes of the layers appear to be convenient and
straightforward, but many of the mechanisms supplied could benefit from
not being limited to only one scope. Many protocols have also become
needlessly complicated due to shortcomings of the services delivered by
lower layers.

Rather than supplying new mechanisms by building overlays to fit onto the
existing Internet, fundamental changes are needed. This is where Recursive
Inter-Network Architecture (RINA) comes in: a clean-slate architecture

1More commonly known as “the Internet protocol suite”, or just “the Internet”.
2Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).

1

CHAPTER 1. INTRODUCTION

intended to solve the issues imposed by the Internet by focusing on the
fundamentals of networking.

RINA is a network architecture intended to solve the shortcomings of the
Internet at a fundamental level. It is built from the ground up on the
principles that constitute Inter-Process Communication (IPC), and aims to
be a complete replacement for TCP/IP. The mechanisms that RINA supplies
are configurable through an extensible set of policies, and facilitating the
addition of new policies is a central part of the architecture. For RINA to
ever stand the chance of being deployed in real networks however, adoption
strategies need to be in place, as well as a set of translation layers so previous
infrastructure is not completely invalidated.

1.1 Motivation and purpose

Employing a new architecture in a landscape of rigid networking systems
requires more than just deploying them to the existing systems. Without
translation layers between new and legacy architectures, utilisation of
the already existing infrastructure would be impossible, making any new
architecture very difficult to adopt on a global scale. Since most computers
and servers today are equipped with Ethernet interfaces, these translation
layers could be vital for architectures that deploy different addressing
schemes, as they allow a host to adopt the new architecture with almost
no compromises regarding their existing setup. In other words, they do not
have to use architecture-specific hardware.

Another important factor for allowing new architectures to gain interest and
trust, is the presence of accurate simulation frameworks for evaluating and
visualising its concepts. Any such architecture would benefit from having
robust, feature complete, and precise ways of testing their mechanisms and
real-world applications. The simulation model library RINASim was made
for and modelled after RINA with this in mind, and is used to test various
policies to evaluate their usefulness.

However, RINASim lacks the possibility of simulating realistic scenarios
where legacy networks are in use. Instead, existing components in the
simulation scenarios are marked as “shims” where applicable, and their
Quality of Service (QoS) capabilities are limited accordingly. Implementing
a translation layer for Ethernet is the first step towards allowing RINASim to
accurately simulate scenarios concerning the deployment of RINA networks
over legacy networks.

This thesis has two primary goals. The first is to examine the viability of

2

1.2. STRUCTURE

interfacing RINASim with INET, which is the TCP/IP stack implementation
for OMNeT++. The second goal is to design and implement a shim layer
over Ethernet in RINASim to provide the first step towards demonstrating
the ease of adopting RINA as an architecture for use in real networks.

1.2 Structure

The chapters are organised in a way that first lays out necessary theoretical
concepts, before describing the frameworks used and the implementation.

Chapter 2 will provide information on the technological background and
specifications of RINA.

Chapter 3 explains the design of the Ethernet shim Distributed IPC Facility
(DIF). It also explains Ethernet in light of RINA, which makes it easier to
understand the requirements of the shim layer.

Chapter 4 describes the simulation framework OMNeT++, and the imple-
mentation of the RINA stack in this simulator framework: RINASim. It also
describes INET, and includes a discussion on how it is included as part of
RINASim.

Chapter 5 delves into the implementation of the Ethernet shim DIF in
RINASim, as well as explaining additional changes that need to be made
in the existing codebase to facilitate the implementation.

Chapter 6 is the evaluation chapter, which various examples of the Ethernet
shim DIF in action. At the end of the chapter is a discussion of the
implementation results.

Chapter 7 provides a conclusion, closing remarks, and some future work
that could be based on the work of this thesis.

3

Chapter 2

Recursive Inter-Network
Architecture

RINA is a network architecture designed to be a complete replacement for
the Internet. It is built upon the principle that networking is IPC, and only
IPC. Similarly to how the Internet works, RINA is built upon a set of layers,
but where the Internet separates mechanisms by scope, RINA provides the
same set of mechanisms within each scope1.

As a consequence of separating mechanisms by scope, the networking
stack of RINA only consists of one generic layer that delivers IPC: the DIF.
Each stacked DIF provides services to its (N+1) DIF2, and the mechanisms
provided are completely isolated within each DIF. The DIF consists of a set
of one or more IPC Processes (IPCPs) that are enrolled. Enrollment happens
through the Common Application Connection Establishment (CACE) phase,
where an IPCP either asks a member of a DIF to join the existing DIF, or
attempts to create a new DIF if no supporting DIF is found. The CACE phase
is carried out using a unified and simplistic management protocol called
the Common Distributed Application Protocol (CDAP). These mechanisms
are handled by various submodules, the most important of which will be
described in section 2.4. The recursive scoping can allow a single DIF to
span several networks, as seen in fig. 2.1.

In RINA, any type of network node is denoted as a Computing System (CS),
whether they are hosts or routers. RINA also operates with the terms Service

1Scope in this context means communication ranges: in the Internet, layers 1
& 2 provide communication between directly connected nodes, while layers 3 & 4
provide communication between indirectly connected nodes through routing and control
mechanisms.

2Note that a local member of the (N+1) DIF may sometimes be referred to as an
“application” in the context of an underlying DIF.

5

CHAPTER 2. RECURSIVE INTER-NETWORK ARCHITECTURE

Data Unit (SDU) and Protocol Data Unit (PDU). SDU signifies a packet that
arrives from an upper DIF or Distributed Application Facility (DAF), before
the protocol data of the current DIF is added, while PDU represents the
packet after the header is added. SDUs are passed to an (N+1) IPCP or
application, while PDUs are passed to an (N-1) IPCP.

Figure 2.1: An example of a RINA network spanning multiple scopes,
from Trouva, Grasa, Day, et al. [7]

Allowing for the use of the same set of mechanisms over different scopes
has a number of advantages compared to the Internet. If the application
requires it, a PDU that is lost in transit may be retransmitted from the
last intermediary node instead of its originating end-point, which could
reduce traffic, which in turn could result in lower congestion, as well as
reducing the time it takes for handling of packet loss. There are also several
security features built into the architecture, e.g. authentication when joining
a DIF and encryption of PDUs. Although the Internet has similar security
mechanisms through Transport Layer Security (TLS) and IPSec, they were
built on top of the architecture, and not as part of it[8].

The mechanisms that deliver these features are controlled by policies, which
in a sense are the parameters of themechanisms, and specific setts of policies
can be requested by the applications that use a DIF to fit the requirements
that the application has for data transfer. An application can for example
configure whether or not a connection requires the receiver to ACK, if it
requires encryption of PDUs, or if it requires additional mechanisms like
retransmission and flow control.

6

2.1. NATURE OF APPLICATIONS AND APPLICATION PROTOCOLS

2.1 Nature of Applications and Application Pro-
tocols

There is amore generalised version of the DIF that is used tomaintain shared
state between applications, which is called the DAF. A DAF consists of two
or more Application Processes (APs) that want to complete some function.
The parts of the AP that are considered to be inside the network, and that
directly utilise underlying DIFs, are called Application Entities (AEs). An AP
can have several AEs to facilitate different kinds of communications for a
given connection. For any form of communication, the stateless application
protocol CDAP is used. CDAP has a simple set of pairs of primitives:
create/delete, start/stop, and read/write. These may be used to
construct any form of distributed application regardless of its needs, whether
they are voice traffic, streaming, online video games, or file transfer. Voice
traffic and online video games may for instance have real-time requirements
where packet loss is accepted, while streaming and file transfer requires the
connection to be reliable with its associated overhead.

To access underlying DIFs, an AP uses the IPC Resource Manager (IRM).
The IRM delegates flow allocation calls to appropriate IPCP, polls the DIF
Allocator (DA) about where to find a requested application, creation of DIFs
and DAFs, and manages the use of flows by AEs. The DA is responsible for
returning a list of DIFs where a destination application can be found.

2.2 Naming and addressing

While many of the proposed early network architectures had more complete
naming schemes3, the incomplete solution of ARPANET was the one that
ended up being the inspiration for the Internet[9]. In ARPANET, there was
a single address used for the interface, which was also used for routing.
The Internet took this further by adding another address as a mapping onto
the data link layer interface address through the network layer: Internet
Protocol version 4 (IPv4) addresses. What makes this problematic, is that
there is no specific node address, making it very difficult to know if two
Internet Protocol (IPv4) addresses belong to the same node. This leads
to the routing tables becoming unnecessarily, since every interface address
would need to be recorded instead of just a node name. Additionally,
multihoming is very difficult to implement, as it requires some additional
external mapping of multiple interface addresses to a unique node address.

3Like CYCLADES, XNS, and OSI[7].

7

CHAPTER 2. RECURSIVE INTER-NETWORK ARCHITECTURE

With directory structures, indirection could be provided to fix the growing
routing tables. The Internet achieves this to some extent through the use
of Network Address Translation (NAT)[10] and private networks, but this
requires the use of additional infrastructure and is not part of the network
layer protocol.

RINA has four identifiers that together form a more complete naming
scheme:

• Application Process Name (APN): A globally unambiguous, but
system dependent name used to reach remote applications of a specific
type.

• Application Process Instance Identifier (API-id): When used
together with the APN, this can specify a specific instance of an AP.

• Application Entity Name (AEN): Identifies a type of AE within an AP.
AEs may have different requirements for data transfer, which is why
they are separated by type.

• Application Entity Instance Identifier (AEI-id): Distinguishes be-
tween different instances of an AE when used together with the AEN.
This could be useful for communication where several streams are
used.

Application Naming Information (ANI) is a four-tuple which contains these
names, forming a complete set of identifiers for naming an application.
However, only the APN must be defined within the ANI and the others
can be left unspecified, but defining these identifiers as well allows more
granularity in regards to controlling exactly where data should be sent. This
set of names provides the IPCP with the means to construct a complete set
of identifiers, which together name the node in the context of a DIF:

• Address: An APN that is unambiguous within the layer4, which can
be used to reach the IPCP.

• Port ID: The identifier of the allocation AE instance, which manages
the flow state through the use of CDAP. This identifier is also used as
a handle for the application utilising the flow.

• Connection End-Point Identifier (CEP-id): The identifier of an
Error and Flow Control Protocol (EFCP) instance. The source and
destination CEP-ids together with the identifier of the QoS cube in use
form the connection identifier, which is used to distinguish between
different flows between the same set of IPCP.

4Layer meaning the set of DIFs that this IPCP can enroll to.

8

2.3. SECURITY

Routing is done by utilising the Address of an IPCP, and the Routing AE of
an IPCP can return a set of underlying ports which can be used to easily
achieve multihoming if required.

2.3 Security

The Internet does not provide any inherent security mechanisms in its
architecture[11]. While IPSec secures data, the nature of how the Internet
is built exposes the addresses and ports, which means that anyone listening
in on the traffic can figure out where it is going. Ports are also not allocated
when needed, but rather subscribed to by an application, and many services
use well-known ports to allow applications to connect to them. While
some of these issues may be mitigated by using overlay networks or Virtual
Private Networks (VPNs), these additional mechanisms are built on top of
the architecture, and not as part of it.

In RINA there are several security mechanisms to mitigate these issues that
are built into the architecture. A few of them are:

• Authentication procedure: To gain access to a DIF, an authentication
procedure is necessary. Only IPCP that are enrolled to the DIF through
this allocation procedure may be used to access an application that is
registered to the DIF.

• Encryption of PDUs: Before being passed to an (N-1) IPCP, PDUs
can be encrypted to mask both the user and protocol data. When an
encrypted PDU passes through an intermediary node with an IPCP
enrolled in the same DIF, that IPCP will need to decrypt the PDU to
figure out where to send it next. This makes it very difficult to figure
out where a PDU is going.

• Random port and CEP-id allocation: The port and CEP-id used for
a flow are randomly allocated. An agent trying to impersonate an
enrolled IPCP would have to know both the port and CEP-id for both
end-points to deliver a SDU to a registered application.

2.4 Networking in RINA

As mentioned in the beginning of this section, RINA is built upon the
principle that networking is only IPC. Through the use of a more specialised
set of mechanisms, the IPCP can transfer data in any form that an overlying

9

CHAPTER 2. RECURSIVE INTER-NETWORK ARCHITECTURE

application may require. In addition to the mechanisms provided for APs,
the IPCP has a Flow Allocator (FA), an internal Resource Allocator (RA),
and a set of modules that allow data transfer. All of these can be seen
as AEs responsible for different aspects of management within the IPCP.
The IPCP has a set of five Application Programming Interface (API) calls,
that can be used to manage or utilise connections: allocateRequest,
allocateResponse, deallocate, send, and receive.

Figure 2.2: Components of an IPCP, from [12]

The FA is responsible for the creation and management of flows, and it is
the module that handles the Allocate_Request, Allocate_Response and
Deallocate API primitives. The Allocate_Request call takes source and
destination APN, as well as a set of QoS requirements, and returns a port
ID to use as a handle to refer to the allocated flow. The given set of
QoS requirements dictates the mechanisms that the flow will utilise. An
Allocate_Response is returned after flow allocation completes, indicating
whether it failed or succeeded. When allocating a flow, the FA creates an
FA Instance (FAI) that manages a flow from creation until deletion.

A central element in RINA is the use of QoS cubes to keep track of the
capabilities of a flow. A QoS cube contains information such as how much
data throughput a flow supports, how many SDUs it can send, how high
the error rate is, and more. An application may request a certain set of
QoS capabilities through the QoS requirements parameter supplied with
the allocateRequest primitive, but it is up to the IPCP to decide which
resources are allocated based on the current load.

10

2.4. NETWORKING IN RINA

The QoS cubes are managed by the RA, which is also responsible for
reallocating resources within the IPCP. The RA communicates with the
components of an IPCP to manage mechanisms like maximum throughput
of ports, to which underlying ports flows are assigned, and regulating the
capabilities of individual flows.

The module that enables data transfer within the DIF is the EFCP. On
finalisation of flow creation, an EFCP Instance (EFCPI) is created to manage
the state of data transfer in a connection. An EFCPI has two submodules:
Data Transfer Protocol (DTP) and Data Transfer Control Protocol (DTCP).
DTP is mandatory, and is responsible for mechanisms that are tightly bound
to the PDU. Tightly boundmeans that the same state needs to be maintained
on both ends of a connection, and therefore stored as part of the protocol
header data of the PDU, like the PDU sequence number. DTCP however, is
not mandatory, and is responsible for loosely bound mechanisms, which are
maintained by each IPCP. These mechanisms are not directly related to the
PDU, such as retransmission and flow control.

EFCP is heavily inspired by Richard Watson’s Delta-t protocol[13], where
connection and synchronisation are completely decoupled. Its essence is
that connections always exist, and that synchronisation only requires an
upper bound on three timers: Maximum Packet Lifetime (MPL), maximum
time to wait before sending ACK (A), and the maximum time before not
sending any more retries (R). ∆t = MPL + A + R, and synchronisation
is computed as 3∆t for the sending end, and 2∆t for the receiving end. If
synchronisation is broken due to the expiration of these timers, the DTCP
state information is discarded. After this expiration, resynchronisation can
easily be achieved by sending a PDU with the Data Run Flag (DRF) set,
which signals the start of a new “data run”.

There are two additional modules that directly operate on incoming SDUs
and PDUs: the delimiter module, and the Relaying and Multiplexing
Task (RMT). The delimiter module makes sure SDUs from an overlying
application do not exceed the size permitted by the QoS cubes of an IPCP. It
is also instantiated as part of a flow, and depending on the QoS requirements
imposed on the flow, additional mechanisms like partial delivery5 can be
enabled.

The RMT is the last step6 before passing a PDU to the medium or an
underlying IPCP. It can also multiplex PDUs to achieve multihoming, where
the PDUs may be routed over several different paths, which may be desirable
when redundancy is required.

5Where partial delivery denotes passing fragmented SDUs to an upper IPCP or
application without waiting for an entire SDU to be reassembled.

6PDU encryption happens later still if it is enabled.

11

CHAPTER 2. RECURSIVE INTER-NETWORK ARCHITECTURE

2.5 Deployment

While a full-scale deployment of this networking architecture is unlikely to
be seen in the coming years, gradual migration is possible. Through the
use of translation layers, the RINA stack could be deployed on top of legacy
architecture. There are several translation layers — or shims — specified
as part of the RINA specification[12], two of which support translation
over Ethernet and TCP/IP. With the implementation of these shims, nodes
supporting the RINA stack could communicate with each other over the
already existing Internet infrastructure.

12

Chapter 3

Design of the Ethernet shim DIF

The goal of this chapter is to provide a thorough description of the design
requirements for the Ethernet shim DIF. It must deliver an identical API
to the API of a normal DIF, and should not require an upper IPCP to act
differently in any way. The structure of the chapter is based on and set
similarly to the design document for the Ethernet shim DIF[12], and will
first give a description of the Ethernet protocol in terms of RINA, before
describing the design of various components and the state transitions that
are expected within the shim IPCP.

3.1 Inter-Process Communication in Ethernet

Ethernet, which encapsulates the link and physical layers of the TCP/IP
stack, can be seen as a DIF in terms of RINA. In its most basic use-case,
it allows communication between two end-points directly connected over
medium, similar to how the lowermost DIF in a normal RINA configuration
would. The next set of layers of the TCP/IP stack, the network and transport
layers, can be seen as yet another DIF.

Ethernet is very minimal, and supplies no explicit control mechanisms on its
own apart from checksum verification, through the use of which a datagram
may be dropped if the computed checksum does not match the one supplied
as part of a frame. At its core, only source and destination Media Access
Control (MAC) addresses, Ethernet type, and the aforementioned checksum
are part of the datagram, but an IEEE 802.1Q tag may optionally be added
to support Virtual Local Area Networks (VLANs). A VLAN allows traffic to be
isolated from other VLANs spanning the same Ethernet segment. In terms
of RINA, this allows several DIFs to exist over the same Ethernet segment,

13

CHAPTER 3. DESIGN OF THE ETHERNET SHIM DIF

0 16 19 20 31

Tag Protocol Identifier Tag Control Information

PCP
D
E
I

VLAN Identifier

Figure 3.1: The IEEE 802.1Q VLAN tag

which is relevant when utilising switches or bridges. The VLAN tag can be
seen in fig. 3.1. The “Tag Protocol Identifier” is set to 0x8100 in order to
identify the tag, and otherwise only the “VLAN identifier” is relevant.

There is no explicit enrollment phase in Ethernet, and datagrams may be
sent to any host connected over the same Ethernet segment, provided the
destination MAC address is known. MAC addresses can be thought of as
CEP-ids, but while CEP-ids in an IPCP are set upon flow creation, a MAC
address is set when an interface is manufactured. Additionally, there is
no mechanism for the allocation of flows, and only the destination MAC
address is required to be supplied for a datagram to reach its destination.
This means that any “member” of an Ethernet segment can freely send to
other members, which has security implications.

Since the only identifiers for traffic are source and destination addresses,
Ethernet only supports one flow per destination, and this flow has no
guarantees for reliability apart from dropping SDUs if the Frame Check
Sequence (FCS) does not match with computed Cyclic Redundancy Check
(CRC) of the frame. An Ethernet interface therefore only supports one QoS
cube that is unreliable, where many of the QoS parameters are dependent
on the standard that it supports, like average bandwidth and delay.

The unreliable QoS cube provided by the Ethernet shim DIF can be seen
in fig. 3.2. There are no guarantees in regard to whether any Ethernet
frames will be received in order, and all supplied SDUs from an application
must be within the Maximum Transmission Unit (MTU) provided by the
Ethernet interface, which is normally 1500 bytes.

Logical Link Control (LLC) can be utilised to let several applications use
the same DIF through the use of Service Access Point (SAP) identifiers. This
mechanism could also be used to support multiple flows between two hosts,
and the Destination Service Access Point (DSAP)/Source Service Access
Point (SSAP) pair can be seen as CEP-ids instead of the MAC address. The
header format used for LLC can be seen in fig. 3.3. LLC will not be used in
this specifications, but a new shim DIF could be defined in the future that
makes use of it.

14

3.1. INTER-PROCESS COMMUNICATION IN ETHERNET

Name unreliable
Average bandwidth Depends on standard
Average SDU bandwidth Depends on standard
Peak bandwidth duration Depends on standard
Peak SDU bandwidth duration Depends on standard
Burst period Depends on standard
Burst duration Depends on standard
Undetected bit error rate Depends on standard
Partial delivery No
Incomplete delivery No
Order No
Max allowable gap in SDUs Any
Delay Depends on standard
Jitter Depends on standard

Table 3.2: Unreliable QoS cube supplied by Ethernet shim DIF, based on the
QoS cube definition of the shim DIF over IEEE 802.1Q of Investigating RINA
as an alternative to TCP/IP (IRATI)[14].

DSAP SSAP Control Information
1 byte 1 byte 1–2 bytes M bytes (M ≥ 0)

Table 3.3: An LLC header

15

CHAPTER 3. DESIGN OF THE ETHERNET SHIM DIF

Figure 3.4: An illustration of an Ethernet shim DIF as a peer-to-peer DIF[12]

3.2 Ethernet shim layer

Based on the previous section, we can set the requirements for a shim layer
over Ethernet. The aim of the shim DIF should not be to deliver more than
what the Ethernet standard in use is able to manage, and this particular
shim DIF is meant to support running over interfaces that support the IEEE
802.3 standard. The QoS that the shim DIF is able to deliver is dependent
on the specific IEEE 802.3 standard supplied, and is therefore limited by the
capabilities of the physical medium. Each shim DIF is specified by a VLAN
(IEEE 802.1Q) tag, and each VLAN is a separate DIF. It is also assumed
that all traffic passing within this VLAN is exclusively shim DIF traffic. All
members of a VLAN are assumed to be members of the same shim DIF, and
as such any shim IPCP that joins a VLAN is enrolled in the shim DIF.

As specified in the previous section, the only identifiers supplied by Ethernet
are source and destination addresses. It is therefore only possible to
distinguish between different destination and source end-points. The
consequence of this in terms of RINA, is that only one flow is supported
per end-point in the Ethernet shim DIF. Support for multiple flows per end-
point could be added through the implementation of a shim DIF over LLC,
but this shim DIF will make use of Ethernet directly.

A direct implication of only supporting one flow per peer is that just one
(N+1) IPCP may make use of an underlying Ethernet shim IPCP at a
time. This is because there is no way to distinguish between several end-
points when an incoming frame only supplies source and destination MAC
addresses.

16

3.2. ETHERNET SHIM LAYER

MAC dst MAC src 802.1Q tag Ethertype Payload FCS
6 bytes 6 bytes 4 bytes 2 bytes 42–1500 bytes 4 bytes

Table 3.5: Ethernet II frame header format

Supporting only one application also directly ties in with the directory
mechanism, as the shim DIF will utilise the Address Resolution Protocol
(ARP)1 in request/response mode to manage address translation. ARP
binds the application name of the overlying IPCP to the MAC address of
the Ethernet interface that the shim IPCP works on top of. This mapping
of application name to MAC address is essentially the same as the directory
functionality already supplied in RINA through the DA, wherein an upper
application name is mapped to a lower IPCP application name.

For an application to be discoverable, it needs to explicitly register with
the Ethernet shim IPCP. The binding of an application name to a MAC
address happens during application registration, and when no application
is registered the shim IPCP will discard all incoming SDUs. The application
name is registered as a static entry with ARP on registration, and as such no
ARP responses will be sent if no application is registered.

Since communication over the shim DIF only spans one Ethernet segment,
it is only possible to communicate with directly connected nodes — where
“directly” in this sense may encapsulate switches or bridges. Switches may
allow many shim IPCPs to be part of the same segment, and subsequently
the same DIF.

It should be noted that this design specification is minimal and does not
describe how to secure the network. Security is a very central part of RINA,
but due to the shim layer only providing the smallest possible DIF API on
top of Ethernet, other layers need to enforce security mechanisms. The
Ethernet protocol family provides very little in terms of security[15], but
if PDU encryption is enforced by the upper DIF this does not result in any
significant security risk.

3.2.1 Ethernet frame header

This is an explanation of the fields of an Ethernet frame in terms of
RINA[12]:

1ARP is traditionally used for address translation between IPv4 and MAC addresses in
IPv4 networks.

17

CHAPTER 3. DESIGN OF THE ETHERNET SHIM DIF

• DestinationMAC address: TheMAC address assigned to the Ethernet
interface that the destination shim IPCP is bound to.

• SourceMAC address: TheMAC address assigned to the local Ethernet
interface that the source IPCP is bound to.

• 802.1Q tag: The DIF name.
• Ethertype: While not explicitly necessary for the operation of the shim

DIF as all the traffic in the VLAN is assumed to be shim DIF traffic,
0xD1F0 is supplied as the type for Ethernet shim DIF traffic.

• Payload: The SDUs of the upper DIF are carried here. It is imperative
that the MTU is enforced by the upper DIF, as no fragmentation or
reassembly functions are performed by the Ethernet shim DIF. The
MTU is normally 1500 bytes, but may be larger if jumbo frames are
used.

• FCS: This acts as it normally would, and works as one of the
only control mechanisms in the shim DIF since invalid frames are
discarded.

3.2.2 IPCP API in the Ethernet shim DIF

The core API provided by the shim DIF should be identical to a normal DIF.
RINA supports a wide range of mechanisms that can be configured, and a
normal IPCP can supply the same mechanisms as the Ethernet shim IPCP if
required. The shim IPCP can be seen as a specialised form of a normal IPCP.
The core API consists of these five functions[16]:

allocateRequest(destination, source, QoS, port-id) ⇒ reason
• When issued by a registered application on the shim IPCP, this

will attempt to resolve an address. When the address resolution
either fails or completes, an allocateResponse is issued with the
appropriate result, resulting in either failed or successful flow
allocation.

• When issued by the shim IPCP on the registered application,
flow allocation happens like it normally would. This happens
whenever an Ethernet frame arrives from a new shim IPCP.

allocateResponse(destination, QoS, port-id) ⇒ reason
• When issued by the shim IPCP, this signifies that address

resolution is completed and has either succeeded or failed, and
the application responds accordingly.

• When issued by the registered application, a positive response
will result in the shim IPCP passing waiting SDUs, while a
negative one will discard all waiting SDUs.

18

3.2. ETHERNET SHIM LAYER

deallocate(port-id) ⇒ reason
• When issued by the registered application, this will remove all

state associated with the flow in the shim IPCP.
• When issued by the shim IPCP to the registered application2, the

flow will be deallocated normally.

send(port-id, buffer) ⇒ reason
• When issued by the registered application, an SDU will be passed

to the shim IPCP and the shim IPCP will wrap the SDU in an
Ethernet frame and pass it to the Network Interface Card (NIC).

• When issued by the shim IPCP, an SDU is passed on to the
application.

receive(port-id, buffer) ⇒ reason
• When issued by the registered application, a waiting SDU will be

passed to the application by the shim IPCP.
• When issued by the shim IPCP, a waiting PDU will be passed to

shim IPCP by the application.

The Ethernet shim IPCP is also required to supply some registration mecha-
nism to make an application discoverable through the ARP directory mech-
anism. This could be added as the function registerApplication(name),
which returns false if an application is already is registered, and true if not,
where it subsequently adds a static entry to the ARP cache that are used
as part of ARP responses and requests. This also requires the upper IPCP
to have some awareness of whether the underlying IPCP is specifically an
Ethernet shim IPCP.

The next subsection will describe these API calls in terms of the state
machine supplied in fig. 3.6 to make the transitions clearer.

3.2.3 State diagram

There are four states with corresponding transitions that need to be
implemented as seen in fig. 3.6: NULL, INITIATOR ALLOCATE PENDING,
RECIPIENT ALLOCATE PENDING, and ALLOCATED. A port ID that corresponds
with a flow will also have an associated state variable, which determines the
outcome of invoked actions. This state diagram is based on the one found
in Vrijders, Trouva, Day, et al. [12], but has some added clarifications. Note
that while deallocate is omitted from the state diagram, the primitive may
be invoked in any state aside from NULL. In the state diagram, a submit
suffix denotes any primitive invoked on the shim IPCP.

2This may happen when an ARP request fails after attempting address resolution after
the flow is allocated

19

CHAPTER 3. DESIGN OF THE ETHERNET SHIM DIF

NULL

RECIPIENT
ALLOCATE
PENDING

INITIATOR
ALLOCATE
PENDING

ALLOCATED

allocateRequest.submit /
ARP request

Ethernet Frame /
allocateRequest.deliver

allocateResponse.submit (+)

allocateResponse.submit
(-)

ARP response or ARP request /
allocateResponse.deliver (+)

ARP timed out /
allocateResponse.deliver (-)

Ethernet frame / send.deliver
receive.submit / Pass up incoming Ethernet Frame

send.submit / Send Ethernet frame

ARP timed out /
deallocate.deliver

Figure 3.6: Ethernet shim DIF state diagram

20

3.2. ETHERNET SHIM LAYER

When any port transitions to the NULL state, all corresponding data including
queues and their contents are removed.

The following elements are specifications of the state transitions part of the
state diagram from fig. 3.6.

allocateRequest(namingInfo).submit
This primitive is called by a registered source application on the shim
IPCP to request a new flow. It requires the port to be in the NULL
state, otherwise a negative allocateResponse.deliver primitive will
be returned.
If a port ID for a flow already exists with the given destination
application and is in the ALLOCATED or INITIATOR ALLOCATE PENDING,
a negative allocateResponse.deliver is returned. Otherwise, the
shim IPCP asks ARP to resolve the destination namingInfo. If an
entry exists in the ARP table, the port ID transitions to ALLOCATED
state, and data transfer may begin. If no entry is found, ARP sends an
ARP request, and the port ID transitions to the INITIATOR ALLOCATE
PENDING.

allocateResponse(reason).submit
This primitive is called by a destination application in response to an
allocateRequest(namingInfo).deliver from a shim IPCP.
If the response is positive, a flow has been established in the upper
IPCP, and the port ID transitions from RECIPIENT ALLOCATE PENDING
to the ALLOCATED state. If the response is negative, flow allocation has
failed, as indicated by the reason parameter.

ARP request
This action is emitted from the ARP protocol machine when address
resolution has been attempted but no corresponding mapping was
found.
If a port ID is in the INITIATOR ALLOCATE PENDING state and an ARP
request arrives from the corresponding destination application, the
state transitions to ALLOCATED.

ARP response
This action is emitted by the ARP protocol machine after an
ARPRequest has been received with a destination application that
matches the application that is registered to this shim IPCP.
If a port ID corresponding to the source application is in the INITIATOR
ALLOCATE PENDING state, ARP populates the directory with a new
entry, mapping the source application name to the source MAC
address. The port ID then transitions to the ALLOCATED state, and
a positive allocateResponse.deliver is delivered to the application.

21

CHAPTER 3. DESIGN OF THE ETHERNET SHIM DIF

ARP timed out
This action is emitted by the ARP protocol machine after no ARP
response has been received.
If the port ID is in the INITIATOR ALLOCATE PENDING state, a negative
allocateResponse.deliver is returned, and the port ID transitions
to the NULL state. If the port ID is in the ALLOCATED state, a
deallocate.deliver primitive is emitted to the registered IPCP, and
the port ID transitions to the NULL state.

Ethernet frame
An Ethernet frame is sent by another shim IPCP, holding an SDU a
remote application.
If an Ethernet frame is received from a MAC address that does
not correspond to any port ID, the packet is queued and a port
ID is allocated and set to the RECIPIENT ALLOCATE PENDING state.
An allocation request is then passed to the registered IPCP. If the
allocation response is positive, the port is set to the ALLOCATED state
and queued packets are passed onwards to the application. If the
allocation response is negative, the port is deallocated and relevant
data discarded.

receive.submit
This primitive is invoked when an application wants to receive an SDU.
A receive.submit request can be called when the port ID is in the
ALLOCATED state, otherwise it will be discarded3. Each frame only
transports one SDU, as the IPCP does not provide mechanisms like
concatenation and fragmentation.

send.submit
This primitive is invoked when an application wants to send one or
more PDUs.
A send.submit request can be called when the port ID is in the
ALLOCATED state. The shim IPCP will create an Ethernet frame and
pass it to the NIC. An SDU must not exceed the MTU of the bound
NIC, as the shim IPCP does not fragment outgoing SDUs.

deallocate.submit
This primitive is invoked whenever an application needs to deallocate
a flow. This discards the state associated with the port ID in the local
shim IPCP, and sets it to the NULL state. It may be invoked when the
port ID is in any state apart from NULL.
Note that the shim IPCP has no way of passing a deallocation request
to a remote shim IPCP, and any Ethernet frames arriving from the

3Note that a read primitive invocation should never happen in a normal IPCP when flow
allocation is not completed for a given flow. The same principle goes for the write primitive.

22

3.2. ETHERNET SHIM LAYER

same remote shim IPCP that had its associated state discarded will
trigger a new allocateRequest.submit from the local shim IPCP to
the application. It is therefore the responsibility of both the source and
destination applications to call the deallocation primitive concurrently
when required.

3.2.4 Notes on state machine

The original design document for the shim IPCP over Ethernet[12] specifies
that when a port ID receives a negative allocateResponse.submit, all
future frames from the remote application will be ignored until the remote
flow is deallocated. Since there is no way to notify another shim IPCP
that deallocation has occurred, this is impossible, and any new incoming
Ethernet frameswill reinitiate the flow allocation procedure. For this reason,
it has been omitted from the state transition description.

23

Chapter 4

Simulation framework and model
libraries

4.1 OMNeT++

OMNeT++ is an open-source discrete event simulation framework written
in C++ that supports accurately modelling networking scenarios and pro-
tocols. Since everything in discrete event simulation happens as a sequence
of events, networking code can be reduced to its bare essentials, unhin-
dered by complex processing systems’ requirements for critical sections and
hardware limitations. This makes it ideal for accurately modelling proposed
experimental protocols, and discovering edge cases.

A vast array of features is provided by OMNeT++. Its core functionality is
the modularisation of components, where each module has the possibility
to create gates that can be bound to other modules’ gates. When bound,
the modules are able to send any form of data directly through objects
with the classes cMessage or cPacket. While they can be directly defined
through creating classes that inherit from cMessage or cPacket, the
preferred method is to use a specialised syntax for message definitions that
automatically generate C++ code compiled from .msg files with the tool
opp_msgtool. These message types can also be further customised in C++
source files by explicitly defining a @customize tag.

OMNeT++ allows developers to create modules that are connected through
gates, that can send each other packets, similar to a real network. This
means that one could have various protocol machines, each responsible for
one protocol. In RINASim, each of the major components (as seen in fig. 2.2
for an IPCP) have their own module or set of modules that communicate

25

CHAPTER 4. SIMULATION FRAMEWORK AND MODEL LIBRARIES

with each other through sending messages, direct method calls or signals.
The interactions between the modules can be visualised in the Qtenv tool.
The simulation is processed as a set of events in discrete time, where each
event is the transmission of a message from one module to another using
the send() method.

The view supplied by Qtenv has many fields that let a user monitor the state
of a simulation, as seen in fig. 4.1. The view consists of an event log, a view
that contains the parameters of a module, the simulation view, and a toolbar
with various buttons to control the simulation. Attributes in the C++ source
code can be added to the parameter view by utilising the WATCH family of
macros, with WATCH_MAP being utilised to view the contents of maps. The
simulation view shows packets being transmitted when an event occurs,
other interactions between modules, and changes to the topology during
simulation runtime.

For setting up modules and their connections, a specialised language called
Network Description (NED) is used. Modules defined in NED files can be
compound modules or simple modules, and each module can have a set of
parameters, gates, submodules, and definitions of gate connections. While
defined in NED files, their interaction needs to be defined in C++ source
files. Compoundmodules may consist of any numbers of submodules, which
in turn may be either simple or compound modules. A compound module
does not need to be defined in C++ sources, as packets may be passed
directly to submodules for processing.

The main form of communication between modules, and what earns
the simulation framework the status of being a simulator, is the send()
function, which takes a gate and an object inherited from cMessage.
Modules implement the handleMessage() function to control what happens
to incoming messages, and these messages may contain any form of
information.

Channels may also be explicitly defined between gates to allow specific
parameters to be set for connections. There are three basic types of channels
that can be extended, where parameters for delay, data rate and bit error
rate may be customised. This way, unreliable links may be modelled,
which allows the simulation of protocols that supply some form of reliability
mechanisms, such as TCP.

OMNeT++ also supplies a signalling mechanism, where modules can
subscribe to and emit signals. Signals are declared in NED files using the
@signal tag, and emitted through the use of the emit function call in C++
source files. They are used for collecting statistics, publish/subscribe style
communication between modules, and more[17]. Signals can be defined as

26

4.1. OMNET++

Figure 4.1: The Qtenv simulation environment

27

CHAPTER 4. SIMULATION FRAMEWORK AND MODEL LIBRARIES

statistics by using the @statistic tag in NED files, which allows features
such as controllable detail level, aggregation, and more. The behaviour
of signals in OMNeT++ is very similar to the behaviour of function calls
aside from the publish/subscribe, as a signal emission results in immediate
execution of code in the subscribed modules.

4.2 RINASim

RINASim is an open-source[18] simulation model library for OMNeT++
that implements the components of RINA. It has two main goals: to allow
researchers to prototype new policies, and to allow anyone with an interest
in the concepts of RINA to visualise and understand them. It began as a
deliverable of the FP7 EU Pristine project, which aims to implement RINA
on various platforms, and to demonstrate the benefits that may be achieved
compared to the traditional TCP/IP stack.

RINASim has a significant amount of user-configurable policies included
as part of the project. There are many example network configurations
making use of various policies, and several different CS models that can
be used to easily set up networks. Separation of policy and mechanism is
achieved through inheritance, where policy modules have a set of fixed API
functions that are called by the fixed parts of an IPCP, allowing the user to
specify which policies to use when configuring the network. The core set
of mechanisms are defined in the “core” library, which is maintained in the
src subdirectory. During the linking phase, the policies — stored in the
policies subdirectory — are linked together with the core library to create
the librinasim library.

Many function calls between modules in RINASim are made through
the use of signal mechanism provided in OMNeT++, including the
allocateResponse primitive. Since several modules may be subscribed to
one signal, a signal invocation may also be useful to notify several modules.

Names in RINASim must be statically defined as part of the network
configuration. The DIFAllocator module1 must also explicitly be provided
with information about which underlying IPCPs should be used.

RINASim attempts to model RINA closely, and the core functionality is
partitioned into the two main concepts: the DIF and the DAF. The various
interacting submodules of IPCP and APs are laid out in a way that allows
the user to see which parts interact with each other in a clear way during a

1Which is the representation of the DA in RINASim.

28

4.2. RINASIM

Figure 4.2: The components of an IPCProcess in RINASim[20]

simulation run. Since only the DIF implementation provided is relevant to
the scope of this thesis, the implementation of the DAF will not be covered
here. The following sections are based on the information found in Veselý,
Marek, and Jeřábek [19], section 5.4. The figures are taken directly from
Qtenv when running simulations in RINASim.

4.2.1 Distributed IPC Facility in RINASim

The IPCProcess module in RINASim is a compound module that con-
sists of a set of submodules: EFCPModule, RelayAndMux, FlowAllocator,
ResourceAllocator, RIBDaemon, and Enrollment. These submodules in
turn have their own set of submodules that represents different functionality
in RINA. The modules are laid out in a layout that provides clear visualisa-
tion of their interaction, similar to the ordering of components in fig. 2.2,
with data transfer components on the left-hand side and layer management
components on the right. All of the components of the IPCProcess module
can be seen in fig. 4.2.

None of the API calls of the DIF are called explicitly on the IPCProcess, but
instead on the relevant submodules. The primitive allocateRequest is rep-
resented as the function receiveAllocateRequest() in the FlowAllocator

29

CHAPTER 4. SIMULATION FRAMEWORK AND MODEL LIBRARIES

Figure 4.3: The FlowAllocator module, with two FAIs

module, while the allocateResponse and deallocate primitives are signals
and caught by the targeted IPCProcess module in a CS. The send primitive
is encapsulated by the send() function that is part of OMNeT++, while
the receive primitive is implemented by specialising the handleMessage()
function inherited from the cModule type.

The IPCProcess module allows a user to specify the QoS parameters
that are wanted for flows, which will also dictate which mechanisms are
enabled in the submodules. This is supplied as an argument for the
ResourceAllocator on network configuration.

Flow Allocator

The FlowAllocator module seen in fig. 4.3 is a representation of the
mechanisms supplied by the FA. It is responsible for the allocation and
deallocation primitives that are part of the IPC API of the DIF. When flow
allocation or deallocation is requested, the FlowAllocator handles the
request. It then initiates the cace phase through the Enrollment module
if not already enrolled with a neighbour on the path to the target CS. If a
management flow already exists, it proceeds to flow allocation, where an
FAI is created that will manage the flow through its lifetime.

30

4.2. RINASIM

Figure 4.4: The ResourceAllocator module

The FAI module is responsible for creating gates and binding them, creating
EFCPI, and handling deallocation. An FAI will listen to a set of signals
associated with the allocateResponse primitive, which are emitted by a
FAI submodule of an underlying FlowAllocator upon either successful or
failed allocation.

Resource Allocator

The ResourceAllocator module seen in fig. 4.4 manages allocation of
underlying flows, and starts the CACE phase if an underlying management
flow has been successfully allocated. It maintains information about
underlying flows in a table called the NM1FlowTable. Whenever a flow is
allocated by the FlowAllocator it will check the NM1FlowTable for a flow
that matches the QoS requirements in an underlying DIF that can be used to
reach a remote IPCProcess. It is also responsible for notifying various other
components about changes in network capabilities, for instance notifying
the RelayAndMux module about changes in the PDU forwarding policy.

It also has responsibility for activating the required policies for flows based
on which QoS cube is in use, and also keeps track of the QoS cubes that the
IPCProcess supports.

Error and Flow Control Protocol

The EFCPModule module seen in fig. 4.5 manages created EFCPIs, which
create PDUs for transmission. An EFCPI submodule contains the DTP and
DTPState submodules, where DTP is responsible for constructing PDUs, and

31

CHAPTER 4. SIMULATION FRAMEWORK AND MODEL LIBRARIES

Figure 4.5: The EFCPModule module

DTPState contains the state associated with the connection. EFCPIs can
have varying requirements for state. These requirements are defined when
an application passes its QoS requirements, which will control whether
a DTCP module is created. The DTP module will ask the DTCP module to
perform retransmission and flow control if required. The DTPState contains
information that must be shared between the DTP and DTCP modules.

On creation of an EFCPI, a Delimiting module instance is also created.
The Delimiting module is responsible for fragmentation and encapsula-
tion, and produces UserDataField packets from SDUs from the upper layer,
which is passed on to an associated EFCPI. Similarly, a EFCPI module passes
UserDataField packets to its associated Delimiting module for concatena-
tion2. To determine if an incoming SDU from an upper IPCProcess has to
be fragmented, the maxSDUsize parameter of the EFCPModule is used.

The EFCPModule module also contains a module MockEFCPI, which handles
incoming management requests from remote systems directed to the
containing IPCProcess. MockEFCPI will pass on received messages to the
RIBDaemon module. This module is required to allow the IPCProcess to
receive CDAP management messages.

Enrollment

The Enrollment module seen in fig. 4.6 handles the initial part of communi-
cations between two IPCProcess modules, which means it starts the CACE

2Concatenation will only be enforced if required by the associated QoS cube.

32

4.2. RINASIM

Figure 4.6: The Enrollment module

phase. It utilises a table to hold information about various neighbouring
IPCProcess it is connected to, which is called the EnrollmentStateTable.
The Enrollment module constructs CDAP messages, which it passes on to
the CommonDistributedApplicationProtocol module for sending, which
is part of the RIBDaemon module.

RIB Daemon

The RIBDaemon module seen in fig. 4.7 handles all management requests,
and notifies relevant modules about incoming management requests that
concern them through a set of “notifiers”. Incoming messages are parsed
and forwarded to the relevant notifier, e.g. flow creation requests/responses
to the FANotifier, or connection and enrollment requests/responses to the
EnrollmentNotifier.

Relaying and Multiplexing task

The RelayAndMux module seen in fig. 4.8 is a representation of RMT, and its
main task is to either relay PDUs to modules within the current IPCProcess,
or to pass them to the correct outgoing port. An incoming PDU from a port
to an (N-1) DIF will be subject to one of the following actions:

• If the address is not the address of this IPCP, it sends the PDU
according to the PDU Forwarding policy that is in use. This also goes
for outgoing PDUs originating from this IPCP.

• If the address is the same as the address of the containing IPCP, the
PDU is passed to the EFCPI module that corresponds with the (N+1)
port in the PDU header.

33

CHAPTER 4. SIMULATION FRAMEWORK AND MODEL LIBRARIES

Figure 4.7: The RIBDaemon module

Figure 4.8: The RelayAndMux module

34

4.3. INET

4.3 INET

INET is an open-source model library that utilises OMNeT++. It aims to
supply a realistic simulation environment for the TCP/IP stack[21]. INET
supplies a set of models for TCP, UDP, IPv4, Internet Protocol version 6
(IPv6), and more. It also supports wired and wireless link layer protocols
such as Ethernet, Point-to-Point Protocol (PPP), IEEE 802.113, and more.
There are also several simulation model libraries that utilise models from
INET, where SimuLTE is one example for simulation of Long-Term Evolution
(LTE) networks.

INET supplies extensions on top of the packet API of OMNeT++, adding
the use of “chunks”, which essentially represent header fields to more
easily manage construction, duplication, fragmentation and serialisation of
packets[22]. These packets are sent ordinarily through the send() function
from OMNeT++, but can also easily be connected with real interfaces to
achieve Hardware-In-the-Loop (HIL) simulation, which can be useful for
validating simulation models. This only works when all the elements of a
chunk supply their own serialisation functions.

A central part of this packet API is the addition of packet tags, which is
metadata that protocol machine modules in INET can utilise to add specific
information to the headers they supply. For instance, a MacAddressReq
tag must be added to supply information about a destination MAC address
before passing a packet to a NIC module.

4.3.1 Integration into RINASim

Initially the Ethernet shim DIF implementation was only meant to be
integrated with INET version 3.6.7, which uses the original packet API
of OMNeT++. This implementation worked, but as VLANs were not
supported as part of this INET version, it was not feature-complete according
to the specifications defined in section 3.2. The reason that this version
was picked first, was that the new packet API seemed to be very difficult to
integrate with RINASim because packets needed to be compatible with the
new Chunk types, which the packets that were part of RINASim were not.
The cPacketChunk was eventually discovered as part of the newer INET
version 4 through its documentation, which allows a normal cPacket to be
wrapped in a Chunk packet type. This ended up being used for SDUData
packets passed to the Ethernet shim IPCP in RINASim.

3The standard for wireless interfaces.

35

CHAPTER 4. SIMULATION FRAMEWORK AND MODEL LIBRARIES

There was also a choice of whether the INET modules that were needed
should instead be migrated to RINASim. Both including INET and fully
migrating the modules has their own set of advantages and challenges.
Migration requires additional development work, but could likely make it
easier to integrate RINA with the self-made Ethernet services, and binary
sizes and compilation times remain smaller than with the alternative.
Including the INET framework makes it so RINASim is no longer a stand-
alone framework, and additional work may be needed to fit RINASim
modules onto the API of INET modules. In terms of functionality however,
it is preferable to integrate RINASim with INET, since INET is continually
being developed to support an exhaustive list of protocols that are in use in
real TCP/IP networks. With full integration between the libraries, advanced
simulation scenarios could be constructed that more accurately demonstrate
the challenges with adopting RINA on existing infrastructure.

The modules that are used from INET in the implementation of this thesis
are the following:

EthernetInterface
This module represents an Ethernet interface. It may be represented
as Ethernet II, or any of the main IEEE 802.3 standards. It provides a
simple interface that acts identically to an Ethernet NIC, including
discarding packets if carried FCS is different from computed FCS.
An instance of this module with the IEEE 802.1Q standard enabled
through the use of the qEncap module can be seen in fig. 4.9.

EtherSwitch
This module is a normal Ethernet switch, allowing multiple computing
systems to communicate over the same Ethernet segment.

MessageDispatcher
This module relays packets to the correct module based on protocol
information, which is controlled through a set of static functions
registerService() and registerProtocol() that need to be called
by modules on network initialisation. Protocols are registered through
these calls by corresponding modules, and the MessageDispatcher
passes them based on target output and input gates.

There are also several classes from INET that are used in various parts of the
implementation that will be defined in the next chapter. Among the most
relevant ones are:

MacAddress
The representation of aMAC address from INET. Supplies a set of static
instantiations UNSPECIFIED_ADDRESS and BROADCAST_ADDRESS.

36

4.3. INET

Figure 4.9

37

CHAPTER 4. SIMULATION FRAMEWORK AND MODEL LIBRARIES

VlanReq
A type of packet tag that supplies information about which VLAN ID
should be used for a VLAN tag. This is supplied before passing a packet
to an Ethernet NIC.

MacAddressReq
Another type of packet tag, which allows the addition of source and
destination MAC addresses. This must be supplied for packets before
they are sent to a NIC.

PacketProtocolTag
This needs to be added for protocols that have protocol information
fields in their header that supplies information about the protocol used
from the upper layer. For protocols utilising Ethernet for instance, this
tag must be set to a valid member of ProtocolGroup::ethertype.

ProtocolGroup::ethertype
An Ethernet NIC will check whether a packet passed from an upper
layer contains a valid ethertype, and will drop packets if they do not
contain an ethertype that corresponds to this group. Any module may
register new protocols as part of ProtocolGroup::ethertype, which
is relevant for RINASim with the ethertype 0xD1F0, as defined in the
Ethernet shim IPCP design chapter.

38

Chapter 5

Implementation of the Ethernet
shim DIF

This chapter describes the implementation of the Ethernet shim DIF,
including changes that were made to RINASim during the implementation
process. First, the interactions between the components of the Ethernet
shim IPCP will be explained, and then each module will be explained
separately, including the public API that the modules supply.

In this chapter the (N+1) application is referred to as the “registered
application” for convenience, as only one application may be registered to
the shim IPCP.

5.1 Required changes to RINASim

While most of the functionality is generic enough to facilitate the creation
of different IPCPs with a unified API, some changes were made to flow
allocation to allow several management flows to coexist. This section will
clarify why these changes are necessary.

5.1.1 Testing

A testing facility was added to provide regression testing for all working
examples already provided in RINASim. With the OMNeT++ simulation
fingerprint mechanism, making sure that the examples have the same
sequence of events through each execution becomes trivial. The caveat of

39

CHAPTER 5. IMPLEMENTATION OF THE ETHERNET SHIM DIF

exclusively utilising this method, is that since fingerprints are expected to
be the same every time, the seed for the random number generators that
OMNeT++ uses need to be set, which could result in testing being non-
exhaustive. This can be mitigated to some extent by seeding the random
number generator that OMNeT++ uses with the run number, but this also
results in many more configuration runs. In this process, a few issues that
were present in RINASim at the start of development that invalidated some
examples were also fixed.

The fingerprints were compared by a test script developed for INET, where
a large test-suite is included. This test script takes a CSV file as input,
where each element contains a configuration, additional flags to be passed
to opp_run, and a range of expected fingerprints. Through this method, any
adverse effects from changes within the existing codebase could be detected
easily, which significantly eased development.

5.1.2 Required changes

When flow allocation is requested for an IPCP, the DA is first polled to
see which IPCP in the current or prospective DIF can be used to reach
the requested application. If a remote IPCP is successfully returned,
the originating IPCP will attempt to find which immediate neighbour
can be used to reach the remote IPCP, and the enrollment status with
the neighbouring IPCP is also checked. If they are not connected, the
enrollment procedure is begun and the flow allocation is postponed,
otherwise the flow allocation with the target IPCP is started.

RINASim does it slightly differently, as the flow allocation procedure does
not check if the originating IPCProcess is connected to a neighbouring
IPCProcess, but only checks if it is enrolled to anything. This was
likely done as a shortcut to skip the CACE phase being initiated for
intermediary hosts in large network configurations. However, it carries
with it some consequences in regards to compliance, as the CACE phase will
not be initiated between the originating IPCProcess and the neighbouring
IPCProcess if the originating IPCProcess is enrolled from before.

The change that was introduced makes it so the flow allocation procedure
now consists of checking whether an IPCProcess is enrolled to a neigh-
bouring IPCProcess instead of just checking if it is at all enrolled in a DIF.
This increases the simulation run-times for the configurations that heavily
rely on the self-enrollment shortcut which introduces some extra noise, but
compliance should in this case be more important to allow a greater de-
gree of extensibility for additional improvements to the implementation in

40

5.2. CONTENTS OF A SHIM IPCP

the future. There were also some inconsistencies in the handling of the for-
warding of flows in comparison to normal flow allocation, as management
flows were not allocated when required, meaning that an IPCProcess that
did flow forwarding was assumed to be enrolled. The relevant changes were
added to src/DIF/FA/FA.cc.

An additional change that was considered for this project, was to introduce
an alternative API more similar to the RINA specifications that would have
made flow objects exclusive to IPCProcess modules. The motivation with
this was to make the IPCProcess module easier to extend, as well as
making the flow allocation procedure easier to understand. In RINASim, an
upper IPCProcess is able to make direct changes to the flow object without
explicitly going through the API of the lower IPCProcess, which makes it
harder to detect edge-cases and extend upon the protocol since changes may
be made to the flow objects at unexpected points. The ResourceAllocator
module maintains a pointer to the flow objects in an “NM1FlowTable”, which
it will also check against for compatible flows for any new flow allocation.
Allowing the underlying IPCProcess to find a suitable flow instead could
likely make the process of implementing other types of IPCPs like shim DIFs
significantly easier.

5.2 Contents of a shim IPCP

There are three core components of the Ethernet shim IPCP that work
independently: an ARP module, an Ethernet interface, and a specialised
shim IPCP. The shim IPCP module is called IPCProcessShim, and consists
of the modules EthShim and ShimFlowAllocator, denoted as shim and
flowAllocator in fig. 5.1. EthShim is responsible for recording internal
state, passing packets, and querying the RINArp module, denoted as arp
in the aforementioned figure. ShimFlowAllocator is a specialised flow
allocator module tasked with keeping information about flows through
an NFLowTable, and the implementation for this module will be covered
in section 5.3. The RINArp module and the NIC EthernetInterface work
as their own entities, but are still encapsulated by the IPCProcessShim. A
host running with the IPCProcessShim can be seen in fig. 5.2.

An earlier stage in the implementation had the Ethernet interface external to
the IPCProcessShim module. Since Ethernet interfaces may only be bound
to one process however, it was included as a part of IPCProcessShim. It
also allows additional host configurations to be more easily set up since the
IPCProcessShim operates very similarly to a normal IPCProcess in terms
of the API. Additionally, for future simulation scenarios, a host should be

41

CHAPTER 5. IMPLEMENTATION OF THE ETHERNET SHIM DIF

Figure 5.1: The Ethernet shim IPCP module

able to support both the RINA stack and the TCP/IP stack, and having
the interface as an external module could lead to incompatibilities due to
the InterfaceTable module that INET uses to keep track of the NICs of
a CS. INET has a limitation where two NICs or classes inheriting from
InterfaceEntry cannot use the same name, even if contained within
completely different submodules.

The ARP module supplied in INET is too rigid and tightly coupled with
IPv4, as it only allows the use of IPv4 addresses. Instead of reusing it, a
new one is defined that is closer to the specifications, which allows variable
length addresses[23]. The RINArp module could either be implemented
as an external or internal module to the IPCProcessShim, but an internal
module ended up being used because it could aid in visualisation and
network configuration to a greater degree. The implementation of the
RINArp module will be covered in section 5.5.

The DIF name is required to also be a valid VLAN ID, which means it must
be able to be represented as a numerical value. Since DIF names must be
defined as strings, the shimmodulemust handle integer conversion to supply
the VLAN ID for the IEEE 802.1Q tag added to outgoing SDUs.

A couple of extra parameters are set explicitly in the Ethernet Interface
module EthernetInterface for network initialisation, as seen in fig. 5.3.
The qEncap module is needed for adding a VLAN tag to the Ethernet frame,
and will also discard packets depending on if the VLAN ID does not match
the DIF name, or if there is no VLAN tag. The VLAN ID is set by the EthShim

42

5.2. CONTENTS OF A SHIM IPCP

Figure 5.2: A host running over an Ethernet shim DIF, with one application
process

1 eth: <default("EthernetInterface")> like IEthernetInterface {
2 parameters:
3 @display("p=201,240,row,60;q=txQueue");
4 qEncap.typename = "Ieee8021qEncap";
5 qEncap.inboundVlanIdFilter = difName;
6 qEncap.outboundVlanIdFilter = difName;
7 interfaceTableModule = "";
8 }

Figure 5.3: Additional parameters supplied to the EthernetInterface
submodule.

43

CHAPTER 5. IMPLEMENTATION OF THE ETHERNET SHIM DIF

1 **.switch.eth[*].qEncap.typename = "Ieee8021qEncap"
2 **.switch.eth[0].qEncap.inboundVlanFilter = "50"
3 **.switch.eth[0].qEncap.outboundVlanFilter = "50"
4 **.switch.eth[1].qEncap.inboundVlanFilter = "50"
5 **.switch.eth[1].qEncap.outboundVlanFilter = "50"
6 **.switch.eth[2].qEncap.inboundVlanFilter = "60"
7 **.switch.eth[2].qEncap.outboundVlanFilter = "60"
8 **.switch.eth[3].qEncap.inboundVlanFilter = "60"
9 **.switch.eth[3].qEncap.outboundVlanFilter = "60"

Figure 5.4: Configuration settings for VLAN-aware switch

1 enum class ConnectionState {
2 null,
3 initiatorAllocatePending ,
4 recipientAllocatePending ,
5 allocated
6 };

Figure 5.5: The enum containing the Ethernet shim IPCP port states

module when sending Ethernet frames by adding a VlanReq protocol tag
to the frame. Switches and bridges do not have to be VLAN-aware, but it
may be beneficial to explicitly set up VLAN filters for the switches in the
configuration file as it aids visualisation since PDUs will only be forwarded
by the interfaces that accept the provided VLAN IDs. The Ethernet interfaces
of the switch can for instance be restricted to only accept traffic from specific
VLANs like in fig. 5.4.

While a normal IPCProcess may have several input and output gates,
the IPCProcessShim will only be associated to one physical link and one
registered upper IPCProcess. Therefore, it is not necessary to declare the
southIo and northIo gates as arrays.

The following sections will describe each of the central components
implemented as part of this thesis. Each section has a description of the
overall functionality, and then a specification of the public functions of each
module and what they do. Note that any C++-specific syntax is omitted
from the function parameters and return values for increased clarity. The
internal states used for the ports as seen in fig. 5.5 will in these sections be
prefixed by ::.

44

5.3. SHIMFA

Figure 5.6: The ShimFlowAllocator module of the IPCProcessShim, with
two ShimFAIs

5.3 ShimFA

As with an IPCProcess, the IPCProcessShim splits FAIs into their own
modules to aid with visualising. The ShimFA module consists of an
NFlowTable, and is also the container for ShimFAI modules, which manage
the lifetime of their associated flows. The design philosophy by splitting the
shim1 and the FA, is that the shim handles the internal state machine for
each port, while the FA handles the public facing allocation API.

ShimFA handles incoming and outgoing allocation requests, and is responsi-
ble for initiating themechanism to create a ConnectionEntry in the EthShim
module. ShimFA inherits from the generic FABase class, which is used to
create a unified object API for different types of FAs. In RINASim, this is
necessary since the IRM or an IPCProcess will directly access the flow al-
locator within an underlying IPCProcess. Flow allocation is requested by
an upper IPCProcess by calling the function receiveAllocateRequest()
from the ShimFA module in the IPCProcessShim, which then goes on to set
up an ShimFAI and start address resolution through the EthShim module.

When allocation requests are received, the ShimFA will set the QoS cube
identifier to “unreliable”. The registered IPCProcess is required to accept a
QoS cube with this name. For the time being, there has not been made any

1Where shim here means the part that directly communicates with Ethernet.

45

CHAPTER 5. IMPLEMENTATION OF THE ETHERNET SHIM DIF

explicit enforcements for this, and any QoS requirements that are delivered
to the ShimFA through the receiveAllocateRequest() function will be
ignored. If a user wants to configure additional flow and retransmission
control mechanisms, the registered IPCProcess needs to take care of this.

5.3.1 API

The API provided by the ShimFA module is analogous to the IPCP flow allo-
cation and deallocation primitives that are part of the RINA specifications.
The allocateResponse primitive is emitted as a signal that is caught by the
registered upper IPCProcess. Similarly, the registered upper IPCProcess
will emit allocate response signals when flow allocation is requested by the
IPCProcessShim.

The states referenced here are defined in section 5.4, as part of the
explanation of the EthShim module.

receiveAllocateRequest(Flow flow) ⇒ bool
Called by the registered IPCProcess when it wishes to allocate a
flow. This function is also supplied by the normal FA module, and is
analogous to the allocateRequest primitive when invoked from an
(N+1) IPCP.

The flow parameter contains all necessary information for flow
allocation, including the name of the target application and QoS
requirements. The flow object is not copied, and is created by the
registered IPCProcess. It will be utilised in the NFlowTable.

When this function is called, ShimFA will ask the EthShim module to
create an entry through the EthShim::createEntry() function. If the
function returns CreateResult::error, receiveAllocateRequest()
returns false.

Otherwise, CreateResult::pending or CreateResult::completed
is returned. In either case the flow allocation continues, and
a ShimFAI is created to manage the lifetime of the flow. If
CreateResult::completed was returned, it means that a matching
ARP entry was found when the EthShim module attempted to re-
solve an address, and the ShimFA module will then pass the allo-
cation request to the ShimFAI module, which will emit a positive
allocateResponse() signal to the registered IPCProcess. The func-
tion then returns true.

completedAddressResolution(APN dstApn) ⇒ void
Called by the EthShim module after it has been notified of an

46

5.4. ETHSHIM

ARP response arriving, and the corresponding entry is in the
::initiatorAllocatePending state.
This will find the ShimFAI corresponding to the supplied dstApn
parameter, and call receiveAllocateRequest() on it. The ShimFAI
will subsequently call finalizeConnection() on the EthShim module
with the port ID that corresponds with the ShimFAI, and if successful
it will emit a positive allocateResponse signal.

failedAddressResolution(APN dstApn) ⇒ void
Called by the EthShim module to notify the ShimFA that address
resolution has failed. ShimFA will remove the associated ShimFAI,
and subsequently ask to deallocate the flow from the registered
IPCProcess.

createUpperFlow(APN apn) ⇒ bool
Called by the EthShim module when an Ethernet frame arrives from
a new host. This function creates a new ShimFAI, and emits an
allocationRequest signal to the registered application.

5.4 EthShim

The EthShim module works directly on top of the Ethernet interface. It
is responsible for passing outgoing SDUs to the correct destination MAC
address and incoming SDUs to the correct port, and keeping stock of the
internal state of the ports. The entries are contained in a map, where
destination application name is mapped to a ConnectionEntry. EthShim
also handles all interactions with the RINArp module. It has no user-
configurable fields as part of the NED file.

On network initialisation, this module subscribes to the RINArp sig-
nals completedRINArpResolutionSignal and failedRINArpResolution
Signal. The DIF name is then parsed so it can be used in VlanReq tags
that specify which VLAN is to be used. 0xD1F0 is also explicitly registered
as an ethertype through the static ProtocolGroup::ethertype group.

Each port receives its own set of in- and out-queues, and gates corresponding
to the registered application as seen in fig. 5.7. The gates outGate and
inGate are used to send to and receive from the (N+1) port respectively.
As for the queues, outQueue stores SDUs that will be sent to the network, for
instance while waiting for address resolution from ARP, and inQueue stores
SDUs that will be passed to an (N+1) port, for instance when waiting for
upper IPCProcess to accept flow allocation from the IPCProcessShim.

On registration of an upper IPCProcess, the IPCProcessShim will need to

47

CHAPTER 5. IMPLEMENTATION OF THE ETHERNET SHIM DIF

1 struct ConnectionEntry {
2 ConnectionState state = ConnectionState::null;
3 cGate *inGate = nullptr;
4 cGate *outGate = nullptr;
5 cPacketQueue outQueue = cPacketQueue("Queue for outgoing

packets");
6 cPacketQueue inQueue = cPacketQueue("Queue for incoming

packets");
7 };

Figure 5.7: A connection entry corresponding to a port ID.

add an entry in the directory structure chosen. In RINASim specifically,
application registration is implicit on network setup, which means that this
step needs to happen in the initialisation stage.

5.4.1 API

These functions are callable from other modules, and will trigger a
sequence of events relating to the state of a connection entry. The
functions arpResolutaionCompleted() and arpResolutionFailed() are
both triggered from signals emitted by the RINArp module.

registerApplication(APN apnName) ⇒ void
Called by the ShimFA module to notify both the EthShim and RINArp
modules that an application has registered with the IPCProcessShim.
This function retrieves the MAC address of the Ethernet interface, and
asks RINArp create a static cache entry that maps the MAC address to
the supplied apnName parameter. The APN typename here signifies an
application name.

createEntry(const APN &dstApn) ⇒ CreateResult
Called by the ShimFA module to request the creation of a connection
entry after a flow allocation request has been received. CreateResult
is an enum class that supplies three return values: ::failed,
::pending, and ::completed.

This function will initiate ARP address resolution, and if the ARP
cache already contains an entry mapped to the supplied dstApn,
CreateResult::completed is returned and ShimFA will proceed to
create an FAI. If an entry does not exist, RINArp sends an ARP re-
quest, and CreateResult::pending is returned. If a connection en-
try already exists that is mapped to dstApn, CreateResult::failed
is returned, and flow allocation has failed. The state for the

48

5.4. ETHSHIM

ConnectionEntry is set to ::initiatorAllocatePending, but if
CreateResult::completed was returned, finalizeConnection()
will be called in addition, setting the entry state to ::allocated.

deleteEntry(APN dstApn) ⇒ void
Called by the ShimFA module when flow deallocation is requested.
This may also happen when ARP address resolution has timed out
when the state is ::allocated.

finalizeConnection(APN dstApn, const int portId) ⇒ bool
Called by a ShimFAI module at the end of flow allocation, both when
a flow is being requested from the IPCProcessShim, and when the
IPCProcessShim requests a flow from the registered IPCProcess.
This function uses the portId parameter in the names of the gates
that are created for the ConnectionEntry mapped to the dstApn
parameter.

arpResolutionCompleted(ConnectionEntry entry, APN apn,
MacAddress mac) ⇒ void

This function is invoked when a completedRINArpResolutionSignal
signal has been emitted by RINArp.
If the parameter entry is in the ::initiatorAllocatePending state,
this function will call the ShimFA::completedAddressResolution()
function, passing the apn parameter. The ShimFA module then
proceeds to complete the flow allocation procedure.
If the entry parameter is in the ::allocated state, any packets that
are waiting for address resolution to be completed will be passed on
to the EthernetInterface.

arpResolutionFailed(APN apn) ⇒ void
This function is invoked when a failedRINArpResolutionSignal
signal has been emitted from RINArp.
If the connection entry corresponding with the apn parameter
is in either the ::initiatorAllocatePending or ::allocated
states, the connection entry will be destroyed, and ShimFA::
failedAddressResolution() will be called, passing the apn parame-
ter. The ShimFA will then proceed to deallocate the flow with apn as
the destination application name.

If the connection entry found after a signal from RINArp has been emitted
is in either the null or ::recipientAllocatePending states, neither
arpResolutionCompleted() or arpResolutionFailed() will be triggered.

When an Ethernet frame arrives from an application that is not as-
sociated with any ConnectionEntry, a new one will be created,

49

CHAPTER 5. IMPLEMENTATION OF THE ETHERNET SHIM DIF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hardware type

Protocol type

Hardware Address length Protocol Address length

Sender Protocol Address
· · ·

Sender MAC Address
· · ·

Receiver Protocol Address
· · ·

Receiver MAC Address
· · ·

Figure 5.8: ARP packet, as per the specification[23]

and the state set to ::recipientAllocatePending. It will then call
ShimFA::createUpperFlow().

5.5 RINArp

While INET has two ARP modules2 that could be used directly, none of them
are fully compliant with the ARP specification[23], and do not support vari-
able length addresses which incidentally would be useful for an implemen-
tation that supports the naming scheme of RINA. The modules could be
reused by either hashing or limiting the lengths of the application names of
registered applications, but defining a separate and more generic ARP mod-
ule could potentially also be useful for implementations of potential future
shim IPCP specifications over Ethernet. The implementation is inspired by
the Arp module in INET.

The module is named RINArp to distinguish it from other ARP modules.
It for the most part follows the packet format of ARP as seen in fig. 5.8,
althoughMAC addresses are still expected to be 6 bytes of length, and so the
MAC address length header field is for this reason omitted in this particular
implementation, as seen in fig. 5.9.

2GlobalArp and Arp.

50

5.5. RINARP

1 class RINArpPacket extends inet::FieldsChunk
2 {
3 uint8_t apnLength;
4 uint8_t opcode @enum(ARPOpcode);
5 inet::MacAddress srcMacAddress;
6 APN srcApName;
7 inet::MacAddress dstMacAddress;
8 APN dstApName;
9 }

Figure 5.9: RINArp packet, with ARPOpcode being one of ARPRequest or
ARPResponse.

RINArp consists of an ARP cache, which is implemented as a map, where a
destination application name is mapped to an ArpCacheEntry, which holds
a MAC address, timers, and a retry count.

5.5.1 API

The API of RINArp is mainly encapsulated by the functions
resolveAddress() and getAddressFor(), where the former will ini-
tiate address resolution by sending an ARP request. For RINArp to be
effective, it needs to have a static ArpCacheEntry, which is supplied
through the addStaticEntry() function. Without it, it can still receive
ARP requests, but will never reply with an ARP reply.

When an ARP request is received, the RINArp module will create an
ArpCacheEntry if one does not already exist with the information supplied
in the request. In either scenario, a new expiration timer will be set, and
RINArp will now be able to resolve this address.

resolveAddress(APN apn) ⇒ MacAddress
This function is called by the EthShim module. It will search for the
supplied apn in the ARP cache. If an entry is found, the corresponding
MAC address is returned. Otherwise, an ARP request is generated,
and MacAddress::UNSPECIFIED_ADDRESS is returned, which notifies
that no corresponding address exists. The ARP request has the target
MAC address set to MacAddress::BROADCAST_ADDRESS, which reaches
every node on the segment within the same VLAN.

When an ARP request is sent, an ArpCacheEntry will be created in
the table if an expired one does not already exist associated with the
supplied apn. In either scenario, a new retry timer will be set for

51

CHAPTER 5. IMPLEMENTATION OF THE ETHERNET SHIM DIF

the entry corresponding to the retryTimeout parameter of the NED
module.

getAddressFor(MacAddress mac) ⇒ APN
This function is called by the EthShim module when an Ethernet frame
arrives, as it needs to find the correct ConnectionEntry associated
with a flow to the registered IPCProcess. The function checks the ARP
cache for an entry with a MAC address corresponding to the supplied
parameter mac. If an entry is found, the APN corresponding with
the entry is returned. Otherwise, APN::UNSPECIFIED_APN is returned,
which notifies that there is no entry that corresponds to mac. In this
case, EthShim will drop the packet.

addStaticEntry(MacAddress mac, APN apn) ⇒ bool
This function is called by the EthShim module on network initialisation
to supply information about the registered application.
This must be called for this module to be able to deliver ARP responses.

deleteStaticEntry() ⇒ void
This function is unused for the time being, but will be relevant if
RINASim at some point allows more control in regards to removing
an IPCProcess during a simulation.
Its purpose is to remove the static entry in case an application
unregisters. For the time being, there is no corresponding unregister
call supplied by the ShimFA.

setVlanId() ⇒ void
This function is called by the EthShim module to supply the VLAN
ID, which needs to be set for outgoing Ethernet frames through the
VlanReq tag.

52

Chapter 6

Evaluation of implementation

The efforts made in this thesis are captured most succinctly by showing the
conformance of the implemented components with the specifications that
were presented in the requirements section. This chapter first presents
various example configurations created to show the capabilities of the
Ethernet shim DIF. Then at the end of the chapter, a discussion about the
implementation and test-cases is provided.

6.1 Output of a simulation

Through the use of the WATCH and WATCH_MAP macros that are part
of OMNeT++, variables can be made available for inspection during
simulation in Qtenv. The internal state of the ConnectionEntry map that
is part of EthShim is made available in this way, and can be be inspected as
seen in fig. 6.1.

The event logs can be used to determine the simulation success. For
instance, if the VLAN ID used for an Ethernet frame is incorrect, it will be
dropped. This might be notified in the event logs like in fig. 6.2.

Figure 6.1: The connections map from EthShim, with two entries in the
allocated state.

53

CHAPTER 6. EVALUATION OF IMPLEMENTATION

1 ** Event #26 t=10.00001162 TwoDIFsOneSwitch.host3.
ipcProcessShim.eth.qEncap (Ieee8021qEncap , id=195) on arpREQ
(inet::Packet, id=87)

2

3 WARN:Received VLAN ID = 50 is not accepted, dropping packet.

Figure 6.2: Example of a dropped Ethernet frame due to incorrect VLAN ID
in the Qtenv enivronment.

Figure 6.3: A router and two hosts utilising Ethernet shim DIFs.

6.2 Simulation configurations

The configurations shown in this section covers most use-cases of the shim
IPCP over Ethernet. Each subsection has a corresponding figure that shows
the network simulation in the simulation view of Qtenv, and a description
of how the simulation works and what it tests. Since these evaluations are
meant to test the shim

6.2.1 Simple relay example

This is a basic use-case where all the lowermost DIFs are provided by
IPCProcessShim modules. In this configuration, host1 will ping host2
every second. This will lead to flow allocation being triggered in the
IPCProcessShim, and also shows the normal IPCProcess being compatible
with the IPCProcessShim.

54

6.2. SIMULATION CONFIGURATIONS

Figure 6.4: An Ethernet shim DIF over a switch with three CSs.

6.2.2 Three CSs on a switch

In this configuration example, as seen in fig. 6.4, three CSs communicate
with each other utilising an Ethernet shim DIF over a switch. The
configuration is set up in a way where host1 will ping host2 at 10000ms
into the simulation, host2 will ping host3 at 10300ms, and host3 will ping
host1 at 10600ms. Each host subsequently pings its target CS each second
until 200 seconds have passed.

The connection entries seen in fig. 6.1 are from host2 in this example. The
connection entry associated with the 11_Layer1 address first transitions
from the RECIPIENT ALLOCATE PENDING state to the ALLOCATED state. The
other connection entry is created when host2 requests a connection with
host3, and starts off in the INITIATOR ALLOCATE PENDING, and when an
ARP response is received from host3 it will transition to the ALLOCATED state.

This configuration is among the ones that required changes to the handling
of flow allocation in the IPCProcess, sincemore than one neighbouring IPCP
can be reached that are not yet enrolled in the DIF. Therefore the originating
IPCP needs to go through several CACE phases.

55

CHAPTER 6. EVALUATION OF IMPLEMENTATION

Figure 6.5: Two Ethernet shim DIFs over the same Ethernet segment.

6.2.3 Two DIFs on a switch

This network configuration provides an example of using VLANs to separate
DIFs over the same Ethernet segment. It is set up in a way where host1 will
ping host2 continually, and host3 will ping host4 continually. The Qtenv
event log transcript in fig. 6.2 is from this example, and this happens at the
Ethernet interface of the host3 CS when its IPCProcessShim receives an
Ethernet frame from a DIF it is not a member of.

The IPCProcessShim modules of host1 and host2 in this example have their
DIF names set to “50”, while the IPCProcessShim modules of host3 and
host4 have their DIF names set to “60”. Since these DIF names are also
used as VLAN IDs, any Ethernet frames that do have a VLAN tag with a
corresponding ID will be dropped at arrival.

This example can also be configured to make the switch VLAN aware. For
this, each Ethernet interface has to be configured with its own filter, as seen
the implementation section in fig. 5.4. This aids in visualisation by making
it clear which channels are intended for a specific VLAN or shim DIF.

56

6.3. DISCUSSION

Figure 6.6: Two Ethernet shim DIFs over the same Ethernet segment.

6.2.4 DIFs over switches and a router

The example seen in fig. 6.6 provides a simple network configuration that
represents a combination of the first two evaluation cases. The highlighted
host11 will ping host23 continually, to see how SDUs and ARP messages
are passed correctly over both switches.

6.3 Discussion

RINASim was part of a research project, and has been programmed as
proof-of-concept. While it serves well as a simulation framework for policy
implementations, extending the code has been difficult because of shortcuts
taken as part of the implementation. The overt reliance upon signals as a
mechanism also made the flow of execution difficult to follow, which made
it difficult to fit the IPCProcessShim to the IPC API provided.

The solution regarding whether a management flow will be allocated is
not entirely correct, as management flows should be multicast. Before
the fix, enrollment would only be attempted once when trying to reach
a neighbouring IPCProcess, which led to no management flow being
allocated at the receiving end if an IPCProcess attempted to reach several
several neighbours. This happens because the ResourceAllocator module
is asked to allocate a management flow only once, and the CACE phase
is started when an underlying requested management flow has completed

57

CHAPTER 6. EVALUATION OF IMPLEMENTATION

allocation.

Instead, a potential solution could have been to change flow allocation so
only one management flow will be allocated within an IPCProcess, but
it will request the allocation of management flows from every underlying
IPCProcess it uses to reach other remote IPCProcess modules. While the
solution provided in this thesis works, it will lead to unnecessary overhead
due to several management flows within an IPCProcess. This leads to more
flow creation procedures, which creates noise in the simulation event logs.

The test-cases provided as part of this chapter only model a few scenarios
for the Ethernet shim DIF. Some additional scenarios that could be valuable
to show its capabilities, such as utilising both shim on different segments.
This should still work as part of the implementation.

Implementing CSs that support both the RINA and TCP/IP stacks could also
be a significant step towards showing more advanced migration cases, but
interfacing these would need a specialised application that translates from
the RINA stack to transport layer protocols such as TCP. Additional shim
layers are mentioned in Vrijders, Trouva, Day, et al. [12], and is a good next
step for RINASim as a project.

More could have been done to evaluate the practical capabilities of the shim
DIF, as none of the example test-cases try to hit any limits of the protocol. As
such, it is not able to tell if the implementation will hold if the throughput
is high enough.

58

Chapter 7

Conclusion

The two main goals of the thesis are fulfilled, which were to integrate the
INET framework, and implement a shim IPCP over Ethernet for RINASim.
Both of these goals were successful, and several example configurations have
been added to the RINASim repository that show the various use-cases of
the Ethernet shim DIF.

The INET framework was integrated without much additional work re-
quired. The addition of a compatibility layer with INET allows realistic sim-
ulation scenarios where Ethernet-compatible infrastructure can be utilised
and communicated with, including switches and hosts running the tradi-
tional TCP/IP stack.

The work provided in this thesis demonstrates the viability of the Ethernet
shim as part of the solution for gradual migration to RINA. The implemen-
tation serves as a basis that can be used for future shim IPCPs.

A simple testing facility was added to the repository to automatically detect
if changes to the codebase introduce unforeseen consequences. This was
helpful during the implementation of the Ethernet shim DIF, and the author
hopes that this tool can be used and eventually extended with more test
configurations. Some work was also put into making the code readable and
well-documented, with the intention that the IPCProcessShim module can
be easily extended upon in the future.

59

CHAPTER 7. CONCLUSION

7.1 Future work

The work of this thesis has laid the ground work for allowing RINASim to
employ new translation layers to run advanced simulations and adoption
scenarios on more realistic networks. Shim layers over TCP and UDP
that connect hosts running the RINA stack could be implemented to allow
overarching DIFs to exist over TCP/IP networks built using the INET
framework. The Ethernet shim-layer works as a proof of concept for the
viability of such an implementation. A next step could be to create a host
that supports both the TCP/IP and RINA networking stacks.

Additionally, serialisation is a necessary component for allowing HIL
simulation or network emulation, which could let RINASim communicate
with other implementations of RINA. This would require fundamental
changes to how RINASim handles construction of packets, as well as
specialised functions that provide serialisation of the contents in the packets.
RINASim may also benefit from using the new packet API of INET, with
the added benefits listed in Varga, Bojthe, Meszaros, et al. [22]. However,
making INET a dependency of RINASim may not be desirable.

As RINASim has a limited following with eight core contributors and a rarely
updated codebase at the time of writing, it also has quite a bit of technical
debt and inefficient code1. Efficiency is very important when running
large-scale simulations with tens or hundreds of hosts, and technical debt
that seems insignificant may add several hours to the time required for a
simulation to finish.

RINASim could also benefit from unit testing various parts of the codebase,
as this could not only lead to bugs being detected, but also more segmented
code, which could be beneficial for maintenance. The added fingerprint
testing framework works as a form of integration testing, as it evaluates the
interaction between the components, but it cannot validate the quality of
the components by themselves. The INET framework has a large testing
framework that could serve as inspiration for this task.

1One of the best examples of which is that many signals propagate to every module that
is subscribed, regardless if they are intended for that module or not.

60

Glossary

C++
An object-oriented programming language used for the OMNeT++
framework. 25, 26, 44

IEEE 802.11
Standards for wireless NICs. 35

IEEE 802.1Q
The VLAN standard. ix, 13–16, 36, 42

IEEE 802.3
The Ethernet standard, compatible with Ethernet II frames. 16, 36

INET
A simulation model library for OMNeT++ that supplies a vast array
of protocol and infrastructure models from TCP/IP. 3, 35, 36, 40, 42,
50, 59, 60

OMNeT++
A discrete-event simulation framework to simulate networks. 3, 25,
26, 28, 30, 35, 39, 40, 53

RINASim
A simulation model library for OMNeT++ that represents RINA. i, ix,
2, 3, 25, 28, 29, 35, 36, 38, 41, 45, 52, 57–60

TCP/IP
Transmission Control Protocol/Internet Protocol, another name for
the Internet. i, 1–3, 12, 13, 28, 35, 36, 42, 58–60

61

Acronyms

AE Application Entity 7–10
AEI-id Application Entity Instance

Identifier 8
AEN Application Entity Name 8
ANI Application Naming Information

8
AP Application Process 7, 8, 10, 28
API Application Programming Inter-

face 10, 13, 17–19, 28–30,
35, 36, 39, 41, 45, 46, 51,
57, 60

API-id Application Process Instance
Identifier 8

APNApplication Process Name 8, 10,
52

ARP Address Resolution Protocol x,
17, 19, 21, 22, 41, 42,
46–52, 55, 57

CACE Common Application Connec-
tion Establishment 5, 31, 32,
40, 55, 57

CDAP Common Distributed Applica-
tion Protocol 5, 7, 8, 32, 33

CEP-id Connection End-Point Identi-
fier 8, 9, 14

CRC Cyclic Redundancy Check 14
CS Computing System x, 5, 28, 30,

42, 55, 56, 58

DA DIF Allocator 7, 17, 28, 40
DAF Distributed Application Facility

6, 7, 28, 29
DIFDistributed IPC Facility i, ix, x, 3,

5–9, 11, 13–18, 20, 28–31,
33, 35, 39–43, 47, 53–60

DSAP Destination Service Access
Point 14

DTCPData Transfer Control Protocol
11, 32

DTP Data Transfer Protocol 11, 31,
32

EFCP Error and Flow Control Proto-
col 8, 11

EFCPI EFCP Instance 11, 31–33

FA Flow Allocator 10, 30, 45, 46
FAI FA Instance 10, 30, 31, 45, 48
FCS Frame Check Sequence 14, 17,

18, 36

HIL Hardware-In-the-Loop 35, 60

IPC Inter-Process Communication i,
2, 5, 9, 30, 57

IPCP IPC Process ix, x, 5–11, 13, 14,
16–19, 21–23, 25, 28, 33,
35, 38–42, 44, 46, 50, 54,
55, 59

IPv4 Internet Protocol version 4 7,
17, 35, 42

IPv4 Internet Protocol 7, 17
IPv6 Internet Protocol version 6 35
IRATI Investigating RINA as an alter-

native to TCP/IP ix, 15
IRM IPC Resource Manager 7, 45

LLC Logical Link Control ix, 14–16
LTE Long-Term Evolution 35

63

Acronyms

MAC Media Access Control 13, 14,
16–18, 21, 22, 35, 36, 38,
48, 50–52

MTU Maximum Transmission Unit
14, 18, 22

NAT Network Address Translation 8
NED Network Description 26, 28,

47, 52
NIC Network Interface Card 19, 22,

35, 36, 38, 41, 42

PDU Protocol Data Unit 6, 9, 11, 17,
19, 22, 31, 33, 44

PPP Point-to-Point Protocol 35

QoS Quality of Service ix, 2, 8, 10,
11, 14–16, 18, 30–32, 45, 46

RA Resource Allocator 10, 11
RINA Recursive Inter-Network Ar-

chitecture i, ix, 1–3, 5, 6,

8–10, 12, 13, 16–18, 28, 29,
36, 41, 42, 46, 50, 58–60

RMT Relaying and Multiplexing Task
11, 33

SDU Service Data Unit 5, 6, 9–11,
14, 17–19, 22, 32, 42, 47, 57

SSAP Source Service Access Point 14

TCP Transmission Control Protocol
1, 26, 35, 58, 60

TLS Transport Layer Security 6

UDP User Datagram Protocol 1, 35,
60

VLAN Virtual Local Area Network ix,
x, 13, 14, 16, 18, 35, 38, 42,
44, 47, 51–54, 56

VPN Virtual Private Network 9

64

Bibliography

[1] S. Lukasik, “Why the ARPANET was built,” IEEE Annals of the History of Computing,
vol. 33, no. 3, pp. 4–21, 2010.

[2] G. Papastergiou, G. Fairhurst, D. Ros, A. Brunstrom, K.-J. Grinnemo, P. Hurtig,
N. Khademi, M. Tüxen, M. Welzl, and D. Damjanovic, “De-ossifying the internet
transport layer: A survey and future perspectives,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 1, pp. 619–639, 2016.

[3] M. Handley, “Why the Internet only just works,” BT Technology Journal, vol. 24,
no. 3, pp. 119–129, 2006.

[4] V. Fuller, “Scaling issues with routing+ multihoming,” Plenary session at APRICOT,
2007.

[5] P. Richter, M. Allman, R. Bush, and V. Paxson, “A primer on IPv4 scarcity,” ACM
SIGCOMM Computer Communication Review, vol. 45, no. 2, pp. 21–31, 2015.

[6] S. M. Bellovin, “Security problems in the TCP/IP protocol suite,” ACM SIGCOMM
Computer Communication Review, vol. 19, no. 2, pp. 32–48, 1989.

[7] E. Trouva, E. Grasa, J. Day, I. Matta, L. T. Chitkushev, P. Phelan, M. P. De Leon, and
S. Bunch, “Is the Internet an unfinished demo?Meet RINA!” In TERENA Networking
Conference, 2010, pp. 1–12.

[8] E. Grasa, O. Rysavy, O. Lichtner, H. Asgari, J. Day, and L. Chitkushev, “From pro-
tecting protocols to protecting layers: Designing implementing and experimenting
with security policies in rina,” in IEEE ICC 2016, Communications and Informations
Systems Security Symposium, 2016.

[9] J. Day, “How Naming and Addressing (and Routing) Are Suppose to Work,” 2016.

[10] B. Edelman, “Running out of numbers: Scarcity of IP addresses and what to do
about it,” in International Conference on Auctions, Market Mechanisms and Their
Applications, Springer, 2009, pp. 95–106.

[11] G. Boddapati, J. Day, I. Matta, and L. Chitkushev, “Assessing the security of a clean-
slate internet architecture,” in 2012 20th IEEE International Conference on Network
Protocols (ICNP), IEEE, 2012, pp. 1–6, isbn: 1-4673-2447-7.

[12] S. Vrijders, E. Trouva, J. Day, E. Grasa, D. Staessens, D. Colle, M. Pickavet, and
L. Chitkushev, “Unreliable inter process communication in Ethernet: Migrating to
RINA with the shim DIF,” in 2013 5th International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT), IEEE, 2013,
pp. 215–221, isbn: 1-4799-1177-1.

[13] R. W. Watson, “The delta-t transport protocol: Features and experience,” in [1989]
Proceedings. 14th Conference on Local Computer Networks, IEEE, 1989, pp. 399–
407, isbn: 0-8186-1968-6.

65

BIBLIOGRAPHY

[14] E. Grasa, F. Salvestrini, G. Carrozzo, P. Cruschelli, A. Chappel, J. Graham, S.
Vrijders, D. Staessens, M. Tarzan, L. Bergesio, E. Trouva, A. Vico, and C. Bermudo,
“IRATI Deliverable 3.1: First phase integrated RINA prototype over Ethernet for a
UNIX-like OS,” 2013.

[15] T. Kiravuo, M. Sarela, and J. Manner, “A survey of Ethernet LAN security,” IEEE
Communications Surveys & Tutorials, vol. 15, no. 3, pp. 1477–1491, 2013.

[16] J. Day, The Interina Reference Model - Part 3: Distributed InterProcess Communication
- Chapter 1: The Distributed IPC Facility (DIF), 2014.

[17] A. Varga. (2020). “OMNeT++ - Simulation Manual,” [Online]. Available: https:
//doc.omnetpp.org/omnetpp/manual/ (visited on 08/24/2020).

[18] V. Vesely, RINASim Simulator, https://github.com/kvetak/RINA, Nov. 11, 2019.

[19] V. Veselý, M. Marek, and K. Jeřábek, Deliverable 2.6: RINASim-Advanced Function-
ality. 2015.

[20] V. Veselỳ, M. Marek, and K. Jeřábek, “RINASim,” in Recent Advances in Network
Simulation, Springer, 2019, pp. 139–181.

[21] A. Varga, Z. Bojthe, L. Meszaros, G. Szászkő, R. Hornig, and A. Török. (2020).
“INET Framework - What Is INET Framework?” [Online]. Available: https://inet.o
mnetpp.org/Introduction.html (visited on 08/24/2020).

[22] ——, (2020). “Migrating Code from INET 3.x — INET 4.2.0 documentation,”
[Online]. Available: https://inet.omnetpp.org/docs/migration-guide/index.html
(visited on 08/24/2020).

[23] D. C. Plummer, “RFC 826: An ethernet address resolution protocol,” InterNet
Network Working Group, 1982.

66

https://doc.omnetpp.org/omnetpp/manual/
https://doc.omnetpp.org/omnetpp/manual/
https://inet.omnetpp.org/Introduction.html
https://inet.omnetpp.org/Introduction.html
https://inet.omnetpp.org/docs/migration-guide/index.html

	Abstract
	Preface
	Contents
	List of Figures
	1 Introduction
	1.1 Motivation and purpose
	1.2 Structure

	2 Recursive Inter-Network Architecture
	2.1 Nature of Applications and Application Protocols
	2.2 Naming and addressing
	2.3 Security
	2.4 Networking in RINA
	2.5 Deployment

	3 Design of the Ethernet shim DIF
	3.1 Inter-Process Communication in Ethernet
	3.2 Ethernet shim layer
	3.2.1 Ethernet frame header
	3.2.2 IPCP API in the Ethernet shim DIF
	3.2.3 State diagram
	3.2.4 Notes on state machine

	4 Simulation framework and model libraries
	4.1 OMNeT++
	4.2 RINASim
	4.2.1 Distributed IPC Facility in RINASim

	4.3 INET
	4.3.1 Integration into RINASim

	5 Implementation of the Ethernet shim DIF
	5.1 Required changes to RINASim
	5.1.1 Testing
	5.1.2 Required changes

	5.2 Contents of a shim IPCP
	5.3 ShimFA
	5.3.1 API

	5.4 EthShim
	5.4.1 API

	5.5 RINArp
	5.5.1 API

	6 Evaluation of implementation
	6.1 Output of a simulation
	6.2 Simulation configurations
	6.2.1 Simple relay example
	6.2.2 Three CSs on a switch
	6.2.3 Two DIFs on a switch
	6.2.4 DIFs over switches and a router

	6.3 Discussion

	7 Conclusion
	7.1 Future work

	Glossary
	Acronyms
	Bibliography

