
TCP DA-LBE

A Meta Congestion Controller for
Deadline-Aware Less than Best Effort

Delivery in the Linux Operating System

Henning Parratt Tandberg

Thesis submitted for the degree of
Master in Distributed Systems and Networks

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2020

TCP DA-LBE

A Meta Congestion Controller for
Deadline-Aware Less than Best Effort

Delivery in the Linux Operating System

Henning Parratt Tandberg

© 2020 Henning Parratt Tandberg

TCP DA-LBE

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Previous efforts on implementing Deadline Aware Less-than Best Effort
(DA-LBE) services have provided valuable insight into the topic of DA-LBE
with some very promising results. However, lacking from these previous
attempts is a stable, long-term solution for providing such services to the
users.

This thesis introduces TCP-Dalbe; a meta congestion controller for the
Linux Operating System, implemented as a loadable kernel module. Meta
congestion controllers collect various statistics from the network, which are
used to adapt the underlying congestion controller, altering the aggress-
iveness of the traffic source. TCP-Dalbe introduces support for adapting
TCP-Vegas as the underlying congestion controller, using both Model Based
Control and Proportional Integral Differential Control.

Through a series of experiments in an emulated environment, TCP-
Dalbe was evaluated in terms of achieving its desired Less-than Best Effort
characteristics, what impact the use of fixed point numbers have on the
quality of the DA-LBE calculations, and how much function overhead and
memory usage the implementation introduces in relation to its underlying
congestion controller.

These evaluations demonstrated that the implementation in fact satisfies
the criteria for a DA-LBE traffic source, and that the use of fixed point
operations introduced some error to the calculations, however, the overall
error was still below 1%, which was not enough to have a major impact of
the quality of the DA-LBE calculations.

Furthermore, it was demonstrated that the introduced function overhead
may be quite large at times, reaching 70% to 80% at times. However,
when investigating the overall time spent in each function, these overheads
became insignificant, as they were only responsible for less than 1% of the
entire time spent in the connection.

i

Acknowledgments

I would like to express my sincere gratitude to David Hayes, David Ros,
and Özgü Alay at Simula Research Laboratories, for the great support and
supervision while working on this thesis.

To my friends and family for always being so supportive of me. To
Mattis, for the good times we had while working on our theses, and to my
brother, Eilif, for the immense help when my mathematical knowledge did
not suffice.

Finally, to my better half and best friend, Kathrine, for always being
there for me, through thick and thin.

ii

Contents

1 Introduction 1
1.1 Problem Statement . 3
1.2 Research Questions . 3
1.3 Previous Work on the Implementation 3
1.4 Structure . 4

2 Background 6
2.1 The Internet . 6

2.1.1 Architectural Assumptions 7
2.1.2 Internet Protocol . 7
2.1.3 Scalability . 9

2.2 Transmission Control Protocol 9
2.3 Congestion Control . 10

2.3.1 Loss-Based Congestion Control 10
2.3.2 Delay Based Congestion Control 14
2.3.3 Explicit Congestion Notification 16
2.3.4 Fairness . 16

2.4 Less-than Best Effort Delivery 17
2.5 Deadline Aware Less-than Best Effort Delivery 17

2.5.1 Measuring the Price of Congestion 17
2.5.2 Adapting The Weight 18
2.5.3 Meta Congestion Control 21

2.6 The Linux Operating System 22
2.6.1 Versioning . 23
2.6.2 Contributing . 23
2.6.3 Loadable Kernel Modules 24
2.6.4 TCP/IP Stack in Linux 25
2.6.5 TCP Congestion Control in Linux 26
2.6.6 Floating Point Operations in the Kernel 29

2.7 Summary . 29

iii

3 Methodology 31
3.1 Approach . 31

3.1.1 Planning Phase . 31
3.1.2 Design Phase . 32
3.1.3 Implementation Phase 32
3.1.4 Testing and Experimentation Phase 33

3.2 Collaboration . 34
3.3 Tools . 34

3.3.1 Common Open Research Emulator 34
3.3.2 Linux Performance Events 35
3.3.3 Function Tracer . 35

3.4 Summary . 36

4 Design and Implementation 37
4.1 Requirements for the Implementation 37
4.2 Code Convention . 37
4.3 Architectural Decisions . 38

4.3.1 Architecture . 38
4.3.2 Configuration Possibilities 41
4.3.3 Fixed Point Operations 44

4.4 Changes to the Kernel . 47
4.5 Usage . 48
4.6 Testing . 48

4.6.1 Unit Tests . 49
4.7 Debugging . 51

4.7.1 Debugging by Logging 51
4.7.2 Debugging Memory Usage 52
4.7.3 Debugging Kernel Panics 54

4.8 Error Handling . 54
4.9 Licensing . 54
4.10 Shortcomings . 55

4.10.1 Available Model Based Controllers 55
4.10.2 Support for Loss-Based Congestion Control 55
4.10.3 Modular Architecture 55
4.10.4 Metadata from Underlying Congestion Controllers . . 56
4.10.5 Current use of Fixed Point Types 56
4.10.6 Passing Fixed Point Values From User Space to Kernel

Space . 56
4.11 Summary . 56

5 Test Environment 58
5.1 Requirements . 58
5.2 Collaboration . 59
5.3 Testing on Virtual Machines 59

iv

5.3.1 Unit Testing with Virtual Machines 59
5.3.2 Debugging with Virtual Machines 60
5.3.3 Drawback of Testing on Virtual Machines 60

5.4 Testing on Hardware . 61
5.4.1 Building a Suitable Test Bed 61
5.4.2 Hardware Setup . 63
5.4.3 Operating System Setup 64
5.4.4 Defining a Stable Test Environment 65
5.4.5 Network Emulation . 67
5.4.6 Verifying the Performance of the Test Environment . . 69

5.5 Experiment Orchestration . 69
5.5.1 Experiment Execution 71
5.5.2 Data Collection . 71
5.5.3 Data Processing . 72

5.6 Summary . 72

6 Network Performance Experiments 73
6.1 Requirements . 73
6.2 Network Efficiency . 74

6.2.1 Setup . 74
6.2.2 Expectations . 75
6.2.3 Results for Model Based Control for Vegas 76
6.2.4 Fixed Point Precision 81

6.3 Fairness and Completion Times 82
6.3.1 Setup . 83
6.3.2 Fairness . 83
6.3.3 Completion Times . 87

6.4 Summary . 94

7 Load and Overhead Experiments 96
7.1 Requirements for Load and Overhead Experiments 96
7.2 Memory Usage . 97

7.2.1 Reasoning about Memory Usage 97
7.3 Function Frequency . 98

7.3.1 Setup . 98
7.3.2 Results . 98

7.4 Function Overhead . 100
7.4.1 Setup . 100
7.4.2 Expectations . 103
7.4.3 Results . 104

7.5 Summary . 109

v

8 Conclusion 110
8.1 Future Work . 111

8.1.1 Improvements to the Meta Congestion Controller . . . 111
8.1.2 Improvements to Testing and Experimentation 112

A Architecture and Internals 121
A.1 Pluggable Congestion Controller Interface 121

A.1.1 Initialize Private Data 121
A.1.2 Cleanup Private Data 121
A.1.3 Calculate New Slow Start Threshold 122
A.1.4 Inform About State Change 122
A.1.5 Calculate New Congestion Window 122
A.1.6 Inform About New Congestion Event 123
A.1.7 Upon Arrival of an ACK 123
A.1.8 Calculate New Window in the Event of Loss 123
A.1.9 Packet Accounting in the Event of an ACK 124
A.1.10 Get Information About the Congestion Controller . . 125
A.1.11 Set Custom Socket Options 125
A.1.12 Get Custom Socket Options 125

A.2 DALBE Math . 126
A.2.1 Multiplication between two unsigned fixed point num-

bers . 126
A.2.2 Multiplication between two signed fixed point numbers127
A.2.3 Division between two unsigned fixed point numbers . 128
A.2.4 Division between two unsigned fixed point numbers . 129
A.2.5 Support Macros for Fixed Point Operations 129

A.3 Pluggable Congestion Control Architecture 132

Appendices 121

B Parameters and Socket Options 137
B.1 Module Parameters . 137

B.1.1 Module Parameters . 137
B.2 Custom Socket Options . 138

B.2.1 Custom Socket Options 138

C Source Code and Raw Data 139
C.1 Source Code . 139

C.1.1 mosaic-students-henning 139
C.1.2 TestBed . 139
C.1.3 tcp-dalbe-test . 139
C.1.4 tcp-dalbe-analysis . 139

C.2 Raw Data . 139

vi

D Documentation 140
D.1 Meta Congestion Controller Documentation 140
D.2 Test Environment Documentation 147
D.3 Unit Tests and Benchmarks Documentation 158

vii

List of Figures

2.1 A diagram of the TCP/IP Stack and how data flows between
the different layers. 8

2.2 A simplified model showing two examples of how pack-
ets traverse the networking stack in Linux when TCP and
IPv4 are used as the transport- and network layer protocols.
Sub-figure 2.2a shows the major functions which the data is
passed through from leaving the Application layer, before
entering the network. Similarly, sub-figure 2.2b shows the
major functions which the data pass through before arriving
at the Application layer. 27

3.1 A simple model of the work flow used while working on this
project. This was a simple adaptation of a typical agile / test
driven development work flow, and even though the arrows
are pointing in one direction it did not strictly mean that this
was the order of that always followed. 32

4.1 A listing of the functions implemented by the meta conges-
tion controller from the Transmission Control Protocol (TCP)
pluggable congestion controller interface. 39

4.2 A model of how the meta congestion controller fits into the
transport layer of the networking stack in Linux. Each time
there is an outgoing or incoming packet, it may trigger one
of the meta congestion controller functions. If this is the
case, the function may manipulate the TCP socket directly,
either before or after invoking the underlying congestion
controller. The underlying congestion controller may in turn
also manipulate the TCP socket before returning to its caller;
the meta congestion controller. 40

viii

4.3 This model illustrates how the meta congestion controller is
registered in the kernel as a congestion module through the
dalbe_register function, how the meta congestion controller
is able to fetch a pointer to the underlying congestion con-
troller through the tcp_ca_find function call, and how the
TCP-DALBE (Dalbe) structure is stored in the hashmap using
hash_add. 42

4.4 This model illustrates an example of what a call to one of
the Dalbe meta congestion controller functions involves, in
this case the dalbe_cong_avoid function. The first action per-
formed is to fetch the dalbe struct from the hash map. If
this is successful, the meta congestion module may perform
some calculations before invoking the corresponding func-
tion of the underlying congestion controller. Upon return
from the underlying congestion controller, the meta conges-
tion controller may perform some additional calculations
before returning. 43

4.5 A listing showing the difference between a GCC macro based
multiplication operation for fixed point numbers, and the
same code written with inline functions and an additional
line of complexity. 46

4.6 A simple example of a client written in C. The client utilizes
the socket option interface (setsockopt) to configure the con-
nection for Deadline-Aware Less-than Best Effort (DA-LBE)
transfers. 49

4.7 A simple example of a server written in C. The server utilizes
the socket option interface (setsockopt) to configure the con-
nection for DA-LBE transfers. Note that this is done on the
client socket, after the connection with the client has been
accepted. 50

4.8 An example of the graphs used for debugging. Each sub-
graph displays a certain set of metrics from a DA-LBE flow in
a network performance related experiment. 53

5.1 An illustration of how the network was set up between the
host machine and the virtual machines. 60

5.2 An example of how badly the virtual test bed performed when
used to run network performance experiments. This was for
a TCP-Vegas (Vegas) based DA-LBE flow using Proportional-
Integral-Differential (PID) as the weight policy. 61

ix

5.3 An image of our test bed fully assembled. The large black
computer is the router machine. Below the white graphics
card are two Network Interface Controller (NIC)s which were
used to connect everything together. Mounted on top of the
black case are the edge nodes, and below them is the switch
used to forward network traffic from the control ports of the
edge nodes through the router node. 62

5.4 A figure showing how our hardware test bed was connected.
The orange lines show how the edge nodes were connected to
the Internet via the router node. 63

5.5 A very simple dumbbell topology consisting of five nodes;
four edge nodes, two on each side of the router node. 63

5.6 A more advanced figure of the dumbbell topology, showing
how the WEST and EAST networks were set up. The two
networks are connected by a 100 Mbps, 30 ms propagation
delay link. 67

5.7 A screenshot of CORE GUI in action. This displays how we
could easily, visually set up our network typologies. 68

5.8 An advanced model of how the dumbbell topology was set
up on the hardware based test bed. All ingress traffic, may
it be EAST or WEST bound, passes through an Intermediate
Functional Block (IFB). The IFB is responsible for applying
the HFSC and PFIFO qdiscs, before passing the traffic on to
the outgoing NIC. The outgoing NIC applies a 15 ms delay. . 69

5.9 The figures show the average load and the memory usage on
each edge node, taken from one for the network performance
experiments in chapter 6. This was use to monitor the edge
node during experimentation and testing. 70

6.1 Timeline of the network efficiency experiment showing when
the different flows start and stop. 74

6.2 One second averages of the throughput for each flow during
the network efficiency experiment. The DA-LBE flow uses
Vegas as the underlying congestion controller with Model-
Based-Control (MBC) as the weight adjustment policy. 76

6.3 Debug graphs produced for the network efficiency experi-
ment for a Vegas based DA-LBE flow using MBC as the weight
policy. 10 seconds increments. 78

6.4 One second averages of the throughput for each flow during
the network efficiency experiment. The DA-LBE flow uses
Vegas as the underlying congestion controller with PID as the
weight adjustment policy. 79

x

6.5 Debug graphs produced for the network efficiency experi-
ment for a Vegas based DA-LBE flow using PID as the weight
policy. 10 seconds increments. 80

6.6 The relative error between the actual value of w, computed
using fixed point operations, and the expected value ofw, com-
puted using floating point operations. 10 second increments.

. 82
6.7 Timeline of the fairness and completion times experiment

showing when the different flows start and stop. 83
6.8 Fairness indexes for Vegas based DA-LBE flows using MBC

as the weight policy. The box expends from the Q1 to Q3; the
middle line represents the median (Q2); the whiskers extend
to the 1.5× (Q3−Q1) ; and outliers are represented as dots
beyond the whiskers. 86

6.9 Fairness indexes for Vegas based DA-LBE flows using PID as
the weight policy. The box expends from the Q1 to Q3; the
middle line represents the median (Q2); the whiskers extend
to the 1.5× (Q3−Q1) ; and outliers are represented as dots
beyond the whiskers. 88

6.10 Completion times for Vegas based DA-LBE flows using MBC
and PID as the weight policies. The box expends from the
Q1 to Q3; the middle line represents the median (Q2); the
whiskers extend to the 1.5× (Q3−Q1) ; and outliers are rep-
resented as dots beyond the whiskers. 89

6.11 One second averages of the throughput of the earliest com-
pleting run for the fairness and completion times experiment
for a Vegas based DA-LBE flow using MBC as the weight policy. 90

6.12 One second averages of the throughput of the latest complet-
ing run for the fairness and completion times experiment for
a Vegas based DA-LBE flow using MBC as the weight policy. . 91

6.13 Debug graphs produced for the latest completion run for the
fairness and completion times experiment. A Vegas based
DA-LBE flow using MBC as the weight policy. 10 seconds
increments. 92

6.14 One second averages of the throughput of the earliest com-
pleting run for the fairness and completion times experiment
for a Vegas based DA-LBE flow using PID as the weight policy. 93

6.15 Debug graphs produced for the latest completion run for the
fairness and completion times experiment. A Vegas based
DA-LBE flow using PID as the weight policy. 10 seconds
increments. 93

6.16 One second averages of the throughput of the latest complet-
ing run for the fairness and completion times experiment for
a Vegas based DA-LBE flow using PID as the weight policy. . 94

xi

7.1 A set of figures that illustrate the function overhead intro-
duced by the DA-LBE meta congestion controller, averaged
over 50 iterations of an approximately 600 second experiment
with one DA-LBE flow competing with a Best Effort (BE) flow. 105

7.2 Histogram showing the samples for the pkts_acked function. 108

A.1 Flow chart showing one possible scenario where dalbe_cwnd_event
may be invoked during the TCP connection due to data being
sent. 133

A.2 Flow chart showing another possible scenario where dalbe_cwnd_event
may be invoked during the TCP connection due to data being
sent. 134

A.3 A comprehensive flowchart showing what DA-LBE meta con-
gestion controller functions may be invoked by the reception
of an Acknowledgment (ACK). 135

A.4 Flow chart showing a possible scenario where both dalbe_ssthresh
and dalbe_cwnd_event may be invoked during the TCP con-
nection due to an Retransmission Timeout (RTO). 136

xii

List of Tables

5.1 Relevant specifications of edge nodes. 64
5.2 Relevant specifications of router node. 64

6.1 Start and end times for each flow for the network efficiency
experiment. The deadline for the DA-LBE flow is set to 1300
s, which means that it should finish close to t = 1700 s. 75

6.2 Start and end times for each flow for the fairness and comple-
tion times experiment.The deadline for the DA-LBE flow is
set to 600 s, which means that it should finish close to t = 610 s. 83

6.3 Table of the parts used to create fairness indexes. 84
6.4 Table of values related to the fairness indexes for Vegas based

DA-LBE flows using MBC as the weight policy. 87
6.5 Table of values related to the fairness indexes for Vegas based

DA-LBE flows using PID as the weight policy. 87
6.6 Table of values related to the completion times for Vegas

based DA-LBE flows using MBC and PID as the weight policies.
. 90

7.1 Table of the event counts produced by the function frequency
experiment. 99

7.2 Table with the subset of trace events specified for ftrace, distin-
guishing between the most common and uncommon events.
The table also shows the code complexity of each function. . 102

7.3 A table with values related to the average function overhead
for both common and uncommon trace events. 106

xiii

Acronyms

ACK Acknowledgment

AIAD Additive Increase Additive Decrease

AIMD Additive Increase Multiplicative Decrease

API Application Programming Interface

AQM Active Queue Management

BDP Bandwidth Delay Product

BE Best Effort

BSD Berkeley Software Distribution

CC Congestion Control

CORE Common Open Research Emulator

CWND Congestion Window

DA-LBE Deadline-Aware Less-than Best Effort

DupACK Duplicate ACK

ECN Explicit Congestion Notification

FPU Floating Point Unit

FTP File Transfer Protocol

GPL General Purpose Licence

GSO Generic Segmentation Offload

GUI General User Interface

HFSC Hierarchical Fair Service Curve

xiv

HTB Hierarchy Token Bucket

IFB Intermediate Functional Block

IP Internet Protocol

LBE Less-than Best Effort

LEDBAT Low Extra Delay Background Transport

LKM Loadable Kernel Module

MBC Model-Based-Control

MPTCP Multipath TCP

MSS Maximum Segment Size

MTU Maximum Transmission Unit

NIC Network Interface Controller

NTP Network Time Protocol

NUM Network Utility Maximization

OS Operating System

OWD One-way Delay

PID Proportional-Integral-Differential

PPS Packets Per Second

PTP Precision Time Protocol

RAM Random Access Memory

RED Random Early Detection

RTO Retransmission Timeout

RTT Round Trip Time

RWND Receiver’s Advertised Window

SSD Solid State Drive

SSH Secure Shell

SSTHRESH Slow Start Threshold

TCP Transmission Control Protocol

xv

BIC TCP-BIC

Cubic TCP-Cubic

Dalbe TCP-DALBE

Reno TCP-Reno

Vegas TCP-Vegas

TSO TCP Segmentation Offload

UDP User Datagram Protocol

VM Virtual Machine

xvi

Chapter 1

Introduction

The Internet we know today is a large collection of networks of different
sizes, connected by single or multiple paths. These networks are a set of
nodes serving some kind of purpose for the end users of the Internet e.g.,
web servers, cloud storage, streaming services, etc. Many of these services
are referred to as quality constrained and are highly dependent on a stable
network that meets a set of requirements for reliable delivery, requiring low
latency and/or high throughput. Such services often share the same network
path as non-quality constrained services, that may consume large portions
of the available capacity, and which may lead to the service degrading.
However, many non-quality constrained services do not need to consume a
large amount of the available bandwidth at all times. These services may
be able to meet their requirements by only using bandwidth when it is
available, allowing quality constrained traffic to be prioritized.

Less-than Best Effort (LBE) services, or so called scavenger services, have
been introduced with this in mind. The goal of such a service is to use
only the available network capacity and let other BE traffic finish without
disruption. LBE has been in use for some time by providers like BitTorrent
[62], Apple [42], and Microsoft [21], which all utilize Low Extra Delay
Background Transport (LEDBAT) congestion control [66]. However LBE has
one major drawback; there is no notion of completion time. This means that
in a worst case scenario when there are many BE traffic sources on the same
path as the LBE traffic source, the LBE traffic source may be too passive and
possibly suffer from starvation.

A framework to solve this problem was introduced by D. Hayes et al.
called Deadline-Aware Less-than Best Effort (DA-LBE) [35]. They showed
that DA-LBE provides a valuable transport service for bulk data transfers
such as backups. Allowing transfers to be completed by a soft deadline
while keeping disruption of other traffic to a minimum.

Since the DA-LBE framework was introduced, there has been some
work on implementing this for use in practice. A library for developing

1

DA-LBE transport services was introduced in a master thesis by H. Wal-
lenburg [74] which relied on modified kernel by L. Storbukås [68]. The
modified kernel provided mechanisms for gathering statistics and adjust-
ing congestion signals for an arbitrary congestion controller. The library
provided an Application Programming Interface (API) similar to that of
Berkley sockets [50, socket(2)] and a daemon which performed the necessary
meta congestion control operations on the underlying congestion control
algorithm on the socket, asynchronously. These two implementations to-
gether allowed application developers a means to create, and experiment,
with their own meta congestion controllers, and possibly providing a LBE
or DA-LBE service to their applications.

In addition to this, these two implementations provided some very
valuable insight into the development of the DA-LBE framework in practice.
However, as as a long term solution for providing DA-LBE transport
services to a system, these efforts may not be considered as acceptable. For
one, the kernel modifications were implemented in such as way that getting
them accepted into the Linux operating system would be very difficult [68],
and though the library looked promising with some very interesting results
on the topic of DA-LBE it was highly dependant on the non-submitted
kernel modifications, making it hard to provide a maintainable, stable,
long-term solution.

This thesis presents TCP-DALBE (Dalbe): a meta congestion controller
for DA-LBE transport services implemented as a Linux kernel module [49].
The implementation makes an attempt to follow the standard way of im-
plementing congestion control algorithms in the Linux kernel, as well as
utilize the already existing socket API exposed to the users with as little
modification as possible.

In addition to describing how the meta congestion controller was de-
signed and implemented, I present how a test environment was built and
configured specifically for testing the meta congestion controller. I conduct
a series of experiments to show the meta congestion controller performs
in an emulated network environment and analyze the additional memory
usage and function overhead introduced by such an implementation. And,
lastly discuss what this thesis contributes to within the field of DA-LBE,
experiences and challenges that I faced along the way, and my suggestions
for future work.

2

1.1 Problem Statement

Previous efforts on implementing DA-LBE services have provided valuable
insight into the topic of DA-LBE with some very promising results. However,
lacking from these previous attempts is a stable, long-term solution for
providing such services to the users.

In this thesis I aim to produce as a stable, long-term solution for DA-LBE
transport services, by creating an implementation for the Linux operating
system.

1.2 Research Questions

To guide me in the correct direction of solving this problem I have defined a
set of research questions which I intend to answer throughout this thesis.

RQ1: How should a meta congestion controller for DA-LBE transport ser-
vices be designed and implemented for it to be considered a stable,
long-term, solution suitable for the Linux operating system?

RQ2: How can a test environment be built and configured to be suitable
for thorough testing and experimentation of the DA-LBE transport
services?

RQ3: How should a DA-LBE transport service be tested and evaluated to
verify its correctness and performance?

RQ4: How can the additional memory usage and computation load be
evaluated for a DA-LBE meta congestion controller module?

1.3 Previous Work on the Implementation

This was initially a summer project started by D. Hayes and E. Band at Sim-
ula Research Laboratory1 at Fornebu in Oslo, in 2018. The implementation
had some of the functionality required for a DA-LBE transport service to
work, however, it was lacking many important features, a good structure,
and thorough testing. For this reason it is important to recognize, and
acknowledge, the good work that was already put into this implementation,
as I was fortunate enough to be able to picked up where the previous de-
velopers left off and use their implementation as the basis for what later
evolved into Dalbe.

1https://www.simula.no/

3

1.4 Structure

This section provides a brief description of the main structure for each
chapter in this thesis.

Chapter 2 - Background This chapter provides an introduction to the
background material which is considered to be the essential building blocks
for understanding the topics discussed in this thesis. Building up from the
most basic on computer networking, to a more in depth look at some of
the protocols used in the Internet, as well as an introduction to the Linux
operating system with some implementation specific examples relevant for
this thesis.

Chapter 3 - Methodology This chapter presents the methodology used
in this thesis. The approach used for planning, designing, implementing
and testing the DA-LBE transport services is explained in detail. In addi-
tion to this, some important tools and methods are presented, which have
frequently been utilized for this work.

Chapter 4 - Design and Implementation This chapter dives into the de-
tails of designing and implementing the DA-LBE transport service. Some
important design decisions are taken into consideration which define how
the architecture, configurations options and arithmetic operations are de-
signed and implemented. A short introduction of how the implementation
may be used is presented in a server/client example, as well as a solution
for how the DA-LBE transport service can be tested and debugged. Lastly,
there is a discussion on the shortcomings of the implementation.

Chapter 5 - Test Environment This chapter presents how the virtual and
hardware based test bed, used in this thesis, were built and configured.
Details about the hardware components, the operating systems, and their
configurations are discussed, as well as how the network topologies were
emulated for our experiments. Lastly, a description of the software suite
is given and how it is used for test orchestration, data collection and data
parsing.

Chapter 6 - Network Performance Experiments This chapter presents a
series of experiments which target the network performance, fixed point
operations, network friendliness, and completion times of the DA-LBE
transport service. Together with an analysis of the results produced from
these experiments.

4

Chapter 7 - Load and Overhead Experiments This chapter presents a
series of experiments which target internal memory usage, function fre-
quency, and function overhead introduced by the DA-LBE transport service.
Together with an analysis of the results produced from these experiments.

Chapter 8 - Conclusion The final chapter concludes the work by compar-
ing the major findings to the problem statement for this thesis, in addition
to a discussion on future work on the topic of DA-LBE transport services.

5

Chapter 2

Background

In this chapter I give a short introduction to the background material which
the work in this thesis is based on. Building up from basic knowledge about
computer networking, to a more in-depth description of some of the key
protocols and frameworks. Provided in addition to this, is an introduction
to the Linux Operating System (OS), with some implementation specifics
related to its networking sub-system.

2.1 The Internet

Throughout the years we have grown used to always being connected.
Wherever we are in the world, there is almost always a solution for connect-
ing to the huge collection of networks we call "The Internet". Devices of all
kinds are connected to the Internet. May it be a server farm hosted by some
large firm, an individual person with their smart phone, or even everyday
devices such as refrigerators and vacuum cleaners. In the 21st century it is
so common to be connected, that we simply take the Internet for granted.
We just expect it to always work.

This notion of simplicity has spread to the people who are constantly
expanding it with applications and services,
namely, the software developers. For a software developer to create an e.g.
Web application, the developer need little to no knowledge of the underlying
complexity of the Internet. When the developer makes a request using a
common web protocol such as HTTP, (s)he may just expect the data to
effortlessly arrive for use in their application. When in fact the data has
been through several protocols, and may even have been exposed to delays
and even losses along the network path.

It may seem strange that a developer can be able to do so much with the
network, yet have so little knowledge of it. However, this is an architectural
decision made by the early developers of the Internet and is referred to as
"separation of concerns".

6

2.1.1 Architectural Assumptions

The complexity of the Internet is divided into several layers forming a stack.
This stack (see 2.1) consists primarily of five layers, starting from the top;
application layer, transport layer, network layer, link layer and physical layer [7,
8].

A system (e.g. a desktop computer) typically has to implement a protocol
for the four first layers. However in modern system support for multiple
protocols may be implemented at each layer for the opportunity to choose
given the type of service. The last layer, the physical layer, is usually handled
by the hardware e.g. NICs.

The application layer sits at the top of the protocol stack, and is usually
responsible for providing some service to the end user. Some protocols in
this layer may also act as support protocols providing some common system
function [7]. Two common protocols for this layer are File Transfer Protocol
(FTP) and Secure Shell (SSH).

The transport layer is responsible for end-to-end communications. Trans-
port layer protocols vary in complexity depending on the requirement of
the end-to-end delivery. Some common protocols for this layer are User
Datagram Protocol (UDP), and TCP.

The network layer is responsible for forwarding and routing data
through the network, and is considered connection less. This layer applies
addressing to the data being transmitted, but may also apply quality con-
straints and encryption to the data. Commonly there are only two protocols
available for this layer, Internet Protocol (IP) version 4 and 6.

The link layer provides direct communication between two connected
nodes. It is responsible for detecting (and possibly fixing) errors in the
transmitted data, maintain a connection to the directly-connected nodes,
and in some cases flow control. Most commonly used at the link layer is the
range of IEEE802 protocols, such as WiFi and Ethernet.

The physical layer interfaces the physical medium directly. It is respons-
ible for converting the data, which has traversed down the stack, from
digital bits to a physical signals. Such signals may be radio waves with WiFi,
electrical signals over coax, light using fiber, etc.

2.1.2 Internet Protocol

The Internet Protocol (IP) is designed for packet-switched communication
between networks and within networks. It is used for transmitting data, as

7

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Network Layer

Link Layer

Source Destination

Router

Physical Layer

Figure 2.1: A diagram of the TCP/IP Stack and how data flows between the
different layers.

datagrams, between a source and a destination. By adding the notion of an
address to the datagrams, it allows for intermediate nodes throughout the
network to forward it to the correct destination.

Routing

Routing in the Internet is performed by intermediate nodes along the net-
work path, and are referred to as routers. Routers are responsible for
forwarding the datagrams in the direction of the destination. Routers im-
plement routing protocols which often rely on a form for Dijkstra’s shortest
path algorithm for determining the shortest routs to the destination. Ex-
ample of such routing algorithms are Open Shortest Path First [56] and
Routing Information Protocol [36].

To handle incoming bursts of traffic, routers are equipped with buffers
which allow for intermediate storage of packets while routing table look-ups
are performed. These buffers have to be sufficient in size with respect to the
capacity of the network link which the router is attached to. If the buffers
are too small the routers will drop to many packets, and if the buffers are
too large this will lead to whats referred to as bufferbloat.

Active Queue Management

As increasing the queue length does not solve the problem of handling large
burst of traffic by it self, other methods have to be taken into consideration.
A mechanism introduced by Floyd and Jacobsen named Random Early

8

Detection (RED) [25] attempts to solve this problem by making a decision
based on the average queue length to drop a randomly selected packet.
What RED tries to achieve is to allow the queues to be relatively small
while being able to compensate for bursts of traffic, and also providing the
traffic effects that protocols e.g. TCP rely on to regulate their transmission
rates. RED is one of many mechanisms within the field of Active Queue
Management (AQM).

One of the major challenges for AQM is the choice of packet to drop [6].

2.1.3 Scalability

Usually, in the context of computer networks, scalability refers to the net-
works ability to scale with the amount of traffic flows in the network. I.e. if
the network scales well, it is expected to work equally not matter the load
or circumstances.

This is perhaps the most important aspect of the Internet as it is always
expected to perform well independent of connected devices.

End-to-end Argument

The end-to-end argument, described by Saltzer et al. [63], is one of the
key elements of the scalability of the Internet [12]. Simply interpreted the
end-to-end argument states that the complexity should be moved "out of the
network" at the end hosts, and that the network should be kept as simple as
possible. This interpretation is a little more restrictive than it should be, as
some complexity will in most cases have to be within the network, such as
e.g. routing algorithms and AQM. It comes down to where or not complexity
needs to be located within the network. If it does not, it should be moved
out.

2.2 Transmission Control Protocol

TCP is designed for providing highly reliable host-to-host communication
on a packet switched network [58]. The protocol is designed to fit in the
transport layer (see fig) as little to no reliability are to be expected from the
layers beneath. Thus, TCP only a assumes it will be able to obtain a simple,
unreliable service from the layers beneath. In the other direction, TCP faces
the application layer. It provides a simple interface which consists of a
set of system calls which resemble those found in the operating system for
manipulating files e.g. read / write [50, read(2) and write(2)], but with more
suiting names such as recv / send [50, recv(2) and send(2)].

Reliability is achieved by implementing a set of functionality and opera-
tions such as connections, sequence numbering, and checksums, flow control.
In addition to the address introduced by IP [57], TCP introduces a port

9

number which allows for identifying process and establishing a host-to-host
communication between two processes. Before any transfer of data can be
made, the connection must be established between the two hosts which
ensures that both ends are ready for sending and receiving data.

To handle segments that are lost, duplicated or out-of-order TCP adds a
sequence number to each segment. The receiving end can than use these
numbers to keep track of what has been received, and inform the sender
if anything went wrong. The receiver informs the sender by answering
segments with and ACK which includes the segment number, which corres-
ponds to the last byte received in-order. Informing the sender of what has
been successfully received at the other end.

The one’s compliment of the one’s compliment sum of all 16 bit words in
the TCP-header and data is used as a checksum to ensure that segments are
delivered without any errors. In the case of the checksum being incorrect,
the segment may have been corrupted and thus has to be corrected.

Flow control allows the receiver to govern the amount of data transmit-
ted by the sender. The connected hosts make use of a window which define
the maximum allowed range of sequence numbers that have to be ACKed
before further transmission.

In addition to being highly reliable, TCP is also responsible for ensuring
that the network path utilized between the two hosts is not congested. This
is referred to as TCP Congestion Control.

2.3 Congestion Control

When the load on the network grows beyond what it can handle, the network
gets congested. The queues on the routers in the network start to fill up
faster than what they can forward the traffic. At some point the queues will
reach their limit, and the routers have to start dropping packets based on
their queue management scheme to avoid total congestion collapse. This
also applies to the Internet. As we know from the End-to-End argument the
complexity lays at the edge of the network [63]. It is up to the transport
layer to adjust the amount data which are pushed out on the network at
one time. In TCP this is done with a Congestion Window (CWND) which
does just that; it defines the maximum amount of bytes (or packets) that a
connection can have on the network at any time. This window is adjusted
periodically by some Congestion Control (CC) algorithm which detects the
amount of congestion on the network. In general these kinds of CCs detect
congestion based on some kind of congestion event e.g. loss or delay.

2.3.1 Loss-Based Congestion Control

RFC5681 [4] defines four algorithms, first introduced by V. Jacobsen [43],
for congestion control; Slow Start, Congestion Avoidance, Fast Retransmit

10

and Fast Recovery. These algorithms provide a set of rules for how the TCP
sender should react in the presence of a congestion signal. Note that the
congestion signal in which these algorithms react to is loss. However other
signals e.g. Explicit Congestion Notification (ECN) could also be used as a
trigger for these algorithms [4].

To start the self clocking mechanism of TCP, slow start was introduced.
Slow start rapidly increases the flow of data in transit until it reaches some-
where near its fair share of the network capacity [43]. Once the equilibrium
has been reached, the congestion avoidance takes over and attempts to
maintain a steady flow of data on the network without causing congestion.
Fast re-transmit and Fast recovery are algorithms are designed to increase
the performance of TCP by elegantly handling a loss segment.

All these algorithms have in common that they are dependent on three
important variables to work; (1) Congestion Window (CWND), (2) Receiver’s
Advertised Window (RWND), and (3) Slow Start Threshold (SSTHRESH).

Congestion Window is maintained by the sender to limit the amount of
data that can be transmitted before an ACKed is received. Initially the
CWND may be set to the size of one segment, but generally a larger size of
four to ten segments is preferred to increase the performance of short lived
connections or connections with large Round Trip Time (RTT)s [3, 13].

For each ACK received the CWND is traditionally increased by one
Maximum Segment Size (MSS), however it is advised to increase by
CWND += min(N, MSS), where N is the amount of unacknowleged bytes at
the time of receiving the ACK. Which provides robustness against misbe-
having receiver [2].

Receiver’s Advertised Window is maintained by the receiver to limit
the amount of outstanding data. As the name suggests, the receiver may
advertise the maximum allowed CWND.

Slow Start Threshold is used to determine whether the slow start or
congestion avoidance should be used to increase the CWND. In the case
where CWND < SSTHRESH, slow start should be used, and congestion
avoidance should be used when CWND > SSTHRESH. The initial value of
SSTHRESH should be set arbitrary high or to the largest known RWND.
However, by setting the SSTHRESH arbitrary high this allows the network
conditions to dictate the sending rate [4].

Slow Start

is the mechanism used to reach the rate at which the ack-clock is self-clocking.
The term self-clocking refers to the rate at which the ACKs are received at the

11

sender. This rate will be the maximum rate at which the sender can transmit
over the network. For each received ACK the CWND is increased by one
segment, or the amount of bytes ACKed. As long as no congestion event
is experienced by the sender the CWND will double in size of each RTT,
causing an exponential growth. However, at some point the limit of growth
for the CWND will be reached. This can be due to a congestion event (e.g.
loss or ECN), the RWND limit has been reached, or that the SSTHRESH has
been reached. When this occurs the SSTHRESH is set to half the size of the
CWND, the CWND is reset to some new initial value, and the congestion
avoidance state is entered.

Congestion Avoidance

follows an Additive Increase Multiplicative Decrease (AIMD) growth model.
Instead of increasing the CWND by one whole MSS for each received ACK,
the CWND is commonly increased by max(1, MSS×MSS

cwnd) for each received
ACK. This means that the CWND increases by roughly one MSS for each
RTT. Generally integer arithmetic is used in TCP implementations for
calculating the window increment. Therefore the result may yield 0 and
should be rounded up to 1. When the sender experiences a loss due to a time
out the CWND is reduced by a multiplicative factor. If the new window
size is less than the SSTHRESH the sender switches back to the slow start
algorithm in the search for a new threshold as the network conditions may
have changed. Else it continues with additive increase from the new window
size.

The idea of the congestion avoidance is to keep the flow of data (through-
put) near the capacity of the network for as long as possible without causing
congestion.

Fast Retransmit

Whenever the sender receives a Duplicate ACK (DupACK) this can be caused
by many many different reasons. It can be the result of a dropped segment,
re-ordering in the network, or by replication of an ACK or data by the
network. Anyhow this should be handled immediately by the sender. On the
arrival of 3 consecutive DupACKs the fast retransmit algorithm interprets
this as if the segment has been lost. It handles this by re-transmitting the
segment(s) that seem to have been in hopes of fixing the issue before RTO
expires.

Fast Recovery

The fast recovery algorithm handles the transmission of data after the fast
re-transmit has sent what seemed to be missing. The reason for this is that
the receiver can only produce DupACKs in the period when it is waiting

12

for the lost segment. However, the receiver will only send DupACKs if it
receives a new segment, which most likely are the segments that were still in
flight following the loss. Fast recovery uses this knowledge to its advantage
by making artificial increments to CWND as "normal" until the lost segment
has been received and the receiver stops sending DupACKs.

TCP Reno and TCP NewReno

The four algorithms presented in the previous sections are the basis for
TCP-Reno (Reno). However, in later years some adjustments have been
done to improve Reno which is referred to as NewReno. The latest being
presented in RFC6582 [39]. NewReno specifies mostly changes to the Fast
re-transmit and the Fast Recovery of Reno.

Though other algorithms for congestion avoidance are generally pre-
ferred over Reno and NewReno, many of these algorithms borrow some
functionality for Reno/ NewReno. In this thesis we use the definition "Reno"
as a common denotation for Reno and NewReno where it is worth mention-
ing.

Reno is not the default congestion controller in the current Linux kernel,
however it is always available to fall back on as it s merged in the TCP
implementation of Linux [73, include/net/tcp.h].

TCP Cubic

As Reno grows its window by roughly one segment each RTT, it may have
problems utilizing the full capacity offered by the network. This is espe-
cially so if the network is categorized as a "long fat network", which are
recognizable by having a high bandwidth and long RTT giving them a large
Bandwidth Delay Product (BDP). In this case, if the length of the TCP flow
is shorter than the time in which the window is able to grow to the full size
of the network capacity, Reno will show quite bad performance.

TCP-Cubic (Cubic) is an improvement of TCP-BIC (BIC) which is de-
signed to work reliably for both long- and short-RTT networks with a high
bandwidth, achieving good [33, 60]. In BIC a binary search algorithm is used
to grow the window to a midpoint between the last window size where the
TCP witnessed a packet loss, and the last window size where TCP witnessed
no loss for one whole RTT [75].

Cubic improves upon BIC by changing the binary search with a cubic
growth function which greatly simplifies the algorithm. When a congestion
event occurs, the CWND quickly grows to the previous known equilibrium
point, following a concave growth curve. Around equilibrium point the
growth function "flattens" out allowing it to stay around this point for some
while before it starts probing for more capacity. When probing for capacity

13

if follows a convex curve, which allows it to quickly find the next max point.
The key feature of Cubic is that the growth function is only dependent on
the real time between two consecutive congestion events, thus making it
independent of RTTs [33]. The authors also show that Cubic achieves good
RTT-Fairness when multiple Cubic flows compete in the same bottleneck,
as the flows have approximately the same window size independent of their
RTTs [33].

Cubic became the default congestion controller of the Linux operating
system in version 2.6.18 [33] and still is in the latest version.

2.3.2 Delay Based Congestion Control

Though loss-based congestion control it maybe more widely used 1, it has
one drawback being that it has to increase its CWND until it generates a
loss. This can be avoided by enabling ECN, which again only will notify the
sender that it is right about to overflow the network, at which it may already
be to late. A better solution would be to somehow monitor the congestion
building up on the network, and back off before it gets fully congested.

This is exactly what delay-based congestion control attempts to do.
Generally speaking, delay-based congestion controllers try to model the
network congestion by using the propagation delay of data transmitted on
the network as a congestion signal. As the queues along the network start to
fill up, the propagation delay will start to increase. This can the be used as
an indication that congestion is building up on the network, and that the
sender should act less aggressively, possibly avoiding the loss of packets.

Generally speaking, a delay-based congestion signal may be one of the
following; (1) One-way Delay (OWD), or RTT.

Using Delay as Congestion Signals

OWD is the time a segment uses from the sender to the receiver (or vice
versa). It is up to the receiver to record the time at which the segment is
received, and report back to the sender by attaching the information to e.g.
an ACK. This excludes the re-transmission time from the calculation making
OWD a more precise calculation, suitable as an indication for network issues
and load for one direction. However OWD, comes with a price. For it to
work it is imposed that both the sender and receiver have support for TCP
timestamps [45]. In addition to this, the system clocks on both ends will
never be completely synchronized, making OWD more of an estimation
than an absolute value.

1In recent years Google has started to increase the used of BBR which is based RTT
estimation. BBR is commonly used by the video sharing platform YouTube [44], however
Cubic is still the most commonly used.

14

RTT is also an estimation of the time a segment is in flight. The es-
timation is calculated at the sender side by recording the time at which
the segment enters the network, and recording the time at which the ACK
for the corresponding segment is received. In practice this simplifies the
calculation. It does not need the participation from both sides nor does it
need any additional protocol support to work.

Using RTT as congestion signal, however, does come with some potential
issues. One potential issue is the accuracy of an RTT estimation. As there is
no guarantee that both directions are equally congested, the estimation may
be skewed. In the worst case this could lead to the sender over estimating
the amount of congestion in the network. This again may lead too the sender
being to passive, and missing out on available bandwidth.

TCP Vegas

One of the earlier, delay-based, approaches is Vegas [9]. It tries to max-
imize the throughput while keeping the amount of loss as low as possible.
To achieve this it uses an estimate of the amount of data that is queued
in the network by regularly checking the difference between the current
measured RTT and the BaseRTT, and tries to keep this estimate between
two thresholds α < β. The BaseRTT is the lowest perceived RTT since the
connection started, while α and β are the boundaries for how much data
the sender can have on the network at one time.

During the congestion avoidance algorithm of Vegas make use of Addit-
ive Increase Additive Decrease (AIAD) to regulate the congestion window
on a per ACK basis. This is done by measuring the expected rate, derived
from the BaseRTT and the current CWND. Followed by measuring the
actual rate, which is derived from the current RTT and the current CWND.
The queuing delay is computed as the diff between the expected rate and
the acutual rate times the BaseRTT. When diff < α, then CWND is increased
by one. When diff > β, then CWND is decreased by one. Otherwise, when
α < diff < β, the CWND remains unchanged.

The use of RTT as a congestion signal allows Vegas to more timely react
to network congestion, and the authors claim that Vegas is able to achieve
between 40% and 70% more throughput than Reno [9]. However later
studies have shown that Vegas performs much worse than that of loss-based
congestion control when used in a heterogeneous environment with drop
tail queues and large buffers [34].

Vegas is available as loadable kernel module in the latest version of
Linux [73, include/net/tcp_vegas.h].

15

2.3.3 Explicit Congestion Notification

So far the method for detecting congestion in the network has been a result
of implicit feedback along the network path, e.g. loss and queuing delay.
Implicit because it is not a direct message from the intermediate nodes.

Relying only on implicit feedback assumes that the end nodes are able
to make good, precise, assumptions about the network’s performance. This
however, is difficult as unpredictable behaviour may arise such as bufferbloat
and "early comer advantage/disadvantage".

However, a solution for explicit notification from the network is available
for IP, referred to as ECN [59]. ECN allows intermediate nodes along the
network path, such as routers, to notify the end nodes that congestion is
about to occur. This is achieved by marking incoming packets that exceeds
some congestion threshold with a mark telling the destination node that
congestion is about to occur. The destination node marks its ACK for the
packet marked with the congestion mark, which tells the sender to back off
before it causes the router to fully congest.

2.3.4 Fairness

A question related to the performance of a congestion controller is it fairness.
Generally interpreted as how much of the networks available resources
should be delegate to each traffic flow. The difficult of defining fairness
increases when the users of the network do not share the same amount of
resources. This is generally the main concern when it comes to the filed of
Qos, however, in terms of TCP congestion control it generally comes down
to how a common bottleneck can be equally shared between the competing
traffic flows.

Jain’s Fairness Index

One way to ensure that a bottleneck is being shared equally is by applying
Jain’s Fairness Index [46]:

“If a system allocates resources to n contending users, such that the ith

user receives an allocation xi , then the fairness index f (x) is defined as:”

f (x) =
(
∑n
i=1 xi)

2∑n
i=1 x

2
i

This results in a good measure for faines as f (x) = 1 if all allocations xi
are perfectly equal, but quickly becomes less than one if they are not. And
thus making it suitable for determining the fairness between competing
congestion controllers on a shared bottleneck.

16

TCP Friendliness

A common definition of fairness with respect to TCP is TCP friendliness. It
comes from the assumption that most of the traffic in the Internet comes
from TCP. Braden et al. use the term TCP-compatible instead of TCP-
friendly, and define TCP friendliness as follows [6]:

“A TCP-compatible flow is responsive to congestion notification, and in
steady-state it uses no more bandwidth than a conformant TCP running
under comparable conditions (drop rate, RTT, MTU, etc.)”

2.4 Less-than Best Effort Delivery

Less-than Best Effort (LBE) transport services can be loosely defined as
transport services that result in a smaller impact on bandwidth and delay
when sharing a bottleneck with BE transport services. While standard TCP
traffic sources make an attempt to share the bottleneck evenly amongst
each other, a LBE traffic source tries to avoid any disruption of competing
traffic. LBE tries to stay in the background only to utilize available network
capacity when there are no (or little) competing traffic, leading to it being
referred to as a "scavenger protocol". Scavenger protocols can be seen in use
by companies such as BitTorrent LEDBAT [66], Apple [42], and in recent
years by Microsoft [21].

2.5 Deadline Aware Less-than Best Effort Delivery

Deadline-aware less-than best effort (Deadline-Aware Less-than Best Effort
(DA-LBE)) is a Less-than Best Effort (LBE) service with a notion of timeliness
[35]. It strives to keep the disruption of other Best Effort (BE) traffic to a
minimum as well as delivering it’s data within a soft deadline. Hence the term
deadline aware. This makes it possible for a DA-LBE traffic source to linger
in the background, letting other traffic sources utilize most of the available
bandwidth. As the deadline closes in, the DA-LBE traffic source adjusts
its aggressiveness to gradually compete more and more for the available
bandwidth. If the deadline has been reached and the DA-LBE traffic source
is not yet finished it will compete with the other traffic sources as if it was a
BE traffic source.

2.5.1 Measuring the Price of Congestion

In Network Utility Maximization (NUM) the network congestion control
problem is framed as an optimization problem. The objective is determine
the appropriate send rate xs for the traffic source s to maximize the utiliza-
tion of bandwidth subject to the link capacity constraints. This problem can
be solved using the Lagrangian dual, where the Lagrange multiplier qs is

17

considered to be the congestion signal or price of each link l in the network
path.

Hayes et al. used NUM to show that an Less-than Best Effort (LBE)
services is modeled as traffic source s that inflates its measured network
price q(s), by some weight w(s) ∈ [wmin,wmax]. These limits determine the
degree of Less-than Best Effort (LBE), or the LBEness of the traffic source.
By adjusting the weight w(s), the aggressiveness of the send rate of the traffic
source is also adjusted. The closer w(s) is to wmin, the closer it is to its lowest
Less-than Best Effort (LBE) rate. Similarly, the other way, the closer w(s) is to
wmax, the closer it is to a Best Effort (BE) rate. wmax = 1, so that the Less-than
Best Effort (LBE) traffic source will be no more aggressive than a normal
Best Effort (BE) traffic source [35].

2.5.2 Adapting The Weight

The weight w(s) of the traffic source is periodically changed throughout the
lifetime of the connection with respect to the congestion price q(s) to reach
q̂ which is the congestion price for the sending rate required to deliver the
remaining data within the soft deadline. The weight is determined by the
target rate ζ, which defines the lowest send rate which the source needs to
reach the soft deadline tD , after the nth interval of duration Tw.

ζ (tn, tD) =
data remaining

tD − tn
(2.1)

Two methods of adapting w have been proposed:
a Proportional-Integral-Differential (PID) controller which base their con-
trol of the error ε between the current state and the target state, and a
Model-Based-Control (MBC) which relies on having a good model for the
protocol send rate with respect to the network price that would achieve the
desired Less-than Best Effort (LBE) bit rate.

Model Based Control

In Model-Based-Control (MBC) the goal is to have a good model of what
congestion price q̂n is desired to achieve the desired Less-than Best Effort
(LBE) send rate. An error εn−1 is used to determine the relative difference
between the target send rate and the actual send rate x̄ of the preceding
interval (tn−1, tn].

εn−1 =
ζ (tn−1, tD)− x̄ (tn−1, tn)

x̄ (tn−1, tn)
(2.2)

The new weight is based on the price that will achive the expected send
rate q̂ with respect to the actual send rate of the previous interval qn−1. This

18

is corrected by the error εn−1 and results in a new weight wn between wmin
and wmax.

wn =
[
qn−1

q̂n
(1 + εn−1)

]wmax
wmin

(2.3)

To assure that the weight does not grow too much at each interval, an
increase limit lw set for the weight. There is no limit on the decrease, as
sudden drops in aggressiveness are crucial for the controller to back off and
minimize disruption of competing traffic.

ŵn =

wn−1 + lwwn if (wn −wn−1) > lwwn
wn otherwise.

(2.4)

Note that the key to a well performing Model-Based-Control (MBC)
requires a good model of the congestion controller.

Model-Based Control for TCP Vegas

In practice Vegas not only reacts to delay, but also loss. In fact the imple-
mentation of Vegas in the Linux kernel inherits the functions used by Reno
when a loss event occurs to reduce the congestion window. This has to
be taken into account when adjusting the weight. However, mixing CCs
that react to different congestion prices makes it more difficult for Dalbe
to ensure its LBE-ness. To solve this Hayes et al. suggest that the price
of congestion has to be mapped to probability of congestion indication,
P [cong_ind]. This is then weighted by the relative effect the receipt of each
congestion indication, W [35]. For Vegas we get the following:

φ =
W (loss_reno)

P
(loss_reno) [cong_ind] +W (delay)

P
(delay) [cong_ind]

W (loss_cubic)
P

(loss_cubic) [cong_ind]
(2.5)

P
(delay) is defined by I (delay), which is the number of delay-based con-

gestion indications for the interval. This is then divided by N which is the
number of acknowledged packets for the interval. P(delay) is then weighted
by W , which is defined by the corresponding proportion of which CWND
has been reduced for the interval, divided by I (delay).

For the loss-based proportions we set P(loss_reno) equal to 0.5, as Reno
performs a multiplicative decrease of the CWND when a loss event is en-
countered resulting in the CWND being halved [4]. Cubic reduces its CWND
by a decrease factor β, which in general is set to β ≈ 0.7 [60].

From this we get φ which is the chance for Vegas to witness a congestion
event of any kind, normalized by the chance to experience a congestion
event used in the network [74]. In our case this is Cubic.

19

The algorithm for a model based DA-LBE adaption of Vegas is defined
as follows:

Algorithm 1 Update weight according to model for Vegas.

Every Tφ:
if loss events > CALC_THRESH then

φ← equation (2.5)

Every Tw:
qn← RT T −RT Tbase
q̂n← α

ζ(tn,td)
εn−1← equation (2.2)
wbase ←

qn
q̂n
× 1
φ

w̄n← wbase × (1 + εn−1)
ŵn← with w̄n limit increase using equation (2.3)
wn← with ŵn clamp using equation (2.4)
µn← wnφ

if wn == 1.0 then
B← 1− 1

µn

We only perform the calculation of φ is there are enough loss-event
to make a decent calculation. qn is the measured queuing delay for that
interval, while q̂n is the modeled queuing delay. α is the lower threshold
of Vegas.B is the back-off parameter which defines the chance to ignore a
loss-event. This is only used when wn == 1, or in other words; when Dalbe
is at its most aggressive.

Adjusting the Aggressiveness of Vegas Similarly as stated by Wallenburg
et al. the model presented by Hayes et al. [35] for Vegas did not map directly
to the kernel module in this work. In practice adjusting the kernel parameter
α is not feasible to as this value is globally set and thus changing it would
affect all other connections using Vegas. In adition to this, the α parameter
is set statically as a global variable in the Vegas in the Linux kerenl. This
makes it almost impossible to adjust from a concurrent module.

Instead of adjusting the perceived load by modifying α directly, we can
alter the parameters which Vegas uses to determine the price of congestion.
For Vegas this is referred to as the queuing delay and measured by calculat-
ing the difference of the based RTT and the RTT of the last acked packet
[9]. By inflating the RTT Vegas uses to calculate this queuing delay we can
make it perform more or less aggressively.

20

Algorithm 2 Algorithm that alters the RTT passed on to Vegas.

Every On every reveived ACK:
qack← RT T −RT Tbase
RT T ← RT Tbase + qack

µn

Proportional Integral Differential Based Control

For PID the signal is based on a combinations of current error, past history
and the project error. A normalized error signal εn is mapped to the weight
wn−1 of the previous interval to enable easy scaling.

εn =
ζ (tn, tD)− x̄ (tn−1, tn)

x̄ (tn−1, tn)
wn−1 (2.6)

εn is then used together with the gains for the proportional (Kp), integral
(Ki) and differential (Kd) parts to create the PID signal un. un is used to
determine the weight wn for the next interval.

In = In−1 + Twεn (2.7)

un = Kpεn +KiIn +Kd
εn − εn−1

Tw
(2.8)

Note that the key to a well performing PID controller is tuning its gains
Kp, Ki and Kp.

PID-Based Control in Practice

When updating φ while using PID based control we have to take into
account that the underlaying CC of Dalbe may be loss- or delay-based. A
part from calculating w differently, the only difference from the model for
Vegas.

2.5.3 Meta Congestion Control

As the DA-LBE framework collects various statistics from the network,
which are then used to adapt an underlying congestion controller, it is often
referred to as a meta congestion controller.

21

Algorithm 3 Update weight according to PID-Based control.

Every Tφ:
if loss events > CALC_THRESH then

φ← equation (2.5)

Every Tw:
εn← equation (2.6)
un← with εn equation (2.7 and 2.8)
ŵn← with un equation (2.3)
wn← with ŵn limit increase using equation (2.4)
µn← wnφ

if wn == 1.0 then
B← 1− 1

µn

2.6 The Linux Operating System

The Linux Operating System (OS), developed Linus Torvalds, is part of a
large family of UNIX-based OS’. Linux has become very popular over the
years, which mainly is the result of it being an open source project under
the General Purpose Licence (GPL). Which allows anyone to dive into the
enormous code base 2, and contribute to the ever growing OS.

The operating system is widely used on the server side, but over the
years many distibutions of Linux have been made to target the desktop users
e.g. Debian, Fedora and RedHat. Linux has also achieved great success in
the world of mobile computing by being the backbone for the very popular
Android OS. Being a UNIX-based system, Linux also shares many of the
fundamental design ideas as other UNIX-based systems such as FreeBSD,
Solaris, and even Mac OS X.

One of the major advantage of Linux is that it does not strictly stick to
any type of kernel architectures, but rather it makes an attempt at adopting
the best choices from well known kernel architectures. Other advantages of
Linux is that;

• it is cost free;

• it is fully customizable;

• it can run on inexpensive, low-cost hardware;

• it is designed for efficiency;

• it is maintained by professionals;

2Linux entered 2020 with about 27.8 million lines of code [51]

22

• it can be made small and compact;

• and it is compatible with most hardware.

This makes Linux a strong competitor to its commercial counterparts
such as Windows and Mac OS X.

2.6.1 Versioning

Up until kernel version 2.5, the version system had a different meaning to
what is used in present time. It used to follow a x.y.z numbering system
where the first number, x, referred to the major version. The second number,
y, was the minor version, and the third z referred to the current release. If
the minor version number was odd this would mean that the release was in
a unstable state, while if it was even the release was considered stable.

In later years the number have a different meaning. The first two, x.y,
refer to the major version, containing about 13000 change sets with changes
to several hundred thousands lines of code [49, process/2.Process.html]. At
the beginning of each so called development cycle, the merge window is said
to be "open". This allows for patches with new code that is considered stable
to submitted and merged into the mainline kernel. After approximately
two weeks Torvalds "closes" the merge window and the current mainline
kernel becomes the first of the "rc" kernels (e.g. 5.6-rcN is destined to be 5.6).
During the weeks following the close of the merge window, only fixes to the
"rc" kernels are allowed. As fixes make their way into the kernel multiple
versions of the "rc" kernel will be released by Torvalds until the kernel is
considered sufficiently stable for an official release.

When a new official kernel has been released, ongoing maintenance is
made by the "stable team" which may lead to additional versions of the
official kernel. In these cases a third number, y, is used to determine the
version (e.g. 5.6.4).

2.6.2 Contributing

The Linux source code consists of tens of million lines of code. Way beyond
what one person is capable of maintaining by them self. For this reason the
code base has been broken into a set of subsystems which is maintained
by a designated developer. Each maintainer has the responsibility for the
code in that subsystem, and all patches that involve the subsystem should
be submitted to this person. Subsystem maintainers each maintain their
own version of the source three which they request to be merged into the
mainline kernel when the merge window is open and subsystem is stable
enough.

23

The Netdev Group

The netdev group is responsible for the networking subsytem in the ker-
nel source tree [49, networking/netdev-FAQ.html] and all network related
questions should be directed to the netdev mailing list 3.

Two trees are always in play, net and net-dev, which are maintained by
David Miller, who is the main networking maintainer. The net tree is used
for networking related fixes to the mainline tree maintained by Torvalds.
The net-next tree is used for new network related features and drivers which
are targeted for the next mainline release.

2.6.3 Loadable Kernel Modules

In Linux 1.2 Loadable Kernel Module (LKM)s have been a method for adding
functionality to the kernel source code [38, x73.html]. LKMs are usually
used for adding device drivers, file system drivers and system calls. This
isolates functionality that does not strictly need to be wired into the core of
the kernel, making the kernel more modular.

The fact that the LKMs do not have to be wired to the kernel, makes
it possible to build and deploy them at run-time, and is a major selling
factor for LKMs. This decreases the amount of times the kernel needs to
be compiled, helps isolate bugs, and not to mention providing a modular
system.

User Space and Kernel Space

The OS is responsible for maintaining the integrity of the system [67].
Through techniques such as virtual memory and file systems, it manages the
shared resources of the system among the running threads and processes
(tasks). In addition to this, it schedules these running tasks by deciding
which should be allowed to run at each time and for how long they should
be allowed to run.

Another important factor for maintaining the integrity of the system,
and not to mention the safety of the system, is by restricting certain access
to crucial system resources from some of these tasks. The OS may achieve
this in two ways; (1) by assigning certain privilege levels to the tasks, and
(2) by assigning memory private memory regions for the running tasks.
Usually both are applied, and depending on the architecture in which the
OS running on, there may be several privilege levels. Commonly for these
levels are that applications run at the lowest privilege level, often referred
to as user space, to protect the integrity of the system from unpredictable,
malicious code. While the OS runs at the highest privilege level(s), referred

3Mailing lists are frequently used for development on the Linux kernel. Each subsystem
has their own mailing list.

24

to as kernel space, which allows it to manage the system, and thus maintain
the integrity of it.

Kernel Modules Versus Applications

Other than that kernel modules run in kernel space and Applications run in
user space, there are some other, important, distinguishing factors between
them. The first distinguishing factor is that an most applications usually
perform a single task which runs from start to finish, while a kernel module
only registers it self to the kernel, with the intent of serving a purpose in
the future [14]. This in comparison to each other the flow of the kernel
module can be compared to event driven programming, while the flow of an
application is more sequential.

Another distinguishing factor is that an application may be "lazy" in
terms of freeing up allocated resources, and instead relying on garbage col-
lecting mechanisms provided by the OS. A kernel module, on the other hand,
must make sure that all resources, allocated at initiation, are freed at the
point of release. This is very important, as this will otherwise, unnecessarily,
consume the precious resources in the system.

Lastly, an most importantly, is how faults are handled. For an applica-
tion, a segmentation fault4 is considered quite harmless during the develop-
ment process, as it at most crashes the process, which can in most cases be
easily debugged and fixed. For a kernel module, however, a segmentation
fault is much more crucial. If not handled, kills the current process at, if
not the entire system, and the cause may be very hard to trace back.

2.6.4 TCP/IP Stack in Linux

The TCP/IP stack in the Linux is implemented as set of function pointers,
referred to as hooks, which point to the entry and exit of each layer. Within
each layer there is usually a chain of function calls which manipulate a net-
work buffer, before passing it on to the layer beneath or above, depending on
which direction the data is headed. This network buffer, sk_buff, represents
the packet structure in Linux, and carries information about the header, the
data, and additional information about paged data [61].

Moving Down the Stack using TCP

Figure 2.2a illustrates a simplified example of the major functions that data
passes through when sending data. Using a socket configured for IPv4
and TCP. When the application calls the library function send, from the

4A segmentation fault occurs when the process attempts to access a memory location
which it does not have access to. This mechanism protects the memory outside boundary of
the process, but usually causes the process to crash in doing so.

25

application layer, this is actually hooked to the sockets inet_sendmsg, which is
responsible for calling the correct protocol function based on the setup. In
this case it calls the tcp_sendmsg function, as the socket is configured for TCP.
Now in the transport layer, the data from user space is broken into smaller
segments, and attached to the sk_buff with protocol specific information,
before its placed in the socket send buffer. If the TCP state machine is
able to transmit the buffer, it invokes the ip_queue_xmit. In this function,
which is considered as the network layer, IP specific information is attached
to the sk_buff before it is passed on to the network device by invoking
dev_queue_xmit. At the final layer before entering the network, link layer,
Quality of Services may be implemented, as well as Queuing Disciplines,
before the sk_buff is added to the device driver’s transmit queue, and finally
transmitted over the network.

Moving Up the Stack using TCP

Figure 2.2b illustrates a simplified example of the major functions data that
data passes through when receiving. Using a socket configured for IPv4
and TCP. At the reception of a packet by the device driver, an interrupt is
generated, notifying that the data has been placed in the receive queue. The
packet, now represented as a sk_buff is processed in the link layer, were the
IP family is determined. In this case this is IPv4, and the sk_buff is passed
to the network layer through the ip_recv function. At this point, IP specific
decisions are made for the packet, such as routing and firewall policies,
before is its passed on to the protocol handler. In this case the protocol
used is TCP, and the handler used is the tcp_v4_recv function. Now in the
transport layer the application socket is determined, followed by processing
the TCP segment. The processing of the segment determines if it is and
ACK, contains data, and other TCP specific fields. Finally, if the segment in
fact contains data, this is placed in a read queue for the socket, which the
application can read from using, in this case, recv.

2.6.5 TCP Congestion Control in Linux

In version 2.6 Stephen Hemminger released a patch [37] which cleaned
up networking code involving the congestion control algorithms of TCP
[15]. This was the result of the increasing interest for experimentation with
congestion controllers at the time.

The rework included an interface [73, include/net/tcp.h] which made it
possible for congestion controllers to be implemented as kernel modules.
Specifically, the interface made it possible for kernel modules to hook5 on
to the congestion control functions which where called by the internals of
the TCP implementation in Linux.

5The term hook is often used to referrer to function pointers.

26

User Space
Kernel Space

Transport Layer
tcp_transmit_skb()

Application Layer
send()

Network Layer
ip_queue_xmit()

Link Layer
dev_queue_xmit()

Device Driver

Physical Layer

Ring
Buffer

(a) Send

User Space
Kernel Space

Transport Layer
tcp_v4_rcv()

Application Layer
recv()

Network Layer
ip_rcv()

Link Layer
Driver interrupt processing

Device Driver

Physical Layer

Ring
Buffer

(b) Recv

Figure 2.2: A simplified model showing two examples of how packets tra-
verse the networking stack in Linux when TCP and IPv4 are used as the
transport- and network layer protocols. Sub-figure 2.2a shows the major
functions which the data is passed through from leaving the Application
layer, before entering the network. Similarly, sub-figure 2.2b shows the ma-
jor functions which the data pass through before arriving at the Application
layer.

27

The four required functions, which is implemented as a structure named
tcp_congestion_ops [73, include/net/tcp.h], are the following:

• ssthresh: Calculates a new slow start threshold and is called at the
time at when the congestion window is reduced.

• cong_avoid: Contains the congestion avoidance algorithm for calcu-
lating a new CWND for each congestion controller. It is called towards
the end of processing an ACK.

• undo_cwnd: Is used for calculating a new congestion window size
after a loss has occurred.

The TCP implementation in the kernel also depends on a state machine
which governs the senders actions when ACKs are received. These states
are as follows:

• Open: When the sender is in this state the connection is open and it
acts as normal. This means that there has been no unexpected events,
and all processing of packets go through what is referred to as the fast
path. The fast path is the name used for packets that go through the
minimum required processing before entering the network. Meaning
that the sender increases the CWND according to the slow start or
congestion avoidance algorithms.

• Disorder: If any dupACKs or SACKs are received, the disorder state
is entered. This means that each packet requires more attention, and
some are moved from the fast path to the slow path. The slow path is the
name used for packets that go through additional processing before
entering the network. This could be due to the sender being in the fast
re-transmission or fast recovery state.

• Congestion Window Reduced (CWR): In some cases the sender may
receive an explicit congestion event such as an ECN. If this is the case
the sender enters the CWR state, and reduces the congestion window
accordingly. This state can be interrupted by both Recovery and Loss.

• Recovery: This is essentially the fast recovery algorithm of TCP. When
the sender receives three dupACKs in a row, this state is entered.
During this state the sender reduces the CWND incrementally until
it reaches the SSTHRESH. The state is changed to open when the
outstanding packet that triggered this state has successfully been
delivered, or changed to the Loss if an RTO occurs.

• Loss: If an RTO occurs, the sender enters this state. All outstanding
packets are in this case considered lost, and the sender enters the slow
start algorithm.

28

2.6.6 Floating Point Operations in the Kernel

From user space’s point of view, floating point instructions appear to be as
easy as integer instructions, as the OS handles the transition between the
integer and floating point [52]. This transition often includes a trapThe term
trap refers to the an exception which is caught by the kernel, and which usually
results in a context-switch between user space and kernel space to perform a
specific task. which is caught by the kernel, and results in the operation
being transferred to the Floating Point Unit (FPU).

Though floating point operations are not impossible to perform from
within the kernel, it is highly discouraged use them. The reason for this is
that the kernel is not able to trap it self, resulting in it having to manually
save and restore the floating point registers, while also turning on and off
preemption. This process is quite heavy on the performance of the kernel,
and should not be performed unless it is a very special case with no other
viable solutions.

Fixed Point Operations

One possible solution for overcoming the absence of floating point opera-
tions is to used scaled integers for representing fractional numbers. This
is often referred to as fixed point numbers as the integer is fixed into two
parts, an integer-part and a fraction-part. The fractions are most com-
monly represented in base 2, as re-scaling can naturally be done using shift
operations.

The representation used for fixed point numbers is often referred to as
Q-notation, e.g. Q16.16 represents a 32-bit integer divided into two equally
large parts. The most significant 16 bits represent integer part, while the
least significant 16 bits represent the fraction part.

2.7 Summary

This chapter gave an introduction to the relevant background material for
this thesis. Building up from basic concepts within the field of computer
networking such as the TCP/IP stack, how packets are routed through the
network, and how the Internet scales in the presence of network traffic.
Following this introduction was a more in-depth description of the TCP
protocol, how it handles congestion in the network, and how its friendlyness
to competing traffic can be measured. Building upon the concept of conges-
tion control, LBE transport services was briefly introduced, followed by a
thorough description of how the introduction of soft deadlines an LBE service
evolved into the framework referred to as DA-LBE. Finally, an introduction
to the Linux OS was presented, together with the concept of Loadable kernel

29

modules and how they differ from applications, how the networking stack
is implemented in the kernel, and how floating operations are discouraged
in the kernel.

30

Chapter 3

Methodology

In this chapter I present the methodology, methods and tools which I applied
during this project, and how it played an important role for the outcome of
this thesis.

3.1 Approach

The approach I chose to follow for solving the problem was inspired by
agile development, were the focus was to work in an incremental, iterative
process, with high focus on testing [65]. Figure 3.1 illustrates the main idea
of the working process, were I made an attempt to divide my work into
four phases; (1) a planning phase, (2) a design phase, (3) an implementation
phase, and (4) a testing/experimentation phase, which could resemble a
sprint cycle in SCRUM.

In this way I could challenge my self to get a good overview of the tasks
that needed to be done, portion the amount of work in to smaller tasks, find
out in which order these tasks should be solved, and to have a good idea of
the progress I had made.

The main idea of the four phases are described in grater detail in the
following sections, together with the main methods and techniques that
were used in each phase.

3.1.1 Planning Phase

At the beginning of every main task (e.g. building the test environment), I
would create a backlog of smaller tasks that were a subset of the main task.
To keep track of these tasks I used a SCRUM-table [65]. In addition to this I
made weekly plans, as a means of setting a goal of how much I anticipated
to be able to finish for each week.

31

Plan

Design

Implement

Test /
Experiment

Figure 3.1: A simple model of the work flow used while working on this
project. This was a simple adaptation of a typical agile / test driven develop-
ment work flow, and even though the arrows are pointing in one direction it
did not strictly mean that this was the order of that always followed.

3.1.2 Design Phase

After planning I would start working the tasks which I had created for my
self. The first thing I would do was to design a solution for the task. At
times this would not be very challenging as the task would be very simple,
but in other cases the designing phase would be the major part of solving
the task.

During this process I would find literature relevant to the task, which
often revealed several ways to solve the task. This was very important for
identifying the correct approach for solving the task, as well as avoiding
"re-inventing the wheel" if a solution already existed.

With the relevant knowledge and literature it became easier to identify
the requirements for the system, both functional and non-functional [65], as
well as identifying the feasibility of these requirements. As the requirements
specification, which in my case was quite informal, would expand, so would
the amount of sub-tasks in my SCRUM-like table.

3.1.3 Implementation Phase

While working with the implementation(s) I had a great focus on code
conventions and code cleanliness, as what I produced aimed to, eventually,
be part of the large, Open Source project, Linux. Putting in a little extra
effort in this phase, meant that the next developer should have little to no
problem reading and contributing to the code later on.

Also during the implementation phase, a decent amount of time was
spent on writing documentation. The documentation varies in depth, as

32

it mainly aims to provide additional support for building, setting up and
using the provided software, without repeating the thesis. I chose to add it
as README files in the different repositories, as well as part of the appendix.

3.1.4 Testing and Experimentation Phase

The last phase of my agile inspired development process consisted of testing
and evaluating my software. In this project the testing and experimentation
were closely related, as I would often perform tests based on an experimental
setup which would lead to verifying the correctness of the software as well
as produce results which also allowed me to reason about the performance
of the software. I chose a subset of methods which in my opinion were
adequate for testing the software produced in this project.

Unit Testing

Unit testing, or in some cases referred to as Component Unit Testing [5],
is a means of testing program components, such as objects, functions [65].
These tests often aim to verify a specific behaviour of a system and is
components. In my work, I used unit tests as means of testing where I could
isolate certain functionality, e.g. mathematical operations and system calls,
to verify their correctness and performance in an sandbox-like environment.
In this environment I would try to create tests which provided enough
coverage to test all operations related to these components, check that the
results were correct for all cases. This would often involve creating mock-up
servers and clients which would allow for testing certain functions that
relied on a connection between two hosts to work.

Micro-Benchmarking

Another form of testing that I performed was micro-benchmarking. Similar
to the Unit tests, certain operations are isolated and tested on artificial
workloads, with the intention of giving an idea of the operations perform-
ance [30]. In this thesis i did some experimentation with benchmarking
some arithmetic operations. However, benchmarking is quite difficult to
get right, as having complete control of what compilers and the OS does is
very difficult. For this reason it did not end up being part of the final thesis,
however, I consider it a valuable experience, and thus I feel it should be
mentioned.

Event Tracing

Systems operate through discrete events, such as CPU instructions, disk
I/O, network packets, system calls etc. [30]. Through performance analysis,
these events may be summarized and studied. However, in some cases these

33

summaries may miss crucial events. Event tracing, when done correctly, can
allow for inspecting these events individually. This, in turn, may lead to a
better understanding of the system, as well as reveal certain performance
issues which are not visible through performance summaries.

I used event tracing on many occasions during this work. Some examples
where tracing was used was for tracing network packets using tools such
as Wireshark [27] and tcpdump [50, tcpdump(1)], for inspecting function
overhead within the kernel using ftrace [50, ftrace(1)], or for revealing
memory leaks using kmemleak [49, dev-tools/kmemleak.html].

3.2 Collaboration

At a point during this project I joined forces with a fellow master student
on building a suitable testing environment, which could be utilized by us
both. During this collaborative work the agile inspired development process
became very useful. For a period of approximately one month, give or take,
we ran weekly sprints were we created a plan of which tasks we assumed
we would be able to finish, within that week. This was very helpful as it
was became very easy to keep track of the tasks we were working on and the
progress we had made. In addition to this, we could perform some informal
code reviews [5] for the software we implemented, which in my opinion was
very valuable for the quality of the software we produced.

3.3 Tools

Some of the methods and tools used during this project have already been
mentioned in previous sections. In this section I want to give an extra
introduction to what i consider some of the most important tools mentioned,
and that have played a major role in the outcome of this thesis.

3.3.1 Common Open Research Emulator

Common Open Research Emulator (CORE) is an open source project by
the Boeing Company [16] designed for building virtual networks. It takes
advantage of virtualization provided in the Linux operating system, like
virtual interfaces and Ethernet bridges. The key features of interest that
CORE provides is that it is efficient and scalable, and has a drag-and-drop
General User Interface (GUI) [1]. This made it quite easy to emulate different
virtual network topologies and add custom scripts to each virtual node for
specific network configuration, and was therefore a good option for our test
bed.

34

Architecture

The main components of the CORE architecture is the core-daemon and the
core-gui. The daemon runs as a service on the Linux machine, and has to
be started for the other components to work properly. Through the core-gui
or custom scripts which use the pycore modules directly the user can create
virtual network topologies. The virtual networks are constructed by CORE
node and tied together using Linux Ethernet Bridging. The CORE nodes are
small, lightweight, virtual machines which can be accessed through a shell
and/or which can be given custom scripts to run at start-up that manipulate
links, routes, etc. [1, architecture.html]

Performance

The main factors of concern when it comes to the performance of CORE,
stated by the developers, are the following; hardware in use, OS version,
amount of active processes, amount of network traffic being produced, and
the GUI usage [1, performance.html]. According tho the developers they
found it reasonable to run 35 to 70 nodes on a typical single-CPU Xeon
3.0GHz server machine with 2GB RAM running Linux. In their opinion, the
main concern for the user should be how much traffic the emulator would
be able to handle at once. On the same setup they were able to handle
approximately 300000 Packets Per Second (PPS), which represented the
amount of times the system would have to deal with a packet. More network
hops and paths would effectively increase the amount of context switches
and decrease the throughput in a path
[1, performance.html].

3.3.2 Linux Performance Events

Linux Performance Events (perf_events), often just referred to as perf [50,
perf(1)], is a set of tools supporting a wide range of performance observ-
ability activities for the Linux kernel [30]. It provides static and dynamic
tracing of the kernel, based on functionality such as tracepoints and kprobes.
In addition to this it provides support for profiling, an other analytical tools
directed at inspecting the internals of the kernel. The fact that this tool set
is part of the mainline kernel makes it very trivial to set up and use, and
the support it provides for observing the system is in many cases adequate
for solving most performance related tasks.

3.3.3 Function Tracer

The Function Tracer framework, refered to as ftrace [49, trace/ftrace.html], is
an internal tracer for the Linux kernel. This tools is designed specifically to
give kernel developers an insight of what is happening within the kernel.

35

Ftrace is most commonly known for being a function tracer, however, it
should be considered more a tool set, as it provides much more than just
function tracing. Its functionality can be very useful for debugging and
analysing events that occur outside the realm of user-space.

The process of setting up ftrace is more complicated than for perf. Though
these exist front-ends for controlling ftrace [50, trace-cmd(1)], which re-
sembles the front-end of perf, ftrace is indented at being available for most
embedded systems that do not have build tools. For this reason the original
way of controlling ftrace is through and interface based on the debugfs. This
interface allows for configuring and running the tracer, as well as displaying
the output, by the utilizing bash commands such as echo and cat.

3.4 Summary

In this chapter I presented, in detail, the methodology applied in this
project, which was inspired by an, iterative, agile development process. I
also mentioned some methods and tools which were important for each
phase of the project, and how the methodology became very useful while
collaborating with a fellow student. Lastly, gave a more in-depth description
of a set of tools which played an important role for the outcome of the thesis.

36

Chapter 4

Design and Implementation

In this chapter I present how the meta congestion controller was designed
and implemented. Specifically, I present a set of architectural decisions
that were made based on the requirements. In addition to this I describe
how the meta congestion controller may be used in real life example, how it
was tested and debugged, how errors were handled, and what license it is
released under. Finally, I discuss some shortcomings, and how they may be
solved.

4.1 Requirements for the Implementation

The first research question (RQ1) for the thesis is:

How should a meta congestion controller for DA-LBE transport
services be designed and implemented for it to be considered a stable,
long-term, solution suitable for the Linux operating system?

To answer this question I define a set of requirements for implementing the
meta congestion controller, that when fulfilled, should provide an adequate
answer to the question.

• The meta congestion controller must follow the common conventions
used for Linux kernel development.

• The meta congestion controller must fit into the existing architecture
of the Linux kernel with minimal changes.

• The meta congestion controller must be thoroughly tested and de-
bugged.

4.2 Code Convention

There are many common conventions used in modern software development,
and all vary based on the project and the programming language being used.

37

An example of such a convention is the one used for development in the
Linux kernel [49, process/coding-style.html]. The source code of the DA-LBE
meta congestion controller makes an attempt at following these guidelines
as much as possible in an attempt to keep the structure and style of the code
true to that which is used in the mainline kernel.

In addition to this, the source code, which is heavily based on the al-
gorithms by Hayes et al. [35] and chapter 2, makes and effort to follow the
flow of the algorithms as much as possible. In my opinion, this increases the
comparability between the written material and the source code, making
for a more pleasant code development experience.

4.3 Architectural Decisions

In this section I discuss the important architectural decisions for the DA-
LBE meta congestion controller, referred to as TCP-DALBE (Dalbe) in this
chapter, and how I implemented them.

4.3.1 Architecture

Generally speaking, Dalbe is implemented as a loadable kernel module [38]
which interfaces the TCP congestion control interface [15]. This interface is
a C structure of function pointers, which are referred to as hooks.

This allows it to be loaded manually after the kernel has booted success-
fully, while seemingly being recognized as a genuine congestion controller
by the OS. However, considering that Dalbe is a meta congestion controller,
the architecture is a bit more intricate than that of a typical congestion
controller.

The following are five architectural considerations which are important
to pay attention to when implementing a meta congestion controller;

1. Where does the meta congestion controller fit into the networking
stack of the Linux kernel?

2. How does the meta congestion controller handle the underlying con-
gestion controller?

3. How does the meta congestion controller maintain metadata for each
connection?

4. In what way(s) can the meta congestion controller be configured?

5. How does the meta congestion controller allow for real numbers in
the absence of a Floating-Point Unit (FPU)?

38

struct tcp_congestion_ops dalbe_ca_ops __read_mostly = {

.init = dalbe_init,

.release = dalbe_release,

.ssthresh = dalbe_ssthresh,

.cong_avoid = dalbe_cong_avoid,

.set_state = dalbe_set_state,

.cwnd_event = dalbe_cwnd_event,

.in_ack_event = dalbe_in_ack_event ,

.undo_cwnd = dalbe_undo_cwnd,

.pkts_acked = dalbe_pkts_acked,

.get_info = dalbe_get_info,

.setsockops = dalbe_setsockops,

.getsockops = dalbe_getsockops,

.owner = THIS_MODULE,

.name = " d a l b e " ,

};

Figure 4.1: A listing of the functions implemented by the meta congestion
controller from the TCP pluggable congestion controller interface.

Placement in the Network Stack

As Dalbe interfaces the TCP congestion control interface in the Linux kernel,
it is part of the existing architecture of the networking stack. Dalbe utilizes
some of the function hooks of the plugggable congestion controller interface
to perform its calculations and manipulate the underlying congestion con-
troller. Dalbe does in general not need to implement all these functions for
it to be able to make correct calculations of the DA-LBE values, however it
is important that Dalbe implements all the functions which the underlying
controller implements, as ignoring some of these may lead to undefined
behaviour.

Figure 4.1 shows what function hooks Dalbe implements. The trigger
for these function hooks may depend on what state the TCP connection is
in, if it is an outgoing or incoming packet, system call, interrupt, or if an
error occurs. This makes the architecture quite complex and difficult to
debug, and for this reason I have added a set of flow charts that illustrate
simplified examples of when these functions may be invoked by the TCP
process.

Figure 4.2 gives an insight to the more general view of the architec-
ture. If one of the functions is invoked, Dalbe may perform any needed
calculations (e.g. altering RTT or packet accounting) before calling the same
function on the underlying congestion controller. In other cases Dalbe relies
on the underlying to perform its calculations (e.g. updating CWND and
SSTHRESH for calculating delay based congestion events) before Dalbe is

39

Application Layer
Transport Layer

tcp_transfer_skb()

Transport Layer
Network Layer

Manipulate
TCP Values

Call underlying
function

DA-LBE
Meta CC

TCP Process

Manipulate
TCP Values

Underlying
CC

TCP Socket

send()

Trigger
Interface Hook

tcp_v4_rcv()

recv()

Figure 4.2: A model of how the meta congestion controller fits into the trans-
port layer of the networking stack in Linux. Each time there is an outgoing
or incoming packet, it may trigger one of the meta congestion controller
functions. If this is the case, the function may manipulate the TCP socket
directly, either before or after invoking the underlying congestion controller.
The underlying congestion controller may in turn also manipulate the TCP
socket before returning to its caller; the meta congestion controller.

40

able to perform any reasonable calculations. Both the underlying congestion
controller and Dalbe may alter the values stored in the socket structure.

Keeping Track of Metadata

Each Dalbe connection needs to keep track of a certain set of values (metadata)
which are used to update the weight etc. for each interval, see algorithm
1 and 3 in chapter 2. Dalbe does so by keeping a unique structure, struct
dalbe, for each connection.

These structures are stored in a hashtable which is created by Dalbe
when it is inserted into the kernel using insmod. After the unique structure
for the connection has been allocated, Dalbe places it into the hashtable
using the socket address as the key. The reason for this is that the socket
(struct sock *sk) [73, include/net/sock.h], which is unique for each connection,
is passed in as a parameter for each hook that Dalbe implements from
the pluggable congestion controller interface, and thus it is quite suitable
for identifying the connection. To aid the 32-bit hashing algorithm on a
64-bit system we use only the 32 lower bits of the socket address. Figure
4.3 illustrates how the structure is stored in the hash table using hash_add,
while figure 4.4 illustrates how it fetched using hash_for_each_possible from
a call to one of the other functions.

Handling Underlying Congestion Controllers

Dalbe keeps track of the underlying congestion controller similarly to how
the TCP connection keeps track its congestion controller. As every conges-
tion controller in Linux is registered to a simple linked list in the kernel,
Dalbe can take advantage of this by looking up the underlying congestion
controller by name in this list. The list holds a pointer to each structure that
contains the hooks which each congestion controller implements. When
Dalbe has fetched this pointer, it can keep it stored in its own metadata
structure until the connection is closed. Figure 4.3 illustrates how Dalbe
reads and writes from this list. Note that Dalbe will also be part of this list
after initiation.

4.3.2 Configuration Possibilities

Dalbe may be configured either at the time the module is loaded, or at
run-time. The following subsections describes how this is made possible.

Module Parameters

Configuring Dalbe using module parameters allows for setting values that
should not be changed too often for a kernel module. In this implementation
only a small set of values are made available as parameters, which server the

41

Pluggable Congestion Control
Support (tcp_cong.c)TCP-DALBE

tcp_register_congestion_control()

Return

dalbe_register()

Cubic

Vegas

List Tail

list_add_tail_rcu()

Reno

List of available
congestion controllers

list_for_each_entry_rcu()

dalbe_init()

dalbe_alloc()

hash_add() struct dalbe *

socket addr

socket addr

Hash Table for
Dalbe Metadata

socket addr
struct dalbe *

struct dalbe *

tcp_ca_find()

Return

Return

dalbe_set_underlying_ca()

Return

Figure 4.3: This model illustrates how the meta congestion controller is
registered in the kernel as a congestion module through the dalbe_register
function, how the meta congestion controller is able to fetch a pointer to the
underlying congestion controller through the tcp_ca_find function call, and
how the Dalbe structure is stored in the hashmap using hash_add.

42

Underlying Congestion Control
(e.g. tcp_vegas.c)TCP-DALBE

struct dalbe *

socket addr

socket addr

Hash Table for
Dalbe Metadata

socket addr
struct dalbe *

struct dalbe *

dalbe_cong_avoid()

check_key()

hash_for_each_possible()

Return

underlying_ca->cong_avoid()

PRE CALCULATIONS

UPDATE CWND

Return

POST CALCULATIONS

Figure 4.4: This model illustrates an example of what a call to one of
the Dalbe meta congestion controller functions involves, in this case the
dalbe_cong_avoid function. The first action performed is to fetch the dalbe
struct from the hash map. If this is successful, the meta congestion module
may perform some calculations before invoking the corresponding function
of the underlying congestion controller. Upon return from the underlying
congestion controller, the meta congestion controller may perform some
additional calculations before returning.

43

role of default values that are not intended to be changed after the module
has been inserted.

Acquiring the α parameter from Vegas One problem I encountered when
developing the model based control for Vegas was that the α parameter,
which was needed by model, was not possible to fetch from inside the meta
congestion controller module. The reason for this being that the Vegas
implementation in the Linux kernel, also a kernel module, has both α and β
set as static variables [73, net/ipv4/tcp_vegas.c]. The only way to alter these
parameters after the Vegas module was loaded, is through the use of sysctl
[50, sysctl(8)].

After researching for a proper solution to perform something similar
to sysctl from inside our kernel module1, I came to the conclusion that the
solution would be very unclean and "hacky". In fear of a hacky solution
that would be conflicting with the requirements for the implementation,
I settled on a solution where the user has to be responsible for setting the
Vegas α and β values manually using sysctl.

With this solution I also had to implement the Vegas α value as a module
parameter for Dalbe.

Custom Socket Options

Communication with kernel modules from user space is usually done via
some kind of API or I/O control [50, ioctl(2)]. In my case I was fortunate
enough to have a well defined API in my possession. The socket API,
provided by the Linux OS, allows the application to configure the connection
properties quite well using socket options [50, setsockopt(2), getsockopt(2)].
Though the socket API works quite well, it was limited in terms of passing
information directly to the congestion controller module.

For this reason I expanded the TCP congestion controller interface with
two more function hooks; setsockopts and getsockops. This set of hooks allow
the congestion controller modules to define custom socket options specific
to the controller, which is useful if the user wants to send a set of options
directly to the congestion controller.

4.3.3 Fixed Point Operations

Dalbe requires the used of real numbers for its DA-LBE related calculations.
However, the use of real numbers, such as floating point, in the kernel is
quite frowned upon as this is very architecture specific and may lead to
a very buggy and slow system. For this reason Dalbe utilizes fixed point
numbers, which is a solution for fractional numbers using integers. However,

1I even resulted in posting a question on StackOverflow.com in hopes of finding a good
solution for this problem, but with little success.

44

the use of fixed point operations can make the code quite cluttered and
difficult to debug, if it is not implemented with a well defined structure. For
this reason Dalbe introduces a set of functions that aid the developer when
performing these fixed point operations.

Function Definitions

Dalbe introduces two basic arithmetic operations for fixed point calcula-
tions; multiplication and division. For multiplication sq_mul and uq_mul
are defined, and for division sq_div and uq_div.

sq_mul and uq_mul allow for multiplication of two fixed point numbers.
The functions allow for the two numbers to have different scale factors.
However the result will always scale to the type with the largest integer part,
to preserve the integer part.

sq_div and uq_div allow for division between two fixed point numbers.
Also here, the functions allow for the two number to have different scale
factors, and the result will always scale to the type with the largest scale
factor.

Choosing inline function instead of macro Initially, Dalbe used GCC
Macro one-liners for its fixed point operations, in an attempt to introduce as
little computational overhead to the operations while still having function-
like syntax. However, this produced code that was difficult to read and
debug. For this reason, the fixed point operations where expanded into
inline functions instead. There where two major benefits of this design
decision; (1) The code became easier to read and debug, and (2) it allowed
for a little more complexity within the function. In terms of computational
overhead, this introduces no additional overhead when done correctly [28].

I chose to add some more complexity when expanding to inline functions
as I then could work with fixed point numbers with variable scale factors.
This could of course also have been achieved with macros, using do-while
blocks. However, the use of macros in such a way would even further
complicate the code as multiple lines would be inserted where the macro
would be used.

Type Definitions

Dalbe introduces four fixed point types, with two different scale factors.
Two signed types; sq16 and sq30, and two unsigned types uq16 and uq30.
These types are just type definitions of the variable types; s16, u16, s30, u30,
and the compiler does not differentiate between these types.

45

/*

* Macro based multiplication:

*/

#define _Q_MUL_ROUND(a, b) \

((a * b) & 1) * Q_SCALE_FACTOR

#define UQ_MUL(a, b) \

(u32)((((u64)a * (u64)b) + _Q_MUL_ROUND(a, b)) /

Q_SCALE_FACTOR)

/*

* Inline based multiplication:

*/

static inline u32 uq_mul(u32 a, u32 a_scale_factor, u32 b,

u32 b_scale_factor)

{

u32 scale_factor = MAX(a_scale_factor, b_scale_factor);

u32 round_part = ((a * b) & 1) * scale_factor;

return (u32)((((u64)a * (u64)b) + round_part) /

scale_factor);

}

Figure 4.5: A listing showing the difference between a GCC macro based
multiplication operation for fixed point numbers, and the same code written
with inline functions and an additional line of complexity.

sq16 and uq16 Introduce a fixed point number with an integer part of
16 bits and a fraction part of 16 bits. sq16 allows for signed numbers to
range between −215 = −32768 and 215 − 1 = 32767, as the most significant
bit is reserved for the two’s compliment of the number, and uq16 allows
for unsigned numbers between 0 and 216 − 1 = 65535. The precision of this
type is defined by its fraction size of 16, which allows for a precision of
2−16 ≈ 10−5.

sq30 and uq30 Introduce a fixed point number with an integer part of 2
bits and a fraction part of 30 bits. sq30 allows for signed numbers to range
between −21 = −2 and 21 − 1 = 1, as also here the most significant bit is
used for the two’s compliment of the number, and uq30 allows for unsigned
numbers between 0 and 22 − 1 = 3. The precision of this type is defined by
its fraction size of 16, which allows for a precision of 2−30 ≈ 10−9.

The choice of scale factors are based on my belief that these two should
be sufficient to handle the calculations performed by Dalbe with good
precision without over complicating the source code too much. The Q16.16
based numbers are meant as an all round solution where the numbers are
not predictable, while the Q2.30 based numbers are meant for use on values

46

between 0 and 1.

Macro Definitions

In addition to the multiplication and division functions, Dalbe introduces a
set of macros which can be used for conversion from integers to fixed point
and vice versa.

4.4 Changes to the Kernel

Some of the architectural decisions proposed in previous sections required
minor changes to the Linux kernel. These changes were kept to an absolute
minimum, as introducing unnecessary changes to the kernel is frowned
upon, and will decrease the chance of having the work accepted in the next
mainline kernel. Only changes that were absolutely crucial for the meta
congestion controller to work were added, to the following files:

• [73, include/net/tcp.h] contains part of the changes made for allow-
ing the meta congestion controller to find the underlying congestion
controller by name. Also, this is were the TCP congestion controller
interface is defined, which was expanded to allow for custom socket
options. This was already a part of the previous work done on the
meta congestion controller by E. Band and and D. Hayes. However, the
socket options have been refurbished in this work, by attempting to
make them fit better into the architecture, implementing proper move
operations between user space and kernel space, and by implementing
adequate error handling.

• [73, include/uapi/linux/dalbe.h] contains a set of constants defining
the available, custom, socket options for the DA-LBE meta congestion
controller. The placement makes them available from user space after
the Linux headers have been installed correctly.

• [73, include/uapi/linux/tcp.h] adds one socket option constant for the
TCP layer. This option is used for informing that the socket option
used is in fact a custom option destined for the custom socket option
hooks.

• [73, net/ipv4/tcp.c] contains the changes to the do_tcp_setsockopt and
do_tcp_getsockopt procedures, which invoke the setsockops and getsock-
ops, if the option is set.

• [73, net/ipv4/tcp_cong.c] contains the remaining changes that allow
for the meta congestion controller to find the underlying congestion
controller by name. Specifically, this is were the function is exported
in a way that makes it available in the Linux kernel.

47

At the time being Dalbe builds upon a custom version of Linux 5.4 from the
net-next tree by D. Miller [53]. The decision of using version 5.4 is simply
a result of choosing a stable version to work with during the testing and
experimentation, and is not absolute 2.

A patch with the minor changes to the networking code described in
this section is provided together with the source code for Dalbe.

4.5 Usage

When the custom kernel has been built and installed, applications can be
built using the existing socket API [50, socket(2)], and there are no other
requirements for the developer other than to make themselves familiar with
the documentation of the kernel module and the DA-LBE framework, given
that they are familiar with network programming. Following is an example
of a simple client written in C, utilizing the DA-LBE framework with MBC
as the weight policy and Vegas as the underlying congestion controller:

Figure 4.6 illustrates what little extra effort has to be put into making
a client work with DA-LBE. And similarly, figure 4.7 illustrates the little
extra effort has to be put into making a server work with DA-LBE. The only
change is the socket options, which have to be set for the connection. On
the client, this is done by directly applying the socket options on the main
socket, while on the server the socket options have to be applied on the
client socket (c_sock). Note that the client and server can independently set
the socket options if either wants to use DA-LBE meta congestion control.

For more complete examples, two server-client examples can be found in
the repository of the test bed [72]; one is written for Python3 and the other is
written for C++. In addition to this, as a server-client setup made specifically
for unit testing of the socket API can be found in the test repository [70].

4.6 Testing

The methods used for testing kernel modules vary depending on their
purpose and to which sub-system they belong. There is a large variety of
frameworks for performing various tests on the Linux kernel such as Linux
Test Project [23] and Autotest [22], however, in many cases they may be to
general or do not target specific parts of the code that are of interest for
testing. For this reason developers tend to make their own tests which are
tailored to fit their specific purpose, e.g. utilizing techniques such as ioctl
[50, ioctl(2)] to target specific functions within their code.

2To create new patches requires little effort, however applying them together with re-
building every time a new version is released is quite cumbersome when working within a
time frame.

48

/* Includes for socket operations etc. */

#include <linux/dalbe.h>

int main(void)

{

int sock = socket(AF_INET, SOCK_STREAM, 0);

setsockopt(sock, IPPROTO_TCP, TCP_CONGESTION,

" d a l b e " , strlen(" d a l b e "));

setsockopt(sock, IPPROTO_TCP, DALBE_UNDERLYING_CA ,

" v e g a s " , strlen(" v e g a s "));

setsockopt(sock, IPPROTO_TCP, DALBE_TARGET_DEADLINE ,

1300, sizeof(unsigned long));

setsockopt(sock, IPPROTO_TCP, DALBE_DATA_SIZE,

1000000, sizeof(int64_t));

setsockopt(sock, IPPROTO_TCP, DALBE_W_POLICY,

0, sizeof(int)); /* 0 = MBC, 1 = PID */

struct sockaddr_in saddr;

saddr.sin_family = AF_INET;

saddr.sin_port = htons(6655);

saddr.sin_addr.s_addr = inet_addr(" s e r v e r . a d d r e s s ");

connect(sock, (struct sockaddr *)&saddr, sizeof(saddr));

/* Send the specified amount of data to server .. */

return 0;

}

Figure 4.6: A simple example of a client written in C. The client utilizes the
socket option interface (setsockopt) to configure the connection for DA-LBE
transfers.

In terms of testing congestion controllers and other networking specific
features within the Linux OS, making custom tests seems to be the common
case. However, being able to test all parts of the congestion controller
required setting up connections and actually transfer data between two, or
more hosts.

4.6.1 Unit Tests

One way Dalbe was tested was through unit tests using the Google Test [29]
framework for C++. By doing so I could generate light weight tests that
help me identify errors and memory leaks. I could also extract parts of the
code, e.g. the fixed point operations, and verify their correctness in user
space before applying them to the kernel module.

49

/* Includes for socket operations etc. */

#include <linux/dalbe.h>

int main(void)

{

int sock = socket(AF_INET, SOCK_STREAM, 0);

struct sockaddr_in saddr;

saddr.sin_family = AF_INET;

saddr.sin_port = htons(6655);

saddr.sin_addr.s_addr = inet_addr(" s e r v e r . a d d r e s s ");

bind(sock, (struct sockaddr *)&saddr, sizeof(saddr));

listen(sock, 1);

struct sockaddr_in addr;

socklen_t addr_len = sizeof(struct sockaddr_in);

int c_sock =

accept(sock, (struct sockaddr *)&addr, &addr_len);

setsockopt(c_sock, IPPROTO_TCP, TCP_CONGESTION,

" d a l b e " , strlen(" d a l b e "));

setsockopt(c_sock, IPPROTO_TCP, DALBE_UNDERLYING_CA ,

" v e g a s " , strlen(" v e g a s "));

setsockopt(c_sock, IPPROTO_TCP, DALBE_TARGET_DEADLINE ,

1300, sizeof(unsigned long));

setsockopt(c_sock, IPPROTO_TCP, DALBE_DATA_SIZE,

1000000, sizeof(int64_t));

setsockopt(c_sock, IPPROTO_TCP, DALBE_W_POLICY,

0, sizeof(int)); /* 0 = MBC, 1 = PID */

/* Send the specified amount of data to client .. */

return 0;

}

Figure 4.7: A simple example of a server written in C. The server utilizes the
socket option interface (setsockopt) to configure the connection for DA-LBE
transfers. Note that this is done on the client socket, after the connection
with the client has been accepted.

50

User Space API Tests

In terms of quickly identifying bugs and errors that would lead to the
process, kernel module, or even the entire system failing, I created a simple
test suite that targeted the socket API in Linux. The tests generated a local
server and client which connected with each other and performed a simple
transfer. By doing so I could quickly verify that the kernel module was
running, and I could check for memory leaks. Another great benefit of
these tests was that I could verify that the custom socket options where
performing correctly, by invoking them and checking within the kernel
module that the correct values had in fact been.

Fixed Point Library Test

The unit test framework was also very useful for when I wrote the functions
for the fixed point operations. I wrote and tested all the needed functionality
in user space before applying them to the kernel module 3. This allowed me
to do more experimentation without being afraid to break the system, and
it helped me explore the limitations of the fixed point operations.

4.7 Debugging

The unit tests were quite helpful for checking that everything was running
and that I was not making any major mistakes. However, they did not tell
anything about the internal behaviour of Dalbe, such as the correctness of
the DA-LBE framework operations, where a memory leak originated from,
or what caused a crash. For this reason I had to rely on other methods such
as custom logging and debugging tools available for the Linux OS

4.7.1 Debugging by Logging

To verify that the DA-LBE calculations were correct, I applied the same type
of logging system used by Wallenburg for creating debug plots [74], but
with some minor modifications. These values were printed by the kernel
module during testing using printk, which behaves quite similar to printf
[50, printf(3)], but the output is placed in a kernel buffer. The output can
be read using dmesg [50, dmesg(1)]. This process is a little more involved
than using user-space print functions, but nevertheless the results are quite
similar.

Figure 4.8 illustrates an example of how the debug values were plotted
for model based Vegas. Each graph shows statistics from relevant variables
used in the DA-LBE calculations, sampled at a 10 second interval. This

3Initially, before I made the decision of using inline functions, I had fixed point operations
in our kernel module. However, it was all macro based and messy.

51

specific example is from one of the network performance experiments
described in chapter 6. The experiment runs a DA-LBE flow with a deadline
of 1300 seconds, utilizing Vegas as the underlying congestion controller
and MBC as the weight policy, while competing with other BE traffic flows.
Note that the following list of figures only indicates how the debugging
graphs should be interpreted, while the actual analysis of these figures can
be found in chapter 6.

• Figure 4.8a illustrates the relationship between w, µ, φ, and the backoff
parameters. As w moves towards 1, the aggressiveness of the DA-LBE
flow should increase. If w reaches 1, the backoff value should be above
0. φ is the probability of congestion, and µ is the product of φ and w
which is used to alter the RTT.

• Figure 4.8b illustrates the relationship between the average rate and
the target rate. Also plotted is the model error, which relies heavily on
the rates, and indicates the precision of the model at each interval.

• Figure 4.8c illustrates the relationship between the measured and
modeled queuing delay, and which also gives an impression of the
precision of the model for each interval.

• Figure 4.8d illustrates the relationship between the measured average
RTT, and the base RTT, which is what Dalbe uses to calculate the
model queuing delay. In addition to this, a smoothed average of the
actual RTT for each interval is plotted, which helps on getting an
impression of the network.

• Figure 4.8e illustrates the congestion window and slow start threshold.
These values should give an indication of the actual aggressiveness of
the DA-LBE flow.

4.7.2 Debugging Memory Usage

To detect memory leaks caused by the kernel module I used kmemleak, which
works similar to a tracing garbage collector but without freeing memory [49,
dev-tools/kmemleak.html]. Kmemleak runs in the background and monitors
the memory usage of the kernel. If a leak is suspected it traces it back to
the source and makes an entry in a debugging log located in the file system.
This was very useful for me as I had kmemleak running while conducting
tests on a virtual setup. After each test I could check the logs to see if any
leaks had been detected, and if so I could trace them back and fix them.

52

400 600 800 1000 1200 1400 1600
Time (s)

0.0

0.5

1.0

W
ei

gh
t a

nd
 B

ac
ko

ff

0.0

4.5

9.0

 a
nd

Weight
Backoff

(a)

400 600 800 1000 1200 1400 1600
Time (s)

1

0

1

2

3

M
od

el
 E

rro
r

0.0

0.5

1.0

Se
nd

 R
at

e
(M

bp
s)

1e8
Model Error
Target Rate
Average Rate

(b)

400 600 800 1000 1200 1400 1600
Time (s)

0

15

30

Qu
eu

in
g

De
la

y
(m

s)

Measured
Model

(c)

400 600 800 1000 1200 1400 1600
Time (s)

30

50

70

RT
T

(m
s)

Smoothed RTT
Average RTT
Base RTT

(d)

400 600 800 1000 1200 1400 1600
Time (s)

25

50

75

100

125

Pa
ck

et
s

Congestion Window
Slow Start Threshold

(e)

Figure 4.8: An example of the graphs used for debugging. Each sub-graph
displays a certain set of metrics from a DA-LBE flow in a network perform-
ance related experiment.

53

4.7.3 Debugging Kernel Panics

In the event of the system crashing due to an unexpected behaviour, I used
kdump and crash utilities to trace back the cause. This was made possible
by building the kernel with configurations set for debugging, and having
kdump running as a service while the system crashed. If the system would
crash, kdmup would log a summary of the so called kernel panic. With this
log I could run crash, which is quite similar in use as gdb, and allows for
tracing the cause of the crash after reboot.

In most cases I did not have to use these tools to trace back the kernel
panics, as their cause would often be quite trivial to find in the code. How-
ever, in those few cases were the crash was not so obvious to trace back by
my self, these tools were very useful.

4.8 Error Handling

One major concern when implementing Dalbe was handling errors correctly
and avoiding unexpected behaviours, as they could lead to the whole system
crashing. Dalbe handles errors according to the common conventions for
the return type of the function. If the return type is not void, it returns the
correct error value according to the error which occurs.

Dalbe also makes an attempt at handling all unexpected behaviour.
Though this is very difficult to predict in some cases. One common case of
undefined behaviour that leads to a kernel panic is division by zero. This
is however quite trivial to prevent by always checking to see if value of the
divisor is zero, and avoiding the calculation if it is so.

4.9 Licensing

Generally, the source code of Linux is released under the GPL license, which
allows it to be freely used and modified both privately and commercially.
Dalbe is released with a dual license consisting of GPLv2 and Berkeley
Software Distribution (BSD)-3-Clause. The main reason for this is that
the BSD licensing is that it allows for the code to be rewritten for other
operating systems, but it also prevents large vendors (e.g. Microsoft and
Apple) to use the software as their own without recognizing the original
authors. By releasing it under both licenses, the code can be part of the open
source project of Linux, while protecting the original work by D. Hayes et
al. .

54

4.10 Shortcomings

Though Dalbe provides a functional meta congestion controller for the
Linux operating system, in its current state it has some shortcomings. The
recognized shortcomings are presented in this section, with some thoughts
on how they can be fixed.

4.10.1 Available Model Based Controllers

At the point being there is only one model based controller implemented in
Dalbe, and that is for Vegas. Implementing models for DA-LBE requires an
underlying congestion controller with a well defined model of congestion.
A model for Cubic was defined by Hayes et al. [35]. However, this requires
the used of a cube root, which is quite difficult to achieve without floating
point operations, and was never a major goal for this work.

However, in the testing repository for the meta congestion controller
[70], I have added a possible solution for solving this problem utilizing the
fixed point operations defined in previous sections. This solution combines
a Binary Search with one iteration of Newton Raphson method for solving
cube root. I my opinion, this is an almost adequate solution as it scales to
O(logn), and may be worth testing. However, the source code for Cubic
utilizes a table of predefined values for cube root, which is faster and should
be considered as a possible solution when building a model.

4.10.2 Support for Loss-Based Congestion Control

A goal for the implementation was to achieve PID based control for all
underlying congestion controllers. I did make an attempt on getting this
finished in time, and code for this can be found in the loss-based branch of the
meta congestion controller repository [71]. However, due to limited time, I
had to focus on getting other parts of this thesis finished by the deadline, and
for this reason this was put aside. The current meta congestion controller
supports both MBC and PID based control for Vegas, but PID is not available
for loss-based congestion controllers.

4.10.3 Modular Architecture

The current architecture of Dalbe works well for the current functionality
it provides. However, the current architecture is not very modular. This
concern of modularity arose when I considered how the meta congestion
controller module would be expanded to support MBC for multiple con-
gestion controllers. I chose to continue with the architecture we resulted
with, however I recognized the need for a better architecture in the future.
A thought in the direction of a possible solution for this would be to take

55

inspiration from the pluggable congestion controller interface [15], and
implement something similar for allowing multiple models.

4.10.4 Metadata from Underlying Congestion Controllers

One problem already explained in previous sections was that the α and β
values from Vegas were hard/impossible to fetch from within our kernel
module. Though I have a functioning solution utilizing the kernel para-
meters at the moment, I realize that this problem may occur again when
implementing models for additional congestion controllers. The solution
to this may actually be to make the needed variables from the underlying
congestion controllers available by changing the source code.

4.10.5 Current use of Fixed Point Types

The current meta congestion controller utilizes only the Q16.16 fixed point
types, as they provided a simple adequate solution, and the code became
more complicated and hard to debug when I combined Q16.16 with Q2.30.
I have yet to witness any major problem by making this decision. However,
I believe that when further work is made on the meta congestion controller,
it can be useful to have the choice available for combining the two types.

4.10.6 Passing Fixed Point Values From User Space to Kernel Space

At the moment the tuning parameters for PID based control may be passed
as socket options and/or kernel parameters to the module. These parameters
are based on real numbers, and thus need to utilize the fixed point values,
something that is not standardized int user space nor kernel space. I solved
this by creating a conversion function from floating point to fixed point
when implementing the client and server for experimentation [72], however
this may not be a very good log-term solution. I believe that the best
solution for this is to remove the possibility for configuring these values at
at initiation of the module and at run-time, as they are considerably difficult
to tune, and once the correct values are found, they usually stay unchanged.

4.11 Summary

In this chapter I presented how the meta congestion controller, referred
to as Dalbe, was designed and implemented. From as set of requirements,
derived from the first research question, I showed how the implementation
took shape. More specifically, through a set of architectural decisions I
described how the Dalbe fit into the existing architecture of the networking
stack of the Linux kernel, how it handles underlying congestion controllers,
how metadata is maintained on a per-connection-basis, in what way it may

56

be configured, and finally, how the absence of a FPU handled. In addition
to this I described how some of the architectural decision resulted in some
minor changes to the Linux kernel, and I gave an example of how the
meta congestion controller could be used in server/client example. I also
gave an introduction to how the meta congestion controller was tested and
debugged, and the licenses it is released under. Finally, I discussed some
shortcomings, and how they may be solved.

57

Chapter 5

Test Environment

This chapter describes how I, together with a colleague, built, configured,
and verified a test environment for testing and evaluating the DA-LBE meta
congestion controller. Two test environments are presented; (1) A virtual
test bed used for unit testing and debugging, (2) a hardware based test bed
for testing and experimentation in a more realistic environment.

5.1 Requirements

The second research question (RQ2) defined for this thesis is;

How can a test environment be built and configured to be suitable
for thorough testing and experimentation of the DA-LBE transport
services?

From this question I derive a set of requirements which I consider crucial
to satisfy for the research question to be answered. The requirements are
also meant to guide me while building, configuring and verifying the test
environment.

• The test environment must be stable and provide reproducible results.

• The test environment must allow for network emulation of different
topologies.

• A software suite must be provided, which allows for easy construction
and execution of experiments.

58

5.2 Collaboration

It is important to state that some parts of the setup and development of the
test environments and the software suite was done as a collaboration with
colleague, Mattis Bratland, referred to as Mattis in this thesis. During this
chapter I will make notice of what parts where done solely by me (I), in
collaboration (we), or solely by Mattis.

5.3 Testing on Virtual Machines

One of the key difficulties of working on a kernel module is that if an error
is not handled correctly it will in most cases crash the entire system. For
this reason, in the early stages of testing, when the purpose of my tests was
mainly to make the meta congestion controller work correctly and locate
bugs, I utilized a virtual test bed on my personal desktop. This proved to
be very useful as the virtual machines could just be rebooted and restored
if they encountered a bug that would lead to system failure. Another good
reason for using this kind of setup was to be able to monitor live network
traffic between the virtual machines using Wireshark [27].

The virtual test bed consisted of three VirtualBox [19] Virtual Machine
(VM)s running Ubuntu Server 18.04 LTS. All the VMs were attached to the
host machine using Network Address Translation network so that I was able
to control them using SSH [50, ssh(1)]. The router node was connected to
both the edge nodes using VirtualBox’s Internal network and was connected
to a virtual interface on the host machine using a Bridged network [20,
Chapter 6].

Though I could probably have made due with just virtual interfaces on
our host machine, I wanted to work with an environment that was similar to
that which I would conduct my experiments on later in the process. In this
way, when I later moved over to the hardware based test environment, the
scripts and configuration files used for the virtual setup could be applied
with little to no effort.

5.3.1 Unit Testing with Virtual Machines

In the previous chapter I described how I unit tested the user space API of
the meta congestion module. The benefit of doing this on a virtual machine
was the possibility for using Snapshots [20, Chapter 1] of the running kernel.
When (or if) I encountered a bug that led to system failure I could simply
reboot and restore the machine at the point before the crash. This made for
quite the robust and efficient work environment when it came to testing the
module.

59

5.3.2 Debugging with Virtual Machines

When I was sure that the meta congestion module would not fail from
calls to the user space API, I could use the virtual machines to debug the
performance and edge cases. To debug edge cases within the module I
had to have the module running a connection for several seconds, maybe
minutes, enough to trigger all the functions, and introduce congestion-
specific behaviour such as loss and changes in the queuing delay. For this to
be more efficient, the network traffic and performance could be monitored
live using networking tools such as Wireshark and Tcpdump
[50, tcpdump(8)]. Figure 5.1 shows how this virtual test environment was
connected to the host machine.

Host Machine

Virtual Machine
A

Virtual Machine
B

Virtual Machine
Router

Virtual
Interface

Bridge Network

Internal Network

Internal Network

Figure 5.1: An illustration of how the network was set up between the host
machine and the virtual machines.

5.3.3 Drawback of Testing on Virtual Machines

Though the virtual test bed was very good for certain tasks, such as de-
bugging and unit tests, it was not very suitable for running the actual
experiments. I often witnessed that the host machine would struggle when
running the test environment, which would affect the virtual machines neg-
atively, as their performance was highly dependent on the host machine’s
performance. For this reason I needed something more stable to perform
experiments on the meta congestion controller.

Figure 5.2 illustrates this performance issue quite well. Extreme drops
in the sending rate can be seen as a kind of "melting" effect in the graphs,
which is very noticeable at t = 0 to t = 200 and t = 1800 to t = 2000. During
these periods there is only one BE Cubic flow running at the time, and we
would expect the the sending rate to be very stable at around 90 Mbps.

60

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (s)

0

20

40

60

80

100
Se

nd
 R

at
e

(M
bp

s)

BE Cubic
BE Cubic
BE Cubic
BE Cubic
BE Cubic
BE Cubic
DALBE
Target Rate
Deadline

Figure 5.2: An example of how badly the virtual test bed performed when
used to run network performance experiments. This was for a Vegas based
DA-LBE flow using PID as the weight policy.

5.4 Testing on Hardware

When satisfied that the DA-LBE meta congestion module was behaving
correctly with respect to its LBE-ness and that any crucial bugs had been
eliminated, I moved over to working with a more stable test environment. I
wanted to run experiments identical to those done in previous papers on
this topic as well as conducting my own, custom experiments specific for
this research. Previous work done on the topic had used a hardware test bed
utilizing network emulation to create a dumbbell topology and a two node
setup over the Internet. Both were used used for performance and long-term
behaviour testing. These were some of the tests I aimed to conduct, however
neither the hardware based test environment nor the Internet based test
environment was at this point available. Therefore an alternative solution
had to be made. The result was to collaborate with Mattis on building a
custom, hardware based, test environment on which we hoped to be able to
conduct some solid experiments.

5.4.1 Building a Suitable Test Bed

To build our test bed we used leftover parts from an "old" gaming computer,
a Gigabit Ethernet Switch, four MONROE nodes 1, and connected it all
together with two NICs2. The computer parts and switch were provided by
Mattis, while the MONROE nodes and NICs were borrowed from Simula
Research Laboratories. With this setup I aimed to emulate a simple dumb-

1MONROE project is a measurement platform for measurements and custom experiment-
ation on operational mobile broadband networks. We were fortunate enough to borrow four
leftover nodes from this project.

2The reason for us needing two and not one NIC was due to the test bed being used for
testing a meta congestion controller based on Multipath TCP (MPTCP).

61

bell topology, as shown in figure 5.5, on which I could perform tests and
experiments on the meta congestion module.

Node A0 - B1}

} NICs

Switch

Figure 5.3: An image of our test bed fully assembled. The large black
computer is the router machine. Below the white graphics card are two
NICs which were used to connect everything together. Mounted on top of
the black case are the edge nodes, and below them is the switch used to
forward network traffic from the control ports of the edge nodes through
the router node.

Our hardware test bed consisted of six components, four edge nodes (A0,
A1, B0, and B1), a router node and a switch. The reason for using a switch
was to give the edge nodes access to the Internet. As shown in figure 5.4,
the switch connects the edge nodes to the router node, which forwards their
traffic to the Internet. This was done to shield the more vulnerable edge
nodes from direct access from the Internet, while still being able to control
the nodes via SSH. The Router was set up with sufficient security to handle
direct contact with the Internet. Mattis was mainly involved in configuring
the test bed for use on Internet and the security measures involved.

The four edge nodes were statically placed in each their sub-network

62

Internet

A0

B0

Router

A1

B1

Switch

Figure 5.4: A figure showing how our hardware test bed was connected. The
orange lines show how the edge nodes were connected to the Internet via
the router node.

specified in their networks interface configuration files, and set up with
adequate routing tables using ip [50, ip(8)], allowing them to reach the other
sub-networks. Edge node A0 was set to communicate with A1 and its task
was to perform Dalbe transfers. Edge node B0 was set to communicate with
B1 and its task was to perform BE transfers as well as generating background
traffic for more realistic results. The router node was configured via sysctl
[50, sysctl(8)] to forward all traffic between the sub-networks.

A0

B0

Router

A1

B1

Figure 5.5: A very simple dumbbell topology consisting of five nodes; four
edge nodes, two on each side of the router node.

5.4.2 Hardware Setup

The edge nodes were not very powerful, with a 4-core processor running at
a maximum of 1GHz and 4 GB of Random Access Memory (RAM). For this
reason we made sure to have only the bare minimum of processes running
on them at every time. We also made an effort to monitor their memory

63

usage and the average load of their processors while conducting experiments
to make sure we were not overloading them in the process. Their storage
capacity was the major issue. With only 16 GB of storage where, in some
cases, 80% was in use we had conserve what space we had left. We made
sure that only logs that accumulated to small sizes would be stored on them
at any time, and clean-ups were done regularly.

On the other hand, the router node was specked with a relatively power-
ful processor running at a maximum of 3.5 GHz, 16 GB of RAM and 256 GB
of Solid State Drive (SSD) storage. We therefore chose to capture network
traffic, emulate networks and orchestrate experiments from the router node.

Edge Node
Processor AMD GX-412TC @ 1GHz (4 Cores)
Network Card Intel I210 (rev 03)
Memory 4 GB DDR3 1333MHz
Storage 16 GB SSD SATA3
Operating System Ubuntu Server 18.04 LTS
Kernel 5.3.0-28-generic & 5.4.0+ (modded for A0)

Table 5.1: Relevant specifications of edge nodes.

Router Node
Processor Intel Core i7-5930K @ 3.50GHz (12 Cores)
Network Card(s) Intel I350 (rev 01)
Memory 16 GB DDR4 2666MHz
Storage 256 GB SSD SATA3
Operating System Ubuntu Server 18.04 LTS
Kernel 5.5.8 (Tick rate 1KHz & dynticks off)

Table 5.2: Relevant specifications of router node.

5.4.3 Operating System Setup

All nodes ran Ubuntu 18.04 LTS Server edition, however node A0 and
the router node had to run specific kernels. Node A0 was set up with a
slightly modified kernel version 5.4.0 from the net-next [53] development
branch, which is described in chapter 4. The kernel on the router node was
customized to run with a periodic tick rate for 1KHz and with dynamic
ticks (dynticks) turned off.

In the Linux operating system the tick rate defines how often tasks
are preempted by the scheduler. A higher tick rate means that there is
less latency on the system, but it also means there is a greater load on the
CPU. Though it was strictly not necessary, we chose to apply this to our

64

router as some rate limiters would benefit from having this enabled [50,
tc-htb(8), tc-hfsc(8)]. dynticks is a feature which starts the periodic tick rate
only when there are tasks to preempt [49, timers/highres.html#dynamic-ticks].
This reduces load on the CPU when there are no tasks to preempt, however,
in our case we wanted the CPU to be working at a constant rate to reduce
latency on packets and thus it was turned off.

5.4.4 Defining a Stable Test Environment

I spent a considerable amount of time studying the configurations done by
Wallenburg [74] on his test bed. He had done some good research on making
the test bed run as smooth as possible, which we could easily apply to our
test bed. I applied the following to our test bed, which in my opinion were
crucial configurations for making a stable, reproducible, test environment.

Pause Frames were defined in the standard for Ethernet [41] as a link layer
flow control. It may potentially introduce spikes in the stream of traffic as
the sender may hold back packets if it receives a pause frame. Pause frames
are on a general basis turned off by default, however as our NICs provide
support for pause frames and link layer flow control [17, 18] we explicitly
turned them off when we ran our experiments.

Interrupt Coalescing is a technique of holding back events that would
normally trigger hardware interrupts. This could potentially introduce
spikes in the stream of packets, similar to that of pause frames [55]. Wallen-
burg advised this to be turned off while running the experiments. On our
NICs this was toggled off by default, meaning that we did not have to take
this into account when configuring our kernels.

Segment Offloading is a technique for breaking larger chunks of data into
smaller chunks for easier processing. Offloading can be done on hardware
or in software and can be applied to many parts of the network stack. In
our case we are mostly interested in TCP Segmentation Offload (TSO) and
Generic Segmentation Offload (GSO). TSO is usually done on hardware
and allows the device to segment a frame into multiple smaller frames
that fit the maximum Maximum Transmission Unit (MTU) of the link [49,
networking/segmentation-offloads.html]. GSO is done in software and is meant
for cases where the hardware cannot perform the offloads. In GSO the socket
buffers [73, include/linux/skbuff.h] are broken into smaller socket buffers that
are easier to process throughout the network stack.

Segmentation offloading is meant to relieve the CPU off stress, by passing
the work on to the NIC using TSO and/or increase the average throughput
using GSO. However it may also alter the timing of the packets that are

65

captured which can cause unpredictable behaviour. It is therefore kept off
during experimentation to further improve the repeatability and stability of
the results.

TCP Metrics are entries in the kernel that store TCP specific information
about a destination. This information is cached globally in the kernel and
can be used by future TCP connections to set their initial conditions [50,
ip-tcp_metrics(8)]. This may introduce problems when we want to reproduce
experiments, and should therefore be turned of while experiments are run.
In addition to turning TCP metrics off during testing, the cache should be
flushed as metrics may have been saved in between experiments.

Rate Limiters in Linux are used to limit the average sending rate in Mbit/s
on a specific link. A major part of Wallenburg’s thesis revolved around
determining the best rate limiter for such a test bed [74]. Through a series
of experiments he compared Hierarchy Token Bucket (HTB) [50, tc-htb(8)]
to Hierarchical Fair Service Curve (HFSC) [50, tc-hfsc(7)], concluding that
the best rate limiter for this case would be HFSC. For this reason our choice
of rate limiter was HFSC.

System Clock Synchronization on Wallenburg’s test bed was done using
Network Time Protocol (NTP) [54]. This was due to the NICs lacking of
support for hardware time stamping. Our NICs, however, did support
hardware time stamping. Therefore, I set up our edge nodes to synchronize
their system clocks to the router using Precision Time Protocol (PTP) [40].
The main reason to use PTP over NTP is the accuracy. PTP allows for micro-
to nanosecond accuracy on the system clocks which can be very useful when
packets are captured on multiple nodes. The main drawback of PTP that I
witnessed was its somewhat complicated setup. I ended up setting PTP as a
service on the five machines, which we then turned off during experiments
to not generate additional traffic on our links that could potentially give us
some erroneous results.

In addition to Wallenburg’s findings I further expanded the kernel
configurations with the following.

Processor Frequency Scaling To make sure that all nodes were running
at well performing pace, we set the processor scaling governor for each
core on each node to performance. This was only toggled on while running
experiments, as we did not want to exhaust our nodes.

IP Multicast Membership Messages are General Queries sent periodic-
ally by multicast-enabled hosts. These queries are use to build and refresh

66

multicast membership groups within the multicast system [11]. Though
these queries do not consume a lot of bandwidth, we permanently turned
multicast off on all interfaces used for testing on the router node and edge
nodes using [50, ip(8)].

5.4.5 Network Emulation

In my experiments I wanted to emulate a highly congested link which
handled all traffic between two networks, referred to as a bottleneck link.
The two networks were referred to as the EAST and WEST networks. We
were in a very similar situation as Wallenburg [74] (only five machines at
our disposal) and could therefore take inspiration from their setup and
apply it to ours. The bandwidth was set to 100 Mbit/s and the delay to
30 milliseconds. This was based on the values used by Wallenburg which
they argued would represent a good Internet connection between Oslo and
somewhere in the mainland of Europe [74]. Each router was equipped
with a FIFO (drop tail) queue set to the size of the BDP in packets 3. This
would allow a single TCP stream to fully utilize the capacity of the link, but
generate loss when congested.

A0

B0 B1

A1

Router RouterBottleneck
100Mbit/s 30ms

WEST EAST

Figure 5.6: A more advanced figure of the dumbbell topology, showing how
the WEST and EAST networks were set up. The two networks are connected
by a 100 Mbps, 30 ms propagation delay link.

Initially we used CORE as our way to emulate the specified topology.
This was great for creating network topologies as it provided a user interface,
as shown in figure 5.7, and was quite easy to use. However, even though
it was easy to create the topologies, I quickly found out that applying rate
limiters, queues, and delay to the nodes still required me to add custom
scripts to the virtual machines created by CORE. This grew tiresome in
the long run because the virtual machines would not report back if there
were errors in the scripts. I therefore resulted in taking a step back, and
re-implementing the network emulation using tools provided by Linux for
virtualization and traffic shaping.

3BDP of 250 packets. 100Mbit/s ∗ 30ms = 250packets.

67

Figure 5.7: A screenshot of CORE GUI in action. This displays how we
could easily, visually set up our network typologies.

Applying Network Emulation Using Linux Tools

Figure 5.8 shows how the two networks were connected by introducing two
virtual interfaces on the router node. The two virtual interfaces were set
up as IFBs to which I could apply traffic shaping and this way emulate my
topology and it’s network specifics.

All ingress traffic on the router node from the WEST network was filtered
through, what we called, the EASTBOUND IFB. The EASTBOUND IFB
applied a rate limit of 100 Mbit/s using HFSC [50, tc-hfsc(8)] and a pfifo
droptail queue [50, tc-pfifo(8)] of 250 packets using Traffic Control [50, tc(8)]
queuing disciplines. The egress traffic from the EASTBOUND IFB, which
at this point has passed through the described queuing disciplines is then
forwarded to the correct outgoing physical interface based on the systems
forwarding tables. At the point of leaving the router node, 15 milliseconds
of delay is applied to the traffic using Netem [50, tc-netem(8)]. The same
is done for WESTBOUND traffic from the EAST network. Together this
generates the desired emulated bottleneck with a base propagation delay of
30 milliseconds.

68

EASTWEST

A0

B0

IFACE15 ms
delay out

HFSC,
PFIFO IFB 15 ms

delay out

B1

A1

IFB15 ms
delay out

HFSC,
PFIFO IFACE 15 ms

delay outIFACE

IFACE

Figure 5.8: An advanced model of how the dumbbell topology was set up
on the hardware based test bed. All ingress traffic, may it be EAST or WEST
bound, passes through an IFB. The IFB is responsible for applying the HFSC
and PFIFO qdiscs, before passing the traffic on to the outgoing NIC. The
outgoing NIC applies a 15 ms delay.

5.4.6 Verifying the Performance of the Test Environment

Before I could conduct any experiments on our hardware based test bed, I
wanted to verify that it was in fact performing without any problems. As
mentioned in previous sections, our main concern was that the edge nodes
would not be powerful enough for our experiments, and thus giving us
non-reproducible results. For this reason I wrote some simple software in
C++ that monitored and logged the average load and memory usage at ran-
dom exponential intervals. The randomness was added to the sampling to
prevent the monitor from accidentally follow a similar pattern to the sched-
uler in the OS, which could lead to the samples being non-representative
of the actual load in the system. I ran this software in the background
while conducting experiments on all the nodes except the router node, as I
believed it to be more than powerful enough.

Figure 5.9 shows the graphs I could produce from the output of the mon-
itor software. This could be checked after running a test or an experiment
to verify how the nodes had performed under stress. Essentially, what I
wanted to avoid was 100% load on the CPU and/or RAM.

5.5 Experiment Orchestration

Our software suite for orchestrating the experiments was written by both
Mattis and I in Python [26, version 3.8] and used Fabric [24] for running
bash commands remotely over ssh. The advantage of this was that we could
orchestrate the experiments from our local desktop, or as we did when
we ran our experiments, we orchestrated them from the router node. The
reason for orchestrating from the router node was to avoid delay between
our local desktop and the nodes, which at times could be quite high and
unpredictable. All experiments were written as JSON [10] configuration
files which the software could translate into commands that were then run
on the respective machines.

69

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time

0%

50%

100%

Ti
m

e
(s

)

Memory
Cpu

(a) Node A0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time

0%

50%

100%

Ti
m

e
(s

)

Memory
Cpu

(b) Node A1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time

0%

50%

100%

Ti
m

e
(s

)

Memory
Cpu

(c) Node B0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time

0%

50%

100%

Ti
m

e
(s

)

Memory
Cpu

(d) Node B1

Figure 5.9: The figures show the average load and the memory usage on
each edge node, taken from one for the network performance experiments
in chapter 6. This was use to monitor the edge node during experimentation
and testing.

70

5.5.1 Experiment Execution

Each experiment went through a well defined set of steps which can be
described as follows.

Step 1 - Parse the Configuration File The software reads the configura-
tion file, and translates it into two sets of commands for each node that is
specified. One set contains untimed commands that should be run before
the experiment timer starts, and the other is a set of timed commands that
should be run during the experiment at a specified time, in seconds, relative
to the start time. Untimed commands are usually used for e.g. starting
listening servers or starting network traces.

Step 2 - Connect to all Nodes If the configuration file has successfully
been parsed, a connection i established between all the nodes, which is kept
alive during the experiment.

Step 3 - Set the Network Configurations for Each Node Before any com-
mand is executed on the nodes, all configurations are set for the interfaces
that are used that are not permanently set. This is to provide a stable,
predictable network for the experiment, described in previous sections.

Step 4 - Execute All Commands When the experimental setup is ready,
all the commands can be run in their given order. As for the untimed
commands they are just executed in the order in which they were defined in
the configurations file.

Step 5 - Re-Set the Network Configurations for Each Node When the
experiment has ended, hopefully in a graceful manner, all configurations
that were set in step 2 are set back to their default values.

Step 6 - Disconnect From All Nodes This last step is quite self explanat-
ory. When the experiment is over and everything has been reset to their
defaults the established connection to all the nodes is torn down.

5.5.2 Data Collection

The data generated by the nodes consisted of PCAP trace files generated by
tcpdump [31], CSV files generated by our memory- and CPU-load monitoring
software, and the system logs which contained debug information about the
DA-LBE meta congestion module. As mentioned in previous sections, our
edge nodes were not very powerful and had very limited storage capacity.
We therefore moved the resource heavy task of capturing packet traces to

71

the router node, monitoring the ingress traffic on the physical interfaces
connected to edge node A0 and B0. The logs from monitoring memory- and
CPU-load as well as the debug logs for the DA-LBE meta congestion module
naturally had to be generated at each edge node and the DA-LBE-node
respectfully. After running one or more experiments we used scp [50, scp(1)]
to collect all the data.

5.5.3 Data Processing

To process the PCAP files we used PcapPlussPluss [64] which is a library
for parsing PCAP files, simlar to libtrace [32], but written in C++. Using
PcapPlussPluss I wrote a program to generate CSV files with information
about the connections and their throughput. I used Python to develop
functions that created plots from our collected data. These functions could
be imported directly to Jupyter Notebook [48] for viewing.

5.6 Summary

In this chapter I presented how the test environment(s) were built, con-
figured and verified. I explained how a virtual test environment was used
for testing and debugging, and how it was not sufficient for running proper
experiments, as the load on the host machine became a degrading factor.
A detailed description of how I, together with a colleague, built and con-
figured a hardware based test environment was also given. Describing
what hardware components were used, the operating systems and their
configurations, and how network emulation was performed, showed how
we were able to build a stable test environment suitable for experiments on
the DA-LBE meta congestion controller. Lastly, I described how we wrote a
software suite which allowed us to configure and run experiments on the
test environment.

72

Chapter 6

Network Performance
Experiments

In this chapter I present a set of experiments that were used to evaluate
the network performance of the DA-LBE meta congestion controller, for
both MBC and PID, using Vegas as the underlying congestion controller. In
addition to this I investigate the effect of using the fixed point operations as
a substitute for floating point operation in the Linux kernel.

6.1 Requirements

The third research question (RQ3) defined for this thesis is;

How should a DA-LBE transport service be tested and evaluated to
verify its correctness and performance?

From this question I take into account the requirements defined by Hayes et
al. [35] which state that a DA-LBE traffic source should;

• be no more aggressive than BE traffic,

• react appropriately to network congestion,

• take advantage of available network capacity when there is no conges-
tion, and

• attempt to finish transmitting its data by the deadline.

These requirements are used as the basis for evaluating the network per-
formance.

73

6.2 Network Efficiency

The first experiment aims to evaluate the overall network efficiency of the
DA-LBE meta congestion controller. Hayes et al. [35] defined a simple
experiment to test just this, which Wallenburg [74] later implemented on
his hardware based test environment. I replicated this experiment to see
how well Dalbe performed using both MBC and PID for with Vegas as the
underlying congestion controller.

Background

BE Cubic
DA-LBE

0 200

Time (s)

400 600 800 1000 1200 1400 1600 1800 2000

Figure 6.1: Timeline of the network efficiency experiment showing when
the different flows start and stop.

6.2.1 Setup

The test scenario is presented in table 6.1, and visually in figure 6.1. Each BE
Cubic flow attempts to consume its fair share of the capacity. The DA-LBE
flow will attempt to send 1625MB of data with a deadline of 1300 seconds.
To achieve this the DA-LBE flow will require an average send rate of 10
Mbps, though the nature of the soft deadline does not require it to fulfill
this requirement perfectly. To avoid perfect synchronization between TCP
flows, 10 Mbps of randomly generated background traffic is added using
D-ITG [47]. Both the DA-LBE and BE flows were sending packet sizes which
matched the 1500 MTU of the network.

The DA-LBE flow was set up with update intervals of 10 seconds for
both w and φ, and a calculation threshold of 10 loss events for a new φ value
to be computed. The choice of the calculation threshold for φ was to use
similar values to the values used by Wallenburg in his similar experiment,
as well as observations made during debugging. Initially, w = wmin = 0.05,
φ = 3 and µ = wφ. This allows the DA-LBE flow to start quite passively
before gradually increasing its send rate.

For the PID based DA-LBE flow, I used the gain values; Kp = 0.5, Ki =
0.03, and Kd = 0.1. These are the same values used by Hayes et al. when
testing PID based control. I relied on these values as tuning them is quite
difficult, and out of the scope for this thesis.

Both experiments used Vegas α = β = 16. Having the α and β values
equal allows Vegas to react faster to queuing delay, as there is no middle-

74

zone where the CWND can fluctuate.

Connection Start Stop Duration
DA-LBE 400 s - -
BE Cubic 0 s 600 s 600 s

200 s 1000 s 800 s
800 s 1000 s 200 s

1010 s 1600 s 590 s
1200 s 2000 s 800 s
1400 s 1800 s 400 s

Table 6.1: Start and end times for each flow for the network efficiency
experiment. The deadline for the DA-LBE flow is set to 1300 s, which means
that it should finish close to t = 1700 s.

6.2.2 Expectations

I expect that the DA-LBE flow should be able to utilize openings of the
available capacity to a certain degree, such as at t = 1000 seconds where there
are no competing BE flows for 10 seconds. As the underlying congestion
controller mainly reacts to queuing delay, with α = β, I would expect the
reaction to be quite quick, and thus it should be able to utilize the gap
quite well. Similarly, it should also be able to react equally fast to the
increase in queuing delay when the BE flow enters the network again at t =
1010 seconds, thus the DA-LBE flow should quickly back off, allowing the
competing traffic to receive most of the capacity as the deadline is still quite
far away at this moment.

Another effect that I would expect, due to the timely convergence of the
underlying congestion controller, is that the DA-LBE flow may interpret the
exit of BE flows as available capacity. Most notably this would be expected at
points where one or more BE flows leave the network, leaving the remaining
BE flows in a state where they will try to probe for more capacity. This
may open a small gap where the competing flows have not yet reached the
new threshold for their sending rates, which may decrease the queuing
delay calculated by DA-LBE and the underlying congestion controller, thus
increasing its aggressiveness for a short period of time.

Specific Expectations for MBC

Towards the end of the transmission, at t = 1400 seconds, there is a period
of 200 seconds where three BE flows are competing for capacity at once.
At this point I would expect the DA-LBE flow to have begun its increase
in aggressiveness if it has not been able to keep its average send rate close
enough to the target rate. As the competing traffic increases drastically

75

at this point the DA-LBE flow may react to this increase of queuing delay
as if it is the cause of it, which may lead to it becoming too passive, thus
overshooting the soft deadline.

Specific Expectations for PID

On the other hand, for PID based DA-LBE I expect a different result, as the
weights are not directly influenced by the queuing delay, but rather some
samples from the past, the current moment , and a prediction of the future,
I would not expect it to alter its behaviour drastically, but rather keep a
stable flow of traffic. I would also expect the PID based flow to keep a more
precise average rate for the entire transmission which should allow it to
finish closer to the deadline.

6.2.3 Results for Model Based Control for Vegas

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (s)

0

20

40

60

80

100

Se
nd

 R
at

e
(M

bp
s)

BE Cubic
BE Cubic
BE Cubic
BE Cubic
BE Cubic
BE Cubic
DALBE
Target Rate
Deadline

Figure 6.2: One second averages of the throughput for each flow during
the network efficiency experiment. The DA-LBE flow uses Vegas as the
underlying congestion controller with MBC as the weight adjustment policy.

The results for the MBC based DA-LBE flow is quite close to what I
expected. Figure 6.2 illustrates a graph of the throughput of the competing
flows, averaged over one second intervals. It is apparent that the DA-LBE
flow starts quite passively, as it tries to reach the target deadline. It uses
about 100 seconds to reach a sending rate, right below the target rate.
Having set α = β, allows the congestion controller to keep this rate very
stable, as there is no gap between the two thresholds. By looking at 6.3b this
becomes quite apparent, as it can be seen that the average rate stays very
stable during the entire connection with few fluctuations.

In 6.2, at t = 600 seconds, there is a small spike in the sending rate. I
would assume this to be due to the first BE flow leaving the network, and
the DA-LBE flow confusing this for available capacity. In reality the second
BE flow, which is still in the network, has not yet been able to react to the

76

change, but once it realizes it can claim more capacity it does so, resulting
in the DA-LBE flow having to quickly back off. This back off sets it back a
little bit, before re-gaining a stable sending rate.

At t = 1000 seconds there is a 10 seconds gap where there is no competing
BE traffic, which the DA-LBE flow is able to utilize quite well, producing a
large spike in the throughput which can be seen in figure 6.2, as well as the
large increase of the CWND in 6.3e. The large drop in RTT seen in figure
6.3d, together with the underlying congestion controllers timely reaction to
the decrease in queuing delay allows the DA-LBE flow to quickly utilize this
window. However, once the 10 seconds period with no competing traffic is
over, the DA-LBE flow quickly reacts to the increase in queuing delay, as the
BE flow enters the network and begins to flood the buffers on the routers. At
this point, the weights are drastically reduced which can be seen in figure
6.3a. From this setback, the DA-LBE flow uses about 100 seconds to regain
a stable rate, as the weights are increased by a limiting factor, presented in
equation 2.4 in chapter 2.

Towards the end, at about t = 1400 seconds, the target rate increases
rapidly, which quickly turns into an exponential growth. As the DA-LBE
flow has to this point been just below the target rate during the entire
session, with the exception of the spike at t = 1000, followed by the penalty
for regaining is stable sending rate which followed this spike, the DA-LBE
flow starts to increase its target rate in an attempt to reach the deadline.
This increase becomes very rapid after t = 1600 seconds, as the deadline
closes in. What is evident is that the DA-LBE flow is still able to follow the
target rate quite well during this period, even though there is an increase in
competing traffic. This allows the DA-LBE flow to finish only a couple of
seconds after the deadline, which is considered acceptable as the deadline
is soft.

Results for PID Based Control for Vegas

Figure 6.4 illustrates that the PID based flow starts off quite similar to the
MBC flow. Starting passively, as the initial values are quite low, yet more
rapid than than of MBC, which I would presume is due to the queuing delay
not being part of the equation. Figure 6.5b shows that the error is quite
high in the beginning, which in turn has an effect on the growth factor of w,
resulting in a more aggressive start.

At around t = 550 seconds there is a significant spike in the send rate
of the DA-LBE flow. By looking at figure 6.5a it is apparent that this is
caused by a large increase in φ. The requirement for φ to be recalculated is
that there is enough loss events for a proper calculation. This suggests that
there is a low count in loss events, followed by a large burst of loss events.
However, this rapid increase of φ also has a negative effect on the LBEness
of the DA-LBE flow with respect to the amount of data and the deadline.

77

400 600 800 1000 1200 1400 1600
Time (s)

0.0

0.5

1.0

W
ei

gh
t a

nd
 B

ac
ko

ff

0.0

4.5

9.0

 a
nd

Weight
Backoff

(a)

400 600 800 1000 1200 1400 1600
Time (s)

1

0

1

2

3

M
od

el
 E

rro
r

0.0

0.5

1.0

Se
nd

 R
at

e
(M

bp
s)

1e8
Model Error
Target Rate
Average Rate

(b)

400 600 800 1000 1200 1400 1600
Time (s)

0

15

30

Qu
eu

in
g

De
la

y
(m

s)

Measured
Model

(c)

400 600 800 1000 1200 1400 1600
Time (s)

30

50

70

RT
T

(m
s)

Smoothed RTT
Average RTT
Base RTT

(d)

400 600 800 1000 1200 1400 1600
Time (s)

25

50

75

100

125

Pa
ck

et
s

Congestion Window
Slow Start Threshold

(e)

Figure 6.3: Debug graphs produced for the network efficiency experiment
for a Vegas based DA-LBE flow using MBC as the weight policy. 10 seconds
increments.

78

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (s)

0

20

40

60

80

100
Se

nd
 R

at
e

(M
bp

s)

BE Cubic
BE Cubic
BE Cubic
BE Cubic
BE Cubic
BE Cubic
DALBE
Target Rate
Deadline

Figure 6.4: One second averages of the throughput for each flow during
the network efficiency experiment. The DA-LBE flow uses Vegas as the
underlying congestion controller with PID as the weight adjustment policy.

Figure 6.5a shows that w is quite high at this point in time. The increase of
φ together with the high w value, suggest that the queuing delay is actually
being deflated at this point, which explains the increased aggressiveness of
the DA-LBE flow.

At t = 600 seconds there is a similar spike as seen for the MBC experi-
ment. It is more noticeable when looking at figure 6.5c. After stabilizing
from the rapid increase of φ, it can be seen that there is a drop in RTT at
t = 600 seconds. This suggests that the DA-LBE flow reacts to this change
in RTT as if there is more available bandwidth, however, in reality the
remaining BE flow is in the process of probing for more capacity, which the
DA-LBE flow quickly realizes and backs off.

At t = 1000 seconds, when there are no competing BE flows for 10
seconds, the DA-LBE flow quickly reacts to the available capacity. The main
difference from the MBC experiment in this scenario is that the send rate
does not decrease to almost zero, and thus it is able to regain stability a bit
faster in this situation. Figure 6.5a suggest that this may be due to the w and
µ values are not decreased to their minimum values, and thus stabilizing
the values does not take as long as well as the aggressiveness staying a little
bit higher.

Interestingly, at t = 1400 seconds there is little to no change in the target
rate of the DA-LBE flow. By looking at figure 6.5b, it is clear that the average
rate stays very close to the target rate for the entire connection, with the
exception to the scenarios described above. This allows the DA-LBE flow
to finish just in time, yet still not way ahead of the deadline, which would
suggest that it was able to maintain a decent amount of LBEness during the
connection.

79

400 600 800 1000 1200 1400 1600
Time (s)

0.0

0.5

1.0

W
ei

gh
t a

nd
 B

ac
ko

ff

0.0

4.5

9.0

 a
nd

Weight
Backoff

(a)

400 600 800 1000 1200 1400 1600
Time (s)

0.2

0.1

0.0

0.1

PI
D

Er
ro

r

0.0

0.5

1.0

Se
nd

 R
at

e
(M

bp
s)

1e8
PID Error
Target Rate
Average Rate

(b)

400 600 800 1000 1200 1400 1600
Time (s)

20

50

80

RT
T

(m
s)

Smoothed RTT

(c)

400 600 800 1000 1200 1400 1600
Time (s)

25

50

75

100

125

Pa
ck

et
s

Congestion Window
Slow Start Threshold

(d)

Figure 6.5: Debug graphs produced for the network efficiency experiment
for a Vegas based DA-LBE flow using PID as the weight policy. 10 seconds
increments.

80

6.2.4 Fixed Point Precision

Finally, I investigate the impact the use of fixed point numbers has on the
quality of the DA-LBE calculations. This is important to investigate, as
the meta congestion controller relies solely on a Q16.16 representation of
fixed point values. This representation can be considered as a Jack-of-all-
trades, providing a relatively wide range of integer values within (216), and
a relatively good precision down to (2−16). However, when compared to the
precision achieved by using floating point types, this representation may not
be good enough as the accumulated error in precision may become quite
large.

Continuing with the debug information produced for the two weight
policies, MBC and PID, in the network efficiency experiment, I compare
the actual weight w calculated with fixed point operations, to an the expec-
ted weight calculated using floating point operations. This comparison is
achieved by calculating the relative error between the two values;

error =
|wfixed −wfloat|
|wfloat|

The choice of investigating w is based on its importance in the DA-LBE
calculations, and should be a good representative for the overall error in
precision.

Figures 6.6a and 6.6b illustrates the relative error for w in percentage,
computed during the network efficiency experiment, for both MBC and PID
respectively From these figures it is quite clear the error introduced when
using MBC is noticeable larger than the error introduced when using PID.
Also noticeable, especially when using MBC, is the drop in error for the
interval at t = 1010, which is the point were the DA-LBE flow has to back
off as a new BE flow enters the network.

These observations suggest two things. First and foremost, when more
variables are introduced to the calculation, which is the case for MBC, as
relies on both queuing delay and the relationship between target rate and
sending rate, the error seems to be greater. Secondly, when the values
used in the calculations have not stabilized or they change drastically, the
fluctuation in the the error seems to be greater. These assumptions are
strengthened by the large drop in the error for MBC from t = 1000 to t
= 1010, as both the average sending rate and queuing delay is changed
drastically around this moment, which causes the weight to be decreased to
its minimum value (wmin = 0.05), followed by the weight being gradually
stabilized over an approximately 100 second period. This drastic drop is
not as apparent for when using PID as it has less variables as part of the
equation that are changed during this time period, and it has been seen that
it is able to stabilize its weigh much quicker than MBC.

This further suggests that having more variables that introduce small

81

400 600 800 1000 1200 1400 1600
Time (s)

0.0%

0.5%

1.0%
Re

la
tiv

e
Er

ro
r

Fi
xe

d
Po

in
t v

s.
Fl

oa
tin

g
Po

in
t

Relative Error for Weight

(a)

400 600 800 1000 1200 1400 1600
Time (s)

0.0%

0.5%

1.0%

Re
la

tiv
e

Er
ro

r
Fi

xe
d

Po
in

t v
s.

Fl
oa

tin
g

Po
in

t

Relative Error for Weight

(b)

Figure 6.6: The relative error between the actual value of w, computed using
fixed point operations, and the expected value of w, computed using floating
point operations. 10 second increments.

errors will gradually build up the overall error of the calculations, and as
this error increases, the quality of the calculation decreases. However, in
this case, even though there is some error in the calculations, it is below
1% at all times, which is relatively low. From this it would be quite safe to
assume, also considering the promising results from the network efficiency
experiment, that it is not enough to have a major effect on the DA-LBE
calculations in this case. However, if this error reaches values much larger
than 1%, it could be beneficial to map out the variables that have an effect on
the overall error, and limit the error that they are causing by e.g. increasing
the fractional part.

6.3 Fairness and Completion Times

The second experiment revolves around analysing the fairness and comple-
tion times of the DA-LBE meta congestion controller. Both Hayes et al. [35]
and Wallenburg [74] took this into account when evaluating the network
performance of the DA-LBE framework. Wallenburg defined an experiment
for testing these two factors which I replicated in my test environment.

82

200 710100 300 400 500 600

Background

BE Cubic
DA-LBE

0

Time (s)

Figure 6.7: Timeline of the fairness and completion times experiment show-
ing when the different flows start and stop.

Connection Start Stop Duration
DA-LBE 10 s - -
BE Cubic 0 s 710 s 710 s

Table 6.2: Start and end times for each flow for the fairness and completion
times experiment.The deadline for the DA-LBE flow is set to 600 s, which
means that it should finish close to t = 610 s.

6.3.1 Setup

The test scenario used for this experiment, described in table 6.2 and visu-
alized in figure 6.7, revolves around running one DA-LBE flow concurrent
with one BE Cubic flow. The BE flow is given a 10 seconds head start, which
should allow it to reach its maximum capacity before the DA-LBE flow
enters the network. The BE flow runs for 710 seconds, giving the DA-LBE
flow 700 seconds to finish it transfer. This experiment takes about ten
minutes, and was run for fifty iterations, to give a reasonable quantity of
samples from which I could compare the fairness and completion times.

The amount of data transferred by the DA-LBE flow is the same as used
for the first experiment; 1625 MB. However, the deadline is set to 600
seconds, which is much closer than previously used. This will result in the
DA-LBE flow to compete more aggressively for the available capacity to
maintain its target rate and possibly finish within the given deadline. To be
able to finish its transfer in time, the DA-LBE flow will have to maintain an
average rate of 21.67 Mbps.

In addition to the competing BE flow, I generated 10 Mbps of background
traffic to avoid synchronization between the two flows. I also used identical
configuration parameters, for both MBC and PID, in this experiment as I
used for the network efficiency experiments. For both the MBC and PID
based flows.

6.3.2 Fairness

First I consider the achieved fairness from the fifty samples. I used the Jain’s
fairness index to compute the fairness from three parts of the transmission.
Table 6.3 shows the parts of the samples I used to compute the fairness

83

Fairness Parts
Part Start Stop
Mid 100 s 355 s
End 356 s 610 s
Avg 100 s 610 s

Table 6.3: Table of the parts used to create fairness indexes.

indexes. I chose these three parts in an attempt to get a more precise view
of the fairness throughout the transmission, as relying on only an average of
the entire transmission would possibly hide the fact that the DA-LBE flow is
performing too aggressively or too passively at certain times.

The middle part was chosen so that I could look at the transfer in a state
where I suspected it to not be increasing its target rate by too much for each
interval, i.e. when the DA-LBE flow should be at its least aggressive. The
end part was chosen so that I could look at transfer in a state I suspected the
increase in target rate would be the greatest for each interval, i.e. when the
DA-LBE flow should be going towards its most aggressive. I also included
the average over the entire transfer to get an idea of the overall fairness
achieved by the DA-LBE flows.

Note that I have excluded the first 100 seconds from each sample, as this
is the part where the DA-LBE flow has not yet stabilized. In addition to this
I have excluded the time after the deadline has been reached, as the DA-LBE
flow should at this point be as aggressive as the competing BE flow. I have
done so, as I believe this reduces bias from the results, and thus giving a
more precise measurement.

Expectations

With the knowledge of the amount of competing traffic there is in the
network, I can make an assumption about the expected fairness that the
DA-LBE flows should achieve. Wallenburg showed from his local test bed
that having a DA-LBE flow transferring 1625MB of data within the deadline
of 600 seconds, allowed for 5125MB to be transferred in the same time by
a BE flow, totalling 90% of the entire capacity, while the remaining 10%
is consumed by the background traffic [74]. From this I can calculate the
expected fairness index by following the Jain’s formula:

(1625 + 5125)2

2× (16252 + 51252)
≈ 0.788

If the fairness values calculated from my samples are below this value,
it would suggest that the DA-LBE flow is not able to finish in time i.e. it is
performing too passively. On the other hand, if the fairness values from

84

our samples show are above the expected value it would suggest that the
DA-LBE flow is acting more aggressive and thus finishing before the given
deadline.

However, if the fairness values from my sampling periods, seen in table
6.3, are too close to 1, or even equal to 1, this would suggest that the DA-LBE
flows are not maintaining a LBE like behaviour.

In my previous experiment I have seen that when MBC is used as the
weight policy, the average sending rate of the DA-LBE flow may be a little
bit below the target sending rate, thus resulting in the flow overshooting
the soft deadline. From this observation I would expect to see fairness values
in the middle of the transmission to be close, but maybe a little bit below
an expected fairness value, and the fairness values from the end of the
transmission to be a little bit above the expected value as it should be
rapidly increasing its aggressiveness to finish close to the deadline. The
overall fairness of the MBC flow may be very close to the expected, however
this depends heavily on the increase towards the end of the transmission.

However, when PID is used as the weight policy I have observed that
the average sending rate stays very close to the target sending rate during
the entire transmission, thus resulting in the transfer finish very close to the
soft deadline. From this observation I would expect all fairness values from
the middle, end and the average to be quite close the the expected value.

Results

Figure 6.8 and 6.9 are box and whiskers plots illustrating the fairness values
from the 50 iterations of the 10 minute tests. The box extends from the
first (Q1) to the third (Q3) quartile values, and the line in the middle
represents the second (Q2) quartile, which in this case is the median value.
The whiskers show the range of the data which is set to 1.5 × (Q3 −Q1).
Outliers, if any, are shown as dots beyond the range of the whiskers.

The three parts plotted represent the middle part (100 - 355 s), end part
(356 - 610 s), and the average which combines the middle and the end part.
The horizontal line represents the expected fairness value calculated in the
previous section using Jain’s fairness index.

The Results for Model Based Control for Vegas, seen in figure 6.8, show
that the fairness of the middle section is a little below the expected value.
This would suggest that the DA-LBE flow fulfills its goal of being LBE at a
stage where the target rate has not yet begun to increase due to the deadline
being quite far away.

The fairness of the end section is quite far above the overall expected
fairness, which suggest that the DA-LBE flow is competing quite a bit for
capacity in an attempt to complete within the deadline. However, it is still
below complete fairness. This is important as it shows that the DA-LBE

85

Mid End Avg
0.75

0.80

0.85

0.90
Fa

rin
es

s I
nd

ex
Expected

Figure 6.8: Fairness indexes for Vegas based DA-LBE flows using MBC as
the weight policy. The box expends from the Q1 to Q3; the middle line
represents the median (Q2); the whiskers extend to the 1.5× (Q3−Q1) ; and
outliers are represented as dots beyond the whiskers.

flows are not competing equally with the BE flows before the deadline
has elapsed, suggesting that the they are still maintaining a correct LBE
behaviour towards the end.

The overall average shows that the DA-LBE flows are staying quite close
to the expected fairness value. Table 6.4 shows that on average the fairness
index of the DA-LBE flows is 0.810, which is 0.022 off the expected fairness.
I suspect this to be due to the rapid increase of aggressiveness during the
end section. From my previous experiments (see figure 6.2) I have seen that
when using MBC the average send rate follows the target send rate very
closely, even when the target rate increases rapidly.

Although the overall average fairness is a little bit above the expected
fairness, I can see that all the results are quite close to each other with very
few outliers, as the standard deviation in table 6.4 is 0.002, which is quite
low. This suggests that there is a recognizable, repeatable, stability achieved
when using MBC as the weight updating policy, and that the flows achieve
an expected LBE like behaviour.

The Results for PID Based Control for Vegas, seen in figure 6.9, show
that the fairness of the middle section stays above the expected fairness, with
some outliers stretching towards the expected line, which might suggests

86

Fairness Vegas MBC
Experiment Mean Median Stddev. Max Min
Mid 0.765 0.765 0.003 0.758 0.770
End 0.853 0.852 0.005 0.844 0.860
Avg 0.810 0.810 0.002 0.804 0.814

Table 6.4: Table of values related to the fairness indexes for Vegas based
DA-LBE flows using MBC as the weight policy.

Fairness Vegas PID
Experiment Mean Median Stddev. Min Max
Mid 0.838 0.842 0.011 0.805 0.851
End 0.798 0.796 0.009 0.785 0.832
Avg 0.819 0.819 0.002 0.811 0.821

Table 6.5: Table of values related to the fairness indexes for Vegas based
DA-LBE flows using PID as the weight policy.

that the aggressiveness, on an average, is quite high at the beginning of the
connection. However, the values are still below one, which suggests that the
DA-LBE flow is still less aggressive than its competing BE flow, thus still
maintaining its LBE behaviour.

The end part, is much closer to the expected fairness. In my previous
experiments using PID as the weight adjusting policy (see figure 6.4), I
have seen that the average sending rate stays very close to the target rate.
This would suggest that the DA-LBE flows are able to maintain an average
sending rate very close to the target, thus also achieving a fairness close to
what is expected.

The overall average fairness values in this experiment show that most
of the DA-LBE flows are very close to achieving the same fairness values.
The standard deviation in table 6.5 strengthens this claim, being only 0.002.
This would suggest that there is also a repeating stability when using PID as
the weight adjustment policy, and that the flows are in this case achieving
an expected LBE like behaviour.

6.3.3 Completion Times

Continuing with the data produced for the fairness experiment, I wanted
to see how close to the deadline the DA-LBE flows where when they had
transmitted all their data. Each flow was given a deadline of 600 seconds,
and each flow started 10 seconds after the competing BE flow, which suggests
that at 610 seconds the DA-LBE flows should be finished or close to finished.

The completion times are computed as a difference between the time a
flow finishes its transmission and the time the flow starts its transmission.

87

Mid End Avg
0.75

0.80

0.85

0.90
Fa

rin
es

s I
nd

ex
Expected

Figure 6.9: Fairness indexes for Vegas based DA-LBE flows using PID as
the weight policy. The box expends from the Q1 to Q3; the middle line
represents the median (Q2); the whiskers extend to the 1.5× (Q3−Q1) ; and
outliers are represented as dots beyond the whiskers.

I achieved these times by sampling the time each flow enters its initiation
and release function (see figure 4.1), which are called at connection estab-
lishment and tear down. The blue line represents the deadline set for the
flows, which was at 600 seconds.

Expectations

From the results of the fairness experiments I have seen that for, both MBC
and PID, the overall average of the DA-LBE flows are very close to each
other. However I have seen that MBC acts a little less aggressive than PID
as its average send rate often lays below the target send rate, while the PID
based flows tends to stay very close to the target rate. With this in mind
I would expect the results to show that PID flows would finish closer to
the deadline, while the MBC flows may overshoot by a couple of seconds.
This expectation is further strengthened by the findings during the network
efficiency experiments, where it was clear that the MBC flow missed the
deadline by some seconds due to it being too passive during the connection,
while the PID flow kept a very stable rate during the entire connection and
was able to finish just in time.

Further, I must emphasize that the set deadline is considered as soft,
meaning that the DA-LBE flows do not have to finish in perfect time to be

88

Vegas MBC Vegas PID

600

605

610

615

620

Co
m

pl
et

io
n

Ti
m

e
(s

)
Deadline

Figure 6.10: Completion times for Vegas based DA-LBE flows using MBC
and PID as the weight policies. The box expends from the Q1 to Q3;
the middle line represents the median (Q2); the whiskers extend to the
1.5× (Q3−Q1) ; and outliers are represented as dots beyond the whiskers.

acceptable. However, concern should arise if the flows repeatedly overshoot
by a considerable amount of time, or if the flows repeatedly undershoot by
a considerable amount of time. These scenarios suggest a miss behaving
DA-LBE flow which is either too passive or too aggressive, respectfully.

Results

Once again, I display the results in box and whiskers format, where the
representation is the same as was used for the fairness experiments.

Figure 6.10 shows that the MBC flows there are not able to finish within
the given deadline. This was close to what I expected, as I knew the MBC
flow’s average sending rate generally would stay a little below the target
send rate followed by a rapid increase towards the end of the transmission.
However, this increase does not seem to be rapid enough to finish within
the deadline.

For the PID flows, the results are quite different. Very noticeable is the
fact that the box and whiskers plot is very compact, which suggests that the
PID flows are maintaining a good stability between sending rate and target
rate. It also seems that on average the PID flows are able to finish very close
the deadline, with only a few samples finishing a couple of seconds late.

Table 6.6, which shows the completion time relative to the deadline,

89

Relative Completion Times
Experiment Mean Median Stddev. Max Min
Vegas MBC 15.143 15.346 3.429 22.496 9.083
Vegas PID −0.373 −0.427 0.774 1.431 −1.960

Table 6.6: Table of values related to the completion times for Vegas based
DA-LBE flows using MBC and PID as the weight policies.

0 100 200 300 400 500 600 700
Time (s)

0

20

40

60

80

100

Se
nd

 R
at

e
(M

bp
s)

DALBE
BE Cubic
Target Rate
Deadline

Figure 6.11: One second averages of the throughput of the earliest complet-
ing run for the fairness and completion times experiment for a Vegas based
DA-LBE flow using MBC as the weight policy.

confirms my assumptions about the two flow types. I can see that the MBC
flows on average overshoot by approximately 15 seconds, within a standard
deviation from the mean of about 3.4 seconds. The PID flows, however,
are on average able to finish before the deadline with approximately 0.4
seconds to spare. I can also see that the standard deviation is below one
seconds which explains why the box and whiskers are so compact.

Earliest vs. Latest for Model Based Vegas

From table 6.6 it is evident that the earliest completion time by a MBC
flow is approximately 9 seconds past the deadline. Figure 6.11 illustrates
the sending rate of this flow, in terms of throughput, averaged over once
second intervals. This run is able to achieve a very stable rate throughout
the entire connection, and there is nothing very noticeable about this figure.
However, quite noticeable here is the repeating behaviour of the MBC flows
by achieving an average sending rate just below the target sending rate, and
an increase towards the end of the connection in an attempt to finish in
time.

From the same table it is apparent that the latest finishing flow is approx-
imately 22.5 seconds past the deadline. Figure 6.12 shows that the latest
contestant has a very similar behaviour to the earliest contestant, however

90

0 100 200 300 400 500 600 700
Time (s)

0

20

40

60

80

100
Se

nd
 R

at
e

(M
bp

s)

DALBE
BE Cubic
Target Rate
Deadline

Figure 6.12: One second averages of the throughput of the latest completing
run for the fairness and completion times experiment for a Vegas based
DA-LBE flow using MBC as the weight policy.

towards the end there is a noticeable drop of the sending rate, which may
explain why this flow is overshoots by this much. Taking a close look at the
debugging graphs in figure 6.13, at around 500 seconds, there does not seem
to be any apparent cause for this drop. The only noticeable factor, though
minimal, and which can be seen in figure 6.13c is the change in measured
queuing delay right before the t = 500 second mark. This, together with the
BE flow probing for more capacity may cause the DA-LBE flow to back off as
it reacts to the increase in queuing delay in the network, and will interpret
this as if it is the cause of the congestion.

Earliest vs. Latest for PID Based Vegas

From table 6.6 it is evident that the earliest completion time by a PID flow
is approximately two seconds ahead of the deadline. By looking closer at
the throughput graph for this run in figure 6.14 it is apparent that there
is a distinctive spike in the send rate at about t = 300 seconds, which may
explain why this run is the earliest to finish. Figure 6.15a shows that right
before t = 300 seconds there is a significant increase in φ, which suggests
that the threshold for loss events was not reached before this time, and that
there was a significant amount of loss events registered at this interval. This,
together with w == 1 and backoff being close to one explains why this spike
in the send rate occurs.

The latest contestant overshoots by about 1.5 seconds, which is not a
significant amount of time. Noticeable for this run is that the DA-LBE flow
is able to quite quickly reach the target rate, and maintain a stable sending
rate throughout the connection. There are no significant spikes or dips
which suggests that there is very little interference during the approximate
600 second connection, thus allowing it to finish this early.

91

100 200 300 400 500 600
Time (s)

0.0

0.5

1.0

W
ei

gh
t a

nd
 B

ac
ko

ff

0.0

4.5

9.0

 a
nd

Weight
Backoff

(a)

100 200 300 400 500 600
Time (s)

0

2

4

6

8

M
od

el
 E

rro
r

0.0

0.5

1.0

Se
nd

 R
at

e
(M

bp
s)

1e8
Model Error
Target Rate
Average Rate

(b)

100 200 300 400 500 600
Time (s)

0

15

30

Qu
eu

in
g

De
la

y
(m

s)

Measured
Model

(c)

100 200 300 400 500 600
Time (s)

30

50

70

RT
T

(m
s)

Smoothed RTT
Average RTT
Base RTT

(d)

100 200 300 400 500 600
Time (s)

0

50

100

150

Pa
ck

et
s

Congestion Window
Slow Start Threshold

(e)

Figure 6.13: Debug graphs produced for the latest completion run for the
fairness and completion times experiment. A Vegas based DA-LBE flow
using MBC as the weight policy. 10 seconds increments.

92

0 100 200 300 400 500 600 700
Time (s)

0

20

40

60

80

100

Se
nd

 R
at

e
(M

bp
s)

DALBE
BE Cubic
Target Rate
Deadline

Figure 6.14: One second averages of the throughput of the earliest complet-
ing run for the fairness and completion times experiment for a Vegas based
DA-LBE flow using PID as the weight policy.

100 200 300 400 500
Time (s)

0.0

0.5

1.0

W
ei

gh
t a

nd
 B

ac
ko

ff

0.0

4.5

9.0

 a
nd

Weight
Backoff

(a)

100 200 300 400 500
Time (s)

0.4

0.2

0.0

0.2

PI
D

Er
ro

r

0.0

0.5

1.0

Se
nd

 R
at

e
(M

bp
s)

1e8
PID Error
Target Rate
Average Rate

(b)

100 200 300 400 500
Time (s)

0

50

100

150

200

Pa
ck

et
s

Congestion Window
Slow Start Threshold

(c)

Figure 6.15: Debug graphs produced for the latest completion run for the
fairness and completion times experiment. A Vegas based DA-LBE flow
using PID as the weight policy. 10 seconds increments.

93

0 100 200 300 400 500 600 700
Time (s)

0

20

40

60

80

100
Se

nd
 R

at
e

(M
bp

s)

DALBE
BE Cubic
Target Rate
Deadline

Figure 6.16: One second averages of the throughput of the latest completing
run for the fairness and completion times experiment for a Vegas based
DA-LBE flow using PID as the weight policy.

6.4 Summary

This chapter presented a set of experiments that were used to evaluate the
network performance of the DA-LBE meta congestion controller, utilizing
Vegas as the underlying congestion controller, for both MBC and PID based
control. To achieve this, a set of requirements, defined by Hayes et al. , were
used as the basis for evaluation the results.

The first experiment, targeting the network efficiency of the meta con-
gestion controller, showed that both MBC and PID were able to utilize most
of the capacity when it became available. For the MBC flow, it was also clear
that it was able to follow the target deadline quite well, however, due to
its average rate being just below the target rate for the entire connection,
it overshot the deadline by a couple of seconds. The PID flows average
rate, on the other hand, was very close to the target rate during the entire
connection, thus allowing it to finish just in time.

In addition to this, I investigated what impact the use of Q16.16 fixed
point numbers had on the calculation ofw, by comparing the actual values to
the expected value using floating point operations. This revealed that though
there was some error in the calculations, however, it did not seem to be
enough to have an impact of the performance of the DA-LBE meta congestion
controller. This also gave an indication that the error could become a concern
if the amount of variables used for the calculations increased.

In the second experiment I computed Jain’s Fairness Index on fifty runs of
an approximately 10 minute experiment, as well as recording the completion
time for each run, for both MBC and PID. With this information it was
possible to get an indication of how well the flows were performing in terms
of their LBEness. The outcome was that both MBC and PID were showing
LBE-like characteristics, however, the aggressiveness of the PID flows were a
little bit higher than the MBC, as the PID flow’s average rate was in general

94

closer to the target rate, while the MBC would stay just below. From this
experiment it was also possible to see that the PID flows on average provided
more stability, and thus overshooting the deadline by less than the MBC
flows, yet they were both achieving expected LBE characteristics.

95

Chapter 7

Load and Overhead
Experiments

In this chapter I present a set of experiments, aimed at providing some
insight of the load and overhead introduced meta congestion controller
module. In addition to this, I determine the amount of memory allocated
by the meta congestion controller.

7.1 Requirements for Load and Overhead Experiments

Focusing on the fourth and final research question (RQ4);

How can the additional memory usage and computation load be
evaluated for a DA-LBE meta congestion controller module?

Rather than define a set of requirements from this question, I divide the
question into two parts;

• How much memory is allocated on a per-connection basis, and does it
scale well with the increase in connections?

• How much overhead is introduced by the major functions, and does it
pose a major threat to the overall performance of the meta congestion
controller?

By finding an answer to these two functions, I intend to be able to define a
set of adequate requirements for the meta congestion controller, in terms of
memory usage and computational load.

96

7.2 Memory Usage

At this point my experiments have given insights to how the DA-LBE meta
congestion controller performs in terms of network efficiency, fairness and
completion times. However, certain aspects of the internal performance
have not yet been discussed. In this section I wish to address the the addi-
tional memory consumption introduced by implementing a meta congestion
controller in the Linux kernel. More precisely I am interested in how much
additional memory is allocated by the meta congestion controller per con-
nection.

7.2.1 Reasoning about Memory Usage

The additional memory needed by each connection can be hard to measure
with available tools in the Linux Kernel. However, as I know that the meta
congestion controller module does not allocate memory, other than what
I am aware about from the source code, it becomes quite trivial to reason
about the additional usage. In this case I am mostly interested in how
much memory is allocated for each connection. Each connection requires a
structure, struct dalbe [71, dalbe.h], that holds required values for the DA-
LBE framework as well as pointers to the connection socket and underlying
congestion controller. This structure contains a decent amount of fields,
and is allocated using kmalloc [73, include/linux/slab.h] when the connection
is established. In addition to the allocation of the structure, an array of ten,
32 bit integers is allocated which is used for calculating the moving average
of the average RTTs sampled each update interval for w. In total this comes
to 336 bytes per connection. No additional memory is allocated beyond this
by the DA-LBE congestion module, which suggests that the memory usage
stays linear with an increasing amount of DA-LBE connections.

97

7.3 Function Frequency

As part of the analysis of the internals of the DA-LBE meta congestion
module, I wanted to get an overview of the frequency in which the con-
gestion controller functions, implemented by the DA-LBE meta congestion
module, were invoked. I believe this knowledge is valuable as it will give a
clear indication of where most of the function load is located, in terms of
computation time. In addition to this I believe that this knowledge will be
valuable for further work if optimization of the code becomes a concern, as
these results give a good indication for where code optimization should be
focused.

7.3.1 Setup

In this experiment I used perf-stat [50, perf-stat(1)] to produce a statistical
function frequency profile of the DA-LBE flow. The only requirement for
the profiler to produce reasonable results was that the functions which the
DA-LBE meta congestion controller module implemented were called in a
somewhat realistic manner. This required me to generate an environment
where certain events and state changes in the TCP connection would occur,
that triggered the set of implemented functions. Examples of such events
are loss, fast re-transmit and recovery etc. , and state changes that may be
triggered by these events. I came to the conclusion that this would be the
case if I re-used the fairness experiment setup, as the DA-LBE flow would
be in the presence of one competing BE flow as well as a specified amount
of background traffic, thus creating a suitable environment for analysing
the frequency the functions were invoked. I only ran the experiment for
ten iterations, as the purpose of this experiment was mostly to get a quick
overview of the function frequency.

For the profiler I configured it to only profile the client process, and to
sample at a rate of 1000Hz. This sampling rate translates to the profiler
waking up 1000 times per second to collect samples about function events
from our client process.

To avoid sampling events which where not of interest, such as functions
invoked by the scheduler, interrupts, etc, I set up the profiler to only follow
certain events. These events were registered to the profiler by using the
event probing, perf-probe [50, perf-probe(1)]1.

7.3.2 Results

The results from the statistical profiler can be seen in 7.1, and show the
amount of counted events for each function. Notice that the four last func-

1The process of doing this for a loadable kernel module was a little challenging, and for
this reason I have added this as part of the documentation.

98

Perf Event Count
Function Average Event Count
dalbe_in_ack_event 560765
dalbe_pkts_acked 560764
dalbe_cong_avoid 560269
dalbe_set_state 70
dalbe_cwnd_event 25
dalbe_ssthresh 24
dalbe_setsockops 6
dalbe_alloc 1
dalbe_release 0
dalbe_getsockops 0
dalbe_get_info 0
dalbe_undo_cwnd 0

Table 7.1: Table of the event counts produced by the function frequency
experiment.

tions dalbe_release, dalbe_undo_cwnd, dalbe_getsockops and dalbe_get_info are
never called. The first function, dalbe_release, which is not captured by the
profiler, I suspect is not counted as it was missed by the profiler sampling
period. The main reason why I suspect that it is missed by the profilier
is the fact that it is only called once, and that I know it had been called
from looking through the debugging logs. The reason why the second func-
tion, dalbe_undo_cwnd, is not counted is a little more confusing. I presume
this has to do with the intricate chain of events that have to occur for this
function to be triggered, however, I was not quite able to determine just
why it was so rarely invoked. For the two latter functions, dalbe_getsockops
and dalbe_get_info, it makes perfect sense why they are not counted as they
are connected to system calls which the client never invokes. I argue that
though these functions, dalbe_undo_cwnd included, may be called, their
presence is usually very minimal, and thus do not pose a large threat to the
performance of the DA-LBE meta congestion module.

More concerning, in terms of overhead, is the quantity of calls to the
functions dalbe_in_ack_event, dalbe_pkts_acked, and dalbe_cong_avoid. From
my knowledge of the TCP architecture in the Linux kernel I know that
these functions are called on an reception-of-ACK basis. This explains why
these functions are the major events captured by the profiler, and the fact
that the amount of events are very similar suggests that they should be all
considered as equal threats to the performance. Thus they should also be
the first candidates for code optimization by the software developer.

The remaining functions are in comparison not of any major concern,
as they are seldom called. However, their count may be more frequent in

99

a more unstable network link, where TCP events are more frequent, thus
causing more frequent changes to the TCP state machine. For this reason,
they should still be considered as potential candidates for optimization if
their code increases drastically in complexity.

7.4 Function Overhead

The task of calculating function overhead is more intricate than showing
the function frequency, and to some degree it is very difficult to give exact
numbers. In this section I analyze the results from the average time and total
time spent in the main functions of the meta congestion controller, with the
purpose of seeing how much impact a meta congestion controller has on the
system compared to a general congestion controller. I also take a closer look
into the time spent inside the function where most of the DA-LBE related
calculations take place. The purpose of this is to see how much impact the
framework has on the meta congestion controller.

7.4.1 Setup

For this experiment I used the function-graph tracer of ftrace to capture every
absolute time spent inside certain functions. As I had seen that the setup
for the fairness experiments worked quite well for the function frequency
experiment, I reused the same setup for this experiment. I also focused
on the MBC weight policy, as the function of adapting the weight is more
computationally heavy than the function used for PID. I ran the experiment
for fifty iterations to average out any noise from the results, as the absolute
times could easily be affected by unforeseen events in the OS.

Selecting an Appropriate Buffer Size

One major challenge I faced while setting up this experiment, which had
clearly been seen in the function frequency experiment, was the fact that
some of the functions that were traced were called much more frequently
than others. For ftrace, in contrast to perf, this becomes quite difficult to
handle, as the tracer will try to capture everything. If the buffers allocated
by the tracer, one for each CPU, are not large enough, certain events will be
overwritten by new events. To combat this problem, I experimented with
several buffer sizes, and even made an attempt to split the traced functions
into different runs. However, to be able to get a proper estimation of the
total time spent in each function, all (or almost all) events should be traced.
This way the total time spent inside the function can easily be compared to
the time the connection is alive.

For this reason I resulted in trying a set of different sizes until I found a
buffer size which allowed me to capture all the events. The size of the buffer

100

ended up being 320 MB in total, spread among four CPUs, which allowed to
capture every event. This, however, introduced another complication; each
trace log produced by one run would end up being ≈ 300 MB in size. As
this trace was performed on one of the edge nodes, which had very limited
storage, I had to be very careful of running too many iterations at the time.

Specific Tracer Options

The tracer used for this experiment, function-graph, may be configured in
specific ways to serve a specific purpose. Following are a set options which
I applied to the tracer such that it would produce results adequate for this
experiment.

• nooverwrite: This tells the tracer that it should not overwrite the
buffers when filled up, but instead ignore new trace events. This was
useful, as it would imply that the buffers were filled with events from
the beginning of the connection, giving more control over what was
captured by the tracer.

• funcgraph-abstime: This allows for storing the absolute time spent
inside the functions. The time is calculated as the difference between
entry and exit of the function.

• funcgraph-proc: This option, when enabled, adds the name of the
function that triggered the event, making it possible to disinguish
between events.

• nosleep: This tells the tracers to not save the events which include
scheduling events. This removes bias from the average as the time
spent in context switches is not included.

Choice of Trace Events

The choice of trace events came down to; (1) what trace events were already
available in the kernel, and (2) what trace events were available for the meta
congestion controller module. As a result of this work using Vegas as the
underlying congestion controller, the selection of trace events had to be a
subset of events which were available from both the meta congestion con-
troller module and the underlying congestion controller. This was achieved
by performing a union of the available trace events from both congestion
controllers, resulting in a subset of events which where present in both.

Table 7.2 shows the subset of trace events which was used for these ex-
periments. Notice that the two last events in the table for Vegas are from the
Reno congestion controller. This is because Vegas does not implement these

2Especially high when the interval for φ and/or w elapses.

101

Su
bset

of
Trace

E
vents

D
albe

C
od

e
C

om
p

lexity
V

egas
C

od
e

C
om

p
lexity

C
om

m
on

d
albe_cong_avoid

M
ed

iu
m

tcp
_vegas_cong_avoid

M
ed

iu
m

d
albe_p

kts_acked
M

ed
/H

igh
2

tcp
_vegas_p

kts_acked
L

ow
U

ncom
m

on
d

albe_cw
nd

_event
L

ow
tcp

_vegas_cw
nd

_event
L

ow
d

albe_set_state
L

ow
tcp

_vegas_state
L

ow
d

albe_ssthresh
L

ow
tcp

_reno_ssthresh
L

ow
d

albe_u
nd

o_cw
nd

L
ow

tcp
_reno_u

nd
o_cw

nd
L

ow

Table 7.2: Table with the subset of trace events specified for ftrace, distin-
guishing between the most common and uncommon events. The table also
shows the code complexity of each function.

102

functions, but rather reuses the functions declared by Reno, by pointing
directly to them. For this reason there are no explicit trace events available
for Vegas for these functions, however tracing events of Reno will give the
same result, as long as the tracer is set to only follow one process. In this
case, the process which the tracer follows is the DA-LBE client available as
part of the test bed software [72].

By tracing both the function of the DA-LBE meta congestion controller
and corresponding function of the underlying congestion controller which
the DA-LBE meta congestion controller invokes, the time spent in both
functions is recorded. This allows for an estimation of how much time is
spent in the DA-LBE meta congestion controller module in relation to the
time spent in the Vegas module.

7.4.2 Expectations

My expectations for this experiment was mostly based on knowledge of the
code for both the meta congestion controller, and the underlying congestion
controller. From this I could make an assumption about how computation-
ally heavy each traced function would be, based on the code complexity of
each function.

Table 7.2 shows the code complexity perceived from analysing the source
code of both congestion modules. Low means that there is a very minimal
set of instructions inside the functions, and no evidence of looping code
or other performance threatening code. Medium indicates that there is a
intermediate set of instructions inside the function and/or some looping
code which may pose some threat to the performance. High indicates that
there is both a substantial set of instructions and/or looping code which may
be performance threatening. From this table it is quite evident that the code
in the common functions of the DA-LBE congestion controller module are
expected to be more heavy than the code inside the Vegas module. This table
suggests that there should be most overhead introduced by the common
functions, and that the uncommon functions should not pose a huge threat
to the performance.

It should also be mentioned that even though the DA-LBE congestion
controller module is a loadable kernel module, in comparison to the Vegas
congestion controller module, which is in this case built into the kernel,
this does not introduce any performance penalty once the loadable kernel
module has been successfully loaded into the kernel [38, x73.html].

Sepecific Expectations for Total Time

It is apparent that the common functions (see table 7.2) are invoked more
frequently than the uncommon functions. From the profiling of function
frequency performed in the previous experiment, the count of the common

103

events was noticeably larger than the uncommon. This leads me to believe
that the time spent inside these functions will scale similarly to the results
from the profiling.

7.4.3 Results

In the following sections I present the results from the average overhead
per function, total time spent in each function, and the impact the DA-LBE
framework has on the implementation.

Figure 7.1a and 7.1b show bar charts of the average time and median
time spent in each function. Each bar is divided into two parts; the first part
(blue) shows the amount of time spent inside the DA-LBE meta congestion
controller module excluding the time spent inside the underlying congestion
controller. The the second part (orange) shows the amount time spent inside
the, underlying congestion controller, which in this case is Vegas. The blue
and orange bars stacked together represents the time actual time spent in
each function, i.e. combining both the meta congestion controller and the
underlying congestion module. The percentage is relative to the actual time
spent inside the function.

Figure 7.1c shows a bar chart of the total time spent inside each of the
functions. It has been scaled to logarithmic times, as the difference between
total times of the events was so substantial.

Function Overhead Introduced by Common Events

The average overhead introduced by the common events, seen in figure
7.1a, is somewhat close to the expected outcome. The pkts_acked function
introduces the most overhead, at about 80% on average, which I suspect is
due to the heavy calculations performed within the Dalbe meta congestion
controller module for this function. For the cong_avoid the introduced
average overhead is about 70%. I expected that the amount of work would
be quite even between the two, based on the knowledge from the source
code, however, it seems to be that the DA-LBE congestion controller module
is still the culprit in terms of overhead.

By looking at table 7.3, there are three factors that may suggest that even
though the overhead introduced by the meta congestion module is quite
substantial most of the values are quite small. The first noticeable factor
is that both the mean and median value are quite similar. The second no-
ticeable factor is that both the maximum value for these common events are
significantly larger than the median value. Finally, the third noticeable factor
is that the standard deviation is quite low, where only the dalbe_pkts_acked
has a standard deviation above one. This would suggest that the average
overhead may be increased by a range of substantially large outliers.

104

0 1 2 3 4 5
s

set_state

cwnd_event

sshtresh

cong_avoid

pkts_acked

TC
P

Da
lb

e
Fu

nc
tio

n

69.5%

69.0%

70.8%

69.2%

79.6%

30.5%

31.0%

29.2%

30.8%

20.4%

Time Inside Dalbe
Time Inside Underlying CA

(a) Average function overhead introduced by the meta congestion controller from
50 iterations.

0 1 2 3 4 5
s

set_state

cwnd_event

sshtresh

cong_avoid

pkts_acked

TC
P

Da
lb

e
Fu

nc
tio

n

68.0%

67.8%

70.9%

68.7%

79.7%

32.0%

32.2%

29.1%

31.3%

20.3%

Time Inside Dalbe
Time Inside Underlying CA

(b) Median function overhead introduced by the meta congestion controller from
50 iterations.

102 103 104 105 106

s

set_state

cwnd_event

sshtresh

cong_avoid

pkts_acked

TC
P

Da
lb

e
Fu

nc
tio

n

Time Inside Dalbe + Underlying CA

(c) Total time spent in each function by the meta congestion controller.

Figure 7.1: A set of figures that illustrate the function overhead introduced
by the DA-LBE meta congestion controller, averaged over 50 iterations of an
approximately 600 second experiment with one DA-LBE flow competing
with a BE flow.

105

Ftrace
T

im
es

From
50

Iterations
Fu

nction
C

ou
nt

TotalT
im

e
M

ed
ian

M
ean

Std
d

ev
M

in
M

ax
d

albe_p
kts_acked

560142
3159447µs

5.56µs
5.64µs

1.57µs
3.19µs

154.00µs
tcp

_vegas_p
kts_acked

560142
644002µs

1.13µs
1.15µs

0.29µs
0.66µs

40.13µs
d

albe_cong_avoid
559013

1863550µs
3.23µs

3.33µs
0.58µs

1.96µs
52.54µs

tcp
_vegas_cong_avoid

559013
574276µs

1.01µs
1.03µs

0.30µs
0.61µs

42.02µs
d

albe_set_state
113

387µs
3.20µs

3.43µs
0.62µs

2.77µs
7.56µs

tcp
_vegas_state

113
118µs

1.02µs
1.05µs

0.19µs
0.89µs

2.81µs
d

albe_cw
nd

_event
39

131µs
3.17µs

3.38µs
0.93µs

2.87µs
8.39µs

tcp
_vegas_cw

nd
_event

39
41µs

1.02µs
1.05µs

0.16µs
0.92µs

1.91µs
d

albe_ssthresh
38

134µs
3.51µs

3.56µs
0.39µs

3.03µs
5.24µs

tcp
_reno_ssthresh

38
39µs

1.02µs
1.04µs

0.14µs
0.90µs

1.78µs

Table 7.3: A table with values related to the average function overhead for
both common and uncommon trace events.

106

Overhead Introduced by Uncommon Events

The average overhead introduced by the uncommon events is a little more
unexpected. From my reasoning about the expected overhead, based on
the complexity within each function, it would have been reasonable to
expect very little overhead introduced by the DA-LBE meta congestion
controller module for these functions. However, it is clear that this is not
the case, as all the uncommon events have ≈ 70% introduced overhead by
the meta congestion controller. Even the simplest function in terms of code
complexity, being dalbe_ssthresh in this case, introduces more overhead than
the least intrusive function of the common events.

By looking at table 7.3, the first noticeable factor is that the amount
of samples on average per iteration is substantially lower than that of the
common events. This could suggest that the amount of samples are not
enough to get a proper estimate of these functions. However, it could also
suggest that since this code is seldom used throughout the connection the
CPU may not have the code stored in memory, causing a page fault. The
time penalty of the page fault may be what is causing these functions to
introduce substantial overhead, however, this can only be speculated about
as there is no evidence that this is actually the case.

Total Time Spent In Functions

At this point it is clear that the meta congestion controller introduces ap-
proximately 70% to 80% overhead. However, by looking at figure 7.1c, it
may be possible to see how much impact this overhead has on the actual
connection. What is clear from this figure, is that most of the time is spent
inside the common functions, while the very little time is spent inside the
uncommon functions. From table 7.3 it is apparent that in total, about five
seconds is spent in the common functions combined, over the approximately
600 second connection. While approximately only 550µs is spent in total
for the uncommon functions combined.

From this observation it is apparent that even though the overhead may
be quite large at times, the total time spent inside the functions is still
minimal. For the common functions, the combined total time is still below
1% of the entire connection, and for the uncommon events it is almost not
recognizable. This, together with the promising results from the network
performance experiments, suggest that the overhead is still not enough to
have a noticeable effect on the overall performance of the meta congestion
controller.

Impact of the Update Intervals for φ and w

Lastly, I take a closer look at the impact that the update intervals for φ andw
have on the meta congestion controller module. The function responsible for

107

0 20 40 60 80 100 120 140 160
s

102

103

104

105

106

107

Fu
nc

tio
n

Ca
ll

Co
un

t

Figure 7.2: Histogram showing the samples for the pkts_acked function.

these update intervals is dalbe_pkts_acked. For this function, the maximum
recorded time was 154µs, seen in table 7.3, which is quite far above the
average of approximately 5µs.

From the approximately 600 seconds experiment, with an update in-
terval of 10 seconds, I would expect about 60 updates of φ and w. As the
start times for their periodic updates is the same, we can assume that both
are triggered at the same time i.e. in the same function call. Considering
that there is about 60 updates per run for 50 iterations, we would expect
60× 50 = 3000 of the samples to have a substantially overhead due to the
update of these values.

Figure 7.2 illustrates the samples for dalbe_pkts_akced from the fifty runs.
From this figure, it is apparent that most of the values are skewed to the
left, suggesting that they are achieving a sub 20µs overhead. Noticeably, at
120µs to 150µs the samples reach approximately 103. This fits quite well
with the expectation for events that would be extra computational heavy
due to the update of φ and w. From this observation, it would also be safe
to assume that the spike seen around this area, in fact is caused by these
updates. This would also suggest that the effect these intervals have on the
meta congestion controller is not substantial. However, as the values seem
to be very predictable, it would also suggest that if the interval times were
to be shortened, the overhead for this function would increase.

108

7.5 Summary

In this chapter chapter I presented a set of experiments aimed at providing
some insight to the memory usage, and computational load and overhead
introduced by the meta congestion controller.

I first reasoned about the memory usage of the meta congestion con-
troller, and how it scaled linearly with the increase of DA-LBE connections.
Following this, I ran a simple experiment, which gave an indication of the
frequency at which the functions implemented by the meta congestion con-
troller were invoked. This gave some good insight into where the most of
the function overhead would be expected.

Secondly, I ran an experiment, based on the fairness experiment in
chapter 6, which gave an insight into how much function overhead was in-
troduced by the meta congestion controller in comparison to the underlying
congestion controller, and how much time was spent in each function in
total during an approximately 600 second experiment. From this experi-
ment it was apparent that the meta congestion controller was responsible
for approximately 70% to 80% of the absolute time spent in the functions,
however, the considering the frequency of some of these functions, the over-
head did not pose a large threat to the performance of the meta congestion
controller.

Lastly, I took a closer look at the function responsible for updating w
and φ. From this it was quite clear that the largest recorded overheads could
be tied to the update intervals for these values. This suggested that even
though these updates increased the average overhead, they had little effect
on the overall performance of the meta congestion controller.

109

Chapter 8

Conclusion

This thesis aimed to produce a stable, long-term solution for DA-LBE trans-
port services, by creating an implementation for the Linux OS.

An agile inspired development process was used to develop the DA-LBE
framework as a meta congestion controller, Dalbe, for the Linux OS. Dalbe is
implemented as a loadable kernel module, following common conventions
for development in the Linux kernel. It requires minimal changes to the
kernel, uses the existing socket API, and can be easily augmented with
congestion control models.

Two test environments were built, each serving a different purpose.
The first test environment, a virtual machine based setup, was constructed
for early testing on the kernel module, allowing Dalbe to be thoroughly
checked for memory leaks, bugs and errors. The second test environment, a
hardware based setup constructed together with a colleague, consisted of
five connected machines, which emulated a bottleneck link using common
tools available for the Linux OS. This allowed for running experiments on
the meta congestion module in a near-realistic, stable environment.

By recreating a set of experiments based on previous work by Hayes
et al. [35] and Wallenburg [74], the network performance of Dalbe was
analysed, using Vegas as the underlying congestion controller for both MBC
and PID based weight control. These experiments demonstrated that the
meta congestion controller was able to utilize the available capacity in the
network. They also demonstrated that in this case PID based control would
tend to be a little more aggressive than MBC, however, both were able to
maintain their desired LBE characteristics.

The impact of using Q16.16 fixed point numbers had on the calculation
of the weight, w, was investigated. This revealed that the maximum error ob-
served was less than 1% with respect to the expected value, which suggested
that in this case it was not enough to have any large impact on the quality
of the calculations. The investigation also demonstrated that increasing
the amount of variables in the calculations could potentially increase the

110

overall error.
The memory consumption of the meta congestion controller was reasoned

about, based on the knowledge of its internal structure. From this it was
clear that the amount of memory consumed by the meta congestion con-
troller was quite insignificant, only 336 bytes per connection, and that the
allocation of memory scales linearly with the increase of DA-LBE connec-
tions.

Finally, a set of tracing tools available for the Linux OS were used to
investigate the function frequency and the function overhead introduced
by the meta congestion controller. This indicated quite clearly which func-
tions were the major concerns in terms of overhead. It also revealed that
the function overhead introduced by the meta congestion controller was
between 70% and 80%, which could seem concerning in terms of perform-
ance. However, the total time spent in each function revealed that even for
the most frequently called functions, the total time spent in each function
was quite insignificant, as combined they were responsible for less than
1% of the entire time spent in the connection. It was also observed that
the largest overheads recorded for the function responsible of updating w
and φ, could be tied to the amount of expected update intervals for the
connection, suggesting that in this case these updates had little effect on the
overall performance of the meta congestion controller.

Dalbe provides a thoroughly tested and debugged meta congestion con-
troller for DA-LBE transport services, utilizing Vegas as the underlying
congestion controller for both MBC and PID based control, which makes it
a good start in the direction of providing a stable, long-term solution.

8.1 Future Work

Finally, I want to discuss what would be a reasonable direction for future
work on the meta congestion controller, based on my own opinions and the
findings of this thesis.

8.1.1 Improvements to the Meta Congestion Controller

The meta congestion controller does not come without some short comings,
which were pointed out it chapter 4. In this section I wish to emphasize the
shortcomings which, in my opinion, should be addressed first.

Adjusting the aggressiveness of loss-based control should be considered
as the first priority, as this mechanism does not require too much additional
code, and when accomplished it will allow for testing the meta congestion
controller with most underlying congestion controllers.

111

Sadly, I was not able to finish implementing the mechanism for adjusting
the aggressiveness for underlying, loss-based, congestion controllers, which
limits the current implementation to being solely delay-based. However, I
did make an attempt of getting this feature in before the deadline, which
can be found in the git repository for the meta congestion controller [70]
under the branch named "loss-based", together with some notes on how this
functionality may be accomplished.

Improving the architecture for better modularity is in my opinion a
good step in the direction for expanding the meta congestion controller with
more functionality, beyond what is present in the current implementation.

As I stated in chapter 4, the current architecture of the meta congestion
controller, is serving its purpose. However, it could be made more modular
by e.g. taking inspiration from the pluggable congestion controller interface
in the Linux kernel, and providing a similar pluggable interfaces for adding
additional models to the meta congestion controller.

Model based control for Cubic should eventually be implemented. This
should make it more appealing for the users, as Cubic is the default conges-
tion controller in Linux.

For the time being there is only one available model for the meta con-
gestion controller, and that is for Vegas. It was never a major goal for this
thesis to implement more than one model, however, at one point during
this project I did make an attempt at understanding how a model for Cubic
could be implemented using fixed point operations, which resulted in some
code that successfully performs a cubic root using fixed point operations, also
located in the test repository [70]. As the major difficulty of implementing a
model for Cubic for the DA-LBE meta congestion controller is to correctly
and efficiently compute this cubic root with fixed point operations, this code
may be very useful for future work.

8.1.2 Improvements to Testing and Experimentation

I also wish to emphasize some improvements that could be done to the
testing and experimentation, based on observations during this work, and
my own opinions.

Enhancing the Function Frequency Experiment

One thing I realized from the results of the function frequency experiment
was that some of the functions were very rarely invoked during the approx-
imately 600 second connection. At the time being I did not consider the fact
that the experimental setup could be changed in a way that would possibly
have caused more frequent calls to these uncommon functions. What would

112

be interesting would to re-construct this experiment in such way that the
frequency of the uncommon functions would be increased, to investigate if
this has any effect on sampled overhead for these functions.

Further Investigation of Fixed Point Operations

While investigating the impact of using fixed point operations, it was quite
clear that using more variables in the calculations would increase the overall
error. As the fixed point operations implemented in the meta congestion
controller allow for using both Q16.16 and Q2.30, it would be interesting to
investigate further if combining the two representations would be beneficial
for the meta congestion controller. What would also be very interesting
during this investigation, would be to map out the fixed point variables,
and determine how prone to overflows they are. Determining these factors
should, in my opinion, contribute to increasing the robustness of the meta
congestion controller.

Network Performance Experiments over the Internet

Finally, the test environment used for evaluating the meta congestion con-
troller was based on emulation, using tools available for Linux. What would
be a reasonable step in the direction of making the meta congestion control-
ler even more robust, would be to run experiments over the Internet.

113

Bibliography

[1] Jeff Ahrenholz. CORE Documentation. 2018. url: http://coreemu.
github.io/core/ (visited on 04/03/2020).

[2] M. Allman. TCP Congestion Control with Appropriate Byte Counting
(ABC). RFC 3465. http://www.rfc-editor.org/rfc/rfc3465.txt. RFC
Editor, Feb. 2003. url: http://www.rfc-editor.org/rfc/rfc3465.txt.

[3] M. Allman, S. Floyd and C. Partridge. Increasing TCP’s Initial Window.
RFC 3390. RFC Editor, Oct. 2002.

[4] M. Allman, V. Paxson and E. Blanton. TCP Congestion Control. RFC
5681. http://www.rfc-editor.org/rfc/rfc5681.txt. RFC Editor, Sept.
2009. url: http://www.rfc-editor.org/rfc/rfc5681.txt.

[5] Rex Black. Foundations of software testing : ISTQB certification. eng.
2012.

[6] Bob Braden et al. Recommendations on Queue Management and Con-
gestion Avoidance in the Internet. RFC 2309. http://www.rfc-editor.
org/rfc/rfc2309.txt. RFC Editor, Apr. 1998. url: http://www.rfc-
editor.org/rfc/rfc2309.txt.

[7] R. Braden. Requirements for Internet Hosts - Application and Support.
STD 3. RFC Editor, Oct. 1989.

[8] Robert Braden. Requirements for Internet Hosts - Communication Layers.
STD 3. http://www.rfc-editor.org/rfc/rfc1122.txt. RFC Editor, Oct.
1989. url: http://www.rfc-editor.org/rfc/rfc1122.txt.

[9] Lawrence Brakmo, Sean O’Malley and Larry Peterson. ‘TCP Vegas:
new techniques for congestion detection and avoidance’. eng. In:
SIGCOMM ’94. ACM, 1994, pp. 24–35. isbn: 0897916824.

[10] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format.
RFC 7159. http://www.rfc-editor.org/rfc/rfc7159.txt. RFC Editor,
Mar. 2014. url: http://www.rfc-editor.org/rfc/rfc7159.txt.

[11] B. Cain et al. Internet Group Management Protocol, Version 3. RFC 3376.
http://www.rfc-editor.org/rfc/rfc3376.txt. RFC Editor, Oct. 2002. url:
http://www.rfc-editor.org/rfc/rfc3376.txt.

114

http://coreemu.github.io/core/
http://coreemu.github.io/core/
http://www.rfc-editor.org/rfc/rfc3465.txt
http://www.rfc-editor.org/rfc/rfc3465.txt
http://www.rfc-editor.org/rfc/rfc5681.txt
http://www.rfc-editor.org/rfc/rfc5681.txt
http://www.rfc-editor.org/rfc/rfc2309.txt
http://www.rfc-editor.org/rfc/rfc2309.txt
http://www.rfc-editor.org/rfc/rfc2309.txt
http://www.rfc-editor.org/rfc/rfc2309.txt
http://www.rfc-editor.org/rfc/rfc1122.txt
http://www.rfc-editor.org/rfc/rfc1122.txt
http://www.rfc-editor.org/rfc/rfc7159.txt
http://www.rfc-editor.org/rfc/rfc7159.txt
http://www.rfc-editor.org/rfc/rfc3376.txt
http://www.rfc-editor.org/rfc/rfc3376.txt

[12] Brian E. Carpenter. Architectural Principles of the Internet. RFC 1958.
http://www.rfc-editor.org/rfc/rfc1958.txt. RFC Editor, June 1996.
url: http://www.rfc-editor.org/rfc/rfc1958.txt.

[13] J. Chu et al. Increasing TCP’s Initial Window. RFC 6928. http://www.
rfc- editor.org/rfc/rfc6928.txt. RFC Editor, Apr. 2013. url: http:
//www.rfc-editor.org/rfc/rfc6928.txt.

[14] Jonathan Corbet, Alessandro Rubini and Greg Kroah-Hartman. Linux
Device Drivers. eng. Sebastopol: O’Reilly Media, Incorporated, 2005.
isbn: 0596005903.

[15] corbnet. Pluggable congestion avoidance modules. Mar. 2005. url: https:
//lwn.net/Articles/128681/ (visited on 17/07/2020).

[16] coreemu. Common Open Research Emulator. https : //github .com/
coreemu/core. 2020.

[17] Intel Corporation. Intel Ethernet Server Adapter I210-T1. url: https:
/ /www. intel . com/content/www/us/en/products/network- io/
ethernet/gigabit-adapters/server-i210-t1.html (visited on 05/07/2020).

[18] Intel Corporation. Intel® Ethernet Server Adapter I350-T4V2. url:
https://www.intel.com/content/www/us/en/products/network-
io/ethernet/gigabit-adapters/server- i350- t4v2.html (visited on
05/07/2020).

[19] Oracle Corporation. Oracle VM VirtualBox. http://virtualbox.org/.

[20] Oracle Corporation. Oracle VM VirtualBox User Manual. url: https:
//www.virtualbox.org/manual/ (visited on 05/07/2020).

[21] D. Cuomo. Support for LEDBAT: Public Service Announcement. Oct.
2018. url: https://techcommunity.microsoft.com/t5/networking-
blog/support- for- ledbat- public - service - announcement/ba - p/
339796 (visited on 17/07/2020).

[22] Autotest developers. Autotest. 2012. url: http://autotest.github.io/
(visited on 24/07/2020).

[23] LTP developers. Testing Linux, one syscal at the time. 2012. url: http:
//linux-test-project.github.io// (visited on 24/07/2020).

[24] Fabric. Simple, Pythonic remote execution and deployment. https ://
github.com/fabric/fabric. 2020.

[25] S Floyd and V Jacobson. ‘Random early detection gateways for con-
gestion avoidance’. eng. In: IEEE/ACM Transactions on Networking 1.4
(1993), pp. 397–413. issn: 1063-6692.

[26] Python Software Foundation. Python. http://python.org/.

[27] Wireshark Foundation. Wireshark. http://wireshark.org/.

115

http://www.rfc-editor.org/rfc/rfc1958.txt
http://www.rfc-editor.org/rfc/rfc1958.txt
http://www.rfc-editor.org/rfc/rfc6928.txt
http://www.rfc-editor.org/rfc/rfc6928.txt
http://www.rfc-editor.org/rfc/rfc6928.txt
http://www.rfc-editor.org/rfc/rfc6928.txt
https://lwn.net/Articles/128681/
https://lwn.net/Articles/128681/
https://github.com/coreemu/core
https://github.com/coreemu/core
https://www.intel.com/content/www/us/en/products/network-io/ethernet/gigabit-adapters/server-i210-t1.html
https://www.intel.com/content/www/us/en/products/network-io/ethernet/gigabit-adapters/server-i210-t1.html
https://www.intel.com/content/www/us/en/products/network-io/ethernet/gigabit-adapters/server-i210-t1.html
https://www.intel.com/content/www/us/en/products/network-io/ethernet/gigabit-adapters/server-i350-t4v2.html
https://www.intel.com/content/www/us/en/products/network-io/ethernet/gigabit-adapters/server-i350-t4v2.html
http://virtualbox.org/
https://www.virtualbox.org/manual/
https://www.virtualbox.org/manual/
https://techcommunity.microsoft.com/t5/networking-blog/support-for-ledbat-public-service-announcement/ba-p/339796
https://techcommunity.microsoft.com/t5/networking-blog/support-for-ledbat-public-service-announcement/ba-p/339796
https://techcommunity.microsoft.com/t5/networking-blog/support-for-ledbat-public-service-announcement/ba-p/339796
http://autotest.github.io/
http://linux-test-project.github.io//
http://linux-test-project.github.io//
https://github.com/fabric/fabric
https://github.com/fabric/fabric
http://python.org/
http://wireshark.org/

[28] Inc Free Software Foundation. An Inline Function is As Fast As a Macro.
2020. url: https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Inline.html
(visited on 29/07/2020).

[29] Google. Google Test. https://github.com/google/googletest. 2020.

[30] Brendan Gregg. Systems performance : enterprise and the cloud. eng.
Upper Saddle River, NJ, 2013.

[31] The Tcpdump Group. Tcpdump & Libcap. url: http://tcpdump.org/
(visited on 05/07/2020).

[32] WAND Network Research Group. Libtrace. url: https://research.
wand.net.nz/software/libtrace.php (visited on 05/07/2020).

[33] Sangtae Ha, Injong Rhee and Lisong Xu. ‘CUBIC: a new TCP-friendly
high-speed TCP variant’. eng. In: Operating systems review 42.5 (2008),
pp. 64–74. issn: 0163-5980.

[34] G Hasegawa, K Kurata and M Murata. ‘Analysis and improvement of
fairness between TCP Reno and Vegas for deployment of TCP Vegas to
the Internet’. eng. In: IEEE, 2000, pp. 177–186. isbn: 9780769509211.

[35] David A Hayes et al. ‘A framework for less than best effort conges-
tion control with soft deadlines’. eng. In: IFIP, 2017, pp. 1–9. isbn:
9783901882944.

[36] C. Hedrick. Routing Information Protocol. RFC 1058. http://www.rfc-
editor.org/rfc/rfc1058.txt. RFC Editor, June 1988. url: http://www.
rfc-editor.org/rfc/rfc1058.txt.

[37] Stephen Hemminger. TCP infrastructure split out. Mar. 2005. url:
https://lwn.net/Articles/128626/ (visited on 17/07/2020).

[38] Bryan Henderson. Linux Loadable Kernel Module HOWTO. Sept. 2006.
url: https://tldp.org/HOWTO/Module-HOWTO/ (visited on 23/08/2020).

[39] T. Henderson et al. The NewReno Modification to TCP’s Fast Recovery
Algorithm. RFC 6582. http://www.rfc-editor.org/rfc/rfc6582.txt. RFC
Editor, Apr. 2012. url: http://www.rfc-editor.org/rfc/rfc6582.txt.

[40] ‘IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems’. In: IEEE Std 1588-
2019 (Revision ofIEEE Std 1588-2008) (2020), pp. 1–499.

[41] ‘IEEE Standard for Ethernet’. In: IEEE Std 802.3-2018 (Revision of
IEEE Std 802.3-2015) (2018), pp. 1–5600.

[42] Apple Inc. tcp_ledbat.c. 2010. url: https://opensource.apple.com/
source/xnu/xnu-1699.32.7/bsd/netinet/tcp_ledbat.c (visited on
21/05/2019).

[43] V Jacobson. ‘Congestion avoidance and control’. eng. In: SIGCOMM
’88. ACM, 1988, pp. 314–329. isbn: 9780897912792.

116

https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Inline.html
https://github.com/google/googletest
http://tcpdump.org/
https://research.wand.net.nz/software/libtrace.php
https://research.wand.net.nz/software/libtrace.php
http://www.rfc-editor.org/rfc/rfc1058.txt
http://www.rfc-editor.org/rfc/rfc1058.txt
http://www.rfc-editor.org/rfc/rfc1058.txt
http://www.rfc-editor.org/rfc/rfc1058.txt
https://lwn.net/Articles/128626/
https://tldp.org/HOWTO/Module-HOWTO/
http://www.rfc-editor.org/rfc/rfc6582.txt
http://www.rfc-editor.org/rfc/rfc6582.txt
https://opensource.apple.com/source/xnu/xnu-1699.32.7/bsd/netinet/tcp_ledbat.c
https://opensource.apple.com/source/xnu/xnu-1699.32.7/bsd/netinet/tcp_ledbat.c

[44] V. Jacobson et al. TCP BBR congestion control comes to GCP - your
Internet just got faster. July 2017. url: https://cloud.google.com/blog/
products/gcp/tcp-bbr-congestion-control- comes- to-gcp-your-
internet-just-got-faster (visited on 17/07/2020).

[45] Van Jacobson, Bob Braden and Dave Borman. TCP Extensions for High
Performance. RFC 1323. http://www.rfc-editor.org/rfc/rfc1323.txt.
RFC Editor, Apr. 1992. url: http://www.rfc-editor.org/rfc/rfc1323.txt.

[46] R Jain, D Chiu and W Hawe. ‘A Quantitative Measure Of Fairness
And Discrimination For Resource Allocation In Shared Computer
Systems’. eng. In: (1998).

[47] jbucar. D-ITG, Distributed Internet Traffic Generator. https://github.
com/jbucar/ditg. 2020.

[48] Project Jupyter. Jupyter Notebook. url: https://jupyter.org/ (visited on
05/07/2020).

[49] The Linux Kernel. The Linux Kernel documentation. url: https://www.
kernel.org/doc/html/v5.4/ (visited on 05/07/2020).

[50] The Linux Kernel. The Linux man-pages project. url: https://man7.
org/linux/man-pages (visited on 05/07/2020).

[51] M. Larabel. The Linux Kernel Enters 2020 At 27.8 Million Lines In
Git But With Less Developers For 2019. Jan. 2020. url: https://www.
phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-
EOY2019 (visited on 21/07/2020).

[52] Robert Love. Linux kernel development. eng. Place of publication not
identified, 2010.

[53] D. S. Miller. Netdev Group’s -next networking tree. url: https://git.
kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git (visited on
05/07/2020).

[54] D. Mills et al. Network Time Protocol Version 4: Protocol and Algorithms
Specification. RFC 5905. http://www.rfc-editor.org/rfc/rfc5905.txt.
RFC Editor, June 2010. url: http://www.rfc-editor.org/rfc/rfc5905.
txt.

[55] Jeffrey C. Mogul and K. K. Ramakrishnan. ‘Eliminating Receive Live-
lock in an Interrupt-Driven Kernel’. In: ACM Trans. Comput. Syst. 15.3
(Aug. 1997), pp. 217–252. issn: 0734-2071. doi: 10.1145/263326.
263335. url: https://doi-org.ezproxy.uio.no/10.1145/263326.
263335.

[56] J. Moy. OSPF specification. RFC 1131. http://www.rfc-editor.org/rfc/
rfc1131.txt. RFC Editor, Oct. 1989. url: http://www.rfc-editor.org/
rfc/rfc1131.txt.

117

https://cloud.google.com/blog/products/gcp/tcp-bbr-congestion-control-comes-to-gcp-your-internet-just-got-faster
https://cloud.google.com/blog/products/gcp/tcp-bbr-congestion-control-comes-to-gcp-your-internet-just-got-faster
https://cloud.google.com/blog/products/gcp/tcp-bbr-congestion-control-comes-to-gcp-your-internet-just-got-faster
http://www.rfc-editor.org/rfc/rfc1323.txt
http://www.rfc-editor.org/rfc/rfc1323.txt
https://github.com/jbucar/ditg
https://github.com/jbucar/ditg
https://jupyter.org/
https://www.kernel.org/doc/html/v5.4/
https://www.kernel.org/doc/html/v5.4/
https://man7.org/linux/man-pages
https://man7.org/linux/man-pages
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git
http://www.rfc-editor.org/rfc/rfc5905.txt
http://www.rfc-editor.org/rfc/rfc5905.txt
http://www.rfc-editor.org/rfc/rfc5905.txt
https://doi.org/10.1145/263326.263335
https://doi.org/10.1145/263326.263335
https://doi-org.ezproxy.uio.no/10.1145/263326.263335
https://doi-org.ezproxy.uio.no/10.1145/263326.263335
http://www.rfc-editor.org/rfc/rfc1131.txt
http://www.rfc-editor.org/rfc/rfc1131.txt
http://www.rfc-editor.org/rfc/rfc1131.txt
http://www.rfc-editor.org/rfc/rfc1131.txt

[57] Jon Postel. Internet Protocol. STD 5. http://www.rfc-editor.org/rfc/
rfc791.txt. RFC Editor, Sept. 1981. url: http://www.rfc-editor.org/
rfc/rfc791.txt.

[58] Jon Postel. Transmission Control Protocol. STD 7. http ://www.rfc -
editor.org/rfc/rfc793.txt. RFC Editor, Sept. 1981. url: http://www.rfc-
editor.org/rfc/rfc793.txt.

[59] K. Ramakrishnan, S. Floyd and D. Black. The Addition of Explicit
Congestion Notification (ECN) to IP. RFC 3168. http://www.rfc-editor.
org/rfc/rfc3168.txt. RFC Editor, Sept. 2001. url: http://www.rfc-
editor.org/rfc/rfc3168.txt.

[60] I. Rhee et al. CUBIC for Fast Long-Distance Networks. RFC 8312. RFC
Editor, Feb. 2018.

[61] Rami Rosen. Linux Kernel Networking : Implementation and Theory.
eng. Berkeley, CA, 2014.

[62] D. Rossi et al. ‘LEDBAT: The new BitTorrent congestion control pro-
tocol’. In: Proceedings - International Conference on Computer Commu-
nications and Networks,ICCCN. May 2010.

[63] J Saltzer, D Reed and D Clark. ‘End-to-end arguments in system
design’. eng. In: ACM Transactions on Computer Systems (TOCS) 2.4
(1984), pp. 277–288. issn: 0734-2071.

[64] seladb. PcapPlussPluss. url: https://pcapplusplus.github.io/ (visited
on 05/07/2020).

[65] Selected chapters from Software engineering : compiled from Software
engineering, 9th edition, Ian Sommerville. eng. Harlow, 2014.

[66] S. Shalunov et al. Low Extra Delay Background Transport (LEDBAT).
RFC 6817. http://www.rfc-editor.org/rfc/rfc6817.txt. RFC Editor,
Dec. 2012. url: http://www.rfc-editor.org/rfc/rfc6817.txt.

[67] Tom Shanley. Protected mode software architecture. eng. Reading, Mass,
1996.

[68] L. Storbukås. ‘Implementing Less than Best Effort with Deadlines’.
MA thesis. University of Oslo - Department of Informatics, May 2018.

[69] H. P. Tandberg. DALBE Analysis. https://bitbucket.org/henningtandberg/
tcp-dalbe-analysis/src/master/. 2020.

[70] H. P. Tandberg. DALBE Test Suite. https://bitbucket.org/henningtandberg/
tcp-dalbe-test/src/master/. 2020.

[71] H. P. Tandberg. TCP DALBE. https://bitbucket.org/simula-mosaic/
mosaic-students-henning/src/master/. 2020.

[72] H. P. Tandberg and M. Bratland. DALBE Test Bed. https://bitbucket.
org/simula-mosaic/testbed/src/master/. 2020.

118

http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc3168.txt
http://www.rfc-editor.org/rfc/rfc3168.txt
http://www.rfc-editor.org/rfc/rfc3168.txt
http://www.rfc-editor.org/rfc/rfc3168.txt
https://pcapplusplus.github.io/
http://www.rfc-editor.org/rfc/rfc6817.txt
http://www.rfc-editor.org/rfc/rfc6817.txt
https://bitbucket.org/henningtandberg/tcp-dalbe-analysis/src/master/
https://bitbucket.org/henningtandberg/tcp-dalbe-analysis/src/master/
https://bitbucket.org/henningtandberg/tcp-dalbe-test/src/master/
https://bitbucket.org/henningtandberg/tcp-dalbe-test/src/master/
https://bitbucket.org/simula-mosaic/mosaic-students-henning/src/master/
https://bitbucket.org/simula-mosaic/mosaic-students-henning/src/master/
https://bitbucket.org/simula-mosaic/testbed/src/master/
https://bitbucket.org/simula-mosaic/testbed/src/master/

[73] Torvalds. Linux kernel source tree. https://github.com/torvalds/linux/
tree/v5.4. 2020.

[74] H. Wallenburg. ‘Libdalbe - A library for developing Deadline-Aware
Less-than Best Effort transport services’. MA thesis. University of
Oslo - Department of Informatics, Aug. 2018.

[75] Lisong Xu, K Harfoush and Injong Rhee. ‘Binary increase congestion
control (BIC) for fast long-distance networks’. eng. In: vol. 4. IEEE,
2004, 2514–2524 vol.4. isbn: 0780383559.

119

https://github.com/torvalds/linux/tree/v5.4
https://github.com/torvalds/linux/tree/v5.4

Appendices

120

Appendix A

Architecture and Internals

A.1 Pluggable Congestion Controller Interface

This section defines a synopsis for each function which Dalbe adopts from
the TCP
congestion controller interface tcp_congestion_ops [73, include/net/tcp.h].

A.1.1 Initialize Private Data

Signature

static void dalbe_init(struct sock *sk)

Synopsis

This functions is called at the start of the connection, and used for allocating the
dalbe structure with its initial values and adding the structure to a hashtable which
keeps track of the data for each connection. Also calls upon the underlying congestion
controllers initiation function if it is implemented.

A.1.2 Cleanup Private Data

Signature

static void dalbe_release(struct sock *sk)

Synopsis

This function is called at the end of the connection, and is used to clean up any dynam-
ically allocated memory and removes the DA-LBE structure from the hashtable used
to keep track of connection data. Also calls underlying congestion controller cleanup
function if it is implemented.

121

A.1.3 Calculate New Slow Start Threshold

Signature

static u32 dalbe_ssthresh(struct sock *sk)

Synopsis

This function is used to calculate a new slow start threshold. DA-LBE does not do
any additional calculation of the slow start threshold, so in our case it is just a pass-
through to the underlying congestion controller ssthresh function.

A.1.4 Inform About State Change

Signature

static void dalbe_set_state(struct sock *sk, u8

new_state)

Synopsis

This function is called in the event of a TCP state change. It is used to inform the
congestion controller about a state change. DA-LBE does not require to keep track of
the state explicitly, so in our case it is just a pass-through to the underlying congestion
controller set_state funciton.

A.1.5 Calculate New Congestion Window

Signature

static void dalbe_cong_avoid(struct sock *sk, u32

ack, u32 acked)

Synopsis

This function is called during the congestion avoidance phase on the reception of an
ACK. It allows DA-LBE to keep track of the proportion of how much the congestion
window is reduced during the congestion avoidance phase. It achieves this by first
letting the underlying congestion controller calculate the new sending window size,
followed by accumulating the proportion of how much it was reduced given the type
of congestion event that triggered the change. If the cause of reduction was due to loss,
w == 1, and backoff > 0, it may randomly skip the loss event by resetting the window
to its previous value.

122

A.1.6 Inform About New Congestion Event

Signature

static void dalbe_cwnd_event(struct sock *sk,

enum tcp_ca_event ev

Synopsis

This function is called when a congestion controller event occurs (see [73, in-
clude/net/tcp.h:964]. It is used for counting ECN events as well as calculating the time
between congestion events for loss based controllers. Also calls the underlying con-
gestion controller cwnd_event if implemented.

A.1.7 Upon Arrival of an ACK

Signature

static void dalbe_in_ack_event(struct sock *sk,

u32 flags)

Synopsis

This function is always called upon the arrival of an ACK. DA-LBE uses this function
explicitly to count the amount of bytes sent during the connection. Also calls the
underlying congestion controller in_ack_event if implemented.

A.1.8 Calculate New Window in the Event of Loss

Signature

static u32 dalbe_undo_cwnd(struct sock *sk)

Synopsis

This function is called in the event of a loss to recalculate the congestion window. DA-
LBE does not perform any additional calculation of the congestion window, so in our
case it is just a pass-through to the underlying congestion controller undo_cwnd.

123

A.1.9 Packet Accounting in the Event of an ACK

Signature

static void dalbe_pkts_acked(struct sock *sk,

const struct ack_sample *sample)

Synopsis

This function is called if the received ACK removes anything from the re-transmit
queue. This i where the main functionality of DA-LBE lays, and it implements the
following:

• If the update interval for φ has expired, an attempt to update φ is made. This
however, depends on the amount of loss that has occurred during the interval.

• If the update interval for w has expired, the following is done in the order
presented.

– The average byte rate is updated.

– The amount of outstanding data is updated.

– The target deadline is updated.

– The target byte rate is updated.

– A new value of w is calculated depending on the weight update policy
(PID or MBC.

– µ and the backoff values are updated accordingly.

Note that this is done in the order presented by Hayes et al. [35].

• At the end the very end of the ACK processing, one of two methods for adjust-
ing the aggressiveness may be performed depending on the type of underlying
congestion controller.

– If the underlying congestion controller is loss-based, DA-LBE randomly
generates a fake loss.

– Else, if the underlying congestion controller is delay-based, DA-LBE
alters the RTT sample which is passed on to the underlying congestion
controller.

Also it calls upon the underlying congestion controller pkts_acked if implemented.

124

A.1.10 Get Information About the Congestion Controller

Signature

size_t dalbe_get_info(struct sock *sk, u32 ext,

int *attr, union tcp_cc_info *info)

Synopsis

This function is usually called from user space to return information about the con-
gestion controller. DA-LBE does not return any specific information, but rather acts
as a pass-through to the underlying congestion controller get_info if implemented.

A.1.11 Set Custom Socket Options

Signature

int dalbe_setsockops(struct sock *sk, int optname

, char __user *optval, unsigned int) optlen

Synopsis

This function is called from user space, and allows for passing data directly to the
DA-LBE congestion controller module. The accepted socket options can be seen in
appendix B.2.
This function handles errors according to the convention used by setsockopt[73, set-
sockopt(2)], allowing for proper error handling.

A.1.12 Get Custom Socket Options

Signature

int dalbe_getsockops(struct sock *sk, int optname

, char __user *optval, int __user *optlen)

Synopsis

This function is called from user space, and allows for retreiving data directly from
the DA-LBE congestion controller module. The accepted socket options can be seen
in appendix B.2.
This function handles errors according to the convention used by getsockopt[73, get-
sockopt(2)], allowing for proper error handling.

125

A.2 DALBE Math

This section describes the core math functions used by Dalbe.

A.2.1 Multiplication between two unsigned fixed point numbers

Signature

static inline u32 uq_mul(u32 a, u32

a_scale_factor, u32 b, u32 b_scale_factor)

Parameters

u32 a

Fixed point number.

u32 a_scale_factor

Corresponding scale factor for a.

u32 b

Fixed point number.

u32 b_scale_factor

Corresponding scale factor for b.

Return Value

Returns a fixed point number scaled by the largest of the two scale factors.

Synopsis

This function returns the product of two unsigned fixed point numbers.
The function rounds up to avoid truncating the lowest bits.
To save the integer part, the number with the largest integer part will
be the return type.

126

A.2.2 Multiplication between two signed fixed point numbers

Signature

static inline s32 sq_mul(s32 a, s32

a_scale_factor, s32 b, s32 b_scale_factor)

Parameters

s32 a

Fixed point number.

s32 a_scale_factor

Corresponding scale factor for a.

s32 b

Fixed point number.

s32 b_scale_factor

Corresponding scale factor for b.

Return Value

Returns a fixed point number scaled by the largest of the two scale factors.

Synopsis

This function returns the product of two signed fixed point numbers.
The function rounds up to avoid truncating the lowest bits.
To save the integer part, the number with the largest integer part will
be the return type.

127

A.2.3 Division between two unsigned fixed point numbers

Signature

static inline u32 uq_div(u32 a, u32

a_scale_factor, u32 b, u32 b_scale_factor)

Parameters

u32 a

Fixed point number used as numerator.

u32 a_scale_factor

Corresponding scale factor for a.

u32 b

Fixed point number used as denominator.

u32 b_scale_factor

Corresponding scale factor for b.

Return Value

Returns a fixed point number scaled by the largest of the two scale factors.

Synopsis

This function returns the quotient of two unsigned fixed point numbers.
To save the integer part, the number with the largest integer part will
be the return type.

128

A.2.4 Division between two unsigned fixed point numbers

Signature

static inline s32 sq_div(s32 a, s32

a_scale_factor, s32 b, s32 b_scale_factor)

Parameters

s32 a

Fixed point number used as numerator.

s32 a_scale_factor

Corresponding scale factor for a.

s32 b

Fixed point number used as denominator.

s32 b_scale_factor

Corresponding scale factor for b.

Return Value

Returns a fixed point number scaled by the largest of the two scale factors.

Synopsis

This function returns the quotient of two signed fixed point numbers.
To save the integer part, the number with the largest integer part will
be the return type.

A.2.5 Support Macros for Fixed Point Operations

The following sections describe some useful macros utilized by Dalbe.

Conversion Between Integer and Fixed Point

int_to_q16(n)

Returns a fixed point number scaled with a 16 bit fraction part. Can be either signed
or unsigned.

int_to_q30(n)

Returns a fixed point number scaled with a 30 bit fraction part. Can be either signed
or unsigned.

129

Simplification of uq_mul and sq_mul

mul_uq16_uq16(a, b)

Returns the product of two unsigned fixed point numbers with a fraction part of 16
bit. Results is stored in an unsigned fixed point number with a fraction part of 16 bits.

mul_uq16_uq30(a, b)

Returns the product of two unsigned fixed point numbers. One with a fraction part of
16 bits, the other with a fraction part of 30 bits (the order is not important). Results is
stored in an unsigned fixed point number with a fraction part of 16 bits.

mul_uq30_uq30(a, b)

Returns the product of two unsigned fixed point numbers with a fraction part of 30
bit. Results is stored in an unsigned fixed point number with a fraction part of 30 bits.

mul_sq16_sq16(a, b)

Returns the product of two signed fixed point numbers with a fraction part of 16 bit.
Results is stored in an signed fixed point number with a fraction part of 16 bits.

mul_sq16_sq30(a, b)

Returns the product of two signed fixed point numbers. One with a fraction part of
16 bits, the other with a fraction part of 30 bits (the order is not important). Results is
stored in an signed fixed point number with a fraction part of 16 bits.

mul_sq30_sq30(a, b)

Returns the product of two signed fixed point numbers with a fraction part of 30 bit.
Results is stored in an signed fixed point number with a fraction part of 30 bits.

130

Simplification of uq_div and sq_div

div_uq16_uq16(a, b)

Returns the quotient of two unsigned fixed point numbers with a fraction part of 16
bit (a / b). Results is stored in an unsigned fixed point number with a fraction part of
16 bits.

div_uq16_uq30(a, b)

Returns the quotient of two unsigned fixed point numbers (a / b). One with a fraction
part of 16 bits, the other with a fraction part of 30 bits (the order is not important).
Results is stored in an unsigned fixed point number with a fraction part of 16 bits.

div_uq30_uq30(a, b)

Returns the quotient of two unsigned fixed point numbers with a fraction part of 30
bit (a / b). Results is stored in an unsigned fixed point number with a fraction part of
30 bits.

div_sq16_sq16(a, b)

Returns the quotient of two signed fixed point numbers with a fraction part of 16 bit
(a / b). Results is stored in an signed fixed point number with a fraction part of 16
bits.

div_sq16_sq30(a, b)

Returns the quotient of two signed fixed point numbers (a / b). One with a fraction
part of 16 bits, the other with a fraction part of 30 bits (the order is not important).
Results is stored in an signed fixed point number with a fraction part of 16 bits.

div_sq30_sq30(a, b)

Returns the quotient of two signed fixed point numbers with a fraction part of 30 bit
(a / b). Results is stored in an signed fixed point number with a fraction part of 30
bits.

131

Integer Fraction to Fixed Point

fract_to_uq16(a, b)

Returns the quotient of two integer unsigned numbers (a / b). Results is stored in an
unsigned fixed point number with a fraction part of 16 bits.

fract_to_uq30(a, b)

Returns the quotient of two integer unsigned numbers (a / b). Results is stored in an
unsigned fixed point number with a fraction part of 30 bits.

fract_to_sq16(a, b)

Returns the quotient of two integer signed numbers (a / b). Results is stored in an
signed fixed point number with a fraction part of 16 bits.

fract_to_sq30(a, b)

Returns the quotient of two integer unsigned numbers (a / b). Results is stored in an
unsigned fixed point number with a fraction part of 30 bits.

A.3 Pluggable Congestion Control Architecture

This section illustrates some of the triggers for the function hooks imple-
mented by DA-LBE. Be aware that these are very simplified, but should be
helpful to understand the flow of the architecture which DA-LBE is part of.

132

dalbe_cwnd_event

FALSETRUE

Restart CWND
and enter Slow Strart

due to idling?

Try to send next
message

(tcp_do_sendmsg)

Enqueue skb
in the transmit queue

Figure A.1: Flow chart showing one possible scenario where
dalbe_cwnd_event may be invoked during the TCP connection due to data
being sent.

133

Dequeue skb from transmit
queue and pass on to

Network Layer
(tcp_transmit_skb)

TRUE FALSE

IF no packets in flight

dalbe_cwnd_event

Skb transmitted

Figure A.2: Flow chart showing another possible scenario where
dalbe_cwnd_event may be invoked during the TCP connection due to data
being sent.

134

YES

dalbe_cwnd_event

YES

dalbe_in_ack_event

dalbe_init

YES

NO
ACK removes
packet from
rtx queue?

Trigger change
to CWND?

YES

NOIs ACK?

YES

dalbe_pkts_acked

YES

NO
Connection

already
established?

NO
Is SYNACK and

in connection
phash?

YES

NOIs ECN marked?

Drop

dalbe_cwnd_event

dalbe_cong_avoid

tcp_v4_rcv
(Packet received)

Further packet
processing

NO

Does the new
change to CWND

require a new
SSTHRESH?

dalbe_ssthresh

NO

YES

NOACK reveals
loss?

dalbe_cwnd_undo

NOCan increase window?

Figure A.3: A comprehensive flowchart showing what DA-LBE meta conges-
tion controller functions may be invoked by the reception of an ACK.

135

dalbe_ssthresh

NO

YES

SSTHRESH needs to be
reduced due to loss?

Round Trip Timeout
(tcp_enter_loss)

dalbe_cwnd_event

Round Trip Timeout
(tcp_enter_loss)

Figure A.4: Flow chart showing a possible scenario where both dalbe_ssthresh
and dalbe_cwnd_event may be invoked during the TCP
connection due to an RTO.

136

Appendix B

Parameters and Socket Options

B.1 Module Parameters

The following section describes the module parameters that Dalbe accepts
when the module is loaded using insmod.

B.1.1 Module Parameters

int default_t_w

Default update period for w in milliseconds.

int default_t_phi

Default update period for φ in milliseconds.

s32 default_pid_gain_p

Proportional gain Kp (see equation 2.8). Defaults to 0.5.

s32 default_pid_gain_i

Integral gain Ki (see equation 2.8). Defaults to 0.03.

s32 default_pid_gain_d

Differential gain Kd (see equation 2.8). Defaults to 0.05.

int vegas_alpha

Corresponds to the α value of Vegas[73, net/ipv4/tcp_vegas.c][9]. Make note that if this
is not set to the same as Vegas the model based controller for Vegas will not work
correctly. It is also critical that α == β for Vegas.

137

B.2 Custom Socket Options

The following section describes the custom socket options available for
Dalbe. These can be set by using [50, setsockopt(2)] and fetched using [50,
getsockopt(2)], at the TCP layer.

B.2.1 Custom Socket Options

DALBE_UNDERLYING_CA

Used to set the underlying congestion controller. Represented as a string with a max-
imum length of TCP_CA_NAME_MAX[73, include/net/tcp.h].

DALBE_INTERVAL_W

The interval time for calculating w in milliseconds. Represented as an int.

DALBE_INTERVAL_PHI

The interval time for calculating φ in milliseconds. Represented as an int.

DALBE_DEADLINE

The target deadline for Dalbe in milliseconds. Represented as an unsigned long.

DALBE_DATA_SIZE

The size of the data to be transmitted by the means of DA-LBE. Represented as an u64.

DALBE_W_POLICY

The policy to be used for updating the weight w. Can be either be 0 for PID or 1 for
MBC. Any on recognized values will default it to PID. Represented as an s32.

DALBE_PID_GAIN_P

Proportional gain Kp (see equation 2.8). Represented as an s32.

DALBE_PID_GAIN_I

The value of Ki (see equation 2.8). Represented as an s32.

DALBE_PID_GAIN_D

The value of Kd (see equation 2.8). Represented as an s32.

138

Appendix C

Source Code and Raw Data

Source code and raw data can be found at the following locations.

C.1 Source Code

C.1.1 mosaic-students-henning

This repository contains the loadable kernel module with, a patch to the
Linux kernel, documentation and some scripts. Available by request [71].

C.1.2 TestBed

This repository contains the scripts and configuration files used for the test
bed together with documentation on how to set up and use it. Available by
request [72].

C.1.3 tcp-dalbe-test

This repository contains a set of tests used for testing the API and the
mathmatical functions defined by Dalbe. Available by request [70].

C.1.4 tcp-dalbe-analysis

This repository contains the scripts for parsing and plotting the results.
Available by request [69].

C.2 Raw Data

All data can be available by request.

139

Appendix D

Documentation

D.1 Meta Congestion Controller Documentation

This section includes the documentation for the meta congestion controller
[71].

140

TCP DALBE

A Meta Congestion Controller forDeadline-Aware Less than Best EffortDelivery in the
Linux Operating System.

Authors

• Henning Parratt Tandberg
• Vivian Band
• David Hayes

Related Work

This work is based on the following article:

• D. A. Hayes, D. Ros, A. Petlund and I. Ahmed, “A framework for less than
best effort congestion control with soft deadlines,” 2017 IFIP Networking Confer-
ence (IFIP Networking), Stockholm, 2017, pp. 1-9. doi: 10.23919/IFIPNetwork-
ing.2017.8264853

Supported Kernel Version

Linux 5.4

Module Paramenters

The module can be configured to some degree when it is inserted to the kernel. Following
are the available module parameters:

Parameter Name Parameter Type Description
default_t_w int Default update period for w (ms)
default_t_phi int Default update period for phi (ms)
default_pid_gain_p s32 Proportinal gain. Defaults to 0.5
default_pid_gain_i s32 Integral gain. Defaults to ~0.03
default_pid_gain_d s32 Differential gain. Defaults to 0.05
vegas_alpha u32 Alpha = Beta for TCP Vegas

1

141

Socket Options

The module comes with a patch to the kernel which creates a hook to set custom socket
options at the SOL_TCP level. Following are the available socket options:

Option Name Option Type Placement Description
DALBE_UNDERLYING_CA char * underlying_ca Underlying congestion controller
DALBE_INTERVAL_W int t_w Interval for calculating w
DALBE_INTERVAL_PHI int t_phi Interval for calculating phi
DALBE_DEADLINE unsigned long target_deadline Deadline for data delivery
DALBE_DATA_SIZE u64 data_to_send Amount of data to be sent
DALBE_W_POLICY s32 w_policy Weight control policy
DALBE_PID_GAIN_P s32 pid_gain_p PID gain value for p
DALBE_PID_GAIN_I s32 pid_gain_i PID gain value for i
DALBE_PID_GAIN_D s32 pid_gain_d PID gain value for d

Installation

The module comes with a patch to the Linux kernel. This patch is located in
./dalbe.patch, and must be applied to the correct version of the Linux kernel. The
following steps show how to apply the patch, install the custom kernel, and load the
kernel module:

1. Clone the correct kernel repository to the VM if it is not allready there.
git clone https://kernel.googlesource.com/pub/scm/linux/kernel/\
git/davem/net-next && \
git clone git@bitbucket.org:simula-mosaic/mosaic-students-henning.git

2. Enter the root directory of the cloned kernel.
cd net-next/

3. Checkout the correct version/tag.
git checkout tags/<TAG_OF_SUPPORTED_KERNEL>

4. Apply the patch:
git apply <PATH_TCP_DALBE_REPO>/dalbe.patch

5. Create a local module config based on the bare minimum of the running system.
make localmodconfig

2

142

6. Install required modules that are not included in the local module config. This
is done by either utilizing the config editing tool menuconfig or by editing the
.config file directly.
make menuconfig # Easiest way to add a module.

OR

vim net-next/.config # Not as easy...

7. Build the kernel with all available threads, as this may take some time.
make -j$(nproc)

NOTE: Frome here all steps have to be performed as a sudo user.

8. Install the modules specified in the config created in step 5.
sudo make modules_install

9. Install the kernel to the running system.
sudo make install

10. Install the correct headers
sudo make headers_install INSTALL_HDR_PATH=/usr

11. Reboot the system.
sudo reboot

When the system reboots, verify that the kernel was properly installed by running uname
-r whcih should output 5.4.0+.

Build, Install and Remove Module

Once the custom kernel has successfully been built and installed the module can be
installed:

1. Navigate to the root directory of the module repository.
cd <PATH_TO_TCP_DALBE_REPO>

2. Build the module:
make
Or if you want debugging enabled:
make debug

3

143

3. Insert the module into the kernel:
sudo insmod dalbe.ko
Or with parameters:
sudo insmod <PARAMETER_NAME>=<PARAMETER_VALUE> dalbe.ko

4. Verify that the modules has been inserted:
lsmod

The module is now part of the kernel and can be tested.

5. To remove the module from the kernel:
sudo rmmod dalbe

Load the module at startup

After the module has been built it can be set to load at startup.

NOTE: - This is based on a setup for Ubuntu 18.04, and thus the setup may differ on
another system. - All opartions in the following setps require sudo.

1. Make the module availabe at boot by adding the name of the module (without
.ko) to /etc/modules-load.d/modules.conf.
echo dalbe >> /etc/modules-load.d/modules.conf

2. Add the module to modprobes database by copying the kernel module object to
the networking driver directory of the running kernel.
cp dalbe.ko /etc/modules/$(uname -r)/drivers/net/

3. Register dependencies for the module.
depmod

Reboot the system.

4. Verify that the module has been loaded.
lsmod | grep dalbe

Register Trace Events

If tracing the module comes of interest, its trace events may be registered as followed
using perf:

Skip step 1 - 4 if perf is allready installed.

4

144

1. Enter the directory of the perf tool set in the linux soruce code.
cd net-next/tools/perf/

2. Build perf.
make

3. Install perf.
sudo make install

4. Reboot to make the installation take proper effect.
sudo reboot

At this point, perf-probe can be used to register trace events.

5. List the available trace events for the kernel module, which can be probed by the
tracer.
perf probe -F -m /lib/modules/$(uname -r)/kernel/drivers/net/dalbe.ko

6. Register a trace event for the kernel module.
perf probe -m /lib/modules/$(uname -r)/kernel/drivers/net/dalbe.ko\
-a 'dalbe_in_ack_event'

#Or register all trace events prefixed with dalbe_

perf probe -m /lib/modules/$(uname -r)/kernel/drivers/net/dalbe.ko\
-a 'dalbe_*'

7. At this point the given trace events are registered and can be probed by the tracer.
perf record -e 'probe:dalbe_*' -aRg <EXECUTABLE_UTILIZING_DALBE>

Testing

For testing and analysis please refer to the following repositories:

dalbe-testbed: A testbed desinged for running experiments on tcp-dalbe in an emulated
environment.

tcp-dalbe-test: Unit tests targeting the API and fixed point operations utilized by
tcp-dalbe.

tcp-dalbe-analysis: A set of tools for parsing and plotting data produced by tcp-dalbe
during testing.

5

145

Contribution

Recent status and todo-list of the implementation can be found here.

License

GPL-2.0 AND BSD-3-Clause.

6

146

D.2 Test Environment Documentation

This section includes the documentation for the test environment [72].

147

DALBE Test Bed

A testbed for running various experiments on tcp-dalbe and mptcp-dalbe.

Authors

• Henning Parratt Tandberg
• Mattis Bratland

Architecture

This script suite is designed for setting up various test-topologies for both a virtual
based and hardware based environment.

It runs experiemnts on the given nodes by adding them to the config (./con-
figs/experiemnt), and requires that the node has been added to the ssh config on the
system that orchatrastes the experiments.

Platform and Word-Of-Caution

We have only run the following scripts on a Debian based platform. More precisely,
Ubuntu Server 18.04 LTS. We can not guarantee that the following scripts work on any
other given platform.

Requirements

• Python3.8 (pluss dev and venv package)
• Pip3
• Fabric
• pyinstaller
• colorlog
• GNU make.

Installing Python3.8 etc. and pip3
sudo apt-get install python3.8 python3.8-dev python3.8-venv python3-pip

1

148

Installing Python libraies

When the python3.8 etc. has been installed, we advise you use a virtual environment
for the scripts. This is to isolate the project configuration from any other global setup
and make sure that the correct libraries and versions are used.

1. Enter the root testbed directory.
cd testbed/

2. Set up virtual environment.
python3.8 -m venv testbed-venv

3. Activate the virtual environment.
source testbed-venv/bin/activate

4. Install the required libraries using pip.
pip install -r requirements.txt

Building and Installing

The scripts can be installed as binaries after intallation of all requiremts are complete.

1. Enter the root testbed directory.
cd testbed/

2. Activate the virtual environment if it’s not already active.
source testbed-venv/bin/activate

3. Build binaries from the scripts.
make # or make all

4. Install the binaries on the system.
sudo make install

At this point you can deactivate the virtual environment and run the scripts as if they
are bash commands. If you do not wish to install every script, you can simply enter the
directory of the script you wish to install and proceede from step 3. and 4.

Cleanup and Uninstalling

All scripts can be uninstalled by doing the following:

2

149

sudo make uninstall

If you wish to remove build files and binaries from the testbed direcotry do the folling:
make clean

Test Bed Setup

The following sections describe how the testbed should/could be set up.

SSH

We have set up all the nodes in the testbed with an ssh key pair and created an entry
for them in our local ssh config. This makes for an easy, secure, login.

And - this is what is expected by the provided scripts that attempt to connect to the
nodes in the test bed using fabric.

Also worth mentioning that the edge nodes, which in our testbed have less computing
power than the router, may have their performance degraded by running heavy security
software. If this is the case, they should only be accessible via the router to avoid them
from being directly exposed to the Internet.

Following is an example of an ssh config:

Host router
User dalbe
Hostname dalbe.router.hostname / address
Port 22
IdentitiesOnly yes
IdentityFile ~/.ssh/dalbe-router/id_rsa

Host node-a-0
User dalbe
Hostname 172.16.0.2
Port 22
IdentitiesOnly yes
IdentityFile ~/.ssh/node-a0/id_rsa
ProxyCommand ssh hw-router nc %h %p

Host node-b-0
User dalbe
Hostname 172.16.0.3
Port 22

3

150

IdentitiesOnly yes
IdentityFile ~/.ssh/node-b0/id_rsa
ProxyCommand ssh hw-router nc %h %p

Host node-a-1
User dalbe
Hostname 172.16.0.4
Port 22
IdentitiesOnly yes
IdentityFile ~/.ssh/node-a1/id_rsa
ProxyCommand ssh hw-router nc %h %p

Host node-b-1
User dalbe
Hostname 172.16.0.5
Port 22
IdentitiesOnly yes
IdentityFile ~/.ssh/node-b1/id_rsa
ProxyCommand ssh hw-router nc %h %p

Network Interfaces

Each node in the testbed needs to be configured with the correct interface config. This
can easily be done by editing /etc/network/interfaces on each node. A set of pre-written
interface configs can be found in ./network/interfaces.

NOTE - If the nodes are running Ubnutu 18.04 or later, netplan must be deactivated
by installing ifupdown:
sudo apt install ifupdown

Visudo

Some commands may require sudo permissions. We suggest, for scurity reasons, that only
the specific commands run are given access without prompting for password. Following
is an example of how this can be done using visudo:
Cmnd alias specification
Cmnd_Alias ETHTOOL_PAUSE = /sbin/ethtool --pause *
Cmnd_Alias ETHTOOL_COALESCE = /sbin/ethtool --coalesce *
Cmnd_Alias ETHTOOL_OFFLOAD = /sbin/ethtool --offload *
Cmnd_Alias TCP_NO_METRICS_SAVE = /sbin/sysctl \
-w net.ipv4.tcp_no_metrics_save\=*

4

151

Cmnd_Alias IP_TCP_METRICS_FLUSH = /sbin/ip tcp_metrics flush
Cmnd_Alias TCPDUMP = /usr/sbin/tcpdump
Cmnd_Alias DALBE_TRANSFER = /usr/bin/dalbe-transfer

includedir /etc/sudoers.d
dalbe ALL=(ALL) NOPASSWD:ETHTOOL_PAUSE
dalbe ALL=(ALL) NOPASSWD:ETHTOOL_COALESCE
dalbe ALL=(ALL) NOPASSWD:ETHTOOL_OFFLOAD
dalbe ALL=(ALL) NOPASSWD:TCP_NO_METRICS_SAVE
dalbe ALL=(ALL) NOPASSWD:IP_TCP_METRICS_FLUSH
dalbe ALL=(ALL) NOPASSWD:TCPDUMP
dalbe ALL=(ALL) NOPASSWD:DALBE_TRANSFER

CORE

CORE Network Emulator is intented to run on certain notes to emulate a specific type
of network to provide some type of specific testing scenario. Where this may be needed,
we suggest this be installed manually. The core-session-xml script has been created to
easily run specific configurations on a given node.

The installiation guides for CORE can be found here.

Software

The test bed comes with a variety of scripts and software. Their usage is documented
in the following sections.

CORE Session XML

A script that passes an XML config to a core-daemon using gRPC. The daemon initiates
a network emulation (referred to as core-session) based on the XML-file it recieves.

The XML configs

The XML configs are genereated with the core-gui, and should be placeed in the
./configs/core/ directory.

Usage

5

152

core-session-xml [-h] --xml_config XML_CONFIG
-h, --help Show this help message and exit
--config CONFIG XML config to open

Important Note

The script is meant to run on the same host as where the core-daemon is running.
Before running the script, the core-cleanup should be run to make sure that there are
no other conflicting core-sesions running.

Experiment Script

A script for running experiments on a testbed.
experiment [-h] --config_path CONFIG_PATH

optional arguments:
-h, --help show this help message and exit
--config_path CONFIG_PATH

Path to experiment config file

Config

Each experiment is configured with a JSON file, which is structured as follows:
{

"name": "<NAME_OF_EXPERIMENT>",
"duration": <DURATION_OF_EXPERIMENT_IN_SECONDS>,
"nodes|router" : [

"<NODE_NAME>" : {
"ssh" : {

"config_entry" : "<ENTRY_FOR_NODE_IN_SSH_CONFIG>"
},
"network": {

"core_config": "<ABSOLUTE_PATH_TO_XML_CONFIG_PATH>",
"interfaces": ["<LIST_OF_INTERFACES_TO_USE>"]

},
"commands" : {

{
"time" : <TIME_TO_START_COMMAND_IN_SECONDS>
"command": "<NAME_OF_COMMNAD>",
"parameters": ["<LIST_OF_PARAMETERS_FOR_COMMAND>"],

6

153

"detached": <true|false>,
"sudo": <true|false>

},
}

}
]

}

Transfer Script

A script that starts either a server or a cliend, and has the posibility to use the
MPDALBE/DALBE meta congestion controller (for TCP) and socket options.

Requirements

To use the MPDALBE/DALBE socket options, the correct kernel must be installed.

Usage
usage: main.py [-h] --config CONFIG

optional arguments:
-h, --help show this help message and exit
--config CONFIG Config file to parse

Config
{

"client" or "server" : {
"host" : <SERVER_ADDRESS>,
"port" : <SERVER_PORT> (DEFAULT: 15000),
"data_size" : <AMOUNT_OF_DATA_TO_SEND>,
"tcp_ca" : <NAME_OF_CONGESTION_ALGORITHM> (OPTIONAL),
"dalbe_options" (OPTIONAL) : {

<DALBE_OPTIONS>,
}

}
}

7

154

Config in Detail

By spesicying “client” the transferscript will start up in client mode, and will attempt to
connect to the server address. If “server” is specified, the script will accept connections
on the address-port. NOTE - the server must be started before the client starts.

The “data_size” field specifies, in bytes, how much data the client will attempt to
transfer to the server. The server will ignore this field from the config.

If the “tcp_ca” field is set, the client or server will try to set the congestion algorithm for
the TCP connection. Else if the “dalbe_options” has been set, congestion algorithm will
be set to “dalbe”, Else, it will use the default congestion controller set by the running
kernel.

DALBE Config
"dalbe_options" (OPTIONAL) : {

"underlying_ca" : <UNDERLYING_CONGESTION_ALGORITHM> (DEFAULT "vegas")
"interval_w" : <UPDATE_INTERVAL_W_...> (DEFAULT: 13000),
"interval_phi" : <UPDATE_INTERVAL_PHI_...> (DEFAULT: 13000),
"target_deadline" : <TARGET_DEADLINE_...> (DEFAULT: 10),
"data_size" : <DATA_SIZE> (DEFAULT: 1000000),
"w_policy" : <WEIGHT_CALCULATION_POLICY> (DEFAULT: "MBC"),
"pid_gain_p" : <PID_GAIN_PARAMETER_P> (DEFAULT: 3),
"pid_gain_i" : <PID_GAIN_PARAMETER_I> (DEFAULT: 1),
"pid_gain_d" : <PID_GAIN_PARAMETER_D> (DEFAULT: 2)

}

More datail about these parameters can be found here.

Shortcomings of DALBE Transfer Script

• There is at the moment no correlation between the “data_size” field in the
“dalbe_options”-object and the one in the “server”-/“client”-object, so the user
has to make sure these are the same.

• The data size must be set for the server even though it is ignored.

Transfer v2

A client and server for DA-LBE transfers, written in C++.

Server Usage

8

155

The server is just a simple TCP listening server, which will receive all data from the
connected clinet, followed by terminating.

dalbe-server -p <PORT>

Client Usage

The client connects to a server and sends the specified amount of bytes.
dalbe-client -a <ADDRESS> -p <PORT> [DALBE_OPTIONS]
DALBE OPTIONS:
-b <UNDERLYING_CA> (string) The underlying CA.
-c <INTERVAL_W> (unsigned long) The update interval for w.
-d <INTERVAL_PHI> (unsigned long) The update interval for phi.
-e <TARGET_DEADLINE> (unsigned long) The specified soft deadline.
-f <DATA_SIZE> (unsigned long) The amount of data to send.
-g <W_POLICY> (0=MBC, 1=PID) Weight policy to use.
-i <PID_GAIN_P> (float) Proportional gain.
-j <PID_GAIN_I> (float) Integral gain.
-k <PID_GAIN_D> (float) Differential gain.
-t <ALT_TCP_CONG> (string) Alternative CA.

The option -t allows the client to use an alternative congestion
contrller such as TCP-Cubic, TCP-Vegas, etc., and when used all
DA-LBE related options are ignored.

CPU Load and Memory Monitor

Software that monitors the average CPU load and memory usage on the system, by
sampling at random periods.

Usage

The monitor is meant to run in the background, and generates a CSV of the CPU load
and memory usage.

monitor <OUT_FILE>

Additional Scripts

In addition to the software presented above, some additional “simple” scripts are availabe,
and provide the followng:

9

156

network/network-up.sh

Meant for the router node, when run it sets up a dumbell topology for experimentation.
It uses Intermediate Function Blocks (IFB) which emulates network traits using Traffic
Control queuing disciplines. For it to work, the script must be modified to target
the correct Network Interfaces. See the EASTBOUND and WESTBOUND variables at the
beginning of the script.

trace/dalbe_ftrace.sh

This script provides an example of how ftrace can be configured to capture the absolute
time used inside certain functions of the meta congestion module.

trace/dalbe_perf_stat.sh

This script provides an example of how perf can be used to create a statistical function
frequency profile of an executable which utilizes the meta congestion module.

10

157

D.3 Unit Tests and Benchmarks Documentation

This section includes the documentation for the unit tests and benchmarks
[70].

158

TCP DA-LBE Unit Tests and Benchmarks

A set of unit tests for TCP DALBE specific code. It currently consits of:

• Tests for socket API
• Tests for fixed point calculations and functions that involve fixed point maths.

Requirements

• GCC
• CMake >= 5.10

Setup

1) Clone repository and change to the directory.
git clone https://henningtandberg@bitbucket.org/henningtandberg/\
tcp-dalbe-test.git && cd tcp-dalbe-test

2) Create build directory and rund CMake.
mkdir build && cd build && cmake ..

3) Build the code.
make

This should generate all the needed exectuables, but note that builing the API tests requires the
system to have built and loaded the meta congestion module. If only test tests that do not target the
meta congestion module directly are to be built and run just enter the directory of the specific test and
run make.

Running the exectuables

For running the Socket API Tests:
./api-test/APITests

For running the Fixed Point Tests:
./fixed-point-test/FixedPointTests

For running the Fixed Point Benchmarks:
./fixed-point-Bench/FixedPointBench

Author

• Henning Parratt Tandberg

1

159

	Introduction
	Problem Statement
	Research Questions
	Previous Work on the Implementation
	Structure

	Background
	The Internet
	Architectural Assumptions
	Internet Protocol
	Scalability

	Transmission Control Protocol
	Congestion Control
	Loss-Based Congestion Control
	Delay Based Congestion Control
	Explicit Congestion Notification
	Fairness

	Less-than Best Effort Delivery
	Deadline Aware Less-than Best Effort Delivery
	Measuring the Price of Congestion
	Adapting The Weight
	Meta Congestion Control

	The Linux Operating System
	Versioning
	Contributing
	Loadable Kernel Modules
	TCP/IP Stack in Linux
	TCP Congestion Control in Linux
	Floating Point Operations in the Kernel

	Summary

	Methodology
	Approach
	Planning Phase
	Design Phase
	Implementation Phase
	Testing and Experimentation Phase

	Collaboration
	Tools
	Common Open Research Emulator
	Linux Performance Events
	Function Tracer

	Summary

	Design and Implementation
	Requirements for the Implementation
	Code Convention
	Architectural Decisions
	Architecture
	Configuration Possibilities
	Fixed Point Operations

	Changes to the Kernel
	Usage
	Testing
	Unit Tests

	Debugging
	Debugging by Logging
	Debugging Memory Usage
	Debugging Kernel Panics

	Error Handling
	Licensing
	Shortcomings
	Available Model Based Controllers
	Support for Loss-Based Congestion Control
	Modular Architecture
	Metadata from Underlying Congestion Controllers
	Current use of Fixed Point Types
	Passing Fixed Point Values From User Space to Kernel Space

	Summary

	Test Environment
	Requirements
	Collaboration
	Testing on Virtual Machines
	Unit Testing with Virtual Machines
	Debugging with Virtual Machines
	Drawback of Testing on Virtual Machines

	Testing on Hardware
	Building a Suitable Test Bed
	Hardware Setup
	Operating System Setup
	Defining a Stable Test Environment
	Network Emulation
	Verifying the Performance of the Test Environment

	Experiment Orchestration
	Experiment Execution
	Data Collection
	Data Processing

	Summary

	Network Performance Experiments
	Requirements
	Network Efficiency
	Setup
	Expectations
	Results for Model Based Control for Vegas
	Fixed Point Precision

	Fairness and Completion Times
	Setup
	Fairness
	Completion Times

	Summary

	Load and Overhead Experiments
	Requirements for Load and Overhead Experiments
	Memory Usage
	Reasoning about Memory Usage

	Function Frequency
	Setup
	Results

	Function Overhead
	Setup
	Expectations
	Results

	Summary

	Conclusion
	Future Work
	Improvements to the Meta Congestion Controller
	Improvements to Testing and Experimentation

	Appendices
	Architecture and Internals
	Pluggable Congestion Controller Interface
	Initialize Private Data
	Cleanup Private Data
	Calculate New Slow Start Threshold
	Inform About State Change
	Calculate New Congestion Window
	Inform About New Congestion Event
	Upon Arrival of an ACK
	Calculate New Window in the Event of Loss
	Packet Accounting in the Event of an ACK
	Get Information About the Congestion Controller
	Set Custom Socket Options
	Get Custom Socket Options

	DALBE Math
	Multiplication between two unsigned fixed point numbers
	Multiplication between two signed fixed point numbers
	Division between two unsigned fixed point numbers
	Division between two unsigned fixed point numbers
	Support Macros for Fixed Point Operations

	Pluggable Congestion Control Architecture

	Parameters and Socket Options
	Module Parameters
	Module Parameters

	Custom Socket Options
	Custom Socket Options

	Source Code and Raw Data
	Source Code
	mosaic-students-henning
	TestBed
	tcp-dalbe-test
	tcp-dalbe-analysis

	Raw Data

	Documentation
	Meta Congestion Controller Documentation
	Test Environment Documentation
	Unit Tests and Benchmarks Documentation

