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Abstract

The frequency content of seismic data is changing with propagation depth due
to intrinsic absorption. This implies that the higher frequencies are highly at-
tenuated, thus leading to a loss in resolution of the seismic image. In addition,
absorption anomalies, for example, caused by gas sands, will further dim the
seismic reconstruction.

The absorptive property of a medium can be described by a quality factor
Q, which determines the energy decay and a velocity dispersion relationship.
The quality factor and the velocity govern the propagation of seismic energy
in the earth.

It is possible to correct for such absorption effects by employing so-called
inverse Q-filtering (IQF). This is a filtering technique that tries to restore the
loss of the higher frequencies due to propagation. Newer developments within
IQF can be regarded as a migration type of algorithm, and such classes of
techniques are studied in this thesis.

Keywords: Absorption compensation, Quality factor Q and Q-model,
Absorption function Y (ω, τ), Forward Q modelling, Inversion, Reflectivity,
Reflectivity per depth unit.
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Chapter 1

Introduction

As seismic waves travel through the earth, the visco-elasticity of the earth’s
medium will cause energy dissipation and waveform distortion. This phe-
nomenon is referred to as seismic absorption.

High frequencies are more attenuated than low frequencies, and that this
reduces resolution. We want therefore to try to remove the effect of absorption.
In seismic data processing, absorption can be compensated for to enhance seis-
mic data resolution. In hydrocarbon reservoir description, seismic absorption
can be used as an important attribute to interpret for fluid units.

1.1 Statement of Problem

The research being presented in this thesis deals with compensation of absorp-
tion effects in seismic data by employing so-called inverse Q-filtering (IQF).
This is a filtering technique that tries to restore the loss of higher frequencies
due to propagation. Relevant migration type algorithms (linear and non-linear
IQF) will be studied in this thesis. These IQF techniques will be implemented
in Matlab.

1.2 Seismic Wave and Absorption Phenomena

Seismic method utilizes the propagation of waves through the earth which de-
pends upon the elastic properties of the rocks within the subsurface. A seismic
wave is shot to the earth’s subsurface. Part of the shot energy is reflected back.
The reflection happens due to difference in acoustic impedance, the product of
wave velocity and density, across an interface in the subsurface. The reflected
seismic data is processed to give seismic image of the subsurface. The seismic
image is interpreted to explore the physical properties of the rocks within and
the structural information of the subsurface. However, the seismic interpreta-
tion depends on the resolution of the seismic image which also depends on the
quality of the seismic data and processing techniques.

5



6 1. Introduction

Propagation of seismic wave is affected by the anelasticity and hetero-
geneity of the earth’s subsurface. As a result, seismic waves get absorbed
while propagating through the earth’s subsurface, (Futterman 1962, Kjartans-
son 1979, Kolsky 1956, Ricker 1953, Strick 1967). The absorption of seismic
waves in the earth’s subsurface causes both amplitude attenuation and veloc-
ity dispersion of the reflections recorded on the surface, which are interrelated,
leading to a loss of resolution thereby resulting in loss of information concern-
ing targets of potential interest. This absorptive property is often represented
by a quality factor Q, which is an intrinsic property of rocks. According to
Futterman (1962), the quality factor Q, is defined as a dimensionless measure
of the anelasticity which is given by

1

Q
=
|4E|
2πE0

≈ 2α(ω)v(ω)

ω
, (1.1)

where E0 is the energy stored at the maximum strain in a volume, 4E is the
energy loss in each cycle because of anelasticity, ω angular frequency, α(ω)
amplitude attenuation coefficient and v(ω) phase velocity of the seismic wave.
Equation (1.1) implies that Q−1 is the portion of energy lost during each cycle
or wavelength.

As the seismic wave passes through the medium in the subsurface, the
elastic energy associated with the wave motion is gradually absorbed by the
medium, reappearing ultimately in the form of heat. This process is responsible
for the eventual complete disappearance of the wave motion. Internal friction,
piezoelectric and thermoelectric effects, and viscous fluid flow loss of the fluids
filling the rock pores are among the mechanisms by which the elastic energy
is transformed into other forms of energy such as heat, (Johnston et al. 1979,
Mavko et al. 1979, Ricker 1977, Telford et al. 1991, White 1975).

Because seismic absorption has a considerable impact on amplitude and
wave shape in recorded seismic data, it is of particular importance when seismic
attributes and inversion schemes are required to extract lithological informa-
tion, porosity, permeability, viscosity and degree of saturation of rocks. Since
rocks in the earth’s subsurface are almost always fluid saturated with brine,
oil and gas, it is possible that fluid related mechanism might easily dominate
dry rock sources of absorption, (Barton 2007, Biot 1956a,b, Gelius & Johansen
2012, Mavko & Nur 1979).

Gelius (1987) showed that application of inverse Q filtering on field data
from a shallow gas reservoir in the North Sea generally improved the resolution,
and improved the match between the synthetic and the field data on both
sides of the well. In order to recover a weak reflection of a target gas-layer
underneath a strong coal-seam reflections, Wang & Guo (2004b) were able to
show improvement of vertical resolution in migrated seismic sections applying
migration with inverse Q filtering algorithm in a real data. In Wang (2008)
it is shown that application of inverse Q filter on real seismic data resulted
in better matching of seismic impedance sections and well-log information,
enhanced seismic resolution of a potential target reservoir, and better reservoir
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characterization like lateral heterogeneity of a carbonate gas reservoir. In
Oliveira & Lupinacci (2013) it is shown that inversion was capable of raising
the resolution of real data that was affected by shallow gas accumulations
without boosting the noise present in the data.

1.3 Methods of Absorption Compensation

To remove the effect of absorption, the most common ones are time-variant
spectral whitening, time-variant deconvolution and inverse Q filtering, (Gelius
1987, Hale 1982, Hargreaves & Calvert 1991, Montaña & Margrave 2004, Nilsen
& Gjevik 1978, Wang 2006, Yilmaz 2001). Time-variant spectral whitening
tries to recover the lost high-frequency energy by applying an exponential gain
function to the seismic data divided into frequency bands. Time-variant de-
convolution implements absorption compensation by means of a time-variant
wavelet in a moving time window. Inverse Q filtering is a deterministic process
that requires knowledge of the quality factor Q. The chief difficulty to absorp-
tion compensation lies on the nonstationary characteristics generated by the
absorption process in the seismic traces recorded. In an attenuating medium,
the shape of seismic pulse wavelet recorded in the beginning of the trace will
differ from the wavelet’s shape recorded in the later times of the signal.

Figure 1.1: Inverse Q filter by downward continuation of a 1-D layered earth

model, where τ is two-way traveltime and P (τ) is plane pressure wave at depth τ .

(Adapted from Montaña & Margrave (2004).)
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Inverse Q filtering algorithms are mainly based on downward wave prop-
agation migration type approach, where the decay of the frequency content
due to absorption can be inspected at each time sample, (Bickel & Natara-
jan 1985, Hargreaves & Calvert 1991, Montaña & Margrave 2004, Wang 2002,
2006). That is, a pressure wavefield P (ω, τ+4τ) at time step4τ later, shown
in figure 1.1, can be computed as:

P (ω, τ +4τ) = P (ω, τ) exp
[
− ik̃4τ

]
, (1.2)

where τ is two-way traveltime for depth, ω is frequency and k̃ is complex-valued
wavenumber.

There are stability and signal-to-noise ratio (S/N) issues with these inverse
Q filtering algorithms as we move to the high frequency bands. Usually, the
dispersion and amplitude corrections are dealt separately. This is because these
inverse Q filters are easily separated into both phase-only and amplitude-only
components. That is, with complex-valued wavenumber k̃:

k̃ =
ω

v(ω)

[
1− i

2Q

]
, (1.3)

the wavefield at the surface P (ω, 0) is extrapolated down to P (ω, τ) at depth
τ ,

P (ω, τ) = P (ω, 0) exp

[
− ωτ

2Qv(ω)

]
exp

[
− i ωτ

v(ω)

]
(1.4)

where v(ω) is the phase velocity of the wave and Q is the quality factor of
the medium of propagation. The first exponent in equation (1.4) describes all
amplitude attenuation and the second exponent describes all dispersion effects.
Moreover, dispersion corrections of seismic data based on phase-only inverse
Q filtering is inherently stable process as no energy is boosted, but solely
involves phase changes. On the other hand, attenuation corrections based
on amplitude-only inverse Q filtering leads to noise amplification as well as
bandwidth enhancement which raises the stability issue, (van der Baan 2012).

A slightly different approach of ”Inversion of Reflection Data” is presented
by Nilsen & Gjevik (1978). Nilsen and Gjevik solved the non-linear wave
equation for a pressure wave by introducing an absorption function Θ =
Θ(α, ρ, η, k, ω), a complex function of absorption coefficient α, density ρ, vis-
cosity η, wave number k and frequency ω. Similarly a layered earth model is
implemented to solve the non-linear wave equation by introducing absorption
function Y (ω, τ), where two way traveltime τ and frequency ω. In an inver-
sion problem the coefficients of the reflectivity series are the parameter to be
estimated. The main advantage of this approach is that it is very robust to
the presence of noise; since the solution is obtained by minimizing a misfit
between observed and modelled data, (Oliveira & Lupinacci 2013).
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1.4 Thesis Structure

In Chapter 1, we have communicated the background of the research on seis-
mic absorption. Absorption phenomenon is explained. The need and possible
mechanisms of absorption compensation are presented. A connection between
the goal of this thesis and similar previous work is identified. Difference be-
tween inverse Q filtering algorithms based on downward wave propagation
migration type approach and inversion is introduced.

Chapter 2 presents in detail the mathematical descriptions and modelling
of seismic absorption compensation. To include the medium absorption ef-
fects that are both wave amplitude attenuation and velocity dispersion, an
absorption function of the form Y (ω, τ) = A(ω, τ) + iB(ω, τ), (Horton 1959),
is introduced into the functional relationship between a stress and strain fields
of a pressure stress. Combining with equation of motion of the pressure stress,
a non-linear seismic wave equation is derived and solved iteratively by finite
difference method. The absorption function Y (ω, τ) = A(ω, τ) + iB(ω, τ) of
Futterman (1962) and Wang & Guo (2004a) Q dispersion models is derived.

In chapter 3 different results of the developed Matlab algorithm are dis-
played and explained. First forward Q modelling of both linear and non-linear
effects are discussed. Synthetic seismograms with and without multiples are
produced using the different Q dispersion models: Kolsky (1956) combined
with Kjartansson (1979) and alternative Futterman (1962) as well as disper-
sionless Q-model. Differences and similarities of the results of these Q disper-
sion models are discussed. After the forward modelling of the seismogram of
layered 1D earth model, inversion is performed to calculate a reflectivity per
depth series by using the synthetic seismogram as an input.

In chapter 4, results of inversion are presented and discussed. As the for-
ward Q modelled synthetic seismogram is used as input, a different Q-value
is used during inversion process to explore the effects of wrong Q-value. The
same procedure is repeated using a different Q-model to explore the effects of
Q-model. Finally, chapter 5 gives discussion and conclusion.
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Chapter 2

Modelling of Absorption
Compensation

Seismic wave traveling in the earth experience amplitude attenuation and ve-
locity dispersion due to the absorptive property of the rocks of the subsurface.
This absorptive behavior of earth can be modelled where each layer of the earth
is described by layer thickness z, velocity v, density ρ and a quality factor Q.

2.1 Q Dispersion Models

When using Q to describe seismic attenuation, it is often assumed that Q does
not change with frequency in the seismic frequency range (10 - 200Hz). A
good understanding of the mathematical Q-models is necessary for design and
application of an inverse Q filtering algorithm. The seismic amplitude varies
with depth z because of attenuation such that

A(z) = A(0) exp
[
− α(ω)z

]
, (2.1)

where A(0) is the seismic amplitude at the source (z = 0). The attenuation
coefficient α(ω) is linear in frequency, that is

α(ω) =
|ω|

2vrQ
, (2.2)

where vr is the propagation velocity at a reference frequency ωr. This part is
common to all Q-models. It is more complicated to describe the dispersion and
there are different Q-models for that. Kolsky (1956), Futterman (1962) and
Kjartansson (1979) have developed various Q-models to describe the velocity
dispersion. They use different approaches leading to the general form for the
frequency dependence of the phase velocity v(ω), which is valid for large and
constant quality factor Q:

1

v(ω)
=

1

vr

[
1− 1

πQ
ln

∣∣∣∣ ωωr
∣∣∣∣], (2.3)

11
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In Kjartansson (1979), the frequency dependence of Q is assumed to be in-
significant over the range of seismic frequency and first order Taylor expansion:

1

vr

[
1− 1

πQ
ln

∣∣∣∣ ωωr
∣∣∣∣] ≈ 1

vr

∣∣∣∣ ωωr
∣∣∣∣− 1

πQ

, for Q� 1. (2.4)

It is a good representation of the attenuation process for most crustal rocks in
the range of useful frequencies for seismic processing.

2.2 Non-Linear Modelling with Absorption

For most absorption mechanisms that are significant in rocks, irrespective of
the microstructure of the rocks in the earth’s subsurface, the phenomenologi-
cal aspects of seismic wave propagation can be treated relatively independent
of the details of the particular physical mechanisms responsible for the en-
ergy absorption. To obtain realistic and accurate modelling results for wave
propagation, Q absorption should be incorporated into modelling algorithm
appropriately, and this can be done either in frequency domain or time do-
main. Usually, it is more convenient to account for Q absorption in frequency
domain.

In order to apply forward modelling and deduce an inversion method which
is based on an iterative solution of the seismic wave equation while incorporat-
ing the amplitude attenuation and velocity dispersion in the complex-valued
wavenumber k̃(ω) implicitly through the earth’s subsurface quality factor Q,
a plane parallel stratification with no lateral inhomogeneities is assumed. The
equation of motion of a plane pressure stress pulse, propagating through a
medium where the density ρ and seismic velocity v vary gradually with depth,
in a frequency domain is

∂P

∂z
= −ρω2W, (2.5)

where W and P denote the displacement and pressure stress in the z-direction.
Gjevik et al. (1976) assumed the functional relation between the stress and the
strain fields to be linear and isotropic as

P = ρv2
∂W

∂z
. (2.6)

The wave speed of the propagating pressure stress depends on the medium
elastic parameters λ and µ as in

v =

√
λ+ 2µ

ρ
. (2.7)

However, equation (2.6) does not include the absorption aspect of the seismic
wave propagation. Therefore, Nilsen & Gjevik (1978) corrected for the ab-
sorption effect by assuming Kelvin Voigt model, Jaeger (1962), stress-strain
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relationship

P = ρv2Θ2∂W

∂z
, (2.8)

with Θ = Θ(α, ρ, η, k, ω) is being a complex-valued function of absorption
coefficient α, density ρ, viscosity η, wave number k and frequency ω.

In this thesis, an absorption function Y (ω, τ) has been introduced in the
stress and strain relationship as

P = ρv2rY
∂W

∂z
, (2.9)

where vr is the reference velocity which could be taken as group velocity in
the case of dispersion. The absorption function Y (ω, τ) depends on depth
(measured in two way traveltime τ) and frequency ω, with Y = 1 being ab-
sorption free as in equation (2.6) by Gjevik et al. (1976). Therefore, combining
equations (2.5) and (2.9) give Helmholtz equation, assuming constant density
which is in agreement with the layered approach in this thesis:

∂2P

∂z2
+ k̃2P = 0, k̃ =

ω

vr
√
Y
, (2.10)

with k̃ being a complex-valued wavenumber.

2.3 Absorption Function and Q Models

Following Horton (1959), we introduced the notation

Y (ω, τ) = A(ω, τ) + iB(ω, τ). (2.11)

In this paper, Horton (1959) gives examples of values of A and B for various
absorption models (not necessarily causal ones!). In this thesis the different
absorption compensation models are results of the corresponding Q models.
Since the complex-valued wavenumber k̃ is in focus which in turn gives the
absorption function Y (ω, τ) = A(ω, τ)+iB(ω, τ) corresponding to the different
Q-models, the following expression is now elaborated on by first order Taylor
expansion:

1√
Y

=
1√

A+ iB
= A−1/2

[
1 + i

B

A

]−1/2
∼= A−1/2

[
1− i B

2A

]
for A� B,

k̃ =
ω

vr
√
Y

=
ω

vr
√
A+ iB

∼=
ω

vr

[
1√
A
− i

2

B

A
√
A

]
. (2.12)

In the literature the complex-valued wavenumber k̃ is often written on the
following form in case of absorption (constant-Q model):

k̃ =
ω

v(ω)

[
1− i

2Q

]
=
ω

vr
+

[
ω

v(ω)
− ω

vr

]
− iα(ω),

=
ω

vr
+ ϕ(ω)− iα(ω), α(ω) =

ω

2Qv(ω)
, (2.13)



14 2. Modelling of Absorption Compensation

where α is the absorption coefficient and ϕ is the phase of the ’absorption
filter’. In order to ensure causality, this filter should be minimum phase. For
such a filter this relationship holds

ϕ(ω) = ℵ
[
α(ω)

]
, (2.14)

with ℵ denoting the Hilbert Transform. If we omit dispersion (put ϕ = 0),
the filter will be non-causal. Equating equations (2.12) and (2.13) gives the
relationships

A =

[
v(ω)

vr

]2
, B =

[
v(ω)

vr

]2
1

Q
. (2.15)

Aki & Richards (2002) show that the following relation should be held to
honor causality

ω

v(ω)
− ω

v∞
= ℵ

[
ω

2Qv∞

]
, (2.16)

where v∞ is the limit of the velocity function when ω tends to infinity. Equa-
tion (2.16) can be further approximated as

ω

v(ω)
− ω

vh
= ℵ

[
ω

2Qvh

]
, (2.17)

where vh is the velocity related to the highest possible (tuning) frequency of
the seismic band, Wang & Guo (2004a). The complex-valued wavenumber is
accordingly adjusted as (compare with equation (2.13))

k̃ =
ω

vh
+

[
ω

v(ω)
− ω

vh

]
− i ω

2Qv(ω)
=

ω

vh

{
1 +

[
vh
v(ω)

− 1

]
− i vh

2Qv(ω)

}
(2.18)

and combined with a Kolsky (1956) type of phase-velocity model of frequency
independent Q (constant Q)

v(ω) = vh

(
ω

ωh

)γ
, γ = (πQ)−1 (2.19)

gives the complex-valued wavenumber model

k̃ =
ω

vh

{
1 +

[(
ω

ωh

)−γ
− 1

]
− i 1

2Q

(
ω

ωh

)γ}
, (2.20)

which has been employed by Wang & Guo (2004a). From equations (2.15)
and (2.19) it also follows that (vr = vh)

AWang =

[
ω

ωh

]2γ
, BWang =

[
ω

ωh

]2γ
1

Q
. (2.21)

From equation (2.21) it follows that 0 < AWang < 1, and the same for BWang

but with BWang < (<)AWang.
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Based on equations (2.16) and (2.2), Futterman (1962) proposed an alter-
native complex-valued wavenumber model

k̃ =
ω

vr
+

[
ω

v(ω)
− ω

vr

]
− i ω

2Qv(ω)
≈ ω

vr
+ ℵ

[
ω

2Qvr

]
− i ω

2Qvr
. (2.22)

Based on equations (2.15) and (2.22) it follows that (vr = v∞)

AFutt =

[
1 +

1

ω
ℵ
(
ω

2Q

)]2
, BFutt = A

3/2
Futt

1

Q
. (2.23)

Finally, the dispersion-free and non-causal absorption Q model, i.e. v(ω) = vr,
corresponds to

Ano−disp = 1, Bno−disp =
1

Q
. (2.24)

2.4 Plane Wave Solutions

In case of a layer/medium with constant velocity and absorption function Y ,
plane-wave solutions of equation (2.10) can be written formally on the simple
form (positive z-axis pointing downwards)

U(ω, z) = a exp[ik̃z], D(ω, z) = b exp[−ik̃z], k̃ ≡ k − iα (k, α ≥ 0)
(2.25)

with U(ω, z) and D(ω, z) representing respectively upward and downward
propagating components. Thus, the total field can be written

P = U +D. (2.26)

From equation (2.5) and by using equations (2.25) and (2.26) as well as the
expression of k̃ from equation (2.10) gives it follows that

∂P

∂z
=

∂U

∂z
+
∂D

∂z
= ik̃U − ik̃D = −ik̃[D − U ],

W = − 1

ρω2

∂P

∂z
=

i

ωρvr
√
Y

[D − U ]. (2.27)

A depth-varying model can be assumed as the limit of an infinite number
of infinitesimal layers. For such a model where the acoustic impedance and
the absorption function weakly inhomogeneous compared to the wavelength of
the wave, the relation in equation (2.27) is also assumed to be valid, (Nilsen
& Gjevik 1978). While making use of equation (2.9), differentiation of equa-
tion (2.27) with respect to z gives

∂W

∂z
=

1

ρv2rY
P =

1

ρv2rY
[U +D],

=
i

ωρvr
√
Y

[
∂D

∂z
− ∂U

∂z

]
+
i

ω
[D − U ]

∂

∂z

[
1

ρvr
√
Y

]
. (2.28)



16 2. Modelling of Absorption Compensation

Consider now the last term on the right-hand-side (RHS) of equation (2.28),
a further simplification can be obtained by considering small to moderate ab-
sorption:

∂

∂z

[
1

ρvr
√
Y

]
= − 1

ρvr
√
Y

[
1√
Y

∂
√
Y

∂z
+

1

ρvr

∂(ρvr)

∂z

]
.

For small to moderate absorption, 1
ρvr

∂[ρvr]
∂z
� 1√

Y
∂
√
Y

∂z
:

∂

∂z

[
1

ρvr
√
Y

]
∼= − 1

ρvr
√
Y

[
1

ρvr

∂(ρvr)

∂z

]
= − 2

ρvr
√
Y

Υ(z), (2.29)

Υ(z) =
1

2ρvr

∂[ρvr]

∂z
, (2.30)

where Υ(z) represents the depth-dependent ’reflectivity’ (reflectivity per depth

unit). The approximation 1
ρvr

∂[ρvr]
∂z
� 1√

Y
∂
√
Y

∂z
holds for low frequency waves in

reflection studies of rocks and sediments, (Nilsen & Gjevik 1978). Therefore,
using equation (2.29), equation (2.28) can be rearranged to give

∂D

∂z
− ∂U

∂z
= − iω

vr
√
Y

[D + U ] + 2Υ(z)[D − U ]. (2.31)

Similarly, combination of equations (2.5) and (2.26) gives

∂P

∂z
= −ρω2W =⇒ ∂D

∂z
+
∂U

∂z
= − iω

vr
√
Y

[D − U ]. (2.32)

And a main result is obtained now by combining equations (2.31) and (2.32),

∂D

∂z
= − iω

vr
√
Y
D + Υ(z)[D − U ],

∂U

∂z
=

iω

vr
√
Y
U −Υ(z)[D − U ]. (2.33)

To solve the above coupled equations (2.33), let us now introduce the
earth’s response described by the ratio K = U/D, (Yilmaz 2001), and dif-
ferentiate it with respect to depth

∂K

∂z
=
∂[U/D]

∂z
=

1

D

∂U

∂z
− U

D2

∂D

∂z
. (2.34)

Finally, by combining equations (2.33) - (2.34) gives the Ricatti equation,
(Nilsen & Gjevik 1978),

∂K

∂z
=

2iω

vr
√
Y
K −Υ[1−K2]. (2.35)

K(ω, z) may be interpreted as a complex-valued reflection coefficient which
also carries information about the phase delay between the upcoming U(ω, z)
and downgoing D(ω, z) signals, (Nilsen & Gjevik 1978).
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Since vertically traveling waves are considered, the transformation from
depth to two-way traveltime is straightforward

τ = 2

∫ z

0

dz

vr
, ⇒ dτ =

2

vr
dz and

∂

∂z
=

2

vr

∂

∂τ
, (2.36)

Υ(z) =
1

2ρvr

∂[ρvr]

∂z
≡ 1

2ρvr

[
2

vr

∂[ρvr]

∂τ

]
=

2

vr

[
1

2ρvr

∂[ρvr]

∂τ

]
=

2

vr
r(τ),

=⇒ r(τ) =
1

2ρvr

∂[ρvr]

∂τ
, (2.37)

which gives the traveltime-version of equation (2.35)

2

vr

∂K(ω, τ)

∂τ
=

2iω

vr
√
Y (ω, τ)

K(ω, τ)− 2

vr
r(τ)[1−K2(ω, τ)],

∂K(ω, τ)

∂τ
=

iω√
Y (ω, τ)

K(ω, τ)− r(τ)[1−K2(ω, τ)]. (2.38)

Equation (2.38) is a non-linear wave equation due to multiples included as a
result of weak acoustic impedance contrast of layers in the model. Its solution is
the starting point of the forward and inversion algorithms. It should be solved
in order to apply for a stratified earth with N layers defined by a two-way
traveltimes τj, for j = 0, 1, ..., N − 1, with τ0 = 0 and τN being the maximum
record. In case of the forward modelling, the plane-wave upward continuation
from the top of the jth layer to surface can be implemented recursively. The
presence of absorption function Y (ω, τ) in the non-linear wave equation is a
necessary and sufficient condition for accounting for the presence of amplitude
attenuation and velocity dispersion.

2.5 Forward Q Modelling - Non-Linear Case

If the second part of right-hand-side (RHS) of equation (2.38) is small (or zero)
then we are left with linear and homogenous differential equation:

∂K(ω, τ)

∂τ
=

iω√
Y (ω, τ)

K(ω, τ), (2.39)

where the solution is

K(ω, τ) = K(ω, 0) exp

[ ∫ τ

0

iω√
Y (ω, τ ′)

∂τ
′
]
. (2.40)

Therefore, we can look for a solution of equation (2.38) of the form

K(ω, τ) = C(τ) exp

[ ∫ τ

0

iω√
Y (ω, τ ′)

∂τ
′
]
, (2.41)
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where

C(τ) = K(ω, τ) exp

[
−
∫ τ

0

iω√
Y (ω, τ ′)

∂τ
′
]
, (2.42)

= K(ω, τ) exp
[
− iΦ(ω, τ)

]
,

Φ(ω, τ) =

∫ τ

0

ω√
Y (ω, τ ′)

∂τ ′ ∼=
∫ τ

0

[
ω√
A
− iωB

A
√
A

]
∂τ ′, (2.43)

and expect C(τ) to vary more slowly than the exponential and therefore be
easier to calculate.

Differentiating both sides of equation (2.42) we get

∂C(τ)

∂τ
=

[
∂K(ω, τ)

∂τ
+

−iω√
Y (ω, τ)

K(ω, τ)

]
exp

[
−
∫ τ

0

iω√
Y (ω, τ ′)

∂τ
′
]
. (2.44)

Substituting ∂K(ω, τ)/∂τ of equation (2.38) in equation (2.44) we get the
rewritten Riccati equation on the following form:

∂

∂τ

[
K(ω, τ) exp

[
−iΦ(ω, τ)

]]
= −r(τ)

[
1−K2(ω, τ)

]
exp

[
−iΦ(ω, τ)

]
. (2.45)

Figure 2.1: 1D model: D is the vertically downgoing source wavefield and U is

the recorded upcoming wavefield. (Adapted from Yilmaz (2001).)

Figure 2.1 shows 1D stratified earth model whereby T is the maximum
thickness of the model in two-way traveltime. As the source is at the top
(water) layer, there are no up-going waves at the bottom layer. Therefore,
U(ω, T ) = 0 when τ ≥ T which implies K(ω, T ) = 0. When trying to com-
pute the earth’s response K(ω, τ) at any depth τ , we can apply the boundary
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condition K(ω, T ) = 0 up on integration of equation (2.45):

−K(ω, τ) exp
[
− iΦ(ω, τ)

]
= −

∫ T

τ

r(τ ′) exp
[
− iΦ(ω, τ ′)

][
1−K2(ω, τ ′)

]
∂τ ′.

(2.46)
Rearranging equation (2.46) gives

K(ω, τ) = exp
[
iΦ(ω, τ)

] ∫ T

τ

r(τ ′) exp
[
− iΦ(ω, τ ′)

][
1−K2(ω, τ ′)

]
∂τ ′, (2.47)

where equation (2.47) is now the starting point for a forward and inverse Q
modelling algorithms.

With time step 4τ = 4 × 10−3 seconds, j × 4τ , the integral part of
equation (2.47) can be solved using finite difference method:

K(ω, τ) = exp
[
iΦ(ω, τ)

][ ∫ τ+4τ

τ

+

∫ τ+24τ

τ+4τ
+...+

∫ (NT−2)4τ

(NT−3)4τ
+

∫ (NT−1)4τ

(NT−2)4τ

][ ]
∂τ ′,

(2.48)
by making use of the trapezoid integral∫ τ+4τ

τ

r(τ ′) exp
[
− iΦ(ω, τ ′)

][
1−K2(ω, τ ′)

]
∂τ ′ ∼=

4τ
2

[
r(τ+4τ) exp

[
−iΦ(ω, τ+4τ)

][
1−K2(ω, τ+4τ)

]
+r(τ) exp

[
−iΦ(ω, τ)

][
1−K2(ω, τ)

]]
.

Assuming a discretization in τ (sample interval 4τ and total of NT points),
calculation of seismogram K(ω, τ) in upward direction is done starting at max-
imum time T = (NT − 1)4τ . Introducing the following notation for conve-
nience

τj = j ×4τ & j = NT − 1, NT − 2, ..., 0,

ωl = 2π × l ×4f & 4f =
1

NT ×4τ
,

Kn
l,j = Kn(ωl, τj),

χl,j = exp
[
− iΦ(ωl, τj)

]
,

rj = r(τj),

where the superscript n implies iteration number. The iteration number n rep-
resents the number of times a computation cycle repeated, applying each time
the previous result, to get successively closer approximations to the solution
of equation (2.48). This is because equation (2.48) is non-linear. Therefore,
applying the trapezoidal integral in equation (2.48), the (n+ 1)th iteration is

Kn+1
l,j=J = χ−1l,j=J

{
4τ
2

}{
rJχl,J [1− (Kn

l,J)2] + 2
J+1∑

j=NT−2

rjχl,j[1− (Kn
l,j)

2]

+rNT−1χl,NT−1[1− (Kn
l,NT−1)

2]

}
, (2.49)

Kn
l,NT−1 = Kn(ωl, T ) = 0, boundary condition.
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The trapezoid approximation enabled us to calculate the seismogram at each
J = 0, 1, 2, ...., NT − 1 corresponding to the two-way traveltime τJ = J ×4τ
with the seismogram corresponds to the solution J = 0, τ0 = 0 ×4τ = 0, is
at the surface.

So far we have considered the source and receiver are at the surface as is
shown in figure 2.1. This works whether the first layer is water or not. Let us
consider the source and receiver are deeper in the water layer. Now, we have
to take into account surface-related multiples. Figure 2.2 shows water-bottom
multiples due to air-water reflection.

Figure 2.2: Water-bottom multiples due to air-water reflection. (Adapted from

Yilmaz (2001).)

Assuming that τw represents two-way vertical travel time in the water layer,
total field Pl = P (ωl) recorded at the receiver (including multiples) can then
be written as (’R’ being the reflection coefficient of the seafloor)

Pl = Kl,j=0

[
1−R exp(−iωlτw) +R exp(−2iωlτw) + ....

]
=

Kl,j=0

1 +R exp(−iωlτw)
. (2.50)

The final result in time, the modelled seismogram k(t, 0), is obtained after an
inverse fourier transform (FT−1). And for J = 0, the matrix representation of
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equation (2.49), K2 being (Kn)2, is as follows:

                K
n
+
1

0
,0

K
n
+
1

1
,0 . . . .

K
n
+
1

N
T
−
1
,0

                =
4
τ 2

                

[ 1
−
K

2 0
,0

]
2χ

0
,1

[ 1
−
K

2 0
,2

]
.

2χ
0
,N
T
−
2

[ 1
−
K

2 0
,N
T
−
2

]
χ
0
,N
T
−
1

[ 1
−
K

2 0
,N
T
−
1

]
[ 1
−
K

2 1
,0

]
2χ

2
,1

[ 1
−
K

2 2
,2

]
.

2χ
1
,N
T
−
2

[ 1
−
K

2 1
,N
T
−
2

]
χ
1
,N
T
−
1

[ 1
−
K

2 1
,N
T
−
1

]
.

.
.

.
.

.
.

.
.

.

.
.

.
.

.

.
.

.
.

.
[ 1
−
K

2 N
T
−
1
,0

] 2χ
N
T
,1

[ 1
−
K

2 N
T
,2

] .
2χ

N
T
−
1
,N
T
−
2

[ 1
−
K

2 N
T
−
1
,N
T
−
2

] χ N
T
−
1
,N
T
−
1

[ 1
−
K

2 N
T
−
1
,N
T
−
1

]                                

r 0 r 1 . . .

r N
T
−
2

r N
T
−
1

                .
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2.6 Inverse Q Filtering - Non-Linear Case

In the limit τ → 0 meaning that the receivers are at the surface, equation (2.47)
gives the ’seismogram in frequency domain’:

K(ω, 0) =

∫ T

0

r(τ ′) exp
[
− iΦ(ω, τ ′)

][
1−K2(ω, τ ′)

]
∂τ ′. (2.51)

Introducing ’reflectivity’ series, specifically ’reflectivity per depth unit series’
in this thesis,

r(τ) = 4τ
NT−1∑
j=0

rjδ(τ − j ×4τ), T = (NT − 1)×4τ, (2.52)

equation (2.52) can be written as

K(ω, 0) =
NT−1∑
j=0

rj exp
[
− iΦ(ω, j ×4τ)

][
1−K2(ω, j ×4τ)

]
4τ. (2.53)

If we drop K2(ω, j × 4τ) of the right hand side of equation (2.53) that is
multiples are not included, an expression similar to that of Oliveira & Lupinacci
(2013) is achieved which in our case is linear.

Originally, seismogram is recorded in time-domain and sampled with a total
of NT samples. Fourier transform of the data will give the same number of
monochromatic seismograms and equation (2.53) can be rewritten in a matrix
system: 

Kn+1(0, 0)

Kn+1(1, 0)

.

.

.

Kn+1(NT − 1, 0)


= (2.54)

4τ



χ(0, 0)
[
1− (Kn)2

]
... χ(0, NT − 1)

[
1− (Kn)2

]
χ(1, 0)

[
1− (Kn)2

]
... χ(1, NT − 1)

[
1− (Kn)2

]
. ... .

. ... .

. ... .

χ(NT − 1, 0)
[
1− (Kn)2

]
... χ(NT − 1, NT − 1)

[
1− (Kn)2

]





rn0

rn1

.

.

.

rnNT−1


,
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where

χl,j = exp
[
− iΦ(ωl, τj)

]
, ωl = 2π × l ×4f and τj = j ×4τ.

For a given iteration number n, we can compute for the corresponding
reflectivity series by solving equation (2.54) employing standard least-squares
inversion. Since iteration is repeating a computation cycle applying each time
the previous result to get successively closer approximations to the solution,
we start by taking (K0(ω))2 = 0 for n = 0. After a new estimate of the
reflectivity series has been obtained, an update of (Kn

j (ω))2 can be obtained
by solving the forward problem in equation (2.49). Iterations are carried out
until the relative change in reflectivity is below a certain user set threshold.

To apply least-squares, equation (2.54) can be written in vector and matrix
notation in short as

~K = M~r, (2.55)

where

~K =



Kn+1(0, 0)

Kn+1(1, 0)

.

.

.

Kn+1(NT − 1, 0)


, ~r =



rn0

rn1

.

.

.

rnNT−1


and

M = 4τ



χ(0, 0)
[
1− (Kn)2

]
... χ(0, NT − 1)

[
1− (Kn)2

]
χ(1, 0)

[
1− (Kn)2

]
... χ(1, NT − 1)

[
1− (Kn)2

]
. ... .

. ... .

. ... .

χ(NT − 1, 0)
[
1− (Kn)2

]
... χ(NT − 1, NT − 1)

[
1− (Kn)2

]


,

i.e., ~K is a (N × 1) vector, M is a (N ×N) matrix and ~r is a (N × 1) vector.

In general, there are more observations than model parameters. Let ~K be
the desired seismic output data while the actual output from equation (2.54)

is ~S = M~r. We want to compute a reflectivity per depth unit series ~r such
that the difference ~Σ between the actual output ~S and the predicted seismic
output data ~K is minimum in the least-squares sense. Therefore, the error ~Σ
with respect to parameter vector ~r is

~Σ = ~K − ~S = ~K −M~r. (2.56)



24 2. Modelling of Absorption Compensation

And the cumulative squared error,

~ΣT∗~Σ = ( ~K −M~r)T∗( ~K −M~r),

= ~KT∗ ~K − ~KT∗M~r − ~rT∗MT∗ ~K + ~rT∗MT∗M~r, (2.57)

where T denotes matrix transpose and ∗ denotes complex conjugate.
We want to estimate a reflectivity per depth unit series ~r such that the

quantity ~ΣT∗~Σ is minimum. This condition leads to setting the derivative of
~ΣT∗~Σ with respect to ~r to zero. Differentiate both sides of equation (2.57) with
respect to ~r and observe the requirement for least-squares procedure minimiza-
tion that

∂~ΣT∗~Σ

∂~r
= − ~KT∗M + ~rT∗MT∗M = 0. (2.58)

Because ~rT∗ is complex valued, ∂~rT∗/∂~r = 0. Thus, applying matrix transpose
and rearranging the terms of equation (2.58)

(MT∗M)T∗~r = MT∗ ~K =⇒ (MT∗M)~r = MT∗ ~K,

=⇒ ~r = (MT∗M)−1MT∗ ~K. (2.59)

Subsequently, it is also possible to compute the acoustic impedance AI(τ) =
ρ(τ)vr(τ). Following equation (2.36)

r(τ) =
1

2ρvr

∂(ρvr)

∂τ
,=⇒ ρ(τ)vr(τ) = ρ(0)vr(0) exp

[
2

∫ τ

0

r(τ ′)dτ ′
]
,

and applying equation (2.47), the acoustic impedance AIj = ρ(τj)vr(τj) at τj
from the surface can be put as

AIj = AI0 exp

[
24τ

j∑
i=0

rj

]
for j = 0, 1, 2, ..., NT − 1. (2.60)

AI0 is easily known since the first layer is sea water in marine seismic.
Finally we can compute the reflectivity series Rj as in

Rj =
AIj+1 − AIj
AIj+1 + AIj

=
exp

[
24τrj+1

]
− 1

exp
[
24τrj+1

]
+ 1

for j = 0, 1, 2, ..., NT − 1. (2.61)

This will enable us to compare and contrast our results with other inversion
methods as many of those inversion methods compute reflectivity series. In-
deed, both the reflectivity series Rj and reflectivity per unit depth rj (in this
thesis work) show acoustic impedance contrast. But they differ both in mag-
nitude and dimensionality.

In the next two chapters we will implement the developed model in Mat-
lab by specifying layered model parameters, generate synthetic seismogram
using the forward model, and perform inversion taking the forward modelled
synthetic seismogram as an input.



Chapter 3

Forward Q Simulation - Matlab

Layered implementation of forward Q modelling is considered. For Q com-
pensation, generally, we only require absorptive information for major layers.
In this approach, the earth model is assumed to be a one-dimensional (1-D)
function varying with depth in two-way traveltime.

3.1 Model Parameters

In order to perform forward Q simulation, first a stratified earth model with
N number of layers is specified, the first layered being sea water in marine
seismic. For each layer, thickness zj [m], velocity vj [m/s], density ρj [g/cm3]
and quality factor Qj [dimensionless] are assigned as is shown in table 3.1.
The corresponding Matlab generated model is shown in figure 3.1.

Layer thickness density velocity quality factor

z [m] ρ [g/cm3] v [m/s] Q [dimensionless]

1st 200 1.0 1500 20

2nd 300 1.5 2000 25

3rd 400 1.7 2500 30

4th 500 2.2 3000 35

Table 3.1: Input model parameters of a four layer earth model.

The acoustic impedance AIj [(m/s).(g/cm3)] of each layer is computed,
the product of velocity and density, i.e.,

AIj = vjρj, j = 1, ..., N. (3.1)

While the reflectivity series Rj [dimensionless] can be calculated as

Rj =
vj+1ρj+1 − vjρj
vj+1ρj+1 + vjρj

, j = 1, ..., N − 1. (3.2)

25
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Figure 3.1: 1D-Earth model with four layers.

The next step is converting the layer thickness zj [m] into two-way traveltime
τj [s] which can be calculated as follows:

τj = 2
zj
vj
, j = 1, ..., N. (3.3)

Then the total thickness of the model in two-way traveltime TM [s] is

TM =
N∑
j=1

τj = 2
N∑
j=1

zj
vj
. (3.4)

Once we have computed the total model thickness TM in two-way traveltime,
the next step is to sample the physical parameters: layer acoustic impedance
AI, reflectivity series R and quality factor Q, in sampling time say 4τ =
0.004 s and NT samples. Therefore, from the ratio of subsequent sampled
acoustic impedance AIj = AI(τj), the reflectivity per depth unit series rj [1/s]
is computed as in:

r(τj) = rj =
1

24τ

[
vj+1ρj+1

vjρj
− 1

]
, j = 1, ..., NT − 1, (3.5)

where 4τ = τj+1 − τj. It is clear from equations (3.2) and (3.5) that the
reflectivity Rj and the reflectivity per depth unit series rj are two similar
physical parameters which represent the contrast in acoustic impedance across
an interface. The main difference is their dimensionality.

The sampled acoustic impedance AIj of the generated model of table 3.1 is
shown in figure 3.2. It is evident from figure 3.2 that the acoustic impedance is
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Figure 3.2: Acoustic impedance AI of a four layer earth model.

blocked (constant) over a certain range in depth. This is because both velocity
and density are assumed constant over a certain layer. Similarly, the sampled
quality factor is blocked (constant) over a certain range in depth as is shown
in figure 3.3.

Figure 3.3: Quality factor (QF) of a four layer earth model.

Since the number of interfaces in this case are three, ignoring of course
air-sea surface interface, it can be seen from figures 3.4 and 3.5 that there are
three non-zero values of reflectivity series R and reflectivity per depth unit
series r(τ) corresponding to those three interfaces.

In order to get the synthetic seismogram k(t, τ) in time domain by inverse
Fourier transform of the complex reflection coefficient (approximately) Kn+1

l,j=J

derived in equation (2.49), each component of Kl,j is multiplied by a sampled
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Figure 3.4: Reflectivity series R of a four layer earth model.

Figure 3.5: Reflectivity per depth unit series r(τ) of a four layer earth model.

Ricket-wavelet in frequency domain:

srw =
2√
π
× f 2

f 3
c

× exp

[
− f

fc

]2
, (3.6)

f = l ×4f and l = 0, 1, 2, ..., NT,

with the center frequency fc being chosen to be 20Hz in this thesis. This
Ricker-wavelet is a zero-phase wavelet and non-causal. It is often used as a
zero-phase embedded wavelet in modelling and synthetic seismogram manu-
facture.
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3.2 Seismogram k(t, 0) and Absorption Y (ω, τj)

The magnitude and shape of the seismogram k(t, 0) computed by forward Q
simulation depend on the absorption function Y (ω, τ), with Y (ω, τ) = 1 being
absorption free. It is useful to understand in general how the amplitude at-
tenuation and wavelet broadening effects are related to the real and imaginary
parts of the absorption function Y (ω, τ) = A(ω, τ) + iB(ω, τ). The imaginary
part is mainly associated with amplitude attenuation whereby B(ω, τ) −→ 0
leads to higher amplitude of the seismic seismogram k(t, 0). Similarly the real
part is mainly related with broadening of seismic seismogram k(t, 0) whereby
A(ω, τ) −→ 1 results in less broadening. It is shown in equation (2.15) of
chapter 2 how A(ω, τ) and B(ω, τ) are related to the quality factor Q of the
medium depending on the Q-model chosen. Therefore, the absorption function
of Wang & Guo (2004a) Q-model sampled in time and frequency becomes:

1√
YWang(l, j)

≈
[

fh
l ×4f

]γj[
1− i 1

2Qj

]
, (3.7)

fh ≡ highest frequency (125 Hz in this thesis),

γj = [πQj]
−1,

l = 0, 1, 2, ..., NT − 1 & j = 0, 1, 2, ..., NT − 1.

Similarly, the absorption function of the alternative Futterman (1962) Q-model
is sampled both in time and frequency, and is slightly modified as:

1√
YFutt(l, j)

≈
[
1 +

1

l ×4f
ℵl,j
]−1
− i 1

2Qj

, (3.8)

ℵl,j = ℵ
(
l ×4f

2Qj

)
Hilbert transform,

l = 0, 1, 2, ..., NT − 1 & j = 0, 1, 2, ..., NT − 1.

Finally, the case v(ω) = vr implies no dispersion, the corresponding absorption
function is sampled only in time and becomes

1√
Yno−disp(j)

≈ 1− i 1

2Qj

, where j = 1, 2, ..., NT. (3.9)

If the quality factor is extremely large, Q → ∞, then (1/Q) → 0. Hence,
all the mentioned Q-models become absorption free, that is Y (ω, τ) ' 1. In

z [m] ρ [g/cm3] v [m/s] A(ω, τ) + iB(ω, τ)

Layer 1 200 1.0 1500 1+i0 Absorption

Layer 2 300 1.5 2000 1+i0 free

Table 3.2: Two layer model parameters assumed.
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a practical sense the absorption free Y (ω, τ) ' 1 correspond to a large finite
Q-value beyond which there is almost no absorption. To observe attenuation
and dispersion effects, first an absorption free seismogram k(t, 0), is generated
using a very simple two layer model (table 3.2). The seismogram, which here
only a single reflection, is shown in figure 3.6.

Figure 3.6: Forward modelled absorption free seismogram, k(t,0).

Now using Wang & Guo (2004a) Q-model, a seismogram k(t, 0) is generated
corresponding to different Q-values say Q = 400, 200, 100, 50 and 25. These
set of Q-values are used by Wang (2008) and Montaña & Margrave (2004) to
study attenuation hence enabled us to draw comparisons.

Figure 3.7: Forward modelled seismogram, k(t,0) using Q = 400.
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Figure 3.8: Forward modelled seismogram, k(t,0) using Q = 200.

Figures 3.6 - 3.11 show that the amplitude and shape of the seismogram
k(t, 0) change with the quality factor Q. As the quality factor Q gets smaller,
the absorption coefficient α ∝ 1/Q increases, the amplitude of the seismogram
k(t, 0) decreases accompanied by broadening. Though we are dealing with zero
offset in this thesis, nonetheless for two layer model similar result is shown
in Cheng & Margrave (2011). Moreover, figures 3.6 and 3.7 show that the
quality factor Q = 400 is the threshold value beyond which we do not observe
absorption with our model setup. Similar result is shown in Wang (2008).

Figure 3.9: Forward modelled seismogram, k(t,0) using Q = 100.
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Figure 3.10: Forward modelled seismogram, k(t,0) using Q = 50.

Figure 3.11: Forward modelled seismogram, k(t,0) using Q = 25.

3.3 Synthetic Seismogram without Multiples

By dropping the K2 in right-hand-side of equation (2.49), a linear-forward
wave propagation model is obtained,

Kl,j=J = χ−1l,j=J

{
4τ
2

}{
rJχl,J + 2

J+1∑
j=NT−2

rjχl,j + rNT−1χl,NT−1

}
.

(3.10)

Equation (3.10) is similar to the downward wave propagation model discussed
by Montaña & Margrave (2004), Wang (2006), van der Baan (2012). To get
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the corresponding synthetic seismogram k(t, 0) using Wang & Guo (2004a)
Q-model, the following four layer model parameters specified in table (3.3) are
used. The resulting synthetic seismogram k(t, 0) without multiples, is shown in

Layer thickness density velocity quality factor

z [m] ρ [g/cm3] v [m/s] Q [dimensionless]

1st 200 1.0 1500 20

2nd 300 1.5 2000 25

3rd 400 1.7 2500 30

4th 500 2.2 3000 35

Table 3.3: Input model parameters of a four layer earth model.

figure 3.12. Similar result has been found using alternative Futterman (1962)

Figure 3.12: Synthetic seismogram k(t, 0) without any multiples using Wang’s

modified Kolsky Q model.

Q-model of equation (3.8) is shown in figure 3.13. No major difference is ob-
served in synthetic seismogram k(t, 0) for the two Q-models. And to complete
the discussion, figure 3.14 shows the dispersion free non-causal seismogram
generated by using equation (3.9).

3.4 Synthetic Seismogram with Multiples

Full solution, that is equation (2.49), is applied in order to include the multi-
ples. Yet, the surface-related water-bottom multiples due to water-air inter-
face are not included. Using the dispersionless Q-model of equation (3.9) the
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Figure 3.13: Synthetic seismogram k(t, 0) without any multiples using causal

Futterman (1962) Q model.

Figure 3.14: Synthetic seismogram k(t, 0) without any multiples using non-causal

Futterman (1962) Q model.

synthetic seismogram k(t, 0) without the surface-related multiples is shown in
figure 3.15. The multiples can be seen, though they are smaller, than the main
reflections.

Once again in order to include the surface-related water-bottom multiples
the solution given in equation (2.50) is applied. Correspondingly the synthetic
seismogram k(t, 0) using the dispersionless Q-model of equation (3.9) including
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Figure 3.15: Synthetic seismogram k(t, 0) without free-surface multiples, after 8

iterations.

the free-surface multiples is shown in figure 3.16. It can be seen that the water-
bottom multiples have opposite polarity than the main reflections.

Figure 3.16: Synthetic seismogram k(t, 0) including the free-surface multiples,

after 8 iterations.
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Chapter 4

Inversion - Matlab

The inversion procedure is formulated on the basis that the seismogram at the
surface K(ω, 0) is a known quantity, while the reflectivity per depth unit series
r(τ) is the unknown which is to be determined. This seismogram K(ω, 0) can
be field or synthetic seismic data.

So far, in forward Q modelling, the reflectivity per depth unit series r(τ)
is known from the input layered model parameters. It provides the compu-
tation of synthetic seismogram k(t, 0) using Futterman (1962) and Wang &
Guo (2004a) Q-models. By using the forward modelled synthetic seismogram
K(ω, 0) as an input, inversion is performed to compute the reflectivity per
depth unit series r(τ) thereby calculate the acoustic impedance of the struc-
ture understudy. To do so, an algorithm of equation (2.59) is developed in
Matlab.

It worth to mention that while modelling of absorption effects of sediment-
layers (reservoir), the quality factor Q-values often used are ranging from
around 20 up to 200, (Klimentos 1995, Mitchell & Hwang 1987, Oliveira &
Lupinacci 2013, Robinson 1979, Wang & Guo 2004b). This range is inline
with the assumption ’small to moderate absorption’ made in chapter 2, (Fut-
terman 1962).

4.1 Inversion Using Same Q-value

In this first section, we use same Q-values to calculate synthetic seismogram
~K and the matrix M used to perform the inversion to get the reflectivity
per depth unit series ~r. To avoid aliasing lower frequencies are used during
the inversion process. Moreover, due to the singularity of the generated ma-
trix MT∗M , a suitable damping constant λ is introduced in calculating the
(MT∗M)−1 of equation (2.59). This suitable damping constant λ is chosen
out from the singular value decomposition (svd) of MT∗M , thus transform the
matrix MT∗M into invertible new matrix:

~L = svd(MT∗M) =⇒ MT∗M + λI, (4.1)
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where I a unitary matrix of the same order as matrix MT∗M . The suitable
damping constant λ is found around the (NT/2)th eigenvalue of MT∗M in this
thesis. Moreover, if we drop K2 in computing M of equation (2.55), we have
linear inversion. That is multiples are not included.

Let us start with the input model parameters given in table (4.1). The
corresponding reflectivity per depth unit r(τ) shown in figures 4.1 which is
independent of the three sets of quality factor Q-values. Applying forward Q
modelling, we have seen in chapter 3, we can compute the synthetic seismogram
K(ω, 0) using these specified model parameters. It is worth to mention that
the synthetic seismogram K(ω, 0) is complex-valued though the specified input
parameters reflectivity per depth unit r(τ) and quality factor Q are real-valued.

Layer thickness density velocity quality factor

z [m] ρ [g/cm3] v [m/s] Q1 Q2 Q3

1st 200 1.0 1500 20 105 ∞

2nd 300 1.5 2000 25 100 ∞

3rd 400 1.7 2500 30 115 ∞

4th 500 2.2 3000 35 110 ∞

Table 4.1: Input model parameters of a four layer earth model.

Figure 4.1: Reflectivity per depth unit series r(τ) of a four layer earth model.

Now using the quality factor set Q1-values given in table (4.1), we have
computed the matrix M of equation (2.55) and input synthetic seismogram
K(ω, 0). Inversion is performed using same set Q1-values. And, we have
repeated this process for sets Q2- and Q3-values. By doing so, in principle,
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we should get the same reflectivity per depth unit r(τ) series as is shown
in figure 4.1 which is real-valued as the input layer acoustic impedance and
velocity are real-valued. Instead, what is found by computing equation (2.59)
is complex-valued with the real part shown in figures 4.2 and 4.3 corresponding
to linear (without multiples) and non-linear (with multiples assuming iteration
n = 8) inversion cases respectively. There is still no dependence on value of
the quality factor used. The decrease in amplitude is in part attributed to the
damping constant λ introduced due to the singularity the matrix MT∗M .

Figure 4.2: Inversion using the same Q, linear case.

Figure 4.3: Inversion using the same Q, non-linear case after 8 iterations.
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To eliminate the noise that appears in figures 4.2 and 4.3, a second order
butterworth low pass band-filter with cut-off frequency of NT

3
fNqst is used,

where NT is the total number of samples and fNqst is Nyquist frequency. It
resulted in a better resolution of the reflectivity per depth unit series r(τ)
shown in figures 4.4 and 4.5. As can be seen in figures 4.5, though smaller, the
multiples appear.

Figure 4.4: Inversion using the same Q plus band-pass, linear case.

Figure 4.5: Inversion using the same Q plus band-pass, non-linear case after 8

iterations.

For comparison purposes with other inversion models, the reflectivity series
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R(τ) shown in figure 4.6 is computed using equation 2.61 from the reflectivity
per depth unit r(τ) shown in figure 4.5 above. As it should, | R(τ) |< 1 unlike
that of r(τ).

Figure 4.6: Reflectivity series R(τ), non-linear case after 8 iterations.

Moreover, if we can compute the acoustic impedance of the first layer then
the acoustic impedance of the subsurface understudy can be computed using
equation 2.60. Assuming the first layer being sea water in our model and
using the reflectivity per depth unit r(τ) shown in figure 4.5, the acoustic
impedance via inversion and forward modelled are shown in figure 4.7. The
computed acoustic impedance AI(τ) via inversion is complex-valued, with the
real part plotted in figure 4.7.

Figure 4.7: Acoustic impedance AI(τ), non-linear case after 8 iterations.
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To avoid aliasing lower frequencies are used during the inversion process
with the highest frequency being NT

2
fNqst. Now let us change the cut off

frequency of the second order butterworth low pass filter from NT
3
fNqst to

2NT
5
fNqst and NT

2
fNqst, the reflectivity per depth unit shown in figure 4.3 be-

come figures 4.8 and 4.9 respectively. As it should be there is no significant
difference between figure 4.3 and 4.9 as the cut off frequency of the second
order butterworth low pass considered is same as the the highest frequency
NT
2
fNqst used in the inversion process.

Figure 4.8: Inversion using the same Q, non-linear case after 8 iterations.

Figure 4.9: Inversion using the same Q, non-linear case after 8 iterations.
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Figure 4.10: Inversion, damping constant λ ≈ 1.75× 10−24, non-linear case after

8 iterations.

So far we have used a damping constant of λ ≈ 1.175 × 10−21. Before
jumping to other inversion cases it is worth to investigate the effect of the choice
of damping constant λ, due to the singularity of MT∗M of equation (2.59). To
demonstrate, first we considered slightly lower values than the chosen suitable
damping constant λ. For λ ≈ 1.75 × 10−24, the effect is shown in figure 4.10
and even after the band-pass filter shown in figure 4.11.

Figure 4.11: Inversion, λ ≈ 1.75 × 10−24 plus band-pass filter, non-linear case

after 8 iterations.
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As we keep on taking smaller damping constant value, the matrix MT∗M+
λI is no longer invertible. On the other hand, for the same model setup and
λ ≈ 1.75×10−8 the amplitude of the reflectivity per depth unit series shown in
figure 4.12 gets smaller and the noise disappears. It is, therefore, found in this
thesis that care should be taken in choosing the right damping constant λ in
order to perform the inversion while maintaining the noise level and preserving
the amplitude as much as possible.

Figure 4.12: Inversion, λ ≈ 1.75× 10−8 without band-pass filter, non-linear case

after 8 iterations.

Up on exploring the effects of the damping constant λ and the cut off
frequency of the second order butterworth low pass band-filter used in this
thesis, it is important to get the right balance between combination of both
quantities not to compromise the amplitude and the dispersion corrections.

4.2 Inversion Using Wrong Q-Value

To see the effect of the quality factor Q in inversion process, a different Q-
value or set of Q-values are used to generate the matrix M of equation (2.55)
than that of the input synthetic seismogram K(ω, 0). Like the case of same Q-
value, a second order butterworth low pass band-filter with cut-off frequency
of NT

3
fNqst is used to remove the noise that appears after inversion. Thus,

let us first consider inversion using larger Q value while the input synthetic
seismogram K(ω, 0) is computed using a smaller Q-value. To do so, the input
model parameters given in table (4.1) are used. The matrix M is computed
using the quality factor sets of Q2- and Q3-values where as the input synthetic
seismogram K(ω, 0) is computed using set Q1. And, the resulted reflectivity
per depth unit series r(τ) is shown in figures 4.13 and 4.14 respectively.
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Figure 4.13: Inversion using a larger Q: Q1 by Q2, non-linear case after 8 itera-

tions.

Figure 4.14: Inversion using a larger Q: Q1 by Q ≈ ∞, non-linear case after 8

iterations.

It can be seen from figures 4.5, 4.13 and 4.14 that the larger the quality
factor Q used in inversion as compared to that of the input synthetic seismo-
gram K(ω, 0), the smaller the amplitudes of the resulting reflectivity per depth
unit series r(τ). This is because absorption is under-estimated and inverse Q
filtering does not recover the high frequency energy completely.

Let us proceed with the second scenario whereby we have input synthetic
seismogram K(ω, 0) calculated with large Q-value, sets Q2 and Q3, while now
inversion is performed using smaller Q-value, set Q1. The resulted reflectivity
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Figure 4.15: Inversion using a smaller Q: Q2 by Q1, non-linear case after 8 itera-

tions.

per depth unit series r(τ) are shown in figures 4.15 and 4.16 respectively. We
see that, inversion using a smaller Q-value as compared to the input seismo-
gram results in more noise and does not show the true structure of the sub-
surface under study. This is because absorption is over-estimated and inverse
Q filtering over-amplifies the high frequency energy. Therefore, comparing
results of figures 4.15 and 4.16 with figures 4.5, 4.13 and 4.14, inversion us-
ing over-estimated Q-value is found to be better than using under-estimated
Q-value.

Figure 4.16: Inversion of absorption free medium (Q ≈ ∞) by finite Q (Q1),

non-linear case after 8 iterations.
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4.3 Effect of Q-Model on Inversion

So far to study the effect of the quality factor Q in the inversion process,
the same Q-model was used to synthesize the input seismogram K(ω, 0) and
the matrix M to do the inversion. Wang & Guo (2004a) Q-model of equa-
tion (3.7) has been used to do so. Now to see the effect of the Q-model,
inversion using Wang & Guo (2004a) Q-model is performed while the input
seismogram K(ω, 0) is synthesized using the alternative Futterman (1962) Q-
model of equation (3.8), and vice versa. Again, a second order butterworth
low pass band-filter with cut-off frequency of NT

3
fNqst is used to remove the

noise that appears after inversion.
The same quality factor set Q1-values given in table (4.1) is used both to

compute the input synthetic seismogram K(ω, 0) and the matrix M to perform
the inversion. The corresponding input synthetic seismograms K(ω, 0) are
shown in figures 4.17 and 4.18 to help us understand the results of the inversion
process. Though small, there is a slight difference in amplitude and shape of
these synthesized input seismograms K(ω, 0). The difference between the two
Q-models, as discussed in chapter 2, lies in the approximation of the velocity
dispersion. Yet, the amplitude compensation remains the same. Though not
significant, difference in wavelet shape is expected than in amplitude during
the forward Q modelling of seismic wave K(ω, τ).

Figure 4.17: Seismogram K(ω, 0) synthesized using Wang & Guo (2004a) Q-

model, non-linear case after 8 iterations.

Figure 4.19 shows the reflectivity per depth series r(τ) of an input seismo-
gram K(ω, 0) is synthesized using Wang & Guo (2004a) Q-model and inversion
by Futterman (1962) Q-model. And, the reversed scenario is shown in fig-
ure 4.20 where the input seismogram K(ω, 0) is synthesized using Futterman
(1962) Q-model and inversion by Wang & Guo (2004a) Q-model.
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Figure 4.18: Seismogram K(ω, 0) synthesized using Futterman (1962) Q-model,

non-linear case after 8 iterations.

Figure 4.19: Inversion by Futterman (1962) Q-model, input K(ω, 0): figure 4.17.

Comparing figures 4.19 and 4.20 with figure 4.5, a case of same Q-model,
show that the shape and amplitude of the resulting reflectivity per depth se-
ries r(τ) depend on the Q-model used when performing inversion of an input
seismogram K(ω, 0) of a certain Q-model. As in the forward Q modelling
of seismic wave K(ω, τ), there is a significant difference in the shape of the
resulting reflectivity per depth series r(τ) as a result of the inversion.
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Figure 4.20: Inversion by Wang & Guo (2004a) Q-model, input K(ω, 0): fig-

ure 4.18.
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Chapter 5

Discussion and Conclusion

In this thesis our main aim was to deal with compensation of absorption effects
in seismic data by employing so-called inverse Q-filtering (IQF). This is a
filtering technique that tries to restore the loss of higher frequencies due to
propagation. It helps to improve the resolution of seismic data, and to balance
the frequency contents.

The stability of inverse Q filtering, based on downward wave propagation,
is always affected by high frequency noise whether it is implemented in time
or frequency domain. Formulating the absorption compensation as an inverse
problem, and solving the inverse problem iteratively, the resolution of seismic
data is upgraded step by step. This inverse scheme helps to overcome the
instability problem which is a natural drawback of common inverse Q filtering.

In this thesis work, a non-linear inverse Q filtering algorithm is derived
starting with the introduction of absorption function Y (ω, τ) into the stress-
strain relationship and solving the wave propagation equation with finite dif-
ference method. Using forward Q modelling, of stratified (vertically inhomo-
geneous, horizontally layered, i.e., 1D) media, a synthetic seismogram is pro-
duced. The amplitude attenuation and wavelet broadening is demonstrated
by varying the input Q-values. Moreover, the effect of the selected Q-model
on the shape and amplitude of the synthesized seismogram is analyzed.

Using the forward synthetic seismogram as input, inversion is performed.
Different scenarios like effects of Q-value (wrong Q-value) and Q-model on the
inversion processing are investigated. It was found that using over estimated
Q-values (Q =⇒ ∞) during inversion resulted in reasonable reflectivity per
depth unit series r(τ) rather than under estimated Q-values (Q =⇒ 0). On the
other hand, we found that use of under-estimated Q-values tend to amplify too
much the recovered impulses and not preserve the relatives amplitudes. Yet,
use of both under- and over-estimated Q-values result in change in shape of
wavelet. These results prove that larger Q-values compensate part of the lost
energy. Meanwhile smaller Q-vales over-compensate the high frequencies, and
thus, the compensated result looks like strong high frequency noise. These
observations found to be similar to the work done by, Oliveira & Lupinacci
(2013).
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Up selection of Q-model during inversion process, though not that signi-
ficate, we observed that dispersion effects are more prominent rather than
amplitude effects. This is because Q-models differ only in the velocity disper-
sion assumptions. Finally, it is found that the inversion method can be applied
successfully to compute the variation of acoustic impedance AI(τ) given the
acoustic impedance of the first infinitesimal thickness 4τ is known.

It would be interesting to test the developed inversion method to field data
from structures with nearly plane and parallel stratification. The challenge
will then be to find the complex reflection K(ω, 0) response of the layers. It
would also be interesting to expand the method to non-vertical incidence.



Appendix

Forward Q Filter Modelling: This script prompts the user for the number
of layer N and calculates the acoustic impedance AI(τ), reflectivity series R(τ)
and reflectivity per depth unit series r(τ) of a model of N layers by reading
input parameters: layer thickness z, velocity v, density ρ and quality factory
Q from file ’model parameters’. Finally computes the synthetic seismogram
K(ω, 0) at the surface.

Inversion: This script prompts the user for the number of layer N and
calculates the reflectivity per depth unit series r(τ) by reading input: synthetic
seismogram K(ω, 0) from the forward modelling and quality factory Q from
file ’model parameters’. Finally computes the acoustic impedance AI(τ) and
reflectivity series R(τ) from the reflectivity per depth unit series r(τ).
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