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Abstract. In this paper, we consider option pricing in a framework of the fractional Heston-type model

with H > 1/2. As it is impossible to obtain an explicit formula for the expectation Ef(ST ) in this case,

where ST is the asset price at maturity time and f is a payoff function, we provide a discretization schemes

Ŷ n and Ŝn for volatility and price processes correspondingly and study convergence Ef(Ŝn
T ) → Ef(ST )

as the mesh of the partition tends to zero. The rate of convergence is calculated. As we allow f to be non-

Lipschitz and/or to have discontinuities of the first kind which can cause errors if ST is replaced by Ŝn
T

under the expectation straightforwardly, we use Malliavin calculus techniques to provide an alternative
formula for Ef(ST ) with smooth functional under the expectation.

1. Introduction

Despite its significant historical and theoretical value, the classical Black-Scholes model does not ex-
plain numerous empirical phenomena that can be observed on real-life markets, such as implied volatility
smile and skew. In order to overcome this issue, [19] and, later, [17] introduced stochastic volatility
models that emerged into an essential subject of research activity in financial modeling nowadays.

To illustrate the range of existing models (without trying to list all possible references), we recall the
approaches of [24], [4, 5], [11], [22], [8], [33], [1] and so on.

A separate class of stochastic volatility models are those based on fractional Brownian motion. They
allow to reflect the so-called “memory phenomenon” of the market (for more details on market models
with memory see, for instance, [3, 13, 35]). In this context, we should also mention [7, 9, 10] and [6].

In the present paper, we consider evaluation of the expected option payoff in a framework of the
fractional modification of the Heston-type model, namely a financial market with a finite maturity time
T that is composed of two assets:

(i) a risk-free bond (or bank account) B = {Bt, t ∈ [0, T ]}, the dynamics of which is characterized by
the formula

(1) Bt = eλt, t ∈ [0, T ],

where λ ∈ R+ represents the risk-free interest rate;
(ii) a risky asset S = {St, t ∈ [0, T ]}, the evolution in time of which is given by the system of stochastic

differential equations

(2) dSt = µStdt+ σ(Yt)StdWt,

(3) dYt =
1

2

(
κ

Yt
− θYt

)
dt+

ν

2
dBHt , t ∈ [0, T ],

with non-random initial values S0, Y0 > 0. Here the process W = {Wt, t ≥ 0} is a standard Wiener
process, µ ∈ R, κ, θ, ν > 0 are constants, σ: [0,∞) → [0,∞) is a function that satisfies some regularity
properties that are listed below and BH = {BHt , t ∈ [0, T ]} is a fractional Brownian motion with the
Hurst index 1

2 < H < 1, which corresponds to the “long memory” case. W and BH are assumed to be
correlated.

E-mail addresses: antonyurty@gmail.com.
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The process Y was extensively studied in [30, 31] and, for the case of κ = 0, in [29]. Note that,
according to [32], the process Y exists, is unique and has continuous paths until the first moment of zero
hitting. Moreover, in Theorem 2 of [30] it is shown that in the case of κ > 0 and H > 1

2 such process is
strictly positive and never hits zero, therefore exists, is unique and continuous on the entire [0, T ].

Such choice of the volatility process can be explained by the fact that Y can be interpreted as the
square root of the fractional version of Cox-Ingersoll-Ross process. Indeed, according to [30], Theorem 1,
the process X = {Y 2(t), t ∈ [0, T ]} satisfies the stochastic differential equation of the form

(4) dXt = (κ− θXt)dt+ ν
√
XtdB

H
t , X0 = Y 2

0 > 0,

until the first moment of zero hitting, where the integral
∫ t
0

√
XsdB

H
s is considered as the pathwise limit

of the sums

(5)

n∑
k=1

Xtk +Xtk−1

2
(BHtk −B

H
tk−1

),

as the mesh of the partition 0 = t0 < t1 < ... < tn = t tends to zero.
Note that, due to Kolmogorov-Chentsov theorem, fractional Brownian motion BH has a modification

with Hölder continuous paths up to order H. Hence, from the form of the equation (3), the process Y
also has a modification with trajectories that are Hölder-continuous up to order H. Therefore, in the
case of H > 1

2 , the sum of Hölder exponents of the integrator and integrand in the integral

(6)

∫ t

0

√
XsdB

H
s =

∫ t

0

YsdB
H
s

exceeds 1 and, due to [36], the corresponding integral exists as the pathwise limit of Riemann-Stieltjes
integral sums.

It should also be mentioned that for the case of H < 1/2, the process Y can hit zero and it is not clear
whether the solution exists on the entire [0, T ] (see [31] for more details). Therefore, we will concentrate
on the case H > 1/2. For more information on markets with rough volatility see, for example, [15] or
[23].

An analogue of the model (2), (3) was considered in [6] with fractional Ornstein-Uhlenbeck process
instead of Y . However, Ornstein-Uhlenbeck process can take negative values with positive probability
which is a notable drawback for a stochastic volatility model.

Note that in many cases it is impossible to calculate Ef(ST ) (with f being a payoff function) for option
pricing analytically, so numerical methods should be applied. Therefore it is required to provide a decent
discretization scheme for ST and prove the convergence

(7) Ef(ŜnT )→ Ef(ST ), n→∞,

where Ŝn is a discretized version of the process S. It should be emphasized that in this paper we allow f
to be non-Lipschitz and/or to have discontinuities of the first kind. It means that the values f(ST ) and

f(ŜnT ) can differ significantly, even if ST and ŜnT are close, which can cause errors if ST is replaced by

ŜnT under the expectation straightforwardly. In order to overcome this issue, we provide an alternative
formula with smooth functional under the expectation. In such framework, we also give the rate of
convergence (7).

It should be clarified, however, that we concentrate on expectation with respect to the objective
measure (i.e. consider a functional á la the one from [1] or [16]): such approach is more convenient as it
allows to determine the rate of convergence even in the case when f is non Lipschitz. Furthermore, it
should be mentioned that the market with the risky asset defined by (2)–(3) is arbitrage-free, incomplete
but admits minimal martingale measure (see Section 3), so our choice of the objective measure framework
is also due to the fact that it is not clear which matringale measure to choose in pricing. In order to
model the volatility Y , we use the inverse Euler approximation scheme studied in [18].

The paper is organized as follows. In Section 2, we describe main assumptions concerning relation
between the Wiener process and the fractional Brownian motion as well as volatility function σ and payoff
function f . In Section 3, several important properties of both price and volatility processes are presented
and the arbitrage-free property is discussed. In Section 4 we apply the Malliavin calculus techniques,
following [1] and [6], to obtain the formula for Ef(ST ) that does not contain discontinuities (which are

allowed for the payoff function f). In Section 5, we study the rate of convergence Ef(ŜnT ) → Ef(ST ),

where Ŝn is based on inverse Euler approximation scheme for fractional CIR process presented in [18]. In
Section 6, we give results of numerical simulations for different payoff functions f . Section 7 contains the
proofs of all results of the paper. A is devoted to several well-known results from the Malliavin calculus
used in this paper.
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2. Model description and main assumptions

Consider the market with risk-free asset B given by (1) and risky asset S, the dynamics of which is
described by stochastic differential equations (2), (3).

Denote

(8) K(t, s) = cHs
1
2−H

∫ t

s

uH−
1
2 (u− s)H− 3

2 du1s<t,

(9) cH =

(
H(2H − 1)

B(2− 2H,H − 1
2 )

)1/2

,

where B(·, ·) is the Beta function. Then, according to [25], the process BH = {BHt , t ∈ [0, T ]} given by

(10) BHt =

∫ t

0

K(t, s)dVs, t ∈ [0, T ],

where V = {Vt, t ∈ [0, T ]} is a Wiener process, is the fractional Brownian motion with Hurst parameter
H.

The processes W and BH from (2), (3) are assumed to be correlated and the form of the dependence
is defined on the basis of representation (10) as follows.

Assumption 1. The processes W and V from (2) and (10) correspondingly are correlated in the following
way:

(11) EWtVt = ρt, t ∈ [0, T ],

with some constant ρ ∈ [−1, 1].

Remark 2.1. Assumption 1 means that Wt = ρVt +
√

1− ρ2Ṽt, t ∈ [0, T ], where Ṽ is a Wiener process
independent of V .

Remark 2.2. In what follows, we consider the natural filtration generated by the pair of processes (V, Ṽ ).

The function σ: R→ R is assumed to satisfy the following conditions.

Assumption 2. For some constant Cσ > 0:

(i) there exists such σmin > 0 that for all x ∈ R: σ(x) > σmin > 0;
(ii) σ has moderate polyniomial growth, i.e. there is such q ∈ (0, 1) that

(12) σ(x) ≤ Cσ(1 + |x|q), x ∈ R;

(iii) σ is uniformly Hölder continuous, i.e. there is such r ∈ (0, 1] that

(13) |σ(x)− σ(y)| ≤ Cσ|x− y|r, x, y ∈ R;

(iv) σ is differentiable a.e. w.r.t. the Lebesgue measure on R and there exists such q′ > 0 that

(14) σ′(x) ≤ Cσ(1 + |x|q
′
) a.e.

Remark 2.3. 1) Item (i) in Assumption 2 is required for theoretical calculations as we will divide on σ
in what follows.

2) Item (ii) is necessary to ensure the finiteness of expectations of the form

(15) E
[
exp

{∫ t

0

σ(Ys)dWs

}]
in case if the Wiener process W and the fractional Brownian motion BH from (2) and (3) are correlated
(see Remark 3.3 for discussion). Note that in standard Heston model moment explosions may appear as
well, see e.g. [2].

3) (ii) follows from (iii) in the case of r < 1, while in (iii) we also allow r = 1.

In the framework above, we consider an option with a measurable payoff function f : R+ → R+

depending on the value ST of the stock at maturity time T which satisfies the following properties:

Assumption 3. For some constant Cσ > 0:

(i) f is of polynomial growth, i.e. there are such Cf > 0 and p > 0 that

(16) f(x) ≤ Cf (1 + xp).

(ii) f is locally Riemann integrable, possibly having discontinuities of the first kind.

Remark 2.4. In what follows, we will denote by C any positive constant that does not depend on time
variable or diameter of the partition and the exact value of which is not important. Note that C may
change from line to line (and even within one line).
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3. Model properties

3.1. Properties of stochastic volatility process. In what follows we will require an auxiliary result,
presented in Corollary 2.2 of [31].

Theorem 3.1. For all H ∈
(
1
2 , 1
)
, T > 0 and p > 0 there exist non-random constants C1 = C1(T, p, Y0, κ, θ) >

0 and C2 = C2(T, p, θ, ν) > 0 such that for all t ∈ [0, T ]:

(17) Y pt ≤ C1 + C2 sup
s∈[0,T ]

|BHs |p.

Furthermore,

(18) sup
t∈[0,T ]

EY pt <∞.

The next result is crucial for obtaining discrete approximation scheme for the process Y and was
presented in [18].

Theorem 3.2. Let p > 0 and κ, θ, ν and T be such that for all t ∈ [0, T ]:

(19) κ exp

{
θt

2

}
≥ H(2H − 1)(p+ 1)

∫ t

0

ν2

2
exp

{
θs

2

}
|t− s|2H−2ds.

Then there exists a constant C = C(T, Y0, θ) such that

(20) sup
t∈[0,T ]

E
[

1

Y pt

]
< C.

Remark 3.1. Condition (19) is satisfied if, for example,

(21) p+ 1 ≤ 2κ

ν2HT 2H−1 .

See Remarks 3.1 and 3.2 in [18] for discussion.

Note that condition (19) involves T and does not guarantee the existence of the inverse moments on
whole R+. However, the following result concerning the integrated inverse moments of the volatility
process Y holds true.

Theorem 3.3. Let β ∈
(
0,min{1, κ

ν2HT 2H−1 }
)
. Then, for all 0 ≤ t0 < t ≤ T :

(22) E
[∫ t

t0

1

Y 1+β
u

du

]
≤ 4

κ(1− β)
E(Y 1−β

t − Y 1−β
t0 ) +

2θ

κ

∫ t

t0

EY 1−β
u du <∞.

Theorem 3.4. Let β ∈
(
0,min{1, κ

ν2HT 2H−1 }
)
. Then, there exists such C = C(κ, θ, ν, T, β) > 0 that for

any 0 ≤ s < t ≤ T :

(23) E|Yt − Ys|1+β ≤ C|t− s|β .

Remark 3.2. Let p > 1 and for all t ∈ [0, T ]:

(24) κ exp

{
θt

2

}
≥ H(2H − 1)(1 + p)

∫ t

0

ν2

2
exp

{
θs

2

}
|t− s|2H−2ds,

i.e., due to Theorem 3.2,

(25) sup
t∈[0,T ]

E
[

1

Y pt

]
<∞.

Proceeding just as in proof of Theorem 3.4 and taking into account that

(26) (t− s)p−1E
∫ t

s

1

Y pu
du < C(t− s)p,

we can easily obtain that

(27) E|Yt − Ys|p ≤ C|t− s|pH .
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3.2. Properties of the price process. Now let us consider several properties of the price process S
defined by the stochastic differential equation (2).

Theorem 3.5. 1. For any x > 0 and % ∈ [0, 2):

(28) E exp

{
x sup
t∈[0,T ]

|Yt|%
}
<∞.

2. Equation (2) has a unique solution of the form

(29) St = S0 exp

{
µt+

∫ t

0

σ(Ys)dWs −
1

2

∫ t

0

σ2(Ys)ds

}
.

Remark 3.3. As it was mentioned in Remark 2.3, presence of function σ in (2), the choice of which is
restricted by Assumption 2, is required to ensure finiteness of the moments of the form

(30) E
[
exp

{∫ t

0

σ(Ys)dWs

}]
.

Note that Assumption 2, (i) and (ii), does not allow σ to be linear function, i.e. we do not consider
straigthforward modification of the Heston model of the form

(31) dSt = µStdt+ σYtStdWt,

(32) dYt =
1

2

(
κ

Yt
− θYt

)
dt+

ν

2
dBHt , t ∈ [0, T ],

where µ ∈ R, κ, θ, ν, σ > 0 are constants.
However, in case of independent W and BH , i.e. when ρ = 0 in Assumption 1, it is easy to see (e.g.

by conditioning on Y and solving the conditioned equation) that equation (31) has a unique solution of
the form

(33) St = S0 exp

{
µt+ σ

∫ t

0

YsdWs −
σ2

2

∫ t

0

Y 2
s ds

}
.

Moreover, ESt <∞ for all t ∈ [0, T ], because the process S̃, such that

(34) S̃t = exp

{
σ

∫ t

0

YsdWs −
σ2

2

∫ t

0

Y 2
s ds

}
,

is a non-negative local martingale and, therefore, a supermartingale.

3.3. Arbitrage-free property and incompleteness. For the market (1)–(3), we can obtain the fol-
lowing result which is similar to the one in [6], Theorem 4.

Theorem 3.6. Let the function σ satisfy Assumption 2. Then the market (1)–(3) has the following
properties.

(i) It is arbitrage-free and incomplete.
(ii) Any probability measure Q such that

(35)
dQ
dP

= exp

{∫ T

0

η1(s)dVs +

∫ T

0

η2(s)dṼs −
1

2

2∑
i=1

∫ T

0

η2i (s)ds

}
,

where ηi, i = 1, 2, are non-anticipative, bounded and satisfy the condition

(36) ρη1(s) +
√

1− ρ2η2(s) =
λ− µ
σ(Ys)

,

is a martingale measure.

(iii) Taking η1 = ρ λ−µ
σ(Ys)

and η2 =
√

1− ρ2 λ−µ
σ(Ys)

, we get the minimal martingale measure.

4. Option pricing in fractional Heston model

In this section, we will use the tools of Malliavin calculus to obtain the formula that can be used for
computation of Ef(ST ).

Consider two-dimensional Wiener process (V, Ṽ ), where V is given in Volterra representation (10)

and Ṽ is defined in Remark 2.1. Denote by (DV , DṼ ) the stochastic derivative with respect to the
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two-dimensional Wiener process (V, Ṽ ) and recall that K is the kernel from representation (10). Denote
also

(37)

Xt = logSt = logS0 + µt− 1

2

∫ t

0

σ2(Ys)ds+

∫ t

0

σ(Ys)dWs

= logS0 + µt− 1

2

∫ t

0

σ2(Ys)ds+ ρ

∫ t

0

σ(Ys)dVs +
√

1− ρ2
∫ t

0

σ(Ys)dṼs.

Lemma 4.1. (i) The stochastic derivatives of the fBm BH are equal to

(38) DṼ
u B

H
t = 0, DV

u B
H
t = K(t, u)1[0,t](u).

(ii) The stochastic derivatives of the volatility process Y are

(39)

DṼ
u Yt = 0,

DV
u Yt =

K(t, u)−
t∫

u

K(s, u)h(s) exp

−
t∫
s

h(v)dv

 ds

1[0,t](u)

where h(s) := 1
2

(
κ
Y 2
s

+ θ
)

.

(iii) The stochastic derivatives of X are equal to

(40)

DṼ
u Xt =

√
1− ρ2σ(Yu)1[0,t](u),

DV
u Xt =

(
−
∫ t

u

σ(Ys)σ
′(Ys)D

V
u Ysds

+

∫ t

u

σ′(Ys)D
V
u YsdWs + ρσ(Yu)

)
1[0,t](u).

Denote

(41) g(y) := f(ey), F (x) :=

∫ x

0

f(z)dz, G(y) :=

∫ y

0

g(z)dz, x ≥ 0, y ∈ R,

and consider a random variable

(42) ZT :=

∫ T

0

σ−1(Yu)dṼu.

Note that, due to Assumption 2, (i), ZT is correctly defined.

Theorem 4.1. Under Assumptions 2 and 3, the value Ef(ST ) = Eg(XT ) can be represented as

(43) Eg(XT ) =
1

T
E(G(XT )ZT ),

or, alternatively,

(44) Ef(ST ) = E
(
F (ST )

ST

(
1 +

ZT
T

))
.

5. Inverse Euler approximation scheme for the volatility and price processes

Let 0 = tn0 < tn1 < ... < tnn = T be an equidistant partition of the interval [0, T ], tni = iT
n , ∆n := 1

n ,

∆BHk+1 := BHtnk+1
−BHtnk and consider the approximation scheme of the form

(45) Ŷ ntnk+1
=
Ŷ ntnk + ν

2∆BHk+1 +
√

(Ŷ ntnk
+ ν

2∆BHk+1)2 + κ∆n(2 + θ∆n)

2 + θ∆n

where we put Ŷ nt = Ŷ ntnk for t ∈ [Ŷ ntnk , Ŷ
n
tnk+1

).

Note that approximations given by (45) are strictly positive and it is easy to verify that in points of
partition they satisfy the following difference equation:

(46) Ŷ ntnk+1
= Ŷ ntnk +

1

2

 κ

Ŷ ntnk+1

− θŶ ntnk+1

∆n +
ν

2
∆BHk+1.

Approximations of the form (45) were presented and studied in [18].
Using Theorem 4.1 from [18], Remark 3.2 and the fact that

(47) E|Yt − Ŷ ntnk |
p ≤ 2p−1(E|Yt − Ytnk |

p + E|Ytnk − Ŷ
n
tnk
|p),
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we obtain the following result concerning the convergence rate of these approximations.

Theorem 5.1. Let n ≥ 2, p ≥ 2 and parameters θ, κ, ν > 0 are such that for all t ∈ [0, T ]:

(48) κ exp

{
θt

2

}
≥ H(2H − 1)(3p+ 1)

∫ t

0

ν2

2
exp

{
θs

2

}
|t− s|2H−2ds.

Then there exists such C = C(T,H, p, Y0, θ, κ, ν) > 0 that

(49) sup
t∈[0,T ]

E|Yt − Ŷ nt |p ≤ C∆pH
n .

Remark 5.1. Condition (48) is a sufficient condition for finiteness of the inverse moments of Y of order
3p, namely for

(50) sup
t∈[0,T ]

E
[

1

Y 3p
t

]
<∞.

Three approximations of the volatility process Y trajectories given by the formula (45) with T = 1,
κ = 1, θ = 1, ν = 0.14, Y0 = 1, H = 0.7 and ∆n = 0.0001 are presented on Fig. 1.

0.0 0.2 0.4 0.6 0.8 1.0

0.
96

0.
98

1.
00

1.
02

1.
04

t

Y

Figure 1. Three sample trajectories of the process Y obtained by approximation scheme
(45); T = 1, κ = 1, θ = 1, ν = 0.14, Y0 = 1, H = 0.7 and ∆n = 0.0001. Note that the
used approximation scheme preserves positivity of Y .

Denote

(51) Xt := logSt = X0 + µt− 1

2

∫ t

0

σ2(Ys)ds+

∫ t

0

σ(Ys)dWs,

where X0 := logS0, and consider the discretized process

(52)

X̂n
tnk

= X0 + µtnk −
1

2n

k−1∑
j=0

σ2(Ŷ ntnj ) +

k−1∑
j=0

σ(Ŷ ntnj )∆Wj

= X0 + µtnk −
1

2

∫ tnk

0

σ2(Ŷ ns )ds+

∫ tnk

0

σ(Ŷ ns )dWs, k = 1, ..., n,
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where ∆Wj = Wtnj+1
−Wtnj

.

Before going to the main theorem of the paper, let us prove several auxiliary results.

Theorem 5.2. Let p ≥ 1. Then, for all H ∈ (0, 1):

(53) sup
n≥1

sup
t∈[0,T ]

E(Ŷ nt )p <∞.

Remark 5.2. Note that approximations (45) (see Fig. 2) are correctly defined for H < 1/2 and Theorem

5.2 holds for an arbitrary Hurst parameter as well. However, for H < 1/2 behaviour of Ŷ n as n → ∞
remains obscure.

0.0 0.2 0.4 0.6 0.8 1.0

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

t

Y

Figure 2. Three sample trajectories of the process Ŷ n for H = 0.3, T = 1, κ = 1,
θ = 1, ν = 0.14, Y0 = 1 and ∆n = 0.0001. Note that the result of Theorem 5.2 holds
in the case of H < 1

2 as well, but the question of convergence of such approximations as
n→∞ remains obscure.

Corollary 5.1. Approximating processes Ŷ n have bounded exponential moments, i.e. for any x > 0 and
% < 2:

(54) sup
n≥1

E exp

{
x sup
t∈[0,T ]

(Ŷ nt )%

}
<∞.

Remark 5.3. Basing on Theorem 5.2, Corollary 5.1 and Assumption 2 (ii) and using the same argument
as in the proof of Theorem 3.5, it is easy to verify that for any m ∈ Z:

(55)

sup
n≥1

sup
t∈[0,T ]

E
(
Ŝnt

)m
<∞,

sup
n≥1

sup
t∈[0,T ]

E exp

{
m

(∫ t

0

σ(Ŷ ns )dWs −
1

2

∫ t

0

σ2(Ŷ ns )ds

)}
<∞.

Theorem 5.3. Let n ≥ 2 and conditions of Theorem 5.1 hold for p = 4. Then, under Assumption 2,
there exists a constant C such that

(56) E|XT − X̂n
T |2 ≤ C∆2rH

n ,
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(57) E|ZT − ẐnT |2 ≤ C∆2rH
n ,

where ẐnT :=
∫ T
0
σ−1(Ŷ nu )dṼu.

Lemma 5.1. Let n ≥ 2 and conditions of Theorem 5.1 hold for p = 32. Then, under Assumptions 2 and
3, there exists such CF > 0 that

(58) E

∣∣∣∣∣F (ST )

ST
− F (ŜnT )

ŜnT

∣∣∣∣∣
2

≤ CF∆H
n .

Theorem 5.4. Let n ≥ 2 and conditions of Theorem 5.1 for p = 32 hold. Then, under Assumptions 2
and 3,

(59)

∣∣∣∣∣Ef(ST )− E

[
F (ŜnT )

ŜnT

(
1 +

ẐnT
T

)]∣∣∣∣∣ ≤ C∆rH
n .

6. Simulations

In this section, we use the discretization scheme studied previously to estimate Ef(ST ) for several
payoff functions f . In all simulations we use T = 1, κ = 1, θ = 1 and ν = 0.14 to make sure that for all
H ∈ (1/2, 1) the following condition is satisfied for p = 32:

(60) 3p+ 1 ≤ 2κ

ν2HT 2H−1 ,

which is sufficient for Theorem 5.4 to hold true. For simplicity, we also consider everywhere the case
µ = 0.5, ρ = 0 and σ = 0.5 (x+ 0.01)

0.9
.

Remark 6.1. In our approach, we assume that the path of fractional Brownian motion is given in
advance, so that the used approximation scheme for Ŷ n is, in fact, a transformation of the latter. For
simulation of a fractional Brownian motion, we refer to [12, 34, 20]. In what follows, we generate a
fractional Brownian motion using the code presented in [21] and implemented in R in the package somebm.

In Tables 1–3 we present descriptive statistics of Monte-Carlo estimations of E
[
F (ŜnT )

ŜnT

(
1 +

ẐnT
T

)]
(and,

therefore, Ef(ST )) for different functions f and different partition sizes ∆n. On Fig. 3, (a)–(c), the data
are visualized in the form of box-and-whisker plots. In each case, 1000 Monte-Carlo estimates of the
expectation, calculated from samples of 1000 trials each, were analyzed.

Table 1. f(x) = (x−K)+, K = 1, σ(x) = 0.5(x+ 0.01)0.9, µ = 0.5, H = 0.7

n Mean Standard deviation Coefficient of variation Min. 1st Qu. Median 3rd Qu. Max.

100 0.7019 0.05628101 0.0802 0.5171 0.6630 0.7006 0.7380 0.8989
500 0.7040 0.05476103 0.0778 0.5406 0.6655 0.7025 0.7406 0.9305
1000 0.7004 0.05459163 0.0779 0.5463 0.6625 0.6978 0.7375 0.9344

Table 2. f(x) = 1[0.5,1](x), σ(x) = 0.5(x+ 0.01)0.9, µ = 0.5, H = 0.7

n Mean Standard deviation Coefficient of variation Min. 1st Qu. Median 3rd Qu. Max.

100 0.2126 0.01196734 0.0563 0.1790 0.2046 0.2131 0.2206 0.2518
500 0.2123 0.01266216 0.0596 0.1652 0.2037 0.2124 0.2206 0.2553
1000 0.2129 0.01272749 0.0598 0.1725 0.2042 0.2132 0.2210 0.2505

Table 3. f(x) = 1(0.5,∞)(x) + 1
2

∑6
k=2 1(0.5k,∞)(x), σ(x) = 0.5(x + 0.01)0.9, µ = 0.5,

H = 0.7

n Mean Standard deviation Coefficient of variation Min. 1st Qu. Median 3rd Qu. Max.

100 1.804 0.08973507 0.0497 1.476 1.748 1.803 1.864 2.066
500 1.806 0.08873267 0.0491 1.546 1.745 1.805 1.866 2.136
1000 1.806 0.09001699 0.0498 1.547 1.747 1.809 1.865 2.105

As we can see, simulations show relatively small coefficient of variation in all cases. Note that increasing
partition size does not lead to any significant changes in standard deviation of the estimates.
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Figure 3. Box-and-whisker plots of Monte-Carlo estimates of Ef(ST ) using smoothed

formula; in all cases T = 1, κ = 1, θ = 1, ν = 0.14, µ = 0.5, ρ = 0, σ = 0.5 (x+ 0.01)
0.9

,
H = 0.7; (a) f(x) = (x − 1)+, (b) f(x) = 1[0.5,1](x), (c) f(x) = 1(0.5,∞)(x) +
1
2

∑6
k=2 1(0.5k,∞)(x).

7. Proofs

Proof of Theorem 3.3. Denote α := 1 − β and let ε > 0 be fixed. By applying the chain rule, we
obtain:

(61)

(Yt + ε)α = (Yt0 + ε)α +

∫ t

t0

κα

2Yu(Yu + ε)1−α
du−

∫ t

t0

θαYu
2(Yu + ε)1−α

du

+

∫ t

t0

να

2(Yu + ε)1−α
dBHu .

It is clear from (3) that the process Y = {Yt, t ∈ [0, T ]} has trajectories that are δ-Hölder-continuous
for any δ ∈ (0, H), so the process

(62)
να

2(Yt + ε)1−α
, t ∈ [0, T ],

also has Hölder-continuous trajectories up to the order H. Therefore, the sum of Hölder exponents of the
integrator and integrand in the integral w.r.t. fractional Brownian motion in (61) exceeds 1. In this case
this integral is the pathwise limit of Riemann-Stieltjes integral sums (see, for example, [36]), coincides
with the pathwise Stratonovich integral and, by applying Theorem A.1, we can rewrite (61) as follows:

(63)

(Yt + ε)α = (Yt0 + ε)α +

∫ t

t0

κα

2Yu(Yu + ε)1−α
ds−

∫ t

t0

θαYu
2(Yu + ε)1−α

ds

+H(2H − 1)

∫ t

t0

∫ t

0

DH
s

[
να

2(Yu + ε)1−α

]
|u− s|2H−2dsdu

+

∫ t

t0

να

2(Yu + ε)1−α
δBHu ,
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where DH
s is the Malliavin derivative operator w.r.t. BH and

∫ t
t0

να
2(Y (s)+ε)1−α δB

H
s is the corresponding

Skorokhod integral.
Note that

(64)

DH
s Yu =DH

s

[
Y0 +

∫ u

0

κ

2Yv
dv − θ

2

∫ u

0

Yvdv +
ν

2
BHu

]
=

=−
∫ u

0

κDH
s Yv

2Y 2
v

dv − θ

2

∫ u

0

DH
s Yvdv +

ν

2
1[0,u](s)

=−
∫ u

0

(
κ

2Y 2
v

+
θ

2

)
DH
s Yvdv +

ν

2
1[0,u](s).

From this, it is easy to verify that

(65) DH
s Yu =

ν

2
exp

{
−
∫ u

s

(
κ

2Y 2
v

+
θ

2

)
dv

}
1[0,u](s),

so

(66)

DH
s

[
να

2(Yu + ε)1−α

]
= − να(1− α)

2(Yu + ε)2−α
DH
s Yu

= − ν2α(1− α)

4(Yu + ε)2−α
exp

{
−
∫ u

s

(
κ

2Y 2
v

+
θ

2

)
dv

}
1[0,u](s).

Taking into account (63) and (66), we can rewrite (61) in the following form:

(67)

(Yt + ε)α = (Yt0 + ε)α +

∫ t

t0

κα

2Yu(Yu + ε)1−α
ds−

∫ t

t0

θαYu
2(Yu + ε)1−α

ds

−
∫ t

t0

∫ u

0

ν2

2 α(1− α) exp
{
−
∫ u
s

(
κ

2Y 2
v

+ θ
2

)
dv
}
ϕ(u, s)ds

2(Yu + ε)2−α
du

+

∫ t

t0

να

2(Yu + ε)1−α
δBHu ,

where ϕ(u, s) := H(2H − 1)|u− s|2H−2.
Note that

(68)

∫ t

t0

κα

2Yu(Yu + ε)1−α
ds

−
∫ t

t0

∫ u

0

ν2

2 α(1− α) exp
{
−
∫ u
s

(
κ

2Y 2
v

+ θ
2

)
dv
}
ϕ(u, s)ds

2(Yu + ε)2−α
du

≥ α
∫ t

t0

κ− (1− α)
∫ u
0
ν2

2 exp
{
−
∫ u
s

(
κ

2Y 2
v

+ θ
2

)
dv
}
ϕ(u, s)ds

2(Yu + ε)2−α
du.

It is easy to verify that

(69)

0 ≥ −
∫ u

0

exp

{
−
∫ u

s

(
κ

2Y 2
v

+
θ

2

)
dv

}
ϕ(u, s)ds

≥ −H(2H − 1)

∫ u

0

|u− s|2H−2ds

≥ −HT 2H−1,

so

(70)

0 ≥ −(1− α)

∫ u

0

ν2

2
exp

{
−
∫ u

s

(
κ

2Y 2
v

+
θ

2

)
dv

}
ϕ(u, s)ds

≥ −(1− α)
ν2

2
HT 2H−1.

Hence, if α ∈
(
max{0, 1− κ

ν2HT 2H−1 }, 1
)
, i.e. when 0 ≥ −(1− α)ν

2

2 HT
2H−1 ≥ −κ2 ,

(71) κ− (1− α)

∫ u

0

ν2

2
exp

{
−
∫ u

s

(
κ

2Y 2
v

+
θ

2

)
dv

}
ϕ(u, s)ds ≥ κ

2
,



12APPROXIMATING EXPECTED VALUE OF AN OPTION WITH NON-LIPSCHITZ PAYOFF IN FRACTIONAL HESTON-TYPE MODEL

and

(72)

∫ t

t0

κα

2Yu(Yu + ε)1−α
ds

−
∫ t

t0

∫ u

0

ν2

2 α(1− α) exp
{
−
∫ u
s

(
κ

2Y 2
v

+ θ
2

)
dv
}
ϕ(u, s)ds

2(Yu + ε)2−α
du

≥ ακ

4

∫ t

t0

1

(Yu + ε)2−α
du.

Moreover,

(73) −
∫ t

t0

θαYu
2(Yu + ε)1−α

ds ≥ −θα
2

∫ t

t0

(Yu + ε)αdu.

Therefore, taking into account upper bounds (68), (72) and (73), it is obvious from (67) that

(74)

(Yt + ε)α ≥ (Yt0 + ε)α +
ακ

4

∫ t

t0

1

(Yu + ε)2−α
du− θα

2

∫ t

t0

(Yu + ε)αdu

+

∫ t

t0

να

2(Yu + ε)1−α
δBHu ,

or

(75)

∫ t

t0

1

(Yu + ε)2−α
du ≤ 4

κα
(Yt + ε)α − 4

κα
(Yt0 + ε)α +

2θ

κ

∫ t

t0

(Yu + ε)αdu

− 4

κα

∫ t

t0

να

2(Yu + ε)1−α
δBHu .

Since the expectation of the Skorokhod integral is zero, by letting ε→ 0 we obtain that

(76) E
[∫ t

t0

1

Y 2−α
u

du

]
≤ 4

κα
E(Y αt − Y αt0 ) +

2θ

κ

∫ t

t0

EY αu du.

Finiteness of the right-hand side of (76) follows from Theorem 3.1. �

Proof of Theorem 3.4. From (3), Hölder’s and Jensen’s inequalities it is clear that

(77)

E|Yt − Ys|1+β = E
∣∣∣∣∫ t

s

κ

2Yu
du− θ

2

∫ t

s

Yudu+
ν

2
(BHt −BHs )

∣∣∣∣1+β
≤ 3β

((κ
2

)1+β
E
∣∣∣∣∫ t

s

1

Yu
du

∣∣∣∣1+β

+

(
θ

2

)1+β

E
∣∣∣∣∫ t

s

Yudu

∣∣∣∣1+β +
(ν

2

)1+β
E
∣∣BHt −BHs ∣∣1+β

)

≤ C̃1(t− s)βE
∫ t

s

1

Y 1+β
u

du+ C̃2(t− s)βE
∫ t

s

Y 1+β
u du+ C3|t− s|(1+β)H ,

where

(78)

C̃1 := 3β
(κ

2

)1+β
, C̃2 := 3β

(
θ

2

)1+β

,

C3 := (3
√

2)β
√

2

π
Γ

(
1 +

β

2

)(ν
2

)1+β
.

Note that form of C3 follows from the fact that BHt −BHs ∼ N (0, |t− s|2H).
From Theorem 3.1 it is obvious that

(79) C̃2(t− s)βE
∫ t

s

Y 1+β
u du ≤ C̃2 sup

u∈[0,T ]

E
[
Y 1+β
u

]
(t− s)1+β =: C2(t− s)1+β .

Finally, from Theorem 3.3,

(80) C̃1(t− s)βE
∫ t

s

1

Y 1+β
u

du < C1(t− s)β ,

where C1 = C̃1E
∫ t
s

1

Y 1+β
u

du < C1(t− s)β .
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The statement of the Theorem now follows from (77), (79) and (80) as well as the fact that from
condition β < 1 it is easy to verify that for any H ∈ (1/2, 1):

(81) β < (1 + β)H.

�

Proof of Theorem 3.5. 1. From Theorem 3.1, for all % ∈ [0, 2):

(82) sup
t∈[0,T ]

|Y (t)|% ≤ C1 + C2 sup
t∈[0,T ]

|BHt |%,

and, due to [14], for all x > 0 and % ∈ [0, 2):

(83) E exp

{
x sup
t∈[0,T ]

|BHt |%
}
<∞.

Hence,

(84) exp

{
x sup
t∈[0,T ]

|Yt|%
}
≤ exp

{
C1x+ C2x sup

t∈[0,T ]

|BHt |%
}
<∞.

2. In order to show that the representation (29) indeed holds, it is sufficient to prove that the integrals∫ t
0
σ(Ys)dWs and

∫ t
0
σ(Ys)SsdWs are well-defined, while the form of the representation can be obtained

straightforwardly.
Note that (see, for example, [28]) for all p > 0

(85) E sup
s∈[0,T ]

|BHs |p <∞,

so, due to item (ii) from Assumption 2 and Theorem 3.1,

(86)

∫ t

0

Eσ2(Ys)ds ≤ C2
σ

∫ t

0

E(1 + |Ys|q)2ds ≤ 2C2
σ

∫ t

0

E(1 + |Ys|2q)ds <∞,

and the integral
∫ t
0
σ(Ys)dWs is well-defined.

Now consider the integral
∫ t
0
σ(Ys)SsdWs. As

(87)

∫ T

0

E
[
σ2(Ys)S

2
s

]
ds ≤

∫ T

0

(
Eσ4(Ys)

) 1
2
(
ES4

s

) 1
2 ds

≤ T sup
s∈[0,T ]

(
Eσ4(Ys)

) 1
2 sup
s∈[0,T ]

(
ES4

s

) 1
2 ,

it is sufficient to check two conditions:

(88) sup
s∈[0,T ]

(
Eσ4(Ys)

) 1
2 <∞, sup

s∈[0,T ]

(
ES4

s

) 1
2 <∞.

Using Theorem 3.1 and Assumption 2, (ii), it is easy to verify that

(89)

sup
s∈[0,T ]

(
Eσ4(Ys)

) 1
2 ≤ sup

s∈[0,T ]

(
C4
σE(1 + |Ys|q)4

) 1
2

≤ sup
s∈[0,T ]

(
8C4

σE(1 + |Ys|4q)
) 1

2 ≤

(
8C4

σ + 8C4
σ sup
s∈[0,T ]

E|Ys|4q
) 1

2

<∞.

Moreover, from (28), for any x > 0:

(90)

E exp

{
x

∫ t

0

σ2(Ys)ds

}
≤ E exp

{
2xCσ

∫ t

0

(1 + |Ys|2q)ds
}

≤ CE exp

{
2xCσT sup

s∈[0,T ]

|Ys|2q
}
<∞,

hence, for all n ∈ Z, by putting x := 4n2

2 , we obtain the Novikov’s condition for the process −2nσ(Yt),
t ∈ [0, T ].

Consequently,

(91) E exp

{
2n

∫ t

0

σ(Ys)dWs − 2n2
∫ t

0

σ2(Ys)ds

}
= 1,
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and so

(92)

sup
t∈[0,T ]

ESnt ≤ C sup
t∈[0,T ]

E exp

{
n

∫ t

0

σ(Ys)dWs −
n

2

∫ t

0

σ2(Ys)ds

}
= C sup

t∈[0,T ]

E
[
exp

{
n

∫ t

0

σ(Ys)dWs − n2
∫ t

0

σ2(Ys)ds

}
exp

{
(n2 − n

2
)

∫ t

0

σ2(Ys)ds

}]

≤ C sup
t∈[0,T ]

[(
E exp

{
2n

∫ t

0

σ(Ys)dWs − n
∫ t

0

σ2(Ys)ds

}) 1
2

×

×
(
E exp

{
(2n2 − n)

∫ t

0

σ2(Ys)ds

}) 1
2

]

= C sup
t∈[0,T ]

(
E exp

{
(2n2 − n)

∫ t

0

σ2(Ys)ds

}) 1
2

<∞

due to (90).
Therefore, from (87), (89) and (92),

(93)

∫ T

0

E
[
σ2(Ys)S

2
s

]
ds <∞

and so the integral
∫ t
0
σ(Ys)SsdWs is well-defined. �

Proof of Theorem 3.6. The proof is similar to the proof of Theorem 4 in [6].

Proof of Lemma 4.1. Item (i) can be found in [6]. In particular, DṼ
u Yt = 0 in (ii) follows from

independence of Y and V .
Applying stochastic derivative operator to both parts of the integral form of (3), we get

(94)

DV
u Yt =

1

2

∫ t

0

DV
u

(
κ

Ys
− θYs

)
ds+ νDV

u B
H
t

= −1

2

t∫
0

(
κ

Y 2
s

+ θ

)
DV
u Ysds+ νK(t, u)1[0,t](u)

= −
t∫

0

h(s)DV
u Ysds+ νK(t, u)1[0,t](u).

Application of the chain rule with the function F (x) = 1/x can be justified by the same argument as
in Remark 10 of [6], since F is locally Lipschitz on (0,∞) and both σ and σ′ have polynomial growth.

According to [30], Theorem 2, Y does not hit zero a.s. Therefore h is well defined a.s., and (94) means
that for a fixed u, the process {Zt, t ∈ [0, t]} defined by Zt := DV

u Yt satisfies a random linear integral
equation of the form

(95) Zt = −
t∫

0

h(s)Zsds+ νK(t, u)1[0,t](u).

This is a Volterra equation, and its solution is given by

(96) Zt = ν

K(t, u)−
t∫

u

K(s, u)h(s) exp

−
t∫
s

h(v)dv

 ds

1[0,t](u).

Note that K is differentiable in the first argument ( ∂dtK(t, s) is well defined for t > s), so (96) can be
checked by substituting in (95) and taking derivatives of both sides.

Both derivatives in (iii) are obtained by direct differentiation following the Malliavin derivative rules,

see e.g. [27], Proposition 3.4. Since Y is independent of Ṽ ,

(97) DṼ
u Xt =

√
1− ρ2DṼ

u

∫ t

0

σ(Ys)dṼs =
√

1− ρ2σ(Yu)1[0,t](u).

To find DV
u Xt, we note that
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(98)

DV
u Xt = DV

u

[
−1

2

∫ t

0

σ2(Ys)ds+
√

1− ρ2
∫ t

0

σ(Ys)dṼs + ρ

∫ t

0

σ(Ys)dVs

]
= −

∫ t

0

σ(Ys)σ
′(Ys)D

V
u Ysds+

√
1− ρ2

∫ t

0

σ′(Ys)D
V
u YsdṼs

+ρ

∫ t

0

σ′(Ys)D
V
u YsdVs + ρσ(Yu)1[0,t](u)

=

(
−
∫ t

u

σ(Ys)σ
′(Ys)D

V
u Ysds+

∫ t

u

σ′(Ys)D
V
u YsdWs + ρσ(Yu)

)
1[0,t](u).

�

Proof of Theorem 4.1. The result can be obtained by following the proof of Lemma 11 in [6], taking
into account Lemma 4.1 and relation (92). �

Proof of Theorem 5.2. First, note that for any fixed n and k = 0, 1, ..., n:

(99)

(Ŷ ntnk+1
)p =

 Ŷ ntnk + ν
2∆BHk+1 +

√
(Ŷ ntnk

+ ν
2∆BHk+1)2 + κ∆n(2 + θ∆n)

2 + θ∆n

p

≤ C
(

(Ŷ ntnk )p +
(ν

2

)p
|∆BHk+1|p +

(
(Ŷ ntnk +

ν

2
∆BHk+1)2 + κ∆n(2 + θ∆n)

) p
2

)
≤ C

(
(Ŷ ntnk )p + |∆BHk+1|p + |Ŷ ntnk +

ν

2
∆BHk+1|p + (κ∆n(2 + θ∆n))

p
2

)
≤ C

(
1 + (Ŷ ntnk )p + |∆BHk+1|p

)
≤ C

(
1 + (Ŷ ntnk )p + sup

t∈[0,T ]

|BHt |p
)
.

By continuing calculations above recurrently and taking into account that Ŷ ntn0 = Y0, it is easy to see

that there exists a constant Cn such that

(100) sup
t∈[0,T ]

(Ŷ nt )p = max
k=0,...,n

(Ŷ ntnk )p < Cn(1 + sup
t∈[0,T ]

|BHt |p).

Moreover, for any fixed N there exists such constant CN that

(101) sup
1≤n≤N

sup
t∈[0,T ]

E(Ŷ nt )p = max
n=1,...,N

max
k=0,...,n

E(Ŷ ntnk )p < CN (1 + sup
t∈[0,T ]

|BHt |p).

Let us prove that there exists such C > 0 (which does not depend on n) that

(102) sup
n≥1

sup
t∈[0,T ]

(Ŷ nt )p < C(1 + sup
t∈[0,T ]

|BHt |p).

From calculations above, it will be enough to show that, for some N ≥ 1,

(103) sup
n>N

sup
t∈[0,T ]

(Ŷ nt )p < C(1 + sup
t∈[0,T ]

|BHt |p).

Let n > 2(8θ)pT p−1 be fixed. Consider the last moment of staying above level Y0/2, i.e.

(104) τ1 := max

{
k = 1, ..., n | ∀tnl ≤ tnk : Ŷ ntnl ≥

Y0
2

}
.

Let us prove that for any point of the partition tnk , k = 1, ..., n, the following inequality holds:

(105)

(Ŷ ntnk )p ≤

(
(4Y0)p +

(
8κT

Y0

)p
+ (8ν)p sup

s∈[0,T ]

|BHs |p
)

+ (8θ)pT p−1
k∑
j=1

(Ŷ ntnj )p∆n.

In order to do that, we will consider cases tnk ≤ tnτ1 and tnk > tnτ1 separately.
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Step 1. Assume that tnk ≤ tnτ1 . Then, due to representation (46),

(106)

(Ŷ ntnk )p =

Y0 +
1

2

k∑
j=1

 κ

Ŷ ntnj

− θŶ ntnj

∆n +
ν

2
BHtnk

p

≤ 4p−1

Y p0 +

1

2

k∑
j=1

κ

Ŷ ntnj

∆n

p

+

θ
2

k∑
j=1

Ŷ ntnj ∆n

p

+
(ν

2

)p
|BHtnk |

p

 .

Note that for all tnk ≤ tnτ1 :

(107)

1

2

k∑
j=1

κ

Ŷ ntnj

∆n

p

≤

 k∑
j=1

κ

Y0
∆n

p

≤
(
κT

Y0

)p
.

Moreover, from Jensen’s inequality,

(108)

θ
2

k∑
j=1

Ŷ ntnj ∆n

p

≤
(
θ

2

)p
T p−1

k∑
j=1

(Ŷ ntnj )p∆n.

Finally,

(109)
(ν

2

)p
|BHtnk |

p ≤
(ν

2

)p
sup

s∈[0,T ]

|BHs |p.

Hence, for all tnk ≤ tnτ1 :

(110)

(Ŷ ntnk )p ≤ 4p−1

Y p0 +

(
κT

Y0

)p
+

(
θ

2

)p
T p−1

k∑
j=1

(Ŷ ntnj )p∆n +
(ν

2

)p
sup

s∈[0,T ]

|BHs |p


≤

(
(4Y0)p +

(
8κT

Y0

)p
+ (8ν)p sup

s∈[0,T ]

|BHs |p
)

+ (8θ)pT p−1
k∑
j=1

(Ŷ ntnj )p∆n.

Step 2. Assume that τ1 6= n, i.e. there are points of partition on the interval (tnτ1 , T ]. From definition

of τ1, Ŷ ntnτ1
≥ Y0

2 and for all points of the partition tnk such that tnk ∈ (tnτ1 , T ]:

(111)

{
l = 1, ..., n | tnl ∈ (tnτ1 , t

n
k ], Ŷ ntnl <

Y0
2

}
6= ∅.

Let tnk ∈ (tnτ1 , T ] be fixed and denote

(112) τk2 := max

{
l = 1, ..., n | tnl ∈ (tnτ1 , t

n
k ], Ŷ ntnl <

Y0
2

}
.

It is obvious that tnτ1 < tn
τk2
≤ tnk and Ŷ ntn

τk2

< Y0

2 , and

(113)

(Ŷ ntnk )p = (Ŷ ntnk − Ŷ
n
tn
τk2

+ Ŷ ntn
τk2

)p ≤ 2p−1
(
|Ŷ ntnk − Ŷ

n
tn
τk2

|p + (Ŷ ntn
τk2

)p
)

≤ 2p−1
(
|Ŷ ntnk − Ŷ

n
tn
τk2

|p +

(
Y0
2

)p)
≤ 2p−1|Ŷ ntnk − Ŷ

n
tn
τk2

|p + Y p0 .

In addition, if tn
τk2

= tnk ,

(114) |Ŷ ntnk − Ŷ
n
tn
τk2

|p = 0,

and if tn
τk2
< tnk ,

(115)

∣∣∣∣Ŷ ntnk − Ŷ ntnτk2
∣∣∣∣p =

∣∣∣∣∣∣12
k∑

j=τk2 +1

 κ

Ŷ ntnj

− θŶ ntnj

∆n +
ν

2

(
BHtnk −B

H
tn
τk2

)∣∣∣∣∣∣
p

≤ 4p−1

1

2

k∑
j=τk2 +1

κ

Ŷ ntnj

∆n

p

+

θ
2

k∑
j=τk2 +1

Ŷ ntnj ∆n

p

+
(ν

2

)p
|BHtnk |

p +
(ν

2

)p
|BHtn

τk2

|p
 .
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From definition of τk2 , for all points of the partition tnl ∈ (tn
τk2
, tnk ] it holds that Ŷ ntnk ≥

Y0

2 , so

(116)

1

2

k∑
j=τk2 +1

κ

Ŷ ntnj

∆n

p

≤
(
κT

Y0

)p
.

Furthermore,

(117)

θ
2

k∑
j=τk2 +1

Ŷ ntnj ∆n

p

≤
(
θ

2

)p
T p−1

k∑
j=1

(Ŷ ntnj )p∆n,

and

(118)
(ν

2

)p
|BHtnk |

p +
(ν

2

)p
|BHtn

τk2

|p ≤ 2
(ν

2

)p
sup

s∈[0,T ]

|BHs |p.

Hence,

(119)

∣∣∣∣Ŷ ntnk − Ŷ ntnτk2
∣∣∣∣p ≤

≤ 4p−1

(κT
Y0

)p
+

(
θ

2

)p
T p−1

k∑
j=1

(Ŷ ntnj )p∆n + 2
(ν

2

)p
sup

s∈[0,T ]

|BHs |p
 .

Finally, from (113) and (119),

(120)

(Ŷ ntnk )p ≤ 8p−1

(κT
Y0

)p
+

(
θ

2

)p
T p−1

k∑
j=1

(Ŷ ntnj )p∆n + 2
(ν

2

)p
sup

s∈[0,T ]

|BHs |p
+ Y p0

≤

(
(4Y0)p +

(
8κT

Y0

)p
+ (8ν)p sup

s∈[0,T ]

|BHs |p
)

+ (8θ)pT p−1
k∑
j=1

(Ŷ ntnj )p∆n.

Therefore, (105) indeed holds for any point tnk of the partition.
Step 3. As n > 2(8θ)pT p−1,

1

2
≤ 1− (8θ)pT p−1∆n ≤ 1,

therefore, as, due to (105),

(121)

(
1− (8θ)pT p−1∆n

)
(Ŷ ntnk )p

≤

(
(4Y0)p +

(
8κT

Y0

)p
+ (8ν)p sup

s∈[0,T ]

|BHs |p
)

+ (8θ)pT p−1
k−1∑
j=1

(Ŷ ntnj )p∆n,

we have

(122)

(Ŷ ntnk )p ≤ 2

(
(4Y0)p +

(
8κT

Y0

)p
+ (8ν)p sup

s∈[0,T ]

|BHs |p
)

+ 2(8θ)pT p−1
k−1∑
j=1

(Ŷ ntnj )p∆n.

Using the discrete version of the Grönwall’s lemma, we obtain:

(123) (Ŷ ntnk )p ≤ 2

(
(4Y0)p +

(
8κT

Y0

)p
+ (8ν)p sup

s∈[0,T ]

|BHs |p
)
e2(8θT )p ,

i.e., taking into account that the right-hand side does not depend on n and recalling the remarks in the
beginning of the proof, there exists such C > 0 that

(124) sup
n≥0

sup
t∈[0,T ]

(Ŷ nt )p < C(1 + sup
t∈[0,T ]

|BHt |p).

Now the claim of the Theorem follows from the fact that the right-hand side of (124) does not depend
on n and that (see, for example, [28])

(125) E sup
s∈[0,T ]

|BHs |p <∞.

�
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Proof of Corollary 5.1. From (124) it follows that there exists such C > 0 that

(126) sup
n≥0

sup
t∈[0,T ]

(Ŷ nt )% < C(1 + sup
t∈[0,T ]

|BHt |%).

The rest of the proof is similar to Theorem 3.5, 1. �

Proof of Theorem 5.3. We shall proceed as in proof of Lemma 14, [6].
Using Hölder’s inequality, we write:

(127)

E|XT − X̂n
T |2

= E

∣∣∣∣∣−1

2

∫ T

0

σ2(Ys)ds+

∫ T

0

σ(Ys)dWs +
1

2

∫ T

0

σ2(Ŷ ns )ds−
∫ T

0

σ(Ŷ ns )dWs

∣∣∣∣∣
2

≤ C

E

∣∣∣∣∣−1

2

∫ T

0

(σ2(Ys)− σ2(Ŷ ns ))ds

∣∣∣∣∣
2

+ E

∣∣∣∣∣
∫ T

0

(σ(Ys)− σ(Ŷ ns ))dWs

∣∣∣∣∣
2


≤ C

(∫ T

0

E[σ2(Ys)− σ2(Ŷ ns )]2ds+

∫ T

0

E[σ(Ys)− σ(Ŷ ns )]2ds

)

= C

(∫ T

0

E[(σ(Ys)− σ(Ŷ ns ))(σ(Ys) + σ(Ŷ ns ))]2ds+

∫ T

0

E[σ(Ys)− σ(Ŷ ns )]2ds

)
.

From Assumption 2 (iii), Jensen’s inequality and Theorem 5.1,

(128)

∫ T

0

E[σ(Ys)− σ(Ŷ ns )]2ds ≤ C2
σ

∫ T

0

E[(Ys − Ŷ ns )2r]ds

≤ C2
σ

∫ T

0

(
E[(Ys − Ŷ ns )4]

) r
2

ds

≤ C∆2rH
n .

Moreover, Assumption 2, (ii) and (iii), implies that

(129)

E
[(
σ(Ys)− σ(Ŷ ns )

)(
σ(Ys) + σ(Ŷ ns )

)]2
≤ C2

σE
[
(Ys − Ŷ ns )2r

(
2σ2(Ys) + 2σ2(Ŷ ns )

)]
≤ CE

[
(Ys − Ŷ ns )2r

(
(1 + Y qs )2 + (1 + (Ŷ ns )q)2

)]
≤ CE

[
(Ys − Ŷ ns )2r

(
1 + Y 2q

s + (Ŷ ns )2q
)]

≤ C
(
E(Ys − Ŷ ns )4r

) 1
2
(
E
[
1 + Y 4q

s + (Ŷ ns )4q
]) 1

2

.

From Theorem 5.1,

(130)
(
E(Ys − Ŷ ns )4r

) 1
2 ≤

(
E(Ys − Ŷ ns )4

) r
2 ≤ C∆2rH

n ,

and, from Theorems 3.1 and 5.2,

(131)
(
E
[
1 + Y 4q

s + (Ŷ ns )4q
])1/2

<∞.

Therefore, taking into account bounds above, there exists a constant C > 0 such that

(132) E|XT − X̂n
T |2 ≤ C∆2rH .

Now, let us prove (57). Taking into account Assumption 2 (i),

(133)

∣∣∣∣ 1

σ(x)
− 1

σ(y)

∣∣∣∣ =
|σ(x)− σ(y)|
σ(x)σ(y)

≤ |σ(x)− σ(y)|
σ2
min

,
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so, from Assumption 2 (iii),

(134)

E(ZT − ẐnT )2 =

∫ T

0

E

(
1

σ(Ys)
− 1

σ(Ŷ ns )

)2

ds

≤ 1

σ2
min

Cσ

∫ T

0

E(Ys − Ŷ ns )2rds

≤ C
∫ T

0

(
E(Ys − Ŷ ns )4

) r
2

ds

≤ C∆2rH
n .

�

Proof of Lemma 5.1. It is clear that

(135) E

∣∣∣∣∣F (ST )

ST
− F (ŜnT )

ŜnT

∣∣∣∣∣
2

≤ 2E

∣∣∣∣∣F (ST )

ST
− F (ST )

ŜnT

∣∣∣∣∣
2

+ 2E

∣∣∣∣∣F (ST )

ŜnT
− F (ŜnT )

ŜnT

∣∣∣∣∣
2

.

Now we shall estimate the right-hand side of (135) term by term.

(136) E

∣∣∣∣∣F (ST )

(
1

ST
− 1

ŜnT

)∣∣∣∣∣
2

≤

E (F (ST ))
4 E

(
1

ST
− 1

ŜnT

)4
 1

2

.

From Assumption 3 (i), both f and F are of polynomial growth, therefore, due to (92),

(137) E (F (ST ))
4
<∞.

Furthermore, using sequentially the inequalities

(138)
|ex − ey| ≤ (ex + ey)|x− y|, x, y ∈ R,

(x+ y)2n ≤ C(n)(x2n + y2n), x, y ∈ R, n ∈ N.

and Hölder’s inequality, we obtain that

(139)

E

(
1

ST
− 1

ŜnT

)4

=
1

S4
0e

4µt
E
[
e

1
2

∫ T
0
σ2(Ys)ds−

∫ T
0
σ(Ys)dWs − e 1

2

∫ T
0
σ2(Ŷ ns )ds−

∫ T
0
σ(Ŷ ns )dWs

]4
≤ CE

[(
e

1
2

∫ T
0
σ2(Ys)ds−

∫ T
0
σ(Ys)dWs + e

1
2

∫ T
0
σ2(Ŷ ns )ds−

∫ T
0
σ(Ŷ ns )dWs

)4
×
(

1

2

∫ T

0

σ2(Ys)ds−
∫ T

0

σ(Ys)dWs −
1

2

∫ T

0

σ2(Ŷ ns )ds+

∫ T

0

σ(Ŷ ns )dWs

)4
]

≤ CE

[(
e2

∫ T
0
σ2(Ys)ds−4

∫ T
0
σ(Ys)dWs + e2

∫ T
0
σ2(Ŷ ns )ds−4

∫ T
0
σ(Ŷ ns )dWs

)
×
(

1

2

∫ T

0

σ2(Ys)ds−
∫ T

0

σ(Ys)dWs −
1

2

∫ T

0

σ2(Ŷ ns )ds+

∫ T

0

σ(Ŷ ns )dWs

)4
]

≤ C
(
E
[
e4

∫ T
0
σ2(Ys)ds−8

∫ T
0
σ(Ys)dWs + e4

∫ T
0
σ2(Ŷ ns )ds−8

∫ T
0
σ(Ŷ ns )dWs

]) 1
2

×

(
E

[(
1

2

∫ T

0

σ2(Ys)ds−
∫ T

0

σ(Ys)dWs −
1

2

∫ T

0

σ2(Ŷ ns )ds+

∫ T

0

σ(Ŷ ns )dWs

)8
]) 1

2

.

Next, from (91) and Remark 5.3 it follows that

(140)
E
[
e4

∫ T
0
σ2(Ys)ds−8

∫ T
0
σ(Ys)dWs

]
<∞,

E
[
e4

∫ T
0
σ2(Ŷ ns )ds−8

∫ T
0
σ(Ŷ ns )dWs

]
<∞,



20APPROXIMATING EXPECTED VALUE OF AN OPTION WITH NON-LIPSCHITZ PAYOFF IN FRACTIONAL HESTON-TYPE MODEL

so, using this together with Hölder and Burkholder-Davis-Gundy inequalities, we continue the chain as
follows:

E

(
1

ST
− 1

ŜnT

)4

≤ C

(
E

[(
1

2

∫ T

0

σ2(Ys)ds−
∫ T

0

σ(Ys)dWs −
1

2

∫ T

0

σ2(Ŷ ns )ds+

∫ T

0

σ(Ŷ ns )dWs

)8
]) 1

2

≤ C

(
E

[(∫ T

0

σ2(Ys)ds−
∫ T

0

σ2(Ŷ ns )ds

)8
]

+ E

[(∫ T

0

σ(Ys)dWs −
∫ T

0

σ(Ŷ ns )dWs

)8
]) 1

2

(141)

≤ C

E

[∫ T

0

(
σ2(Ys)− σ2(Ŷ ns )

)8
ds

]
+ E

(∫ T

0

(
σ(Ys)− σ(Ŷ ns )

)2
ds

)4
 1

2

≤ C

(∫ T

0

E
((
σ(Ys)− σ(Ŷ ns )

)(
σ(Ys) + σ(Ŷ ns )

))8
ds

+

∫ T

0

E
(
σ(Ys)− σ(Ŷ ns )

)8
ds

) 1
2

.

By applying Assumption 2, (ii) and (iii),

(142)

∫ T

0

E
((
σ(Ys)− σ(Ŷ ns )

)(
σ(Ys) + σ(Ŷ ns )

))8
ds

≤ C
∫ T

0

E
[(
Ys − Ŷ ns

)8r (
1 + Y qs + (Ŷ ns )q

)8]
ds

≤ C
∫ T

0

(
E
[(
Ys − Ŷ ns

)16r]) 1
2 (

E
[
1 + Y 16q

s + (Ŷ ns )16q
]) 1

2

ds

and

(143)

∫ T

0

E
(
σ(Ys)− σ(Ŷ ns )

)8
ds ≤ C

∫ T

0

E
(
Ys − Ŷ ns

)8r
ds.

From Theorems 3.1 and 5.2,

(144) sup
n≥1

sup
t∈[0,T ]

E
[
1 + Y 16q

s + (Ŷ ns )16q
]
<∞,

and, according to Theorem 5.1,

(145)

∫ T

0

(
E
[(
Ys − Ŷ ns

)16r]) 1
2

ds ≤ C∆16rH
n∫ T

0

E
(
Ys − Ŷ ns

)8r
ds ≤ C∆8rH

n ,

hence

(146) E

(
1

ST
− 1

ŜnT

)4

≤ C∆4rH
n ≤ C∆2rH

n .

Now, let us move to the second term in the right-hand side of (135).

(147) E

∣∣∣∣∣F (ST )

ŜnT
− F (ŜnT )

ŜnT

∣∣∣∣∣
2

≤

(
E

[
1

(ŜnT )4

]) 1
2 (

E
(
F (ST )− F (ŜnT )

)4) 1
2

.

Due to Remark 5.3,

E

[
1

(ŜnT )4

]
<∞,
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and, from Assumption 3 (i),

(148)

(
E
(
F (ST )− F (ŜnT )

)4) 1
2

=

E

(∫ ST∨ŜnT

ST∧ŜnT
f(x)dx

)4
 1

2

≤ C
(
E
[
(ST − ŜnT )4(1 + SpT + (ŜnT )p)4

]) 1
2

≤ C
(
E((ST − ŜnT )8E(1 + SpT + (ŜnT )p)8

) 1
4

.

According to (92) and Remark 5.3,

E(1 + SpT + (ŜnT )p)8 <∞,

so

E

∣∣∣∣∣F (ST )

ŜnT
− F (ŜnT )

ŜnT

∣∣∣∣∣
2

≤ C
(
E((ST − ŜnT )8

) 1
4

.

To get the final result, we can proceed just as in the upper bound for the first term in the right-hand
side of (135). Thus

(149)

E

∣∣∣∣∣F (ST )

ŜnT
− F (ŜnT )

ŜnT

∣∣∣∣∣
2

≤ C

(∫ T

0

((
E|Ys − Ŷ ns |32r

) 1
2

+ E|Ys − Ŷ ns |16r
)
ds

) 1
8

≤ C∆2rH
n .

Relations (146) and (149) together with (135) complete the proof. �

Proof of Theorem 5.4. According to Theorem 4.1,

(150)

∣∣∣∣∣Ef(ST )− E

[
F (ŜnT )

ŜnT

(
1 +

ẐnT
T

)]∣∣∣∣∣
=

∣∣∣∣∣E
[
F (ST )

ST

(
1 +

ZT
T

)]
− E

[
F (ŜnT )

ŜnT

(
1 +

ẐnT
T

)]∣∣∣∣∣
≤ 1

T
E
[∣∣∣∣F (ST )

ST
(ZT − ẐnT )

∣∣∣∣]+ E

[∣∣∣∣∣
(

1 +
ẐnT
T

)(
F (ST )

ST
− F (ŜnT )

ŜnT

)∣∣∣∣∣
]

≤ 1

T

(
E
(
F (ST )

ST

)2

E(ZT − ẐnT )2

) 1
2

+

E

(
1 +

ẐnT
T

)2

E

(
F (ST )

ST
− F (ŜnT )

ŜnT

)2
 1

2

.

According to Theorem 3.5, Assumption 3 (i) and the Cauchy-Schwartz inequality, E
(
F (ST )
ST

)2
< ∞.

Next,

(151) sup
n≥1

E(ZnT )2 <
T

σ2
min

.

The proof now follows from Theorem 5.3 and Lemma 5.1. �

Appendix A. Necessary results from Malliavin Calculus

In this section, we recall several main definitions and results related to Malliavin calculus. For more
details, we refer to [26].

Let BH = {BHt , t ∈ [0, T ]} be a fractional Brownian motion with H ∈ [1/2, 1) on the standard
probability space {Ω,F ,F = {Ft}t∈[0,T ],P}, where Ω = C([0, T ],R), i.e. a centered Gaussian process
that starts in zero and has a covariance function of the form

(152) RH(t, s) := EBHt BHs =
1

2
(t2H + s2H − |t− s|2H), s, t ∈ [0, T ].
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Note that the covariance function of the fractional Brownian motion has the form

(153) RH(t, s) =

{∫ T
0
1[0,t](u)1[0,s](u)du, H = 1

2 ,∫ t
0

∫ s
0
ϕ(τ, u)dudτ, H > 1

2 ,

where ϕ(τ, u) := H(2H − 1)|u− τ |2H−2.
On the set of all step functions on [0, T ], define an inner product that acts as follows for the indicator

functions:

(154) 〈1[0,t],1[0,s]〉H := RH(t, s).

Denote H the Hilbert space that is the closure of the space of all step functions on [0, T ] with respect
to 〈·, ·〉H.

Remark A.1. If H = 1/2, H coincides with L2([0, T ]).

The mapping 1[0,t] → BHt can be extended to a linear isometry from H onto a closed subspace H1 of

L2(Ω,F ,P) associated with BH . We will denote this isometry by φ→ BHφ . In this case, for all φ, ψ ∈ H:

(155) 〈φ, ψ〉H = EBHφ BHψ .
Denote by C∞p (Rn) the set of all infinitely differentiable functions with the derivatives of at most

polynomial growth at infinity.

Definition A.1. Random variables ξ of the form

(156) ξ = h(BHφ1
, ..., BHφn),

where h ∈ C∞p (Rn), φ1, ..., φn ∈ H, n ≥ 1, are called smooth.

Denote S the set of all smooth random variables.

Definition A.2. Let ξ ∈ S. The stochastic or Malliavin derivative of a smooth random variable ξ of the
form (156) is the H-valued random variable given by

(157) Dξ =

n∑
i=1

∂h

∂xi
(BHφ1

, ..., BHφn)φi.

Remark A.2. If φi = 1[0,ti], ti ∈ [0, T ], i = 1, ..., n, then BH
1[0,ti]

= BHti and the real-valued random

variable of the form

(158) Dtξ =

n∑
i=1

∂h

∂xi
(BHt1 , ..., B

H
tn)1[0,ti](t), t ∈ [0, T ],

is called the stochastic derivative of ξ at time t.

According to Proposition 1.2.1 from [26], D as an operator from the subset of Lp(Ω) to Lp(Ω,H) is
closable for any p ≥ 1 and we shall use the same notation D for the closure.

Definition A.3. Let p ≥ 1. The domain D1,p of D is the closure of the class of smooth random variables
S with respect to the norm

(159) ‖ξ‖1,p := (E|ξ|p + E‖Dξ‖pH)
1/p

.

Remark A.3. For p = 2, the space D1,2 is the Hilbert space with respect to the inner product

(160) 〈ξ, η〉1,2 = Eξη + E [〈Dξ,Dη〉H] .

Proposition A.1. ([26], Proposition 1.2.3) Let F : Rm → R be a continuously differentiable function
with bounded partial derivatives, and fix p ≥ 1. Suppose that ξ = (ξ1, ..., ξm) is a random vector whose
components belong to the space D1,p. Then F (ξ) ∈ D1,p and

(161) DF (ξ) =

m∑
i=1

∂F (ξ)

∂xi
Dξi.

Remark A.4. In what follows, we will consider the case p = 2.

Definition A.4. The divergence or Skorokhod operator δ is the adjoint of the operator D, i.e. an
unbounded operator on L2(Ω,H) with values in L2(Ω) such that:

(i) the domain of δ, denoted by Dom δ, is the set of H-valued square integrable random variables
ζ ∈ L2(Ω,H) such that for all ξ ∈ D1,2:

(162) |E [〈Dξ, ζ〉H]| ≤ Cζ(Eξ2)1/2,

where Cζ is some constant depending on ζ;
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(ii) if ζ belongs to Dom δ, then δ(ζ) is the element of L2(Ω) characterized by

(163) E[ξδ(ζ)] = E [〈Dξ, ζ〉H]

for any ξ ∈ D1,2.

The Skorokhod operator δ is closed.

Remark A.5. Let V = {Vt, t ∈ [0, T ]} be the Wiener process, HV = L2([0, T ]) be the associated Hilbert
space (see Remark A.1) and δV be the corresponding divergence operator. In this case, the elements of
Dom δV ⊂ L2([0, T ]×Ω) are square-integrable processes, and the divergence δV (ζ) is called the Skorokhod
stochastic integral of the process ζ with respect to V and is denoted as follows:

(164) δV (ζ) =

∫ T

0

ζtδVt.

According to [26], Section 1.3.2, the Skorokhod integral is correctly defined for all elements of the space
L1,2 = L2([0, T ],D1,2) with the norm ‖·‖L1,2 such that

(165) ‖ζ‖L1,2 = E

(∫ T

0

ζ2t dt+

∫ T

0

∫ T

0

(Dsζt)
2dtds

)
.

Remark A.6. Let BH be a fractional Brownian motion with H > 1/2. Similarly to the Wiener process
case, we shall call the corresponding divergence δH(ζ) the Skorokhod stochastic integral with respect to
fractional Brownian motion and shall denote it as

δH(ζ) =

∫ T

0

ζtδB
H
t .

In what follows, we shall use the definition of pathwise stochastic integral with respect to fractional

Brownian motion proposed in [36] and denote it by
∫ T
0
ζtdB

H
t . There is a useful result that connects

stochastic and Skorokhod integrals, which is given below.
Let H > 1/2 and

(166) |H| =

{
φ ∈ H

∣∣∣∣ ‖φ‖2|H| =

∫ T

0

∫ T

0

|φ(τ)||φ(u)|ϕ(τ, u)dudτ <∞

}
.

Theorem A.1 ([26], Proposition 5.2.1). Let ζ = {ζt, t ∈ [0, T ]} be a stochastic process in the space
D1,2(|H|) with Hölder continuous trajectories up to the order H and DH

s be the Malliavin derivative
operator with respect to BH . Suppose that a.s.

(167)

∫ T

0

∫ T

0

|DH
s ut||t− s|2H−2dsdt <∞.

Then ζ is Stratonovich integrable and

(168)

∫ T

0

ζt ◦ dBHt =

∫ T

0

utδB
H
t +

∫ T

0

∫ T

0

DH
s ζtϕ(s, t)dsdt.
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