
Consistency-Preserving Evolution Planning on Feature Models
Adrian Hoff
a.hoff@tu-bs.de

Technische Universität Braunschweig
Braunschweig, Germany

Michael Nieke
m.nieke@tu-bs.de

Technische Universität Braunschweig
Braunschweig, Germany

Christoph Seidl
chse@itu.dk

IT University of Copenhagen
Copenhagen, Denmark

Eirik Halvard Sæther
eirikhsa@ifi.uio.no
University of Oslo
Oslo, Norway

Ida Sandberg Motzfeldt
idasmot@ifi.uio.no
University of Oslo
Oslo, Norway

Crystal Chang Din
crystald@ifi.uio.no
University of Oslo
Oslo, Norway

Ingrid Chieh Yu
ingridcy@ifi.uio.no
University of Oslo
Oslo, Norway

Ina Schaefer
i.schaefer@tu-bs.de

Technische Universität Braunschweig
Braunschweig, Germany

ABSTRACT

A software product line (SPL) enables large-scale reuse in a family
of related software systems through configurable features. SPLs
represent a long-term investment so that their ongoing evolution
becomes paramount and requires careful planning. While exist-
ing approaches enable to create an evolution plan for an SPL on
feature-model (FM) level, they assume the plan to be rigid and do
not support retroactive changes. In this paper, we present a method
that enables to create and retroactively adapt an FM evolution plan
while preventing undesired impacts on its structural and logical
consistency. This method is founded in structural operational se-
mantics and linear temporal logic. We implement our method using
rewriting logic, integrate it within an FM tool suite and perform an
evaluation using a collection of existing FM evolution scenarios.

CCS CONCEPTS

• Software and its engineering → Software product lines;
Software evolution; Software notations and tools.
KEYWORDS

Software Product Lines, Software Evolution, Feature Models, Fea-
ture Model Evolution, Formal Semantics, Rewriting Logic, Struc-
tural Operational Semantics, Linear Temporal Logic

ACM Reference Format:

Adrian Hoff, Michael Nieke, Christoph Seidl, Eirik Halvard Sæther, Ida
Sandberg Motzfeldt, Crystal Chang Din, Ingrid Chieh Yu, and Ina Schaefer.
2020. Consistency-Preserving Evolution Planning on Feature Models. In
24th ACM International Systems and Software Product Line Conference (SPLC

’20), October 19–23, 2020, MONTREAL, QC, Canada. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3382025.3414964

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in 24th ACM

International Systems and Software Product Line Conference (SPLC ’20), October 19–23,

2020, MONTREAL, QC, Canada, https://doi.org/10.1145/3382025.3414964.

Or Group (at least one)
Alternative Group (exactly one)

Optional Feature
Mandatory Feature

t₅
1) …
2) …

…

t₀
Initial Feature Model

t₁
1) Change „Infotainment“
 to mandatory
2) Add new feature
 „Bluetooth“

Figure 1: FM evolution plan for a configurable car system.

1 INTRODUCTION

A software product line (SPL) is a collection of similar software prod-
ucts that exploits the high similarity between individual products by
organizing them into common and variable parts [46, 53]. A feature
model (FM) organizes all user-visible characteristics, i.e., features,
of an SPL in a hierarchical tree according to their interrelations [6].
An FM describes all possible configurations of an SPL, which is
used not only to configure individual variants of the SPL but also
for communication between (non-technical) stakeholders [48].

SPLs, like all software systems, have to undergo continuous
evolution to remain relevant [12, 26, 29]. The development of com-
plex and large-scale SPLs is a time-intensive and costly endeavor,
which aims to benefit in the long term [8, 10, 11, 15]. Unforeseen
complications throughout the evolution of an SPL may cause expen-
sive deployment delays and poorly implemented last-minute fixes.
Thus, SPL development should be supported by careful long-term
evolution planning [10, 11].

https://doi.org/10.1145/3382025.3414964
https://doi.org/10.1145/3382025.3414964

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada A. Hoff, M. Nieke, C. Seidl, E. H. Sæther, I. S. Motzfeldt, C. Chang Din, I. Chieh Yu, and I. Schaefer

Evolutionary changes to an SPL optimally begin with alterations
to the FM [45, 48]. As FMs are also used for communication, they are
development artifacts particularly suitable to use for planning [9].
We propose to exploit this by modeling the planned evolution of
an SPL on FM level. For that purpose, we define a feature model

evolution plan as a combination of (i) an initial FM version and
(ii) an ordered sequence of intended edit operations, where each
edit operation is scheduled for a concrete point of time in the fu-
ture. Consequently, each planned edit operation serves as abstract,
unimplemented, yet formally documented step of an overall FM evo-
lution plan. While concepts and tools exist that allow to construct
FM evolution plans, we identify two significant, yet unaddressed,
barriers to a sensible and scaling usage of such plans:

Retroactively introducing a planned edit operation into an FM
evolution plan as intermediate step can violate the structural consis-
tency of a plan and, thus, make it unimplementable [45]. A retroac-
tively introduced intermediate evolution step adds an operation
that is scheduled to become effective before other already planned
evolution operations. Consequently, a retroactively planned evolu-
tion step changes the basis of other already planned evolution steps.
State-of-the-art concepts and analyses are not able to prevent in-
consistencies arising from modifying planned evolution operations
as they were not constructed for evolution planning but, at best,
for tracking performed FM evolution. Respectively, state-of-the-art
evolution-aware FM tools are only able to ensure the safe execution
of an edit operation when it is appended to the end of an evolution
time-line [41]. However, with a long-term planning horizon, short-
notice changes to an FM may have to be integrated into the overall
plan, e.g., due to unexpected obstacles in implementation or budget-
ing. Hence, adequate planning means must be able to accommodate
for retroactive changes in any stage of a plan to have practical
relevance. This renders state-of-the-art methods insufficient for
FM evolution planning.

Similarly, performing changes to an FM evolution plan is hin-
dered by the fact that operations are scheduled by their specific
point in time alone, not taking into account the circumstances that
lead to their scheduling, e.g., stemming from project management.
For instance, existing FM planning concepts do not permit specify-
ing logical dependencies of planned changes, e.g., that one change
depends on another change so that they must not be scheduled in
inverse order when adapting an evolution plan. We refer to this as
logical consistency of an FM evolution plan. Due to these shortcom-
ings, project-specific planning concerns are either documented only
informally or are lost completely when solely placing an operation
with a tentative point of time for realization in the evolution plan.
This creates a risk for fatal planning errors when interdependencies
between planned changes are disregarded as part of replanning.

In this work, we provide a concept for SPL evolution planning
based on FMs that ensures the structural and logical consistency
of an evolution plan even in the light of retroactively incorporated
intermediate changes. In particular, we contribute an execution
semantics based on structural operational semantics and linear
temporal logic that is able to (i) consider each edit operation of an
FM evolution for its consistent applicability and (ii) verify additional
project-specific planning concerns. We provide an implementation
of these concepts using rewriting logic and integrate them into
an FM tool suite.

The rest of this paper is structured as follows: In Section 2, we
present SPL techniques and formal methods that serve as foun-
dation of our work. In Section 3, we motivate challenges in FM
evolution planning and provide a formal definition of an FM evo-
lution plan. In Section 4, we extend our example, analyze risks to
the structural consistency of an FM evolution plan and provide a
method that enables to prevent structural inconsistencies in an FM
evolution plan. In Section 5, we build upon this basis to introduce a
constraint language for defining project-specific concerns for an
FM evolution plan to ensure its logical consistency. In Section 6, we
evaluate our method with regard to its feasibility and performance
on a collection of existing FM evolution scenarios. In Section 7,
we elaborate on related work and, in Section 8, we conclude with
an outlook to future work.

2 BACKGROUND

Our concept for consistency preserving evolution planning on FMs
are part of SPL engineering and founded in formal methods. Hence,
in this section, we first introduce SPL concepts and then provide
essentials of the various forms of logic used in our solution.

2.1 Feature-Oriented Development

A software product line (SPL) manages a collection of similar
software systems by reusing functionality shared between products
in terms of features [46, 53]. Individual products can be derived
from an SPL by assembling relevant realization artifacts according
to a configuration, i.e., a valid selection of features.

A feature model (FM) manages configuration options of an
SPL on conceptual level, i.e., without implementation details. For
that purpose, an FM organizes all features of an SPL in a tree-like
structure, where each feature can have an arbitrary number of child
features. The relation between a feature and a collection of child
features is referred to as group. A feature can only be added to a
configuration if its parent feature is also part of the configuration.
Additionally, most FM notations support assigning types to features
and groups [16, 20]. A feature can be either optional (i.e., can be
selected if its parent feature is selected) or mandatory (i.e., must

be selected if its parent feature is selected). A group can be assigned
one of the types and (i.e., select an arbitrary number of child fea-
tures), or (i.e., select at least one child feature), or alternative
(i.e., select exactly one child feature). As basis for our later solution,
we explicitly define a list of FM well-formedness rules that underly
common feature modeling notations [16]:
WF1 A feature model has exactly one root feature.
WF2 The root feature must be mandatory.
WF3 Each feature has exactly one unique name, variation type

and (potentially empty) collection of subgroups.
WF4 Features are organized in groups that have exactly one vari-

ation type.
WF5 Each feature, except for the root feature, must be part of

exactly one group.
WF6 Each group must have exactly one parent feature.
WF7 Groups with types alternative or or must not contain

mandatory features.
WF8 Groups with types alternative or or must contain at least

two child features.

Consistency-Preserving Evolution Planning on Feature Models SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

Table 1: Examples for syntax and semantics of LTL formulas

Operators Explanation
◯ ϕ ϕ has to hold at the next state
◇ ϕ ϕ eventually has to hold
◻ ϕ ϕ has to hold on the entire subsequent path
ψ U ϕ ψ has to hold at least until ϕ becomes true,

ϕ must hold at the current or a future point

A feature diagram is a graphical representation of an FM. Fig-
ure 1 shows multiple feature diagrams in the context of an FM evo-
lution plan that we use as running example in Sections 3, 4 and 5.

2.2 Formal Semantics and Logic Frameworks

Structural operational semantics (SOS), commonly referred to
as small-step semantics, is a form of formal semantics that describes
how individual steps of a computation take place [2, 51]. An SOS
specification is a set of inference rules, which can be defined in
the following form:

Conditions

State ⇒ State′

It describes a transition from State to State′ if all theConditions de-
fined above the line are satisfied.We use SOS to define the semantics
of (i) FM edit operations and (ii) an FM evolution plan.

Rewriting logic is a computational logic that can be used as a
semantic and logical framework [1, 36]. A system built in rewriting
logic consists of an equational logic that captures the system’s state
and a set of rewrite rules that realize its behavior. This way, SOS
can be constructed in form of rewrite rules.

Linear temporal logic (LTL), also referred to as linear-time

temporal logic, is a modal temporal logic that can be employed to
express formulas over a path’s future states [19, 31, 52]. LTL uses a
model of natural numbers to represent time that are ordered sequen-
tially and represent discrete states. In LTL, different expressions
can be used that define properties of the path of states. For instance,
it can be expressed that a condition is met in all existing states, will
eventually be met in a future state, or remains met until another
condition is met. Examples for syntax and semantics of LTL for-
mulas can be found in Table 1, in which the formulasψ and ϕ may
also contain operators for negation, conjunction, disjunction and
implication. We use LTL to verify whether project-specific concerns
to the logical consistency of an FM evolution plan are met.

Maude is a programming language and logical framework that
allows to specify and execute systems with the use of rewriting
logic [13]. Furthermore, Maude offers a built-in model checker
that allows to verify LTL formulas. We use Maude to provide an
implementation of our formal concepts.

3 FEATURE MODEL EVOLUTION PLANS

Figure 2 highlights the challenges in consistently adapting the
example FM evolution plan depicted in Figure 1. A car manufacturer
plans to implement a variable car software system in form of an SPL.
In its initial version, the car system is supposed to have optional,
basic Sensors functionality (for parking assistance purposes) as well
as an optional Infotainment system. The initial FM version covering

planning

replanning

[Sensors was introduced , t₂)

incorporating
subsequent

changes 4

3

2

1

?

t₀ t₀.₅ t₁ t₂

initial planning

Figure 2: Constructing and extending an FM evolution plan. A
retroactive intermediate change violates structural consistency.

these requirements is created for t0. This process is depicted by
arrow 1 in Figure 2, along with the resulting FM.

The car manufacturer observes that most customers configure
cars with an Infotainment system. Furthermore, customers request
configurable Bluetooth functionality. The car manufacturer thus
plans to make their Infotainment system a mandatory feature and
plans to introduce an optional Bluetooth feature for time point t1.

Instead of only capturing the planned changes in natural lan-
guage (e.g., as part of a specification sheet), the car manufacturer
decides to construct an FM evolution plan consisting of an initial
FM and an ordered sequence of scheduled edit operations. Each
edit operation is scheduled to a time point that serves as intended
implementation date. Arrow 2 in Figure 2 depicts this process,
pointing to the resulting FM that is planned to be implemented
for time point t1.

The idea of an FM evolution plan is to capture planned edit
operations to keep track of yet unimplemented future FM versions
as abstract realization goals. The first sketch of a future FM version
can be constructed in a rough, coarse-grained manner and, then, be
refined with details as its assigned future date moves closer. At the
same time, the FM evolution plan keeps all planned FM versions
synchronized and in one model. A change that is performed on an
intermediate version is automatically propagated to all subsequent
versions. This offers a basis for various analyses, e.g., to ensure that
critical configurations are still supported after evolution [44].

To formally define an FM evolution plan, we first define an
FM as follows: An FM is a term FM(RootFeatureID, FT), where
RootFeatureID is the ID of the root feature, and FT is a feature
table that maps feature IDs to tuples. An entry within the feature
table is structured as follows:

[FeatureID↦ (Name, ParentFeatureID, Groups , FType)]

where FeatureID is the ID of a feature, Name is the name of
the mapped feature, ParentFeatureID is the parent feature ID,
Groups is a set of child groups, and FType is a variation type
(i.e., optional or mandatory). A group is defined as a tuple
(GroupID,GType, Features), where GroupID is the group’s
ID, GType is the variation type of the group (i.e., and, or, or
alternative), and Features is a set of child feature IDs.

Based on this formalization of an FM, we define an FM evolution
plan using a natural numbers model of time.

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada A. Hoff, M. Nieke, C. Seidl, E. H. Sæther, I. S. Motzfeldt, C. Chang Din, I. Chieh Yu, and I. Schaefer

Definition 3.1 (FM Evolution Plan). An FM evolution plan con-
sists of (i) an initial feature model FM(RootFeatureID, FT) and (ii)
an ordered list of planning sections containing all edit operations
that are scheduled for the same time point t ∈ N.

Definition 3.2 (Planning Section). A planning section within
an FM evolution plan is a tuple (ti ,operations), where operations
is an ordered list of edit operations and ti ∈ N. All edit operations
within an FM evolution plan that are associated with the same time
point are mapped to one planning section. Respectively, we define
the ordered list of planning sections within an FM evolution plan
as (t1,Op1,1Op1,2...Op1,m1); ...; (tn,Opn,1Opn,2...Opn,mn), where
each ti ∈ N is a time point and each Opi , j is an edit operation.

An FM evolution plan must not contain two planning sections
that are attributed to the same time point. However, additional
edit operations can be associated with arbitrary existing or new
planning sections. This enables integrating edit operations as in-
termediate planning steps in retrospect.

4 ENSURING STRUCTURAL CONSISTENCY

OF FM EVOLUTION PLANS

Over the lifetime of an SPL, an FM evolution plan needs to be ex-
tended and adapted to incorporate both perspective and short-term
changes. Hence, an important activity is to replan an already con-
structed plan by introducing new intermediate steps retroactively.
However, this can introduce incompatible changes to an FM evo-
lution plan and, thus, lead to serious inconsistencies referred to
as evolution paradoxes [45]. A single evolution paradox can dam-
age the structural consistency of an evolution plan to the point
of making its implementation impossible so that avoiding their
introduction becomes paramount. However, manually foreseeing
potential effects of an intermediate edit operation on the entire
evolution plan is infeasible esp. for large FMs and evolution plans
with many steps. Thus, concepts for adequate FM evolution plan-
ning must guarantee structural consistency through automated and
proactive prevention of evolution paradoxes.

In the following, we give an example that illustrates structurally
inconsistent replanning activity before assessing how evolution
paradoxes arise and classifying them into different categories. Fur-
thermore, we introduce a formal approach that guarantees FM
evolution plans to be free from paradoxes.

4.1 Challenges for Structural Consistency

Due to financial difficulties, the example car manufacturer is obliged
to cut costs for their planned car SPL. In a short-notice decision, the
car system is supposed to drop its stand-alone Infotainment system.
Instead, the car manufacturer focuses on the integration of mobile
phones via the Bluetooth feature. For the FM evolution plan, this
requires replanning activity: The manufacturer retroactively plans
to delete the feature Infotainment at the new intermediate time point
t0.5, after the initial version for t0 and before the originally planned
version for t1. It is important to note that retroactively inserting
intermediate edit operations entails specific challenges due to the
different orders of devising and scheduling changes (cf. Figure 3).
Hence, replanning requires two consecutive phases to maintain an
overall FM evolution plan: first, the new intermediate edit operation

t₀ t₁t₀ ₅.

Bluetooth→mandatory

Order of devising:

Order of scheduling:

delete Bluetooth

delete Bluetooth Bluetooth→mandatory

Figure 3: Difference between orders of scheduling and devising
when retroactively inserting an intermediate edit operation.

Create Delete Move Change
Type Rename Delete Move Change

Type

Feature Edit Operations Group Edit Operations

Figure 4: Common user-level edit operations for feature models.

is introduced to the evolution plan (arrow 3 in Figure 2), second,
all previously devised, yet subsequently scheduled edit operations
must be incorporated into the replanned state of the FM evolution
plan (arrow 4). However, incorporating subsequently scheduled
edit operations can fail and, thus, damage the structural consistency
of an FM evolution plan: In the car example, the planned change
for t1 (add Bluetooth as child of Infotainment) can no longer be
implemented as, once reaching t1, Infotainment will have been
deleted in the previous t0.5. The retroactive intermediate change at
t0.5 introduced an evolution paradox into evolution plan [45].

4.2 Classification of Evolution Paradoxes

The source of every evolution paradox is an edit operation that is
retroactively introduced to an FM evolution plan as a new interme-

diate step. Intermediate edit operations within an FM evolution plan
change the basis for subsequently scheduled edit operations. In this
way, a new intermediate edit operation can cause a subsequently
scheduled edit operation to violate FM well-formedess rules (cf.
WF1-WF8 in Section 2) and, thus, introduce an evolution paradox.

To give a general overview of how evolution paradoxes arise, we
identify a set of syntactic FM edit operations in accordance with
previous work as listed in Figure 4 [47, 65]. We examine each edit
operation with regard to possible violations of FM well-formedness
rules to identify under which circumstances it can cause an evolu-
tion paradox. We identify four categories of evolution paradoxes.

A Non-Existent Element Edit Paradox arises if an evolu-
tion plan contains an edit operation on a feature/group
(or its sub-tree), but this feature/group is deleted in an
intermediate step (violation ofWF5 andWF6).

A Variation Type Paradox occurs if an intermediate edit op-
eration results in an alternative or or group that (i) con-
tains a mandatory feature (WF7) or (ii) has less than two
child features (WF8). Possible conflicting intermediate edit
operations for this paradox category are:
● feature delete operation (WF8)
● feature move operation (WF7 andWF8)
● feature type change operation if the type is changed to
mandatory (WF7)
● group type change operation if the type is changed to al-
ternative or or (WF7 andWF8)

Consistency-Preserving Evolution Planning on Feature Models SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

t₀ t₀.₅ t₁

1Arbitrary
Edit on
Feature

Arbitrary Edit
on Sub-Tree

Changing
Parent
Group Type

3

2

Figure 5:Graphical representation of FM edit operations that might
conflict with an intermediate feature delete operation. This figure is
an excerpt from our online appendix1.

A Naming Conflict Paradox is caused by an intermediate
feature rename operation that changes a feature’s name so
that the new name is not unique within at least one subse-
quently planned FM version (WF3).

A Transient Effect Paradox can be caused by an intermedi-
ate edit operation that becomes unintentionally ineffective
and, thus, limited in its effect by a subsequent operation in
the immediate future. Possible intermediate edit operations
are:
● feature create operation - can become unintentionally inef-
fective due to a subsequently scheduled delete operation
targeting the created feature’s parent structure.
● feature/group move operation - can become unintentionally
ineffective by a subsequently scheduled (i) move operation
that again relocates the moved feature/group or (ii) delete
operation targeting the new parent structure.
● feature/group type change operation - a type change can
become unintentionally reverted by a subsequently sched-
uled type change on the same feature/group.
● feature rename operation - the effect of renaming a feature
can become unintentionally ineffective by a subsequently
scheduled delete operation on the renamed feature.

In our online appendix1, we provide further, detailed information
about the exact circumstances that result in an evolution paradox,
broken down by each individual kind of FM edit operation. As an
excerpt, Figure 5 shows how an intermediate feature delete opera-
tion can cause various evolution paradoxes. Arrows 1 , 2 and 3
represent operations in a subsequent state of the FM evolution plan
that conflict with the intermediate feature delete operation:

1 Variation Type Paradox - A previously defined type change on
the parent group to either alternative or or in t1 can cause
a violation ofWF8 if only one other child feature remains.

2 Non-Existent Element Edit Paradoxes - Previously defined but
subsequently scheduled edit operations on feature F1 in t1
(such as renaming or moving the feature) cannot be executed,
as F1 is deleted by the intermediate feature delete operation.

3 Non-Existent Element Edit Paradoxes - Similarly, previously
defined but subsequently scheduled operations on an arbi-
trary element in the sub-tree of F1 in t1 cannot be executed
as F1 (along with its sub-tree) are deleted in t0.5.

1https://gitlab.com/Adomat/consistent-feature-model-evolution-plans

4.3 Paradox-Free Execution Semantics for

Evolution Plans

In the following, we describe an execution semantics for FM evo-
lution plans that is able to verify the structural consistency of an
FM evolution plan. We check a modified FM evolution before new
intermediate edit operations become effective and, thus, guarantee
FM evolution plans to be free from evolution paradoxes through
prohibiting operations that would introduce structural inconsis-
tencies. For that purpose, we define the state and the behavior
of an FM evolution plan and, based on that, use rewriting logic
to check whether the execution of each contained edit operation
would violate any FM well-formedness rules (cf. Section 2).

4.3.1 State of an FM evolution plan. We refer to the planning sec-
tion that contains a currently inspected edit operation as the active
planning section.

Definition 4.1 (Active Planning Section). We define the ac-
tive planning section asActiveSection = (FM(RootFeatureID, FT)
Opcur ,1...Opcur ,mcur) with tcur being the current time. At most
one planning section within an FM evolution plan can be active at
a given time tcur ∈ N.

Using above definition, a concrete state of an FM evolution plan
is defined by a combination of the current time, an active planning
section and a list of remaining sections.

Definition 4.2 (Planning State). A planning state is defined as
a tuple (tcur ,ActiveSection,RemaininдSections), where tcur ∈ N
is the current time, ActiveSection is the currently active planning
section, and RemaininдSections is an ordered list of all remaining
planning sections for subsequent time points.

4.3.2 Behavior of an FM evolution plan. We use structural opera-
tional semantics (SOS) to specify the behavior of FM edit operations.
The complete semantics for all FM edit operations listed in Figure 4
can be found in our online appendix1. As an example, the execution
of a feature create operation is defined as follows:

Semantics Rule 4.1 (Feature Create Operation).
(1) FT (FeatureID) = �

(2) isU niqueName(Name , FT)
(3) FT ′ = addFeatureToGroup(FT , ParentGroupID , FeatureID)

FT ′′ = FT ′ + (︀FeatureID ↦ (Name ,Tarдet F id ,∅, FType)⌋︀
(4) isV alidType(FT ′′, FeatureID)

FM(Root FeatureID , FT)
createFeature(FeatureID , Name , ParentGroupID , FType)

⇒

FM(Root FeatureID , FT ′′)

Semantics Rule 4.1 defines the semantics of a feature create
operation so that the operation is applicable iff (above the line):

(1) the given FeatureID is not yet assigned to another feature,
(2) no other feature is assigned the name Name (WF3),
(3) the parent group with ID ParentGroupID exists (WF5),
(4) the given variation type FType of the new feature is valid

within the resulting FM (WF3,WF7 andWF8)
We define helping functions “isUniqueName”, “addFeatureToGroup”
and “isValidType”. If all conditions are met, the effect of execut-
ing the operation is applied (below the line). The group with ID
ParentGroupID is extended by a child feature entry and a new

https://gitlab.com/Adomat/consistent-feature-model-evolution-plans

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada A. Hoff, M. Nieke, C. Seidl, E. H. Sæther, I. S. Motzfeldt, C. Chang Din, I. Chieh Yu, and I. Schaefer

feature mapping (︀FeatureID ↦ (Name,TarдetFid,∅, FType)⌋︀ is
added to the feature table. The empty set argument constructs the
new feature with an empty set of child group IDs.

Based on these semantics of FM edit operations, we construct a
paradox-free execution semantics for FM evolution plans. It consists
of three rules that are applied depending on the planning state of
the inspected FM evolution plan:

Semantics Rule 4.2.1 (Executing FM Edit Operations).

FM(Root FeatureID , FT) Opcur ,1
⇒

FM(Root FeatureID , FT ′)

(tcur , FM(Root FeatureID , FT) Opcur ,1 ...Opcur ,mcur , RemaininдSections)
⇒

(tcur , FM(Root FeatureID , FT ′) Opcur ,2 ...Opcur ,mcur , RemaininдSections)

Semantics Rule 4.2.1 is applied if the planning state’s active
planning section still contains FM edit operations. It checks whether
the next FM edit operation to be applied (Opcur ,1) is free from
structural inconsistencies (using its semantics). If (and only if) this
is the case, it is removed from the active planning section and the
feature table is modified from FT to FT ′. We denote an empty list of
remaining edit operations within the active planning section as ϵ .

Semantics Rule 4.2.2 (Advancing Time).

tcur < tnext
(tcur , FM(Root FeatureID , FT) ϵ , (tnext ,Ops);MoreSections)

⇒

(tnext , FM(Root FeatureID , FT) Ops ,MoreSections)

Semantics Rule 4.2.2 advances the current time tcur to tnext if
no edit operation is left in the active planning section. The subse-
quent planning section is then set as active planning section.

Semantics Rule 4.2.3 (Fully Processed Plan).

(t , FM(Root FeatureID , FT) ϵ , ρ)

Semantics Rule 4.2.3 defines the successful execution of the
entire FM evolution plan iff all edit operations within all planning
sections were applied successfully. Note that we use ρ to denote an
empty list of remaining planning sections within a planning state.

We formulate the theorem that the above execution semantics
ensures the structural consistency of an FM evolution plan.

Theorem 4.3 (Structural Consistency of an FM Evo-

lution Plan). Let Plan be an FM evolution plan with an
initial FM(RootFeatureID, FT) and a non-empty list of planning
sections (t1,Ops1); (t2,Ops2); ...; (tn,Opsn). Then, Plan is struc-
turally consistent iff the execution of all planning sections on
FM(RootFeatureID, FT) according to rules 4.2.1, 4.2.2, and 4.2.3
terminates:

(t0, FM(RootFeatureID, FT) ϵ, Plan)
∗
⇒ (tn, FM(RootFeatureID, FT

′
) ϵ, ρ)

5 ENSURING PROJECT-SPECIFIC LOGICAL

CONSISTENCY OF EVOLUTION PLANS

In the previous section, we provide concepts that enable insertion of
planned edit operations at arbitrary time points while guaranteeing
structural consistency of an FM evolution plan. However, this alone

is not sufficient for ensuring the logical consistency of an FM evolu-
tion plan. Planning evolution by means of edit operations requires
to know (a) what exact edit operations are supposed to be scheduled
and (b) the degree of freedom in replanning. Especially for changes
planned far in the future, determining an exact time point for their
realization is often infeasible. Nevertheless, project-specific con-
cerns may govern potential scheduling orders, e.g., when a planned
change depends on another planned change that has to be sched-
uled before it. These considerations are essential for determining a
tentative time point for scheduling a change but, even more so, to
determine the degree of freedom for replanning while still maintain-
ing logical consistency within the resulting evolution plan. Suitable
evolution planning must include support for such project-specific
concerns. While respective considerations exist in various forms
for general project management [7, 64], at present, SPL engineering
has widely neglected these challenges. In the following, we describe
a situation that requires this additional flexibility before we present
concepts that address the resulting challenges.

5.1 Challenges for Logical Consistency

The car manufacturer decides to extend the variability of the Sensors
functionality. For that purpose, a distinction between Front Sensors

and Rear Sensors is supposed to enable customers to configure their
assistance system on a more fine-grained level. However, the exact
time point for an implementation cannot yet be scheduled as it
depends on unforeseeable delivery conditions with a third-party
company. An overhasty decision for a concrete time point can
result in a too tightly or too loosely scheduled evolution plan. In
the worst case, this entails revoking and reapplying all replanned
changes across different FM versions, causing additional effort and
cost. Hence, it is important to the car manufacturer’s business
strategy to leave this decision open. Nevertheless, it is crucial to
capture all kinds of planned changes as it needs to be ensured
that every part of the plan is eventually implemented. The car
manufacturer sets a time interval in which the planned change is
supposed to be implemented, i.e., at some time point before t2, but
not sooner than the introduction date of Sensors. The FM evolution
plan needs to be extended in terms of adding Front Sensors and
Rear Sensors as children of Sensors. This change is supposed to be
implemented at some point within the right-open time interval
(︀Sensors was introduced, t2) as illustrated at the bottom of Figure 2.
The time interval’s start date is not fixed to a specific time due to
the dependence on Sensors and because the introduction of Sensors
could possibly be rescheduled to another time point than t0.

5.2 Feature Model Evolution Constraints

To incorporate planned changes into an FM evolution plan based
on possible time intervals and dependencies on the scheduling of
other changes, we devise a concept we call feature model evolution

constraints (FMECs). In the following, we first introduce core con-
cepts and the syntax of FMECs and, then, define the semantics of
FMECs via a translation to LTL.

5.2.1 Syntax and core concepts of FMECs. The complete grammar
of the syntax for FMECs can be accessed via our online appendix1.
While our formalized FM evolution plans (cf. Definition 3.1) use a
natural numbers model of time, note that FMECs enable to work

Consistency-Preserving Evolution Planning on Feature Models SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

with actual dates. In the following, we summarize the core concepts
of FMECs along with examples of their syntax:

An Evolutionary Property of an FM evolution plan is:
● the presence of a referenced feature or group:
Sensors valid
● the presence of a certain variation type of a referenced
feature or group:
Infotainment.type == MANDATORY valid
● the validity of a parent-child-relationship between (i) two
features or (ii) a feature and a group (or vice versa):
Front Sensors.parentFeature==Sensors valid

A Feature or group can be referenced either by name (if it is
unique within the evolution plan) or by its ID. Evolutionary
properties (except feature/group presences) can be valid in
multiple time points which are not necessarily connected.

An Evolutionary Event allows to express the start or end of
a feature/group presence.We assume that each feature/group
can only be created/deleted once in an FM evolution plan.
Bluetooth starts or Sensors ends
Evolutionary events are unique within an FM evolution plan.

Evolutionary properties and evolutionary events are the basic build-
ing blocks to construct two kinds of FMECs:

A Time Point Constraint puts an evolutionary property or
event in relation to a time point, using one of the keywords
before, until, after, when or at. A time point can be either
explicit (i.e., a concrete date) or implicit in terms of another
evolutionary property or event. It is possible to specify a
temporal offset to or from the referenced time point, e.g.:
Front Sensors starts before

Sensors starts - 2 months
A Time Interval Constraint puts an evolutionary property

or event in relation to a right-open time interval, where both
interval boundaries are (implicit or explicit) time points, e.g.:
Front Sensors starts during

[Sensors starts , 21.09.2024 12:00)

Two FMECs can be connected using the boolean connectives
and (conjunction), or (disjunction), implies (implication), and not
(negation) resulting in a new FMEC. Additionally, FMECs can be
nested using parentheses.

5.2.2 Semantics of FMECs. We define the semantics of FMECs
through a translation to linear temporal logic (LTL) as shown in
Table 2. Negations, conjunctions, disjunctions and implications
within FMECs are translated to LTL using the corresponding log-
ical operators. With a translation to LTL formulae according to
Table 2, we can verify whether FMECs hold over the model struc-
ture as defined by a formalized FM evolution plan according to
the definitions in Section 3. We use the Maude LTL model checker
to evaluate translated FMECs. The model checker uses an imple-
mentation of our execution semantics as its linear state model. A
branching temporal logic is not necessary as all FM edit operations
behave deterministically. We define helping functions that evaluate
whether the currently active time point equals (isTime(ti)) or is
greater (after(ti)) than the input time point ti ∈ N.

We evaluate each FMEC within an FMEC module separately. An
FM evolution plan is logical consistent in regards to its specified
FMECs if all FMECs are evaluated positively.

6 EVALUATION

In this paper, we present a concept that ensures the structural and
logical consistency of an FM evolution plan. This is achieved by
(i) guaranteeing an FM plan to be free from evolution paradoxes
and (ii) verifying the satisfaction of additional, project-specific
FMECs. In this section, we evaluate our method in terms of its
feasibility and performance. We show the feasibility of our method
by implementing and applying it to real-world FM evolution. To
measure performance, we conduct a series of in-depth experiments.

6.1 Evaluation Setup

We implement our method by integrating it into the evolution-
aware FM tool suite DarwinSPL2 [41]. DarwinSPL enables to con-
struct and modify FM evolution plans, i.e., it keeps track of sched-
uled edit operations as well as the resulting evolution-aware FM.We
extend DarwinSPL with (i) an editor and parser for FMEC expres-
sions and (ii) functionality to translate evolution plans and FMECs
to our formalized notation (cf. Sections 3, 4 and 5). We further use
the Maude system [13] to realize our method in rewriting logic
based on our formalization and connect it with DarwinSPL. The
complete implementation can be found in our online appendix1.

To gain input data for this evaluation, we gather several existing
FM evolution scenarios that we use as FM evolution plans. For one,
we make use of previously collected SPL evolution histories for four
small to medium-sized, artificial, yet, well documented FM evolu-
tion scenarios from different domains [38, 39]: Mine Pump,Wiper,
Vending Machine and Body Comfort System. In addition, we use the
real-world scenario FinancialServices01 from the FeatureIDE [35]
repository to evaluate our concepts on a large-scale plan.

We reconstruct all gathered FM evolution scenarios within the
DarwinSPL tool suite to use them in combination with our Maude
implementation. For the evolution histories of Mine Pump, Wiper,
Vending Machine and Body Comfort System, we perform this task
manually, i.e., by capturing the initial state of each evolution sce-
nario from their documentation before successively remodeling all
following planning sections. We convert the large-scale evolution
history FinancialServices01 from a set of different FeatureIDE mod-
els, each representing a different version within the FM evolution
scenario, to the evolution-aware DarwinSPL notation with the use
of DarwinSPL’s import mechanism. Table 3 shows properties of
all resulting evolution-aware DarwinSPL FMs.

6.2 Evaluation of Evolution Paradox

Prevention

We define our FM evolution plan execution semantics in form of
inference rules and implement these in rewriting logic. Our rules
ensure a correct application of edit operations with respect to well-
formedness rules WF1-WF8. In consequence, an FM evolution plan
is guaranteed to be free of evolution paradoxes (cf. Theorem 4.3)
with a terminating execution of our semantics.

2https://gitlab.com/DarwinSPL/DarwinSPL

https://gitlab.com/DarwinSPL/DarwinSPL

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada A. Hoff, M. Nieke, C. Seidl, E. H. Sæther, I. S. Motzfeldt, C. Chang Din, I. Chieh Yu, and I. Schaefer

Table 2: Translation of FMECs to LTL.

FMEC concept Keyword FMEC expression Visualization LTL Notes

Evolutionary Property valid <Property> p p p - Np

Evolutionary Event starts/ends <FeatureID/GroupID> starts/ends ee.p !e.p!e.p !e.pe.p - Ne .p

Time Point
Constraint

before <Event> before <TP> e te.p e.pe.p ◇(e ∧ (◯◇t) ∧ (e .p U t)) Ne .p , Nt

until <Property> until <TP> p p t ◻(p → (p U t)) ∧◇p Np , Nt

after
<Event> after <TP> t e ◇(t ∧◯◇e) Nt

<Property> after <Event> e pp p ◇(e ∧◯◻p) Np

<Property> after <ExplTP> ti pp p ◻(after(ti)→ p) Np

when
<Event> when <Event’> e

e′ ◇(e ∧ e′)

<Event> when <Property> eppp ◇(e ∧ p) Np

<Property> when <Property’> pppp pp ′′ ◻(p′ → p) Np

at
<Event> at <ExplTP> e

ti ◇(isTime(ti) ∧ e)
<Property> at <ExplTP> pp p

ti ◇(isTime(ti) ∧ p) Np

Time Interval
Constraint during

<Event> during [<TP> , <TP’>) tet ′ ◇(t ∧◇(e ∧◯◇t
′
)) Nt

<Property> during [<TP> , <TP’>) t
p pp
t ′ ◇(t ∧ (p U t ′)) Np , Nt

Np : We assume an evolutionary property to be evaluated to false for time points in which its referenced feature or group does not exist.
For instance, “Sensors.type==MANDATORY valid” is false for time points in which Sensors does not exist.

Ne .p : We denote the evolutionary property of an evolutionary event e with e .p. For instance, e = “Sensors starts” with e .p = “Sensors valid”.
Nt : We use “t” in our LTL formulae (“<TP>” in FMECs) to be substituted with either an explicit time point “isTime(ti)” or an event “e”.

Table 3: Properties of the used FM evolution scenarios.

Overall
Features

Overall
Groups

Planning
Sections

Edit
Operations

MinePump 9 3 3 25
Wiper 14 5 4 42
Vend. M. 19 7 6 72
BodyComfS 48 16 5 144
FinServices01 1,083 259 10 2,370

In the following, we evaluate the performance of our paradox-
free FM evolution plan execution semantics. To prevent the intro-
duction of structural inconsistencies, an FM evolution plan needs
to be inspected whenever new intermediate changes are integrated,
e.g., upon saving the modified evolution plan. To avoid a negative
impact on the usability of FM tool suites that integrate our means, it
is crucial to achieve a performance acceptable for productive work.

In the following, we measure the performance of our Maude
implementation for the paradox-free FM evolution plan execution
semantics and show that it scales even for large evolution histories.
To simulate individual edit operations by users, we generate a
random edit operation that we insert as intermediate step into one
of the FM evolution plans from our collection listed in Table 3. We
then use this randomly extended FM evolution plan to run our
execution semantics while measuring the runtime. For each FM
evolution plan, we repeat this process 100,000 times.

Figure 6 depicts the distribution of respective runtimes for each
evolution scenario. For the sake of better readability, we omit out-
liers. Table 4 summarizes detailed information in terms of average

and maximum runtimes for each evolution scenario. On average,
our execution semantics is able to analyze the structural consistency
of the four small to medium-sized FM evolution scenarios in less
than 40 ms. For the large FM evolution scenario FinancialServices01,
this task requires an average runtime of 692 ms. These results show
that our implementation is able to analyze even complex FM evolu-
tion plans within a short period of time and, thus, that it is suitable
for productive application, e.g., when performing them on saving
an evolution plan. With regard to FM evolution plans that are more
complex than FinancialServices01, we point out that it is sufficient
to perform checks on the structural consistency of a plan upon
saving it (as opposed to checking each operation).

Figure 7 gives an overview of the average runtime of our Maude
implementation for the FinancialServices01 scenario, categorized by
the kind of edit operation that is inserted as intermediate planning
step. With a maximum difference of 63.9 ms, we observe that the
runtime of our execution semantics is stable against the kind of edit
operation that is inserted into an FM evolution plan. Considering
the significant size of the FM and evolution plan, we deem the
respective runtimes as adequate for practical application.

Furthermore, Table 4 contains information on the percentage of
randomly generated intermediate operations that would cause the
introduction of an evolution paradox if applied. We observe that
this is the case for 23%-37% of the randomly generated intermediate
edit operations. Taking into account that each of these paradoxical
edit operations would violate the structural consistency of the
evolution plan, we see this additional finding as a confirmation
for the urgence of automated detection mechanisms within FM
evolution planning tools.

Consistency-Preserving Evolution Planning on Feature Models SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

MinePump

Wiper

Vend. M.

BodyComfS

FinServices01

Runtime [ms]
50 100 200 500

Figure 6: Runtimes of our execution semantics over 100,000 test
runs for each scenario (outliers omitted). In each test run, we insert
one randomly generated intermediate edit operation.

Table 4: Detailed information from analyzing 100,000 randomly
generated intermediate edit operations for each scenario.

Percentage
of Paradoxical
Operations

Average
Maude

Runtime [ms]

Maximum
Maude

Runtime [ms]

MinePump 23.49% 36 249
Wiper 36.75% 36 254
Vend. M. 31.01% 36 247
BodyComfS 24.60% 38 255
FinServices01 36.17% 692 2764

Create
Delete
Move

Change Type
Rename

Delete
Move

Change Type

703.3
695.2
699.9
654.6
668.0

718.5
704.2
690.6

Runtime [ms]Edit Operation

Fe
at

ur
e

G
ro

up

0 100 200 300 400 500 600 700

63.9

Figure 7: Average runtime of our execution semantics for the Fi-
nancialServices01 scenario, categorized by the kind of edit operation
that was inserted as intermediate planning step.

6.3 Evaluation of FMEC Verification

We verify FMECs by evaluating their LTL translation using the
Maude LTL model checker. We let the model checker work on the
basis of our rewriting logic implementation for the execution se-
mantics, which creates a linear state model. For practical relevance,
this process must scale with large FM evolution plans. Thus, we
create 12 FMECs for each of the input evolution scenarios, covering
all of our translation rules shown in Table 2. The entire collection
of constructed FMECs can be accessed via our online appendix1.

We start by measuring the average runtime for the verification of
a single FMEC over 500 repetitions for each evolution scenario. We
then repeat this procedure while gradually increasing the number of
FMECs verified simultaneously up to a total number of 12. Figure 8
gives an overview of our results. We compare the FMEC verification
runtimes to the average runtimes of our execution semantics for the
underlying paradox detection (cf. Figure 6) and observe that, even

MinePump

Number

of FM
ECs

Vend. M.

BodyComfS

FinServices01

Wiper

Runtime [ms]

Runtime [ms]

1
…
12

34.5
…

39.6
34.6
…

41.1
35.3
…

43.7

1
…
12
1
…
12
1
…
12

37.6
…

53.3

1
…
12

648
…

1996

500 1000 1500 2000

6032 36 40 44 48 52 56

Figure 8: Runtime of our execution semantics when checking 1, 2,
... 12 FMECs simultaneously. Each bar depicts an average value over
500 tests. Please note the differing scale for FinancialServices01.

though each additional FMEC constitutes a measurable increase in
computation time, it does not lead to excessive delays. For the four
small to medium-sized evolution scenarios, each additional FMEC
causes merely a few milliseconds of additional computation time.
For the FinancialServices01 scenario, we observe a more noticeable
increase in computation time: While a single FMEC is verified with
an average runtime of 648 ms, the simultaneous verification of 12
FMECs requires an average runtime of 1996 ms. However, ranging
within the time span of only a few seconds, we argue that our
execution semantics are well suitable for evolution planning. An
important factor for this conclusion is that (i) the verification of a
collection of FMECs can be split in arbitrarily large FMEC modules
and (ii) the verification of FMECs is not necessarily performed
as frequently as an underlying paradox detection mechanism but
rather on user demand.

Our evaluation shows that the implementation of our execu-
tion semantics based on Maude is able to ensure the structural
and logical consistency of an FM evolution plan with acceptable
runtimes. An integration of these means into FM tool suites allows
for sophisticated SPL planning on FM level.

6.4 Threats to Validity

Our execution semantics check FMwell-formedness rules using SOS
and an external rewriting logic. We use existing well-formedness
rules from the literature and an existing rewriting logic framework
(Maude) that both have been used in various other publications.
This leaves as internal threat to validity that wemight have wrongly
encoded some of the well-formedness rules in our semantics rules.
However, the rest of our method is correct by definition.

The FM evolution scenarios used for this evaluation are exam-
ples from other research projects and/or real-world projects. Thus,
we argue that they are not biased towards suiting our solutions.
However, the scenarios were reconstructed from results of already
performed evolution. As a consequence, they contain only the least
number of edit operations necessary to remodel each evolution sce-
nario. This leads to an uneven distribution of edit operations, e.g.,

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada A. Hoff, M. Nieke, C. Seidl, E. H. Sæther, I. S. Motzfeldt, C. Chang Din, I. Chieh Yu, and I. Schaefer

for the FinancialServices01 evolution scenario with 9,639 feature
variation type change operations and 0 group move operations.

Regarding the random generation of intermediate edit operations
in Section 6.2, we see as internal threat to validity whether this
procedure simulates real-world user behavior.

Furthermore, the reconstruction of FinancialServices01 within
DarwinSPL relies on the tool’s import mechanism. To reduce the
risk of falsely imported evolution scenarios, we check each result-
ing evolution-aware feature model for sanity by comparing each
planning section with the respective FeatureIDE source model.

7 RELATEDWORK

SPL evolution is a widely investigated area [9, 23, 32] with work
on modeling and performing evolutionary modifications to an
FM [22, 40, 54, 59], its associated realization artifacts [28, 50] or
both [27, 56, 60]. A range of tools tackles selected areas of SPL evo-
lution, e.g., DeltaEcore [62], ECCO [14], SuperMod [57, 58], VaVe [4],
SiPL [49], EvoFM [10, 11], EvoPL [9, 55] or DarwinSPL [41]. Recently,
there have also been first attempts to harmonize modeling of SPL
evolution by integrating [17] or abstracting from [3] various of
the different underlying notations. Even though the need and prin-
ciple feasibility for SPL evolution planning has been recognized
before [9, 48], the vast majority of existing concepts and tools does
not tackle this challenge. Nevertheless, we deem selected evolution-
aware concepts of individual approaches relevant to the work of
this paper so that we discuss them below.

The field of conflict and dependency analysis for graph trans-
formation systems (GTS) put forth methods for a detection of in-
compatibilities between general graph modifications [5, 24, 25, 30].
Such methods could be utilized to prevent incompatibilities be-
tween operations within an FM evolution plan and, thus, ensure
its structural consistency. However, as our work additionally lays
focus on the logical consistency of plans, we devise an integrated
solution on the basis of SOS and LTL to ensure both logical and
structural consistency, custom-tailored for FM evolution planning.

Ample work defines modification operations on FMs on various
levels of granularity [22, 40, 54, 59]. The FM operations we define
manipulate the atomic characteristics of an FM so that we argue
that more complex operations, as in some of these approaches, can
be composed from our operations. We intend to add explicit support
for FM evolution planning with complex operations as future work.

Various approaches provide retroactive support for FM evolu-
tion operations by extracting them from different states of a feature
model: In particular, Kehrer at al. introduce SiLift to determine
model change operations from different model states [21] and pro-
vide this functionality for SPLs as part of the tool SiPL [49]. More-
over, Bürdek et al. gain knowledge about user-level edit operations
on FM evolution histories by means of a differencing algorithm
between FM versions that also takes semantic differences into ac-
count [12]. However, when planning FM evolution, operations have
not yet been performed so that these methods are not directly ap-
plicable in our context. Nevertheless, we intend to investigate them
further to provide an import mechanism to our concepts when FM
evolution was planned by explicitly modeling separate FM states
as is the case with some of our industry partners.

A number of FM notations exists that integrate concerns of evo-
lution: Mitschke and Eichberg introduce a concept of feature-driven
versioning that allows to annotate features and realization arti-
facts with versioning numbers [37]. While their notation enables
to model that a feature model was changed, it does not explicitly
store how it changed. Seidl et al. introduce hyper-feature models

(HFMs) as an FM notation that augments features with version
numbers where each feature version is mapped to realization arti-
facts in the respective implementation version as part of the tool
suite DeltaEcore [61–63]. Their notation can model changes to asso-
ciated realization artifacts on FM level but not FM evolution itself.
Hinterreiter et al. present a mechanism that keeps track of different
versions of an FM by means of the variability-aware version control
system ECCO [18]. This allows to capture an FM and its evolution
as individual snapshots after evolution was performed but not as
part of planning. Botterweck et al. introduce EvoFM as concepts to
model evolution of an FM in terms of change fragments that de-
scribe the difference between one FM version to another [10, 11, 55].
This principally allows to represent past and future FM evolution
but they provide neither execution semantics nor tooling as we do.
Nieke et al. present temporal feature models (TFMs) as a notation
that can capture changes to an FM’s structure as integrated first-
level entities and, based on that, DarwinSPL as an evolution-aware
FM tool suite [44]. Their notation allows to both capture past FM
changes, which have already been realized, and model future FM
changes, which yet have to be performed.

The tool suite DarwinSPL is most closely related to our work as
it allows to capture and, principally, plan SPL evolution on basis of
the aforementioned TFMs [41]. In addition, it provides advanced
functionality for anomaly analysis during evolution [42] and mod-
eling context-awareness as an additional factor for configurations
of an SPL [33, 34, 43]. Even though our concept is independent of a
particular technology, it aligns well with TFMs as basis for plan-
ning of future evolution. Hence, we integrate our implementation
within DarwinSPL and extend it with our method for structurally
and logically consistent FM evolution planning and replanning.

8 CONCLUSION AND FUTUREWORK

With this work, we provide a solution to the as of yet unaddressed
challenge of supporting FM evolution planning while ensuring
consistent FM evolution plans. We split this challenge in two parts,
i.e., ensuring the (i) structural and (ii) logical consistency of an FM
evolution plan, and provide an integrated solution. Our concept
is found in formal methods and, thus, independent of specific FM
tooling. We provide an implementation using Maude [13] and an
integration into the evolution-aware tool suite DarwinSPL [41].
Our evaluation shows that our concept and implementation are
applicable even for large-scale real-world FM evolution.

In the future, we plan to perform a longitudinal study with our
industry partner where we use our method to plan FM evolution
for an extended period of time.

ACKNOWLEDGMENTS

This work is supported by the project LTEP: Long-Term Evolution

Planning for Highly Variable Software Systems funded by the German
DAAD and the Norwegian NFR.

Consistency-Preserving Evolution Planning on Feature Models SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

REFERENCES

[1] 2000. Rewriting Techniques andApplications, 11th International Conference, RTA
2000, Norwich, UK, July 10-12, 2000, Proceedings (Lecture Notes in Computer Sci-

ence), Leo Bachmair (Ed.), Vol. 1833. Springer. https://doi.org/10.1007/10721975
[2] Luca Aceto, Wan Fokkink, and Chris Verhoef. 2001. Structural operational

semantics. In Handbook of process algebra. Elsevier, 197–292.
[3] Sofia Ananieva, Timo Kehrer, Heiko Klare, Anne Koziolek, Henrik Lönn, S.

Ramesh, Andreas Burger, Gabriele Taentzer, and Bernhard Westfechtel. 2019.
Towards a conceptual model for unifying variability in space and time. In Proceed-

ings of the 23rd International Systems and Software Product Line Conference, SPLC

2019, Volume B, Paris, France, September 9-13, 2019, Carlos Cetina, Oscar Díaz,
Laurence Duchien, Marianne Huchard, Rick Rabiser, Camille Salinesi, Christoph
Seidl, Xhevahire Tërnava, Leopoldo Teixeira, Thomas Thüm, and Tewfik Ziadi
(Eds.). ACM, 67:1–67:5. https://doi.org/10.1145/3307630.3342412

[4] Sofia Ananieva, Heiko Klare, Erik Burger, and Ralf H. Reussner. 2018. Variants
and Versions Management for Models with Integrated Consistency Preservation.
In Proceedings of the 12th International Workshop on Variability Modelling of

Software-Intensive Systems, VAMOS 2018, Madrid, Spain, February 7-9, 2018, Rafael
Capilla, Malte Lochau, and Lidia Fuentes (Eds.). ACM, 3–10. https://doi.org/10.
1145/3168365.3168377

[5] Guilherme Grochau Azzi, Andrea Corradini, and Leila Ribeiro. 2018. On the
essence and initiality of conflicts. In International Conference on Graph Transfor-

mation. Springer, 99–117.
[6] Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In

Software Product Lines, Henk Obbink and Klaus Pohl (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 7–20.

[7] John H Blackstone. 2001. Theory of constraints-a status report. (2001).
[8] G. Bockle, P. Clements, J. D. McGregor, D. Muthig, and K. Schmid. 2004. Cal-

culating ROI for software product lines. IEEE Software 21, 3, 23–31. https:
//doi.org/10.1109/MS.2004.1293069

[9] Goetz Botterweck and Andreas Pleuss. 2014. Evolution of Software Product Lines.
Springer Berlin Heidelberg, Berlin, Heidelberg, 265–295. https://doi.org/10.1007/
978-3-642-45398-4_9

[10] Goetz Botterweck, Andreas Pleuss, Deepak Dhungana, Andreas Polzer, and Stefan
Kowalewski. 2010. EvoFM: Feature-Driven Planning of Product-Line Evolution.
In Proceedings of the 2010 ICSE Workshop on Product Line Approaches in Software

Engineering (Cape Town, South Africa) (PLEASE ’10). Association for Computing
Machinery, New York, NY, USA, 24–31. https://doi.org/10.1145/1808937.1808941

[11] Goetz Botterweck, Andreas Pleuss, Andreas Polzer, and Stefan Kowalewski. 2009.
Towards Feature-Driven Planning of Product-Line Evolution. In Proceedings of the
First International Workshop on Feature-Oriented Software Development (Denver,
Colorado, USA) (FOSD ’09). Association for Computing Machinery, New York,
NY, USA, 109–116. https://doi.org/10.1145/1629716.1629737

[12] Johannes Bürdek, Timo Kehrer, Malte Lochau, Dennis Reuling, Udo Kelter, and
Andy Schürr. 2016. Reasoning about product-line evolution using complex
feature model differences. Automated Software Engineering 23, 4, 687–733. https:
//doi.org/10.1007/s10515-015-0185-3

[13] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-
Oliet, José Meseguer, and Carolyn L. Talcott (Eds.). 2007. All About Maude - A

High-Performance Logical Framework, How to Specify, Program and Verify Systems

in Rewriting Logic. Lecture Notes in Computer Science, Vol. 4350. Springer.
https://doi.org/10.1007/978-3-540-71999-1

[14] Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexander Egyed.
2015. The ECCO Tool: Extraction and Composition for Clone-and-Own. In 37th

International Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-

24, 2015, Volume 2, Antonia Bertolino, Gerardo Canfora, and Sebastian G. Elbaum
(Eds.). IEEE Computer Society, 665–668. https://doi.org/10.1109/ICSE.2015.218

[15] W. B. Frakes and Kyo Kang. 2005. Software reuse research: status and future.
Transactions on Software Engineering 31, 7 (July 2005), 529–536. https://doi.org/
10.1109/TSE.2005.85

[16] Rohit Gheyi, Tiago Massoni, and Paulo Borba. 2006. A theory for feature models
in alloy. In First alloy workshop. Citeseer, 71–80.

[17] Daniel Hinterreiter, Michael Nieke, Lukas Linsbauer, Christoph Seidl, Herbert
Prähofer, and Paul Grünbacher. 2019. Harmonized temporal feature modeling to
uniformly perform, track, analyze, and replay software product line evolution.
In Proceedings of the 18th International Conference on Generative Programming:

Concepts and Experiences, GPCE 2019, Athens, Greece, October 21-22, 2019, Ina
Schaefer, Christoph Reichenbach, and Tijs van der Storm (Eds.). ACM, 115–128.
https://doi.org/10.1145/3357765.3359515

[18] Daniel Hinterreiter, Herbert Prähofer, Lukas Linsbauer, Paul Grünbacher, Florian
Reisinger, and Alexander Egyed. 2018. Feature-oriented evolution of automation
software systems in industrial software ecosystems. In 23rd International Con-

ference on Emerging Technologies and Factory Automation (ETFA), Vol. 1. IEEE,
107–114.

[19] Michael Huth and Mark Ryan. 2004. Logic in Computer Science: Modelling and

Reasoning about Systems. Cambridge University Press, USA.

[20] Jing Sun, Hongyu Zhang, Yuan Fang, and Li Hai Wang. 2005. Formal se-
mantics and verification for feature modeling. In 10th International Conference

on Engineering of Complex Computer Systems (ICECCS’05). 303–312. https:
//doi.org/10.1109/ICECCS.2005.48

[21] T. Kehrer, U. Kelter, M. Ohrndorf, and T. Sollbach. 2012. Understanding model
evolution through semantically lifting model differences with SiLift. In 2012 28th

International Conference on Software Maintenance (ICSM). 638–641.
[22] Elias Kuiter, Sebastian Krieter, Jacob Krüger, Thomas Leich, and Gunter Saake.

2019. Foundations of collaborative, real-time feature modeling. In Proceedings

of the 23rd International Systems and Software Product Line Conference, SPLC

2019, Volume A, Paris, France, September 9-13, 2019, Thorsten Berger, Philippe
Collet, Laurence Duchien, Thomas Fogdal, Patrick Heymans, Timo Kehrer, Jabier
Martinez, Raúl Mazo, Leticia Montalvillo, Camille Salinesi, Xhevahire Tërnava,
Thomas Thüm, and Tewfik Ziadi (Eds.). ACM, 36:1–36:8. https://doi.org/10.1145/
3336294.3336308

[23] Miguel A Laguna and Yania Crespo. 2013. A systematic mapping study on
software product line evolution: From legacy system reengineering to product
line refactoring. Science of Computer Programming 78, 8 (2013), 1010–1034.

[24] Leen Lambers, Kristopher Born, Jens Kosiol, Daniel Strüber, and Gabriele Taentzer.
2019. Granularity of conflicts and dependencies in graph transformation sys-
tems: A two-dimensional approach. Journal of logical and algebraic methods in

programming 103 (2019), 105–129.
[25] Leen Lambers, Daniel Strüber, Gabriele Taentzer, Kristopher Born, and Jevgenij

Huebert. 2018. Multi-granular conflict and dependency analysis in software en-
gineering based on graph transformation. In Proceedings of the 40th International

Conference on Software Engineering. 716–727.
[26] M. M. Lehman. 1996. Laws of software evolution revisited. In Software Process

Technology, Carlo Montangero (Ed.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 108–124.

[27] Lukas Linsbauer, Florian Angerer, Paul Grünbacher, Daniela Lettner, Herbert
Prähofer, Roberto E. Lopez-Herrejon, and Alexander Egyed. 2014. Recov-
ering Feature-to-Code Mappings in Mixed-Variability Software Systems. In
30th International Conference on Software Maintenance and Evolution, Victoria,

BC, Canada, September 29 - October 3, 2014. IEEE Computer Society, 426–430.
https://doi.org/10.1109/ICSME.2014.67

[28] Sascha Lity, Sophia Nahrendorf, Thomas Thüm, Christoph Seidl, and Ina Schae-
fer. 2018. 175% Modeling for Product-Line Evolution of Domain Artifacts.
In Proceedings of the 12th International Workshop on Variability Modelling of

Software-Intensive Systems, VAMOS 2018, Madrid, Spain, February 7-9, 2018,
Rafael Capilla, Malte Lochau, and Lidia Fuentes (Eds.). ACM, 27–34. https:
//doi.org/10.1145/3168365.3168369

[29] Neil Loughran, Awais Rashid, Weishan Zhang, and Stan Jarzabek. 2004. Sup-
porting product line evolution with framed aspects. In AOSD ACP4IS Workshop.
Citeseer.

[30] Rodrigo Machado, Leila Ribeiro, and Reiko Heckel. 2015. Characterizing Conflicts
Between Rule Application and Rule Evolution in Graph Transformation Systems.
In International Conference on Graph Transformation. Springer, 171–186.

[31] Zohar Manna and Amir Pnueli. 1992. The temporal logic of reactive and concurrent

systems - specification. Springer. https://doi.org/10.1007/978-1-4612-0931-7
[32] Maíra Marques, Jocelyn Simmonds, Pedro O. Rossel, and María Cecilia Bastarrica.

2019. Software product line evolution: A systematic literature review. Information

and Software Technology 105 (2019), 190 – 208. https://doi.org/10.1016/j.infsof.
2018.08.014

[33] JacopoMauro, Michael Nieke, Christoph Seidl, and Ingrid Chieh Yu. 2016. Context
aware reconfiguration in software product lines. In Proceedings of the Tenth

International Workshop on Variability Modelling of Software-intensive Systems.
41–48.

[34] Jacopo Mauro, Michael Nieke, Christoph Seidl, and Ingrid Chieh Yu. 2018.
Context-aware reconfiguration in evolving software product lines. Science of
Computer Programming 163 (2018), 139–159.

[35] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer.

[36] José Meseguer. 2012. Twenty years of rewriting logic. The Journal of Logic and
Algebraic Programming 81, 7-8 (2012), 721–781. https://doi.org/10.1016/j.jlap.
2012.06.003

[37] Ralf Mitschke and Michael Eichberg. 2008. Supporting the evolution of software
product lines. In ECMDA Traceability Workshop (ECMDA-TW). Citeseer, 87–96.

[38] Sophia Nahrendorf. 2017. Entwicklung und Modellierung von Evolutionsszenar-
ien für Delta-orientierte Softwareproduktlinien: Projektarbeit. https://doi.org/
10.24355/dbbs.084-201704071225

[39] Sophia Nahrendorf. 2017. Integration von Evolution in die Modellierung und

Analyse von Softwareproduktlinien. Master’s thesis. Braunschweig. https://doi.
org/10.24355/dbbs.084-201711071415

[40] Laís Neves, Leopoldo Teixeira, Demóstenes Sena, Vander Alves, Uirá Kulesza,
and Paulo Borba. 2011. Investigating the safe evolution of software product lines.
In Proceedings of the 10th International Conference on Generative Programming

and Component Engineering. 33–42.

https://doi.org/10.1007/10721975
https://doi.org/10.1145/3307630.3342412
https://doi.org/10.1145/3168365.3168377
https://doi.org/10.1145/3168365.3168377
https://doi.org/10.1109/MS.2004.1293069
https://doi.org/10.1109/MS.2004.1293069
https://doi.org/10.1007/978-3-642-45398-4_9
https://doi.org/10.1007/978-3-642-45398-4_9
https://doi.org/10.1145/1808937.1808941
https://doi.org/10.1145/1629716.1629737
https://doi.org/10.1007/s10515-015-0185-3
https://doi.org/10.1007/s10515-015-0185-3
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1109/ICSE.2015.218
https://doi.org/10.1109/TSE.2005.85
https://doi.org/10.1109/TSE.2005.85
https://doi.org/10.1145/3357765.3359515
https://doi.org/10.1109/ICECCS.2005.48
https://doi.org/10.1109/ICECCS.2005.48
https://doi.org/10.1145/3336294.3336308
https://doi.org/10.1145/3336294.3336308
https://doi.org/10.1109/ICSME.2014.67
https://doi.org/10.1145/3168365.3168369
https://doi.org/10.1145/3168365.3168369
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1016/j.infsof.2018.08.014
https://doi.org/10.1016/j.infsof.2018.08.014
https://doi.org/10.1016/j.jlap.2012.06.003
https://doi.org/10.1016/j.jlap.2012.06.003
https://doi.org/10.24355/dbbs.084-201704071225
https://doi.org/10.24355/dbbs.084-201704071225
https://doi.org/10.24355/dbbs.084-201711071415
https://doi.org/10.24355/dbbs.084-201711071415

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada A. Hoff, M. Nieke, C. Seidl, E. H. Sæther, I. S. Motzfeldt, C. Chang Din, I. Chieh Yu, and I. Schaefer

[41] Michael Nieke, Gil Engel, and Christoph Seidl. 2017. DarwinSPL: An Integrated
Tool Suite for Modeling Evolving Context-Aware Software Product Lines. In
Proceedings of the Eleventh International Workshop on Variability Modelling of

Software-Intensive Systems (Eindhoven, Netherlands) (VAMOS ’17). Association
for Computing Machinery, New York, NY, USA, 92–99. https://doi.org/10.1145/
3023956.3023962

[42] Michael Nieke, Jacopo Mauro, Christoph Seidl, Thomas Thüm, Ingrid Chieh
Yu, and Felix Franzke. 2018. Anomaly analyses for feature-model evolution.
In Proceedings of the 17th International Conference on Generative Programming:

Concepts and Experiences, GPCE 2018, Boston, MA, USA, November 5-6, 2018,
Eric Van Wyk and Tiark Rompf (Eds.). ACM, 188–201. https://doi.org/10.1145/
3278122.3278123

[43] Michael Nieke, Jacopo Mauro, Christoph Seidl, and Ingrid Chieh Yu. 2016. User
profiles for context-aware reconfiguration in software product lines. In Inter-

national Symposium on Leveraging Applications of Formal Methods. Springer,
563–578.

[44] Michael Nieke, Christoph Seidl, and Sven Schuster. 2016. Guaranteeing Con-
figuration Validity in Evolving Software Product Lines. In Proceedings of the

Tenth International Workshop on Variability Modelling of Software-intensive Sys-

tems (Salvador, Brazil) (VaMoS ’16). ACM, New York, NY, USA, 73–80. https:
//doi.org/10.1145/2866614.2866625

[45] Michael Nieke, Christoph Seidl, and Thomas Thüm. 2018. Back to the Future:
Avoiding Paradoxes in Feature-Model Evolution. In Proceedings of the 22nd Inter-

national Systems and Software Product Line Conference - Volume 2 (Gothenburg,
Sweden) (SPLC ’18). Association for Computing Machinery, New York, NY, USA,
48–51. https://doi.org/10.1145/3236405.3237201

[46] Linda M Northrop. 2002. SEI’s software product line tenets. IEEE software 19, 4
(2002), 32–40.

[47] Paulius Paskevicius, Robertas Damasevicius, and Vytautas Štuikys. 2012. Change
Impact Analysis of Feature Models. In Information and Software Technologies,
Tomas Skersys, Rimantas Butleris, and Rita Butkiene (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 108–122.

[48] Leonardo Passos, Krzysztof Czarnecki, Sven Apel, Andrzej Wąsowski, Chris-
tian Kästner, and Jianmei Guo. 2013. Feature-Oriented Software Evolution.
In Proceedings of the Seventh International Workshop on Variability Modelling

of Software-Intensive Systems (Pisa, Italy) (VaMoS ’13). Association for Com-
puting Machinery, New York, NY, USA, Article Article 17, 8 pages. https:
//doi.org/10.1145/2430502.2430526

[49] Christopher Pietsch, Timo Kehrer, Udo Kelter, Dennis Reuling, and Manuel Ohrn-
dorf. 2015. SiPL - A Delta-Based Modeling Framework for Software Product
Line Engineering. In 30th International Conference on Automated Software En-

gineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, Myra B. Cohen,
Lars Grunske, and Michael Whalen (Eds.). IEEE Computer Society, 852–857.
https://doi.org/10.1109/ASE.2015.106

[50] Christopher Pietsch, Udo Kelter, Timo Kehrer, and Christoph Seidl. 2019. Formal
foundations for analyzing and refactoring delta-oriented model-based software
product lines. In Proceedings of the 23rd International Systems and Software Product

Line Conference, SPLC 2019, Volume A, Paris, France, September 9-13, 2019, Thorsten
Berger, Philippe Collet, Laurence Duchien, Thomas Fogdal, Patrick Heymans,
Timo Kehrer, Jabier Martinez, Raúl Mazo, Leticia Montalvillo, Camille Salinesi,
Xhevahire Tërnava, Thomas Thüm, and Tewfik Ziadi (Eds.). ACM, 30:1–30:11.
https://doi.org/10.1145/3336294.3336299

[51] Gordon D Plotkin. 2004. The origins of structural operational semantics. The
Journal of Logic and Algebraic Programming 60 (2004), 3–15.

[52] Amir Pnueli. 1977. The Temporal Logic of Programs. In 18th Annual Symposium

on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October -

1 November 1977. IEEE Computer Society, 46–57. https://doi.org/10.1109/SFCS.
1977.32

[53] Klaus Pohl, Günter Böckle, and Frank J van Der Linden. 2005. Software product line
engineering: foundations, principles and techniques. Springer Science & Business
Media.

[54] Gabriela Sampaio, Paulo Borba, and Leopoldo Teixeira. 2019. Partially safe
evolution of software product lines. Journal of Systems and Software 155 (2019),
17–42.

[55] Mathias Schubanz, Andreas Pleuss, Ligaj Pradhan, Goetz Botterweck, andAnil Ku-
mar Thurimella. 2013. Model-driven planning and monitoring of long-term soft-
ware product line evolution. In Proceedings of the Seventh International Workshop

on Variability Modelling of Software-intensive Systems. 1–5.
[56] Sandro Schulze, Michael Schulze, Uwe Ryssel, and Christoph Seidl. 2016. Align-

ing Coevolving Artifacts Between Software Product Lines and Products. In
Proceedings of the Tenth International Workshop on Variability Modelling of

Software-intensive Systems, Salvador, Brazil, January 27 - 29, 2016, Ina Schae-
fer, Vander Alves, and Eduardo Santana de Almeida (Eds.). ACM, 9–16. https:
//doi.org/10.1145/2866614.2866616

[57] Felix Schwägerl and Bernhard Westfechtel. 2016. SuperMod: tool support for
collaborative filtered model-driven software product line engineering. In Proceed-

ings of the 31st International Conference on Automated Software Engineering, ASE

2016, Singapore, September 3-7, 2016, David Lo, Sven Apel, and Sarfraz Khurshid
(Eds.). ACM, 822–827. https://doi.org/10.1145/2970276.2970288

[58] Felix Schwägerl and BernhardWestfechtel. 2019. Integrated revision and variation
control for evolving model-driven software product lines. Software and Systems

Modeling 18, 6 (2019), 3373–3420. https://doi.org/10.1007/s10270-019-00722-3
[59] Christoph Seidl and Uwe Aßmann. 2013. Towards modeling and analyzing

variability in evolving software ecosystems. In The Seventh InternationalWorkshop

on Variability Modelling of Software-intensive Systems, VaMoS ’13, Pisa , Italy,

January 23 - 25, 2013, Stefania Gnesi, Philippe Collet, and Klaus Schmid (Eds.).
ACM, 3:1–3:8. https://doi.org/10.1145/2430502.2430507

[60] Christoph Seidl, Florian Heidenreich, and Uwe Aßmann. 2012. Co-evolution
of models and feature mapping in software product lines. In 16th International

Software Product Line Conference, SPLC ’12, Salvador, Brazil - September 2-7,

2012, Volume 1, Eduardo Santana de Almeida, Christa Schwanninger, and David
Benavides (Eds.). ACM, 76–85. https://doi.org/10.1145/2362536.2362550

[61] Christoph Seidl, Ina Schaefer, and Uwe Aßmann. 2014. Capturing Variability
in Space and Time with Hyper Feature Models. In Proceedings of the Eighth

International Workshop on Variability Modelling of Software-Intensive Systems

(Sophia Antipolis, France) (VaMoS ’14). Association for Computing Machinery,
New York, NY, USA, Article Article 6, 8 pages. https://doi.org/10.1145/2556624.
2556625

[62] Christoph Seidl, Ina Schaefer, and Uwe Aßmann. 2014. DeltaEcore - A Model-
Based Delta Language Generation Framework. In Modellierung 2014, 19.-21. März

2014, Wien, Österreich (LNI), Hans-Georg Fill, Dimitris Karagiannis, and Ulrich
Reimer (Eds.), Vol. P-225. GI, 81–96. https://dl.gi.de/20.500.12116/17067

[63] Christoph Seidl, Ina Schaefer, and Uwe Aßmann. 2014. Integrated Management
of Variability in Space and Time in Software Families. In Proceedings of the

18th International Software Product Line Conference - Volume 1 (Florence, Italy)
(SPLC ’14). Association for Computing Machinery, New York, NY, USA, 22–31.
https://doi.org/10.1145/2648511.2648514

[64] Herman Steyn. 2002. Project management applications of the theory of con-
straints beyond critical chain scheduling. International Journal of Project Man-

agement 20, 1 (2002), 75–80.
[65] Y. Xue, Z. Xing, and S. Jarzabek. 2010. Understanding Feature Evolution in a Fam-

ily of Product Variants. In 2010 17th Working Conference on Reverse Engineering.
109–118. https://doi.org/10.1109/WCRE.2010.20

https://doi.org/10.1145/3023956.3023962
https://doi.org/10.1145/3023956.3023962
https://doi.org/10.1145/3278122.3278123
https://doi.org/10.1145/3278122.3278123
https://doi.org/10.1145/2866614.2866625
https://doi.org/10.1145/2866614.2866625
https://doi.org/10.1145/3236405.3237201
https://doi.org/10.1145/2430502.2430526
https://doi.org/10.1145/2430502.2430526
https://doi.org/10.1109/ASE.2015.106
https://doi.org/10.1145/3336294.3336299
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/2866614.2866616
https://doi.org/10.1145/2866614.2866616
https://doi.org/10.1145/2970276.2970288
https://doi.org/10.1007/s10270-019-00722-3
https://doi.org/10.1145/2430502.2430507
https://doi.org/10.1145/2362536.2362550
https://doi.org/10.1145/2556624.2556625
https://doi.org/10.1145/2556624.2556625
https://dl.gi.de/20.500.12116/17067
https://doi.org/10.1145/2648511.2648514
https://doi.org/10.1109/WCRE.2010.20

	Abstract
	1 Introduction
	2 Background
	2.1 Feature-Oriented Development
	2.2 Formal Semantics and Logic Frameworks

	3 Feature Model Evolution Plans
	4 Ensuring Structural Consistency of FM Evolution Plans
	4.1 Challenges for Structural Consistency
	4.2 Classification of Evolution Paradoxes
	4.3 Paradox-Free Execution Semantics for Evolution Plans

	5 Ensuring Project-Specific Logical Consistency of Evolution Plans
	5.1 Challenges for Logical Consistency
	5.2 Feature Model Evolution Constraints

	6 Evaluation
	6.1 Evaluation Setup
	6.2 Evaluation of Evolution Paradox Prevention
	6.3 Evaluation of FMEC Verification
	6.4 Threats to Validity

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

