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Abstract The eclogite in the Flem Gabbro from Flemsøya Island of the Western Gneiss Region in
Norway contains atypical eclogitic minerals, such as olivine and orthopyroxene, and can be texturally
divided into weakly deformed massive eclogite (MEC) and strongly deformed foliated eclogite (FEC). Based
on phase equilibria modeling, peak metamorphic pressure‐temperature conditions of ~600–750 °C and
~1.0–2.5 GPa and ~700–820 °C and ~2.7–3.7 GPa are recorded inMEC and FEC, respectively. These different
pressure‐temperature conditions between MEC (high‐pressure, HP) and FEC (ultrahigh‐pressure, UHP)
in the same outcrop reflect deformation‐enhanced eclogitization metamorphism (HP to UHP transition) via
the addition of external water during subduction/burial to early exhumation stages and metastable
preservation of the HP MEC assemblage at UHP condition due to the local lack of deformation and fluid
access at the deep subduction interface or around Moho beneath continental collision zone. Based on the
mineral microstructures, nondislocation‐based creepmechanisms—such as diffusion creep, grain and phase
boundary sliding, and rigid‐body‐like rotation—play dominant roles in governing the deformation
features of FEC and developing the crystal preferred orientations of its major constituent minerals. These
deformationmechanisms could considerably affect the interplate coupling at the subduction interface or the
rheological strength of Moho beneath continental collision zones. Therefore, the effects of
metastability‐based (i.e., preservation of low‐pressure assemblages at HP conditions) and contributions of
nondislocation‐based creep mechanisms should be included in the future geodynamic and petrological
simulations of subduction and collision processes.

Plain Language Summary Eclogite is a unique metamorphic rock that forms at high pressure
and indicates deeply subducted crust or thick continent crust around Moho depth. Under tectonic forces,
such high‐pressure rocks can be exhumed and exposed in some current orogenic belts, such as the eclogite in
the Flem Gabbro from Flemsøya Island of the Western Gneiss Region in Norway. Based on an integrated
study, we acquired two key findings from this eclogite. First, due to lack of deformation and fluid access, the
weakly deformed massive type of eclogite is metastable at the higher pressure and temperature condition
where strongly deformed foliated type of eclogite is stable. Second, mineral microstructures suggest that the
deformation is mainly accommodated by nondislocation‐based creep mechanisms, such as diffusion creep,
grain and phase boundary sliding, and rigid‐body‐like rotation, which produce weak crystal preferred
orientations of major phases. The influences of metastability and nondislocation‐based creep mechanisms
are believed to be important but rarely addressed in the current geodynamic and petrological simulations
of subduction and collision processes. This study points out some concerns and directions for future
numerical modeling studies.

1. Introduction

The subduction interface or channel is a narrow zone (or plate boundary) sandwiched between subduct-
ing crust (footwall) and overriding plate (hanging wall). Most of the tectonic slip, strain, and energy
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related to plate convergence are accommodated and released in this tectonically active and weak zone
by inhomogeneous and localized deformation such as seismic slip in the coupled seismogenic zone at
shallow depth, semibrittle slip in the partially coupled zone at intermediate depth (brittle‐ductile transi-
tion zone), and aseismic creep in the decoupled zone as well as intermediate‐depth earthquakes at
depth (e.g., Andersen & Austrheim, 2006; Angiboust et al., 2015; Audet & Kim, 2016;
Austrheim, 2013; Austrheim & Boundy, 1994; Bachmann et al., 2009; Duarte et al., 2015; Isacks
et al., 1968; John et al., 2009; Jung et al., 2004; Lund & Austrheim, 2003; Oleskevich et al., 1999;
Tichelaar & Ruff, 1993; Wassmann & Stockhert, 2013).

Eclogite, common as a major constituent of the subduction interface, is derived from mafic components
(e.g., basalt, diabase, and gabbro) of the subducting crust that experienced
high‐pressure‐ultrahigh‐pressure (HP‐UHP) metamorphism at depths greater than ~45 km (MacGregor
& Manton, 1986; Peacock, 1993). In outcrops, eclogite often behaves as hard block wrapped in a soft
matrix that consists of metasediments, serpentinite, and other weak metamafic rocks (e.g., greenschist,
amphibolite, and blueschist; oceanic‐type mélange) (e.g., Angiboust et al., 2011; Davis & Whitney, 2006;
Du et al., 2014; Ernst, 2016; Laurent et al., 2016; Neufeld et al., 2008; Song et al., 2007; Spandler
et al., 2008) or surrounded by weak lithologies such as gneiss, marble, and quartzite (continental‐type
mélange) (e.g., Baldwin et al., 2004; Cuthbert et al., 2000; Kaneko et al., 2000; Liou et al., 2000;
Schulmann et al., 2009; Yang et al., 2002). However, the notion of continental subduction channel set-
ting comprising eclogite was challenged in some regions, because the so‐called “mélange” may also
represent a processed Moho zone beneath the continental collision belts (see review
of Austrheim, 2013).

Abundant observations on natural samples show that eclogite is not uniform and has various microstruc-
tures in outcrops and/or specimens (e.g., massive vs. foliated, coarse‐grained vs. fine‐grained, and fresh vs.
retrograded; e.g., Boundy et al., 1992; Cao et al., 2011; Engvik et al., 2007; Kurz et al., 2004; Park &
Jung, 2019; Soldner et al., 2017). These microstructural differences imply that the mechanical strength of
eclogite is variable and related to the constituting mineral assemblages. This correlation raises a
“chicken‐and‐egg” question about how deformation could affect HP‐UHPmetamorphism or metasomatism
and vice versa (Brodie & Rutter, 1985; Thompson et al., 1985). Specifically, does the deformation reshape the
rock microstructure such that the subsequent metamorphic equilibrium can be modulated or does the meta-
morphic reaction modify the rheology of the mineral assemblage (strengthen or weaken the rock), ensuring
that the deformation can be regulated?

The deformation mechanisms and the geneses of the crystal preferred orientations (CPOs) for the major
minerals in eclogite have long been discussed. It is generally considered that dislocation creep is the
dominant mechanism to cause the mineral CPOs in eclogite, whereas some proposed that diffusion
creep may also be essential in some specific situations (see a recent review by Keppler (2018)).
However, the roles of grain boundary processes such as grain boundary sliding (GBS) and grain rotation
on the deformation of eclogite are still not well known, even though their importance is being recog-
nized in peridotite (Hansen et al., 2011; Maruyama & Hiraga, 2017a; Précigout & Hirth, 2014; Wang
et al., 2013; Zhao et al., 2019).

The eclogites in the Flem Gabbro from Flemsøya Island in the Nordøyane UHP terrane of the Western
Gneiss Region (WGR) in Norway are excellent cases to study the above issues. These eclogites may
once have been situated in a continental subduction channel or continental root zone (around Moho)
owing to continental subduction and collision (see review of Austrheim (2013)). Unlike typical eclogite,
these eclogites are rich in olivine because they are derived from an olivine gabbro protolith
(Mørk, 1985). In the field, the eclogites are distributed within migmatite gneiss (country‐rock eclogite
suite, Types 2 and 3) and gabbro (gabbro‐eclogite suite, Type 1; see classifications by Mørk, 1985).
The studied eclogite samples are of Type 1 and show several types of deformation microstructures.
We analyzed and compared the microstructural and metamorphic characteristics of these variously
deformed eclogites. The results provide valuable insights into the relationships between HP‐UHP meta-
morphism, presence of fluid, and ductile deformation and the deformation mechanisms of
mafic‐ultramafic components at the subduction interface or around continental Moho beneath
collision zones.
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2. Tectonic and Geological Setting
2.1. WGR

The WGR of Norway is one of the largest and best‐exposed HP‐UHP terranes in the world. The Caledonian
UHP terrane (~5,000 km2) is surrounded to the north, east, and south by HP rocks (~30,000 km2). The WGR
consists of Proterozoic gneisses, often referred to as Western Gneiss Complex (WGC), and a stack of overly-
ing continental and oceanic allochthons (Figure 1a; Hacker et al. (2010)). The WGR and associated
Caledonian orogen were formed by the successive events as closure of the Iapetus Ocean (~430–410 Ma),
Baltica‐Laurentia collision and associated westward subduction of the Baltica basement (~425–400 Ma),
and final extensional orogenic collapse (~400–380 Ma) (Andersen, 1998; Andersen et al., 1991;
Hacker, 2007; Hacker & Gans, 2005; Kylander‐Clark et al., 2007; Tucker et al., 2004; Walsh et al., 2007).

Based on the pressure‐temperature (P‐T) estimates, three UHP domains are recognized along the west
Norwegian coast from south to north (Nordfjord, Sørøyane, and Nordøyane), separated by Baltica basement
gneisses that lack evidence for UHP (Figure 1b; see Hacker et al., 2010). The increase in peak metamorphic
P‐T conditions coastward is consistent with northwestward subduction. The lowest and highest peak P‐T
conditions are preserved in the Nordfjord (700–800 °C and 2.8–3.0 GPa, see Wain et al., 2000, and
Cuthbert et al., 2000) and Nordøyane (>800 °C and 3.0–4.0 GPa; see Terry et al., 2000, Carswell et al., 2006,
and Butler et al., 2013) UHP domains, respectively.

2.2. Nordøyane UHP Domain

The Nordøyane UHP domain can be divided into three structural‐tectonic segments (northern, central, and
southern) that are separated by major shear zones (Figure 1c; see Terry & Robinson, 2003). These lithotec-
tonic segments are dominated by granodioritic to dioritic gneisses of the Baltica basement that are overlain
by remnants of Caledonian thrust nappes (Sætra and Blåhø nappes). Evidence for UHP metamorphism has
been reported from the northern segment of Nordøyane such as microdiamonds in garnet‐biotite‐kyanite
gneiss from Fjørtoft (Dobrzhinetskaya et al., 1995); coesite and/or polycrystalline quartz pseudomorphs in
eclogite from Harøya (Butler et al., 2013), Fjørtoft, and Flemsøya (Cuthbert et al., 2000; Terry et al., 2000);
thermobarometric estimates for orthopyroxene eclogite in Fjørtoft and Otrøy (Carswell et al., 2006), and
microdiamonds and majoritic garnet in peridotite from Fjørtoft and the nearby mainland (van Roermund
& Drury, 1998; Vrijmoed et al., 2008). The HP‐UHP metamorphism occurred at ~415–410 Ma (Krogh
et al., 2011) and was subsequently overprinted by granulite to lower amphibolite facies metamorphism with
local partial melting at ~395 Ma during exhumation (Krogh et al., 2011; Tucker et al., 2004).

2.3. NW Flemsøya and Flem Gabbro

The NW Flemsøya structurally belongs to the northern segment of the Nordøyane UHP domain (Figure 1c)
and is lithologically dominated by granitic, dioritic, and augen migmatitic gneisses crosscut by variably eclo-
gitized gabbro (Figure 1d; Mørk (1985)). The Flem Gabbro or Sandvikhaugane Gabbro as defined by
Mørk (1985) is the largest gabbro block in NW Flemsøya. This gabbro is variably eclogitized (Type‐1 eclogite
as defined by Mørk, 1985) and shows two sets of nearly vertical foliation with NW and NE strike and east-
ward trending and steeply plunging lineation that formed at eclogite facies conditions (Terry &
Robinson, 2004). The nearby migmatitic gneisses that enclose the eclogite (Types 2 and 3) and gabbro pre-
sent later well‐developed granulite to amphibolite facies assemblages and fabrics due to top‐to‐W
shearing (Mørk, 1985).

In a previous petrological study, the peak metamorphic P‐T conditions of these types of eclogite were con-
strained to be 1.5–2.0 GPa and 750 ± 60 °C in this area (Mørk, 1985). The age of the eclogite facies meta-
morphism was determined to be 400 ± 16 Ma using a three‐point (garnet‐clinopyroxene‐whole rock)
Sm‐Nd isochron (Mørk & Mearns, 1986) and was later recalculated to be 410 ± 16 Ma (Root et al., 2004).
Krogh et al. (2011) more recently reported a similar eclogitization age of 410 ± 2Ma for FlemGabbro eclogite
based on U‐Pb zircon dating. Besides, they also determined the primary age of the gabbro (age of igneous
crystallization) and timing of amphibolite facies metamorphism (age of pegmatite crystallization) to be
1,255 ± 2 and 396 ± 4 Ma, respectively (Krogh et al., 2011).

10.1029/2020JB019375Journal of Geophysical Research: Solid Earth

CAO ET AL. 3 of 33



3. Field Structures of Flem Eclogite

The studied eclogite samples are from the northernmost margin of the Flem Gabbro (Figure 1d). This part of
the gabbro body is almost completely eclogitized and characterized by fresh eclogite with various deformed
microstructures (Figure 2). The eclogite is strongly sheared and displays continuous and steep foliation
subparallel to the strike of the block (Figures 2a–2c). Weakly deformed massive eclogite (MEC) occurs as
lenticular relic cores with tapering tails within strongly deformed foliated eclogite (FEC; Figures 2b and
2e). The boundaries between MEC and FEC are often sharp and marked by decimeter‐scale mylonitic shear
zones (Figures 2d and 2e), indicating a large strain gradient or heterogeneous deformation.

4. Method
4.1. Sampling and Thin Section Preparation

Seven of total 14 samples (two MEC and five FEC samples) collected from the eclogite outcrop were selected
for this study (their sampling locations are shown in Figures 2b–2e). For the FEC specimens showing clear

Figure 1. (a) Generalized tectonostratigraphic map of the southern part of the Scandinavian Caledonides modified after Terry and Robinson, 2003. The red
parallelogram indicates the location of WGR. (b) Geological map showing the WGR that consists of WGC basement (light gray) overlain by allochthons
(modified after Renedo et al., 2015, and Hacker et al., 2010). The dark gray area denotes three UHP domains along the western coast of the WGC, from south to
north: Nordfjord, Sørøyane, and Nordøyane. The dashed lines are isobars of metamorphic pressures displaying a northwestward increasing P‐T trend. The
studied region (Nordøyane) is indicated by a red rectangle. (c) Generalized geological map of the Nordøyane UHP terrane showing the major lithotectonic units
(modified after Terry & Robinson, 2003). The studied eclogites are situated in the Flem Gabbro in the NW part of Flemsøya Island. (d) Geological map of the
NW part of Flemsøya (inset in Figure 1c) showing the distribution of two eclogite suites (within gabbro and within migmatite). The studied eclogites are within
gabbro at the northernmost margin of the Flem Gabbro (indicated by a yellow star, see Figure 2; modified after Mørk, 1985, and Terry & Robinson, 2004).
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foliation and lineation, thin sections were cut parallel to the lineation and perpendicular to the foliation
(i.e., XZ plane). For the MEC specimens whose foliation and lineation are hardly recognizable in the
specimen, we took the foliation of their adjacent FEC as the structural reference for MEC and cut the thin
sections parallel to this reference plane. We denoted this reference plane as X′Y′ plane hereafter, in which
X′ and Y′ are the apparent lineation determined by the shape preferred orientations (SPOs) of olivine in
the thin sections and the other direction perpendicular to the apparent lineation on the X′Y′ plane,
respectively. All thin sections were finely polished using 1‐μm diamond paste and SYTON (0.06‐μm
colloidal silica) before further analyses.

4.2. Electron Backscattered Diffraction and Data Treatment

The mineral orientation data were measured using an electron backscattered diffraction (EBSD) system
installed at a Quanta 450 Field Emission Scanning Electron Microscope at the State Key Laboratory of
Geological Processes and Mineral Resources in the China University of Geosciences (Wuhan), China, and
using the EBSD system with a Symmetry Detector (Oxford Instrument) attached to Field Emission

Figure 2. Field structures of the studied eclogite block. (a) Far view of the nearly EW striking eclogite body. The thick red dashed line indicates the approximate
boundary separating MEC‐ and FEC‐dominated regions. The thin white dashed line denotes the orientation of the foliation (S) within the FEC. (b) Enlarged
view of a MEC‐dominated region (inset in (a)) in which the boundaries between MEC and FEC are delineated by thin red dashed lines. (c) Strike‐perpendicular
view at the tail end of a MEC region (inset in (b)) showing steeply dipping foliation in FEC. (d) View of a MEC relic and its nearby FEC (inset in (b)).
Note the sharp boundaries between MEC and FEC. (e) Strike‐oblique view of several stacking MECs (inset in (b)). The boundaries of lens‐shaped MEC are locally
represented by decimeter‐scale mylonitic shear zones. The sampling locations of the studied eclogite are indicated with blue solid circles. The Samples
NW1140 and NW1153 are MEC; the others are FEC.
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Scanning Electron Microscope (JSM‐7100F) at the School of Earth and Environmental Sciences in Seoul
National University in Korea. The XZ plane and apparent X′Y′ plane thin sections were analyzed for FEC
and MEC, respectively. The operational settings of the EBSD system include an acceleration voltage of
20 kV, working distance of 25 mm and a spot size of 60 in a low‐vacuum mode. To acquire the orientation
information in various spatial scales and resolutions, we conducted EBSD mapping over different‐sized
rectangular domains in the thin sections with multiple step sizes depending on grain size and domain area.
Generally, large and small step sizes of 15–50 and 4–5 μm were applied for large (~1/2–2/3 of entire thin
section area, totaling ~2–7 cm2) and small (~0.1–0.3 cm2) domains, respectively. Except large‐area domain
mapping, the raw indexing rates are higher than 80% in most small‐area domain mapping.

To get a clean EBSD data set, before grain constructions and CPO analyses, inaccurate indexing points
(mean angular deviation, >0.8°) and wild spikes (point clusters <3–5 pixels) were eliminated. The CPOs
of minerals were calculated using the orientation distribution functions, which were derived from the orien-
tation data. The mean orientations of individual grains averaged from all indexed points in a grain were
plotted at pole figure, yielding namely one‐point‐per‐grain CPO. A “de la Vallée Poussin” kernel half width
of 10° was applied to calculate orientation distribution functions and to estimate the CPO strength
(i.e., J‐index, ranging from 1 to∞) (Bunge, 1982). For comparison, another index, M‐index, ranging between
0 and 1, was also used for quantifying the CPO strength (Skemer et al., 2005).

To construct the grains, the grain boundaries were customarily defined by the neighboring pixels that have
misorientation angles greater than 10° and the influence of unindexed points on segmenting a single grain
into several smaller patches was removed. Besides, before analyzing the grain fabrics, such as grain size,
grain shape, and grain orientation, the grains locating at the map boundaries and having unindexed areas
larger than 50% of their constructed grain areas were also excluded. The grain size was calculated as equiva-
lent circular diameter, namely, the diameter of a circle that has the same area with the actual grain. The
aspect ratio was defined by the length ratio of long to short axes in the best fitting ellipse, while the angle
between the long axis and a given reference direction (e.g., foliation or lineation) gave the orientation of
the grain. The sinuosity of grain boundaries was quantified by shape factor, which is the perimeter ratio
of an actual grain to a circle with the same area. The mis‐to‐mean orientation (M2M) and grain orientation
spread (GOS) maps were constructed to show the angle distributions of intragranular misorientations and
their averages within each grain. The misorientation axes were computed and plotted at pole figure and
inverse pole figure to display the preferred orientations of intragranular misorientation axes in the specimen
and crystallographic coordinates, respectively.

The above‐mentioned microstructure parameters are useful when characterizing the mineral crystallo-
graphic and shape fabrics in a rock. In this study, the treatment and analysis of EBSD data were completed
using theMTEX toolbox (ver. 5.2.beta2) inMATLAB (http://mtex‐toolbox.github.io/) (Bachmann et al., 2010;
Hielscher & Schaeben, 2008).

4.3. Whole‐Rock and Mineral Compositions and P‐T Calculation

The bulk‐rock major oxides (SiO2, Al2O3, TiO2, total Fe2O3, CaO, MgO, K2O, Na2O, MnO, and P2O5) were
measured on a fused glass disk made of whole‐rock powder and lithiummetaborate using an Axiosmax X‐ray
fluorescence spectrometer at the Hebei Institute of Regional Geology and Mineral Resource Survey, China.
Loss on ignition (LOI), bound or combined water (H2O

+), and hydroscopic water (H2O
−) were determined

by placing 1 g of sample powder in the furnace at various temperatures (1000 °C for LOI and H2O
+,

105–110 °C for H2O
−) for several hours before being cooled in a desiccator and reweighed. The FeO content

was measured using a routine wet dissolution‐titration chemical method. The Fe2O3 content was calculated
by subtracting FeO from the total Fe2O3 determined using X‐ray fluorescence. The relative analytical uncer-
tainties are <3% for most elements.

The major oxide compositions of the constituting minerals were analyzed using a wavelength‐dispersive
electron probe microanalyzer (JEOL JXA‐8100) at Gyeongsang National University in Jinju, South Korea.
The measurements were conducted using a 15 kV acceleration voltage, 10‐nA beam current, 1‐μm beam
size, and 20‐s counting time. The natural mineral standards were used for calibration and the final data were
corrected using the atomic number (Z), absorption (A) and characteristic fluorescence (F) (ZAF) method.

10.1029/2020JB019375Journal of Geophysical Research: Solid Earth

CAO ET AL. 6 of 33

http://mtex-toolbox.github.io/


Themineral formulae were calculated using the AX program developed by Prof. Tim Holland (https://www.
esc.cam.ac.uk/research/research‐groups/research‐projects/tim‐hollands‐software‐pages/ax).

To estimate the metamorphic P‐T conditions of the eclogites, phase equilibria modeling was conducted
using the Theriak/Domino software (09.03.2019) (de Capitani & Petrakakis, 2010) with the latest internally
consistent data set (Database tcds62c) (Holland & Powell, 2011). The most recent activity models of the fol-
lowing minerals were used: garnet, orthopyroxene, biotite, chlorite, and ilmenite (White et al., 2014; White
et al., 2014) and clinopyroxene, amphibole, and melt (Green et al., 2016). The relevant P‐T pseudosections
were constructed in the MnO‐Na2O‐CaO‐K2O‐FeO‐MgO‐Al2O3‐SiO2‐H2O‐TiO2‐O model system
(MnNCKFMASHTO). To obtain more reliable peak P‐T estimates for MEC and FEC, effective local
bulk‐rock compositions—which are calculated from the chemical compositions (from electron probe
microanalyzer data) and volume proportions (from small‐area EBSD phase maps) of the mineral assem-
blages that assured to be involved in the metamorphic reactions in a local domain—and intersections of
pyrope and grossular isopleths of garnet were employed. Particularly, the effective bulk‐rock water contents
are estimated from the compositions and volume proportions of hydrous phases (amphibole and phlogopite)
and they are obviously different between MEC and FEC. The effective bulk‐rock composition data and their
estimation details are shown in the caption of Figure 15. Besides, an independent thermobarometer relying
on the mineral pairs of coexisting amphibole and plagioclase (Holland & Blundy, 1994; Molina et al., 2015)
was also used to more tightly confined the retrograde P‐T conditions where these twominerals are stable and
which are not well constrained by phase equilibria modeling method.

4.4. Fourier Transformation Spectroscopy

To measure the hydrogen species and concentrations in the nominally anhydrous minerals (NAMs, e.g., Ol,
Grt, Omp, and Opx) in eclogite, the unpolarized Fourier transformation infrared spectroscopy was used
(Nicolet 6700 infrared spectrometer at the Tectonophysics Laboratory of Seoul National University in
Korea). Doubly polished thin slices of the rock samples (~80–280 μm thick) were prepared in a routine
process and dried at 120 °C in an oven for at least 24 hr before the infrared (IR) analysis. The IR absorption
spectra were collected by averaging a series of 128 scans with a resolution of 4 cm−1. During the measure-
ment, dry and pure nitrogen gas was flushed into the system to reduce the disturbance caused by moisture
in the air. Clean areas in the grains that were free of inclusions and cracks were selected for measurements.
The size of the rectangular apertures (40–100 μm in length) varied with the shape and size of the clean
regions in a grain.

5. Results
5.1. Microstructures
5.1.1. MEC
This type of eclogite is characterized by a coarse‐grained granular texture. The minerals are nearly ran-
domly oriented and the eclogite appears massive in the outcrop and hand specimen (Figure 3). The MEC
mainly consists of olivine (Ol), garnet (Grt), omphacite (Omp), orthopyroxene (Opx), phlogopite (Phl),
ilmenite (Ilm), amphibole (Amp), minor spinel (Sp), and plagioclase (Pl) (Figure 3). Olivine is a major
phase and often occurs in different size (up to 2 mm) crystals with rhombic or prismatic shapes
(Figure 3a). Almost all olivine crystals have coronitic rims, which are typically indicated by an inner
rim of pure Opx and an outer rim that mainly consists of Omp edged with thin Pl layer in contact with
neighboring Grt (Figure 3c). The Opx and Omp are polycrystalline and aligned in a palisade pattern with
their long axes perpendicular to the Ol grain boundaries (Figure 4a). Ilmenite occurs sporadically in the
matrix (~0.1–1 mm in length) and also displays coronitic rims. It is surrounded by an inner continuous
Phl grain, which contains abundant Omp inclusions near its rim, and an outer Omp to Amp edge in
contact with the neighboring Grt (Figure 3d). Most Ol grains show no obvious evidence for deformation
by intracrystalline plasticity, such as undulose extinction and subgrain boundaries, except for a few
grains that displayed both brittle (cracks filled by Opx) and ductile (undulose extinction)
features (Figure 3f).

In contrast to the typical isometric morphology, Grt is mostly irregular in shape and interconnected to form
the matrix surrounding the olivine grains (Figures 3a, 3b, and 4). In some domains, Grt displays columnar,
tabular or prismatic shapes (Figure 3b). The Grt is rich in inclusions. It shows a complex intergrowth
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consisting of anhedral Grt, Pl, Amp, and needle‐shaped Sp in the Pl‐bearing core (Figure 3e), but contains
mostly Omp and Amp inclusions in the mantle and rim regions (Figures 3c). Although Grt grain
boundaries are hardly recognizable in both optical and backscattered electron images, they are

Figure 3. Optical photomicrographs (a, b, and f) and BSE images (c–e) showing the microstructures of MEC (X′Y′ plane). (a) Sample NW1153 displays variously
sized and randomly orientated Ol crystals that have rhombic or prismatic shapes typical for euhedral Ol. Xenomorphic and inclusion‐rich Grt constitutes the
matrix surrounding Ol. (b) An enlarged view of Sample NW1140 with less xenomorphic Grt having columnar, tabular, or prismatic shapes. (c) A nearly
rhombic‐shaped Ol crystal (inset in (a)) showing coronitic reaction rims. This texture implies the prograde reactions: Ol + Pl → Opx + Grt and
Opx + Pl → Omp + Grt. (d) A subhedral to anhedral Ilm crystal surrounded by a Phl crystal. This texture can be formed by the prograde reaction
(Ol + Pl + Ilm + H2O → Phl + Omp + Grt) or retrograde reaction (Omp + Ilm + H2O → Phl) and retrograde reaction (Grt + Omp + H2O ± Phl → Amp (calcic
Amp)). (e) Pl‐bearing inclusion‐rich core in xenomorphic Grt (lower left inset). This texture denotes the prograde reaction: Ol + Pl + H2O → Grt + Sp + Amp
(calcic Amp). (f) A large and fragmented Ol crystal shows undulose extinction. The Ol‐crosscutting fractures are filled with abundant fine‐grained strain‐free
Opx crystals. Mineral abbreviation: olivine (Ol), garnet (Grt), orthopyroxene (Opx), omphacite (Omp), plagioclase (Pl), ilmenite (Ilm), phlogopite (Phl), spinel
(Sp), and amphibole (Amp).
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ubiquitously observed in the EBSD phase maps when misorientation angles larger than 10° are set to define
grain boundaries (Figures 4a and 4b). These observations imply that the large and irregularly shaped Grt is
actually fine‐grained polycrystalline aggregate which seemingly has grain sizes increased from the rim
toward core regions (Figure 4a and 4b). Alternatively, many small “grains” in the Grt could be subgrains
if the minimum misorientation angle required to form a grain boundary in Grt crystal is greater than 10°.
The Grt in MEC thus consists of either numerous small grains or subgrains.

Figure 4. EBSD phase maps of (a and b) MEC and (c–e) FEC samples showing the spatial distributions of mineral phases
and the grains boundaries, which are marked as black lines. Colored arrows in the insets (oval and rectangular
areas in c–e) highlight the presence of four (occasionally five) grain junctions.
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5.1.2. FEC
The FEC is intensely deformed and shows distinct foliation and lineation in the outcrop and hand specimen.
In XZ plane thin sections, the foliation is well defined by the mineral layering. The mineral assemblage of
FEC is Grt + Omp + Ol + Amp + Phl + Opx + Ilm + minor Pl and Sp, which is the same as that of
MEC. Based on the grain size and degree of foliation development, we identified two FEC subtypes.
Subtype‐I (NW1142, NW1143, NW1144, and NW1148) shows prominent foliation, which is featured by
the layering of fine‐grained mineral mixtures and by large elongated foliation‐parallel Grt bands
(Figure 5a). Subtype‐II (NW1147) is more intensely foliated and displays layers of finer grained mixtures
of minerals and more elongated parallel‐aligned Grt‐rich bands (Figure 5b).

The grain sizes are much smaller in Subtype‐II (davg. ~ 50–130 μm) than those in the Subtype‐I
(davg. ~ 100–230 μm) for all major phases (Omp, Grt, Ol, Opx, and Amp) and their composites (all phases)
(Figures 6b and 6d). A few domains in Subtype‐I show much larger grain size of Ol (dOl > 300 μm) due to
the presence of Ol porphyroclasts (Figures 5a and 5c). In both subtypes, the minerals of major phases and
their composites mostly have small aspect ratios (R < 2) which are overall lower in Subtype‐II than
Subtype‐I, especially for Omp, Grt, and Ol (Figures 6a, 6b, 7b, 7d, and 7f). Despite the relatively vague
SPOs of minerals observed in the optical images (Figures 5c and 5d) and EBSD phase maps (4c–e), the
statistics show obvious SPOs of the long axes of all major phases (especially Grt, Ol and Omp) that align sub-
parallel to the foliation in both subtypes (Figures 7a, 7c, and 7e and Figure S1 in the supporting informarion).
However, the major phases also exhibit minor differences in the SPOs as indicated by their different angles to
the foliation (Figures 7a, 7c, 7e, and S1). A combination of aspect ratio and SPO suggests that the larger the
aspect ratio of a grain (of all major phases), the smaller angle of the long axes to foliation tends to develop
(Figures 7b, 7d, and 7f).

In both subtypes, the grains are mostly equigranular and have straight boundaries (Figures 4c–4e, 5c, and
5d), which is also proven by the small shape factors in all major phases (Figures 6a and 6c). The shape factor
varies in the range of ~1.2–1.7 and it is the highest and lowest in Opx (~1.48–1.66) and Grt (~1.18–1.24),
respectively. The Subtype‐II has overall smaller shape factors than Subtype‐I, especially for Omp, Grt and
Ol. Additionally, the shape factor tends to increase with both aspect ratio (Figure 6a) and GOS
(Figure 6c), whereas the tendencies are relatively weaker between grain size and aspect ratio (Figure 6b)
or GOS (Figure 6d).

In Subtype‐I, large and lenticular Ol porphyroclasts frequently occur in the matrix between Grt bands
(Figures 5a and 5e). These Ol porphyroclasts display ambiguous undulose extinction or subgrain boundaries
in the optical images, which are more readily accessed in the M2M orientations maps (see section below).
The grain boundaries of Ol porphyroclasts are mostly curved to irregular and embayed or “engulfed” by
small Opx and Omp crystals (Figures 4e and 5e). Polygonal hydrous silicate patches (e.g., Phl and Amp)
and occasionally minute needle‐shaped inclusions are common features in Ol porphyroclasts (Figure 5e).
The Grt bands or pockets in both subtypes consist of mainly polygonal shaped Grt grains, which are often
locally mixed with other phases, mainly Omp and Amp and less Ol and Phl (Figures 4c–4e). In an Ol‐rich
domain of Subtype‐II, Grt grains are more dispersed and well mixed with other major phases such as
Omp, Ol, and Amp (Figure 4d). The major constituent phases are actually well mixed in both subtypes,
although the mixing seems more intensive in Subtype‐II than Subtype‐I (cf. Figure 4c, 4d, and 4f). Besides
the prevalence of 120° triple junctions that are formed by the same or different phases, four or even five grain
junctions are also frequently observed but are more common among different phases (e.g., Omp‐Grt,
Omp‐Ol, and Omp‐Ol‐Amp junctions) (see insets in Figures 4c–4e)

An amoeboid symplectite complex frequently occurs in the matrix, which is commonly characterized by an
irregular Omp grain surrounded by vermicular anhydrous Opx, Ab and neighboring hydrous Amp
(Figure 5f). Corona textures of Phl around Ilm and Amp around Phl are also frequently observed in the
matrix (Figures 5c and 5d).

5.2. Crystallographic Fabrics
5.2.1. CPOs of Minerals
In the MEC, the [001] axes of Ol are aligned subparallel to the apparent lineation (X′), while the maxima of
the [010] axes are at high angle (~45°) to the apparent foliation (X′Y′) and [100] axes are rather dispersed
(Figures 8a and 8b). This CPO pattern resembles the B‐type CPO if the X′Y′ plane is approximating the
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real foliation of MEC. In the FEC, the CPOs of Ol are rather variable and lack of systematic pattern. Overall,
the maximum of [010] axes tend to align at the plane perpendicular to lineation (YZ plane) (Figures 8d–8g),
while either or both [100] and [001] axes cluster subparallel to X or Y axes (Figures 8c and 8e–8g). Based on
the CPO patterns of Ol, we identified A‐type like and [010]‐axial or AG‐type like CPOs of Ol for the Subtype‐I
samples of NW1148 (Figure 8g) and NW1143 and NW1144 (Figures 8d and 8e), respectively. The Subtype‐I

Figure 5. Optical photomicrographs (a–d) and BSE images (e and f) showing the microstructures of FEC (XZ plane). (a) Sample NW1144 shows a distinct
foliation. Large Ol porphyroclasts notably occur in the fine‐grained matrix. (b) Sample NW1147 displays a more intense foliation. (c) Enlarged view showing a
matrix domain in Sample NW1148 presenting textures similar to Sample NW1144 (a). The Phl corona around Ilm and Amp corona around Phl are shown,
indicating the prograde or early retrograde reactions: Omp + Ilm + H2O→ Phl and Omp + Phl + H2O→ Amp (sodic‐calcic Amp). (d) Enlarged view of a matrix
domain in Sample NW1147. The left and right images of (c) and (d) were taken under cross‐ and plane‐polarized light, respectively. (e) Texture of a large
lens‐shaped Ol porphyroclast in Sample NW1148, implying the prograde reaction: Ol + Pl → Opx + Grt + Omp. (f) Amoeboid symplectite complex in Ol,
suggesting the late retrograde reaction: Omp + H2O → Opx + Pl + Amp (calcic Amp).
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sample of NW1142 and Subtype‐II sample of NW1147 presented CPOs (Figures 8c and 8f) that cannot be
categorized into the current classification of olivine CPO types (Jung, 2017).

In the MEC, the [001] axes of Opx are also concentrated at high angles (~45°) to X′Y′ plane, whereas the
[100] and [010] axes are less clustered (Figures 8a and 8b). Notably, the MEC Sample NW1153 displays
two clear maxima of [100] and [010] axes at low angles to X′Y′ plane. In the FEC, except for the Subtype‐I
Sample NW1148 and Subtype‐II Sample NW1147 that display Opx [001] axes at high angle to lineation
and fairly dispersed [100] and [010] axes (Figures 8f and 8g), the other three Subtype‐I samples have pro-
nounced concentrations of Opx [001] axes and weak girdles of [010] axes aligning parallel and perpendicular
to the lineation, respectively (Figures 8c–8e). The [100] axes are also quite scattered, but they are clustered
parallel to lineation and perpendicular to foliation in the samples of NW1142 and NW1143, respectively
(Figures 8c and 8d).

The CPOs of Grt in the MEC are characterized by the clustering of <100> axes in an orthogonal pattern and
relatively more dispersed distributions of <111> and <110> axes (Figures 8a and 8b). In contrast, the <100>
axes show several maximum at moderate angles (~45°) to foliation, while the <111> and <110> axes are
similarly scattered and lack of consistent CPOs in all FEC samples (Figures 8c–8g). The CPO patterns of
Grt are not completely random but present no apparent systematic distributions in both MEC and FEC.

Similar to Grt, Omp also develops obvious CPOs in the MEC as represented by the maximum of the [001]
axes and (010) poles aligning at high angles to X′Y′ plane while [100] axes are clustered subparallel to X′Y

Figure 6. Diagrams showing the relationships of aspect ratio versus shape factor (a) and grain size (b), as well as of GOS versus shape factor (c) and grain size
(d) in several domains from two FEC subtypes (NW1147 and NW1148). All values are weighted arithmetic means by grain areas.
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′ plane (Figures 9a and 9b). The CPOs of Omp in both subtypes of FEC aremainly characterized by [001] axes
subparallel to the lineation and [100] axes, (110) and (010) poles (with (010) pole maximum aligning
subnormal to the foliation) forming weak girdles subperpendicular to the lineation (Figures 9c–9g).
Differing with other FEC samples, Subtype‐I NW1142 displays maximum of [100] axes subparallel to
lineation (Figure 9c).

The CPOs of Amp are well correlated with those of Omp in the MEC, as reflected by the coincidental align-
ments of [001] axes, (010) poles and [100] axes or poles between Amp and Omp (Figures 9a and 9b). In FEC,

Figure 7. Rose diagrams (a, c, and e) showing the SPOs of the long axes of the major phases and R‐θ diagrams (b, d, and
f) displaying the relationships between aspect ratio and angle of long axes to the foliation for two FEC subtypes (NW1147
(a–d) and NW1148 (e and f)). Thick solid lines in (b), (d), and (f) are contours of 2% number density for each mineral.
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except for one Subtype‐I Sample NW1148, which develops rather weak Amp CPO (Figure 9g), all other
Subtype‐I samples present a CPO featured by [001] axes aligning parallel to lineation and both poles of
(100) and (110) concentrating perpendicular to foliation (Figures 9c–9e). The Subtype‐II Sample NW1147
present an Amp CPO showing the alignment of [001] axes parallel to lineation, but poles of (010) and
(100) clustering to respective Z and Y axes (Figure 9f).
5.2.2. CPO Strength
Except that one Subtype‐II Sample NW1147 has a large CPO strength of Opx due to its limited number of
grains (Figure 8f) and one Subtype‐I Sample NW1143 has a strong CPO strength of Amp (Figure 9d), the
CPOs of major constituent minerals (Omp, Grt, Ol, Opx, and Amp) in both MEC and FEC develop J‐ and
M‐index smaller than 2.5 and 0.06, respectively (Figures 8, 9, and S2). Overall, the CPO strength of the
minerals increases in the order of Grt < Ol < Omp < Amp ~ Opx (Figure S2). Besides, neither J‐index nor
M‐index vary considerably with grain size in the FEC (Figure 10).
5.2.3. Misorientations
The intragranular misorientation angles (0–10°) distribute rather heterogeneously in the FEC and they are
less than 1° in most grains (Figure 11). In the Subtype‐II Sample NW1147, the misorientation angles larger

Figure 8. CPOs of Ol (left column), Opx (middle column), and Grt (right column) in (a, b) MEC and (c–g) FEC. Pole figures are presented in an equal area, lower
hemisphere and contoured with a resolution of 1°. X, Y, and Z denote the lineation, direction perpendicular to the lineation and parallel to the foliation, and
foliation‐normal direction, respectively. Superimposed circles in (f) are scattered orientations of Opx grains. X′ and Y′ are the apparent lineation and the direction
perpendicular to the lineation on the apparent foliation (X′Y′ plane). N: number of grains, M: M‐index, and J: J‐index.
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than 2° are mostly found in Opx and Amp (Figures S3 and S4), whereas Ol and Amp develop greater
misorientation angles (>2°) than Grt, Omp and Opx in the Subtype‐I NW1148 (Figure S5). Similar results
are also reflected by the GOS values in which Amp, Opx and Ol have overall larger GOS (>0.5°) than the
Grt and Omp (<0.5°) (Figures 6c and 6d). Besides, Subtype‐II Sample NW1147 shows obviously lower
GOS values in Grt, Omp and Ol than Subtype‐I Sample NW1148 (Figures 6c and 6d).

The intragranular misorientation axes (2–10°) in the major constituent minerals (Omp, Grt, Ol, Opx,
and Amp) in two subtypes of FEC are nearly randomly distributed in the specimen coordinates
(Figures S6–S8). Different from other phases that have variable clustering directions of misorientation axes
in the crystal coordinates, Ol mostly has the misorientation axes aligning parallel mainly to the [010] axis
and secondarily to the [100] and [010] axes (Figures S6a–S8a). The CPOs of the grains that develop intragra-
nular misorientation angles of 2–10° are often not in good consistencies with the CPOs of the complete grain
data set, which contains the grains of both large (2–10°) and small (<2°) intragranular misorientation angles
(cf. left and middle columns in Figures S6–S8).

Figure 9. CPOs of Omp (left column) and Amp (right column) in (a, b) MEC and (c–g) FEC. Reference frame and descriptions on the pole figure are the same as
those in Figure 8.
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5.3. Whole‐Rock and Modal Compositions

The bulk‐rock major oxide concentrations vary in similar ranges for both MEC and FEC (Table 1). The low
SiO2 (~42–43 wt.%), Na2O + K2O (~2.3–2.7 wt.%), Al2O3 (~10–13 wt.%), and CaO (~4.8–6.1 wt.%) and high
FeO + Fe2O3 (~17–19 wt.%) and MgO (~16–19 wt.%) contents indicate the protoliths of eclogites are of
mafic‐ultramafic (picrite basalt) compositions. Notably, the LOIs are obviously lower in the MEC
(0.67–0.83 wt.%) than those in the FEC (1.02–1.43 wt.%). The modal compositions (viz. volume proportions)
were estimated based on the area fractions of phases on the large‐area EBSD maps. Overall, the FEC con-
tains less Ol but more Grt, Omp and Amp than MEC (Table 2).

5.4. Mineral Compositions of Major Elements
5.4.1. Garnet
In the MEC Sample NW1153, the compositional zoning of Grt shows fluctuations in pyrope (Prp), grossular
(Grs) and almandine (Alm), but nearly flat spessartine (Spss) components in an off‐center “core” region, and
overall homogenous components in the mantle‐rim regions (Figure 12a). Besides, the Pl‐bearing Grt core
exhibits significantly higher Grs and lower Prp proportions than the Pl‐free regions (Figures 12c and 12d).
The MEC Sample NW1140 has no Pl‐bearing core and shows relatively higher Prp and lower Grs contents
(Figures 11c and 11d). In contrast, FEC Subtype‐II Sample NW1147 displays no compositional zoning,
which is characterized by nearly flat Alm, Prp, Grs, and Spss patterns in Grt (Figure 12b). Overall, FEC
shows lower Grs and higher Prp contents than MEC (Figure 12). Excluding the Pl‐bearing region, MEC
shows a negative correlation between Grs and Prp (Figure 12c) and a positive correlation between Prp
and Alm (Figure 12d). These correlations are also manifested in the Grt compositional profile of MEC in
which Alm and Prp show roughly concordant variations, whereas Grs and Prp display opposite fluctuations
(Figure 12a). In contrast, FEC exhibits a weak anticorrelation between Grs and Prp (Figure 12c) but a dis-
tinct negative correlation between Prp and Alm (Figure 12d). This negative correlation can also be observed
in the Grt compositional profile of FEC in which Prp and Alm present opposite patterns (Figure 12b).
5.4.2. Clinopyroxene/Omphacite
The Omp in the FEC has averagely higher Ae contents compared to the MEC (Figure S9a). The Na content
and Fet/(Fet + Mg) ratio of the Omp in the FEC overlap with those of the MEC but are averagely higher
(Figure S9b). The Omp shows no remarkably different compositions between the inclusions in Grt or Ol
and the coronitic rims around Ol or Ilm in the MEC, as well as between the core and rim in the FEC.
5.4.3. Olivine and Orthopyroxene
The Mg# [=100 × Mg/(Mg + Fe2+)] of Ol varies slightly from 66 to 70 in the MEC and FEC (Figure S10a).
Excluding three outliers, the Mg# and NiO content (~0.08–0.20 wt.%) present an overall positive intersample
correlation (Figure S10c, magmatic origin). Including outliers, weak negative intrasample correlations
between the Mg# and NiO content are displayed in the FEC Samples NW1147 and NW1148 (Figure S10c,
metamorphic origin). No significant differences in the Ol compositions are observed between the core and

Figure 10. Diagrams showing the relationships between grain size and J‐index (a) and M‐index (b) derived from two
FEC subtypes (NW1147 and NW1148). The data points whose elevated CPO strengths are mainly attributed to their
limited numbers of grain are bracketed by the dashed line and should be excluded for the comparison of CPO strength
between samples.
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rim areas or between the porphyroclast and matrix grains. The Opx Mg# also varies slightly (~72.5–76) and
exhibits no remarkable differences between MEC and FEC (Figure S10b). The Opx compositions are
dominated by enstatite and ferrosilite component (Figure S10d). The Al2O3 content of Opx (~0.24–0.36 wt.
%) is very low in both MEC and FEC.
5.4.4. Amphibole and Mica
The compositions of Amp are mainly calcic and sodic‐calcic in the MEC and FEC, respectively (Figure 13a).
The calcic Amp in both MEC and FEC is pargasite (Figure S11a), whereas the solid‐calcic Amp is
Mg‐katophorite in the FEC and Mg‐taramite in the MEC (Figure S11b). The calcic Amp in the FEC occurs
only in the symplectite complex (Figure 5f). The Fe/(Fe + Mg) ratio and average Si molar ratio of mica fall
into a composition of Phl in both MEC and FEC (Figure 13b).
5.4.5. Feldspar, Ilmenite, and Spinel
The feldspar compositionally belongs to oligoclase in bothMEC and FEC (Figure S12). The Ilm has high FeO
(~42–45 wt.%) and TiO2 (~50–53 wt.%) and lowMgO (~2.1–3.8 wt.%) andMnO (~0.15–0.28 wt.%) contents in
bothMEC and FEC. The Sp occurring in the Pl‐bearing Grt core in theMEC presents high Al2O3 (~59–61 wt.
%) and FeO (~25–26 wt.%), and low MgO (~11–12 wt.%) and NiO (~0.14–0.20 wt.%) contents.

Figure 11. (a–c) Mis‐to‐mean (M2M) orientation maps showing the intragranular misorientation angle distributions (0–10°) of all constituent phases in two FEC
subtypes samples.
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5.4.6. Hydrogen Concentrations in NAMs
Despite the interference of noise (peaks occurring consistently at the same wavenumbers in all studied sam-
ples) above 3,600 cm−1 which is the main IR absorption range of hydrous silicates, all single crystalline
NAMs (Grt, Ol, Omp, and Opx) in the MEC and FEC present fairly flat IR spectra below 3,600 cm−1, which
commonly indicates the absorption of hydrogen impurities in the crystal lattice of NAMs (Figure 14).
Because of the absence of prominent absorption bands of hydrogen below 3,600 cm−1, the exact water con-
tent of the specimen was not calculated and considered to be trivial.

5.5. Metamorphic P‐T Conditions and Paths

Disparate peak metamorphic P‐T conditions are inferred for two representative MEC (NW1153) and FEC
(NW1147) samples. Excluding the data at higher temperature end—which have large uncertainties due to
the poor convergences of subparallel‐aligned isopleths of Grs and Prp—Grt compositions in the
mantle‐to‐rim region yield peak P‐T conditions of ~1.0–2.5 GPa and ~600–750 °C for MEC (Figure 15a).
In contrast, eliminating three outliers at the lower pressure end (the same reason as above), the Grt compo-
sitions in the FEC suggest peak metamorphic conditions at P ~ 2.7–3.7 GPa and T ~ 700–820 °C (Figure 15b).
The fact that peak P‐T conditions are higher in the FEC than MEC is reflected by the higher Prp and lower
Grs contents in the Grt as well as the higher Na contents in Omp and Amp in the FEC than those in theMEC
(Figures 12, S9b, and 13a). The peak P‐T results for FEC suggest that Flem eclogites experienced UHP meta-
morphism during prograde (i.e., subduction or burial) and/or early retrograde (i.e., early exhumation)
stages, which are consistent with the inference for the Nordøyane UHP domain where Flem eclogites occur
(Hacker et al., 2010). Besides, the metamorphic P‐T conditions for the symplectite assemblages of
Amp‐Pl‐Opx in the FEC and Amp‐Pl‐Phl in the MEC are similar and estimated to be ~0.8–1.0 GPa &
~710–760 °C and ~1.2 GPa and 700 °C, respectively (yellow rectangle and star in Figure 15), representing
a late retrograde (i.e., late exhumation) event.

6. Discussion and Implications
6.1. Deformation Enhanced Eclogite‐Facies Metamorphism

As shown above, the peak P‐T metamorphic conditions of weakly deformed MEC (~1.0–2.5 GPa and
~600–750 °C) and strongly deformed FEC (~2.7–3.7 GPa and ~700–820 °C) display a significant gap. This
result is contradictory to the observation that MEC and FEC (having almost the same bulk‐rock composi-
tions, Table 1) coexist in a single block (Figure 2), which implies that they should have experienced the same

Table 1
Measured Bulk‐Rock Major Element Compositions (wt.%)

Sample Rock type SiO2 Al2O3 TiO2 Fe2O3 FeO CaO MgO K2O Na2O MnO P2O5 LOI Total

NW1140 MEC 42.05 10.18 0.96 1.77 17.62 4.83 19.13 0.47 1.78 0.24 0.16 0.67 99.85
NW1153 MEC 42.90 12.27 1.06 1.42 16.22 5.82 16.46 0.59 1.90 0.22 0.19 0.83 99.88
NW1144 FEC 43.10 12.08 0.99 2.19 14.95 6.10 16.35 0.43 2.10 0.20 0.17 1.18 99.85
NW1147 FEC 43.42 12.79 0.91 2.32 14.62 6.03 15.69 0.50 2.18 0.22 0.16 1.02 99.86
NW1148 FEC 41.96 10.34 0.92 1.63 17.35 5.07 18.47 0.47 1.81 0.24 0.15 1.43 99.85

Note. LOI: loss on ignition.

Table 2
Normalized Phase Volume Proportions (vol.%) Based on the Area Fractions of Minerals on the Large‐Area EBSD Maps

Sample Rock type Grt Omp Ol Opx Amp Phl Ilm Pl Sp

NW1140 MEC 21.64 29.37 40.12 2.78 2.97 1.29 1.40 0.40 0.03
NW1153 MEC 24.41 21.10 40.68 6.39 2.73 1.19 2.11 1.03 0.34
NW1142 FEC 30.55 13.25 16.03 4.37 33.28 1.15 0.98 0.37 0.02
NW1143 FEC 22.95 30.03 30.00 2.63 12.05 1.00 0.82 0.50 0.02
NW1144 FEC 31.82 26.42 21.06 2.10 16.47 1.00 0.93 0.17 0.02
NW1147 FEC 36.56 38.29 18.45 0.36 4.71 0.88 0.55 0.19 0.03
NW1148 FEC 29.79 24.25 27.74 2.71 11.99 2.25 0.77 0.46 0.04
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P‐T trajectory. Based on these facts, we infer that the deformation has mainly occurred at prograde and/or
early retrograde stages, and it must play a crucial role in promoting the HP to UHP metamorphic transition
(see also Mørk (1985)).

The water contents in the MEC and FEC also differ. Because major NAMs (Ol, Opx, Omp, and Grt) contain
little hydrogen as indicated by their fairly flat IR spectra (Figure 14), water is almost completely stored in the
hydrous phases in both MEC and FEC. The absence of free H2O phase in most domains of the P‐T pseudo-
sections (Figure 15) also implies that, despite small in total quantity, almost all water resides in the hydrous
silicates and little water can be absorbed by NAMs due to an extremely low water fugacity in the system.
Despite the presence of free H2O at the peak P‐T condition in FEC (Figure 15b), its estimated concentra-
tion—avg. ~150 wt. ppm at the average P‐T condition inferred from the plots of Grt composition in the
Grt + Amp + Omp + H2O assemblage and at the bulk‐rock composition that includes unreacted olivine
—is probably too low to hydrate the NAMs significantly (for a comparison, NAMs in natural eclogite predo-
minantly have total H2O content >200 wt. ppm; Katayama et al., 2006; Sheng et al., 2007; Wu et al., 2008).
Therefore, the smaller LOI and volume proportions of hydrous minerals (Amp and Phl) in the MEC suggest
that MEC is less hydrated than FEC (Tables 1 and 2). Besides, the water content at the peak metamorphic

Figure 12. Compositions of garnet. (a) Compositional profile showing the variations of major Grt end‐members along a solid blue line (A‐A′ in the inset,
excluding the dark Pl‐rich core) of a Grt grain in MEC (NW1153). (b) Compositional profile showing the variations of major Grt end‐members along a solid
yellow line (B‐B′ in inset) of a Grt grain in FEC (NW1147). (c) Grs versus Prp and (d) Prp versus Alm diagrams. The blue dashed ellipse marks the composition
range of the Pl‐bearing Grt core (NW1153).
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stage should be even lower for the MEC, because most of its Amp (and possibly part of Phl) was formed
during retrograde metamorphism (see captions in Figure 15).

In this context, these facts point to the potential role of water as a medium linking deformation to HP‐UHP
metamorphism. The most straightforward interpretation is that water was acquired externally with the aid
of intense deformation and promoted the transition from HPMEC to UHP FEC during prograde and/or the
early retrograde stages. Conversely, the lack of water infiltrating MECmay have hindered its transformation

Figure 13. Compositions of amphibole (a) and mica (b). In the FEC the calcic Amp occurs at the retrograde symplectite, while the other sodic‐calcic Amp occurs
in the matrix.

Figure 14. Representative IR spectra of single crystalline NAMs. The absorbance was normalized to 1 cm by the
thickness of sample slice. The sample names in bold and plain fonts are MEC and FEC, respectively. The largest noise
was observed in Sample NW1147 due to the sample having the smallest grain size and aperture used for IR analysis. The
IR spectra of Omp and Opx in the MEC were not measured due to their small grain sizes in the coronitic rims around Ol.
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and preserved the metastable HP assemblage even at the P‐T conditions suitable for UHP metamorphism
(Jamtveit et al., 2016). In our eclogite outcrops, FEC occurs as mylonitic shear zones around MEC blocks
(Figure 2) and eclogite bodies are surrounded by gabbro (Figure 1d). Therefore, we inferred two successive
stages of fluid‐induced eclogitization. First, gabbro transformed to MEC at HP condition during prograde
path. The occurrence of Amp in the Grt core of MEC Sample NW1153 (Figure 3e) clearly implies that at least
a minor amount of water is needed to hydrate gabbro. However, because both gabbro and MEC
(e.g., NW1153) are weakly deformed (Mørk, 1985), the role of deformation in controlling the HP meta-
morphism of the gabbro protolith could be relatively weak and other factors may help to accomplish the gab-
bro to MEC transition (e.g., long duration). Second, MEC transforms to FEC transition at UHP condition

Figure 15. P‐T pseudosections of (a) MEC Sample NW1153 and (b) FEC Sample NW1147. The green and red dashed lines are isopleths (colored labels) of Prp and
Grs modal proportions in Grt, respectively. The cyan circles are the plots of Grt compositions in the mantle‐to‐rim regions to indicate the peak metamorphic
conditions in the MEC. The higher Grs content in the Grt core and positive correlation between the Prp and Alm contents (Figures 12a, 12c, and 12d) suggest that
the Grt core compositions in the MEC might have been mainly affected by the inverse accessibilities of Ca (sourced from Pl) and Mg‐Fe (sourced from Ol)
during the formation of Grt from Pl and Ol (see also Mørk (1986)). Therefore, the core compositions of Grt (not plotted) likely reflect the influence of the
compositions of local domains and fail to determine the peak metamorphic conditions for the MEC. Instead, the narrow variations of the Grt compositions and
occurrences of Omp inclusions in the mantle and rim, as well as the direct contact with Omp along the Grt rim (Figures 3c, 4a, 4b, and 12a), imply that the
Grt mantle and rim regions are in textural equilibrium with neighboring minerals and can be used to estimate peak metamorphic P‐T conditions for the MEC. On
the contrary, the negative correlation between the narrowly ranged Alm and Prp contents in FEC (Figures 12b and 12d) implies that the whole Grt grain tends to
attain an equilibrated state via Fe‐Mg exchange with nearby minerals in the FEC. The core‐to‐rim Grt compositions are thus used to estimate the peak
metamorphic conditions in the FEC (plots of red circles). The yellow star in (a) and rectangle in (b) denote the P‐T conditions estimated from Amp‐Pl
thermobarometers. The estimation of effective bulk‐rock compositions excludes the contribution of olivine which has a magmatic origin and exists as the reaction
residue after eclogite‐facies metamorphism. Furthermore, in the MEC, Amp almost only occurs in the Amp‐Pl (or Phl) symplectite/corona (Figures 3c and 3d);
its compositions are calcic (pargasite) suggesting it to be low‐pressure amp (Figures 13a and S11a); and it grew mostly during the retrograde stage by hydration
and topotactic replacement of Omp (Figures 9a and 9b). These facts thus point out that, to model the peak‐stage metamorphism in the MEC, the amount
of H2O contained by retrograded Amp (and possibly parts of Phl) needs to be subtracted. In contrast, in the FEC, Amp occurs mostly in the matrix (Figures 5c and
5d); it has calcic‐sodic compositions suggestive of high‐pressure origin (Figures 13a and S11b); and shows no topotactic relationship with Omp (Figure S13).
These results indicate that most Amp formed at peak and/or early‐retrograde conditions and its H2O needs to be included to model the peak‐stage metamorphism
in the FEC. The final effective bulk‐rock compositions (mol.%) used for phase equilibria modeling are (a) NW1153: SiO2 (46.90), TiO2 (1.07), Al2O3 (9.30),
FeO (12.64), O (0.21), MnO (0.20), MgO (17.79), CaO (9.12), Na2O (2.08), K2O (0.34) and H2O (0.36); and (b) NW1147: SiO2 (47.57), TiO2 (0.68), Al2O3 (8.90), FeO
(11.78), O (0.70), MnO (0.13), MgO (17.39), CaO (8.98), Na2O (2.98), K2O (0.11) and H2O (0.77). The most remarkable differences between the two phase
diagrams are that Amp is stable up to much higher pressures, chlorite (Chl) occurs at high‐pressure and low‐temperature condition, and free H2O is present at
high‐pressure and high‐temperature condition when bulk‐rock water content is higher. Mineral abbreviations: garnet (g), omphacite (o), diopside (di),
orthopyroxene (opx), olivine (ol), plagioclase (pl), amphibole (amp), chlorite (chl), phlogopite (phl), Na‐phlogopite (naph), ilmenite (ilm), spinel (sp), rutile (ru),
magnetite (mt), and potassium feldspar (ksp).
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during prograde and/or early retrograde stages. The effect of water on enhancing the UHPmetamorphism is
manifested by the much higher water contents in the FEC compared to the MEC (see above).

The roles of deformation in promoting eclogite‐facies metamorphism via the participation of water (i.e., trig-
gering metamorphic reaction and enhancing its kinetics) and/or grain size reduction (i.e., increasing grain
surface area and rock permeability) have also been reported for other granulite/gabbro‐eclogite suites such
as other localities in the WGR and Bergen Arcs, Norway (Austrheim, 1987, 2013; Austrheim et al., 1997;
Austrheim & Griffin, 1985; Terry & Heidelbach, 2006), Zambezi Belt in Central Zambia (John &
Schenk, 2003), andMarun‐Keu Complex of the Polar Urals in Russia (Glodny et al., 2003), as well as granitic
rocks at Yangkou in the Sulu UHP metamorphic belt (Fang & Yan, 2019). In these examples, HP‐UHP eclo-
gites often occur along ductile shear zones or as veins within granulite/gabbro, which are mainly interpreted
as channelized fluid pathways within gabbro during HP‐UHP metamorphism (Austrheim et al., 1997; John
& Schenk, 2003). In a ductile regime, fluid can penetrate into the ductile shear zones from surrounding rocks
more easily due to an increase of porosity (increasing permeability) where grain size is being reduced by
intense ductile deformation (Wark & Watson, 2000) or through opening of microcavities (local dilatancies)
caused by GBS during ductile deformation (i.e., creep cavitation) (Fusseis et al., 2009). The latter mechanism
of water pumping has been evidenced in Ronda mylonitic peridotites and corroborated the fact that ductile
flow can exerts a dynamic control on the long‐term fluid (water) circulation in mantle shear zones
(Precigout et al., 2017).

However, more recent studies have suggested that an efficient fluid infiltration often requires prior fractures
or faults generated by deep earthquakes and the resulting fluid‐driven HP‐UHPmetamorphism can produce
weaker rocks, which subsequently deform viscously and form a ductile shear zone (Austrheim, 2013;
Jamtveit et al., 2019; Petley‐Ragan et al., 2018; Putnis et al., 2017). Such brittle deformation at the lower con-
tinental crust and subduction interface can be triggered as aftershocks by stress pulses and dynamically ele-
vated strain rate generated by earthquakes in the shallow brittle regime (Cheng & Ben‐Zion, 2019; Jamtveit
et al., 2018; Petley‐Ragan et al., 2019) and/or transiently but periodically increased pore fluid pressure
related to the dehydration of adjacent portions of the downgoing plate (Broadwell et al., 2019; Viete
et al., 2018). In our eclogites, the evidence for earthquake at HP condition is very likely reflected in the
MEC where fragmented and internally strained Ol crystals with fractures infilled with small strain‐free
Opx grains (Figure 3f). This microstructure indicates that brittle deformation occurred precedingly and
promoted the ensuing gabbro to MEC metamorphic reaction (consuming Ol to produce Opx) along the
fractures probably caused by seismic loading (Austrheim et al., 2017). However, the occurrence of water
infiltration along the fractures is not clear because of the absence of hydrous minerals in the fractures.
Since more convincing evidence for seismic failures, such as pseudotachylyte, has not been found in the out-
crops, the mechanism of earthquake induced eclogitization (especially MEC to FEC transition) remains
speculative for our samples currently (Jamtveit et al., 2018).

Alternatively, long‐term high differential stress (σdiff or tectonic overpressure) may also be capable of gener-
ating the discrepant peak P‐T conditions of MEC and FEC (Luisier et al., 2019; Mancktelow, 2008; Pleuger &
Podladchikov, 2014; Reuber et al., 2016; Richter et al., 2016; Schmalholz & Podladchikov, 2014; Vrijmoed &
Podladchikov, 2015; Wheeler, 2014). Based on this interpretation, UHP FEC is thought to be produced from
HPMEC as the result of high σdiff at HP conditions, while MEC is not affected by such high σdiff due to stress
partitioning and preserves its HP assemblage. The average peak‐pressure gap between MEC and FEC is
~2 GPa, which falls into a reasonable range of tectonic overpressure in the continental collision zones
(Reuber et al., 2016; Yamato & Brun, 2017).

However, the feasibilities of this interpretation in our eclogites are limited by two reasons. First, whether
such high σdiff can be effectively partitioned between MEC and FEC in a block as small as our eclogite out-
crop and its effects on the extent of heterogeneous pressure distribution are still not clear. Based on a recent
work by Luisier et al. (2019), a dramatic spatial variation of pressure over meters scale appears possible, in
which the strong host rock mostly records pressure equal to the mean stress (σm, i.e., mean of maximum
(σ1) and minimum (σ3) principal stresses) while the weak inclusion rock can preserve pressure close to σ1
(see also Richter et al., 2016) when the inclusion's long axis is aligned at high angles (70–90°) to the σ1
direction. Applying the average pressures of MEC (1.8 GPa, analog to strong host) and FEC (3.2 GPa, analog
to weak inclusion), we obtained σ1, σ3, σdiff (σ1−σ3), and σm of 3.2, 0.4, 2.8 and 1.8 GPa, respectively.
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The estimated σdiff (2.8 GPa) is much larger than σm (1.8 GPa) or confining pressure, suggesting that both
MEC and FEC should be intensively fractured (“Goetze criterion,” see Kohlstedt et al. (1995)), which is
contradictory to the ductile deformation structures in the FEC. Besides, such high σdiff (2.8 GPa) is
neither plausible to occur in the lithospheric shear zones (σdiff mostly <250 MPa, see Bürgmann
& Dresen, 2008).

Second, a comparison between the σdiff preserved in FEC and the peak‐pressure gap between MEC and FEC
can help assess the effect of σdiff. If the σdiff preserved in FEC is significantly smaller than one tenth of the
peak‐pressure gap (~200 MPa, calculated using a multiplying factor between tectonic overpressure and
σdiff provided by Wheeler (2014)), the FEC is more likely formed due to high lithostatic pressure rather than
tectonic overpressure. The problem is that the exact value of σdiff in the FEC is difficult to constrain because
of the lack of effective piezometers for eclogite. However, based on a recrystallized grain size piezometer for
dry olivine (Van der Wal et al., 1993)—which is applicable because of nearly absence of IR absorption peaks
suggesting little water in Ol (Figure 14)—we estimated a σdiff in the range of ~20–40 MPa from the 3‐D oli-
vine grain size (~100–330 μm, 2‐D grain size (Figure 6) multiplied by a factor of 1.5 to correct the sectioning
effect) for the ductile deformation of FEC. This stress range is an upper bound and real σdiff should be much
lower, because the FEC is a multiphase aggregate and the grain size of olivine is jointly reduced by the pin-
ning of second phases besides stress (Figure 16). Therefore, although the smaller grain sizes in the FEC
indeed indicate its higher σdiff than that of the MEC, the loosely constrained σdiff (<20–40 MPa) is still much
lower than the required σdiff (~200 MPa) to impose a considerable impact to the tectonic overpressure. This

Figure 16. Zener diagram showing the area‐weighted grain sizes of major phases (y axis) as a function of area‐weighted
grain size from all other phases and volume fraction of all other phases (x axis). Black dashed line is the boundary
between secondary phase and dynamic recrystallization controlled grain size microstructures. While solid line is the fit
line using a Zener parameter of 0.52 adopted from Tasaka et al. (2014). The background of the figure is modified after
Hidas et al. (2019).
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relatively low stress value also concurs with the inference of nondislocation‐based creep as the dominant
deformationmechanism (see section below), because dislocation creep otherwise tends to dominate over dif-
fusion creep at the high σdiff (~200 MPa) and relevant grain size (~50–230 μm, Figure 6) (Frost &
Ashby, 1982). Despite relatively small overpressure effect, this low σdiff can still greatly promote the
(U)HP metamorphism by enhancing the solid‐state reaction (diffusion) kinetics (Keller et al., 2010) and
the rate of pervasive fracturing and fluid infiltration process (Jamtveit et al., 2000; Jamtveit et al., 2016).

Transiently and repetitively high σdiff episodes can actually exist if earthquake induced fractures are the pre-
cursors of subsequent ductile shear zones of FEC (Cheng & Ben‐Zion, 2019; Jamtveit et al., 2018;
Petley‐Ragan et al., 2019). Transiently high σdiff (and its induced transient overpressure) per se has been sug-
gested to be able to produce grain‐scale garnet overgrowth zones of increased pressure signature in the time-
scales of hundreds of years (Chu et al., 2017), however, its ability to form large‐sized eclogite body (like our
outcrops) is unlikely due to the short timescales of seismicity. Transiently high σdiff associated with seismic
activities plays a more impactful role—via introduction of fluids along the high stress induced fractures—
only when the P‐T conditions are appropriate for long‐term eclogitization metamorphism
(Austrheim, 2013; Engi et al., 2018; Jamtveit et al., 2016; Jamtveit et al., 2019; Putnis et al., 2017).

6.2. Deformation Mechanisms of Minerals
6.2.1. MEC
BecauseMEC is massive in structure, suggesting it is weakly deformed, its deformationmechanisms are only
addressed briefly. First, evidence for coexisting brittle (fracturing mechanism, reflected by the fractured Ol
and filling with small Opx grains) and ductile deformation (dislocation creep, indicated by the undulose
extinctions) is found locally in the MEC (Figure 3f), implying that although the macrostructures were
weakly modified by deformation (i.e. poorly developed foliation and lineation), a small amount of strain
was still accommodated by some crystals in the MEC, probably via seismic loading (Austrheim et al., 2017).
Thus, the weak but obvious CPOs of all major constituent minerals (Grt, Omp, Ol, Opx, and Amp) in the
MEC (Figures 8a, 8b, 9a, and 9b) are not the consequences of deformation coeval with eclogitization. The
inherence of preexisting CPOs (B‐type like) in Ol can be inferred from the weak SPOs of euhedral Ol grains
(Figure 3a) and their weak B‐type like CPOs (Figures 8a and 8b), which were most likely formed by compac-
tion or shearing during the crystallization and accumulation of Ol from magma (Cao et al., 2017; Yao
et al., 2019). The good correlations of CPOs between Omp and Amp (Figures 9a and 9b) are strong evidence
suggesting that the CPOs of Amp mainly resulted from topotactic replacement of Omp grains (Figure 3d)
during retrograde metamorphism (Giuntoli et al., 2018). The formation mechanisms of the CPOs of Grt,
Omp, and Opx are complicated and likely owing to the anisotropic growth of minerals under a macroscopic
deviatoric stress field (preliminary results of our following study).
6.2.2. FEC
The deformation mechanisms and geneses of CPOs in the major constituent minerals in the FEC are
important because FEC accommodates most strain during the ductile deformation coincident with and/or
postdating eclogitization metamorphism. Based on the microstructural analysis, we proposed that
nondislocation‐based creep mechanisms—such as diffusion creep, grain and phase boundary sliding, and
rigid‐body‐like rotation—are the dominant contributors to accommodate plastic strain and develop mineral
CPOs in the FEC. The evidence for this deduction is listed below.

First, intragranular misorientation angles (dominantly <1°, Figures 11 and S3–S5) and GOS values (<1°,
Figures 6c and 6d) are very low in the grains of all major phases (Grt, Omp, Ol, Opx, and Amp). These results
indicate that dislocation creep—the main contributor to the geometrically distorted crystal lattice (Passchier
& Trouw, 2005)—is not prevalently activated during ductile deformation. Evidence for dislocation creep is
mostly found in a few large Ol, Opx, and Amp grains that display relatively large intragranular misorienta-
tion angles (2–10°, Figures S3–S5) and greater GOS (>1°, Figures 6c and 6d), suggesting that dislocation
creep is locally prevalent in the domains where higher stress is concentrated and strain is generally not
accommodated by other mechanisms (Frost & Ashby, 1982). The weak but discernable positive correlations
between GOS and grain size for individual phases (Figure 6d) illustrate that dislocation creep is generally
more prominent at larger grains. Besides, the larger GOS values found in Opx and Amp, which have also
greater shape factors compared to Ol, Omp and Grt (Figure 6c, overall Opx > Amp > Ol > Omp > Grt), indi-
cate that dislocation creep can induce more sinuous grain boundaries via piling up of dislocations or grain
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boundary migration (Passchier & Trouw, 2005). Alternatively, the sinuous grain or phase boundaries—
which can also be formed by mineral dissolution and precipitation accompanied with metamorphic reac-
tions, especially for Opx and Amp—may cause stress to concentrate at their irregularities (e.g., ledges or
steps) and thus enhance the activity of dislocations. Compared to Subtype‐I FEC, the low GOS values of
Grt, Omp, and Ol in the Subtype‐II FEC (Figures 6c and 6d) also agree with their smaller grain sizes
(Figures 6b and 6d) and suggest even weaker dislocation activities.

Therefore, dislocation creep is not considered as the major contributor to the mineral CPOs in the FEC. The
weak CPO strengths of Omp, Ol, Opx, and Amp in most FEC samples (J‐index <2.1, M‐index <0.06;
Figures 8 and 9 and S2) also disfavor dislocation creep as a dominant deformation mechanism which actu-
ally results in a much stronger CPO if one dominant slip system was activated (Karato, S.‐i., 2008). The
exception is the CPOs of Grt, which are always very weak even via dislocation creep owing to their 66 slip
systems and cubic symmetry (Ando et al., 1993; Ji et al., 2003; Mainprice et al., 2004). Besides, the lack of
the dependence of CPO strength (M‐index and J‐index) on grain size (Figure 10) also hints that the CPOs
should mainly not result from dislocation creep which is able to elevate the CPO strength with increasing
grain size. The distribution patterns of the intragranular misorientation axes in the crystal coordinates reveal
mainly [100](001) and [001](100) slip systems in the Ol (Figures S6a–S8a), mostly [010](100), [001](100),
[001](010) and [001]{210} slip systems in the Opx (Figures S6b–S8b), mainly [001](100), [001](010), [001]
{hk0} and [100](010) slip systems in Omp (Figures S6d–S8d), and mostly [001](010), [001](100) and [100]
(010) slip systems in the Amp (Figures S6e–S8e). The coexistence of these multiple slip systems in a mineral
can contribute to weak CPO strengths of Ol, Omp, Opx, and Amp. However, an overall poor consistency of
the CPOs between the grains with 2–10° misorientations and the complete grain sets (Figures S6–S8) may
argue against a significant contribution of dislocation creep to the bulk‐rock CPOs. Exceptions are the
domains containing many Ol, Amp, and Opx grains with 2–10° misorientations, which display the CPOs
somewhat similar to those of the complete grain sets (Figures S7b, S7e, S8a, and S8e), implying that the role
of dislocation creep on the CPO development can be locally important, especially for Ol, Amp, and Opx.
Nevertheless, it should be admitted that such comparison of CPOs may have an inaccuracy, because the
numbers of grains with misorientation angles of 2–10° are small (N < 150) and their CPOs may not be
representative enough.

Second, shape factors (~1.2–1.7, Figures 6a and 6c) and aspect ratios (~1.4–2.3, Figures 6a and 6b) are very
small and four grain or phase junctions are prevalent in almost all major phases (Grt, Omp, Ol, Opx, and
Amp) (Figures 4c–4e). The small shape factors and aspect ratios indicate that the grain boundaries and
shapes are dominantly straight and equigranular, respectively. These grain characteristics can greatly ease
and facilitate the sliding of crystals along their common grain or phase boundaries, as supported by the fre-
quent occurrences of four (even five) grain junctions which commonly represent a transient stage of GBS
process during large strain deformation (Ashby & Verrall, 1973). Owing to the lack of intragranular misor-
ientations of 2–10° in the grains that forms the four (or five) grain or phase junctions (cf. Figures 4c, 4d, and
10), the GBS process is likely assisted mainly by diffusion creep and categorized as Lifshitz
GBS (Langdon, 2006).

In a multiphase assemblage such as peridotite, GBS process can effectively promote phase mixing (Cross &
Skemer, 2017; Linckens et al., 2014) and inhibit grain growth through boundary migration by pinning the
grain or phase boundaries of each phases (Linckens et al., 2011; Linckens et al., 2015). The sufficiently small
grain sizes resulted from phase mixing and pinning can tremendously reduce the viscosity and accelerate the
strain localization by promoting the grain‐size‐sensitive diffusion creep (Maruyama&Hiraga, 2017b; Tasaka
et al., 2014; Warren & Hirth, 2006). As an analogy, the multiphase FEC presents grain sizes (Omp, Grt, Ol,
Opx, and Amp) that are controlled mainly by the second phases (all other phases) in the similar manner as
the peridotites from natural mantle shear zones and the analogs from deformation experiments (Figure 16).
This result agrees with the findings from peridotites and thus supports the prevalence of GBS and resulting
phase mixing process in the FEC. Because ductile deformation is considered to be concurrent with and to
promote the eclogite‐facies metamorphism (see section 6.1), the accompaniedmetamorphic reactions (form-
ing fine‐grained new phases) are also expected to enhance the phase mixing process in the FEC (Delle Piane
et al., 2007; Mansard et al., 2020; Newman et al., 1999; Prigent et al., 2018). Recently, based on the deforma-
tion experiments using Ol‐Cpx aggregates, Zhao et al. (2019) proposed that, independent of small grain pin-
ning effect, phase boundaries sliding (PBS) per se can also substantially enhance the rate of deformation due
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to the low viscosity, fast diffusivity and reaction rate along the phase boundaries. Given the great efficiency
of PBS and the abundance of phase boundaries between multiple phases in the FEC, it is reasonable to con-
sider that PBS is an important and even dominant mechanism responsible for the deformation of FEC.

The shape factor and aspect ratio are positively correlated and their values differ among phases, overall
Grt < Omp < Ol < Amp < Opx (Figure 6a), hinting that the importance of GBS and PBS in various phases
may decrease in a similar order which is opposite to the roles of dislocation creep (see above). Compared to
Subtype‐I FEC, the smaller grain size, shape factor and aspect ratio of Grt, Omp and Ol (Figure 6) and better
phase mixing (Figures 4c and 4d) in the Subtype‐II FEC signify more prominent roles of GBS and PBS in this
FEC subtype.

Recent studies on experimental deformation of peridotite and its analogs suggested that GBS and PBS
accompanied with diffusion creep are also capable of producing weak but distinct CPOs of Ol (Maruyama
& Hiraga, 2017b; Miyazaki et al., 2013; Sundberg & Cooper, 2008; Zhao et al., 2019). Because the
low‐index plane boundaries tend to have lower viscosity than other general grain boundaries, preferential
sliding along these grain and phase boundaries would result in the development of a CPO with low‐index
planes and axes aligning subparallel to the structural reference frame (i.e., X, Y, and Z axes) but the CPO
strength is weak owing to the concomitant diffusion creep (Maruyama & Hiraga, 2017b). In the FEC,
CPOs of Ol, Opx, Omp and Amp are found in most samples (Figures 8c–8g and 9c–9g). These CPOs are
mostly weak with structural reference frame following the typical low‐index planes and axes of Ol, Opx,
Omp, and Amp—especially for Omp and Amp, their CPO patterns are typical and also commonly found
in the eclogites, blueschists, and amphibolites from other HP‐UHP localities (e.g., Abalos, 1997; Bascou
et al., 2001; Cao et al., 2011; Cao et al., 2013, 2014; Cao & Jung, 2016; Godard & van Roermund, 1995; Ha
et al., 2018; Ji et al., 2013; Keppler, 2018; Keppler et al., 2015; Keppler et al., 2016; Keppler et al., 2017;
Kitamura, 2006; Kurz et al., 2004; Neufeld et al., 2008; Tatham et al., 2008)—indicating that these CPOs
are likely the products of GBS and PBS processes. It is noted that this argument is not applicable to Grt in
the FEC, because the weak CPOs of Grt display no obvious correlations between the low‐index planes or axes
and the structural reference frame (Figures 8c–8g). The absence of the correlations of CPOs between Omp
and Amp (Figures 9c–9g) as well as between neighboring Omp and Amp grains akin to those of MEC
(Figure S13) also disapproves the topotactic replacement as the CPO formation mechanism of Amp in
the FEC.

Third, pronounced SPOs are developed in Grt, Amp, Omp, and Ol (Figures 7a, 7c, 7e, and S1) and the long
axes of their grains tend to align subparallel to the foliation with increasing aspect ratios (Figures 7b, 7d, and
7f). These results indicate that the shape‐anisotropic grains (Grt, Amp, Omp, and Ol)—which could be
formedmainly by diffusion and less by dislocation creep (as discussed above)—are rotated to align their long
axes subparallel to the shear plane (Cao et al., 2014; Gay, 1968; Masuda et al., 1995; Passchier, 1987). The
larger aspect ratios the grains have, the more readily they are rotated and form a stronger SPO (Ildefonse
et al., 1990). There is a lack of dependence of aspect ratio on grain size (Figure 6b) suggesting that the easi-
ness of grain rotation may be mainly controlled by aspect ratio. The grain rotation might have also likely
occurred for Opx during deformation, although its SPOs are not clear due to limited number of grains
(Figure S1). Recent deformation experiments on Ol‐Cpx aggregates suggested that rigid‐body‐like rotation
is actually a concomitant and complementary process with the GBS and PBS, which both preferentially
occur along the low‐index plane boundaries and are required to develop both SPO and CPO during diffusion
creep (Maruyama & Hiraga, 2017a, 2017b). Based on the previous experimental work and the observations
in this study, we consider that the FEC and its CPOs of major phases (Grt, Omp, Ol, Opx, and Amp) were
mainly formed by the same deformation mechanisms above.

6.3. Implications for Tectonic Setting and Numerical Modeling

Based on this study, the mixture of different peak metamorphic facies as represented by the coexistence of
metastable HPMEC (or gabbro) and UHP FEC can be attributed to the heterogeneous extent of deformation
and availability of fluid, instead of the tectonic juxtaposition. This inference thus implies that the
gabbro‐to‐eclogite and MEC‐to‐FEC transformations may occur around the Moho beneath a thickened oro-
genic belt in response to continental collision (see review of Austrheim (2013)), and may not require the set-
ting as continental subduction interface which has been commonly proposed to interpret the mixing
formation of tectonic mélange by channel flow (see Introduction section). This speculation tends to be

10.1029/2020JB019375Journal of Geophysical Research: Solid Earth

CAO ET AL. 26 of 33



reasonable but needs more compelling evidence, especially by comparing the metamorphic P‐T conditions
and histories of the eclogites and their surrounding migmatitic gneisses and by considering the possibility
whether such deformation and fluid controlled metastability can also be realized at the continental
subduction channel.

Recently, Palin et al. (2017) proposed that the metastable preservation of low pressure assemblage may be
widespread for the felsic component of the crust during subduction and/or burial. Here, we extended the
conclusion by Palin et al. (2017) to that not only felsic component but also mafic to ultramafic components
(e.g., gabbro and eclogite) can be metastable continuously throughout the tectonic cycles of subduction and
collision zones. The effects of deformation and associated mobilizing fluid on controlling reaction kinetics
(e.g., catalyzing eclogitization) and variable transformation of rocks at depth (e.g., gabbro‐to‐eclogite transi-
tion) need be considered in the geodynamic and petrological modeling studies, which are currently inade-
quate under the conventional assumption of equilibrium metamorphism. Besides, the deformation
mechanisms inferred from FEC indicate that the subducting crust (or continental Moho) can be deformed
to a large extent in regimes requiring diffusion creep, GBS/PBS and rigid‐body‐like rotation (Wassmann &
Stockhert, 2013), which can considerably affect the interplate coupling and channel flow along the subduc-
tion interface or the rheological strength of continental Moho beneath the collision zone (Agard et al., 2016).
Unfortunately, these nondislocation‐based deformation mechanisms are commonly not included in the cur-
rent geodynamic modelings, which conventionally use non‐Newtonian rheology (e.g., power law behavior
for dislocation creep). This fact undermines the capabilities of current models to study the viscoplastic flow
of various components of the subduction and collision zones. Therefore, the flow laws of diffusion creep,
GBS/PBS, and rigid‐body‐like rotation of the crustal rocks at the relevant physicochemical conditions need
to be constrained by innovative experiments before incorporated in future geodynamic simulations.

7. Conclusions

The eclogite in the Flem Gabbro from Flemsøya Island of the WGR in Norway is a rare olivine‐bearing eclo-
gite derived from olivine gabbro cumulate. The eclogite can be divided into two distinct categories: weakly
deformed MEC and strongly deformed FEC. The MEC preserved prograde metamorphism to the peak stage
at ~600–750 °C and ~1.0–2.5 GPa, whereas FEC reflects a retrograde metamorphic path from ~700–820 °C
and ~2.7–3.7 GPa (peak stage) to ~710–760 °C and ~0.8–1.0 GPa (late postpeak stage). The different peak
P‐T conditions of MEC (HP condition) and FEC (UHP condition) likely reflect (1) deformation‐enhanced
eclogitization metamorphism (HP to UHP transition) via the addition of external water during
subduction/burial and/or early exhumation stages and (2) metastable preservation of lower‐pressure assem-
blages (e.g., MEC and/or gabbro) due to the local lack of deformation and fluid access at the deep subduction
interface or at the continental Moho beneath collision zones (UHP conditions).

The MEC is weakly deformed due to small strain, implying that their weak mineral CPOs are likely related
to the preexisting CPO (Ol), anisotropic growth of minerals under a macroscopic deviatoric stress field
(Grt, Omp, and Opx) and CPO inheritance by topotaxial replacement (Amp). In contrast, the deformation
microstructures in the FEC—small intragranular misorientation angles, shape factors and aspect ratios,
weak CPOs (N.B. this argument is not applicable to Grt), the prevalence of four (even five) grain junctions,
and the pattern that the long axes of grains with elongated or flatten grains tend to align at lower angles to
foliation for themajor constituent phases (Grt, Omp, Ol, Opx, and Amp)—suggest that nondislocation‐based
creep mechanisms, such as diffusion creep, grain and phase boundary sliding, and rigid‐body‐like rotation,
play dominant roles in accommodating large viscous strains, developing mineral CPOs and governing
the rheological properties of eclogite. Notably, a few Ol, Opx, and Amp grains preserving large intragranular
misorientation angles indicate that dislocation creep can be locally prominent under a nondislocation‐based
deformation dominated regime.

The metamorphic metastability and nondislocation‐based deformation mechanisms can considerably affect
the interplate coupling and channel flow along a subduction interface or the rheological strength of conti-
nental Moho beneath the collision zone. Therefore, more sophisticated numerical models combining
metastability‐based (i.e., preservation of lower‐pressure assemblage at HP‐UHP conditions) and
nondislocation‐based creep mechanisms of the subducting crust as the dominant deformation mechanisms
are needed for future investigations of the petrology and geodynamics of the subduction and collision zones.
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