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Abstract LakeMalawi in south eastern Africa is a very
important freshwater system for the socio-economic
development of the riparian countries and communities.
The lake has however experienced considerable reces-
sion in the levels in recent years. Consequently, frequen-
cy analyses of the lake levels premised on time-
invariance (or stationarity) in the parameters of the
underlying probability distribution functions (pdfs) can
no longer be assumed. In this study, the role of
hydroclimate forcing factors (rainfall, lake evaporation,
and inflowing discharge) and low frequency climate
variability indicators (e.g., El Nino Southern
Oscillation-ENSO and the Indian Ocean Dipole Mode-
IODM) on lake level variations is investigated using a
monthly mean lake level dataset from 1899 to 2017.
Non-stationarity in the lake levels was tested and con-
firmed using the Mann-Kendall trend test (α = 0.05
level) for the first moment and the F test for the second
moment (α = 0.05 level). Change points in the series
were identified using the Mann-Whitney-Pettit test. The
study also compared stationary and non-stationary lake
level frequency during 1961 to 2004, the common peri-

od where data were available for all the forcing factors
considered. Annual maximum series (AMS) and peak
over threshold (POT) analysis were conducted by fitting
various candidate extreme value distributions (EVD)
and parameter fitting methods. The Akaike information
criteria (AIC), Bayesian information criteria (BIC), de-
viance information criteria (DIC), and likelihood ratios
(RL) served as model evaluation criteria. Under station-
ary conditions, the AMS when fitted to the generalized
extreme value (GEV) distribution with maximum like-
lihood estimation (MLE) was found to be superior to
POT analysis. For the non-stationary models, open wa-
ter evaporation as a covariate of the lake levels with the
GEV andMLE was found to have the most influence on
the lake level variations as compared with rainfall, dis-
charge, and the low frequency climatic forcing. The
results are very critical in flood zoning especially with
various planned infrastructural developments around the
lakeshore.
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Introduction

Lakes are critical to the environment, biosphere, and
human populations especially in sustaining the socio-
economic livelihoods of many rural and poor commu-
nities’worldwide (Dubois et al. 2018, Sayer et al. 2018).
Benefits from lakes include food, water for domestic use
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and agriculture, reservoirs for hydropower generation,
and transportation as well as providing a high recreation
value for humans (Vainu and Terasmaa 2014,
Kafumbata et al. 2014). However, these lakes have not
been spared from the impacts of climate change and
variability (CCV) and human-induced effects such as
land-cover and land-use changes, urbanization, changes
in impervious surfaces and drainage network, defores-
tation, and mining (Bayazit 2015). Such impacts are
well exhibited through lake level variations, which have
profound primary influences on the productivity and
structure of lake ecosystems (Gownaris et al. 2018)
thereby bringing a myriad of environmental and socio-
economic problems (Ye et al. 2017). In addition, such
variations have considerable influence in fields such as
engineering design, ecological conservation, and envi-
ronmental management around a lake region (Cui and
Li 2016).

Globally, many studies have reported on decreasing
lake levels, both natural and man-made. For instance,
Fathian et al. (2016) reported on a persisting trend in the
levels of Lake Urmia in Iran between 1966 and 2012,
propagated by both natural forces (i.e., climate change)
and human forces (i.e., diversion of surface water for
upstream use, construction of dams, drought, and mis-
management). The human-made factors alone in Lake
Urmia basin have been found to account for the loss of
over 70% of the lake area (Garousi et al. 2013). Simi-
larly, Okonkwo et al. (2014) found decreasing levels of
Lake Chad, which were negatively associated with key
climate forcing such as rainfall and inflowing river
discharge and were closely associated with the El Nino
Southern Oscillation (ENSO), low-frequency large-
scale climate variability forcing. In addition, Yang and
Lu (2014) noted on the complete disappearance of more
than 350 lakes of greater than 1 km2 in size across
China, largely due to man-made influence such as water
over-exploitation, land reclamation, and urbanization.
The result by Yang and Lu (2014) is in contrast with
that of Han et al. (2016) in their study in Lake Dongting
who found increasing patterns in the maximum lake
water level, annual mean lake water level, and annual
minimum lake water level from 1961 to 2014 that were
largely driven by the change of precipitation and the
operation of reservoirs. Other studies that have reported
on changes in lake levels (i.e., either decreases or in-
creases) in various regions include the following: Úbeda
et al. (2013) in the Ibera wetland of Argentina;
Stefanidis et al. (2016) in their study of two

Mediterranean karstic lakes, namely Vegoritis and
Petron in northern Greece; and Song et al. (2014) in
the Tibetan Plateau. Awange et al. (2008) reported of
recessions of Lake Victoria in east Africa between 1977
and 2001. These studies have associated such changes
to either climate, man-made, or both, with non-uniform
and non-region-specific associations on the lake levels
across globally (Šraj et al. 2016).

For areas around lakes, there is an apparent need for
estimating design values of lake level quantiles (QT) with
their associated return periods (T) in order to inform var-
ious aspects such as engineering infrastructural-related
safety measures, flood hazard assessments, flood zoning,
and subsequent mitigation measures (Botero and Frances
2010). The common approaches are through flood fre-
quency analysis (FFA) using historical records (Iacobellis
et al. 2011;Machado et al. 2015). As opposed to the use of
physically based models which have various levels of data
needs and the concepts of probablemaximumprecipitation
or flood (PMP or PMF) (François et al. 2019), FFA is quiet
convenient as it applies statistical methods to derive these
quantiles, as long as the records are long enough. Conven-
tional FFA has over the years been dependent on the
assumption of a stationary time series, which can be de-
fined as those time series whose probability distribution
function (pdf) is independent of time (Bayazit 2015) or a
series whose marginal distribution remains invariant with
time (Salas et al. 2018). Under stationarity, all realizations
of a random variable X are assumed to be independent and
identically distributed (iid) with a probability distribution
function FX x=∅ð Þ and a time invariant parameter vector
∅ (De Luca and Galasso 2018). With the documented
evidence of natural andman-made and induced changes in
lake levels globally, the concept of stationarity has been
considerably challenged (Milly et al. 2008; Debele et al.
2017). Consequently, FFA approaches that incorporate
time variance of the pdfs (or non-stationarity) is now being
widely explored. Non-stationarity assumes that realizations
of a random variable X are independent but not identically
distributed (inid) with a probability distribution function
FX x=∅ tð Þð Þ having a time variant parameter vector∅
tð Þ that is a function of some covariates (De Luca and
Galasso 2018). Both approaches have their own sources of
uncertainty, with stationary FFA (SFA hereafter) deriving
most of uncertainty from the estimation of flood quantiles
with return periods beyond the observed values. On the
other hand, uncertainty in non-stationary FFA (NFA here-
after) arises from the assumed function(s) linking parame-
ters and covariates. In addition to a plethora of available
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studies on both SFA and NFA, the merits and demerits of
both approaches have also been reviewed bymany authors
(e.g., Bayazit 2015; Salas et al. 2018; François et al. 2019).
What is clear from the literature is that the non-
incorporation of non-stationarity in FFA may lead to over
(or under) designing, with related negative societal and
economic consequences (Salas et al. 2018). In addition,
most of the studies have focused on SFA (and NFA) of
either river discharge or precipitation series (e.g., Hounkpè
et al. 2014, Šraj et al. 2016, Ajami et al. 2017, De Paola
et al. 2018, De Luca and Galasso 2018). This is despite
there being a lot of studies providing evidence of lake level
changes and an obvious need for design lake levels that
take into consideration NFA. There is also an apparent
need for an understanding of the role of key drivers of the
lake level changes in NFA (Lopez and Frances 2013; Su
and Chen 2019).

Lake Malawi is a critical transboundary water re-
source between Malawi, Mozambique, and Tanzania
at the southern end of the Great East Africa Rift Valley
system (Drayton 1984). According to Jury (2014), Lake
Malawi’s levels are quite sensitive to variations in the
balance between mean annual rainfall over the lake
(about 1.3 m), mean annual inflows from 4 main rivers
(about 0.9 m), mean annual lake or open water evapo-
ration (1.8 m), and mean annual outflow to the only
outlet, the Shire River (0.4 m). The lake is the second
largest and deepest among the Great East Africa Rift
Valley lakes, after Lake Tanganyika (Neuland 1984). A
long-term history of the lake levels from various data
sources (proxy, in situ, and modeling) by Owen et al.
(1990) and Nicholson (1998) suggests a complex vari-
ation pattern mainly attributed to climatic controls. The
lakeshore areas are also prone to the extreme lake level
variations at both low and high frequency, which affects
both infrastructure and socio-economic livelihoods of
the riparian communities. Since the peak of 1979, the
lake levels have been undergoing a considerable reces-
sion (Fig. 1). Makwinja et al. (2017) developed a sto-
chastic model for forecasting lake levels based on his-
torical levels. Calder et al. (1994) attributed lake level
changes from 1896 to 1967 to rainfall alone, but as-
sumed constant evaporative demand and forest cover.
To our knowledge based on available literature, a fre-
quency analysis of the lake levels both under stationary
and non-stationary conditions has not been undertaken.
With various proposed infrastructural and major water
abstraction projects (e.g., Salima-Lilongwe Water Pro-
ject), there is a critical need for understanding the nature

of lake levels in terms of their magnitudes, return pe-
riods, and the role various forcing (e.g., low-frequency
climate variability like El Nino Southern Oscillation
(ENSO) on the design extreme lake levels). This aspect
has motivated our present study. Therefore, this study is
aimed at examining the nature of extreme lake levels
under stationary and non-stationary conditions, using
the case of Lake Malawi in East-Southern Africa. Spe-
cifically, this was achieved through the following: (1)
temporal analysis of the lake levels for evidence of non-
stationarity; and (2) developing models for frequency
analysis of the lake levels under stationary and non-
stationary conditions. The results are very critical in
flood zoning especially with various planned infrastruc-
tural and related developments around the lakeshore. To
our knowledge, there are no many studies (e.g., Drayton
1984, Neuland 1984, Calder et al. 1994, Kumambala
and Ervine 2010a, b) that have been attempted to ac-
count for changes in the levels of Lake Malawi. In
addition, there is no documented study on SFA or
NFA of levels of Lake Malawi.

Study area, data, and methods

Study area

Lake Malawi is a sub-basin of the Zambezi River basin
located in Southern Africa (Fig. 2).

The lake covers a total mean surface area of 28,760
km2, total basin area of 150,000 km2, volume of 7725
km3, 560 km long, maximum width of 75 km, maxi-
mum depth of 695 m, and mean depth of about 474 m
and is Africa’s third largest lake (Drayton 1984;
Neuland 1984; Jury 2014; Sene et al. 2017). About a
quarter of the total global freshwater is held by Lake
Malawi together with Lakes Tanganyika and Victoria
(Bootsma and Hecky 1993). The Lake Malawi basin
experiences a tropical climate with a strongly seasonal
rainfall pattern. Over 80% of the total annual rainfall
occurs during the Austral summer months fromNovem-
ber to April when the Intertropical Convergence Zone
(ITCZ) and the Congo Air Boundary (CAB) are active
in the region. The mean annual rainfall ranges from less
than 800 mm/year on the southern lake shore to more
than 2400 mm/year in the northern highlands. On the
eastern shore of the lake, the Ruhuhu River basin in
Tanzania with a catchment area of 14,070 km2 is the
sole major inflow and contributes about 20% of the total
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annual lake inflow, whereas the other major inflows
each account for less the 10% of the inflows (Lyons
et al. 2011 and references within). The second largest
inflow is South Rukuru in Malawi with a total catch-
ment area of 12,110 km2. The Bua and Linthipe rivers,
all in Malawi, are also significant tributaries with

respective catchment areas of 10,700 km2 and 8560
km2. The mean annual temperature during 1992 to
2007 is 22.4 °C over the land part of the basin and
24.8 °C over the water (Lyons et al. 2011). Over many
parts of Malawi, Ngongondo et al. (2011, 2015) report-
ed of rainfall declines that were not statistically

Fig. 1 The extent of Lake
Malawi recession showing the
exposed lake bed in February,
2017. The boats’ docking area
used to be close to the exposed
house terrace on the right

Fig. 2 Map of Africa and Zambezi basin showing location of Lake Malawi
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significant, coupled with significant increases in mean
temperature during 1960 to 2007 and 1971 to 2001,
respectively. The lake provides a mean annual discharge
of about 480 m3s−1 flows to the Shire River at
Mangochi, the only outlet from the lake (Jury 2014).
Over 90% of Malawi’s hydropower installation is locat-
ed at a series of rapids in the middle Shire River basin,
downstream of the outlet. The Kamuzu Barrage at
Liwonde, about 72 km from the outlet, regulates flows
to the hydropower stations. There are also plans for a
major water abstraction project from the lake for supply
to Lilongwe City.

Lake level data and tests for stationarity

The main data source for the study was a long-term
record of mean monthly lake levels, from 1899 to
2017 from which mean annual lake levels, annual max-
imum series (AMS), and partial duration series (PDS)
for the peak over threshold (POT) analysis were derived.
The monthly mean lake level is derived from three water
level stations on the western shore of the lake at
Chilumba (− 10.43° S, 34.25° E), Nkhata Bay (11.72°
S, 34.33° E) and Monkey Bay (14.08° S, 34.91° E).
These data were obtained from the Malawi Department
of Water Resources, Surface Water Resources in the
Ministry of Agriculture, Irrigation and Water Develop-
ment, through the Climate Justice Water Futures Pro-
gramme. The lake levels are presented in meters Above
Shire Valley Datum (mASVD), which is approximately
equal to sea level (Drayton 1984). To account for the
Lake Malawi level variation, the following parameters
were used as covariates: (1) annual rainfall data for three
stations located along the Lake Malawi shore, namely
Karonga, Nkhata Bay, Nkhotakota, Salima, and
Mangochi. These were obtained from the Watch Forc-
ing data (WFD) (Weedon et al., 2011 & 2014). The
WFD is a gridded data set at 0.5° by 0.5° (55 × 55 km)
grid boxes over the lake centered at these stations. These
were aggregated into an aerial average by simple arith-
metic average. There was no missing rainfall data from
the WFD for the period: (2) depth of the mean annual
discharge derived from 17 in flowing rivers into the lake
on theMalawi part of the catchment as shown in Table 1.
No river flow data were available from the Tanzania and
Mozambique parts of the catchment on the eastern lake
shore, but it was assumed that the 17 inflowing rivers
could ably represent all the inflows.

From the 17 inflowing rivers, the mean annual depth
of inflow into Lake Malawi was calculated as a weight-
ed mean (QT) from:

QT ¼ 1

AT
∑N

i¼1QiAi ð1Þ

where Qi and Ai are the annual mean discharges and
catchment areas, respectively, of each inflow, and AT =
51,692 km2 is the total catchment area of the N = 17
inflowing rivers. The data was already quality controlled
by the Malawi of Department of Water Resources and
each station had less than 5% of missing record: (3)
open water evaporation at five weather stations along
the Lake Malawi shore, namely Karonga, Nkhata Bay,
Nkhotakota, Salima, and Mangochi. This was estimated
from the mean temperature and station latitude using
Thornthwaite’s model (Beguería and Vincente-Serano,
2017). Results of the Thornthwaite’s model were also
compared with those from pan measurements at the
stations, although the later had some gaps. A simple
arithmetic average was used to calculate the mean open
water evaporation. The monthly temperature data used
was already quality controlled by the Malawi Depart-
ment of Climate Change and Meteorological Services.
Missing records accounted for less than 4% at each
station and were filled by averaging readings from
nearest stations: (4) the Southern Oscillation Index
(SOI) sourced from https: / /www.ncdc.noaa.
gov/teleconnections/enso/indicators/soi/. The SOI is an
index of pressure changes between west and eastern
tropical pacific (at Tahiti and Darwin, Australia) and is
related to the El Niño Southern Oscillation (ENSO). The
ENSO is a low-frequency planetary scale climatic var-
iation pattern (Vasiliades et al. 2015) which has signif-
icant influences on the rainfall pattern of southern Afri-
ca. Negative values of the SOI indicate El Niño condi-
tions, whereas positive values are associated with La
Ñina conditions and values around zero suggest normal
conditions. Both strong and moderate to weak El Niño
events have been found to result in drier than normal
conditions over Southern Africa (Pomposi et al. 2018
and references within) whereas LaNiña conditions often
result in above normal rainfall; (5) and the Indian Ocean
Dipole (IOD) Mode Index (DMI), a coupled oceanic-
atmospheric inter-annual system characterized by sea
surface temperature (SSTs) anomalies in the tropical
western and eastern Indian Ocean. Negative (positive)
IOD phases are marked by lower (higher) SSTs in the
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south western equatorial Indian Ocean, thereby affect-
ing the rain bearing systems of Eastern and Southern
Africa (Marchant et al., 2006). Unlike ENSO, whose
effect on climate systems is global, the IOD has been
found to more localized to the oceanic and land masses
around the Indian Ocean. The study further assumed
that all lake level variations can be explained by these
covariates (rainfall, discharge, evaporation, ENSO, and
IOD), independent of time. To ensure that the estimated
parameters were comparable in magnitude, the values of
each covariate were rescaled (Prosdocimi et al. 2015) to
the range [0, 1] using:

z ¼ xi−min x1;…;xn
� �

max x1;…;xn
� �

−min x1;…;xn
� � ð2Þ

where z is the rescaled value of each covariate; xi is the
value of each covariate in each year from 1958 to 2001;
min{x1, …,xn} is the minimum value of each covariate
during the period from 1958 to 2001; max{x1, …,xn} is
the maximum value of each covariate during the period
from 1958 to 2001. The non-parametric Pettit (Pettitt
1979) was applied to detect abrupt change points in the
raw data series. The test assumes that in series of ob-
served data x1, x2,…, xn, a change point can be found at
an unknown time t, where the series x1,x2,…,xt has a
distribution F1(x) that is different from the distribution
F2(x) of the series xt + 1,x2,…,xn (Jaiswal et al., 2015 and

references within). The change point KT in the Pettit
Test is given as:

KT ¼ max Ut;T
�� �� ð3Þ

where Ut;T ¼ ∑t
i¼1∑

T
j¼tþ1Sign xi−x j

� �
.

The significance of KT at 0.05 level is estimated from

p≈2exp −6K2
T

T3þT2

� �
.

The change point model (CPM) framework (Ross
2015) in R software was applied to identify all possible
change points in the raw lake levels as well as the first
difference lake level series. Furthermore, the Student’s t
test (Li et al. 2013) was used to test if means of the lake
levels before and after a change point are statistically
different.

To detect the significance of trends in the first moment
of lake levels (mean), the Mann-Kendall (MK) (Mann
1945; Kendall 1975) was used at α = 0.05 significance
level. Under the null hypothesis (H0) of no trend in the
data, and the alternative hypothesis (H1) of a trend, the H0

is rejected when the MK statistic |uc| > u1 − α/2, corre-
sponding to a 1-α/2 quantile of the standard normal
distribution (Hisdal et al. 2001; Karlsson et al. 2014).
The MK is the most widely used rank-based non-para-
metric test (Kundzewicz and Robson, 2004, Bayazit
2015). The MK test is considered robust as compared
with other tests and is recommended by the World

Table 1 Some major flows (1 to 17) into Lake Malawi on the western shoreline and the only outflow (1)

Serial River Station ID# Lat (°S) Long (°E) Area (km2)

1 Songwe Mwandenga 9B7 − 9.59 33.77 2870

3 Lufira Ngerenge 9A2 − 9.81 33.84 1890

4 Nrukuru Mwakimeme 8A5 − 9.93 33.79 2091

5 North Rumphi Chiweta 7H3 − 10.69 34.18 6,78

6 South Rukuru Mlowe 7G18 − 10.75 34.21 12,027

7 Lweya Zayuka 16F2 − 11.78 34.20 2320

9 Dwambadzi Nthanda 16E6 − 12.24 33.98 1770

10 Dwangwa Rupashe 6D10 − 12.51 34.12 7768

11 Bua S3RoadBridge 5C1 − 12.79 34.20 10,659

12 Chirua Mtambe 15A4 − 13.46 34.24 150

13 Lingadzi Kaniche 15A8 − 13.54 34.24 450

14 Linthipe M5 Bridge 4B1 − 13.79 34.45 8180

15 Nadzipulu Mtakataka 3F3 − 14.21 34.51 224

16 Namikokwe Mua Mission 3E1 − 14.28 34.51 138

17 Livulezi Khwekhwerere 3E3 − 14.44 34.54 477

1 Shire Mangochi 1T1 − 14.48 35.27 126,500
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Meteorological Organisation (WMO) for application in
the detection of monotonic trends in hydrometeorological
variables (WMO 1988).

In addition, the F test was used to determine any
differences in the second moment (variance) of the lake
level time series. The test was undertaken under the null
hypothesis (H0) of equal variance (H0 : σ2

1 ¼ σ2
2Þ and an

alternate hypothesis (H1) of unequal variances
(H1 : σ2

1≠σ2
2Þ as follows: Fc ¼ s21=s

2
2, s

2
1 > s22, and H0

are rejected if Fc≥ F1−α;n1−1;n2−2 where F1−α;n1−1;n2−2 is
the critical value from the F-distribution table (Li et al.
2013).

Stationery and non-stationary frequency analysis

Extraction of extreme lake levels

Extreme lake levels were determined using two ap-
proaches from the lake levels (Rosbjerg and Madsen
2004, Ngongondo et al. 2015 and references within):
through analysis of the annual maximum series (AMS)
and partial duration series (PDS), also called peak over
threshold (POT). AMS involves a series composed of
onemaximummean lake level in each hydrological year
(November to October), resulting in a total of 119 values
for the period 1899 to 2017 in this study. Apart from re-
arranging the data into a hydrological year, the extrac-
tion of the AMS series from the lake levels data is a
relatively straight forward procedure. If (X1, X1,…, Xn)
is a sequence of independent random variables (in this
case, lake levels), thenMn = max {X1, X1,…, Xn } is the
maximum lake level from the series in a particular year
(De Paola et al. 2018).

For the POT analysis, a mean excess (ME) plot
(Ghosh and Resnick 2010) of the entire series was firstly
used to pre-determine the threshold (u) lake level
(Madsen et al., 1997), above which levels recorded
should be considered to be extremes. According to
Ghosh and Resnick (2010), the distribution of u is
assumed to have a function F where:

Fu xð Þ ¼ P X−u≤xjX > u½ � ð4Þ
and the ME function of the form:

M uð Þ≔E X−ujX > u½ � ð5Þ
The assumption inM(u) is that the lowest value of the

selected threshold u has an approximately linear rela-
tionship with the mean excess E(X-u) (Coles 2001).

Extreme value distributions and parameter fitting

In this study, a two-tier approach was adopted for
lake level frequency analysis (FFA) under stationary
and non-stationary conditions (SFA & NFA). The
first part was the identification of the best probability
distribution functions (pdf). The AMS and PDS se-
ries fitted candidate pdfs of members from the ex-
treme value distributions (EVD) family that are
among those commonly applied in hydrological stud-
ies (Debele et al. 2017), namely Gumbel, generalized
extreme value (GEV), generalized Pareto (GPA), ex-
ponential (Exp), and Pearson type 3 (PP3). There are
many parameter fitting methods for probability dis-
tributions for hydrological assessments, as summa-
rized by Singh (1998). In this study, the perfor-
mances of maximum likelihood estimation (MLE),
generalized maximum likelihood estimation
(GMLE), Bayesian (through Markov chain Monte
Carlo (MCMC) simulations), and L-moments
(Table 2) on the candidate distributions were tested
and compared with select the best. Each of these
methods has their own merits and demerits and the
reliability often depends on the length of the avail-
able record (Martins and Stedinger 2000). A total of
15 different models based on the candidate distribu-
tions, series (AMS and POT), and parameter fitting
methods were assessed under SFA, from which the
best approach was selected.

For NFA, the study followed the generalized additive
models for location, scale and shape (GAMLISS)
framework approach (Rigby and Stasinopoulos 2005)
as in among others, Machado et al. (2015), Prosdocimi
et al. (2015), Debele et al. (2017), and Su and Chen
(2019). A total of 19models with different combinations
of the covariates in the location bμð Þ and scale parameter
bσð Þ were developed (Table 3). In addition to the station-
ary model (AMS0), three further groups of non-
stationary models can be identified in Table 3:

1. Those with varying bμ but stationary bσ. This group
also has covariate combined models in bμ;

2. Those with varying bσ but with stationary bμ; and
3. Those with both bμ and bσ varying.

Both linear and non-linear link functions between the
covariates and the location and scale parameters (μ and
σ) were tested to select the best approach. For the three
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parameter distributions (GEV and PE3), the shape pa-
rameter (ξ) was assumed to be constant due to difficul-
ties in the reliability of its estimates (Šraj et al. 2016,
Gillend and Katz 2016). The best fitting model was
evaluated through a multi-criteria approach comprised
of goodness of fit (GOFs) measures, namely the Akaike
information criteria (AIC) and Bayesian information
criteria (BIC) which should be a minimum and the
deviance information criteria (DIC) (for Bayesian pa-
rameter estimation only) which should be a maximum.

In addition, likelihood ratios (RL) between the distribu-
tion fitting approaches for nested models were assessed
atα = 0.05 significance level (Coles 2001; Madsen et al.
2014; Prosdocimi et al. 2015; Su and Chen 2019). In the
extreme lake level frequency analyses, the package ex-
tRemes (Gilleland 2018) was applied in R statistical
software (R Core Team, 2013).

P rainfall, Disch discharge, Evap evaporation, IOD
Indian Ocean Dipole Index, SOI Southern Oscillation
Index

Table 2 EVD and the parameter fitting methods for SFFA and NFFA

Series EVD Parameter fitting methods Covariates

AMS Gumbel, GEV ML, GMLE, Bayesian, L-moments None

PDS GP ML, GMLE, Bayesian, L-moments None

PDS PP ML, GMLE, Bayesian None

PDS Exponential ML, GMLE None

AMS Gumbel, GEV ML, GMLE, Bayesian, L-moments Rainfall, discharge, evaporation, SOI & IOD

Table 3 Models for SFA and NSFA that were tested

Model type ID Description

μ σ

Stationary AMS0 μ0 σ0
Non-stationary AMS1 μ0 + μ1 ∗ P σ0

AMS2 μ0 + μ1 ∗D σ0
AMS3 μ0 + μ1 ∗ Evap σ0
AMS4 μ0 + μ1 ∗ IOD σ0
AMS5 μ0 + μ1 ∗ SOI σ0
AMS6 μ0 + μ1 ∗ Evap + μ2 ∗ P σ0
AMS7 μ0 + μ1 ∗ Evap + μ2 ∗Disch σ0
AMS8 μ0 + μ1 ∗ P + μ2 ∗Disch σ0
AMS9 μ0 + μ1 ∗ P + μ2 ∗Disch + μ3 ∗ Evap+ σ0
AMS10 μ0 σ0 + σ ∗ P
AMS11 μ0 σ0 + σ ∗D
AMS12 μ0 σ0 + σ ∗ Evap
AMS13 μ0 σ0 + σ ∗ IOD
AMS14 μ0 σ0 + σ ∗ SOI
AMS15 μ0 + μ1 ∗ Evap σ0 + σ1 ∗ Evap
AMS16 μ0 + μ1 ∗ P σ0 + σ1 ∗ P
AMS17 μ0 + μ1 ∗D σ0 + σ1 ∗D
AMS18 μ0 + μ1 ∗ IOD σ0 + σ1 ∗ IOD
AMS19 μ0 + μ1 ∗ SOI σ0 + σ1 ∗ SOI
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Results and discussions

Temporal hydro-climatic pattern of Lake Malawi basin
(1899 to 2017)

The mean monthly lake levels and their standard devi-
ations from 1899 to 2017 are shown in Fig. 3. The lake
levels peak at the end of the rain season between March
and May (about 474.25 m ASVD). This peak is follow-
ed by a recession with minimum levels occurring

between October and December (about 473.36 m
ASVD). These two extremes give lake level range of
about 1 m. The standard deviation pattern closely fol-
lows the mean lake levels.

The long-term temporal pattern of the levels (Fig. 4)
shows a considerably complex variation pattern from
the late 19th century to the early 21st century. The lake
level had a mean annual lake level of 473.8 m ASVD
(Stdev = 1.65 m ASVD) with a coefficient of variability
(CV) of 0.349%. The CV suggests relatively low

Fig. 3 Monthly mean levels of Lake Malawi and their standard deviations during 1899 to 2017
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Fig. 4 Hydrograph of mean annual levels of Lake Malawi from 1899 to 2017
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variation around the mean lake level during the period.
Based on the available empirical record from 1899 (Fig.
4), the lake levels had a decreasing trend up to a minima
of about 470.4 m ASVD in 1915. Records (e.g., Sene
et al. 2017; Nicholson et al. 2018) also show persistent
extreme drought conditions over many parts of Malawi
due to low rainfall during the late 19th century and early
20th century. The extremely low lake levels exposed a
sandbar at the lake outlet which consequently blocked
flows into the Shire River between 1915 and 1935.
However, Sene et al. (2017) suggest that the Shire River
actually stopped flowing in 1908 due to the extremely

low lake levels. The lake levels started to rise almost
linearly from 1915, reaching a local peak of 475.1 m
ASVD in 1940. Neuland (1984) attributed this steady
rise in lake levels to a blockage of the Shire River by the
tributary Nkasi River. Flows to the Shire River were
restored around 1935 when the lake levels overtopped
the sandbar with a lake level of 473 m ASVD. The
hydrograph of the nearby Lake Chilwa, located to the
south east of Lake Malawi, also shows a similar tempo-
ral lake level variation pattern up to around 1980
(Nicholson 2001). After the May 1980 peak, the lake
levels have mostly been on a downward trajectory.
Local peaks can be seen around 2003 and 2009.

The MK statistic for the annual lake levels during the
period 1899 to 2017 had a statistically significant posi-
tive trend at α = 0.05 level. This trend is obviously
influenced by the extremely low level of 1915 and the
peak level of 475.8 m ASVD in May 1980. For the
period 1935 to 2017, the lake levels did not have a
statistically significant MK trend at α = 0.05. However,
the levels had a negative MK trend during 1980 to 2017
that was statistically significant at α = 0.05 level, with a
linear regression trend of − 0.044 m per year. From the
raw lake level series, the Mann-Whitney multiple
change point detection test detected and identified nine
change points in the annual lake levels during the period
1899 to 2017 (Table 4 and Fig. 5).

However, the annual lake levels suggest high auto-
correlations up to lag = 30 years. The large lake

Table 4 Mann-Whitney multiple change points and detection
years of Lake Malawi levels

*CD_Year CD_Level *CP_Year CP_Level #Years

1918 471.2592 1906 471.16 12

1926 471.8775 1916 470.62 10

1936 474.8392 1926 471.88 10

1946 474.3908 1934 473.83 12

1976 475.6258 1962 474.72 14

1982 475.3375 1975 475.24 7

1995 473.5967 1983 475.84 12

2005 474.7783 1991 475.09 14

2011 474.5908 2000 474.02 11

*CD year of detecting change in series, CP year the actual change
occurred

Fig. 5 Multiple change point detection and points from normal lake levels between 1899 and 2017. The dashed vertical blue lines are actual
change points, and the dashed redlines line are when the change point was identified
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autocorrelations should be expected as the lake has a
large residence time (τ) of 114 years (Bootsma and
Hecky 1993). This is an indication that the series vio-
lated the assumption of iid in the tests. To consider the
influence of the autocorrelations on the multiple detect-
ed and identified change points, a first difference ΔLt of
the lake level series (Lt) was therefore used to identify
the change points as follows:

ΔLt ¼ Lt−Lt−1 ð6Þ

where Lt and Lt − 1 are the lake levels at time t and t − 1,
respectively. The difference series (Fig. 6), which were
iid, identified two significant change points in 1915
(detected in 1937) and 1937(detected in 1946). These
two generally coincide with the period of extremely low
lake levels, when the flows in the Shire River stopped.
For the two time slices from 1899 to 1946 and 1947 to
2017, the F test under the null hypothesis of equal
variances (σ2

1 ¼ σ2
2) of the lake levels could not be

accepted as F ¼ σ2
1=σ

2
2 > Fc, for the critical value Fc.

From the foregoing, the lake levels were found to be
non-stationary in both the first (mean) and second mo-
ments (variance). Therefore, the second change point
detected (1946) was the basis of a decision for the study
to use the period from 1958 to 2012 for the lake level
extremes analysis.

On the other hand, annual rainfall over the lake from
1958 to 2012 (Table 5) had a mean of 1236.1mm (Stdev
= 200 mm) and a relatively low coefficient of variation
(CV) of 16.0%. The CV is actually slightly higher than
that reported by others (e.g., Lyons et al. 2011, Sene
et al. 2017). At the individual stations, the rainfall peaks
around Nkhata Bay and Nkhotakota area whereas
Karonga and Monkey Bay to the extreme north and
south respectively had the lowest mean annual rainfall.
In addition, the CV indicated that the rainfall pattern
varies more inter-annually at the individual stations as
compared with the basin-wide mean rainfall. The mean
annual rainfall pattern across the catchment also shows a
generally decreasing trend during the period (Fig. 7),

Fig. 6 Multiple change point detection and points from first difference lake levels during 1899 to 2017. The straight vertical line is the actual
change point and the dashed line is when the change point was identified

Table 5 Summary of rainfall in Lake Malawi basin during 1958
to 2012

Station Mean (mm) Stdv (mm) CV (%)

Karonga 969.86 178.56 0.18

Mangochi 974.36 201.64 0.21

Monke Bay 963.40 180.57 0.19

Nkhata Bay 1766.15 394.97 0.22

Nkhotakota 1601.53 307.62 0.19

Salima 1140.98 200.48 0.18

Average 1236.05 201.55 0.16
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although no change point was detected by the Mann-
Whitney-Pettit test. However, the MK trends were not
statistically significant at α = 0.05 level, for both the
spatial rainfall as well as the individual stations.

Furthermore, the temperature regime during 1961 to
2004, the period of available record, shows that the
basin has undergone considerable temperature increases
(Fig. 8). The most recent decade from 1990 to 2001 was

the warmest. The mean annual temperature during the
period had a positive MK statistic that was significant at
α = 0.05 level. The year 1979 was identified as the
change point in the mean annual temperature regime
by the Mann-Whitney test. The warning due to in-
creased temperature has potential to increase the open
water evaporative demand over the lake. Both tempera-
ture increases and rainfall decreases have also been

Fig. 7 Temporal pattern of mean annual rainfall in the Lake Malawi basin during 1958 to 2012

Fig. 8 Inter-decadal monthly mean temperature changes in the Lake Malawi between 1971 and 2001
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reported by other studies (e.g., McSweeney et al. 2010,
Ngongondo et al. 2015). The mean annual open water
evaporation over the lake was 1290 mm (CV = 7.44%),
with a statistically significant positive MK trend at α =
0.05 level for all stations as well as the average. How-
ever, the annual mean evaporation is lower than the
1872 mm that was reported by Crossley et al. (1990)
for 1954 to 1980. The evaporation from Thornthwaite’s
model was compared with the annual lake evaporation
derived from pan measurements for the same stations
from 1971 to 1996. It should be noted that these were
scanty for which annual values for some years only
could be savaged. A pan conversion factor of 1.3 was
applied (Linacre, 1994). The pan-derived evaporation
were slightly higher (about 2%) than those from
Thornthwaite’s model, but the two were strongly corre-
lated according to Pearson’s correlation(ρ > 88 % ,
p < 0.05), and both having a significant positive MK
trend α = 0.05). The Thornthwaite model-derived evap-
oration was therefore considered to be a reasonable
estimate of lake evaporation. Furthermore, the weighted
mean annual river discharge for all inflowing rivers into
the lake considered was 209 mm and did not have a
statistically significant MK trend, although Bua and
Lufira Rivers had significant positive and negative
trends respectively at α = 0.05. The mean is lower than
the 300 mm found by Owen et al. (1990) during 1954

and 1980. The Mann-Whitney test identified a change
points in river discharge around 2001 and 1977 and
1992 for evaporation, with increases in both variables
after the change points.

The Shire River is the only outlet from Lake Malawi
at Mangochi, with a mean daily discharge of 473.0
m3s−1 between 1957 and 2001. The daily discharge
had a statistically significant positive trend the period
from 1957 to 2001, whereas those for monthly and
annual timescales were not significant at α = 0.05 level.
However, it should be noted that the Shire River outflow
was not considered as a covariate in this study, as the
river is regulated with barrage operation rules about

    a b

   c 

Fig. 9 Diagnostic plots for (a) AMS (GEV, MLE); (b) POT (GPA, MLE); and (c) AMS (GEV, Bayesian)

Table 7 Return levels for AMS with GEV and MLE

T-Year Level ( 95% CI)

AMS POT

2-year 475.41 (475.20, 475.61) 477.11 (475.97, 478.25)

5-year 476.03 (475.80, 476.27) 477.18 (475.41, 478.94)

10-year 476.37 (476.11, 476.63) 477.21 (474.75, 479.67)

20-year 476.65 (476.33, 476.96) 477.24 (473.80, 480.67)

50-year 476.95 (476.54, 477.35) 477.26 (471.92, 482.60)

100-year 477.13 (476.63, 477.63) 477.27 (469.82, 484.73)
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72 km downstream from the lake for purposes of lake
level stabilization (Shela 2000).

Stationary lake level frequency analysis

This section presents results of candidate models for
lake level frequency analysis under stationary condi-
tions (SFA). Table 6 shows members of the EVD family
that were evaluated, the parameter fitting methods, and
the evaluation criteria results. Based on the evaluation
criteria (lowest AIC/BIC/NLL and highest DIC), the
results suggest that the best models for extreme lake
levels were the GEV and Gumbel distributions (serials
2 and 3 in Table 6) when fitted to the AMS series and the
GPA and exponential distributions when fitted to the
POT series with a lake level threshold (u) of 476.1 m
ASVD (serial 3). TheMLEmethodwas also found to be
the best parameter fitting method for the models. How-
ever, the results of the GMLE for the GEV and Gumbel

were comparable with those from MLE and the MLE
were found to be the better method by the Quantile-
Quantile plots (figures not shown). In addition, the GEV
distribution when fitted to the AMS with Bayesian
parameter fitting also had acceptable results, according
to the DIC, which was the highest. However, the
Gumbel distribution was not acceptable for modeling
the AMS when compared with the GEV according to
the likelihood ratio (LR) test at α = 0.05 level (p < 0.05).
This is also evident from the negative shape factor
(Table 6), which suggests that the AMS series of the
lake levels have an upper bound, which is not typical of
a Gumbel distribution (Gillend and Katz 2016).

Figure 9a, b, and c shows the diagnostic plots of the
remaining three candidate models: AMS (GEV, MLE),
POT (GPA, MLE), and the AMS (GEV, Bayesian). A
visual assessment of the QQ (Fig. 8, upper left panels),
density (lower left panels), and return level plots (lower
right panels) show a better performance from AMS

Table 8 Test results for models with covariates in the location parameter (bμ)
Model# Covariate(s) AIC BIC NLL LR (p value) Nested model

AMS1 Rainfall 98.87 106.01 45.43 0.0097 AMS0
AMS2 Discharge 99.31 106.45 45.66 0.0125 AMS0
AMS3 Evaporation* 92.47 99.61 42.23 0.0003 AMS0
AMS4 IOD 102.43 109.57 47.22 0.0771 AMS0
AMS5 SOI 103.82 110.96 47.91 0.1879 AMS0
AMS6 Evap+Rainfall 94.30 103.13 43.10 0.6067 AMS3
AMS7 Evap+Discharge 91.37 100.29 40.69 0.07844 AMS3
AMS8 Rainfall+Discharge 100.28 109.20 45.14 0.4441 AMS1
AMS9 Evap+Rainfall+Discharge 92.52 103.22 40.26 0.0018 AMS8

In italics are the best non-stationary model

Table 9 Estimated fitted models of the location parameter (bμ) with covariate (C)

Model bμ ¼ μ0 þ μ1*C bσ seð Þ ξ(se)

AMS1 474.57 + 1.33 ∗ P 0.73 (0.09) − 0.42 (0.13)

AMS2 474.68 + 1.38 ∗Disch 0.67 (0.08) − 0.26 (0.12)

AMS3 475.90 − 1.42 ∗ Evap 0.59 (0.07) − 0.17 (0.13)

AMS4 475.68 − 0.88 ∗ IOD 0.73 (0.08) − 0.32 (0.08)

AMS5 475.59 − 0.62 ∗ SOI 0.71 (0.08) − 0.26 (0.11)

AMS6 475.71 − 1.31 ∗ Evap + 0.26 ∗ P 0.60 (0.07) − 0.20 (0.14)

AMS7 475.39 − 1.20 ∗ Evap + 0.93 ∗Disch 0.60 (0.07) − 0.14 (0.14)

AMS8 474.55 + 0.78 ∗ P + 0.72 ∗Disch 0.70 (0.10) − 0.34 (0.16)

AMS9 475.56 − 1.31 ∗ Evap − 0.52 ∗ P + 1.32 ∗Disch 0.54 (0.07) − 0.09 (0.14)
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(GEV; MLE and Bayesian) as compared with POT
(GPA, MLE). Furthermore, the density and the fitted
against empirical quantile plots suggest a better fit by
AMS (GEV, MLE) than AMS (GEV, Bayesian). In
addition, the normal AMS (GEV, MLE) model was
more acceptable than a similar type with a log link
function to the scale parameter (σ(∅ = log σ)), accord-
ing to the LR test where p > 0.05. From the foregoing,
the AMS (GEV, MLE) was selected for the analysis of
floods both under stationary and non-stationary condi-
tions. The modeled T-year lake levels of the AMS
(GEV, MLE) with parameters (μ = 475.28 ± 0.24, σ =
0.74 ± 0.16, and ξ = − 0.29 ± 0.2) are shown in Table 7.
The results in Table 7 suggest that more frequent T = 2-
year lake levels of 475.41 ± 0.21 m ASVD, and the lake
levels may reach 477.13 ± 0.5 m ASVD once in every T
= 100 years. The T = 100 year level is comparable with
the lake level peak of May 1980, suggesting a 100-year
cycle in the lake levels of this magnitude. However, the
extremely low lake levels between 1915 and 1935
(about 469 m ASVD) were not captured by the models,
suggesting that they are a very rare event. The stationary
model with the GEV is henceforth referred to as AMS0.

Non-Stationary Frequency Analysis

This section presents the results of NFA of AMS series
of Lake Malawi levels. The GEV (MLE) was fitted to
the AMS series with consideration of each of the covar-
iates (rainfall, river discharge, evaporation, IOD, and
SOI) either in μ, σ, or both. In addition, various combi-
nations of the covariates μ were investigated.

Single covariate modeling of the location parameter

Table 8 shows the results of the non-stationary models
that were developed. Models AMS1 to AM5 involved
constraining the scale parameter (σ) in the stationary
model (AMS0) as each of these is nested within the
stationary model (AMS0), such that setting the location
parameter μ1 = 0 should yield the AMS0 model
(Prosdocimi et al. 2015; Su and Chen 2019). Based on
the values of the AIC, BIC, and NLL, which should be a
minimum, it can be seen in Table 8 that the model
(AMS3) with evaporation as a covariate in the location
parameter has the best performance, followed by the
rainfall-based (AMS1) and the inflowing river mean
discharge-based model (AMS2). According to the LR
tests with the nested model AMS0, the models with

evaporation (AMS3), rainfall (AMS1), or discharge
(AMS2) as a covariate in the location parameter were
also all acceptable with better performances as com-
pared with the stationary model case (AMS0) without
covariates (p < 0.05). This indicates that adding each of
the covariates (rainfall, discharge, and evaporation) im-
proves the performance of the AMS0 in the frequency
analysis of AMS lake levels. On the other hand, the
results show that the covariates IOD (AMS4) and SOI
(AMS5) were not immediate key factors in the frequen-
cy analysis of AMS series of the lake levels, as both had
higher values of AIC, BIC, and NLL. In addition, their
LR tests with AMS0 resulted in the acceptance of the
null hypothesis of no significant influence of these
covariates in modeling the location parameter (μ) with
all p > 0.05. Since there is no specified cutoff point in
the AIC, DIC, and DIC values as criteria for the evalu-
ation of models, taking the lowest p values of the LR test
is an indicator of better model performance. The LR test
between each of the three candidate models (AMS1,
AMS2, and AMS3) with the stationary model (AMS0)
was instead used atα = 0.05, since all of them are nested
within thismodel ifμ1 = 0. The LR test results in Table 8
show that the evaporation-based model (p = 0.0003) still
had the better performance, as compared with the
rainfall- (p = 0.0097) and discharge (p = 0.0125)-based
models.

The estimated models for the location parameter μ
with single and combined covariates, the estimated
constrained scale (σ) and shape parameters (ξ), and their
standard errors (se) are shown in Table 9. Physically,
models AMS1 and AMS2 show the additive effects of
rainfall and discharge to the location parameter, whereas
AMS3 to AMS5 suggests the respective subtractive ef-
fects of evaporation, IOD, and SOI on the location
parameter. This means that higher rainfall and river
inflows may lead to increases in lake levels, whereas
higher evaporation and negative phases of IOD and SOI
results in lower lake levels.

Joint covariate modeling of the location parameter

Having eliminated the IOD and SOI as important co-
variates in the location parameter for modeling the lake
level AMS, the study then investigated the combined
influences of evaporation, rainfall, and discharge on the
location parameter (AMS6 to AMS9 in Table 8). The
results have shown that AMS3 (evaporation-based
model) was still the best model, and the other two
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covariates (rainfall and discharge) may therefore add
some value to the location parameter of this model.
Consequently, AMS3 was considered to be nested in
AMS6 and AMS7. In addition, AMS1 was considered to
be nested in AMS8, since the based model was the
second best. The results in Table 8 show that AMS7
(combining evaporation and discharge) was the best
performer of the three, with the lowest AIC, BIC, and
NLL values. However, none of these demonstrated
through the LR test that the addition of a covariate
would improve the performance of the nested model as
all p > 0. Finally, AMS9 (combing all three covariates)
fails short of being the best model according to the AIC,
BIC, and NLL values shown in Table 10. The LR test
was therefore used with AMS9 and against AMS6,
AMS7, and AMS8. The best (lowest) p value of
0.0018 for LR test was only found when AMS8 was
nested within AMS9. The implication is that only the
addition of evaporation would be of some value in the
performance of each of the combined models. The esti-
mated models for the location parameter with combined
covariates, the estimated constrained scale (σ) and shape
parameters (ξ), and their standard errors (se) are also
shown in Table 9. Physically, models AMS1 and AMS2
show the additive effects of rainfall and discharge to the
location parameter, whereas AMS3 to AMS5 suggests
the respective subtractive effects of evaporation, IOD,

and SOI on the location parameter. In addition, the study
also found that there were no significant improvements
in the performance of each of these 9 NSFA models
when log link functions were used in the scale parame-
ter(∅ = log(σ)).

Single covariate models of the scale parameter

This section presents results on the effect of adding a
covariate in modeling the scale parameter (σ) only while
constraining the location parameter (μ). The stationary
model (AMS0) served as the nested model for the LR
tests in the evaluation of all five models (AMS10 to
AMS14). The results of the test results are shown in
Table 10 whereas the actual model parameters are
shown in Table 11. Overall, the results suggest that
varying σ while constraining the location did not result
in significant improvements in the model performance
of AMS0 according to the AIC, BIC, and NLL values
(Table 10). It can be noted that all of these values are
relatively higher than those in models for a varying
location parameter. However, the model with evapora-
tion (AMS12) as a covariate in σ still outperformed the
other four models (AMS1, AMS2, AMS4, and AMS5),
with lowest values of AIC (100.71), BIC (107.85), and
NLL (46.36), and lowest value of p = 0.028 for the LR
test. It can also be noted that AMS8 was the only model
among the five that rejected the null hypothesis of no
significant influence in the scale parameter as a covari-
ate according to the LR test.

Covariate modeling of both μ and σ

For varying both bμ and bσ, only the three covariates
(rainfall, discharge, and evaporation) whose influence
was found in the location parameter were considered.
The stationary model (AMS0) and each of the models
incorporating variations in μ only served as the nested
models for the respective covariates. The results

Table 10 Test results for models with covariates in the scale parameter (bσ)
Model# Covariate AIC BIC NLL LR (p value) Nested Model

AMS10 Rainfall 102.25 109.39 47.12 0.0689 AMS0
AMS11 Discharge 105.40 112.54 48.70 0.6930 AMS0
AMS12 Evaporation 100.71 107.85 46.36 0.0277 AMS0
AMS13 IOD 104.93 112.07 48.47 0.4298 AMS0
AMS14 SOI 101.78 108.92 46.89 0.0520 AMS0

Table 11 Estimated fitted models of the scale parameter (bσ) with
covariate (C)

Model# bμ (se) bσ ¼ σ0 þ σ1*C
ξ (se)

AMS10 475.21 (0.13) 0.35 + 0.87 ∗ P − 0.49 (0.14)

AMS11 475.30 (0.13) 0.83 − 0.25 ∗Disch − 0.25 (0.14)

AMS12 475.48 (0.10) 0.23 + 1.05 ∗ Evap − 0.08 (0.13)

AMS13 475.25 (0.13) 0.85 − 0.22 ∗ IOD − 0.31 (0.09)

AMS14 475.32 (0.10) 0.30 + 0.78 ∗ SOI − 0.20 (0.09)
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(Tables 12 and 13) show that AMS17, with evaporation
in bμ and bσ, has the best performance, as it has lowest
values of AIC, BIC, and NLL. The LR test however
suggests that having a covariate in both bμ and bσ does
significantly improve the performance of the AMS0 for
the rainfall, evaporation, and discharge-based models
(AMS15, AMS16, AMS17, respectively) with p < 0.05.
AMS17 is also the best model among the three as p =
0.0006 is the lowest of the LR ratio results. However,
this LR ratio is larger than the LR ratio results of AMS3,
the model with evaporation as a covariate in bμ. This
aspect is validated by the LR test results in Table 12,
where all 5 models with covariates bμ accepted the null
hypothesis of no significant improvements in their per-
formance with covariates in bσ (p > 0.05).

Discussion

Table 14 summarizes the ranks of the various models for
bμ and bσ based on the AIC, BIC, NLL, and LR test
results. From the table, it is apparent that evaporation-
based models dominate. AMS17, AMS9, and AMS12
can be removed from the list, as they are all
evaporation-based and did not significantly improve
the performance of AMS3, according to the LR tests.
From the foregoing, it is apparent that the lake open
water evaporative demand has the most significant in-
fluence on the AMS series, followed by rainfall over the

lake and inflowing discharge. The lake evaporative de-
mand is implicitly a function of the temperature regime
in an unlimited moisture supply environment like Lake
Malawi. Many studies have reported on increasing tem-
peratures in Malawi (Warnatzsch and Reay 2015 and
references within, Ngongondo et al. 2015) and over
Southern Africa (Engelbrecht et al. 2015, Ngongondo
et al. 2015, Maúre et al. 2018). In the “Temporal hydro-
climatic pattern of Lake Malawi basin (1899 to 2017)”
section, this study also reported on statistically signifi-
cant increases in the temperature and the evaporation
regimes of Lake Malawi. In their modeling studies,
Crossely et al. (1990) established that reduced rainfall
by 30% in the Lake Malawi basin resulted in increased
evaporation over the lake by up to 4%, with mean
inflowing river discharge decreasing by up to 48%.
Awange et al. (2008) also reported a significant influ-
ence of rainfall in the recession of Lake Victoria during
(1976–1999). However, that study only considered rain-
fall and discharge from some inflowing rivers.

Figure 10 shows the lake level duration curves for
estimated 2 years for the three acceptable non-stationary
models (AMS1, AMS2, and AMS3). Based on the
Weibull plotting position (Vogel and Fennessey, 1994
& 1995), these are compared with the corresponding
stationary model (AMS0) (p = 0.5 non-exceedance or
the median and 100-year quantiles p = 0.99 non-exceed-
ance) and the actual AMS series. In the figures, high

Table 12 Test results for models with covariates in both bμ and bσ
Model Covariate(s) AIC BIC NLL Nested model LR (p value) Nested model LR (p value)

AMS15 Rainfall, Rainfall 99.25 108.17 44.63 AMS0 0.016 AMS1 0.203

AMS16 Discharge, Discharge 100.35 109.27 45.18 AMS0 0.027 AMS2 0.3272

AMS17 Evap, Evap 92.76 101.68 41.38 AMS0 0.0006 AMS3 0.1915

AMS18 IOD, IOD 103.04 111.96 46.52 AMS0 0.104 AMS4 0.238

AMS19 SOI, SOI 102.81 111.73 46.41 AMS0 0.0933 AMS5 0.0831

Table 13 Estimated fitted models for bμ and bσ with covariate (C)

Model bμ ¼ μ0 þ μ1*C bσ ¼ σ0 þ σ1*C bξ (se)

AMS15 474.76 + 1.03 ∗ P 0.48 + 0.47 ∗ P − 0.47 (0.13)

AMS16 474.72 + 1.21 ∗Disch 0.91 − 0.62 ∗Disch − 0.15 (0.16)

AMS17 475.78 − 1.20 ∗ Evap 0.35 + 0.48 ∗ Evap − 0.73 (− 0.07)

AMS18 475.68 − 0.88 ∗ IOD 0.85 − 0.31 ∗ IOD − 0.30 (0.09)

AMS19 475.46 − 0.39 ∗ SOI 0.29 + 0.78 ∗ SOI − 0.18 (0.10)
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lake levels have low exceedance probabilities in a par-
ticular year whereas low lake levels have high exceed-
ance probabilities. Under stationary conditions, the T =
2-year and 100-year lake levels are estimated at 475.41
± 0.21 m ASVD and 477.13 ± 0.50 m ASVD, respec-
tively, as shown by the horizontal dashed lines in Fig.
10a and b. These have constant values with fixed ex-
ceedance probabilities (p = 0.5, T = 2 −Year, and p =
0.01, T = 100 −Year). Under non-stationary conditions,
considerable magnitude changes can be seen in the var-
iations of both modeled T = 2-year and 100-year lake
levels. All three models agree in quantile changes from
the rare high lake levels, to the more common lower lake
levels for both return periods, with magnitude changes
from a maximum of 476.3 m ASVD (AMS2) to a min-
imum of 474.7 m ASVD (AMS3). The minimum is
approximately equal to the annual mean lake level.

The results in Fig. 10a further show that the non-
stationary T = 2-year lake level exceeds the stationary 2-
year lake level approximately 60% of the time for all
models. Subsequently, the 2-year non-stationary lake
levels will be equal or lower than the stationary 2-year
lake level for the remaining 40% of the time. In the high
lake level section of Fig. 10a, which are the rare events
with low exceedance probabilities in a year, it can be
seen that all three non-stationary models are in approx-
imate agreement in terms of the modeled magnitudes.
However, the low lake level section of the curves shows
that AMS3, with evaporation in μ (Fig. 10a), has the
most change in the 2-year lake level quantiles, while
AMS1 and AMS2 are in approximate agreement. In
addition, the results suggest that in any year, the T =
2-year lake level has changed in magnitude and is
becoming equal to the more frequently observed lake
level with magnitudes similar to the normal AMS.

For the T = 100 year lake levels in Fig. 10b, consid-
erable variations in the magnitudes of the lake levels can

also be seen in all three models. These range from a
maximum of 477.9 m ASVD (AMS2) to a minimum of
476.1 m ASVD (AMS1). In addition, AMS1 has
quantiles above the stationary 100-year levels for ap-
proximately 18% of the time, whereas AMS2 and AMS3
account for 50% and 60% of the time, respectively. It
can also be noted that AMS3 quantiles exhibit the most
changes for the T = 100-year lake levels.

Conclusion

Variations in the levels of Lake Malawi are already
having considerable impacts to the livelihoods of the
riparian communities and the socio-economic develop-
ment of Malawi. Since the peak of 1979/1980, a down-
ward pattern of the levels is evident from the empirical
record. Consequently, the lake levels cannot be assumed
to be stationary. However, there is no documented study
in the literature that has attempted to account for this
trend. In this study, new FFA approaches incorporating
non-stationary have therefore been applied to the lake
levels to understand and compared with those from
traditional stationary methods. A multi-model frame-
work ranging from the following: change point and
trends analysis, series (AMS or PDS); pdfs (Gumbel,
GEV, PE3, GPA, and exponential); parameter fitting
(MLE; GMLE, Bayesian, and L-Moments); and covar-
iates (rainfall, discharge, evaporation, IOD, and SOI)
was used to identify the best approach for modeling the
frequency of the lake levels. Based on commonly used
model evaluation criteria (AIC, BIC, DIC, and LR
tests), the model with the GEV when fitted to the
AMS using the MLE was the best performing among
the candidate distributions as opposed to the GPA on
POT series. In addition, open water evaporation was
found to be the most dominant covariate to the location

Table 14 Rankings of the models for bμ and bσ
Model# Covariate(s) AIC BIC NLL LR (p value) Nested model

AMS3 Evaporation* 92.47 99.61 42.23 0.0003 AMS0
AMS17 Evap, Evap 92.76 101.68 41.38 0.0006 AMS0
AMS9 Evap+Rainfall+Discharge 92.52 103.22 40.26 0.0018 AMS8
AMS1 Rainfall 98.87 106.01 45.43 0.0097 AMS0
AMS2 Discharge 99.31 106.45 45.66 0.0125 AMS0
AMS12 Evaporation 100.71 107.85 46.36 0.0277 AMS0
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parameter (μ) of the non-stationary GEV distribution,
followed by rainfall over the lake and river discharge.
All covariates were found to have no significant influ-
ence on the scale parameter (σ). However, the IOD and

SOI, large-scale low climate variability indices in the
area, had non-significant impact on the variation of the
lake levels. The results suggest that non-stationary
models are more ideal in the evolution of lake quantiles

Fig. 10 Lake level duration curves of AMS series, AMS0, and the best non-stationary models. aWith T = 2 years return period and b T =
100 years return period
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and should be incorporated in infrastructural design and
flood zone planning among others.
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