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Abstract

Acoustic imaging allows the detection and localisation of sound sources in in-
dustrial applications. Commonly, acoustic imaging involves combining an array
of microphones with a digital camera module. While the camera module creates
images with a lens and an array of light sensors, the microphone array creates
audio images through beamforming, estimating audio level in a pixel grid. Lo-
cating sound sources then involves overlaying the audio image onto the camera
image. Proper alignment between the two images is crucial for correct location
of the sound source. This thesis proposes a low-complexity setup for calibrating
the alignment between the camera and audio images. A sound source with a
known colour is placed in front of an acoustic imaging array, playing a known
signal. Sound source location is then found using both the digital camera and
the microphone array. By combining several recordings of the sound source in
different locations, we can measure any differences in the alignment between
the camera and audio images. Alignment errors can be overcome with a least
squares estimator used in estimating camera sensor offset and camera rotation.
The offset and rotation is applied to the camera image giving near perfect align-
ment.
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Chapter 1

Introduction

1.1 Locating sound sources

An unexpected noise can signify several different things, for instance a noise
can reveal an issue with a piece of equipment or machinery indicating a need
for inspection, and possibly repair. In addition the noise itself might be the
issue, either violating local noise regulations for work or residential areas, or
by leaking through what is supposed to be a noise reducing measure. In all of
these cases locating the source of the noise is the first step of action. However
locating the source of a noise is not always easy with human ears. Professional
sound monitoring equipment exists in the form of sound level meters, such as
the one in Figure 1.1. This equipment can produce an accurate estimate of
sound level, and estimate signal parameters. However to find the source of the
noise, manually searching is the only option, which might be difficult, especially
in environments rich with other noise sources.

Figure 1.1: Sound level metre used to measure noise pollution, building acoustics
and environmental noise. Image taken with permission from norsonic.com
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An array of microphones like the ones in figure 1.2 is able to modify the direction
it is sensitive to sounds through delays and weighting of the audio on each
microphone. By estimating the sound at different positions in front of the array
we are able to produce an image with an estimated sound level for different
directions. By overlaying this acoustic image over a camera image like in figure
1.3 we are able to locate a sound source easily.

Figure 1.2: Different arrays used in acoustic imaging

Figure 1.3: Overlaying an audio image over the camera to pinpoint the location
of a high-frequency noise source.

Examples of use cases for this are illustrated in figure 1.4 including undesired
noises from mechanical devices, such as a car door emitting a loud squeek-
ing noise when the window is operated (1.4a), and a wind turbine causing high
pitched noises due to wind interaction with its blades (1.4b). Other uses include
identifying undesired noise leakage, such as sound leaking through the doors of
a nightclub, despite the venue recently having renovated to avoid sound leaking
(1.4c), and high pressure pipes emitting loud noise near a residential area, vio-
lating local noise ordinances (1.4d). In all of these cases, properly locating the
noise source is vital in order to correctly apply repairs or changes.
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(a) Squeaking car door window (b) High pitched noise from wind turbine

(c) Sound leakage from nightclub (d) Sound leakage from pipes

Figure 1.4: Different scenarios where locating the source of a noise is of high
interest.

1.2 Sound source localisation

Microphone arrays used for acoustic imaging applications demand highly precise
localization of the sound sources. Most commercial systems superimpose an
acoustic image on top of a video image, and a spatial alignment of the images is
decisive for the correct assignment of the sound level to the proper sound source
location.

The required precision in the alignment of the camera and audio image is set by
the resolution of the camera, and by the properties of the applied beamformer
and the microphone array. Large microphone arrays have typically a higher
localization precision, and a mismatch between the sound and image planes
will therefore have serious impact on accuracy. Ultimately, it can lead to false
positioning of sound sources. False positioning could mean large amounts of time
spent solving the problem in the wrong location. Figure 1.5 shows an image of
a recording performed to locate sound leakage from what is supposed to be an
acoustic insulating separator wall between conference rooms. A displacement
in image would lead to applying additional insulation to the wrong parts of the
wall, wasting time and resources.
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(a) No error induced (b) Acoustic image displaced

Figure 1.5: Searching for audio leakage in a separating wall. Displacement
between the image, and audio layer can give a misleading impression of the
location of a sound.

1.2.1 Audio image alignment

The alignment of the audio and image planes is normally done by a manual
calibration of the camera, done as the final manufacturing step. The audio
image is then mapped directly onto the camera image, assuming the camera is
properly positioned and calibrated. However, changes in the physical placement
of the camera relative to the microphone array can occur, for example due to
field usage and transportation. The changes in camera positioning could be to
the entire camera module, displacing and rotating the camera, or changes to
the imaging sensor’s position in relation the camera lens may occur. Moving
the sensor displaces the image, and changes the effect of lens distortion on the
image. Thus a small change to the alignment between image sensor and lens,
can result in a large effect on the alignment between the camera image and the
audio plane.

This rises a need for an automatized procedure for detection and correction of
the misalignment between the sound and the image plane. For practical pur-
poses, the solution should not pose a requirement of a very precise calibration
rig, nor a special environment, such as anechoic chamber. Ideally the calibra-
tion should be doable in the field, using as little equipment as possible. The
motivation is to relatively easily be able to test an acoustic imaging system for
this type of error, and to algorithmically compensate and correct the detected
deviations.

1.3 Calibration

In order to detect and measure alignment errors between the camera image and
the sound plane, positional information is needed from both. The solution would
be to have an object be detected using image processing to get a position in the
camera image, and signal processing to get a position in the audio plane. Such
an object would be an audio source playing a known signal, that can be visually
detected in the image. Thus arises the first two challenges; find a technique to
detect the audio source visually, using the camera, and acoustically using the
microphones, with as few equipment constraints as possible.
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Further, a technique will be needed to estimate and correct for any misalign-
ments detected between the video and the audio. Such a technique will involve
re-defining the mapping of the audio image onto the camera image, by minimis-
ing the estimated error. Thus the complete calibration requires a setup enabling
detection as well as three computational steps::

• Camera image positioning

• Audio plane positioning

• Estimating error and remapping the audio onto the camera image.
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Chapter 2

Sensors

This chapter contains a short description of the microphone array used in all
experiments contained in this thesis. All measurements in this thesis were done
using the ”Hextile - Acoustic Camera” microphone array (Shown in Figure2.1)
produced by Squarehead Technology and sold by Norsonic. The array designed
for industrial measurements using the accompanying ”Norsonic Acoustic Cam-
era” software to record audio and video data. The recorded data are then split
up into separate image frames and audio channels using Squareheads internal
python-API, and processed using python.

Figure 2.1: The Hextile Acoustic Camera microphone array used in experiments

The array can also be combined with two other identical arrays to create a larger
multitile aperture, enabling lower frequency operations, as shown in figure 2.2.
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Figure 2.2: Different multitile configurations allowing low- and very low-
frequency operation.

2.1 Microphone array

The microphone array itself is a planar array composed of 128 MEMS (MicroElectrical-
Mechanical System) microphones mounted on an underlying PCB (Printed Cir-
cuit Board). The array is laid out in a spiral pattern forming approximately a
hexagon along its edges, as shown in Figure 2.3. The microphones each have
a sample rate of 44.1 kHz. The average spacing between Microphones is about
2.8 cm, and the outer diameter is approximately 42 cm. Table 2.1 lists some
of the basic properties of the microphone array, as well as the properties of
its microphones. Figure 2.4 shows the Half-Power beam-width for the different
array configurations. This thesis only involves the single array configuration,
and is thus limited to using frequencies above 410 Hz, preferably above at least
1 kHz to have achieve good accuracy. All single frequency and narrow band-
width recordings done in this thesis containing a single audio source are focused
around 4 kHz. The beampattern of the microphone array at 4 kHz is shown in
figure 2.5
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Figure 2.3: Front illustration of the Hextile microphone array, showing micro-
phone positions in red, and camera in blue.

Microphones 128 MEMS microphones
Sampling rate 44.1 kHz
Max sound level 128 dBA
Min sound level (system) 9 dBA
SNR per microphone 65 dBA
SNR array 82 dBA
Dimensions(width,height, max radius) 41 cm x 48 cm, Ø 48 cm
Communication interface USB

Table 2.1: Specifications of the Hextile microphone array. (“Acoustic Camera,
Norsonic”, n.d.)

Figure 2.4: Approximate Half-Power beam-width at different frequencies, for
different array configurations.
The blue line (Hextile) represents the characteristics of a single array
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Figure 2.5: Beampattern for Hextile at 4 kHz with no Apodization
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2.2 Camera

The camera module features a 2592 x 1944 sensor with an ultra-wide-angle or
fisheye lens, with a horizontal viewing angle of 105°. It records video at 15 FPS
in a Motion JPEG format in which each frame is a single JPEG compressed
image. Table 2.2 contains a summary of the key parameters of the camera.
Figure 2.6 show a schematic view of the lens used for the camera.

Sensor Module Omnivision OV5640
Resolution 2592 x 1944
Pixel size 1.4 µm x 1.4 µm
Sensor image area 3673.6 µm x 2738.4 µm
Frame rate 15 FPS
Video format Motion JPEG
Horizontal opening angle 105°
Lens size 6.35 mm (1/4 ”)
Focal length 2.15 mm
F Number 2.4

Table 2.2: Camera specifications

Figure 2.6: Schematic view of the lens for the camera in the Hextile microphone
array

18



Chapter 3

Theory

This chapter gives a brief theoretic introduction to various topics needed to
understand the methods described in this thesis. The chapter is divided into
image processing and signal processing.

In the image processing segment an overview of the process of correcting for lens
distortion is described, as well as a description of the sensor offset parameter
used to describe the imaging sensors relative position to the lens. Further dis-
cussed is the background for the object detection and positioning in the camera
image, using the HSV (Hue Saturation Value) colour-space and segmentation
to separate an object from the background. Positioning an object is explained
through raw image moments and the centroid of the object. Finally a short
description of the affine and perspective transforms that may be used to re-map
audio data onto the image.

In the audio processing there is a short description of beamforming as well as
some central terminology and considerations such as; sampling criteria, res-
olution, far/near-field, windowing, and a short description of some common
beamformers.

3.1 Geometric coordinate transforms

3.1.1 Rotation matrices

A Rotation matrix is a matrix with the property that any vector multiplied
with it is rotated about an axis with a certain angle. Equations 3.1, 3.2, and 3.3
show the rotation matrices for rotating around the x, y, and z axis respectively.
All these matrices can be combined through multiplication into a single rotation
matrix performing all rotations, as shown in equation 3.4.

Rx(α) =

 1 0 0
0 cosα − sinα
0 sinα cosα

 (3.1)
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Ry(β) =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 (3.2)

Rz(γ) =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 (3.3)

R = Rx(α)Ry(β)Rz(γ) = cosα cosβ cosα sinβ sin γ − sinα cos γ cosα sinβ cos γ − sinα sin γ
sinα cosβ sinα sinβ sin γ + cosα cos γ sinα sinβ cos γ − cosα sin γ
− sinβ cosβ sin γ cosβ cos γ


(3.4)

3.2 Image processing

3.2.1 Image coordinate systems

The most common coordinate system used in digital images is pixel coordinates.
In such a system all pixel values are arranged in a grid of columns and rows,
and each pixel has a single integer coordinate associated with it. The origin is
placed in the upper left hand corner of the image with the x-axis pointing right
and the y-axis pointing down. This is due to the convention of having the z-axis
point along the cameras optical axis in digital imaging, and thus to conserve a
right handed coordinate system the y axis is inverted, pointing down instead of
up. Figure 3.1a contains an illustration of how matrix/pixel coordinates work.

An alternative is a normalized image coordinate system, in which coordinates
lie between -1 and 1. The origin is located at the centre of the image and 1 is
defined as the largest extent the image has from the centre. For a landscape
image the largest extent is horizontal. As an example, an image with a size of
100x75 pixels will range from -1 to 1 along the x-axis and range from -0.75 to
0.75 in the y axis. Figure 3.1b shows an illustration of a normalized camera
coordinate system.

The final coordinate system relevant for this thesis is to project the image into
the world coordinate system and measure using world units instead of image
units. This allows us to discuss the positions and distances between objects in
terms of meters or centimetres instead of pixels.
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(a) Coordinate system of a digital image (b) Normalized image coordinate system
with all positions between -1 and 1

Figure 3.1

3.2.2 Distortion correction of wide-angled lens

When a camera captures an image it turns what it sees into a 2d representation
of the world in front of it. In order to associate an objects location in 2d to its 3d
world position we need to know the cameras intrinsic and extrinsic parameters.
The extrinsic parameters describe the cameras position and rotation relative
to the world coordinate system. The intrinsic parameters describe the fixed
internal construction of the camera, such as it’s focal length, image sensor size,
and image sensor location.

The cameras extrinsic parameters can be described by a rotation matrix R,
(like the one in equation 3.4) rotating from the world coordinate system to the
cameras coordinate system. This is then followed by a translation vector T ,
translating in the camera coordinate system to the cameras position relative to
the world origin. The resulting extrinsic matrix Mext is shown in equation 3.5.
Multiplying a vector with the extrinsic matrix gives us the same vector in the
cameras coordinate system.

Mext =

[
R3×3 T3×1

01×3 1

]
=


r11 r12 r13 T1

r21 r22 r23 T2

r31 r32 r33 T3

0 0 0 1

 (3.5)

For our purposes the cameras coordinate system and the arrays coordinate sys-
tem share the same origin, however the orientation might be a source of align-
ment error between the audio image and camera image.

The intrinsic parameters for a pinhole camera can be represented by the matrix
in equation 3.6, where f is the focal distance of the lens, and sx and sy is the
pixel density along the x and y axes.
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Mint =

 f/sx 0 cx
0 f/sy cy
0 0 1

 (3.6)

Sensor offset

Here cx and cy defines the principal point, that is to say where the optical axis
intersects the imaging sensor. Ideally the principal point is located in the centre
of the imaging sensor, but due to imprecisions in manufacturing and impacts
during transportation and handling, the sensor might have a not insignificant
offset from its intended location. As such the microphone arrays used in this
thesis includes a sensor offset to compensate for the sensors true location behind
the lens. This offset is normally estimated using a manual calibration step during
the manufacturing of the array.

Radial barrel distortion

Due to the wide angled nature of the lenses used in acoustic imaging application
the images produced contain a significant amount of barrel- or radial distortion.
Radial distortion magnifies the centre of the image while demagnifying the edges.
Thus we need to expand the cameras intrinsic parameters with equations 3.8
and 3.9, to compensate for radial distortion, where x and y are normalized
pixel coordinates relative to the optical centre. The intrinsic parameters k1,
k2, and k3 need to be estimated through a calibration involving multiple views
of a known plane such as a chessboard. Figure 3.2 shows the effect of barrel
distortion on a grid.

Figure 3.2: Image with and without radial distortion

r2 = x2 + y2 (3.7)

xdistorted = x
(
1 + k1r

2 + k2r
4 + k3r

6
)

(3.8)

ydistorted = y
(
1 + k1r

2 + k2r
4 + k3r

6
)

(3.9)
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Fisheye OpenCV model

For ultra-wide wide angle lenses, also known as fisheye lenses, the model de-
scribed above does not sufficiently describe the lens distortion. OpenCV also
provides a fisheye lens calibration model based on (Kannala & Brandt, 2006).
This model is the one used for correcting the lens distortion in this thesis.

Note For the purposes of this thesis it is assumed that all camera intrinsic
parameters have been estimated and are known. The exception being the centre
offset/location of the optical axis, which is assumed to be a possible source of
error for sound and image alignment. For more in-depth reading on camera
calibration see (Kaehler & Bradski, 2016, ch. 18) and (Kannala & Brandt,
2006)

3.2.3 HSV colour space

To simplify segmentation by colour it is useful to convert our images into a
colour space where it is more easy to describe a specific colour and to define
what counts as that colour for purposes of segmentation. HSV (hue, saturation,
value) redefines the RGB colour space to be instead of 3 basis vectors describing
relative value of a specific colour (red, green, blue) to instead describing a colour
by its hue in a circular axis with red at 0°, green at 120°, blue at 240°, and red
again at 360°. 1 The saturation describes the purity of the colour with respect
to its distance from grey, and the value its separation from pure black.

Conversion from RGB to HSV

(From OpenCVs documentation “OpenCV: Color Conversions”, n.d.)

Equations 3.10, 3.11, and 3.12 describe the process to compute value, saturation
and hue respectively, using RGB values normalized between 0 and 1.

V = max(R,G,B) (3.10)

S =

{
V −min(R,G,B) if V 6= 0

0 otherwise
(3.11)

H =


60(G−B)

V−min(R,G,B) if V = R

120 + 60(B−R)
V−min(R,G,B) if V = G

240 + 60(R−G)
V−min(R,G,B) if V = B

(3.12)

3.2.4 Segmentation by colour

Segmentation is essential in detecting mono-coloured objects, allowing the cre-
ation of binary masks that can be used for further processing. To segment an
image, specify some boundaries within the current colour space and mark any
pixels with values within the bounds as 1 and otherwise 0. To detect coloured

1In openCV the hue axis is halved to fit within one byte going instead from 0° to 180°.
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objects in the HSV colour space, we set the boundaries in the hue axis to be the
desired colour ± some tolerance, and for the saturation and value we set it to
100% minus some tolerance. The tolerances need to be adjusted based on the
lighting of the scene in the image as well as possible colour inaccuracies in the
camera and the colour of the object. Figure 3.3 shows an image of a red object
before and after a colour based segmentation is applied.

Figure 3.3: Image before and after applying segmentation.

3.2.5 Morphological image processing

(Based on Gonzalez, 2008, pp. 628 - 639)

Morphological image processing involves modifying binary images, often binary
masks defining an object. Morphological transforms can be applied to shrink or
expand objects in binary images. The following pages contain a short description
of four morphological operations relevant to the image processing performed in
this thesis.

Structuring element

All morphological operations require a basic pre-defined binary shape called the
structuring element. Typical examples of this is a 3x3 box of 1s or a cross/plus.
Typically, the origin of the structuring element is the centre.

Erosion

In erosion the structuring element is convolved over the image and all pix-
els where the structuring element is completely encompassed in the shape are
marked. This means that all positions for B in the image where B is a subset of
A, are kept marked. Equation 3.13 describes erosion, where z is a point in the
image plane, and Bz is the structuring element B displaced so that its origin is
at z. Figure 3.4 shows a binary shape before and after a 3x3 structuring element
is used to erode it.

A	B = {z|(Bz) ⊆ A} (3.13)
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Figure 3.4: Example of an eroded image

Dilation

In dilation the structuring element is convolved over the image and all pixels
where the structuring element is partially or fully encompassed in the shape are
marked. This means that all positions for B where B partially or fully intersects
A, are marked. Equation 3.14 describes erosion, where z is a point in the image
plane, and Bz is the structuring element B displaced so that its origin is at z.
Figure 3.5 shows a binary shape before and after a 3x3 structuring element is
used to dilate it.

A⊕B = {z|Bz ∩A 6= ∅} (3.14)

Figure 3.5: Example of a dilated image

Opening

Opening consists of erosion of A by B followed by a dilation by B. Opening
generally smooths the contours of objects and breaks thin bridges and removes
objects smaller than the structure element while maintaining the size of other
objects. Equation 3.15 shows openings relation to erosion and dilation, and
figure 3.6 shows the effect of opening applied on the same binary shape as
earlier.

A ◦B = (A⊕B)	B (3.15)
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Figure 3.6: Example of an opened image

Closing

Closing consist of dilation followed by erosion. Closing, like opening also gen-
erally smooths objects, however it also closes small holes and bridges nearby
shapes fusing them together. Equation 3.16 shows closings relation to erosion
and dilation, and figure 3.7 shows the effect of closing applied on the same
binary shape as earlier.

A •B = (A	B)⊕B (3.16)

Figure 3.7: Example of a closed image

3.2.6 Raw image moments

An image moment is the weighted average over the images intensity values. It
can be used to estimate and objects position and orientation. Equation 3.17
describes how to compute a raw image moment Mij of the i-th and j-th degree.

Mij =
∑
x

∑
y

xiyjI(x, y) (3.17)

Where I(x, y) is the intensity value at position (x, y) (Gonzalez, 2008, p. 839) .

3.2.7 Centroid of shape

The centroid of a shape is the geometric centre of the shape, the mean of all
the points in the shape. So, if a shape is composed of n distinct points/pixels
x1 . . . xn, then the centroid xc can be described as in equation 3.18
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xc =
1

n

n∑
i=1

xi (3.18)

Alternatively, we can find the centroid using image moments as shown in equa-
tion 3.19 where Cx and Cy are the x and y coordinates of the centroid, respec-
tively, and Mij is the image moment given by equation 3.17

Cx =
M10

M00

Cy =
M01

M00

(3.19)

3.2.8 Geometric image transforms

A geometric image transform is a transform that changes the location of data
in an image without changing the data itself. The simplest example of a geo-
metric transformation is a resize. A resize either expands or shrinks the image
so that it has more or less pixels, in other words a resampling of the image. As
with resampling, a resize involves mapping data with integer coordinates into
potentially float coordinates. This is solved through interpolation. Typical in-
terpolation alternatives when remapping pixels are: nearest neighbour, bilinear,
and bicubic interpolation.

For our purposes, we wish to move and rotate the audio map onto the cam-
era image. The simplest transform for this is an affine transform. The affine
transform can move, rotate and shear an image, based on three origin and des-
tination point pairs. Another more robust transform is a perspective transform,
that does the same as the affine transform, but also has the ability to rotate the
image in the third dimension so as to change its perceived perspective. Table
3.1 gives a short summary of the two transforms.

Transform Req. points Ability

Affine 3 Move, Rotate, Shear
Perspective 4 Move, Rotate, Shear, Rotate perspective

Table 3.1: Overview of two geometric image transforms, their requirements and
the operations available with the transform.

As illustrated in figure 3.8, the affine transform can change any square into
any parallelogram, while the perspective transform can turn a square into any
trapezoid. Thus, the possibilities of the affine transform are a subset of those
of the perspective transform.
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Figure 3.8: Examples of resulting shapes when applying the affine and perspec-
tive transforms to a rectangle. All affine transforms are a subset of perspective
transforms.

3.3 Audio processing

3.3.1 Arrays

In the same way that most digital systems store signals over time by intermit-
tently sampling sensors at specific time intervals, arrays sample wavefields at
separate points in space. In this way, arrays sample wavefields in both space
and time as opposed to how a single acoustic sensor is only able to sample in
time. Spatial sampling of wavefields allows for analysis of time-frequency pa-
rameters as well as spatial parameters such as the direction a wave travels and
the position of the signal source’s location in space.

3.3.2 Beampattern

It is important to note that while an array might be able to separate signals in
space, it does not do so perfectly. How much a signal arriving from a certain
angle affects the beamformer output can be graphed as the beampattern. Figure
3.9 shows a typical beampattern for a linear array. The largest peak in the mid-
dle of the plot is the mainlobe, it is the direction where the array is focused. All
other peaks around the mainlobe are the sidelobes, these are directions where
the array is not focused yet signals are still being picked up. Typically, we can
describe the features of a certain beamforming configuration using measure-
ments of its beampattern. An array’s resolution will depend on the width of the
mainlobe, and its ability to attenuate signals from other directions is dependent
on the height of its sidelobes.
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Figure 3.9: Beampattern of a well sampled linear microphone array at 4kHz

3.3.3 Spatial sampling criteria

The Nyquist-Shannon sampling theorem states that, in order for a sequence
of discrete samples of a continuous bandwidth-limited signal to capture all the
information necessary to describe the signal, the sampling frequency needs to be
at least twice the highest frequency component present in the continuous signal
(Shannon, 1949). That is, to capture a signal with maximum frequency fmax,
the sampling frequency fs is restricted as shown in equation 3.20.

fs > 2 · fmax (3.20)

The time difference between samples ∆t can then be described as in equation
3.21:

∆t <
1

2fmax
(3.21)

The same principle applies to spatial sampling. The maximum distance be-
tween regularly spaced sensors depends on the shortest wavelength present in
the wavefield. The maximum prescribed sensor spacing or pitch d is then as
shown in equation 3.22:

d <
λmin

2
(3.22)

where λmin is given by equation 3.23, where c is the wave propagation speed.

λmin =
c

fmax
(3.23)
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In temporal sampling, frequencies above half the sampling frequency will appear
as lower frequencies as aliasing. Aliased signals appear as ghost signals/frequen-
cies where there are none. In the case of spatial sampling with an array, the
aliasing appears in the form of grating lobes at the edges of the arrays beam-
pattern. The array will then have additional main lobes at the edge of its
field of view, similair to side lobes but with the full magnitude of a main lobe.
Thus, ghost duplicate signals may appear at certain angles. An example of the
beampattern of an array with grating lobes can be seen in figure 3.10.

Figure 3.10: Beampattern of the same array as 3.9 at 16kHz, showing the effect
of grating lobes on the beampattern.

3.3.4 Resolution of apertures and arrays

A sensor array can in general have angular and ranging resolution. Distance
ranging requires a three-dimensional array. In our case, the array is a planar
array, and has only the angular resolution capability. The angular resolution or
resolving power of an array is defined as the closest angle between two sources,
where they can still be distinguished from each other and still appear as two
distinct peaks at the output of the beamformer. The array’s geometry, its size,
applied weighting and the type of beamformer used, all affects the arrays angular
resolving power.

Generally speaking, the minimum angular separation required between two sig-
nals to separate them is inversely proportional to the aperture size and pro-
portional to wavelength, equation 3.24 describes a rule of thumb relationship
between this angular separation, wavelength and array size (Grythe, 2016).

θ ∝ λ

D
(3.24)

A common definition used in optics is the Rayleigh criterion which states that
two plane waves can be resolved if the peak of the mainlobe of one wave falls on
the first zero of the other. In other words, the separation between to plane waves
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needs to be greater than the distance between mainlobe peak and first zero, for
a given wavelength. For a circular aperture, this works out to equation 3.25,
where θ is the minimum angle between two plane waves, measured in radians.

θ ≈ 1.22
λ

D
(3.25)

3.3.5 Far-field/near-field

When imaging wavefields, it is relevant to consider whether we are operating
in the near-field or far-field, as the waves radiating from a sound source will
appear and behave differently based on their distance to the array. A wrong
assumption about the distance to the sound source can lead to positioning errors.
In the near-field, the signal source appears as a point in space with the waves
travelling radially away from the source, in a spherical shape. With a near-field
source, it is possible to estimate the source position. When the signal source
is far enough from the array so that the wave propagation direction at each
sensor is roughly the same, and the incoming wave can be approximated as a
planar wave, the signal source is considered to be in the far-field. The boundary
can be defined as a maximum phase-error over the array, typically measured in
fractions of the wavelength. One such, is the Fraunhofer distance, commonly
used in geometrical optics (equation 3.26) which yields a maximum phase-error
of λ/16 (Holm, 2020).

d =
2D2

λ
(3.26)

Using equation 3.26 we can compute the boundary d for the array used in this
thesis. Using the inner diameter of the array from table 2.1, 41 cm, a frequency
of 4 kHz, and a sound speed of 340 m/s we find that the far/near-field boundary
is approximately 4 meters. Similarly, using the outer diameter of the array we
get a boundary at about 5.4 meter. Since this thesis primarily uses signals
around 4 kHz and the primary experiment is at the range 5.1 m, we are at
the boundary between far- and near-field. This implies the distance to the
audio source is important for proper positioning, and as such this thesis uses
beamformers with near-field modelling.

3.3.6 Beamforming

Beamforming is analogous to filtering in space. In much the same way that
frequency filtering enables distinguishing signals that are separated in frequency,
spatial filtering distinguishes signals separated in space. Some of the many
beamforming techniques for this are discussed later in this chapter. In general,
the basic idea of a beamformer is to steer/focus an array of sensors in such a way
that signals incoming from a desired direction add constructively, and signals
from other directions are attenuated through destructive interference.
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Delay-and-sum

The DAS (Delay-And-Sum) beamformer is the simplest beamformer to imple-
ment. It computes the travel distance between a desired focus and each sensor
location, and converts the distance to travel time using the wave propagation
speed c. The sensor data is then delayed for each sensor based on the travel
time from the focus to each respective sensor. Thus a wave coming from the fo-
cus arrives, effectively, at the same time for all sensors (Johnson, 1993, p. 113).
Equations 3.27 and 3.28 describe the process for computing delay, and summing
up the delayed sensor data. Given M microphones, we compute the time delay
τm for each microphone m using the focus points distance to the array r0 and
the focus points distance to each microphone r0

m. Using the computed delay we
delay each microphones output xm and apply a weighting wm before summing
to the beamformer output y(t). Figure 3.11 shows an illustration of how delays
and weighting is applied to each channel before summing.

τm =
r0 − r0

m

c
(3.27)

y(t) =

M−1∑
m=0

wmxm(t− τm) (3.28)

τ0 w0x0(t)

Σ

τ1 w1x1(t)

τ2 w2x2(t)

τm wmxm(t)

y(t)

...
...

...

Figure 3.11: Basic illustration of Delay-and-Sum

Weighting

Apodization or weighting of the array using windowing functions can reduce
sidelobe levels, at the cost of increasing mainlobe width, reducing resolution.
The windows are applied by weighting the individual sensors outputs using
a windowing function before summation. The main purpose of weighting is to
compensate for the hard cut-off at the edge of the aperture by tapering it towards
almost zero. The cost of this is that the data towards the edge of the array plays
a smaller role in the output of the beamformer, effectively reducing the size of
the aperture and increasing the mainlobe size. Some common windows can be
seen in table 3.2 and figures 3.12, 3.13, 3.14, 3.15, and 3.16.
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Window Formula FWHM Max sidelobe level (dB)

Rectangular 1 7.60/D -13
Hamming 0.54− 0.46 cos 2πn

D
11.4/D -43

Dolph-Chebyshev eq. 3.29 using α = 2.5 11.6/D -50

Kaiser I0

[
πα

√
1−

(
n−D/2
D/2

)2
]
/I0(πα) 12.5/D -46

Hann 1
2 (1− cos 2πn

D ) 12.6/D -32

Table 3.2: Some common window functions over the interval 0 ≤ n < D. (Table
from Johnson, 1993, p. 325) Note that α in Kaiser scales mainlobe size at the
cost of sidelobe level.

W (k) ∝

{
cos(D cos−1[θ(k)]) if |θ(k) ≤ 1|
cosh(D cosh−1[θ(k)]) if |θ(k) > 1|

where θ(k) = β cosπk/D

and β = cosh[(cosh−1 10α)/D]

(3.29)

Figure 3.12: Beampattern of a linear array with a rectangular window

Figure 3.13: Beampattern of a linear array with a Hamming window
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Figure 3.14: Beampattern of a linear array with a Dolph-Chebyshev window

Figure 3.15: Beampattern of a linear array with a Kaiser window

Figure 3.16: Beampattern of a linear array with a Hann window
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Minimum-Variance Distortionless-response adaptive beamformer

The Minimum-Variance Distortionless-response beamformer also known as the
Capon beamformer is an adaptive beamformer. This means that the response at
the output is dependent on its input. MVDR seeks to optimize on two criteria
minimize undesired signals incoming off-axis from steered direction (minimum
variance), while keeping signal from the steered direction unaltered (distortion-
less response).

Consider a sensor array of n microphones. Let e(θ) be the arrays response to
a plane wave arriving from angle θ. We assume that a monochromatic signal
s(t) is arriving from this angle with additive white noise v(t) being present from
other directions. The array output can then be described as in equation 3.30.

y(t) = e(θ)s(t) + v(t) (3.30)

We can then modify the arrays output by weighting the signal as in equation
3.31.

yw(t) = wTy(t) = wTe(θ)s(t) + wT v(t) (3.31)

The goal is then to minimize the total output of the beamformer wTy(t) while
keeping the signal unaltered in the output wTe = 1. We can formalize this as
the two constraints in equations 3.32 and 3.33.

min
w
ε
(∣∣wTy

∣∣2) (3.32)

wTe = 1 (3.33)

Equation 3.34 shows the solution to these constraints, where Ry is an estimated
covariance matrix for the array output y(t).

wMVDR =
R−1
y e

eTR−1
y e

(3.34)

Equation 3.35 shows the power output of the MVDR beamformer for a direction
specified by e.

PMVDR(e) =
1

eHR−1e
(3.35)

For further reading on MVDR see (Lorenz & Boyd, 2005).
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Chapter 4

Methods

The following chapter describes a recording setup from which to acquire calibra-
tion data, and multiple methods applied to the data to extract positional and
calibration information. The setup involves a planar microphone array with a
camera and an audio source. The methods describe the computational steps
used to estimate positional information from audio and video, and the relative
error between them. Finally, different methods to correct for the estimated error
are described.

4.1 Recording setup

To measure the relative error between the sound and image planes, this thesis
assumes the following setup: an acoustic microphone array combined with a
digital camera, facing a white wall. The microphones on the array form a single
2d microphone plane, and are pointed broadside (perpendicular to the plane)
at an audio source. The digital camera is located in the same plane as the
microphones, and is the centre of the array’s coordinate system. The camera is
also pointed broadside, with the cameras optical axis perpendicular to the array.
The array’s local coordinate system is defined such that the front of the array
points along the z-axis, to preserve a right-hand coordinate system the y-axis
points down. This is a common definition used in camera imaging systems. The
world and image coordinate systems are illustrated in figure 4.1. The resulting
images from both the camera and microphone array have their origin in the
upper left corner.
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(a) Local array coordinate system. (b) Image coordinate system.

Figure 4.1: Array’s local coordinate system, and image coordinate system.

The setup further consists of an audio source. The audio source is placed on
a plane/wall parallel to the array’s microphone plane and in front of the array.
The distance between the array’s microphone plane and the wall/plane on which
the sound source is located is measured, and is used as the focus distance when
beamforming. A background wall is not necessary but is preferred here to ensure
that the sound source is always located along the same plane for all recordings
made with a given setup. In addition, a wall works as a neutral background
for the camera. With the audio source in front of the array during recording,
it should be within the field of view of both the array and the camera so that
its position may be estimated using both. Several audio source positions are
recorded and grouped as a set from which to compute calibration data.

Assuming the setup described above, the challenge of this thesis can then be
divided into five steps:

• Perform several recordings with different audio source positions in front
of the array.

• Compute the 2d-position of the sound source in the camera image.

• Compute the position of the sound source in space relative to the micro-
phone array

• Estimate the difference/error between video and audio when mapping the
audio data onto the image.

• Re-compute the mapping of the audio image using the estimated error,
either by changing a parameter such as sensor offset or by adding an image
transform on the audio image.

The process is also summarized in the flowchart in Figure 4.2.
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Figure 4.2: Flowchart illustrating the proposed calibration process
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4.2 Image detection

To perform image detection, we need to estimate the sound source location in
the image. This thesis will investigate the following options:

4.2.1 Estimating position of a coloured object

This is the primary technique used in this thesis for estimating sound source
location in the image. By giving the object a known colour, image filtering
can be applied to highlight all instances of the colour. To be more specific, the
filtering process is applied on a specific hue of colour. Assuming a background
with a neutral colour, only the audio source should be highlighted by the colour
filter. In addition to giving the audio source a bright, and clear colour, we also
make it circular in shape. The circular shape defines a clear centre, avoiding
undesired biases when estimating its position. The centre does not change when
viewed from a perspective, and the rotation of the sound source does not affect
its appearance relative to he camera. The centre of the circular object can be
estimated by estimating the centroid, or centre of mass of the object see chapter,
3.2.7.

Sound source geometric shape

In order for the sound source to be easily detected, it will need to be brightly
coloured as well as large enough for the camera to pick it up. The appearance
of the sound source should make it possible to not only locate it but also locate
where on the visible part of the sound source the sound is coming from. Purely
visually, a coloured sphere seems ideal. Its centre is well defined, and it remains
of constant size and shape, regardless of rotation and viewing angle. However,
the actual location of the audio source on the sphere would not coincide with
the visual centre if viewed from an angle like illustrated in Figure 4.3a. A flat
circle however, has similar properties in that its centre is clearly defined and
unaffected by rotation, but viewed from an angle, the perspective changes it
into an ellipse. The centre of the ellipse is the same point as the circle when
viewed from straight on, and thus even though the shape of the circle changes,
its apparent centre does not, as shown in Figure 4.3b.
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(a) Sphere viewed from front and from an-
gle.

(b) Circle viewed from front and from an-
gle.

Figure 4.3: Arrays local coordinate system, and image coordinate system.

Implementation

We start by correcting for the wide-lens distortion on the image, the effect of
which can be seen in Figure 4.4. The distortion correction is done using already
known parameters of the lens, and a sensor offset (See chapter 3.2.2) if it has
been calibrated before. If it has not, we assume the sensor offset is zero and the
principal point is in the centre of the image.
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Figure 4.4: Before (left) and after (right) distortion correction is applied to the
raw image from the camera.

The image is then converted into HSV using OpenCV (chapter 3.2.3), and a
colour based segmentation is applied (Equation 4.1), creating a binary mask
separating the image into object and background. If no object is detected using
the current threshold, the threshold for saturation and value is lowered, and the
segmentation is reapplied. This is repeated until an object is detected. The
mask is smoothed and holes filled through morphological closing, and detected
objects only a couple of pixels wide are removed through morphological opening
(Chapter 3.2.5). Figure 4.5 shows a flowchart of this process as well as the result
of the different steps applied to the image of a loudspeaker covered with a bright
red lid.

yij =


1 if h− 20° < xHueij < h+ 20°

and xSaturationij > 150

and xV alueij > 100

0 otherwise

(4.1)

The resulting binary mask may contain several objects depending on the pres-
ence of other coloured objects in the scene. Assuming a relatively neutral back-
ground, the most centred target is then selected. The source position is then
defined as the centroid of the object, and found using equation 3.19 and raw
image moments (equation 3.17).

4.3 Audio detection

For Audio detection the recorded audio is used to estimate the sound source
location;

4.3.1 Audio image

Assuming the sound source is on a plane/wall at a known distance from the
array, and that the relative volume of the sound source is higher than the sur-
rounding background noise, we can then focus the array using a beamformer
to estimate sound power at a specific point on the plane. Re-using the audio
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Figure 4.5: Flowchart illustrating image object detection through colour based
segmentation. A red dot has been added in the upper right corner of the example
to show the effect of the morphological opening step.
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data to sample the plane multiple times along a grid we can generate an image
containing an estimation of acoustic power along the plane. The grid is defined
to have the same aspect ratio as the camera image, and its horizontal and ver-
tical extent is set to match the angle of the cameras field-of-view. Using this
data we can find the peak/highest amplitude on the plane, and thus estimate
the position of the sound source in the plane.

Here it is possible to generate the audio image with various beamformers, in-
cluding DAS, FAS and the MVDR beamformer.

Generating the audio image

To generate the audio image, the 128 audio channels are focused on a point in
the plane using the selected beamformer. The summed audio-channel is then
used to generate an amplitude estimate for each point on the plane. The plane
we focus on is defined by the cameras field of view as well as the distance to
the wall where we are expecting the audio source. Assuming a world coordinate
system with its origin at the centre of the array we can compute the corners of
the plane using equation 4.2, where d is the distance to the wall, and θh, θv are
the cameras horizontal and vertical field of view.

hoffset = d · tan

(
θh
2

)
voffset = d · tan

(
θv
2

) (4.2)

We can then define the four corners of the plane in world coordinates as:
(hoffset, voffset, d), (−hoffset, voffset, d), (hoffset,−voffset, d), (−hoffset,−voffset, d).
We then sample this plane using our beamformer, and for our purposes we
have chosen 324 samples in the width, which gives a corresponding 243 samples
in height. The samples are then put into a greyscale image with 324 x 243 pix-
els resolution, which is exactly one eight of the cameras full resolution of 2592
x 1944. The image generated is then upscaled to match the resolution of the
camera, so that it can be overlaid.

Localising audio sources

To find the local maxima in the audio image, a maximum filter is applied,
setting each pixel to the maximum intensity within a local neighbourhood of
100x100 pixels. A large neighbourhood is chosen to avoid classifying the same
peak multiple times. If a pixel has the same value in both the filtered and
the original image, it is considered a local maximum. To remove detections in
flat areas, we apply a minimum filter and remove any detected maxima where
the difference between the local maximum and the local minimum is relatively
small. Listing 4.1 shows this implemented in Python, and Figure 4.6 shows a
flowchart with examples images of each step.

Listing 4.1: Python code for finding local maximum

def find_local_maxima(img, filter_size=100, threshold=20):
data_max = maximum_filter(img, filter_size)
maxima = (img == data_max).astype(np.uint8)
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data_min = minimum_filter(img, filter_size)
diff = ((data_max - data_min) > threshold)
maxima[diff == 0] = 0

return np.array(find_centers(maxima))

4.4 Error estimation

Using the estimated positions from both audio and camera data, the error is
estimated by mapping audio data onto the camera image. The error is then
the distance between the image coordinates and audio coordinates pair. By
recording several audio source positions, we can achieve a more robust estimate
of the error. The error can then be either expressed as a vector of the differences
between all the image/audio point pairs, or as an averaged single scalar error.
Listing 4.2 shows a python implementation of computing mean scalar error and
vector error.

Listing 4.2: Python code to compute error between image and audio coordinates
in the same coordinate system.

def calc_error(video_coords, audio_coords):
""" video_coords, audio_coords:

arrays containing N 2d-coordinates. Shape: (N, 2)
Returns:

Mean distance between video/audio point pairs.
"""
diff = np.array(video_coords) - np.array(audio_coords)
norm = np.linalg.norm(diff, axis=-1)
mean = np.mean(norm, axis=-1)
return mean

def calc_error_vec(video_coords, audio_coords):
""" video_coords, audio_coords:

arrays containing N 2d-coordinates. Shape: (N, 2)
Returns:

1d array with the difference between all coordinates.
"""
diff = np.array(video_coords) - np.array(audio_coords)
flat_diff = diff.flatten()
return flat_diff

4.5 Error correction

4.5.1 Sensor offset

Assuming the most common source of alignment error comes from image sensor
position being either poorly calibrated or changed due to events during trans-
portation and handling, the easiest fix is estimate a new offset in the distortion
correction of the camera. This could be accomplished by a gradient descent
algorithm searching for the sensor offset with the least alignment error between
the camera and audio image.

A least squares estimate can be performed by using a vector function f(ox, oy)→
R2N , where (ox, oy) defines a value for the centre offset, and N denotes the num-
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Figure 4.6: Flowchart describing the process of locating local maximas
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ber of image/audio coordinate pairs. As such we have an error function giving
the error as a vector with all measured differences. The python package SciPy
provides a function scipy.optimize.least squares, to minimize nonlin-
ear least-squares problems. This also provides multiple methods for solving the
optimization problem. In this thesis the Levenberg-Marquardt algorithm is the
one used.

4.5.2 Camera rotation

We can correct for alignment errors stemming from camera rotation by applying
the rotation matrices described in 3.1.1. We define a function f(α, β, γ)→ R2N

that returns the error between N point pairs by rotating the image coordinates
about the x, y and z axes by angles α, β and γ respectively. The rotation is
performed by transforming the points to world coordinates with an inverted
camera matrix, applying the rotation matrices and transforming back to image
coordinates using the camera matrix.

x1

y1

1

 = MintRzRyRxM
−1
int

x0

y0

1

 (4.3)

4.5.3 Affine and Perspective transforms

Another alternative would be using simple pre made geometric image transforms
to re-map either the sound or image planes to best fit the other. A geometric
image transform can be described as a function f(R2) → R2 repositioning the
pixels of an image based on their locations. The transforms examined in this
thesis are the affine, and perspective transforms described in Chapter 3.2.8. The
OpenCV image processing library implements several convenient functions for
both affine and perspective transforms. A summary of the relevant functions
can be found in table 4.1

The function cv2.getAffineTransform(src, dst) computes an affine
transform matrix perfectly mapping a set of 3 source points to a set of 3 desti-
nation points. So for any 3 point pairs, this function computes an exact map-
ping between them. The function cv2.getPerpsectiveTransform(src,
dst) performs the same operation creating an exact perspective transform us-
ing 4 point pairs instead.

The function cv2.warpAffine(src, m) can then be used to warp an image
using the resulting affine transform matrix m, and cv2.transform(src, m)
can equivalently be used to re-map a set of pixel coordinates instead of an entire
image. The functions cv2.warpPerspective(src, m), and
cv2.perspectiveTransform(src, m) serve the equivalent purposes for
perspective transforms.

However, because the points estimated in the camera image and audio image
do not have perfect accuracy it is desirable to include as many points as possible
when computing the image transform. The functions cv2.estimateAffine2D(src,
dst), and cv2.findHomography(src, dst) provide this functionality. They
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compute the transformation matrix based on a least-squares method computing
the transform with the least error.

OpenCV function Description

getAffineTransform
Computes an exact affine transform based
on 3 point pairs

getPerpsectiveTransform
Computes an exact perspective transform
based on 4 point pairs

warpAffine Performs an affine transform on an image
transform Performs an affine transform on set of points
warpPerspective Performs a perspective transform on an image
perspectiveTransform Performs a perspective transform on a set of points

estimateAffine2D
Estimates an affine transform using a least squares
method and at least 3 point pairs

findHomography
Estimates a perspective transform using a least squares
method and at least 4 point pairs

Table 4.1: Description of functions provided by OpenCV for geometric image
transforms.
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4.6 The Experiment

This chapter gives a description of the experimental setup used in this thesis as
well as an overview of the equipment employed. All experiments were carried
out in the Squarehead Offices in Oslo, Norway. All recordings used in this thesis
were recorded outside of office hours in a mostly empty office.

4.6.1 Equipment

The experiment involved one Hextile planar microphone array as described in
Chapter 2 mounted to the tripod in Figure 4.7b using a standard VESA mount.
The array was positioned pointing towards a wall so that the arrays microphone
plan was parallel to the wall, the array remained stationary during the entire ex-
periment. A standard measuring tape was used to measure the distance between
the wall and the array. Two different loudspeakers were recorded, the Anker
SoundCore mini wireless loudspeaker, and the SONY SRS-XB12 wireless loud-
speaker, both which can be seen in Figure 4.7a. There were three loudspeakers
of each type, the Anker loudspeakers were all black, while the Sony loudspeakers
were coloured red, green and blue respectively. Also used were 3D-printed lids
in red, green and blue respectively, the design of which are described further
down in section 4.6.1. The lids were used to simplify the visual detection by
acting as a large brightly coloured target for the image segmentation to latch
onto.

(a) SONY SRS-XB12 (left) and Anker
SoundCore mini (right) wireless loud-
speakers.

(b) Tripod used to mount microphone ar-
ray.

Figure 4.7: Equipment employed during the experiments.

To play audio through the loudspeakers a laptop was connected using Bluetooth
toas playback device. The loudspeakers were light enough to be stuck to the
wall with double-sided tape to hold them in position during recording.

Visual detection

To detect the audio source visually it needs an easily detectable appearance.
Solutions using some coloured fabric were considered, assuming the fabric did
not attenuate the signal too much and could be mounted in front of the loud-
speaker. This would require the construction of some sort of rig to mount the
fabric onto. However since Squarehead had recently acquired a 3D-printer, a
fully 3D printed lid would be a relatively simple option, the 3D-model could be
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provided when calibration is needed, or a lid could be printed and sent at a very
low cost.

Due to the cylindrical shape of both types of loudspeakers seen in Figure 4.7a,
the lid was designed with a cylindrical base in which to insert the loudspeaker.
The front of the lid is filled with a grid of holes in the centre to let sound waves
through, small enough to not be too visible by the camera, yet large enough for
the 3D-printer to resolve them. The front face of the model is a large circle to
give the model as large a visual extent as possible when viewed from the front.
The size of the front facing circle was limited by the 3D-printers printable area,
and was printed with a 17 cm diameter. In order to strengthen the contact
point between the cylinder and the circular front, small edges were added to
increase contact area. The finished model can be seen in Figure 4.8

Figure 4.8: 3d-model used to print the lids

The finished set of 3D-printed lids is shown in Figure 4.9. The model’s cylinder-
radius and -height matches the size of the two loudspeaker types. Rather than
colouring the finished printed model, the lids were printed using coloured ma-
terial to ensure an even and saturated colour.

Figure 4.9: 3D-printed lids used to simplify visual detection of audio sources
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4.6.2 Setup

Single static audio source

A single audio source is placed on a plane/wall with a known distance from
and perpendicular to the array. The audio source is covered by a coloured 3D-
printed circular lid to allow for visual detection. Several recordings are made
with the audio source moving to different positions on the wall to map the
potential differences between sound and image plane.

The audio source was tested with 4 different variations:

• Anker loudspeaker without 3D-printed lid

• Anker loudspeaker with 3D-printed lid

• Sony loudspeaker without 3D-printed lid

• Sony loudspeaker with 3D-printed lid

The loudspeakers were recorded playing multiple signal types:

• Monochromatic signal at 4 kHz

• Narrow-band white-noise 4 kHz ± 500 Hz

• Wide-band white-noise 20 Hz - 20 kHz

4.6.3 Execution

The array was placed perpendicularly facing a wall, and the distance to the wall
was measured at 5.11 m as shown in Figure 4.10. A Bluetooth loudspeaker acting
as sound source was stuck to the wall using double-sided tape. A single recording
consisted of a loudspeaker/lid combo playing a signal at a wall position. All wall
positions for a specific loudspeaker/lid/signal combination forms a recording
set. Most recording sets contained 12 positions on the wall with exception
to the Anker loudspeaker without lid combination, which contained 4 positions.
Figure 4.11 shows an image containing 12 loudspeaker positions from 12 separate
recordings edited into one single image.

d = 5.11 m

Array
Audio
Source

Figure 4.10: Basic experiment setup
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Figure 4.11: Example of a set of audio source positions in a recording set.
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Chapter 5

Results and Discussion

This chapter describes the results of applying the colour segmentation, DAS,
FAS and MVDR methods described in Chapters 4.2.1 and 4.3.1, to the results
of an experiment with the setup described in Chapter 4.6. We begin by testing
the methods used to detect the image and audio position of the audio source.
The errors, and visualizations are made with the factory-calibrated sensor offset,
and should as such be considered to have no significant error from mechanical
misalignment. A comparison of the different types of audio signals are made,
as well as the different kinds of loudspeaker appearances.

Following this, we investigate the performance of different error correction tech-
niques described in chapter 4.5. We do this by introducing an error using either
the centre offset, or by applying a rotation to the camera coordinates on some
chosen recording sets with relatively good results, and avoiding the recording
sets with poor results.

During the experiment, recordings were grouped into sets, where each set is
a specific loudspeaker/lid/signal type combo. So a set might be for example
all recordings using the Sony loudspeaker with a 3d-printed lid, playing white
noise. Each set of recordings with a single stationary loudspeaker contains 12
recordings, each with a different loudspeaker position.

5.1 Sound-source positioning

For each recording we locate the audio source in the image using the colour seg-
mentation technique described in section 4.2.1, and locate the audio source with
the microphone array by creating an audio image and locating local maximas
as described in section 4.3.1.

We can then generate a visualization of a recording set by plotting all point
pairs in the set onto the same coordinate system. Figure 5.1 shows a combined
plot for a recording set of the Sony loudspeaker with a 3d-printed lid, playing
white noise, with audio positions estimated using the DAS beamformer. Worth
noting in this plot is that the coordinate system origin is outside the boundary
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of the plot, and as such this is a zoomed in version of the real extent of the
coordinate system.

Figure 5.1: Comparison of audio and image positions for the Sony loudspeaker
with 3d-printed lid playing white noise. Each point pair connected by a line
represents a single recording with a unique sound source location. The estimated
audio positions are marked in red, and the estimated image positions are marked
in blue. Each point pair is connected by a black line, the length of this line is
considered the error for that point pair.

For the recording set in Figure 5.1 the distance between each pair of points is
relatively low, considering the resolution of 324 x 243 used to obtain the audio
image, which implies one audio pixel is 8 x 8 camera pixels.

By measuring the distance between the audio position and the image position for
each recording in a set, we can compute the mean error in the recording set and
compare the different signals and sound source appearances, and beamformers.
Figure 5.2 shows a comparison of the mean error for all recording sets, as well
as the standard deviation.
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(a) Sony loudspeaker with lid

(b) Anker loudspeaker with lid

(c) Sony loudspeaker without lid

Figure 5.2: Comparison of mean error for each set of recordings. Note the
change of the y-axis in (c)
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5.1.1 Wrong target detection in image

Most of the recording sets show a relatively low degree of error, except the
recordings in Figure 5.2c, involving the Sony loudspeaker without a 3d-printed
lid. We can imagine that this is related to the audio source being harder to
detect without the help of the coloured lid placed on it. Figure 5.3 shows the
estimated image and audio coordinates for the Sony loudspeaker without a lid
playing white noise, using the DAS beamformer.

Figure 5.3: Estimated image and audio coordinates for the Sony loudspeaker
without a lid playing white noise, using the DAS beamformer.

It is apparent that some sort of object in the bottom left of the image is being
detected instead of the intended loudspeaker. Figure 5.4 shows the raw image
output from the camera for one of the outlier recordings. Looking at the bottom
left, an arm is present in the image. Remember that the target we are looking
for here is red, and that the algorithm lowers its colour threshold until some
object has been detected. In the case for this recording the redness of the skin
from the person on the left is detected before the loudspeaker in the background.
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Figure 5.4: Raw image from recording 9 in the recording set for Sony loudspeaker
without a lid playing white noise. An arm is present in the lower left, causing
wrong detection of the image position of the audio source.

Similar issues are present in the other recording sets without a lid, shown in
Figure 5.2c. This might tell us that red is a non ideal colour to target when
trying to find an object in the image, as if the intended target is not bright
enough humans present in the edges of the image might be wrongly identified
as the target. Future tests might include testing with other colours but in the
interest of time we apply a crop to the image when trying to detect the image
position.

Figure 5.5: Same image as Figure 5.4, but with a crop outline. The outline
defines the boundary of where objects can be detected in the image.

By limiting the area on the image where we accept detection we can ignore
unintended detection outside the wall we are recording against. Figure5.5 shows
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the outline of a rectangle only encompassing the wall on which the loudspeakers
are put. By only accepting objects within this rectangle we can to a certain
degree guarantee that we are detecting the correct object. Figure 5.6 shows the
improvement of this crop on the same recording set as Figure 5.3. The crop
has limited the detection of the colour red outside the intended area and the
detection now has correctly chosen the loudspeaker as the target.

Figure 5.6: Estimated image and audio coordinates for the Sony loudspeaker
without a lid playing white noise, before (left) and after (right) a crop to the
image detection has been applied. Now most points seem to be correctly on
target.

Since all recordings in the experiment were performed without moving the mi-
crophone array, we can apply the same crop to all of them to limit the same
type of error in all recordings. Figure 5.7 shows the result of applying the crop
to all recordings of the Sony loudspeaker without a lid. We can now se that the
error on the recordings has been reduced significantly.

Figure 5.7: Comparison of mean error for the Sony loudspeaker without a lid,
after a crop has been applied to the image detection. The scale of the y-axis is
here the same as in Figure 5.2 a and b.
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5.1.2 Single tone - Sony with lid

With the crop implemented, the single tone, Sony with lid recording set as
seen in Figure 5.2a has a significantly higher error rate than any of the other
recording sets. Looking more closely at the position plot for the recording set
in Figure 5.8 we see that the audio coordinates are being placed in strange
locations. In this instance the two middle upper source positions seem to be the
largest outliers.

Figure 5.8: Estimated image and audio coordinates for the Sony loudspeaker
with a lid playing a single sine wave, using the DAS (left) and MVDR (right)
beamformers.

To further investigate we also examine the corresponding audio image for the
upper middle left recordings overlaid over the camera image in Figure 5.9, where
we can see that there are no spikes in the audio at the location of the audio
source. Thus the only detected peak is the reflections in the floor and column.

Figure 5.9: Overlaid audio images for recording number 7, using DAS (left) and
MVDR (right)

In general a single sine wave as the audio source appears to be the least reliable.
This can be explained by the multiple paths the sound is able to take before
reaching the array. As such some areas on the array may result in varying
degrees of constructive and destructive interference. It is worth mentioning
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that these results may have been improved if the phase of the sine wave was
accounted for when generating audio images.

5.1.3 Beamformer and signal type performance

For this part of the experiment we are looking to examine how the choice of
beamformer and signal affects the result. Looking at the comparison of errors
in figures 5.2 and 5.7 we can see that the beamformer has had little impact
on how closely the estimated coordinate match the camera. Although MVDR
offers narrow peaks and great cancelling of off axis interference, these are prop-
erties that do not directly benefit in localising the sound source. In almost all
cases the DAS results are the closest. Since we are recording in a relatively
quiet environment, and are merely picking the peak in the audio image, the
beamformers sidelobe level and ability to suppress other noise sources does not
in fact play a large role in positioning of the sound source.

With regards to choice of signal we can see that a single monochromatic sine
wave gives the poorest results. The single tone is especially prone to error from
reflections in the room interfering with detection. Narrow and wide band white
noise performs better than the single tone, but the differences between them is
small. However of the two, wide band white noise gives the best results. The
increased bandwidth of the signal gives a more robust positioning.

From this we can assume that the best combination of signal and beamformer
is wide band white noise with the DAS beamformer.

5.2 Inducing an image error

Analysing the results from the recordings the microphone array/camera rig used
reveals that there are no significant alignment issues. In order to test methods
for correcting alignment issues we can artificially induce alignment errors of the
kind we expect we might see.

5.2.1 Sensor offset error

By changing the sensor offset used in distortion correcting the raw camera image
we can simulate an error in the sensors position relative to the lens. Using this
we can methodically induce an error between the image and sound planes. The
effect of this on a recording set can be seen in figure 5.10.
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Figure 5.10: Recording set before (left) and after (right) changing the sensor
offset.

5.2.2 Camera rotation error

By taking pixel coordinates, transforming them to world coordinates and rotat-
ing their location along one or several of the cameras axes using the methods
described in Chapter 3.1.1 we can simulate alignment errors stemming from a
misaligned/rotated camera module, as shown in figure 5.11.

(a) No error induced (b) Camera rotated

Figure 5.11: Recording set before and after applying a rotation around the
cameras x and y axes.

5.3 Correcting induced image error

In order to revert the induced error, the same transforms were applied. However
in order to estimate the parameters of the sensor offset, and camera rotation an
iterative least squares solver was applied. The python package scipy provides
a least squares solver with the Levenberg–Marquardt algorithm as one of the
possible solvers. In addition the built in geometric transforms in openCV were
tested as well with their own built in iterative methods.

The different methods and correction models were tested using both ideal, and
experimental data. Ideal data in this case means that the misaligned coordinates
are derived directly from their desired positions using either a modified sensor
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offset or a rotation. As such there exists an ideal solution that is the inverse
of the applied transform with 0 error. In the case for the experimental data,
coordinates from the camera are modified using either a rotation of sensor offset,
and the audio coordinates are used as the target location. In the latter event
there is no 0 error solution, and as such we can expect the minimum error
solution found by the least squares solver to be somewhat different from just
the inverse of the applied error.

(a) Modified sensor offset. (b) Rotation about cameras x and y axes

Figure 5.12: Synthetic set of coordinates with transform to image coordinates.
The numbers indicate the error in pixels between each coordinate pair

Figure 5.12 shows a set of ideal coordinates that map exactly onto each other
but transforms have been applied to the image coordinates. worth noting in the
figure is that even though both transforms appear to just be a translation of
the coordinates the errors are not the same for all coordinate pairs.

5.3.1 Estimating sensor offset

Estimating sensor offset is relatively trivial when done by itself, the offset is
merely a translation of the raw image before the distortion correction is applied.
As such the most efficient way of correctly estimating the sensor offset is instead
of re-applying the distortion correction to the entire image with a different offset
we can instead distort our audio coordinates. With the audio coordinates in
the same warped coordinate system as the raw camera image we can find the
translation that maps the image coordinates best onto the audio coordinates.

Using the least squares method in scipy with the Levenberg–Marquardt algo-
rithm we run estimation attempt on both synthetic ideal data, and using one
of the coordinate sets from the experiments. We apply a sensor offset to the
image coordinates and look at how closely the least squares solver is able to
follow different offsets.

61



(a) Mean error for an
ideal coordinate set with
different sensor offsets

(b) Mean error after es-
timating and applying a
new sensor offset

(c) Difference between es-
timated and true sensor
offset

Figure 5.13: Estimating sensor offset for different modified sensor offsets

Figure 5.13 shows the result of applying a sensor offset to an ideal set of coor-
dinate pairs and then estimating the offset using a least squares algorithm. We
can see that for all possible offsets we are able to correctly estimate the offset
to a large degree of accuracy regardless of the offset.

5.3.2 Estimating camera rotation

We apply the same ideas to the camera rotation, by applying a small rotation
along the x and y axes we are able to create an alignment error between the
point pairs. We use a least squares solver to find the rotation counteracting the
induced error above using the same rotation matrix described in equation 3.4.

(a) Mean error for an
ideal coordinate set for
different camera rotations

(b) Mean error after es-
timating and applying a
camera rotation

(c) Difference between es-
timated and true camera
rotation

Figure 5.14: Estimating camera rotation using only two axes of rotation.

Figure 5.14 shows that we are not able to completely counteract the induced
error by just applying the same two rotations. This can be explained in that
the original induced error is rotated around the x and y axis in that order,
which also ends up rotating the set of coordinates around the z axis slightly.
To counter this we would have to apply the rotations inversely, y then x. But
we want to be able to correct for a camera tilted in any direction, so we add
another degree of freedom by also rotating around the cameras optical axis, the
z axis.
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Adding another axis of rotation

By also rotating around the z axis we should be able to compensate for all
possible camera rotations. Figure 5.15 shows that we are indeed able to the error
between the coordinate points to nearly zero, even if the estimated rotations
themselves dont match up perfectly to the original rotations.

(a) Mean error for an
ideal coordinate set for
different camera rotations

(b) Mean error after es-
timating and applying a
camera rotation allowing
rotation around the opti-
cal axis

(c) Difference between es-
timated and true camera
rotation

Figure 5.15: Estimating camera rotation using three axes of rotation.

5.3.3 Combining sensor offset with camera rotation

Of course it is certainly possible for both of these types of errors to occur to an
acoustic imaging system, either both at once or simply one or the other. Both
the cameras sensor alignment an the cameras orientation might be changed by
impacts to the system during use and transportation. We define the transform
for correcting for both types of errors by combining the two transforms by
simply applying first one then the other. We give the least squares solver all
5 parameters to estimate, two being sensor offset and three being the different
camera rotations.

(a) Mean error in pixels after estimat-
ing and applying a new sensor offset.

(b) Difference between estimated and
true sensor offset.

Figure 5.16: Estimating sensor offset for different modified offsets with both
sensor offset and rotation as parameters.
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(a) Mean error after estimating and ap-
plying a camera rotation allowing rota-
tion around the optical axis

(b) Difference between estimated and
true camera rotation

Figure 5.17: Estimating sensor offset for different modified sensor offsets

Figures 5.16 and 5.17 show that with all 5 parameters combined, the least
squares solver still ends up correcting using only the appropriate parameters, as
opposed to a combination of all parameters. This indicates that there is enough
of a difference between the translation from a rotation and the translation from
an offset sensor.

5.3.4 Image transforms

A general image transform is able to move, scale, and rotate the audio image to
best fit the image data. The OpenCV library has multiple options in this regard,
the functions cv2.getAffineTransform() and cv2.getPrespectiveTranform() both
generate a transformation matrix exactly mapping one set of points to another.
They both however have the disadvantage that they only accept an exact amount
of coordinates. 3 in the case of the affine transform and 4 in the case of the
perspective transform. Since we might have access to more than 3/4 points, it
would be preferred to use as much information as possible when estimating an
image transform. The OpenCV library also provides the cv2.estimateAffine2D()
and cv2.findHomography() functions. The functions take an arbitrary amount
of input and output point pairs and estimates the transformation matrix that
remaps the points with the least total error.

(a) Mean error for differ-
ent camera rotations.

(b) Affine transform. (c) Perspective transform.

Figure 5.18: Estimating camera rotation using three axes of rotation.
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Figure 5.18 shows the resulting error after applying the affine and perspective
transforms to different rotations. It is clear that a rotated camera can not be
corrected by just translating and rotating the image with an affine transform,
especially for larger rotations. The perspective transform performs just as good
as just estimating rotation with least squares.

5.3.5 Inducing error on data from the experiment

The only difference found when inducing error on data from the experiment
was that the parameters estimated were off by a small constant error for each
recording set. This means that the minimum error for the data is affected by
the variation in the data. The results for inducing error on experimental data
were in essence identical to the results for ideal data with the addition of the
small constant offset, and as such does not show us anything more than what
is already explored above.
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Chapter 6

Conclusion and Outlook

The goal of this thesis was to develop a way to measure and compensate for mis-
alignments between the sound and image plane in an acoustic imaging system.
Several alternatives were explored with regards to image and audio detection
schemes, as well as different possible error models and a way of correcting them.

Image positioning

The primary and most robust image detection method was to dress the object
up with a coloured circle to detect. The dedicated 3d-printed lids showed good
results in this aspect, giving robust and consistent detection in all instances
where this was tested. 3D-printing a lid is both low cost and quickly adaptable
to almost any sort of loudspeaker.

There were also tests involving coloured loudspeakers, where the loudspeaker
itself has a high contrast colour such as the Sony SRS-XB12 which is avail-
able in different colours. This configuration gave less reliable results but still a
surprisingly good detection rate considering the low complexity of this setup.
Difficulties in detecting a loudspeaker that is smaller in size and less bright in
colour can be overcome by inserting information into the detection such as lim-
iting where in the image the detection algorithm searches for the sound source,
and using a neutral background avoiding colours similar to that of the target.

Audio positioning

The primary approach used to estimate the audio position was the audio imaging
functionality developed by Squarehead for the exact purpose of mapping audio
amplitude onto an image. It then follows that this would be the primary metric
to measure how well aligned the audio is. Some challenges were encountered
using this method however, primarily in the form of false detections from the
audio reflecting in the room. This was mostly a problem for monochromatic
signals with the problem being less pronounced with broad band white noise
signals. In the case where multiple possible sound sources are found the most
centred one was chosen, assuming calibration will be performed in the front of
the array.
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Calibration setup

The calibration setup described in the thesis involved placing a sound source
emitting a known signal in front of the array. The sound source was coloured
such that it would be more easily recognized by the camera. Although it was
found that a lid in front the sound source is preferable, resulting in more reli-
able results, having the sound source simply be a coloured loudspeaker still gave
usable results, assuming the background behind the loudspeaker is of a neutral
contrasting colour, such as a blank wall. Thus calibration of audio image align-
ment can be performed only using a loudspeaker on a high contrast background,
given enough distance and avoiding reflections from the room.

Correcting alignment error

Although no alignment error was found during experiments, we induced align-
ment error though two methods; Changing the sensor offset in the raw image
by moving the centre before compensating for lens distortion, and simulating a
rotated camera.

The alignment error was corrected by estimating the parameters of the error such
as the displacement of the raw camera image, or the cameras rotation about its
axes. The parameters were estimated using a numeric least squares algorithm.
With the parameters estimated the transforms were applied and the resulting
alignment measured for error. Using idealized coordinate pairs the least squares
estimate of the parameters correctly re-aligned the audio and camera images for
both errors induced through modified sensor offset and camera rotation.

When experimental data was used to induce and then correct error, it was found
that the least squares estimate does not find the exact matching parameters used
to induce error. As such we conclude that the accuracy of the calibration is more
dependent on the accuracy of the detection of the audio and image targets rather
than the source of the error.

6.0.1 Future possibilities

There is still much to be investigated with regards to audio image and camera
image alignment. Several ideas were explored that have not been covered in this
thesis, these include the possible use of multiple sound sources to condense the
calibration procedure into a single recording. Another alternative would be to
move the sound source around during recording to cover more area.

There is also the need for a technique to handle outliers, RANSAC (Random
sample consensus) was looked into as a possible solution, but not tested.

In order to accurately test the performance of correcting for rotation it would
be appropriate to apply the techniques discussed to an array with the camera
physically rotated.

It would also be greatly beneficial to perform experiments on other microphone
arrays, both of same design to look for deviations in manufacturing, but also
testing arrays of different shapes and sizes to look into how well the techniques
discussed in this thesis apply in general cases.
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