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Abstract

Frequent testing of the Linux kernel is important to keep quality high.
There are several tools and frameworks available for testing in user space.
However, the support for unit testing in kernel space is lacking. Test
files found in the kernel source tree invent incompatible features for
error reporting, assertions and test output instead of using a common
framework. The Kernel Test Framework (KTF) attempts to tackle this
problem.

In this thesis the framework was explored and evaluated. Four test
files from the kernel source tree were examined and converted to the
framework. The conversion process was approached in two ways: two test
files were converted by a Python script developed for this purpose, and two
other test files were manually edited. Comparisons with other frameworks
were also made and discussed.

The results showed that the framework can be used for all the four
test files. Three test files worked well with the framework, but the fourth
received less benefit from the framework due to its structure. Results also
showed that a fully scripted conversion is possible using the Python script,
but not for every test file. Weaknesses in the framework were identified
and reported.
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Chapter 1

Introduction

1.1 Motivation

Most software of a non-trivial size contains bugs. Developers spend
considerable amounts of time on finding and fixing these bugs; time that
could otherwise be spent on development.

Testing is a commonly used approach to find and fix bugs at an earlier
stage of development, thereby reducing the total time spent on fixing them
[12]. By using large collections of well written test cases, we can in some
cases uncover defects in a matter of minutes or seconds after they have
been introduced, way before they get released into a production system.
Even when bugs do slip into a production system, having a well made test
suite can reduce the time needed to narrow down the cause of the bug.

However, there are limits to how much we can test. One of the
fundamental principles within software testing is that exhaustive testing
of a system is impossible [12]. That is, unless the system is trivial in size
and complexity, we cannot test every possible state the system can be in.
A consequence of this principle is that we have to put on a limit on the
amount of resources to use on testing, as resources are limited. At the same
time, we also want to get the most out of the time invested in testing.

To reap the benefits of testing with less of the drawbacks, tools and
frameworks created for this purpose should be easy and straightforward
to use. It is also important that the test suites we write are quick to run, to
encourage frequent use. Meeting these condition increases the likelihood of
tests being written and used on a regular basis, thus improving the chance
of bugs being found and fixed while the code is still fresh in the mind of
the developer [14].

The need for testing in the Linux kernel is no less than for other
software. With its millions of lines of code and rapid rate of change [10],
testing is important to keep quality high. To help its developers and users
with this task, several frameworks and test suites have been created to
make testing more accessible. The Linux Test Project and kselftest are two
of the test suites in current use. These suites are frequently used by test
projects such as Linaro’s LKFT and Fuego, that test new versions of the
kernel as they are released.
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However, unit testing inside the kernel is an area that lacks support.
This lack can be seen in the many test files in the kernel source tree that does
not rely on a shared testing framework; instead, they reinvent the wheel by
creating constructs that are similar to each other, but incompatible across
the test files.

Therefore, new frameworks have evolved in an attempt to fill this void.
One of these frameworks is the Kernel Testing Framework (KTF), made to
support unit testing in kernel space, in addition to user space support [1].
This framework provides a set of macros and utilities that are similar to
what can be found in traditional unit testing frameworks. But instead of
running the tests from user space, KTF compiles tests into kernel modules
that can be loaded into the kernel at runtime to test it from within.

1.2 Goals

In this thesis we will explore this framework by converting some kernel test
files to the framework to see how KTF functionality fits the need of existing
test files. A script will also be developed to determine if it can make the
conversion process more effective. Linux kernel test files will be converted
both manually and by using the script.

1.3 Limitations

The scope of this project is mainly limited to the Kernel Test Framework
and its use. Although there are other alternatives out there that will be
mentioned, they are not the focus of this thesis and will receive far less
attention.

There are also features in the Kernel Test Framework that will be left
unexplored. This is because these features have not been needed for the
test files in this project.

It’s also assumed that the reader has some knowledge about the C and
Python programming languages.

1.4 Thesis outline

Chapter 1 introduces core concepts related to software testing, and the
main technologies used in this project. The technologies explained here
are virtual machines, regular expressions and version control systems.
Concepts and technologies explained here are aimed at readers who are
unfamiliar with these, and can be skipped if they are already known.

The background continues with Chapter 2, where information about
the Linux kernel is introduced. We will see some of the differences between
the Linux kernel and other software, and take a brief look at some aspects
of its development. The chapter continues with configuration and building,
before mentioning some of the test suites and frameworks that are used by
the kernel community.
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Chapter 3 explains the methodology and how to setup the environment
used in this project, including framework and dependencies. The chapter
ends with instructions on how to manually compile the kernel.

Chapter 4 introduces the Kernel Test Framework and how to use it.
Core features are also explained, along with examples of how they can be
used.

In Chapter 5 we examine the test_xarray.c test file and discuss the
steps needed to convert it to KTF. We will also introduce the Python script
that is used to convert this test file to KTF.

In Chapter 6 we examine test_rhashtable.c and how this file can be
converted manually. The chapter will also provide a brief explanation of
how two smaller test files can be converted.

We end the thesis in Chapter 7, where we summarize and discuss the
results from this project. We will also discuss some of the similarities
and differences between KTF and other test frameworks. Finally, we will
conclude the thesis and provide suggestions for further work.

1.5 Contributions

The test files and script used in this project can all be found on github [7].
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Chapter 2

Background

Before we can begin exploring the research question, we will take a look at
some of the technical concepts and terminologies used in this thesis. It is
assumed that the reader has some familiarity with both the C and Python
programming languages.

2.1 Test types

There are multiple approaches to testing a system, depending on what
aspects we want to test. We can test if a feature works as intended, with
or without knowledge of its implementation, or we can test how well it
works. We often also want to retest a component after a new feature or
bug fix have been introduced. All these different approaches to testing
are called test types, and the descriptions below are based on the test types
explained in the Foundations of Software Testing book [13].

2.1.1 Functional testing

The first and most obvious way to test a system or component is to test it
does the right things. That is, to test if it behaves as expected by using its
interfaces, and checking the results through its return values and interface
methods. This way of testing, without concern for the implementation,
is called black-box testing, and allows the implementation to change freely
as long as the interface stays the same. To be able to test this way, the
test writers need to know what results or behavior to expect from the
component or system if it works as inteded.

2.1.2 Non-functional testing

Non-functional testing is used to determine how well a system or component
works, and if the minimal requirements are met. This includes testing how
fast the system can respond to a request or how many concurrent users
it can handle before reaching a certain delay. Like functional testing, a
black-box approach is often used as implementation specific features are
not relevant for this test type.

5



2.1.3 Structural testing

A third way of testing is to test the internal structure of a test object rather
than its interface. With structural testing we are more concerned with
measuring how well the test object is tested given some metric, for example
the percentage of decision branches or statements that are executed in the
other tests. If these percentages are too low, this means that we need to
write more tests. Because we are testing code that might be difficult to
test from the outside using black-box testing, this form of testing can be
combined with the other types of testing to increase test coverage even
further. This kind of testing is called white-box testing, as we are looking
"inside" the box.

2.1.4 Confirmation and regression testing

The last types of testing that will be explained are confirmation testing and
regression testing. Both types of testing are performed after the code has
been changed.

Confirmation testing is performed first to confirm that the bug fix or
new feature works as intended. For a bug fix, this is done by rerunning
the tests that previously failed, and taking the steps necessary to make sure
that the tests passes. Having the tests pass does not guarantee that the
code works exactly as intended, but at least it works for the cases we test,
increasing confidence in the code.

Regression testing is the next step after the confirmation tests passes.
The goal of these tests is to make sure that the newly made changes havn’t
introduced unintended side-effects, called regressions, elsewhere in the
system. This type of testing is especially important to do, as letting these
new defects slip through will make them harder to fix at a later stage when
we no longer know when they were introduced. Furthermore, regression
testing should also be performed whenever the environment changes, such
as when a library is updated or the database system is replaced.

2.2 Test levels

When a system is tested for defects, the testing process is often split up into
multiple test levels. Each test level focuses on a specific layer of abstraction,
ranging from individual functions to treating the whole system as one unit.
Although the number of test levels to use depends on the project, we will
focus on the four levels specified in the Foundations of Software Testing
book [13], due to their widespread adoption.

2.2.1 Unit testing

The first and lowest level of testing is unit testing, where the focus is to
thoroughly test individual units of code isolated from the rest of the system.
These units can either be functions, methods, interfaces or whole classes.
Unit testing is sometimes also called component testing, although this term
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can also be used for testing larger units than unit testing. As there is
much more to be said about unit testing, this topic will get a more in-depth
explanation in section 2.3.

2.2.2 Integration testing

While unit testing is about testing individual units of code in isolation,
Integration testing is used to test how two or more components act when
connected. Integration testing is thus more focused on testing the interfaces
between components and/or systems, and whether this communication
works as intended or not. This process can be done in two main ways;
either by integrating components one-by-one and testing between each
new integration, or by integrating the whole system at once and then
performing the testing. The former approach gives more control when tests
fail, as there is less code to search through to find the cause, while the latter
approach is quicker if most interfaces are already well tested.

2.2.3 System testing

Once the whole system has been fully integrated and all interfaces have
been properly tested, system testing is used to test the whole system at
once. This is done to make sure that the system fulfills all functional and
non-functional requirements. Consequently, the environment of the system
should also be as close as possible to the live environment it will be used
in, although this stage of testing is still done by the developers or testers
themselves. System testing also include testing parts of the system that
isn’t code, such as configuration files and documentation.

2.2.4 Acceptance testing

The last level of testing is acceptance testing, used to decide if the system is
ready for release. This test level is done by the future users of the system,
rather than its developers, as the actual users will approach the system in a
different way than its developers. Compared to system testing, acceptance
testing is a more informal way of testing, with a focus on usability over
technical requirements.

2.3 Unit testing

In section 2.2.1 unit testing was introduced as the first test level, with a
focus on testing individual units of code in isolation. In this section we will
take a closer look at this concept, as there is much more to be said about it.

Unit testing a piece of code means that the unit should have tests
covering its most common use cases, preferably more if possible. Each test
should also be run on a regular basis, to increase the chance of detecting
unwanted side effects and regressions at an early stage. In general, the
quicker a defect is found, the easier it is to fix.
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One of the fundamental building blocks in unit testing is the test case.
A test case consists of a set of input values, expected output values,
execution preconditions and postconditions. They are represented in code
as assertions, statements that are used to check if assumptions hold true or
not. This often takes the form of a comparison between the return value
of a function call or a variable, and an expected value. If the comparison
evaluates to true, the test case succeeds, otherwise it fails. Unit testing
frameworks keep track of both the failed and passed tests, and this is used
to determine which assumptions that do not hold.

To keep a good structure, we often organize test cases into multiple test
functions. Each test function focuses on one aspect of the unit under test,
such as testing one specific function or testing a certain class of input for a
function. A more concrete example is that to test a function that adds two
numbers together and returns the results, we could use one test function
for integers, another test function for floating point numbers, and a third
function for invalid types.

Finally, we can organize multiple test functions into test suites. This
allows us to run only certain categories of tests if we don’t have the time to
run every single one. One common use case is to have separate test suites
for regression and confirmation tests that are run after every new bug fix
or new feature. Another use case is to have a separate test suite for every
subsystem, in addition to a test suite with all the tests.

How many of the tests to run depends on what we want to achieve
and the time available. Ideally, we would like to run all the tests every
time a change has been made. However, this can take too long with a large
collection of tests. There are cases where running every single test for a
system can take hours or even days, and then the use of targeted test suites
can be useful to save time. When preparing a new release of a live system,
a complete test suite can be used to still get the benefits of a full test.

2.3.1 Examples

Cmocka is one of the many libraries available for unit testing [19][18]. This
library is written in C, and only requires its own files and a few standard
library headers to use. Therefore, we will use this library to show how to
unit testing can be done in code.

Listing 2.1: Example of a minimal cmocka file
#include <stdarg.h>
#include <stddef.h>
#include <setjmp.h>
#include <cmocka.h>

static void empty_test_function(void **state) {
(void)state; /* Suppress warning about unused argument */

}

int main(void) {
const struct CMUnitTest tests[] = {

8



cmocka_unit_test(empty_test_function),
};

return cmocka_run_group_tests(tests, NULL, NULL);
}

We begin by including the necessary header files. Cmocka depends
on all the header files shown in listing 2.1, so we include these before the
cmocka header. Cmocka must also be installed locally before use, but here
we assume that’s already done. We then create an empty test function
that does nothing. If we wanted to add test cases to this function, we
would use one of the assert functions provided by the library [17]. These
work much like the assert macro in the standard library, by checking the
provided expression and performing some action on failure. But instead
of stopping the program, the cmocka variants rather force the current test
function to return and report it as a failure in the output. To show how this
would affect the final output, we’ll add a few test cases to the existing test
function:

Listing 2.2: Example of a test function with failing and passing test cases.

static void empty_test_function(void **state) {
(void)state;

int two = 2;
assert_int_equal(two, 2); /* This passes */
assert_int_equal(two + 3, 10); /* This fails! */
assert_int_equal(5, 5); /* Never executed! */

}

Given that the name of the file is tests.c, we can compile and run the
test file the following way:

Listing 2.3: The final output from the examples above.

$ gcc -o tests tests.c -L/usr/lib/ -lcmocka
$ ./tests
[==========] Running 1 test(s).
[ RUN ] empty_test_function
[ ERROR ] --- 0x5 != 0xa
[ LINE ] --- test_cmocka.c:11: error: Failure!
[ FAILED ] empty_test_function
[==========] 1 test(s) run.
[ PASSED ] 0 test(s).
[ FAILED ] 1 test(s), listed below:
[ FAILED ] empty_test_function

1 FAILED TEST(S)

We can clearly see from the output in listing 2.3 which assertion that
failed. Adding additional test functions would also give us two more lines
of output per test function, each with its own FAILED or OK status.

9



2.3.2 The role of unit testing

One use case of unit tests that we have not covered so far is that they can
help document how a piece of code is supposed to work. By listing up
expected values or side-effects of a function through assertions, the reader
can get an idea of what behavior to expect, and potential edge cases to be
wary about. Unlike comments, that have a tendency to become outdated
over time, well written unit tests provide documentation that hold true as
long as the test passes.

Furthermore, unit tests help show how one or more functions can be
used together. For example, if one specific function has to be run before
another one, like setup or configuration functions, creating a test function
that shows this can serve as an example of use. This can useful for
reminding the original author of how the code can be used, months or even
years after it was first written.

A third benefit of unit tests is that they help refactoring. This is because
the unit tests help improve our confidence in that new changes doesn’t
break the unit, as long as the tests passes. If they fail, we still get some
information about where the new defects may be located, given that the test
coverage isn’t too low. Test coverage is used to determine to what degree a
specific unit has been tested, and it should be sufficiently high for the tests
to be able to detect new defects and failed assumptions effectively.

2.4 Test-driven development

Test-Driven Development (TDD) [11] is an alternative way of developing
software, where the unit tests are written before the code that is tested.
This is the opposite of the traditional development approach of writing the
code before the test cases. When developing software this way, we repeat
the following three-step process:

1. Write a unit test, run it and see it fail. To make this possible, we may
have to create an empty function (or method) that returns a value that
makes the test fail.

2. Implement the target function in a way that makes it pass, run it and
see it pass. This first implementation doesn’t have to perfect, it just
needs to make the test pass.

3. Refactor the function. If the code within the function is duplicated
elsewhere, we may want to refactor those functions as well. Once this
is done, run the relevant tests again to make sure that the refactoring
didn’t break anything.

When following this process, we get a very short feedback loop.
Depending on how much code is written between each iteration, an
iteration can be as short as a few minutes. This leads to almost instant
feedback on the code from the tests, and if written properly, this should
help detect bugs and their location quicker. How much code to write

10



between each iteration depends on both the complexity of the problem and
how familiar the programmer is with TDD, but each iteration should be
quick regardless.

Whenever we experience duplication of code, we might want to spend
some extra time refactoring and generalizing the code. This can occur in
both the code and the tests themselves, and in both cases refactoring might
be needed. This adds extra time to the feedback loop, but this is time we’ll
hopefully save in the long run. Overall, the extra refactoring step has the
benefit of making refactoring a natural part of the development process,
thus increasing code quality.

Another advantage of TDD is that it tends to make us write code with
less coupling. Coupling refers to dependencies across files, function or
classes, and it leads to increased complexity of the code. High degrees
of coupling make bug fixing and maintenance more difficult and time-
consuming, while also making the code less modular. Also, a change one
place in the code base can affect code located anywhere else in the system,
and this is thus something we want to avoid if possible. This also makes it
more difficult to test a piece of code in isolation. Consequently, writing the
tests first can lead to less coupling in both the tests and the code base, as
less coupled code is easier to test.

2.5 Mocking

Mocking is a technique used in testing where one or more components
are replaced by simpler mock objects to gain better control over the test
environment. A mock object has the same interface as the component
it replaces, but its implementation is often much simpler; the body of a
complicated method may even be replaced with a single return statement
that always returns the same value.

A reason for using mock objects is to better isolate a component when
unit testing. With ordinary unit testing, a component often still relies on
other components, through references or side effects, in order to function.
If these dependencies have faults themselves, this can implicitly affect the
component under test and make it appear faulty when it’s not. Thus, mock
objects can be used to guarantee a certain behavior from the dependencies
of a component.

For example, let’s say we want to create a Network class for commu-
nicating over a network. This class could then perform the communication
by calling methods on a Socket object. If we want to test how the Net-
work class handles rare error caused by the Socket object, we can create a
mock version of the Socket class with the same methods as the original one,
but where the behavior is hardcoded for this specific error testing in mind.
Then, we can force the mock object to fail in any way we want, without
having to reproduce software or hardware errors that might be difficult to
reproduce otherwise. This then allows us to better test the error handling
of the Network class.

Another reason for using mock objects is performance. When re-
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peatedly invoking code with a high startup time, mocking can be used
to speed things up when the implementation is of little importance. For
example, if we create a class that communicates with a database, the data-
base creation itself can be a huge detriment to the performance of the test
suite. Mocking the database can consequently save time and make testing
more frequent, if we only care about the communication with the database.
Slow test suites can in itself be a threat to thorough and frequent testing, by
tempting the developers to either skip tests or run them less frequently.

Nevertheless, a potential drawback of mocking is that the behavior
of the mock object can sometimes differ more than intended. If we
oversimplify a mock object too much, or if we simulate another component
wrongly, mocking can potentially give us a false sense of security. There
can also be error situations that may occur in a real situation that we
simply don’t think about when creating mock objects. As such, mocking
can introduce new problems if we are not careful, and it should therefore
not be used as a full substitute to testing with real components.

2.6 Virtual machines

A virtual machine (VM) is a software emulation of a physical machine run-
ning an operating system (OS). Virtual machines allow several operating
systems to run simultaneously on the same physical machine. For example,
a user who wants to use both the Windows and Linux operating systems
at the same time can install one of them as the host operating system, which
is the main operating system, while the other OS runs inside it as a guest
operating system. Although the guest OS runs as a program inside the host
OS, the guest OS still runs as if it was the only operating system running
on the machine.

One common use case of virtual machines is to use this technology to
let multiple users share the same physical machine. The physical machine
itself can located anywhere as long as it is connected to the internet, and
each user gets access to their own isolated VM on this machine. For users
that don’t need powerful hardware, sharing the hardware costs this way
can potentially save money by only paying for the resources needed. This
is often done by renting one or more VMs from a cloud provider, a company
specialized in hosting VMs.

Using a cloud provider can also increase scalability of a business, by
paying more to get the resources needed. A sudden increase in users can
be handled this way, as the cloud provider is responsible for the hardware.
Whether this strategy alone is enough also depends on how scalable the
software product is, so paying more isn’t always enough. However,
outsourcing hardware management this way can potentially save both time
and money, in addition to provide faster scaling.

Another feature of VMs is the ease of taking snapshots. A snapshot is
a backup of the current state of a virtual machine, somewhat similar to a
traditional backup of an operating system. The main difference lies in the
speed of the backup process, as taking a snapshot can often be done in a
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matter of seconds. This makes it quite easy to take snapshots before major
changes, so that a rollback to a previously working state is quite simple
to do if something goes wrong. Consequently, the use of snapshots and
rollbacks can be used to speed up recovery.

An added benefit of using a VM is a potential increase in security.
Note the use of the word "potential", as there are also risks in sharing the
hardware with someone else; we’ll come back to that in the next paragraph.
Security can be increased by the extra layer between the guest OS and the
hardware. If the guest OS is compromised, control of the entire system
isn’t necessarily lost, as a compromised VM doesn’t have complete control
over the underlying hardware. Also, a compromised VM can be replaced
with an uncompromised one if the problem is discovered. Furthermore,
a compromised VM won’t affect the other VMs running on the same
hardware, unless the malware manages to escape into the host OS.

Malware escaping from a VM is one of the risks referred to in the
previous paragraph. If the piece of malware is sophisticated enough, it may
be able to discover that it is running inside a virtual machine. If this is the
case and there are security vulnerabilities inside the virtualization software,
full control over the host operating system can be obtained, putting the
other guest OSes at risk. Sharing hardware in the cloud thus poses some
additional risks, although it’s difficult to escape a VM.

One of the disadvantages of VMs is that the performance of a guest
OS may be cut to a fraction of what it would otherwise be. Running an
entire OS inside another one increases the total workload, and as such, the
performance is reduced. Also, the instructions to be executed are emulated,
further increasing the overhead. The performance footprint of the last point
can be addressed by hardware support for virtualization, often present in
modern hardware, however, this still doesn’t remove the fact that reduced
performance is one of the main disadvantages of VMs.

2.7 Regular expressions (Regex)

Regular expressions [54] [52], or regex in short form, is a powerful tool used
for text processing. It’s often used for locating or replacing patterns in
a string of text, using a compact syntax to specify a pattern to look for.
This pattern can consist of a combination of ordinary characters with literal
meaning and metacharacters with special meaning. Together they form
what may look like a random combination of characters, although the
patterns do make sense upon close inspection.

There are several different syntaxes for writing regular expressions,
depending on the tool or programming language used. Here we will focus
on the syntax used by the re module in Python, although the differences in
syntax between tools and languages are small.

First we have the literal characters, such as ’a’, ’9’ or ’ ’. These represent
themselves, so the regular expression "foo = 2" will match the string "foo
= 2" if it’s present in the text. This is also the case for control characters like
\n for newline or \t for tab.
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Secondly we have the special metacharacters. These characters do not
represent literal characters, but rather have other purposes like wildcard
matching, making certain groups of characters optional or creating groups
of characters that should not occur in the pattern. When using the
re module mentioned earlier, the following characters are treated as
metacharacters: . ^$ + ? { } [ ] \| ( ). It’s still possible to match
these characters literally, but this requires a preceding \ to escape them.

As a certain understanding of regular expressions can be useful for the
later chapters, we will quickly go through each of the metacharacters to
explain what they do. The . character is the closest one can get to a
wildcard character. It matches all characters except newline by default, and
can consequently be used for capturing arbitrary content found between
two characters. For example, to capture the contents between a pair of
{}, the regex "\{.\}" can be used. Note that the curly braces have been
escaped with a preceding \, as otherwise the expression would have a
different result.

Next, a pair of [] can be used to specify a set of characters that can occur
next. The string "[abc0-9]" means that the next character can either be ’a’,
’b’, ’c’ or a digit from zero and up to nine. This set can also be negated by
placing the ^ as the first character in the set, like "[^abc0-9]". In that case,
the pattern has the opposite effect by capturing any character that is not
found in the set.

We also have the () used as a capture group. A capture group can be used
for multiple purposes, such as to split up a regular expression into smaller
logical units, specify a subgroup that can be fetched individually or to be
used together with a quantifier to specify how many times a subgroup or
character should be repeated. This can either be done with * for zero or
more repetitions, + for one or more repetitions, ? for zero or one repetition,
or a lower and upper bound inside a pair of \\. Also, the string "[abc]"
can potentially be rewritten as "(a|b|c)".

To wrap up, here’s an example using most of the features shown so far;
writing the regex "[+-]?[0-9]+(.|,)?[0-9]{1,5}" would match a string
"beginning with an optional + or -, followed by one or more digits from
zero to nine, then an optional period or comma, and ending with one to
five digits".

2.8 Version control systems

A version control system (VCS) [22] [23] is a system that keeps track of all
the files in a project, including the changes to these files through the entire
lifespan of the project. A VCS often rely on a central repository where the
files are stored. This central repository is used by all the participants to
keep their own, local repositories synchronized with other ones.

When a developer updates one of these files locally, the changes can be
marked for distribution to the other participants through a commit. These
changes can then be synchronized into the central repository through a
subsequent push. The other developers can download these changes and
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update their local repositories through a pull. By explicitly needing to push
and pull updates, two or more developers can modify the same file at the
same time without sudden interference.

As long as the users update different parts of the same document,
changes are merged automatically by the system. However, if two
developers update the same parts of the same document without an
intermediate pull, this can lead to a merge conflict. In that case, the conflict
must be resolved manually by one of the developers.

Another important feature of a VCS are the branches, parallell versions
of the same project. Branches can be used to develop multiple features
on the same project in isolation, in order to avoid having changes on one
branch affect the other branches until the feature is complete. For example,
a developer working on a new feature or a bug fix can create a new branch
for this purpose and not have his files be modified by developers working
on other branches. This developer can still push and pull changes from
other developers on the same branch, but changes from other branches
are ignored. Once the feature or bug fix is complete, this branch can be
merged with the other branches; at that point any potential merge conflicts
are handled. The benefit of working this way is to be able to postpone
merge conflicts until the work on a feature or bug fix is complete.

An extra benefit of using a VCS is that it also functions as a backup
service, but with the added possibility of reverting the project back to
any previous version. This feature can be useful if a breaking change is
introduced and a developer wants to revert it completely. There is also the
option of downloading the full project at once if a local repository is made
inacessible. Consequently, a VCS also serves as a backup tool in addition
to code sharing.

For a more information about version control systems in general, see
[22].
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Chapter 3

Linux Fundamentals

The previous chapter introduced several core concepts related to testing,
virtual machines and regular expressions. Having some knowledge about
this terminology is crucial to be able to follow the thesis.

In this chapter we will begin the discussion around the research
question, by introducing some aspects of the Linux kernel and its
development. This will be done to create a context for the following
chapters. The information presented here will be kept at an overall level,
to avoid going too much into detail.

We will first take a brief look at what an operating kernel is and how
the Linux kernel is different from other software. We will then examine
some aspects of its development, configuration and building. Finally, we
will look at some of the ways the kernel is tested today.

3.1 What is an operating system kernel?

An operating system kernel makes up the core parts of an operating system,
providing the most important features that an operating system needs in
order to function. A kernel usually does not include preinstalled programs
or the graphical user interface that a user can see, but rather features that
the user cannot see and takes for granted, such as scheduling processor
cycles between multiple processes, the file system, handling keyboard
input, hardware drivers and so on. The number of core features that are
handled by the kernel itself, rather than by other parts of the operating
system, depends on the type of the kernel used. The Linux kernel is a
unikernel, meaning that most of the operating system features are handled
by the kernel. A microkernel on the other hand, keeps the kernel small by
outsourcing many tasks to separate programs instead.

The Linux kernel makes up the core parts of several operating systems,
including the Linux distributions and the Android mobile OS. The Linux
distributions, which refers to a family of operating system variants built
around the Linux kernel, are widely used by software developers, large
companies, and most of the websites and large supercomputers today [5]
as an alternative to the more well known Windows and Mac operating
systems.
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3.2 What differentiates Linux from other software?

3.2.1 Kernel mode

One of the major differences between the Linux kernel and other large
software systems is that the kernel runs in kernel mode. Kernel mode
allows every processor instruction to be used and the whole memory to
be accessed. This is in contrast to user mode, used by normal programs,
where only some of the memory and a subset of the processor instructions
are available. Bugs in code that runs in kernel mode can potentially hang
the computer or open up for security breaches, increasing the importance
of testing and early bug discovery.

Another consequence of kernel mode is that there are certain precau-
tions to take when testing kernel code. When ordinary user mode programs
have finished execution, the operating system will make sure that the re-
sources used are properly released afterwards. For example, all memory
used by a program will be released when the program terminates, even
dynamic memory that should be freed explicitly. Also, files that have not
been properly closed will be handled by the operating system, in case the
programmer has forgotten to do so. This sort of automatic cleanup is not
performed for code running in the kernel, and this includes unit tests run-
ning in kernel mode. These resources, like heap memory and kernel data
structures, must be freed manually; forgetting to do so can potentially crash
the kernel in the worst case.

3.2.2 Open source

Another difference between Linux and some of the other software, is the
open source nature of the project. Open source means that the source code
of the software is publicly available, making it readable by anyone. A
common argument for this way of developing software is that there are
potentially more eyes on the code that may discover bugs and security
holes. The open source nature of Linux also means that more people have
the chance to contribute to the code.

3.2.3 Highly configurable

The large number of configuration options available makes the kernel
highly configurable. This flexibility grants freedom to the user, but it also
comes with a cost; it is practically impossible to test that every combina-
tion works as intended, leading to bugs that are not unconvered by tests.
Consequently, it’s often the default and most used configurations that get
tested for each supported architecture.

To give a short summary of the challenges with testing, an article published
in 2006 [14] stated that:

The open source development model and Linux in particular
introduces some particular challenges. Open-source projects
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generally suffer from the lack of a mandate to test submissions
and the fact that there is no easy funding model for regular
testing. Linux is particularly hard hit as it has a constantly high
rate of change, compounded with the staggering diversity of
the hardware on which it runs. It is completely infeasible to do
this kind of testing without extensive automation. [14]

3.3 Development

The Linux kernel consists of millions of lines of code, and it continues to
increase in size as new features are added. The development of the kernel
is a collective project driven by over 3000 developers [42] from all around
the world; this stands in constrast to large software systems developed by
a single large company. Thus, both the philosophy behind the project, and
the way it is developed, differs from other large projects.

3.3.1 The Linux kernel mailing list

The Linux kernel mailing list (lkml) is one of the main means of communica-
tion between kernel developers, featuring discussions, announcements and
sharing of new patches [30]. There are multiple mailing lists used by the
kernel community, and the many subsystems within the kernel often have
their own mailing lists in addition to the main one. A mailing list is com-
parable to a internet forum, but instead of using a webpage to host the dis-
cussions, e-mails are used instead. These e-mails are sent to the subscribers
of that particular mailing list, although online archives also exist.

3.3.2 Development trees

New features and bug fixes will propagate through multiple maintainer
trees before it’s considered ready for release. While some developers are
working on a kernel version that is nearly ready for release, other de-
velopers are simultaneously implementing new features for the subsequent
release candidate. There are also developers that work on older kernel ver-
sions that still needs bug fixes and security updates, even though those
kernels were originally released several years ago. To enable this parallell
development, the kernel community uses multiple development trees [31]
for the different kernel versions. Each development tree consists of one or
more repositories controlled by a version control system, most often git.

In addition to having development trees for the different kernel
versions, the many subsystems within the kernel also have their own
internal development trees. Each of these subsystem trees have a
maintainer that is responsible for merging incoming changes for that
particular tree. When a developer wants to apply patches to that subsystem
tree, he or she will post the patch on a mailing list for review; if the patch
is accepted, the maintainer applies the patch to the repository of that tree.
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3.3.3 The single versus group maintainership models

As mentioned in the previous subsection, many of the subsystems within
the kernel have traditionally used a single maintainer model. However, in
the last few years there have been discussions about the scalability of this
model [27][49] [46]. As seen in these articles, some argue that the single
maintainer model can become a bottleneck in a busy subsystem, or that the
model can lead to delayed updates if the maintainer is either overloaded or
busy elsewhere. Others claim that group maintainership would not work
for their subsystem, due to either the amount of patches that are rejected,
coordination problems that can follow, or a lack of submaintainers that can
be trusted with full commit rights [49]. The full discussion is outside the
scope of this thesis, but the articles cited earlier in this paragraph can be
read for more information.

3.3.4 Configuration and building

Make

The first build system we’ll look at is make [25][16]. The make system allows
the user to build a project with the make command, given that the current
directory contains a Makefile. A Makefile contains the necessary steps to
build a project from its source files, and can either be written manually or
be generated by another program. Makefiles also specify the relationship
between files, allowing the make system to determine which source files
that needs recompilation. Furthermore, make targets can be used to create
custom commands for that specific project; for instance, a clean target is
often created for deleting temporary files, and this command can be used
by writing make clean.

Kconfig and Kbuild

Before the kernel can be compiled, it must first be configured. The kernel
features a large number of configuration options that can be used to
fine-tune the kernel for the user’s specific needs; however, the default
configuration is often good enough. The kernel is configured with the
Kconfig [20][59] tool found in the scripts/kconfig directory of the kernel
source code. This tool provides several interfaces to choose between
for performing the configuration; it features both text-based, menu-based
and graphical alternatives. To use Kconfig, run the command make
<interface-name>, where <interface-name> must be replaced with one
of the names listed below (for example make menuconfig):

• config: Command-oriented

• nconfig: ncurses menu-based

• menuconfig: menu-based

• xconfig: Qt-based frontend
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After the kernel has been configured, the Kernel Build System (Kbuild)
[21] is used to build the kernel into a runnable executable. Without
going into much detail, Kbuild uses the .config file from Kconfig,
together with a hierarchy of Makefiles, to recursively build the rel-
evant kernel components; which components to build depends on
the chosen configuration. Once all the components have been built,
the result is a Linux kernel image file (kilde (linuxjournal artikkel?
<www.linuxjournal.com/content/kbuild-linux-kernel-build-system>)).

Cmake

Cmake is a cross-platform build for generating build files for the platform
used [50]. While Kconfig and Kbuild are used for building the kernel,
cmake is often used for user space software. The build files it generates
is specific for the platform it’s run on, so on Linux it produces Makefiles.
Consequently, Cmake doesn’t compile the project itself, but leaves that to a
platform specific build system like make.

As cmake generates a large amount of temporary files, this tool should
be run from a build directory, separate from where the source files are
located. For instance, if the source files of a project is located in ~/src/foo,
cmake should be run from ~/build/foo, with the source directory path as
an argument. Both the make and cmake systems are used in section 4.3.

3.4 Kernel modules

The Linux kernel supports loadable kernel modules (LKMs) to extend the
kernel with new functionality dynamically [33]. This means that the
modules can be loaded into the kernel while it’s running, to add or replace
functionality without needing to restart or recompile the whole operating
system. The modules are instead compiled separately and loaded or
unloaded manually by the user.

3.5 Testing

Early and extensive testing is key to keep quality high. The earlier a bug is
discovered, the quicker it generally is to fix. One reason for this is that the
code is still fresh in the mind of the developer [14]; another reason is that
there are less fresh code to search through to find the cause of the problem.

Several test suites and tools have been made in an attempt to achieve
this goal. Many of them have been developed independently of each other
and began their life as simple scripts, later evolving into test suites. These
test suites contain numerous types of tests, some of which are (section 4.2
in [14] mentions several of these categories):

• Build tests: tests used to check for problems when building the kernel
on multiple architectures and configurations.
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• Static verification tests: used to discover problems through static
analysis of the code.

• Functional and unit tests: used for functional and unit testing, as
explained in section 2.1.1 and 2.2.1.

• Performance tests: used to measure the performance or stability of
a component. Two examples include testing the disk or network
performance.

• Stress tests: used to check how the system performs when pushed
close to its limits.

• Profiling and debugging: used to gather information about exactly
what the system or component is doing.

Ideally, all new code should be tested on every supported architecture
and configuration before being added. However, this is practically
impossible due to the countless combinations of hardware and kernel
configurations possible. Accessible test tools and frameworks can improve
the situation, by lowering the barrier of entry for developers to test their
own code.

3.5.1 Problems of fully testing the kernel

One of the seven principles in software testing states that exhaustive
testing is impossible [12], at least for software of a non-trivial size. This
is especially true for a project of the size of the Linux kernel for a variety of
reasons.

One reason for the difficulty of testing the kernel is that ‘... there
is no good way to test it except running it’, as stated by Greg Kroah
Hartman in a Google Tech Talk in 2008 (14:27-14:36 in [26]). He further
stated that due to the number of hardware and configuration combinations
possible, in addition to all the possible ways to interact with it, they rely
on the developers and users of Linux to test it on their machines. He also
mentioned that one cannot test everything with unit tests. (14:36-15:42 in
[26]).

Another reason is the lack of an overarching test strategy. (kilde trengs!)
The developers are expected to test their code before releasing it, but there
are no common test framework used by all developers. Instead, there are
a multitude of different frameworks and test suites out there, in addition
to all the bash scripts and individual test files made to fulfill the needs
of that specific developer. Furthermore, there is also the issue of tests
being created by companies that keep them for themselves, for various
reasons. The result is a number of scripts, tools and frameworks that do
not cooperate well, tests that aren’t shared and tests that are difficult to use
by other developers.
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3.5.2 Testing tools and frameworks

We will now take a look at some of the tools and frameworks available
for testing kernel code. These tools and frameworks will only get a brief
introduction, as this section is meant to give an impression of what is
available. Another reason for this is also the lack of documentation related
to their degree of adoption.

kselftest

Kselftest [41][34] [57] is a test suite used for regression testing of the kernel;
however, it’s focus is rather to be used as a quick sanity check by developers
than to extensibly test the kernel for regressions [34]. Kselftest is located
under tools/testing/selftests in the kernel source tree, but can also be
installed and used on a running kernel with a few commands.

The Linux Test Project (LTP)

The Linux Test Project (LTP) [45] [14] is a test suite used for functional and
regression testing of the kernel (kilde). It contains over 3000 test cases and
is capable of testing a number of aspects of the kernel, including the file
system, memory, system calls, network etc. Due to the number of test cases
available, LTP is also used by some of the frameworks mentioned below.
LTP provides a black-box approach to testing the kernel.

Avocado

Avocado [51][53] is an automated testing framework written in Python and
serves as a successor of the Autotest [6][9] [8] framework which it replaces.
The Avocado framework is capable of running tests written in Python, as
well as any executable as long as it returns 0 on success or a non-zero value
otherwise. One of the goals of the framework is to provide a powerful, but
simple framework, as developers otherwise could choose to create their
own testing scripts instead of using the framework. Both [53] and [51] can
be seen for a more thorough introduction.

IBM Autobench

IBM Autobench [61][14] is a proprietary tool used for testing and detecting
performance regressions between releases. It regularly checks for new
kernel releases and patches that are automatically downloaded, built and
benchmarked. While benchmarking a kernel, statistics are gathered and
later compared to earlier bechmarks to detect regressions over time. A job
file is used to tell Autobench what to do, and is written in its own custom
language and a combination of bash and perl scripts.
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Linux Kernel Functional Testing (LKFT)

Linaro’s Linux Kernel Functional Testing (LKFT) [4][39] is a framework for
functional testing of new Linux kernel releases. Like IBM Autobench, LKFT
automatically downloads, builds and tests new versions of the kernel for
regressions whenever they are released. The framework targets several
development branches, including 4.4, 4.9, 4.14 and 4.19 [44], although these
branches are not the only ones. The tests are run on multiple environments
and four different architectures, namely arm32, arm64, x86_64 and i386 at
the time this was written [58]. The framework uses test cases from other
testing tools, such as kselftest, Linux Test Project (LTP) and Libhugetlbfs;
in total over 20.000 tests are run per kernel [39].

Fuego

Fuego [40] is another test framework for testing new kernel releases, but
is geared more towards embedded devices. Fuego comes with a number
of tests and wrappers for building, deploying and running them, and uses
a container to reduce the number of installation issues. A container is a
lightweight alternative to a virtual machines, with less overhead. Like the
LKFT framework, Fuego uses test cases from other frameworks in addition
to its own, including LTP and kselftests. Test cases written for these
frameworks are automatically obtained by Fuego. See the presentation at
[40] for more information.

Kernel Test Framework

The Kernel Test Framework (KTF) [35] [24][47] [48] is a new unit testing
framework aimed at white-box testing of the kernel. It does this by
compiling test files into kernel modules that are inserted into the kernel
during runtime. This approach enables tests to execute in the live kernel
environment, without need for mocking. As this framework will be the
main focus of this thesis, it will get a more in-depth introduction in chapter
5.

KUnit

KUnit [37][38] is another new unit testing framework, targetting some of
the same areas as KTF, although with a different approach. It provides
several of the same features, but instead of running the tests inside a kernel
running on real or emulated hardware (VM), KUnit runs its tests inside
User Mode Linux (UML). UML is a Linux architecture that compiles into a
program to be run as a user level program. This approach to testing comes
with both advantages and disadvantages, which we will we discuss later
in subsection 8.3.3.
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Chapter 4

Planning and preparing the
project

In the previous chapter we examined some aspects of the Linux kernel and
its development. We also took a brief look at a few of the testing tools that
are currently used.

This chapter will be used to describe the chosen approach and how to
prepare an environment for kernel testing.

4.1 Approach

The focus of this project will be the use of the Kernel Test Framework,
the process of converting kernel test files to the framework, and the dif-
ficulties that arise. The experiments will take place on a virtual machine
running Linux, and relies on the Kernel Test Framework, Googletest and
Python being installed. We will approach the conversion process in two
ways: by using a script and by manual editing. The former approach will
be done by using a Python script to modify the files lib/test_xarray.c
and lib/test_sort.c, while the latter approach will be done by manu-
ally converting lib/test_rhashtable.c and lib/test_string.c. Both ap-
proaches will require some analysis of the test files, but to varying degrees.

4.1.1 Virtual machine setup and management

For reasons that will be explained in subsection 4.1.2, the experiments will
take place on a virtual machine hosted in the UH-IaaS cloud platform,
based on the OpenStack technology [15]. The virtual machine itself will run
Ubuntu Linux version 18.04 LTS, but the exact version of the kernel itself
may vary through the project as the system is kept up-to-date. The SSH
technology will be used for remote-controlling the virtual machine, and
administration will be done through the UH-IaaS web interface. Although
the exact specifications of the virtual machine is unknown, the following
resources should be available:

• 1 Virtual CPU
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• 4 GB of RAM

• 40 GB of storage

4.1.2 Why use a virtual machine?

There are several reasons for using a virtual machine for testing kernel
code; the first reason being that virtual machines provide an easy way to
create backups through the snapshot feature. A snapshot is quite literary
a snapshot of the current state of the virtual machine. Using this feature
before any major changes are done, enables us to quickly go back to a
previously working state if we accidentally mess up the virtual machine.
This includes accidental deletion of important files or changes that are
difficult to revert in other ways. Also, unlike a full backup of the file
system on a regular machine, creating a snapshot of a virtual machine is
usually a fast action to perform. Consequently, the snapshot feature of
virtual machines can save time when things go wrong.

Another advantage of virtual machines is the speed of recovery. If we
manage to crash the entire kernel, restarting a virtual machine can often
be faster than restarting a physical machine, although this depends on
machine in question. Kernel panics and lack of response are problems that
may be encountered in this project, and due to the time this can save in the
long run, quicker restarts is another reason to use a virtual machine.

However, a potential disadvantage of using a virtual machine is the
extra resources a virtual machine requires. This is due to the additional
overhead caused by emulating a physical machine inside an operating
system, slowing down both the host and guest operating systems. To partly
circumvent this problem, the virtual machine used here will run in the
cloud, to get most of the benefits with less of the performance penalty on
the local machine. Still, the extra overhead will likely have an effect on the
performance of the test files.

4.1.3 Data collection and analysis

As mentioned in the beginning of this chapter, the main focus of this thesis
is the use of KTF, as well as an evaluation of both the conversion process
and the framework. As such, there is a limited focus data collection,
although some will be still collected.

The limited data collected during this project will be related to the test
files being modified. This data includes the original length of the test files,
the conversion approach and the resulting number of TEST functions in the
modified files.

4.1.4 Limitations of the chosen approach

The limited resources of the virtual machine may have an effect on the
experiments, such as the time taken to run the test suites or problems
occuring due to lack of memory or processing time. Also, because kernel
configurations may be dependent on the underlying hardware, the kernel
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configuration on one machine will most likely differ from that used on
another, potentially affecting the results of test files in general.

4.2 Preparing the virtual machine

4.2.1 VM security

Before installing any required tools, a few steps should be taken to improve
the security of the virtual machine. When running a machine that is
accessible from the Internet, be it physical or virtual, one should expect
that it will be attacked as soon as it goes online. The more services that are
accessible from the outside, the more attack vectors can be exploited using
vulnerabilities in said software. Therefore, we will take some measures to
reduce the likelihood of the virtual machine being compromised:

Closing unused ports

The first measure is partly done already by the default security policy
used by OpenStack. By default, all ports are inaccessible from the outside
unless manually opened. However, as we are going to use SSH for remote
controlling, at least one port needs to be opened. We could either choose to
use the default port or make SSH use another one. The latter could deter
the attacks from some of the simpler attack performed by the simplest
attack scripts, although it is doubtful that it will help much against most
attackers, who would probably use port scanning to find the SSH server
port anyways.

Harden SSH server

A second security measure is to install a few tools to automatically block
repeated requests from the same IP adresses. This is yet another small
measure that will increase the security against less sophisticated attacks,
but not necessarily stop the more sophisticated ones. As we can see in
listing 4.2.1, it did not take long before connections from other machines
was attempted. In the beginning, the packets apparently came from one of
two IP adresses, however, soon more IP adressses began to appear in the
log file.

Aug 28 13:12:55 kernel-testing sshd[1656]: Invalid user pi from
189.45.79.185

Aug 28 13:12:55 kernel-testing sshd[1656]:
input_userauth_request: invalid user pi [preauth]

Aug 28 14:06:15 kernel-testing sshd[13802]: Invalid user
default from 5.188.10.7

6
Aug 28 14:06:15 kernel-testing sshd[13802]:

input_userauth_request: invalid user
default [preauth]
Aug 28 14:06:16 kernel-testing sshd[13802]: Connection closed

by 5.188.10.76 port 45404 [preauth]
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Aug 28 14:06:17 kernel-testing sshd[13804]: Invalid user ftp
from 5.188.10.76

Aug 28 14:06:17 kernel-testing sshd[13804]:
input_userauth_request: invalid user ftp [preauth]

Aug 28 14:06:17 kernel-testing sshd[13804]: Connection closed
by 5.188.10.76 port 53213 [preauth]

Aug 28 14:06:18 kernel-testing sshd[13807]: Invalid user guest
from 5.188.10.76

Aug 28 14:06:18 kernel-testing sshd[13807]:
input_userauth_request: invalid user guest [preauth]

Aug 28 14:06:18 kernel-testing sshd[13807]: Connection closed
by 5.188.10.76 port 38360 [preauth]

To try to counter this, the fail2ban and denyhosts programs were
installed to automatically block such requests. Then some changes was
done to the /etc/ssh/ssh_config file to further strengthen security, such
as disabling root login and requiring SSH keys instead of passwords for
authentication.

4.3 Installing dependencies and googletest

The Kernel Testing Framework, which will be introduced in chapter 5, is a
separate framework that can be compiled and installed on a precompiled
kernel. Before downloading and installing the framework, make sure the
following dependencies are installed:

• git

• cmake

• g++

• googletest

On debian based systems, both git, cmake and g++ can be installed with
the sudo apt install <package> command, where <package> is replaced
with the name of the package.

Next, clone and build googletest by following the steps in listing 4.1:

Listing 4.1: The necessary steps to clone and build googletest from scratch
# Create a source directory for the repository.
mkdir ~/src # Create source directory

if necessary
cd ~/src
git clone https://github.com/knuto/googletest.git

mkdir ~/build/‘uname -r‘ # (Optional) Create a
separate build

# directory for compilation
and building

cd ~/build/‘uname -r‘
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mkdir googletest
cd googletest
cmake ~/src/googletest # Generate a Makefile
make # Compile and build
sudo make install # Final installation step

For those new to this way of building and installing programs, we are
essentially downloading the source code from a repository, configuring it
automatically through cmake to generate a Makefile, and then compile the
program locally using said Makefile. Lastly, make install is used to finish
the installation.

The reason for using ‘uname -r‘ in the path is that this ensures that
both KTF and the test suites must be rebuilt if the Linux version changes.
This is not necessarily the case for googletest, although we still do it for
consistency. This also enables us to have one source directory, and multiple
build directories for each project. For example, both googletest, KTF and
the test suites all have one source directory each under ~/src, in addition
to one build directory per Linux version previously used.

4.4 Installing KTF

After the dependencies have been handled, clone the repository found
at https://github.com/knuto/ktf into a desired directory, for example
~/src/ktf. The official installation instructions can be found at [2], but
they will also be shown here along with potential problems and fixes. The
steps taken are quite similar to the ones used for googletest, and are shown
in listing 4.2.

Listing 4.2: How to clone and build KTF from scratch

cd ~/src
git clone https://github.com/knuto/ktf # Clone the directory
cd ktf # Enter the new directory

...
autoreconf # ... and configure it.

cd ~/build/‘uname -r‘ # (Optional) If separate
build directory

mkdir ktf # (Optional) Same as above
~/src/ktf/configure KVER=‘uname -r‘ # Generate a Makefile
make # Compile and build
sudo make install

4.5 Potential problems

This section will contain a list of problems that may be encountered when
installing KTF and its dependencies, along with solutions.
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4.5.1 Missing C++ compiler

The following error message indicates that a C++ compiler is missing: "No
CMAKE_CXX_COMPILER could be found". This also means that no Makefile
has been generated. Install g++ as shown in section 4.3.

4.5.2 Autoconf missing

If autoreconf doesn’t work, make sure to install autoconf with sudo apt
install autoconf if you use a debian based system.

4.5.3 Autoreconf locale warnings

If everything goes well when running autoreconf, it shouldn’t give any
output. One of the issues encountered when running this command locally
for the first time, was several repetitions of this output:

p e r l : warning : S e t t i n g l o c a l e f a i l e d .
p e r l : warning : Please check t h a t your l o c a l e s e t t i n g s :

LANGUAGE = ( unset ) ,
LC_ALL = ( unset ) ,
LC_PAPER = "nb_NO . UTF−8" ,
LC_ADDRESS = "nb_NO . UTF−8" ,
LC_MONETARY = "nb_NO . UTF−8" ,
LC_NUMERIC = "nb_NO . UTF−8" ,
LC_TELEPHONE = "nb_NO . UTF−8" ,
LC_IDENTIFICATION = "nb_NO . UTF−8" ,
LC_MEASUREMENT = "nb_NO . UTF−8" ,
LC_TIME = "nb_NO . UTF−8" ,
LC_NAME = "nb_NO . UTF−8" ,
LANG = " en_US . UTF−8"
are supported and i n s t a l l e d on your system .

p e r l : warning : F a l l i n g back to a f a l l b a c k l o c a l e ( " en_US . UTF−8" ) .

This output was repeated up to 6 times when fisrt running the
command, but a fix was found here: [29]. The reason was apparently
that the ssh connection was sending environment variables to the virtual
machine, and this was fixed by commenting out the line containing the
string SendEnv LANG LC_* in the file /etc/ssh/ssh_config file.

4.5.4 Missing packages

Other errors can also appear if some packages are missing. For example,
if running make without the the package libnl-genl-3-dev installed, one
can get the following output:

/usr/bin/ld : cannot f ind −l n l−genl−3
c o l l e c t 2 : e r r o r : ld returned 1 e x i t s t a t u s

Lacking the package pkg-config can for some reason also cause this
problem. Make sure to check that as well.
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4.5.5 Configure failed

Like CMake, the configure command checks that all requirements for the
project are met. If one or more requirements are missing, no Makefile is
generated. If this happens, make sure that the libnl-3-dev og pkg-config
are installed.

4.6 Compiling a kernel from source

Precompiled kernels suffice for everyday use; however, there are cases
where manual compilation is needed. For example, when working with
the xarray data structure in chapter 6, a newer version of the kernel was
manually compiled to get access to the header files of the data structure.
These header files were not present on the current system, as the data
structure was too new. Compiling a new kernel solved that problem.
Therefore, this section will be used to explain the kernel compilation
process, based on the instructions from [36]. [28] and [42] can also be
checked for alternative instructions.

4.6.1 Installing required packages and downloading the kernel
source tree

Make sure the following packages are installed before proceeding [36].:

• libncurses5-dev

• gcc

• make

• git

• exuberant-ctags

• bc

• libssl-dev

Next, enter a suitable source directory (like ~/src/linux-stable) and
clone the kernel source code with
git clone git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git.
The repository cloned with this command contains a stable [65][60] version
of the kernel, meaning that the kernel is considered ready for release. The
repository address can be replaced with another one if a different kernel
version is desired.
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4.6.2 Configuration, building and installation

Before we proceed to the building phase, the kernel must be configured.
This can either be done with the command shown in subsection 3.3.4,
or by reusing the configuration file of the currently used kernel; we will
focus on the latter approach for simplicity. This also means that all new
configuration options will be set to their default values.

Listing 4.3 shows the whole process. After the kernel source code has
been cloned, the configuration file of the current kernel is copied to this
directory. Then, sudo yes "" | sudo make oldconfig makes sure that
the current configuration file is reused, with all new configuration options
are enabled. Finally, sudo make compiles the kernel files, while sudo make
modules_install install finishes the whole process.

Listing 4.3: How to clone and configure the kernel using the old
configuration file.

cd ~/src
git clone

git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

# Copy existing configuration file.
cd linux-stable
sudo cp /boot/config-‘uname -r‘ .config

# Set new configuration options to "yes"
sudo yes "" | sudo make oldconfig

# Compile and build.
sudo make
sudo make modules_install install

4.6.3 Running the new kernel

If the whole process succeeds, a list of all the installed kernels should
appear when restarting the machine. Otherwise, the newest kernel will
likely be used by default.
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Chapter 5

Kernel Test Framework

In the previous chapter we looked at how to install the Kernel Test
Framework (KTF) and its dependencies. This chapter will introduce the
framework and show to use it. We will then examine some of its core
features, including contexts and fixtures.

5.1 Introducing the Kernel Test Framework

As briefly introduced in section 3.5.2, the Kernel Test Framework (KTF) [35]
[24][47] [48] is a new framework that attempts to make unit testing in the
kernel easier and more accessible. By testing the kernel from kernel space,
with access to exported and non-exported APIs [1], code paths that are
difficult to trigger from user space can be tested. The framework is not
meant to replace the existing test frameworks, but rather provide a different
approach to kernel testing. Tests are compiled into kernel modules that can
be loaded into the kernel during runtime. This approach allows kernel
specific headers to be accessed.

One of the goals of KTF is to make test-driven development in the
kernel more accessible [1]. By providing a framework created with this
in mind, it should lower the bar of entry to this way of development in
the kernel. Test-driven development encourages testing and refactoring
to be an integral part of the development process. This could potentially
contribute to more kernel bugs to be found at earlier stage, as well as
provide documentation to kernel code in the form of tests.

Another goal of KTF is to allow developers to run tests on precompiled
kernels, where recompilation of the kernel is either not feasible or possible.
By allowing tests to inserted into the kernel at runtime, instead of being
compiled into the kernel itself, new kernel space tests can be written and
used on precompiled kernels. This approach also enables kernel data
structures to be tested without the hassle of bringing them to user space
[1]. KTF is currently built out-of-tree, but this could change in the future.
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5.1.1 Creating, building and running a new test suite

Before we can begin testing, we need to create a test suite. KTF lets us do
this by using the ktfnew command found under ~/src/ktf/scripts/. The
script takes the desired name of the test suite as a parameter and creates a
directory under ~/src/ with this name. This new directory will contain all
the necessary files to begin testing.

When entering the directory just created, we see a number of new files,
most of which can be completely ignored. The only file we care about
is the one with the same name as the test suite, located in the kernel/
subdirectory. Listing 5.1 shows the layout of a new test suite.

Listing 5.1: The structure of the test suite directory after running ktfnew

$ ~/src/ktf/scripts/ktfnew mysuite
Creating a new project under /home/ubuntu/src/mysuite

$ ls ~/src/
googletest ktf mysuite

$ ls ~/src/mysuite/
ac autom4te.cache configure.ac m4 Makefile.in
aclocal.m4 configure kernel Makefile.am

$ ls ~/src/mysuite/kernel/
Makefile.in mysuite.c

We will take a look at the default test file in 5.1.2, but for now we just
want to run it as it is.

Compiling and building

The next step is to compile and build the tests into a kernel module.
Although we can use a shared directory for both source and build files,
a cleaner solution is to use a separate directory for the build files. By doing
this we can reuse the same source code each time we need to rebuild the
test suite. As kernel modules must be built for the current version of the
kernel, we will likely need to rebuild the test suite multiple times, even if
we never modify the tests themselves.

Listing 5.2 shows the steps required to build a test suite into a separate
build directory. In this example we assume that both the build directory
and its subdirectory already exist. Note that we use the command ‘uname
-r‘ as part of the path; this command outputs the current version of the
kernel we are using, and updating the system may change this value. By
creating and using a subdirectory named by this command, we are forced
to rebuild our test suites whenever the kernel version changes. We will
see why in subsection 5.2.2. Once we have created and entered the right
directory, we call configure once to generate a Makefile and some other
files that are used to build the test suite. We then call make every time we
want to rebuild the test suite.

Listing 5.2: Compiling and building the test suite
$ cd ~/build/‘uname -r‘
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$ mkdir mysuite # If not already done
$ cd mysuite/
$ ~/src/mysuite/configure KVER=‘uname -r‘ # Only used once
$ make # Used for every rebuild

Loading and running

The next step is to load the newly built kernel module into the kernel.
Make sure that the ktf.ko module is inserted first, as otherwise we will get
the following error message: insmod: ERROR: could not insert module
kernel/mysuite.ko: Unknown symbol in module. The KTF module only
needs to be inserted once after every reboot of the system; once it’s inserted,
it will stay in the kernel until it’s either unloaded or the system shuts down.
Next, we insert the test module into the system using the insmod command,
as shown in listing 5.3. Unlike the KTF module, however, the test module
should be unloaded, rebuilt and then inserted again if we change the test
code. Also note that two versions of the same test module cannot be loaded
at the same time. Finally, we use the ktfrun command to run all the loaded
test suites.

Listing 5.3: Loading and running the mysuite test suite
$ cd ~/build/‘uname -r‘/mysuite
$ make # After every change.
$ sudo insmod ../ktf/kernel/ktf.ko # After every reboot.
$ sudo rmmod kernel/mysuite.ko # If already inserted.
$ sudo insmod kernel/mysuite.ko # Insert module.
$ ../ktf/user/ktfrun # Run all tests.
[==========] Running 1 test from 1 test case.
[----------] Global test environment set-up.
[----------] 1 test from simple
[ RUN ] simple./t1
[ OK ] simple./t1 (0 ms)
[----------] 1 test from simple (0 ms total)

[----------] Global test environment tear-down
[==========] 1 test from 1 test case ran. (1 ms total)
[ PASSED ] 1 test.

5.1.2 A look at the default test file

Now that we have created and tried to run the new test suite, we will take
a look at the default test file. The test file can always be found under the
kernel subdirectory, and it has the same name as the test suite. If we open
mysuite.c, we will see the following code:

#include <linux/module.h>
#include "ktf.h"

MODULE_LICENSE("GPL");
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KTF_INIT();

TEST(simple, t1)
{

EXPECT_TRUE(true);
}

static void add_tests(void)
{

ADD_TEST(t1);
}

static int __init mysuite_init(void)
{

add_tests();
return 0;

}

static void __exit mysuite_exit(void)
{

KTF_CLEANUP();
}

module_init(mysuite_init);
module_exit(mysuite_exit);

The file begins by including the KTF and module system headers, as
both headers are needed for KTF to function. KTF_INIT() is then called
outside the functions to initialize the framework and add KTF specific code.
Likewise, KTF_CLEANUP() is called in the exit function to safely release the
resources used once the test completes execution. Proper cleanup after
execution is especially important inside the kernel, as the resources used
must be manually freed. After the initialization code, the TEST macro is
used once to define a KTF test function. This macro takes two parameters:
the name of the test suite, and the name of the new function; both names
will appear in the KTF output. This function is then added to KTF by using
the ADD_TEST macro.

To see how we can edit the test file, we will add two new test functions;
one function will succeed and the other function will fail:

...
TEST(simple, t1)
{

EXPECT_TRUE(true);
}

// first new test function
TEST(simple, t2)
{

EXPECT_FALSE(true);
}
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// second new test function
TEST(foo, bar)
{

EXPECT_TRUE(1 == 1);
}

static void add_tests(void)
{

ADD_TEST(t1);
// register both functions so KTF can use them.
ADD_TEST(t2);
ADD_TEST(bar);

}
...

In order to rebuild the test suite, we run make from the build directory.
Then we unload the old version of the module with rmmod, before we reload
it with insmod. If we try to reload the new module straight away, we get
the following error:

$ sudo insmod kernel/mysuite.ko
insmod: ERROR: could not insert module kernel/mysuite.ko: File

exists

The whole rebuild process is shown below:

$ cd ~/build/‘uname -r‘/mysuite
$ make
$ sudo rmmod kernel/mysuite.ko
$ sudo insmod kernel/mysuite.ko
$ ../ktf/user/ktfrun
[==========] Running 3 tests from 2 test cases.
[----------] Global test environment set-up.
[----------] 1 test from foo
[ RUN ] foo./bar
[ OK ] foo./bar (0 ms)
[----------] 1 test from foo (0 ms total)

[----------] 2 tests from simple
[ RUN ] simple./t1
[ OK ] simple./t1 (0 ms)
[ RUN ] simple./t2
/home/ubuntu/build/4.4.0-134-generic/mysuite/kernel/mysuite.c:17:

Failure
Failure ’!(true)’ occurred
[ FAILED ] simple./t2, where GetParam() = "t2" (0 ms)
[----------] 2 tests from simple (0 ms total)

[----------] Global test environment tear-down
[==========] 3 tests from 2 test cases ran. (1 ms total)
[ PASSED ] 2 tests.
[ FAILED ] 1 test, listed below:
[ FAILED ] simple./t2, where GetParam() = "t2"
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1 FAILED TEST

KTF comes with several example test files. These can be found
under /build/‘uname -r‘/ktf/examples and is worth a look. For more
information about KTF and its features, see the official API in [3]

5.1.3 ASSERT_* vs. EXPECT_* assertions

KTF divides its assertion macros into two categories: ASSERT_* and
EXPECT_* assertions. Both assertion categories evaluates an expression to
decide if a test case succeeds or fails; the differences lies in how failures are
handled. The first category will stop execution of the current function and
either return or jump to a label upon failure. This is useful if the function
cannot continue if a test case fails. The second category of assertions will
not have any effect on execution if a test case fails.

5.2 Using KTF features on a kernel data structure

To give a short and consise introduction to some of the tools KTF offers, we
will take a look at how we can write a very simple test suite for a kernel
data structure: struct rhashtable. This data structure will get a more
thorough introduction in chapter 7, but for now we can think of it as a
generic hash table with concurrency support and automatic resizing. See
[62] for an alternative introduction.

5.2.1 Setting up a rhashtable

Before we take a look at how we can create a rhashtable for our own use,
we need to determine what we want to store in it. We can store whatever
data we want in it, as long as the following requirements are fulfilled:

• The elements stored should be a struct, as certain fields must be
present.

• The struct type stored must have a field that can be used as a key.
This field can have any type.

• The struct type stored must also have a field with the struct
rhash_head as its type. This field is used internally by the rhashtable
functions.

The struct can of course include more fields than this, such as a
reference counter, other fields for lifetime management, or multiple data
fields. However, such fields will be left out in the following examples
for simplicity. Instead, we will define and use the type struct object to
represent a data type with the minimal amount of fields needed to be stored
in the rhashtable.
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Listing 5.4: The data storage struct, struct my_data, and the element type,
struct object

struct my_data {
int data;

};

struct object {
int key;
struct rhash_head head;
struct my_data data;

};

As the rhashtable is a generic data structure, we also need to fill out a
parameter struct to tell the rhashtable functions how to treat our data. The
definition of the parameter struct can be seen in listing 5.5, however most
of the fields are optional. The fields that must be filled are listed below:

• u16 head_offset

• u16 key_offset

• u16 key_len

The head_offset and key_offset fields are used to tell the rhashtable
functions where the key and the struct rhash_head fields are located.
key_len is also required, as we can use any type as a key. By leaving out
the rest of the fields in the struct rhashtable_params, their default values
are used.

Listing 5.5: The original definition of struct rhashtable_params
struct rhashtable_params {

u16 nelem_hint;
u16 key_len;
u16 key_offset;
u16 head_offset;
unsigned int max_size;
u16 min_size;
bool automatic_shrinking;
u8 locks_mul;
u32 nulls_base;
rht_hashfn_t hashfn;
rht_obj_hashfn_t obj_hashfn;
rht_obj_cmpfn_t obj_cmpfn;

};

Now that we got that covered, we can finally create a rhashtable with
the minimal options required, as shown in listing 5.6. In this example, all of
the test code is placed inside a single function. The rhashtable is initialized
with rhashtable_init and later cleaned up with rhashtable_destroy.
rhashtable_init returns -EINVAL on failure, so we will use a check on the
return value as an assertion. Although this is a simple example, it shows
how a test function in KTF can look.
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Listing 5.6: Creating a minimal test suite for the struct rhashtable type
#include <linux/module.h>
#include <linux/rhashtable.h>
#include "ktf.ko"

MODULE_LICENSE("GPL");

KTF_INIT();

struct my_data {
int data;

};

struct object {
int key;
struct rhash_head head;
struct my_data data;

};

TEST(rh_init, t1) {
struct rhashtable my_table;
struct rhashtable_params rht_params = {

.head_offset = offsetof(struct object, head),

.key_offset = offsetof(struct object, key),

.key_len = sizeof(int),
};
int success = rhashtable_init(&my_table, &rht_params);
EXPECT_TRUE(success != -EINVAL);

rhashtable_destroy(&my_table);
}

static void add_tests(void) {
ADD_TEST(t1);

}
static void __init rhashsuite_init(void) {

add_tests();
return 0;

}
static void __exit rhashsuite_exit(void) {

KTF_CLEANUP();
}

module_init(rhashsuite_init);
module_exit(rhashsuite_exit);

5.2.2 Recompilation after updating the system

It’s important to note that test suites must be rebuilt after the system is
updated. When kernel modules are built, they are built for the exact kernel
they will be loaded into. This restriction was intentionally added to the
kernel build system, to prevent users from inserting modules that are built
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for another kernel. If such modules were inserted, they could break other
parts of the kernel and generate problems that can be avoided by having
this restriction.

If a user is unaware of this detail, and attempts to insert a kernel module
built for an older kernel, the following error message will appear:

$ sudo insmod ../ktf/kernel/ktf.ko
insmod: ERROR: could not insert module ../ktf/kernel/ktf.ko:

Invalid module format

This retriction applies to all kernel modules, and not just KTF.
Whenever the installed kernel changes through an update, KTF itself must
also be rebuilt in addition to the test suites. As mentioned earlier, we want
to rebuild KTF and the test suites under a new ‘uname -r‘ directory to
detect such changes easier. Listing 5.7 shows how to rebuild KTF in this
way, while 5.8 shows to rebuild the test suite.

Listing 5.7: How to rebuild KTF after an update.
$ cd ~/build
$ mkdir -p ‘uname -r‘
$ cd ‘uname -r‘
$ mkdir ktf
$ cd ktf/
$ ~/src/ktf/configure KVER=‘uname -r‘
$ make
$ sudo make install

Listing 5.8: How to rebuild the test suite after an update.
$ cd ~/build/‘uname -r‘
$ mkdir rhashsuite
$ cd rhashsuite
$ ~/src/rhashsuite/configure KVER=‘uname -r‘

5.2.3 Setup and teardown in KTF

Before we proceed with the rhashtable examples, we will introduce a new
feature that might prove useful for setup and teardown code in the test
environment. In the rhashtable examples earlier, we performed everything
from setup to teardown code inside the same TEST function. For a simple
test case such as the one above, that is fine. However, if we have multiple
test functions that rely on the same code for setup and teardown, there is a
better way. KTF includes support for this through contexts and fixtures.

Contexts and fixtures are both used to provide an environment outside
the test functions themselves. Instead of using global variables to create this
environment, we can use these features instead for a cleaner approach. The
main difference between the two features in KTF, is that a context is created
once and shared between several test functions, either because the setup
and teardown code is expensive to run, or because we want to continue
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altering the same environment across test functions; fixtures on the other
hand are created and destroyed between every test function that uses it.
Thus, fixtures can be used to emulate the ’setup’ and ’teardown’ functions
that unit test frameworks often provide.

5.2.4 Using fixtures

As mentioned above, fixtures allow multiple functions to share the same
code for setup and teardown. For instance, one might want all test
functions to begin execution with the exact same "global" state. This state
can then be initialized inside a fixture setup function and cleaned up in
a fixture teardown function, that are executed before and after every test
function is run.

KTF provides the following macros for handling fixtures:

• DECLARE_F(fixture_name)

• SETUP_F(fixture_name, setup_function_name)

• TEARDOWN_F(fixture_name, teardown_function_name)

• INIT_F(fixture_name, setup_function_name, teardown_function_name)

The example below shows how these macros can be used:

#include <linux/module.h>
#include <linux/rhashtable.h>
#include "ktf.h"

MODULE_LICENSE("GPL");

KTF_INIT();

struct my_data {
int data;

};

struct object {
int key;
struct my_data data;
struct rhash_head head;

};

static struct rhashtable_params rht_params = {
.head_offset = offsetof(struct object, head),
.key_offset = offsetof(struct object, key),
.key_len = sizeof(int),

};

// Fixture setup
DECLARE_F(fixture_test)

struct rhashtable my_table;
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};

SETUP_F(fixture_test, fsetup)
{

int success = rhashtable_init(&fixture_test->my_table,
&rht_params);

fixture_test->ok = true;
}

TEARDOWN_F(fixture_test, fteardown)
{

rhashtable_destroy(&fixture_test->my_table);
}

INIT_F(fixture_test, fsetup, fteardown);

... // the rest of the file is shown in the next example.

The DECLARE_F macro is used to declare the fixture. All variables
defined here we will be accessible inside functions defined with TEST_F.
Note the lack of an introducing { after DECLARE_F(fixture_test); this is
not a typo, but intended.

SETUP_F is then used to initialize the fixture. The code written here is
run before every TEST_F function is called. Inside SETUP_F and TEARDOWN_F,
the fixture members can be accessed through a struct with the same name
as the fixture itself - in this case the struct can be accessed through the
symbol fixture_test, as seen in the listing. Inside TEST_F functions, the
symbol ctx is used instead. In addition to taking the fixture name as the
first parameter, SETUP_F and TEARDOWN_F both take a function name as the
second parameter. Finally, INIT_F is called to tie the fixture together.

TEST_F functions can now be declared in the same way as the TEST
functions, apart from the extra argument and the usage of ctx:

...

TEST(simple, t1)
{

EXPECT_TRUE(true);
}

TEST_F(fixture_test, ts, f1)
{

struct object obj = {
.key = 1,
.data = {123},

};
EXPECT_TRUE(atomic_read(&ctx->my_table.nelems) == 0);

rhashtable_insert_fast(&ctx->my_table, &obj.head,
rht_params);

EXPECT_TRUE(atomic_read(&ctx->my_table.nelems) == 1);
}
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TEST_F(fixture_test, ts, f2)
{

EXPECT_TRUE(atomic_read(&ctx->my_table.nelems) == 0);
}

static void add_tests(void)
{

ADD_TEST(t1);
ADD_TEST(f1);
ADD_TEST(f2);

}

static int __init fixture_test_init(void)
{

add_tests();
return 0;

}
static void __exit fixture_test_exit(void)
{

KTF_CLEANUP();
}

module_init(fixture_test_init);
module_exit(fixture_test_exit);

As seen in the example, the same name is used as the first argument to
TEST_F as the other fixture related code. This is important in case there are
more than one fixture declared in the same file. The other two arguments
are the same as for TEST functions: the name of the test suite, and the
function name. Once again, the fixture data can be accessed through the
ctx name.

5.2.5 Using context

As opposed to fixtures, a context allows the same state to be shared
among several test functions without storing all the variables in the global
namespace. Instead a context struct can be created and used to store the
global state for the functions sharing the same context. This can also be
done without utilizing the context related features, although they offer
some degree of abstraction.

To create a context, define a struct that contains at least a struct
ktf_context field. Then declare an instance of this struct which will be
used by KTF_CONTEXT_ADD to keep track of the state:

struct my_ctx {
struct ktf_context k;
int counter;

};

static struct my_ctx some_ctx = { .counter = 1 };
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static int __init context_test_init(void)
{

KTF_CONTEXT_ADD(&some_ctx.k, "data");
add_tests();
return 0;

}

The char * argument "data" is used as an identifier for the context,
and it’s used by KTF_CONTEXT_GET and KTF_CONTEXT_FIND to find a pointer
to the right context object. KTF_CONTEXT_FIND returns a pointer to the whole
struct, in this case a struct my_ctx, while KTF_CONTEXT_FIND returns a
pointer to the struct ktf_context object within. The latter macro is used
for cleanup together with KTF_CONTEXT_REMOVE, which should be called in
the exit function of the test suite. If this is not done, the module will be kept
in use after the test suite has finished execution, giving the following error
message when trying to rmmod it: rmmod: ERROR: Module module_name
is in use.

We will finish of this chapter with a full example of how contexts can
be used:

#include <linux/module.h>
#include "ktf.h"

MODULE_LICENSE("GPL");

KTF_INIT();

struct my_ctx {
struct ktf_context k;
int counter;

};

static struct my_ctx some_ctx = { .counter = 1 };

TEST(simple, t1)
{

struct my_ctx *data_ctx = KTF_CONTEXT_GET("data", struct
my_ctx);

struct my_ctx *no_ctx = KTF_CONTEXT_GET("invalid", struct
my_ctx);

EXPECT_TRUE(data_ctx != NULL);
EXPECT_TRUE(data_ctx->counter == 1);
data_ctx->counter++;

EXPECT_TRUE(no_ctx == NULL);
}

TEST(simple, t2)
{

struct my_ctx *data_ctx = KTF_CONTEXT_GET("data", struct
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my_ctx);
EXPECT_TRUE(data_ctx->counter == 2);
data_ctx->counter += 3;

}

TEST(simple, t3)
{

struct my_ctx *data_ctx = KTF_CONTEXT_GET("data", struct
my_ctx);

EXPECT_TRUE(data_ctx->counter == 5);
}

static void add_tests(void)
{

KTF_CONTEXT_ADD(&some_ctx.k, "data");

ADD_TEST(t1);
ADD_TEST(t2);
ADD_TEST(t3);

}

static int __init context_test_init(void)
{

add_tests();
return 0;

}
static void __exit context_test_exit(void)
{

struct ktf_context *pctx = KTF_CONTEXT_FIND("data");
KTF_CONTEXT_REMOVE(pctx);

KTF_CLEANUP();
}

module_init(context_test_init);
module_exit(context_test_exit);
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Chapter 6

Converting test_xarray by
script

In the following chapter we will explore the test_xarray.c file and see
how it’s structured. We will then discuss how we can modify the file to
make it work within the Kernel Test Framework. Once that is done, we
will take a look at how we can automate the conversion process by using a
Python script.

6.1 Introduction

XArray [43] [63][67] [66] [64] is a kernel data structure that attempts to
provide the convenience of a resizeable array, but with more features and
better performance on multiple areas. This includes being cache-friendly,
provide efficient dynamic resizing and enable lookups without locking.
The underlying data structure is based on the radix tree data structure, but
with a new interface [63]; it essentially works like an array of pointers.

The XArray type offers two APIs: the normal API and the advanced
API. The former is simpler and easier to use, whereas the latter offers more
flexibility and better performance. The advanced API also requires the user
to handle locking manually, which is handled automatically by the normal
API.

6.2 Core functions and macros

There are two ways to create and initialize a new XArray, either by
static or dynamic allocation; use DEFINE_XARRAY for static allocation or
xa_init for dynamic allocation. To use the advanced API, the XA_STATE or
XA_STATE_ORDER macro should also be used to create and initialize a struct
xa_state. This helper data structure will contain both the XArray itself and
several other fields used to improve the efficiency of use.

For storing data, the xa_store function stores the new entry and returns
the old element if it exists. To only insert an entry if the index is unused, use
xa_insert instead as it returns -EEXIST if the index is non-empty. xa_alloc
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can be used instead to store an entry at an unused index. Deletion can be
done by a call to xa_erase or to xa_store with a NULL pointer as data.
Retrieving an entry can be done with xa_load.

Finally, iteration is done with either xa_for_each, xa_find or
xa_find_after. xa_extract can be used to convert the XArray into an
ordinary array, and xa_destroy removes all entries. Memory allocated in
the entries should be manually freed before calling xa_destroy to avoid
memory leaks.

6.3 A look at the test_xarray.c file

Before we discuss exactly how to modify the file, we will take a brief look
at how it’s written. One of the first things of notice is the clean structure,
as if the file was written for a test framework. This is due to the following
reasons: 1) each function specializes on one or a few specific features to test,
with little setup or teardown code required; 2) assertion logic is handled by
an assertion macro instead of using if-tests together with counters and print
statements; 3) the function parameters are exactly the same for nearly every
function, with a few exceptions; 4) the return value of the test functions
themselves are irrelevant; and 5) the test functions are independent and
called sequentially in the main function. All of these properties should
make it easier to adapt the file to KTF.

Execution begins in the xarray_checks() function, whose main job is to
call the test functions. The main function is shown in listing 6.1, although
most function calls are removed for clarity. The &array parameter is a
pointer to a statically allocated struct defined just above this function, and
the struct is used by most test function as a shared test object.

Listing 6.1: The main function of test_xarray.c
static int xarray_checks(void)
{

check_xa_err(&array);
check_xas_retry(&array);
...
check_store_range(&array);
check_store_iter(&array);

check_workingset(&array, 0);
check_workingset(&array, 64);
check_workingset(&array, 4096);

printk("XArray: %u of %u tests passed\n", tests_passed,
tests_run);

return (tests_run == tests_passed) ? 0 : -EINVAL;
}

Unlike several other test files found in the kernel, test_xarray.c
utilizes a single macro, XA_BUG_ON, for nearly every assertion statement in
the file; there are a few exceptions where kernel macros are used instead,
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but that is rare. The XA_BUG_ON macro is defined in the top of the file,
and is shown in listing 6.2. This macro takes a struct xarray *xa and
an assertion expression as parameters, and this information is used to
perform an assertion check, print debug information if the check fails, and
increment a few counters when needed. In that sense, the macro performs
a few of the core tasks of a testing framework, but in a short and consise
way.

Listing 6.2: Original definition of XA_BUG_ON
#undef XA_BUG_ON
#define XA_BUG_ON(xa, x) do { \

tests_run++; \
if (x) { \

printk("BUG at %s:%d\n", __func__, __LINE__); \
xa_dump(xa); \
dump_stack(); \

} else { \
tests_passed++; \

} \
} while (0)

To show an example of how the test functions can be structured, we
will look at the function check_xa_err. As we can see in listing 6.3, the
function consists entirely of assertions with state modifications done inside
them. This is how assertions and state modifications are done in the other
functions as well, although some of them also perform state modifications
outside the XA_BUG_ON calls as well.

Also worth mentioning is that the function signature is kept the same
for every test function except check_workingset and check_xa_alloc.
They are all defined as static noinline void, something we can take
advantage of later. They also take the same struct xarray *xa argument
as well. Consequently, there are several similarities between the functions
that can be used in regular expressions.

Listing 6.3: Example of a small test function.
static noinline void check_xa_err(struct xarray *xa)
{

XA_BUG_ON(xa, xa_err(xa_store_index(xa, 0, GFP_NOWAIT)) !=
0);

XA_BUG_ON(xa, xa_err(xa_erase(xa, 0)) != 0);
#ifndef __KERNEL__

/* The kernel does not fail GFP_NOWAIT allocations */
XA_BUG_ON(xa, xa_err(xa_store_index(xa, 1, GFP_NOWAIT)) !=

-ENOMEM);
XA_BUG_ON(xa, xa_err(xa_store_index(xa, 1, GFP_NOWAIT)) !=

-ENOMEM);
#endif

XA_BUG_ON(xa, xa_err(xa_store_index(xa, 1, GFP_KERNEL)) !=
0);

XA_BUG_ON(xa, xa_err(xa_store(xa, 1, xa_mk_value(0),
GFP_KERNEL)) != 0);
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XA_BUG_ON(xa, xa_err(xa_erase(xa, 1)) != 0);
}

6.4 How to convert the file

Now that we have an idea of how the test file is structured, we will discuss
the changes necessary to make the file work with KTF. As we will focus
on the main points of interest, there may be certain changes that won’t be
addressed here; these will be handled later.

6.4.1 Handling assertions

As mentioned in the previous section, the XA_BUG_ON macro is used for
nearly every assertion in the file. Clearly, this should ease the convertion of
assertions, as there are mainly one assertion pattern to worry about.

There are two ways of handling the XA_BUG_ON macro; we can either
keep the macro and replace its body, or we can replace all its occurences
instead. If we keep the macro, the whole body can be replaced with
a single KTF assertion, as the debug code within it is redundant when
using KTF. When the debug code is gone, the macro is no longer needed.
Consequently, we will go for the latter approach of replacing the macro
entirely. As for what to replace the macro calls with, EXPECT_FALSE
should be favored over ASSERT_FALSE since execution should continue if
an assertion fails.

6.4.2 Choosing functions to redefine with TEST

The next step is to decide which functions that should be redefined with
the TEST macro. The ideal situation would be to redefine every test
function using the macro, but this isn’t possible in the macros current state.
The main reason being that the macro doesn’t accept any user specified
parameters. This limitation is likely made because a well written test
function shouldn’t need any arguments; any additional data should be
provided by a fixture or context instead.

Luckily, most test functions in this file only take a struct xarray *xa
as the only argument. This pointer can easily be provided by a context,
which solves this problem for most functions.

There are functions with unique parameter lists that aren’t good candid-
ates for this solution, mainly helper functions and the check_workingset
function. Although the extra parameters could be provided by a context,
this is neither a scalable solution nor how a context should be used. Con-
sequently, there are some functions that aren’t suited for the TEST macro.
Subsection 6.4.5 will provide a more detailed discussion of how these ex-
ceptions can be handled.

Another requirement for using the TEST macro is that the return type of
the function must be void. Again, this requirement is met for most of the
test functions, except the helper functions. Test functions that meet both
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requirements can be redefined with TEST, while the rest of the functions
should not. This includes every test function called in listing 6.1, with
check_workingset as the only exception.

6.4.3 Similarities between test functions

There are some additional similarities between the test functions that
should be mentioned. For example, all functions defined in this file
are static, many of them are also noinline, and every function that
is not a helper returns void. The functions also share the same check_
prefix, and all but two of them take struct xarray *xa as the only
argument; the exceptions are check_xa_alloc that takes no arguments, and
check_workingset that takes two.

6.4.4 Letting helper functions use EXPECT_FALSE

As we concluded with in subsection 6.4.1, the assertion statements will be
replaced with calls to EXPECT_FALSE. However, this macro only works if it
has access to a struct ktf_test *self. This pointer is provided by the
TEST macro, and will consequently not be accessible in the helper functions
by default. To solve this problem, every non-TEST function should receive
this as an extra parameter.

6.4.5 Handling unique parameter lists

As we discussed in subsection 6.4.2, there are a few test functions that differ
from the majority. check_workingset is the most notable one, and we will
thus discuss how it should be handled.

The main problem with this function is its additional parameter, as
we still want to redefine this function like the other ones. In addition to
the extra argument, there are also three calls to this function, each with a
different integer as argument. As TEST can’t take extra arguments, we must
find a workaround.

One potential solution is to create a dummy TEST function containing
all three function calls. As long as we add the extra context code inside
it, this solution could work. The extra struct ktf_test *self parameter
must still be added to the old function, but that shouldn’t be a problem.
However, a disadvantage with this solution is that if one of the function
calls fail when running the test suite, we won’t which of them it was.

Another solution is to create one dummy TEST function for each of the
three function calls. Each dummy could share the name of the original
function, but with a numeric suffix at the end. This solution would give us
the benefits of the previous solution, in addition to better output from KTF.
The main drawback is the lack of scalability and the increased size of the
code. With only three extra test cases, however, this solution will suffice.
Listing 6.4 shows how this could be done for one of these calls.
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Listing 6.4: Potential solution for handling extra arguments to test
functions

TEST(test_xarray_rewrite, check_workingset_3_) {
struct array_context *actx = KTF_CONTEXT_GET("array",

struct array_context);
struct xarray *xa = actx->xa;

check_workingset(self, xa, 4096);
}

static noinline void check_xa_alloc(void) {
...
ADD_TEST(check_workingset_3_);
...

}

6.5 Introducing the conversion script

Now that we know what to change, we will see how a Python script can be
used to perform the changes for us. The goal of this approach is to examine
if this approach can speed up the conversion process. Ideally, the script
should be capable of fully converting the file, given the right parameters.
If not, it should at least be able to execute some of the steps, to reduce the
amount of manual editing required.

6.5.1 The three iterations of the script

The script underwent three iterations before reaching its final form. The
first iteration consisted entirely of regular expressions written for sed [56],
a tool used for transforming and filtering text. Initially, the idea was to use
this tool to speed up the conversion process by using regular expressions
for most of the modifications; the few remaining modifications could then
be done manually. This appeared like a suitable approach, mainly due to
the many repeatable patterns in the file. Several single-line modifications
also showed promising results for this approach, until multiline patterns
were encountered. Although sed does have some support for multi-line
editing, its cumbersome way of handling this task led to a new attempt in
Python instead.

The second iteration was similar to the first: the plan was once again
to use regular expressions for most of the conversion, and use manual
editing for the last part. To improve the structure of the script the regular
expressions were placed into functions, and a small amount of additional
logic were added as well. Initially no additional state was stored, so certain
subregexes had to be run multiple times to get the desired result; one
example is the regular expression used for finding all static functions in
the file. As additional state and logic was introduced to better accomodate
this, the limitations of a pure regex approach grew clearer. As a result of
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this, a third iteration was initiated.
To better handle the limitations of the previous solution, the new

Converter class was introduced. Initially, the class only consisted of the
previously used regex functions and some extra state related to function
names in the test file. As already mentioned, certain regular expressions
were used multiple times in other regular expressions, to find information
relevant for multiple tasks; this could now be done once in the constructor
of the class and be stored for later. However, this solution also turned out
to be insufficent, due to difficulties in distinguishing test functions from
helper functions. Therefore, the class was changed to provide this and
other information as parameters instead.

As the class gradually received more parameters, the script became
better suited to handle other test files as well. This increased generality
also changed the goal of the script; the script should be able to handle most
test files with a certain structure, and not just test_xarray.c. And if the
script can’t convert the whole file, it should be able to perform at least some
of the process.

6.5.2 Class Converter

The class revolves around three main components: a set of data describing
the desired transformations, a set of regular expressions, and a set of format
strings. The data are provided by the user in the form of a dictionary - a
Hash Map in other programming languages - as one of the parameters to
the contructor. The contents of this parameter is then stored in the object
for future use. The other two components are built into the class and are
used by the its methods. These methods must be called manually by the
user, and it’s required for the class to modify the test file.

Most of the methods follow a three-step process for modifying the test
file. First, one or more format strings are retrieved, depending on the
complexity of the method. These strings are stored in the class and they
are used for code generation. Second, the format strings are filled out with
data that the user provided earlier; the result is one or more pieces of code
that will inserted into the test file next. Third, a regular expressions is
retrieved from a dictionary of regular expressions in the class. This regular
expression is then used to replace a pattern in the test file with the new
code.

Each method that is called modifies the same internal representation of
the test file. This string is set in the beginning of the constructor and it
will contain the converted test file once all the desired methods have been
called. The result method must be called last to write this string to the
specified output file. We will see an example of how to use the class after
the data parameter has been explained.

There are currently 13 fields in the data dictionary that are supported;
these fields are all shown and explained in the list below. Most of the
fields are optional, and how many fields to fill depends on how much
work the user wants the script to do. Some of the fields also have default
values associated to them. For example, the "init_code" field that is
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used to specify initialization code for KTF have a default value. Unless
the user wants to provide additional setup code for contexts or fixtures,
this field should be ignored; the default value contains the setup code
required. Several fields are used directly in regular expressions and require
the substring \g<1> to be present. These cases are explicitly mentioned.

• "test_functions": The string provided here should contain the names
of all test functions in the file. This does not include helper functions
that should be kept as they are. The functions named in this string
can later be redefined to KTF TEST functions. Each name is separated
by whitespace.

• "init_code": The default value of this field a call to KTF_INIT() before
the main function. If any additional setup code is required, such as
creating a new context, this field can be used. Note that KTF_INIT()
must still be called outside the main function as part of the multiline
string. The substring \g<1> must also be present, as it is used to
represent the signature of the main function.

• "exit_code": Like the previous field, the default value is good enough
unless additional cleanup code is required. If the previous field was
specified, this field should most likely be used as well. The minimum
code required here is a call to KTF_CLEANUP(). This string should
begin with \g<1>, which represents the signature of the exit function.

• "include_code": This field is used for the header inclusion and should
be left empty in most cases. The default value is the inclusion of
the KTF header file. This string should begin with \g<1>, which
represents the include statement matched by the regex.

• "new_types": The use case for this field is to specify new types used
by KTF. New types are required when working with contexts. Unless
new types are required, this field should be ignored. The string stored
here should begin with the substring \g<1>, which represents the
code matched with the regex.

• "boilerplate_code": The code specified here is added to the beginning
of every function named in the "test_functions" field. One use case is
when adding context code to every test function. This string should
begin with \g<1>, which represents the signature of the matched
function.

• "test_suite_name": The name entered here is used by the TEST macro
as the name of the test suite. If this field is left empty, the name of the
initialization function is used instead.

• "context_args": The string entered here should contain the paramet-
ers of functions that should be redefined with TEST. This field is used
if either 1) a set of common arguments should be supplied by a con-
text instead, or 2) if the parameters should be removed. For ex-
ample, to target functions with struct xarray *xa or void as their
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only parameter, use the string "struct xarray [*]xa|void". If this
is not specified, functions with these parameters will be ignored when
functions are redefined with TEST.

• "common_call_args": Serves the same purpose as the previous
field, except that this is used to specify the argument sent to the
function, rather than the parameter signature. For the example under
"context_args", the value entered here could be "&array".

• "extra_dummy_args_call": This field is used in cases where dummy
functions are created to wrap function calls. The value specified here
is used in the wrapped function call.

• "blacklist": The list of strings entered here is used to specify functions
that should not be redefined with the TEST macro. This field is mainly
aimed at helper functions or functions with unique parameter lists.

• "replacements": This field is used to replace code patterns in the test
file with other code patterns. The main use case is to replace assertion
patterns with KTF assertions. The value of this field is a list of tuples,
where each tuple contains two regex strings.

• "should_add_new_main": Set this field to the boolean value True if
a new main function should be defined. One use case for this field
is when the test file only contains a single function, or if the main
function contains test code.

Most of the fields mentioned above have a corresponding method that
must be called manually. The reason for this choice is to let the user choose
exactly which parts of the conversion process that should be automated.
Because several fields have a default value that the user may want to use,
the user shouldn’t need to fill these fields in order to have their methods
called.

6.6 Using the conversion script

The parameters and methods calls used for converting test_xarray.c can
be found in the Python file convert_wrapper_xarray.py in the Github
repository [7].

6.7 Summary

In this chapter we have focused on conversion of test_xarray.c. The
data structure tested in the file was briefly introduced, along with some
of its related functions and macros. We continued by discussing the
structure of the test file, where we identified several features that can make
a scripted conversion viable. These features included common parameter
lists between the functions, a lack of return values, and the use of a
single assertion mechanism. This information was used in the following

55



discussion about how to make the file compatible with KTF. The chapter
was ended by introducing the conversion script and how it was used to
convert the test file.

The following chapter will focus on the conversion of test_rhashtable.c.
This test file has an entirely different structure that will be converted in
a manual way. The results of the conversion of test_xarray.c will be
presented and discussed in chapter 8.
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Chapter 7

Converting test_rhashtable
manually

7.1 Introduction

The rhashtable [62] [55] is a kernel data structure that we briefly introduced
in section 5.2. As mentioned earlier, the struct rhashtable type serves
as a generic and relativistic hash table, with automatic resizing and
concurrency support. Therefore, the data structure bears some resemblance
to the hash tables found in other programming languages, although the
implementation is tailored for use in the kernel.

One of the differences between rhashtables and hash tables in other
contexts, is the use of the Read-Copy Update (RCU) [32] mechanism for
concurrency. RCU is an alternative to the more traditional read-write locks,
and it allows a rhashtable to be read even while it’s being resized [55]. A
rhashtable consists of an array of hash buckets, where each hash bucket is a
linked lists of data elements.

7.2 Core functions and macros

In section 5.2.1 we saw how to setup a rhashtable with default values for
most of the options. In this section we will take a quick look at some of the
most important functions for this data structure.

To create and initialize a new rhashtable, first define an empty struct
rhashtable and a filled struct rhashtable_params as seen in listing 7.1.
Most of the fields in the parameter struct are optional, but the following
three are required: head_offset, key_offset and key_len. Next, call the
function rhashtable_init with a pointer to the rhashtable and another
pointer to the parameter struct. The table can later be destroyed with
rhashtable_destroy, or with rhashtable_free_and_destroy if memory
needs to be manually released.

The rhashtable is capable of storing any type of struct, given that the
type contains at least a struct rhash_head and a key field. This also means
that the user can provide custom hashing or object comparison functions,
by using the parameter struct.
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Listing 7.1: A minimal way to create and destroy a rhashtable
struct my_data {

int data;
};

struct object {
int key;
struct rhash_head head;
struct my_data data;

};

int main(void)
{

struct rhashtable my_table;
struct rhashtable_params rht_params = {

.head_offset = offsetof(struct object, head),

.key_offset = offsetof(struct object, key),

.key_len = sizeof(int),
};
int success = rhashtable_init(&my_table, &rht_params);
..

}

There are several functions available for inserting data into the table,
such as rhashtable_lookup_get_insert_fast, rhashtable_lookup_insert_fast
and rhashtable_insert_fast. Lookup can be done with rhashtable_lookup_fast,
and removal with rhashtable_remove_fast.

Iteration over all the objects in the table requires an additional data
structure, struct rhashtable_iter, as well as the usage of up to six differ-
ent functions: rhashtable_walk_enter, rhashtable_walk_start_check,
rhashtable_walk_start, rhashtable_walk_next, rhashtable_walk_stop
and rhashtable_walk_exit.

There’s also a struct rhltable type with many of the same features;
the main difference is the added support for storing multiple elements with
the same key.

7.3 A look at the test_rhashtable.c file

The main function of this module is quite different from the one we
saw in test_xarray.c. Instead of a sequence of calls to independent
test functions, this main function contains a mix of initialization code,
cleanup, calls to test functions, error counting and print statements. Several
variables are created, memory is allocated and parameters are set before the
first assertion construct is encountered: an if-test that returns a negative
value upon failure. This is how most assertions are done in this file; an
if-test is used for the assertion check, while its body can contain anything
from a single return statement to a combination of memory deallocation,
print statements, error counting and control flow statements.

Following this initial if-test is the first of several for-loops. The number
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of iterations for these loops are controlled by static variables set in the
beginning of the file. These variables are tied to the Linux module system
through the use of module_param and MODULE_PARM_DESC, allowing the user
to set their values when inserting the modules into the kernel. In constrast,
test_xarray.c did not use this feature of the module system.

The body of the first for-loop contains several elements that could
have been separated into several different functions. At the beginning of
every iteration, the same struct rhashtable object is reinitialized with
rhashtable_init, before it’s sent as parameter the local test function
test_rhashtable. Finally, rhashtable_destroy is used for cleanup before
the next iteration of the loop. A better way to handle this logic
using KTF features would have been to create test_rhashtable as an
independent test function, move the setup and cleanup code inside a
fixture, and provide the last argument in the function call through a context
instead. This solution would provide a smaller main function, and make
test_rhashtable more independent from the rest of the file. The contents
and structure of test_rhashtable and similar functions will be discussed
later.

Another characteristic of the error handling is that failures are reported
by calling a print function; in this case pr_warn is used. Then a negative
value is returned, preventing the test file from executing any more tests.
A KTF solution here would be to use either ASSERT_TRUE or ASSERT_FALSE
for this purpose, or the equivalent EXPECT_* variant if execution should
continue upon failure. These solutions would provide the same benefits
with less code, in addition to error counting and more detailed output.

Following the loop, more memory is managed, with calls to two test
functions inbetween. This leads to the a pair of loops that are responsible
to starting and stopping thread-related test code. The last few lines
are used for cleanup tasks and a call to the final test function. This
approach to writing test code is fundamentally different to the code found
in test_xarray.c.

There are in total 11 other functions in addition to the main one. Most
of these are not called from main, test_rht_init, but rather from the
ones mentioned earlier in addition to a few others not mentioned. Also,
some of these perform both initialization and cleanup code, while other do
not. Additonally, the number of lines in a function vary widely, ranging
from 20 lines at the shortest to over 150 lines at the longest. Just like the
main function, these use a combination of if tests, debug printing, goto
statements and return values in order to communication tests passing or
failing.

Although this approach is quite different from the way testing is done
with a unit testing framework, it is understandable that this is the way the
module is written. At the time this test module was written, a unit testing
framework in kernel space was lacking. Consequently, the authors of the
test file had to create their own way of testing their code. With the presence
of KTF and other similar frameworks, this could potentially change.
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7.4 Converting to KTF

Unlike test_xarray.c that we looked at in the previous chapter,
test_rhashtable.c has a structure that makes it less suited for a scripted
conversion. There are parts of the conversion that can be scripted, such as
the addition of boilerplate KTF code; however, there are several problems
with the file that need to be dealt with manually. For example, the sequen-
tial nature of the test code is an issue for the KTF TEST macro. When KTF
calls its test functions, the execution order of TEST functions are currently
not the same as the order functions are added with the ADD_TEST. Another
problem is that the functions in this file have unique parameter lists that
can be difficult to deal with using the current KTF features. A third chal-
lenge is the many different ways assertions are handled. Hence, a manual
conversion is preferable.

In this section we will discuss how this test file will be converted. As
there are more patterns to handle here than in the previous test file, we will
be looking at more special cases. This section will also be more technical
than the discussions in the previous chapter.

7.4.1 Converting assertions

One of the main differences from the xarray test file is the lack of explicit
assertion mechanisms. As mentioned in the previous section, assertions
in this test file are mainly handled through if-tests, although the bodies
of these tests vary from case to case; failures are handled through either
a return, continue, break or goto statement. These statements are
often combined with either print-statements, error-counting or memory
deallocation. In some of the cases we can replace the if-tests and their
bodies with single calls to KTF assertions; in other cases we just replace
parts of the if-test body. In effect these cases must be dealt with on a case-
to-case basis, although we will categorize them and discuss them below.

If-tests with return

One of the most commonly found assertion patterns in this file, is an if-
test that returns if the expression evaluates to true. This pattern can be
found in two variants: one with a return value and another variant without
it. Which assertion macro to replace the if-test with depends on the type
of data that is tested, as well as how a failure should be handled. For a
compound expression such as the one seen in listing 7.2, ASSERT_FALSE
would have been the best fit if no value was returned. In the example,
however, a value is returned, a case that was not yet covered by the
existing KTF assertions when the conversion was done. For this and several
similar cases, an ASSERT_FALSE_RETVAL variant was created and used, and
it functions the same way as the original ASSERT_FALSE statement, except
for the additional return value argument. This case can thus be replaced by
ASSERT_FALSE_RETVAL(expected && !obj, -ENOENT);.
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Listing 7.2: One of the most common assertion pattern in the test file.
if (expected && !obj) {

pr_warn("Test failed: Could not find key %u\n", key.id);
return -ENOENT;

}

Print statements within and outside if-tests

Print statements should generally be removed when using KTF. However,
some of the print statements have calls to test functions as one of their
arguments. In these cases, the function calls should be kept while the print
statements themselves are removed. The function calls that are kept should
then be wrapped inside one of the EXPECT_* macros, to improve the output
from KTF. The arguments to the print statements that have side-effects may
be kept or removed, depending on their purpose.

Debug statements and if-tests

This category refers to statements or if-tests whose only purpose is to help
debugging and error reporting. One example is an if-test that increments
an error counter if the test passes; the error counter is then printed at a later
stage to report the overall status of the executed tests. As KTF already have
built-in features for this, these cases can usually be removed straight away.

If-tests with a break, continue or goto statement

As it was mentioned in subsection 7.4.1, assertions that call break or
continue upon failure was added to the framework to better handle these
assertion patterns; the goto variant was already present and was therefore
not added. In all three cases, the if-statement can be replaced with either a
ASSERT_TRUE_* or ASSERT_FALSE_*, where the * is substituted with either
CONT, BREAK or GOTO. The expression in the if-test is used as the first
argument to one of these macros, and a label is also supplied for the goto
cases. These three cases plus the RETVAL one mentioned earlier cover the
majority of assertions statements that was added to this file. There were
also some cases where the plain ASSERT_TRUE and ASSERT_FALSE were used,
but those were few.

If-tests with additional logic

There are some if-tests that act as assertions, that cannot be replaced with
KTF assertions in a clean way. These tests have additional logic that must
be kept for the test file to function correctly, often related to memory
management. There are at least two ways we can handle this situation:
we can either keep the if-test as it is and add an EXPECT_* assertion within
it, or we can replace the if-test with a GOTO assertion and move logic
further down. The latter approach would require a goto-label with an extra
continue or break above it, to avoid the code from being run in normal
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circumstances. As this is messy and error-prone, the other solution appear
to be the better one. Listing 7.4.1 shows an example of the latter solution,
where EXPECT_INT_GE was added.

if (err < 0) {
EXPECT_INT_GE(err, 0);
vfree(tdata);
vfree(objs);
return;

}

7.4.2 BUG_ON

There was only a single use of this macro in the entire file, BUG_ON(!obj);.
As it is used as a standalone statement, it was initially replaced
with EXPECT_TRUE(obj != NULL);; however, this was later changed to
ASSERT_TRUE(obj != NULL); after looking at the definition of the BUG_ON
macro. According to the comment above its definition, its use appear to
be strongly discouraged unless there is no other way to handle a potential
failure. The exact behavior of BUG_ON depends on the kernel configura-
tion used, but it will often generate a stack dump in the logs and require
a reboot of the system. To avoid this behavior, this statement should be
replaced with ASSERT_TRUE.

7.4.3 WARN

How calls to WARN should be handled depends on the context of its use. If it
is used as a standalone statement, EXPECT_FALSE should be the best choice.
When it is used as the expression of an if-test, one of the ASSERT_* variants
should be a better fit; exactly which assertion macro to choose depends on
what control flow statements that are used in the body of the if-test. Like
the if-test assertions, the use of this macro comes in several variants, and
the context should be considered to find the best fit.

7.4.4 Converting function definitions

Ideally we would like as many functions as possible to be defined using
the TEST macro, to get an individual assertion count and status for every
single function. In the case of this module, however, it would be difficult to
to do this with more than one single function, without larger rewriting of
the flow and structure. One of the reasons for this is the highly sequential
nature of the module. As earlier discussed, the main function does not only
call the other test functions, it also performs quite a bit of initialization and
cleanup as well. Furthermore, it appears like the order of the function calls
does matter because of this structure, while at the same time, functions
registered with the ADD_TEST macro are not necessarily run in the same
order as they are added. This can cause problems if some of the functions
are run in a different order than intended, which is thus an argument
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against redefining functions with the TEST macro. On the other hand, KTF
assertions require access to a ktf_test *self in order to work, and this
pointer is made accessible by the TEST macro; thus, it is necessary to have
at least one TEST function defined for KTF assertions to work. One way to
solve this issue is redefine the main function with the macro, while the rest
of the functions receive the ktf_test *self pointer through an additional
parameter. This solution also requires that a dummy function is created
and used as the argument to the module_init call; this dummy function is
then responsible for calling ADD_TEST on the previous main function, and
for creating the necessary context.

Nevertheless, a drawback of this solution is that we don’t get the same
detailed feedback as we did with test_xarray.c, although it will have to
do.

7.4.5 Adding self pointer to function calls

As mentioned multiple times earlier, all non-TEST functions will need
access to a ktf_test *self parameter to use KTF assertions. This
parameter must thus be added to all functions that use KTF features; the
self-pointer must also be added to the calls to said functions.

7.4.6 Adding self pointer to thread function

There is one function where the technique explained above will not work:
threadfunc. This is a function that will be executed in several, parallell
kernel threads at once, and these threads are spawned through calls to
the kthread_run function. A quick and easy way to provide the ktf_test
*self parameter to these threads is by using a context. As we are not going
to change the memory address stored in the pointer, this approach should
work. The context can be created in the dummy main function before
the call to ADD_TEST, and later be teared down in the exit function of the
module.

7.4.7 Adding initialization and cleanup code

Finally, the setup and teardown code for KTF must be added. As we have
discussed earlier, the minimal code required is the same across test suites.
In this file we will use a context as well, so we will also need to define a new
struct type, create a static instance of it, and add it with KTF_CONTEXT_ADD
in the main function. For cleanup we also add calls to KTF_CONTEXT_FIND
and KTF_CONTEXT_REMOVE in the exit function, in addition to the mandatory
KTF_CLEANUP call.

7.5 Extending KTF with new assertions

During the conversion of this file, a few new macros was proposed to be
added to the framework. These macros were added to cover assertion
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patterns in the test_rhashtable.c file that weren’t already covered by
KTF.

An example of one such assertion pattern is an if-test with a continue
statement in its body. In order to replace this construct with one of the
existing KTF macros, the macro would have to perform a continue if
the assertion fails. Although there was an assertion macro available that
could do that, the macro only worked for integer comparisons. Con-
sequently, it couldn’t handle general expressions, so ASSERT_TRUE_CONT
and ASSERT_FALSE_CONT were created. This is also the reason for creating
the other four macros as well; variants of these macros also existed, but
only for specific use cases like integer comparisons.

• ASSERT_TRUE_RETVAL

• ASSERT_FALSE_RETVAL

• ASSERT_TRUE_CONT

• ASSERT_FALSE_CONT

• ASSERT_TRUE_BREAK

• ASSERT_FALSE_BREAK

7.6 Converting two smaller test files

We will now take a look at two smaller test files to see how this category of
test files work with the framework. As these files are considerably shorter
than the two previous files, each file will be given a subsection each. The
first file is converted manually, while the second file is converted both
manually and by the script.

7.6.1 lib/test_string.c

test_string.c is another test file found in the
lib directory of the kernel source tree. Its purpose is to test four versions of
memset family of functions: memset, memset16, memset32 and memset64. The
file contains three test functions and a main function, with a total length
of 142 lines. Neither of its functions take any parameters, and the three
test functions return an integer to report the test result. The results of the
function calls are checked in the main function, and the two print functions
pr_info and pr_crit are used for output to the user.

The body of each test function begins with a few variable declarations
and a call to kmalloc, followed by an if-test to check if the allocation
fails. The memory allocation is kept as it is, while the if-test and the
subsequent return statement is replaced with ASSERT_OK_ADDR(p). Next,
a double for-loop running for 256 * 256 iterations performs a call to memset
and then memset16/32/64, followed by another for-loop with three if-tests
and a goto-statement within each. All of these three if-tests are replaced
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with a ASSERT_FALSE_GOTO(<expression>, fail); statement each, where
<expression> is the original assertion expression and fail represents the
label that is jumped to upon failure. Following this label, located at the end
of the function, is a call to kfree and an if-test to determine what value to
return. We remove this last if-test and keep the kfree call.

We then finish the file by adding all the boilerplate KTF code that is
needed. Neither fixtures nor contexts are needed, so there are no need to
add code for that. The main function consists of calls to the test functions,
if-tests to check the results, and print statements to report the test results
to the user; All this code is replaced with three calls to ADD_TEST. The
signature of the three test functions are also replaced with calls to the KTF
TEST macro. Finally, as the file lacks an exit function, this is added at the end
of the file in order to call KTF_CLEANUP. When running the fully converted
test file, all three test functions passes in roughly half a second in total.

7.6.2 lib/test_sort.c

test_sort.c is another short test file located under the
lib directory in the kernel. The goal of the file is to test the sort function
made available in the linux/sort.h header. The test file itself is quite
small, containing only 50 lines of code, thus making it the shortest test file
encountered so far. The file was initially converted manually, but later a
fully scripted approach was also taken. Here the scripted approach will be
presented.

The test file consists of three functions: a main function containing
all the test code, a comparison function used by sort, and an empty exit
function. The main function first calls kmalloc_array to allocate memory
for an array; the function returns at this point if the allocation fails. Next,
the array is filled with test data before it’s sorted by the sort function.
Finally, a loop checks if every element in the array is smaller than the
following element. A jump to the end of the function is used if this
condition is false for any element.

Table 7.6.2 shows the Python code used to convert the script. The
parameter dictionary specifies that the main function test_sort_init
should be redefined to a KTF TEST function; the should_add_new_main is
consequently set to True to tell the script to add a new one. This is necessary
as KTF requires at least one TEST function to be defined, and this function
must then be registered with ADD_TEST from a new main function. The
name of the test suite is set to test_sort_rewrite, to match the name of
the test suite. The replacements field is used to convert the two return
statements to KTF assertions.

An object of the Converter class is then created with the dictionary as
one of its arguments. 6 methods are then called to include the KTF header
file, add the mandatory calls to KTF_INIT() and KTF_CLEANUP(), redefine
the main function, add a new main function, and finally replace return
statements with KTF assertions.

The resulting test file runs and succeeds without requiring any manual
editing.
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Table 7.1: The python code used to convert the file.

test_sort_rules_2 = {
"test_functions":
["test_sort_init"],

"test_suite_name": "test_sort_rewrite",

"blacklist": ["cmpint"],

"replacements": [
("return err;", "ASSERT_INT_EQ(err, 0);")

],

"should_add_new_main": True
}

state = Converter(full_source_path, full_target_path,
test_sort_rules_2, True)

state.add_include_code() \
.add_init_code_to_main() \
.add_exit_code() \
.convert_to_test_common_args() \
.use_replacements() \
.result()

7.7 Summary

In this chapter we have examined the test_rhashtable.c test file and
discussed how it can be converted to KTF manually. The chapter began
with a short description of the data structure and an introduction to how
it can be used. We continued with a description of the main function
in the test file. A few suggestions were proposed as to how the main
function could have been written differently with KTF. We also presented
information about how the file is structured, compared to test_xarray.c.
This section was followed by a technical discussion about how the test
file can be changed to work with KTF. The majority of the discussion was
related to how assertions should be handled. Unlike test_xarray.c, this
test file does not use any macros or functions to handle assertions; instead,
if-tests are often used together with other control-flow statements. Six new
macros to KTF were proposed, to cover assertion patterns that were not
covered by the existing KTF macros. We ended the chapter by discussing
the conversion of two smaller test file, test_string.c and test_sort.c.
The former was converted manually and the latter through both a scripted
and manual approach.

In the next chapter, we will present the results of the conversion of all
the four test files. We will also discuss the conversion process and the
current state of KTF, before we finally conclude the thesis.
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Chapter 8

Results, discussion and
conclusion

We will begin this chapter by summarizing the process so far. Then the
results of the project will be presented, followed by a discussion and
conclusion.

8.1 Summary

In chapter 3, we looked at some of the tools and frameworks used
for testing the Linux kernel today. This included frameworks that
automatically build and test new versions of the kernel as they are
released, like Linaro’s LKFT and Fuego. Avocado was another framework
mentioned that enables developers to write tests in Python or any other
language, as opposed to the more commonly used C and Bash languages
for writing kernel tests. Also mentioned were some of the test suites used
by developers and the two first frameworks mentioned above, as well as
the two unit testing frameworks KUnit and KTF, where the latter has been
the main focus of this thesis. This is by no means an extensive list of the
testing tools used today, but is meant to show some of the tools currently
available.

Chapter 4 explained the chosen approach and how to setup the
environment used in this project.

Chapter 5 introduced the Kernel Test Framework along with some of
its core features. We looked at some of the core features of the framework,
like contexts and fixtures, and several examples of their use.

In chapter 6 we looked at our first conversion of a kernel test file,
test_xarray.c. The chapter began with a brief introduction to the struct
xarray data structure and some its most important functions. The XArray
data structure can presented as a combination of a hashtable and a resizable
array of pointers.

Next, we saw how the test file had a clear structure, with the main
function consisting almost exclusively of calls to the test functions. These
functions in turn all took a single pointer argument each, making them
almost completely independent from each other. Each function also
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File name Number of lines (before) Approach Num. tests
test_xarray.c 1330 (1238) Scripted 21

test_rhashtable.c 772 (823) Manual 1
test_string.c 114 (142) Manual 3
test_sort.c 61 (51) Manual and Scripted 1

Table 8.1: Overview of the modified test files

focused on one specific aspect of the data structure it wanted to test. This
structure made the file straightforward to both read and understand.

Another feature of the test file was the use of a single assertion macro
for performing every test assertion with a few expections. This macro was
defined in the top of the file, and contained a fail test, an error counter and
printing of debug information upon failure of the test.

The combination of a clear structure and the use of a single assertion
macro meant that a scripted conversion was deemed to be possible. A
series of regular expressions was written in an attempt to convert the file to
KTF in a more efficient manner than manual conversion. This didn’t work
well, so a Python script was written instead. The goal of this script was
to ease the use of KTF for new users, given that the script could be made
general enough. Given the right parameters, the script was also capable of
adapting the test file to KTF.

In chapter 7, we moved our focus over to the next test file,
test_rhashtable.c. Like the previous chapter, it began with short intro-
duction to the struct rhashtable data structure and its main functions.
Following this was a discussion about the structure of the file and the
choices made during the process of conversion.

The script used for struct xarray was initially meant to be used for
this test file as well. However, the script turned out to be a unsuitable tool
for the task, due to the lack of structure of the test file. Therefore, a manual
conversion was done instead.

At the end of the chapter, we looked at the conversion of some smaller
test files. These test files were both shorter and quicker to convert than the
first two. As we have already discussed the process in detail, these test files
were described in a section each.

8.2 Results

In this project we have seen how existing kernel test files can be modified
to use the Kernel Test Framework. This conversion process was done by
both manual editing and by using a Python script. The test suites created
for each of the files all ran and completed, although the test_rhashtable
file didn’t pass all its tests. Table 8.2 shows the files modified. The numbers
inside parenthesis indicate the original size of each file.

The last column shows the number of times the KTF TEST macro was
used. The low number shown for test_rhashtable is not ideal, but is
caused by the way the file is structured. The KTF TEST macro currently
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Macro names
ASSERT_TRUE_RETVAL
ASSERT_FALSE_RETVAL
ASSERT_TRUE_CONT
ASSERT_FALSE_CONT
ASSERT_TRUE_BREAK
ASSERT_FALSE_BREAK

Table 8.2: New KTF macros proposed

does not support function arguments, which means that most functions
that heavily rely on arguments are difficult to convert to the macro.

In addition to the modified test files, the earlier mentioned Python
script was also created. The script in its current form has limited uses
for test files without a specific structure, but could still have some use for
simpler tasks. For test files with certain structure, the script can do more.

During this project, six new macros were proposed to be added to KTF,
presented in table 8.2.

Feedback to the authors of KTF was also given. This helped uncover
problems when installing or using the framework that the authors
themselves did not encounter. Feedback was also given about limitations of
the framework, and constructs that was difficult to handle with its current
features.

Although not the main focus in the project, chapter 3 also introduced
some of the testing tools currently in use. These were only briefly
described, partly due to a lack of documentation surrounding their
adoption.

8.3 Discussion

The following section will be used to discuss and evalute the findings so
far. We will begin with the conversion script before we proceed to discuss
KTF in general.

8.3.1 Conversion script

In chapter 6 we saw how the scripted conversion was executed. The goal
was to see if this approach could work and potentially ease the transition
to using the framework.

As the script was developed while analyzing the test_xarray.c file,
it was expected that the script should be able to fully convert this test
file. This expectation was also met when it turned out that the converted
test file was usable by KTF without requiring any manual editing at
all. Furthermore, nearly every function except the main, exit and helper
functions could be redefined with the TEST macro - although there were
one exception that required a workaround; every assertion had a KTF
equivalent; and additional arguments to the test functions could be
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supplied by using a context. Thus, the scripted conversion of this test file
can be considered a success.

Perhaps the main reason for why this approach works is because of
how test_xarray.c is structured. The TEST macro used for defining
test functions in KTF does not accept any parameters from the user.
Any parameters needed must instead be supplied using either a context,
fixture or global variable, requiring all test functions to share the exact
same parameter list. This is the case for nearly all test functions in
test_xarray.c. The pointer parameter that these functions take can be
accessed through a shared context, thus solving this problem for most of the
functions. Performing said changes through a script was straightforward
for this test file.

Another reason for why this approach works is that the test file uses
a single assertion macro for all but a few cases. Once again we have a
consistent pattern that is well suited for regex substitution and automation.

On the other hand, the script in its current form performs poorly when
used on the test_rhashtable.c file. This test file is in multiple aspects
quite different from test_xarray.c: The main function contains a mix
of setup code, calls to test functions and cleanup code, while the main
function of the previous test file only contained functin calls; most test
functions have unique lists that are difficult to replace with existing KTF
features; there are many different assertion patterns to handle, and few
of them are as simple as a single macro or function call. The mentioned
differences between test_xarray.c and test_rhashtable.c are just some
of reasons for why the latter file was converted manually.

It’s still worth mentioning that the script is capable of performing some
parts of the conversion of test_rhashtable.c; however, its usefulness for
this test file is far less than for test_xarray.c. For example, the script
can redefine the main function with the TEST macro, and add a new main
function in its place. The script can also add boilerplate KTF code, but this
is the limit of what it can do for this specific file.

The smallest of the four test files, test_sort.c, was converted both
manually and scripted to compare the two approaches. Although it’s small
size likely have an impact on the result, both approaches were roughly
equally fast. The few parameters required meant that little time was needed
to use the Conversion class to convert it. Performing the code changes
manually required roughly the same amount of writing, so the results were
similar. Still, the experiences with this test file is likely not representative
for larger test files and should be taken with a grain of salt.

The overall experience with the four test files shows that the scripted
approach works for at least some of the conversion process. The script
should be capable of adding at least the boilerplate KTF code to most
test files, given the assumption that it uses the Linux module system.
Whether a fully scripted conversion is possible depends on how the test file
is written; it worked for test_xarray.c, but not for test_rhashtable.c.
There is currently not enough data to determine whether a fully scripted
conversion is worth the time required compared to a semi-automatic
approach. As explained earlier, the script was developed while analysing
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test_xarray.c, and thus it is unclear how much time this approach will
require for other large test files. The smaller test_sort.c was converted
through both a manual and fully scripted approach, but it is too small
in size to give us a representative impression of the time required. Still,
by using the script to add boilerplate KTF code and using mostly default
values, some of the conversion can be automated without spending much
time on finding parameters or understanding the script. This combination
of scripted and manual conversion might be more useful for new users of
the framework than a fully scripted conversion.

8.3.2 Using KTF

The framework worked as expected for test_xarray.c. The structure
that made a fully scripted conversion possible, also meant that little
workaround was required to make the test file work with KTF. The one
challenge that had to be dealt with was the test function that took an
additional parameter compared to the other test functions. This function
was called three times from main, with a different second argument for
each call. The workaround consisted of creating three dummy functions
that would hold one function call each, solving the problem. Apart from
this detail, the test file is a good candidate for KTF.

The framework also worked well for the smaller test files described in
section 7.6. As none of the test functions required any arguments, they
could be redefined to KTF test functions straight away. This allowed KTF to
output the status for each test function individually, improving the output
quality for test_string.c. The conversion also reduced the number of
lines from 142 to 114 for this file, thus providing some simplication as
well. The conversion had less of an effect for test_sort.c due its single
test function. This also required a new main function to be defined as a
workaround, which explains why the length increased by 6 lines after the
conversion. The original assertions in both files mainly consisted of if-tests,
and they were thus simple to replace with KTF assertions.

Nevertheless, the framework provided fewer benefits for the less
structured test_rhashtable.c file from chapter 7. One of the reasons are
the unique argument lists of the functions. We saw in section 6.4.5 that there
are ways to circumvent this problem, by either using contexts, fixtures or
dummy functions. However, none of these solutions are ideal for this file,
as the test functions called from main all share the same initialization code.
In order to move these function calls into dummy TEST functions, most of
the shared variables and initialization code would need to be copied along
with the function calls. How much of the shared code to duplicate would
vary from function to function, but it would definitely increase the size of
the file and likely introduce new bugs to the already large test file.

This alternative solution would still have the benefits of splitting up the
main function into several smaller functions, and increase the number of
TEST functions for better KTF output. However, it was not done in this
project as the solution in chapter 7 lead to a more direct translation, with a
reduction in code size as an added benefit. The main disadvantage of the
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chosen solution is thus less KTF output due to the single TEST function.
Still, the conversion to KTF did provide several benefits to the

test_rhashtable.c file, despite the reduced amount of test output. First,
the framework provides test output that is consistent across test files.
Second, the KTF assertion statements provide more information about
the location and cause of failures than the previous solution did. Failed
assertions now show both the line number and the comparison that failed.
Third, by removing print statements and replacing multi-line constructs
with single-line assertions, the test file decreased in size by roughly 50 lines.

As it has been mentioned several times through this thesis, KTF in its
current form struggles with test functions that take parameters. This is a
design choice, as it can be argued that test functions shouldn’t take any
parameters; they should instead be independent and focus on one specific
task each. Although this point may be true for unit tests, the test files found
in the kernel source tree are not necessarily unit tests in the traditional
sense. Some of these test files may require a rewrite, or changes to the
framework, to get the most benefit from the framework. Still, as long as
there are at least one TEST function present, the framework will work and
give some output.

Finally, it should be mentioned that the tests are currently not executed
in the same order as they are registered with ADD_TEST. They are instead
ordered alphabetically and executed in that order. This did not appear to
cause any problems for test files converted so far, but it might affect the
result for files where the execution order of test functions does matter. This
is one area of improvement that was discovered and reported during the
project, and may change in the future.

8.3.3 KTF vs. other frameworks

There is currently an ongoing discussion on the Linux kernel mailing
lists about the KTF and KUnit frameworks. Both frameworks have been
introduced as the new framework for unit testing in the kernel, and it’s
currently unknown whether only one of them will survive or if both will
find their use.

As described in section 3.5 there are a number of test files in the kernel
that perform unit testing, but without the use of a common framework.
Had all these files been converted to either KTF or KUnit, these files
could possibly see more use and inspire other developers to write more
tests, as the developers wouldn’t need to create their own testing utilities
from scratch. Also, the use of a shared framework would make the test
files easier to read for other developers as well. The conversion process
described in chapter 7 is an example of how a common test framework can
reduce the number of lines and lessen the need for custom debug code.

Both KTF and KUnit provide similar features for writing tests. For
example, the macros used for creating test functions work in familiar ways,
and both frameworks have support for setup and teardown functions as
expected, although with some differences in the way they are registered.
It’s not unlikely that both frameworks present the tools necessary to write
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the same tests.
However, there is a distinct difference in how the tests are run by the

two frameworks. KTF runs its tests inside the kernel as kernel modules,
enabling the user to test a module against other parts of the kernel or the
hardware itself. As a faulty test can crash the entire kernel, this way of
testing is often done inside a virtual machine.

KUnit on the other hand runs its tests inside User Mode Linux as
mentioned in section 3.5.2. This approach lets the the user test in user space,
and without the need of a separate virtual machine. Although testing in
user space has it benefits, it also limits the access to hardware, while also
requiring more use of mocking than the previous approach. This can be
an advantage in cases where mocking and isolation are what we want, but
it’s also less suited for testing drivers or for testing code against specific
architectures.

There is also the third alternative of writing tests for one of the older
frameworks, like kselftest, instead of learning one of the former two. As
mentioned earlier, the tests written for kselftest are used by LKFT and
Fuego for their automated test runs. Also, kselftest should be more familiar
to kernel developers than KTF and KUnit, due to its age.

However, the goal of both KTF and KUnit is to provide better facilities
for performing white-box testing of the kernel. Although kselftest does
allow the user to write kernel mode tests, the focus of this framework has
still been testing from userspace. The kernel test feature was also added
near the end of this thesis, so this option wasn’t available until recently.
Therefore, KTF and KUnit appear to provide better facilities for this kind
of testing, due to their specialization on the area.

8.4 Conclusion

The goal of this thesis has been to convert Linux kernel test files to the
Kernel Test Framework, and evalute both the framework and the process.
The test files were converted in two ways: test_xarray.c and test_sort.c
were converted by a Python script developed for this purpose, while
test_rhashtable.c and test_string.c were edited manually.

The conversion process began with test_xarray.c. This test file was
fully converted by the script, with no manual editing required. As the
conversion script was developed while analyzing this test file, the positive
results was expected. Every test function received its own status lines in the
KTF output, and all the tests passed upon execution. The clean structure
of the file also made it well suited for KTF, as this is how the framework
is meant to be used. There was, however, one test function that required a
workaround solution in order to be converted, but overall the conversion
of test_xarray.c was considered a success.

The conversion of test_sort.c and test_string.c went equally well.
Every test function in both files were converted to KTF TEST functions, and
every assertion pattern had a corresponding KTF assertion. Consequently,
both test files worked well with KTF.
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The test_rhashtable.c file received less direct benefits from the
framework, as the structure of the file is different from what KTF expects.
Only a single function was redefined with the TEST macro, thus reducing
the amount of output that KTF provides. Larger changes to the file could
have improved compatibility with KTF, although this would have required
a major rewrite of the entire file. Still, the conversion to KTF did provide
some benefits to the file, such as consistent output across the four test files,
more information when assertions fail, and a reduction in the length of the
file.

We have seen that the conversion script is capable of either fully or
partly converting test files to KTF. How much of the conversion process
it can automate depends on the structure of the test files it is given.
As we discovered with test_xarray.c and test_sort.c, a fully scripted
conversion is possible if the input test file has a structure that works well
with KTF. However, finding all the right parameters for a fully scripted
approach takes time that could otherwise be spent on manual editing; there
is currently not enough data to determine if this approach is worth the
time required, compared to a semi-scripted conversion. Also, the lack of
structure in test_rhashtable.c made this test file unsuitable for a fully
scripted conversion. Overall, the script is likely best used as part of a semi-
scripted conversion, where the script adds boilerplate KTF code to the test
file, while the rest of the conversion is done manually.

KTF in its current form worked for every test file that was converted,
but the amount of output from the framework depended on the structure
of the test files. There are certain structural patterns that the framework
struggles with, as we have seen several examples of. Thus, KTF enforces a
certain way of writing test files in order to get the most benefit from using
the framework. However, this is also one of the reasons for using a test
framework; it helps us structure our tests in a good way. As such, it is not
surprising that test_rhashtable.c received less benefit of the framework.
From the results gained so far, the framework has met the needs of most of
the converted test files.

In this thesis we have also taken a brief look at some of the other
test frameworks that currently exist. We have briefly discussed some
of the similarities and differences between KTF and another emerging
framework, KUnit. Although they both provide similar features for unit
testing kernel code, they execute their tests in two different environments;
KTF compiles tests into kernel modules that are executed in kernel space,
while KUnit runs its tests inside User Mode Linux (UML). Thus, the former
framework has a larger emphasis on how the test code iteracts with a live
kernel, while the latter framework has more emphasis on mocking and
testing code in isolation from its dependencies. It is currently too early
to conclude whether one of the frameworks will win or if both find their
own niche.

During this project several contributions have been made to KTF. By
installing the framework in a different environment than it was developed,
problems previously unknown to its authors have been encountered,
reported and fixed. Furthermore, the use of the framework has generated
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feedback about weaknesses and areas of improvement. If the conversion
script is further developed, it can hopefully be used to speed up conversion
of other test files. New macros were also developed to cover assertion
patterns that were previouly lacking support. Finally, the converted test
files can serve as examples of how the framework can be used.

8.5 Limitations and further work

The script used in chapter 6 should be seen as a prototype of how a
conversion script could be made and should not be considered a finished
product. Although it works for the test_xarray.c file, it was also made
with this specific file in mind. Consequently, the script is best suited for
test files with the same kind of structure. Hopefully it’s general enough to
also be used on other test files as well, given a certain amount of manual
analysis on the target test files beforehand. Regardless, the script could
certainly be extended to support more test files.

The test files converted so far shows how KTF can be used on kernel test
files, and maybe it inspires others to continue the conversion process. There
are plenty of other test files around the kernel that may be good candidates
for this framework, even if they were not mentioned in this thesis.

As a framework for this area is now available, more test files should
be written to detect more kernel bugs. The support for Test-Driven
Development should also be better with this framework, and perhaps
this approach will aid in detecting more bugs at an earlier stage. The
framework can also be used to write tests after a bug has been fixed, to
ensure that the bug does not reoccur later.

There are several features of the framework that have neither been
mentioned nor used in this thesis, as the test files that were converted
did not need them. Using these features on other test files may provide
additional benefits to kernel test files.

The framework is currently installed out-of-tree, and bringing it into the
kernel source tree may increase its use due to better availability. The extra
steps needed in order to setup the framework may discourage developers
from using the framework.

Furthermore, several other testing frameworks have been mentioned,
but without being used. As such, this thesis is likely favoured in direction
of KTF, since this is the only test framework that was put to the test. An
idea for future research could be the use and evaluation of other kernel test
frameworks, with comparisons to KTF.
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