
A look at how a network map is
affecting resources of the nodes it

is mapping

Using the Emerald programming
language

Thomas Kristiansen

Thesis submitted for the degree of
Master in Programming and Networks

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2019

A look at how a network
map is affecting resources of

the nodes it is mapping

Using the Emerald programming
language

Thomas Kristiansen

© 2019 Thomas Kristiansen

A look at how a network map is affecting resources of the nodes it is
mapping

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

In this thesis, I have written a program in the Emerald programming
language, that maps out the internet nodes of the network where the
Emerald program is running. The program replicates itself onto all
available nodes and then monitors the status of these nodes. The
monitoring includes information about which of nodes that are up, and
what the round trip delays are between the nodes. This information is
periodically updated so that the map is as accurate as possible at all
times.

This thesis is an empirical thesis. The program will be tested on a
network of nodes called PlanetLab. PlanetLab lets me run the program
on nodes all over the world, and evaluate the program while it is
running. This gives me a look at how the program is running on a large
network, with nodes in a realistic environment, and this will be the
basis of the thesis. I will, among other things, look at how the program
affects the network, and how the program affects the performance of the
nodes them selves.

i

ii

Contents

1 Introduction 1
1.1 Research questions . 1
1.2 Research methodology . 1

2 Background 3
2.1 The Emerald programming language 3
2.2 PlanetLab . 3

2.2.1 The community . 4
2.3 Distance Metrics . 4

2.3.1 The Metrics . 5
2.4 Web Crawlers . 6

2.4.1 The Concept . 6
2.4.2 How they work . 6
2.4.3 Challenges . 7
2.4.4 The evolution of crawlers 7

3 Research Methodology 17
3.1 Entire project . 17

3.1.1 Choice of programming language 17
3.1.2 Choice of Operating System 17
3.1.3 Performance metrics 17
3.1.4 Methods used for data sampling 18

3.2 Bandwidth usage . 19
3.2.1 Performance metrics 20
3.2.2 Methods used for data sampling 20

3.3 CPU and memory usage . 22
3.3.1 Performance metrics 22
3.3.2 Methods used for data sampling 22

4 Experimental setup 25
4.1 PlanetLab Architecture . 25

4.1.1 Terminologies . 25
4.1.2 The Architecture . 26

4.2 Node setup . 28
4.2.1 Access to PlanetLab, and choice of nodes 28
4.2.2 Configuring nodes for testing 28

iii

5 Testing 33
5.1 Bandwidth usage . 33

5.1.1 Baseline monitoring . 33
5.1.2 Monitoring of Emerald software 34
5.1.3 Monitoring of the Program 38

5.2 CPU and Memory usage . 48
5.2.1 CPU . 48
5.2.2 Memory . 50

6 Discussion 55

7 Conclusive Remarks 57
7.1 Research findings . 57

iv

List of Figures

2.1 A map of active PlanetLab Nodes [29] 4
2.2 Number of websites on the Internet from 2000 to April

2018. Source: NetCraft Web Server Survey [18] 8

3.1 An example output of my Emerald program 19
3.2 An example output of the ’bwm-ng’ command 21
3.3 An example output of the ’top’ command 23

4.1 Architecture of a PlanetLab node. Taken from [26] 27
4.2 Trust relationship between Node Owner, PLC and Service

Developer. Taken from [26] . 28

5.1 Bandwidth graph Bytes/s in, Baseline 35
5.2 Bandwidth graph Bytes/s out, Baseline 35
5.3 Bandwidth graph Packets/s in, Baseline 36
5.4 Bandwidth graph Packets/s out, Baseline 36
5.5 Bandwidth graph Bytes/s in, Emerald software running . 38
5.6 Bandwidth graph Bytes/s out, Emerald software running . 39
5.7 Bandwidth graph Packets/s in, Emerald software running 39
5.8 Bandwidth graph Packets/s out, Emerald software running 40
5.9 Bandwidth graph Bytes/s in, Program running 42
5.10 Bandwidth graph Bytes/s out, Program running 42
5.11 Bandwidth graph Packets/s in, Program running 43
5.12 Bandwidth graph Packets/s out, Program running 43
5.13 Bandwidth graph Bytes/s in, Program running (baseline

subtracted) . 44
5.14 Bandwidth graph Bytes/s out, Program running (baseline

subtracted) . 44
5.15 Bandwidth graph Packets/s in, Program running (baseline

subtracted) . 45
5.16 Bandwidth graph Packets/s out, Program running (baseline

subtracted) . 45
5.17 Bandwidth graph Bytes/s in, Program running (baseline

subtracted, only showing average) 46
5.18 Bandwidth graph Bytes/s out, Program running (baseline

subtracted, only showing average) 46
5.19 Bandwidth graph Packets/s in, Program running (baseline

subtracted, only showing average) 47

v

5.20 Bandwidth graph Packets/s out, Program running (baseline
subtracted, only showing average) 47

5.21 Max CPU % graph with Program running 49
5.22 Average CPU % graph with Program running 49
5.23 Memory % graph baseline . 51
5.24 Memory % graph with Program running 51

vi

List of Tables

3.1 List of Linux distributions on PlanetLab computers. 18
3.2 List of research metrics used to measure distance. 18
3.3 List of bandwidth research metrics. 20
3.4 List of CPU and memory usage research metrics. 22

4.1 List of nodes with location. 31

5.1 List of test nodes with Linux distribution. 33
5.2 List of test nodes with total amount of memory in KB

while Program is running. 52
5.3 List of test nodes with amount of memory used in KB at

baseline. 52
5.4 List of test nodes with total amount of memory in KB. . . . 53

vii

viii

Chapter 1

Introduction

In this thesis, I have written a program in the Emerald programming
language, that maps out the internet nodes of the network where the
Emerald program is running. The program replicates itself onto all
available nodes and then monitors the status of these nodes. The
monitoring includes information about which of nodes that are up, and
what the round trip delays are between the nodes. This information is
periodically updated so that the map is as accurate as possible at all
times.

This thesis is an empirical thesis. The program will be tested on a
network of nodes called PlanetLab. PlanetLab lets me run the program
on nodes all over the world, and evaluate the program while it is
running. This gives me a look at how the program is running on a large
network, with nodes in a realistic environment, and this will be the
basis of the thesis. I will, among other things, look at how the program
affects the network, and how the program affects the performance of the
nodes them selves.

1.1 Research questions

In this thesis I am looking at the following to research questions,
regarding the network I have created:

1. How does it affect the bandwidth of the nodes?

2. How does it affect the CPU and memory usage of the nodes?

1.2 Research methodology

To test the program in a realistic environment, I am running and
testing the program on the PlanetLab network. I will run the program
on different nodes in the network, and pick some of the nodes to do
network, CPU and memory monitoring on. I will then evaluate and
discuss this data.

1

2

Chapter 2

Background

2.1 The Emerald programming language

The Emerald programming language is an object-oriented programming
language, developed with goal of simplifying the construction of
distributed applications. [25]

An example program, written in Emerald, called "Kilroy was here"
can be seen in Listing 2.1.

Listing 2.1: Emerald program - ’Kilroy was here’ [25]
1 const Kilroy <− ob jec t Kilroy
2 process
3 const or ig in <− l o cate s e l f
4 const up <− or ig in . getActiveNodes
5 for e in up
6 const there <− e . getTheNode
7 move s e l f to there
8 end for
9 move s e l f to or ig in

10 end process
11 end Kilroy

2.2 PlanetLab

PlanetLab is a global network of Nodes spread out all over the
world. The network is meant for research, and supports development
of network services. The network started back in 2003, and since
its beginning more than 1,000 researchers at different academic
institutions and industrial research labs, from all over the world, has
used its services to develop new technologies. These technologies has
been developed for distributed storage, network mapping, peer-to-peer
systems, distributed hash tables and query processing. [29]

3

Figure 2.1: A map of active PlanetLab Nodes [29]

2.2.1 The community

PlanetLab is kind of like a community, where academic institutions and
research labs all over the world share resources to keep a live a network
that they all can use for research of new technologies. As of today,
PlanetLab exists of 1353 nodes [29] placed on computers all around the
planet. Figure 2.1, on page 4, shows a map of the world with active
PlanetLab Nodes marked with red dots. This might not be the current
map of Nodes, as PlanetLabs homepage [29] doesn’t state if it is up to
date or not, but it gives you a picture of how this network is put together.

For institutions or research labs to join the PlanetLab community,
and take use of its network, they have to apply for a membership. I
am not going to go in to detail about how the membership agreements
work, except for one part of it. That part is the fact that you have to
maintain at least one site to be able to be a member (as long as you
don’t have a special agreement). On this site, you have to host at least
two PlanetLab Nodes. [28] This means that if someone wants to join
the community, they also have to contribute to it. That is one of the
great aspects of PlanetLab, because as the number of members grow,
the number of available Nodes grows as well, meaning everyone benefits
from more institutions and research labs joining.

2.3 Distance Metrics

When we are talking about distance in the Internet, we look at distances
between two or more hosts in a network. If we were to measure the
distance between two hosts, the metric we choose to use is dependent
on what we are going to use the result for. There are many different
metrics that could be used, and I have listed, explained and discussed
the uses of some of them in this chapter [15].

4

2.3.1 The Metrics

Round-trip time

The round-trip time (hereafter referred to as RTT) is the time a packet
uses from its source host to the destination host, and then back to the
source again. When measuring the RTT between to hosts in a network,
the result will never be exactly the same. Therefore, measuring the
RTT only once is almost never sufficient. In regards to this, there
exists a few methods of measuring, that helps getting a result that is
as accurate as possible. For example, calculating the average of a set of
RTT measurements, using the median of these measurements, or just
using the last measured RTT.

There will always be some factors influencing the measurements
that are hard to pick up on. These factors are often random and short-
lived, like network congestion, meaning they can show up at any time.
Because of that, some of the methods of measuring have to be adjusted
accordingly. If we, as an example, use the average of a set of RTT
measurements, there could be some trips that takes much longer time
than other ones. If we calculate the average with these longer trips as
part of the set, the results will be misleading. It is therefore important
to exclude measurements that are varying hugely from the rest.

IP path length

The IP path length is the number of hops, or routers, a packet has
to traverse in its path from the source host to the destination host
[15]. It does not take into account other sources of delay like network
congestion, but if you are measuring the RTT on a network where the
biggest source of delay is how long it takes routers to process packets,
then this metric is useful.

Autonomous System path length

Autonomous Systems (hereafter referred to as AS) are groups of one or
more networks where all the networks share a common routing protocol.
These are called the internal routing protocols for the group. Each AS
then interact with each other using a common external routing protocol
called BGP (Border Gateway Protocol), which is the standardized
external routing protocol used in the Internet. In the Internet, these
ASs could for example be Internet Service Providers (ISPs). Each AS
also has its own unique number that identifies it. [7, 15]

The AS path length metric works the same as the IP path length,
just that instead of counting the number of routers a packet has visited,
we now count the number of ASs it has visited. To determine the
number of ASs visited by a packet, we could use the BGP routing tables.
This metric does of course not take in to count the delays happening
inside each AS, so it is normally used when the biggest source of delay
is assumed to be because of the congestion caused by public traffic in

5

the external network (the Internet). That is also why BGP uses AS
path length as its primary metric when it comes to route selection. [7]

Geographical distance

When we are talking about geographical distance in the Internet, we
mean the length of the great circle arc connecting the source host and
destination host on the Earths surface. Of course, the structure of the
Internet does not entirely match the layout of the earths surface, but
if it did match and all the routers a packet had to traverse was on the
great circle arc connecting the source and destination, then the packets
would approximately follow the shortest geological path between the
source and destination hosts. [15] Even though the route a packet would
follow doesn’t match the great circle arc, geographical distance is still
an important and well used metric when it comes to distance in the
Internet.

2.4 Web Crawlers

2.4.1 The Concept

The Internet is a huge and ever growing web of information. This in-
formation takes form in web pages, pictures, videos, audio, advertise-
ments, books, and every other kind of data you could imagine. Navigat-
ing all of this data is, as you can imagine, a big and complex job. This
is where the web crawlers come in. Web crawlers are programs used by
websites, like Google or Yahoo, to identify and index web pages all over
the Internet and storing the information in a database. By doing so,
they make it easier and faster to search for web pages that contain cer-
tain words or pages that are of a specific theme. People can then query
these databases and, to a certain extent, navigate the Internet. These
queries do of course return thousands upon thousands of web pages per
search, so the order these pages are returned in to the user, is also im-
portant. This means that the different search engines have ways to
implement how people see and experience the Internet, which could be
both a good and a bad thing.

2.4.2 How they work

As mentioned in the previous section, web crawlers are programs used
by websites, mostly search engines, to make it possible to search the
Internet in a fast and easy way. These websites periodically sends these
programs out to all the web pages they manage to identify, and the
crawlers download these web pages. The programs then scans these
pages for information that later can be used as indexes to describe them.
The algorithm the programs use for this process varies from program to
program, but it is usually based on finding key words and phrases in
the web pages that are useful for identifying the current website they

6

are searching through. The data collected from the crawlers are then
combined with the URL of the web page they are indexing, and then
stored in the search engines database. It is this database that is queried
when people do searches in the search engine. The data returned to the
user is a list of the URLs that are connected to the indexes that matches
the search. [20]

2.4.3 Challenges

In the early days of web crawlers, they just searched the Internet as I
described in the last section. There where no requirements or guidelines
to how they should do the indexing, and the design of the crawler where
pretty basic compared to the web crawlers that exists today. As every
invention, the web crawlers have evolved and adapted to challenges
throughout the years. One of the earliest issues did not affect the
crawlers directly, but instead influenced the web pages visited by them.
As mentioned earlier, web crawlers crawl by requesting URL links for
web pages. This could mean that a crawler could end up sending a lot of
request to one domain holding a lot of web pages. If a domain receive to
many requests in a short amount of time, it can affect the performance
of the server holding all the web pages. A worst case scenario would
be the server crashing, or at least the server experiencing reduced
available processing power. To solve this problem, a concept called
politeness was introduced. Politeness is to basically restrict the number
of request a web crawler sends to a server per a specific unit of time.

There has also been a couple of issues that has affected the web
crawlers directly. One of them is so called traps that are directed
specifically at web crawlers. These traps are websites with huge amount
of pages full of nonsense data, that are meant to basically waist the
time of crawlers. The solution to this problem was to introduce black-
lists in to the implementation of the web crawlers. These black-lists are
filled with URLs to those types of traps, and the crawlers then skip the
web pages it encounters if they exists in this black-list. The lists are of
course also updated as new trap pages are discovered.

Another challenge that has been affecting the crawlers directly is
the exponential growth of websites on the Internet. As you can see in
Figure 2.2, on page 8, the number of registered websites has increased
from about 17 Million to about 1,6 Billion over the last 18 years. This
might be the biggest challenge the developers of web crawlers has had
to deal with over the years, because there is no exact solution to the
problem. The Internet is always going to grow, and the crawlers just
has to adapt, finding new and more efficient ways to crawl through the
increasing amount of web pages. [21]

2.4.4 The evolution of crawlers

As the Internet has expanded and evolved over the years, the web
crawlers has had to evolve with it. In the beginning, there existed

7

Figure 2.2: Number of websites on the Internet from 2000 to April 2018.
Source: NetCraft Web Server Survey [18]

8

mostly static web pages, meaning the web crawlers could download the
pages and basically index them as they where. After a while, more
complex web pages began to arise, meaning the crawlers had to be
evolved and adapted to these changes. In this section I am going to
briefly explain the three main stages of the evolution, and how the
crawlers had to adapt to them.

Traditional web crawlers

The traditional web crawlers are the once that was first created. The
first generation of web crawlers, back in 1993, basically worked as
explained in section 2.4.2. They where sent out to all websites they
managed to identify, downloaded the web pages, analyzed and indexed
important and relevant information before they stored that information
in a database together with the websites URL. And that was pretty
much all they did. About one year later, a more advances version of
web crawlers came to life. What made them different from the first
crawlers was that they addressed two of the challenges I talked about
in section 2.4.3, namely the constant request to domains and the web
crawler traps. The introduction of politeness and black-lists was already
a huge improvement to the web crawlers, even though it happened only
one year into to its existence. The first commercial web crawlers where
also of this new type of crawlers. [20, 21]

A few years later, in 1998, the web crawler called Google came in
to life. This web crawler was created by Sergey Brin and Lawrence
Page [6], and was created to address the problems regarding scalability.
The first thing they did to address this problem was to reduce the time
used on disc access. To accomplish this, they, amongst other things,
introduced indexing and compression of the repository. This means that
they compressed each web page before storing it in the repository. Doing
this, the repository used a lot less disk space per web page, meaning
it could store a lot more pages. The indexer then read the repository,
uncompressed the documents and finally parsed them. I am not going to
get into how the indexer parses the data, but you can read more about
that in the article "The Anatomy of a Large-Scale Hypertextual Web
Search Engine" [6] written by Brin and Page. Another thing they did
to handle scalability was the introduction of an algorithm they called
"PageRank". The PageRank is created to visualize an average user on
the Internet, who are given a web page at random, that keeps clicking
on links until he gets bored and starts on another random web page. A
page then gets a PageRank based on the probability that this average
user has visited the page. To calculate the actions of this average user,
the algorithm takes in to account the number of links pointing to the
web page, as well as the style of those links. The crawler then uses the
PageRank to decide how often it visits a site. By doing so, it uses less
resources on unattractive sites, meaning the more popular sites would
be visited more often. [6, 21]

One year later, in 1999, Allan Haydon and Marc Najork [14]

9

introduced a web crawler called Mercator. This crawler was originally
created to handle the problem of extendability, meaning it was created
to take future growth into consideration. To handle this future growth,
the crawler was created to support outside plug-ins, using a Java-
based framework. This made it possible for people to add additional
functionality to the crawler, as well as it made it possible to create
different versions of most of the crawlers major components and then
configure the crawler to use these instead of the original ones. Mercator
was also created with the scalability problem in mind, by trying to
solve the "URL-Seen" problem. The URL-Seen problem is basically the
problem regarding that a crawler will encounter links multiple times.
It might seem like a pretty easy problem to fix, but when the list of
visited URLs gets big, the action to check whether or not at URL has
been visited before becomes very time consuming. To handle the URL-
Seen problem, Mercator stored hashes of discovered URLs in memory.
They then put a limit to how big this list could be, and when the list
reached the limit, they compared it to the URLs stored on disk. Finally,
the list on the disk was updated. [14, 21]

In 2001, IBM introduced a web crawler called "WebFountain" [10].
The special thing about this web crawler was that it wasn’t created just
to index the Internet, but also to create a local copy of it. The local
copy of a page was kept on local storage, and was updated every time
WebFountain visited the web page. The web crawler was also fully
distributed, meaning that the responsibility for scheduling, fetching,
parsing and storing was all distributed between a cluster of machines.
This, and some other futures of the crawler, made the web crawler
scalable, and also kept the freshness of its stored web pages at a high
level. [10, 21]

In the later days of the traditional web crawlers, there was a few
crawlers that focused on the URL-Seen problem. In 2002, the web
crawler "Polybot" was introduced by Vladislav Shkapenyuk and Torsten
Suel [31]. This crawler further developed the technique used by the
Mercator to handle the URL-Seen problem. Instead of storing hashes
of discovered URLs, the Polybot used a Red-Black tree [24] to store the
URLs in memory. When the tree had grown above a certain limit, the
tree would be merged with a sorted list of URLs that was stored on local
storage. Another web crawler that dealt with the URL-seen problem
was the "UbiCrawler", created by Boldi, Codenotti, Santini and Vigna
[5], which came out the same year as the Polybot. This crawler had a
bit of a different approach to the URL-Seen problem. UbiCrawler used
a peer-to-peer method, where it distributed the different URLs to all
the available web crawler Nodes. Each URL was always assigned to
a Node, but to that Node only, to avoid unnecessary data replication.
There was no central place that calculated whether or not a URL had
been seen before, like in PolyBot and Mercator. Instead, a URL was
passed to a Node that was responsible to check if the URL had been seen
before or not. This Node was decided by taking the hash of the URL,
and then mapping it to the list of Nodes. By doing it like this, there

10

was no communication needed between the Nodes to find the Node that
should be responsible for a URL, as every Node was capable of finding
it out by them selves. This again increased the efficiency of the process.
Several other web crawlers that came to life in this time period also
used the peer-to-peer architecture, and then added factors, for example
the servers geographical position, to make it more efficient. [5, 21, 31]

In 2008, another web crawler came to life. This crawler was called
"IRLbot", and was created by Lee, Leonard, Wang and Loguinov [16].
The IRLbot also addressed the URL-Seen problem, but in a bit of a
different way than the other ones I have talked about in this section.
The way the IRLbot did it was that it used a framework called "Disk
Repository with Update Management", or DRUM for short. The purpose
of this framework was to be able to store large collections of <key,
value> pairs. The key in these pairs where a hash of some data, that
worked as a unique identifier, and the value in these pairs where some
information that was connected to the key. These pairs had three
supported operations: ’check’, ’update’ and ’check + update’. The ’check’
operation was used when the incoming data-set had a key that needed
to be checked against the ones that was stored on the disk cache, to
determine if the key was unique or a duplicate. The ’update’ operation
was used when the incoming data-set contained <key, value> pairs that
needed to be merged with the disk cache. The last operation, ’check +
update’, did both the ’check’ and ’update’ operation in one go. DRUM
worked by segmenting the disk into so called "disk buckets". For each of
these buckets, the framework also allocated a bucket on the RAM that
was corresponding to one of the buckets on the disk. URLs where then
mapped to a bucket on the RAM. When a bucket on the RAM was filled,
the bucket on the disk that was connected to the bucket on the RAM was
accessed. This is where the <key, value> pair and its operations come
in. The data was transfered from the RAM bucket to the disk bucket
using these <key, value> pair operations. This process allowed DRUM
to store a lot of URLs on disk, which meant that the performance would
stay the same when the number of URLs increased. [16, 21]

Deep web crawlers

Server-side programming and scripting languages, like PHP and ASP,
made life harder for web crawlers. As these languages got more popular,
online databases got more accessible as well. This evolution lead to
web applications often storing a lot of its data in databases, and then
using HTML forms and executable files to generate content using this
data. Because of this new way of generating content, web crawlers could
no longer just follow links and download pages as they used to before,
since the pages didn’t include the data they where after. Basically, the
contents are hidden from the crawler, which is also why this type of
content is referred to as the deep web. To solve this problem, a second
generation of web crawlers started to emerge. These web crawlers was
made to interact with HTML forms to retrieve data stored on databases.

11

The way they did it was to just submit HTML forms multiple times,
filing in different data in the form fields each time. This did not fix
the entire problem of crawling the deep web though. There was still
the problem of determining what the crawlers should fill the form fields
with. Radio buttons, drop-down lists and other similar fields where not
hard to fill out as they are predefined, and the crawler just has to choose
all the different possibilities. The big problem comes when the crawler
has to fill out text fields. There has been some proposals to how this
could be done. [21]

Sriram Raghavan and Hector Garcia-Molina [30] posted an article
in 2001, where they suggest a method for crawlers to fill out forms that
they call the "task-specific, human-assisted approach". The task-specific
part of this approach is that the crawler actually visits the sites it are
crawling, and then submits forms and queries to retrieve the hidden
pages. The human-assisted part is based on the fact that humans feed
the crawler information about what it want it to search for. This means
that the crawler can use this data to fill out forms on the pages it finds
relevant according to the search. [21, 30]

A year later, in 2002, another method was published by Liddle,
Embley, Scott and Yau [17]. They presented a method, that is kind
of similar to Raghavan and Garcia-Molinas solution [30], but instead of
actually filling out the forms, this method uses HTTP POST and GET
requests to the action path of a form it discovers. Firstly they search
for forms on the sites they visit. If they find one, they extract all the
information they can get from the form, like base URL, the action path,
fields and their names, standard field values and so on. The crawler
then use the information it finds to do a HTTP GET or POST call to
the action path of the form, with every field set to its default value.
The crawler also generates several more requests by choosing different
combinations of the selected value of the drop-down lists, check-boxes
and radio buttons. It also supports the user of the crawler to pass values
that should be used as value for text boxes, but the crawler leaves them
empty if the user doesn’t supply any values. [17, 21]

In 2004, Luciano Barbosa and Juliana Freire [2] came out with
another solution to the problem, with an algorithm that was split up
in to two parts. The first part of the algorithm is basically to collect
data from the website, and then use that data to rate different keywords
after how frequently they are used. The second part of the algorithm is
to uses a greedy strategy on the list of keywords from the first part of the
algorithm, to find the query with the highest coverage. The process to
finding this query could be time consuming, but when a query is found,
it could be reused later on, to for example update the indexes of a search
engine that searches the deep web, meaning the query only has to be
calculated one time per web page. [2, 21]

Another year later, a more advanced process was published by
Ntoulas, Zerfos and Cho [32]. This solution introduced three policies
to how a crawler selects the queries it is going to use. The first one is
a random policy. This option takes random keywords from some sort of

12

collection of words, for example a dictionary, and then use these random
keywords as values in the query. The hope here is that a random
query will return a decent amount of matches. The second policy is
a policy based on generic-frequency. This option analyzes some generic
document collected from somewhere else, and then sorts the keywords
in that document by how frequent they appear. The most frequent
keyword is then used in a query to a database. After that query is
done, the next keyword is used in the query, and so on until all the
keywords are used. The third, and last, policy is an adaptive policy.
This option uses the responses it gets from the queries to the database,
and then estimates which keywords that are more likely to give the
most documents in return. It then updates the query with these new
keywords, and keeps on adapting for each query sent. [21, 32]

A few years later, in 2008, yet another solution was introduced by
Lu, Wang, Liang and Chen [19]. This approach crawled the web using
sampling. They start by creating a sample-database that randomly
selects some documents from the total-database (or the original data
source). They then use this sample-database to create a pool of queries,
and then test these queries on the sample-database. The queries that
returned the best result from the tests on the sample-database is then
used to collect data from the total-database. So this entire approach
is based on the assumption that queries learned from the sample-
database, also works well on the total-database. [19, 21]

Rich Internet Application crawlers

As the Internet has evolved, client side web browsers has become more
and more powerful, which also has lead to a bigger availability of
client-side technologies. These two things combined has meant that
computation of data on websites has moved more and more from server-
side over to client-side. This means that a lot of content now are hidden
on clients, which traditional web crawlers can’t access. This is called the
"Client-side hidden-web". This is where the Rich Internet Application,
or RIA, crawlers are getting in to the picture. There are many different
strategies to RIA crawling and I will mention a few in this subsection.
[21]

In the beginning, most of the RIA crawlers used either a type of
Breadth-First or a type of Depth-First strategy. In 2009, a Breadth-First
crawling strategy was used by Duda, Frey, Kossmann, Matter and Zhou
[9], in an paper where they focused on AJAX crawling. What makes
an AJAX application different from traditional web applications is the
fact that the application no longer is just a simple web page identified
by a URL. These applications also exists of a series of states, events
and transitions. Their version of the Breadth-First AJAX crawling
algorithm starts by reading the initial DOM of the website document.
Then the algorithm calls the "onLoad" event of the HTML documents
body tag. This is AJAX specific, and is something every Javascript-
enabled web browser does to construct the initial state. After this initial

13

state is constructed, the Depth-first crawling starts. This crawling is
done by triggering all events in the web page it is on, and then also
invoking all the Javascript functions corresponding to these events.
Every time the DOM changes, a new states is created, and the transition
connected to this change is stored. This goes around and around until
all states has been triggered. [9, 21]

In 2008, a RIA crawler called "Crawljax" was introduced by Mesbah,
Bozdag and van Deursen [23]. This crawler also focused on AJAX
crawling, but it used a variant of the Depth-first strategy. The default
strategy of the crawler didn’t explore all the events in each state,
but instead only explored an event from the state where it was first
encountered. This means that an event wouldn’t be explored on all
the different states, leading to some states not being discovered (since
an event triggered on one state could produce another state than the
event would have done if it was triggered on another state). Because
of this, the Crawljax could also be configured to trigger events on
all the states that is was enabled, meaning the Crawljax then would
use a standard Depth-first strategy instead of the modified one it was
originally configured to use. [21, 23]

From 2008 to 2012, there where a couple of crawlers introduced [1, 3,
8], but I am not going to address them in this paper. Instead I am going
to skip ahead to 2012, when Peng, He, Jiang, Li, Xu, Li and Ren [27]
introduced a greedy crawling strategy. In this strategy, any un-executed
events in the current state will be triggered. When the current state
runs out of un-executed events, the crawler moves to the state closest
to itself that has one or more un-executed events. Then this process is
executed again and again. They also introduced a couple of variants
to this strategy, where instead of moving to the closest state to itself,
the crawler would move to the most recently discovered state or to the
state that was closest to the initial state of the web site. They also did
a couple of tests on these different strategies, and concluded that all
three strategies executed about the same amount of events to end the
crawling. This means that all three variants of the strategy had similar
performance. [21, 27]

One year later, in 2013, a crawler called "FeedEx" was introduced
by Amin Milani Fard and Ali Mesbah [11]. FeedEx is also a greedy
algorithm, but not in the same way as the one mentioned above [27].
Instead of finding the closes state with executable events, the FeedEx
uses an algorithm that has a matrix that is used to measure how big
of an impact a certain event will have on the corresponding states, if
it is executed. The matrix then sorts these events by the impact they
would make, and the one with the biggest impact is then the first to
be executed. There are four factors that the matrix uses to determine
the order of the choices. The first one is code coverage. The code
coverage factor is based on how much of the application code that is
being executed. The second factor is the overall average path diversity.
This factor looks at how diverse the exploration of the crawler is. The
third factor is the DOM diversity. This factor looks at how much the

14

newly discovered DOMs differ from the ones that has already been
discovered. The last, and fourth, factor is the size of of the derived test
model. This one kind of explains it self, the factor is how big the derived
test model is. [11, 21]

15

16

Chapter 3

Research Methodology

3.1 Entire project

This section explains and discusses the different methods used to
evaluate both of the research questions.

3.1.1 Choice of programming language

When it comes to the choice of programming language I am going to use
to write my test program, it was kind of decided for me when I chose
the master thesis suggestion from my supervisor. One of his wishes or
suggestions for the thesis was that I wrote the testing program in the
Emerald programming language.

3.1.2 Choice of Operating System

The Emerald programming language was made to be compiled and
executed on both Linux and Windows computers. This means that
the choice laid between either one of the Windows Operating Systems,
or one of the many Linux distributions. For the purpose of this
thesis, I needed to run my program on a network of computers that
communicated with each other over realistic conditions. A perfect
solution for this was PlanetLab.

PlanetLab is a network of nodes, running on computers all over the
world. Since I was able to get access to this network through the school,
and also because Emerald programs already had been tested to work on
many of these computers before, the choice fell on using this network.
These computers are running on the Linux Operating System, but not
all of them are using the same Linux distribution. A list of the different
distributions can be seen in Table 3.1, on page 18.

3.1.3 Performance metrics

In addition to the performance metrics specified in section 3.2.1 and
3.3.1, I am also going to use a few metrics to measure the distance
between the computers I am using for the testing. These metrics will be

17

Distribution Release version
Fedora 8
Fedora 25
CentOS 6.4

Table 3.1: List of Linux distributions on PlanetLab computers.

used to add additional data to the other metrics listed in the sections
mentioned above. There are mainly four different metrics that are
commonly used to measure distances on the internet, and I am using
the two metrics listed in Table 3.2, at page 18. The reason I didn’t
choose the IP path length or the Autonomous System path length as
metrics is because I don’t see them having any important impact on
the testing done for this thesis. How many routers or Autonomous
Systems a packet visits will not have any direct effect on how any of
the computers perform. The round-trip time on the other hand will
have an effect as this will be a factor in how often a node is able to ping
another node. The geographical distance is also important, as it will be
an indicator of how long the round-trip time will be.

Resarch metric Description
Round-trip time (RTT) The round-trip time is the time a packet

uses from its source host to the destination
host, and then back to the source again. You
can read more about this metric in section
2.3.1

Geographical distance The geographical distance is the length of
the great circle arc connecting the source
host and destination host on the Earths
surface. You can read more about this
metric in section 2.3.1

Table 3.2: List of research metrics used to measure distance.

3.1.4 Methods used for data sampling

Round-trip time

To measure the Round-trip time between the different computers I
am using for the testing, I am using the Emerald program this entire
thesis is based on. The Emerald program is distributed out to all the
different nodes, and all the nodes are then pinging each other through
the Emerald software. Each instance of the program is then storing
the latest round-trip time between it self and all the other nodes the
program is distributed to, meaning I can take use of this stored data to

18

Figure 3.1: An example output of my Emerald program

tell the round-trip time between all the computers. To get as much data
as possible, the Emerald program can be set to output this information
every second. I can then run the program for a certain amount of time
on all the computers, and then pull that data of the nodes to compare
all the data. An example of how to output looks, can be seen in Figure
3.1, at page 19.

Geographical distance

3.2 Bandwidth usage

This section explains and discusses the different methods used specific-
ally to evaluate the first research question: How does it affect the band-
width usage of the nodes?

19

3.2.1 Performance metrics

When it comes to the Bandwidth of a computer, there are a few different
metrics to consider. Since the purpose of this thesis is to look at how a
computer is affected, I have chosen the metrics listed in Table 3.3, at
page 20.

I chose to collect data about both bytes and packets transferred,
because both of those metrics could affect the performance and
experience of a computer.

Resarch metric Description
Bytes in/s The number of bytes coming in to the computer

every second. This will be recorded over a period
of one minute.

Bytes out/s The number of bytes going out of the computer
every second. This will be recorded over a period
of one minute.

Packets in/s The number of packets coming in to the computer
every second. This will be recorded over a period
of one minute. recorded over a period of one
minute.

Packets out/s The number of packets going out of the computer
every second. This will be recorded over a period
of one minute. recorded over a period of one
minute.

Table 3.3: List of bandwidth research metrics.

3.2.2 Methods used for data sampling

To sample the data on the bandwidth side of things, I used a console-
based bandwidth monitor tool called ’bwm-ng’ (or Bandwidth Monitor
NG) [13]. This is an open-source and free to use tool, under the GNU
General Public License v2.0 [12]. With this tool I am able to monitor
and record both the bytes and packets transferred, in a given period of
time. An example of the standard output from the ’bwm-ng’ command
is shown in Figure 3.2, at page 21. The different commands I used
for this project are listed in Listing 3.1, at page 21. These commands
starts an instance of ’bwm-ng’ that monitors and records the average,
maximum and live bandwidth data. When the program is exited, it
prints the information to a CSV file with timestamps of when the data
was recorded. This way I can compare data across different nodes.

20

Figure 3.2: An example output of the ’bwm-ng’ command

Listing 3.1: Commands used with ’bwm-ng’
1 bwm−ng −o csv −T avg −c 0 −F outputAvg . csv −I eth0
2 bwm−ng −o csv −T max −c 0 −F outputMax . csv −I eth0
3 bwm−ng −o csv −T rate −c 0 −F outputRate . csv −I eth0

There are a lot of different tools I could have used to do the same job
as ’bwm-ng’. The reason I chose exactly this tool, is first and foremost
because of its compatibility with Linux. Since all the machines I am
using for testing is running Linux distributions, I needed a tool I could
use with those distributions. The second reason is that my access to
the computers on the PlanetLab network are somewhat limited. I have
sudo access, but since these computers are going to be used by a lot
of other people besides my self, I needed a program that didn’t require
me changing a lot of shared files. Because I am doing this testing on
different machines that are running different Linux distributions and
versions, I had to find a tool that was working on all of the computers.
The third reason is that I also needed a program that was free to use,
and that I could use for writing my own thesis. Since ’bwm-ng’ met all
of these requirements, I ended up using that one.

The downfall with ’bwm-ng’ is that you can’t specify a process or
program to monitor. It just monitors an entire interface. For the
computers used in this thesis, there is only one interface used for
all traffic in and out. This interface is called ’eth0’. ’eth0’ is an
ethernet cable connected interface, which is positive for our research
since an ehternet cable connected interface usually is more stable than
a wireless connected interface. But because ’bwm-ng’ monitors all
network traffic in to the computers, I need to monitor and record the
bandwidth at three different times. Firstly I need to monitor it before
I have started any of my programs on the computer. This is to create
a baseline for the normal traffic in and out of the computer. Secondly
I need to monitor the traffic after all of the computers are connected to
each other through the Emerald software. This is before I have started
my program, but there will be some traffic going between the computers.
Lastly I need to monitor the traffic after the program is started up and
running on all of the nodes. This is the data that is going to be most
valuable to this thesis, but the monitoring done before the program
has started up is also important for comparison to how the computers
normally run.

21

3.3 CPU and memory usage

This section explains and discusses the different methods used specific-
ally to evaluate the second research question: How does it affect the
CPU and memory usage of the nodes?

3.3.1 Performance metrics

When it comes to the CPU and memory usage of a computer, the metrics
to consider is kind of straight forward. Especially when it comes to
looking at how a computer, and the experience of it, is directly affected.
The metrics chosen for this thesis is listed in Table 3.4, at page 22.

Resarch metric Description
CPU usage in % The amount of CPU power used, in %, of the

maximum CPU capacity. The CPU usage
will be recorded every second over a period
of one minute.

Memory usage in % The amount of memory used, in %, of the
total memory available to the computer. The
memory usage will be recorded every second
over a period of one minute.

Memory usage in byte The amount of memory used in byte. The
difference from this metric to the one above,
is that this one is directly comparable to data
from other computers. This metric will also
be recorded every second over a period of one
minute.

Table 3.4: List of CPU and memory usage research metrics.

3.3.2 Methods used for data sampling

As I was going to choose the methods to sample data for the CPU and
memory usage, I had the same challenges as I had when deciding the
methods to use for the sampling of bandwidth usage. I needed to find
a tool that I could use across all the different Linux distributions used
by the computers in the PlanetLab network, as well as a tool that didn’t
require big changes to shared configuration files. I also needed a tool
that would help me calculate the load average. Luckily for me, there
already exists a tool built in to Linux, for CPU and memory monitoring,
called ’top’ [4]. This tool also calculates and shows the load average for
me, which is exactly what I needed.

The command line tool ’top’ shows an overview of the current
processes and, amongst other things, information about the CPU and

22

Figure 3.3: An example output of the ’top’ command

memory usage of each process, as well as information about the load
average. An example of the output from the ’top’ command is shown in
Figure 3.3, at page 23. Since this tool shows output for each process,
I can monitor the exact process used by my Emerald program. This
gives me more exact values than what I could get from the bandwidth
monitoring.

To make the sampling of data precise, I couldn’t just read the data of
the ’top’ output while it was running. I needed to automate the process,
so that the program ran for a given time and outputted the data to a
file at a specific rate. To do this, I wrote a small Bash script that loops
400 times, and for each loop sleeps one second before running the ’top’
command. This means that the script will run for 400 seconds. I did
it this way because I then have time to start the script on all of the
computers I am testing on, and still get the top ’command’ running for
at least one minute simultaneously on all of them. The script can be
seen in Listing 3.2, at page 24. As you can see in the script, I have
added a few options to the ’top’ command:

• ’-b’. The ’-b’ option starts ’top’ in a so called ’Batch mode’. This
’Batch mode’ makes it possible to send the output of the program
to, for example, a file. I take use of this option because I want to
get all the output in to one single file, that I then can pull of the
computer and compare to the data i get from other computers. To
do this, I append the output of the bash script to an output file,
using the ’»’ syntax.

• ’-p’. The ’-p’ option is used to specify a specific PID the program
should monitor. Parameter ’xxx’ in the Bash script is where I
insert the specified PID for the process of the emerald program
I am running on the machine. I specify the PID because I only
care about the data from the process used by my program.

• ’-n’. The ’-n’ option tells the ’top’ program the number of iterations
it should produce before ending. As I only want one iteration per
second, I add parameter ’1’ to this option.

23

Listing 3.2: Script used to run ’top’ (xxx is process PID)
1 #!/ bin/bash
2 for i in { 1 . . 4 0 0 }
3 do
4 sleep 1
5 top −b −p xxx −n1
6 echo −e "\n\r "
7 done

24

Chapter 4

Experimental setup

4.1 PlanetLab Architecture

As mentioned in section 3.1.2, at page 17, I have chosen PlanetLab as
the platform for my testing. You can read more about exactly what
PlanetLab is in section 2.2, on page 3, but in this section I am going
deeper in to how the Architecture of PlanetLab works.

4.1.1 Terminologies

Before explaining how the Architecture of PlanetLab works, there are a
few terminologies that are needed to understand it. These terminologies
are listed and explained in this section.

Principal Investigator (PI)

The Principal Investigator, or PI, is the one that is responsible for
managing users and slices at the site they are connected to. The PIs are
also legally responsible for everything that happens from the slices they
create. A PI is often a member of the faculty at whatever institution the
site they are PI for is connected to. Usually just one PI per site. [26]

Technical Contact

The Technical Contact is the one who is responsible for installation,
maintenance, and monitoring of the nodes at the site they are connected
to. Each site is required to have a Technical Contact. When a node goes
down, or there are any other problems with one of the sites nodes, the
Technical Contact is the one who is contacted. [26]

User

A user is anyone who uses the PlanetLab network. This means anyone
who either develops or deploys applications on PlanetLab. [26]

25

Authorized Official

An Authorized Official is someone who contractually or legally can bind
an institution. For example the president of an institution. A signature
from an Authorized Official is required for an institution to join the
PlanetLab network. [26]

Site

A site is a location where a physical PlanetLab node are located. So if
an institution has a physical PlanetLab node located at their institution,
they are per definition a site. [26]

Node

A node is a server that is dedicated to run components of PlanetLab
services. [26]

Slice

A slice is a set of resources that are allocated and distributed across
the PlanetLab network. This means, for most users, access to private
virtual servers on a given number of PlanetLab nodes, through a UNIX
shell. The PI of the site a user is connected to, are responsible of creating
the slice and assign users to it. Users, included PIs, can then assign
PlanetLab nodes to it, and after node has been assigned to the slice,
virtual servers for that slice are created on all of the selected nodes. A
slice doesn’t last forever, and to keep it alive, users has to renew the
slice for it to remain valid. When a slice expires, all data associated to
it is deleted. [26]

Sliver

A sliver is the definition for a slice running on a node. The sliver is
what you connect to when you ssh in to a specific node that is part of
your slice. [26]

4.1.2 The Architecture

In this section I am going to list an explain some of the key features
of the PlanetLab Architecture. In Figure 4.1, you can see an overview
of the Architecture of a PlanetLab node. Parts of this image will be
explained in this section.

Distributed Virtualization

When you, as a user, are connected to nodes through your slice, you want
to isolate your activities from other activities that are being executed
from other slices on the same nodes as your are. To solve this, PlanetLab

26

Figure 4.1: Architecture of a PlanetLab node. Taken from [26]

gives you your own file system and process control, that are isolated
from other slices. The CPU cycles and network bandwidth is still shared
with other slices that are connected to the node, but those slices wont
get access to your file system. [26]

Trust Relationships

To create a trustworthy relationship between a node owner and a user,
PlanetLab has an api called PlanetLab Central (PLC), that works as a
"Trusted Intermediary" between the two parties. An illustration of this
can be seen in Figure 4.2, at page 4.2. There are basically four steps to
this interaction between node owner, PLC and user: [26]

1. The PLC shows that it trust the user by giving them credentials
to get access to a slice. [26]

2. The user trust the PLC to create a slice for them, and the user also
trust the PLC to inspect its credentials. [26]

3. The Node owner trust the PLC to give user access to the node,
and also trust that the PLC will map the network activity to the
correct user. [26]

4. The PLC trust that the node owner will keep the node physically
secure. [26]

27

Figure 4.2: Trust relationship between Node Owner, PLC and Service
Developer. Taken from [26]

4.2 Node setup

In this section I am explaining my process for how I chose the PlanetLab
nodes used for this testing, and how I set the nodes up and ready for
testing.

4.2.1 Access to PlanetLab, and choice of nodes

Access to a PlanetLab slice was given to me by my supervisor. Trough
that slice, I had access to 401 different nodes, theoretically. My plan was
to run the program on 100 nodes and do my testing while the program
was running on all of them. Unfortunately, that didn’t go as planned.
When I started to try and connect to the nodes, I quickly learned that
I wasn’t able to connect to near as many nodes as I hoped to. Most of
the nodes I tried to connect to timed out before I was even able to try
and log in to them. Out of the 401 nodes I should have had access to
through my slice, I was able to connect to 44 of them. Luckily, these
nodes where kind of spread out all over the world, so I didn’t just get
access to nodes that where inn the same area. A list of all the Nodes,
and where they are located, are listed in Table 4.1, at page 4.1. The
fact that these was the only nodes I could connect to, the choice of which
nodes to use became pretty easy.

4.2.2 Configuring nodes for testing

To set the nodes up for testing, I first needed to install Emerald on
all of the nodes. This had to be done manually for every single node,
and the way to do it depended a little bit on the node it self. The easy
nodes where the nodes that worked with 32-bit binaries, as de Emerald
compiler is a 32-bit software.

Nodes working with 32-bit binaries

For the nodes working with 32-bit binaries, I first needed to run the
commands listed in Listing 4.1. After those 3 commands was executed,
I needed to edit the ’.bashrc’ file, located in the home folder, and add

28

the lines listed in Listing 4.2. Finally I needed to logout of the remote
connection to the node, and then log in again. After that, the Emerald
compiler was installed en fully working.

Listing 4.1: Commands used to install Emerald for nodes working with
32-bit binaries

1 $ wget http : / /www. uio . no / studier / emner / matnat / i f i /
INF5510 / v15 / emerald−0.99− l inux . tar . gz

2 $ tar xvf emerald−0.99− l inux . tar . gz
3 $ mv emerald−0.99− l inux emerald

Listing 4.2: Lines added to ’.bashrc’ file
1 export EMERALDROOT=/home / diku_inf5510 / emerald /
2 export EMERALDARCH= ’ i686mt ’
3 export PATH="$EMERALDROOT/ bin :$PATH"
4
5 export TERM=xterm−256 co lor

Nodes not working with 32-bit binaries

For the nodes not working with 32-bit binaries, I first needed to run the
commands listed in Listing 4.3. After those 5 commands was executed,
I needed to edit the ’.profile’ file, located in the home folder, and replace
the lines in the file with the lines listed in Listing 4.4. Finally I needed
to logout of the remote connection to the node, and then log in again.
After that, the Emerald compiler was installed en fully working. Only
difference from the other Emerald install is that I neede to use the
aliases ’emx32’ and ’ec32’, instead of normal ’emx’ and ’ec’, to compile
and run the Emerald software.

Listing 4.3: Commands used to install Emerald for nodes not working
with 32-bit binaries

1 $ wget https : / /www. uio . no / studier / emner / matnat / i f i /
INF5510 / v18 / bind_public . so

2 $ wget http : / /www. uio . no / studier / emner / matnat / i f i /
INF5510 / v15 / emerald−0.99− l inux . tar . gz

3 $ tar xvf emerald−0.99− l inux . tar . gz
4 $ mv emerald−0.99− l inux emerald
5 $ sudo dnf i n s t a l l g l i b c . i686

29

Listing 4.4: Lines added to ’.profile’ file
1 [− f / etc / planetlab . p r o f i l e] && source / e tc / planetlab

. p r o f i l e
2
3 export EMERALDROOT=/home / diku_inf5510 / emerald /
4 export EMERALDARCH= ’ i686mt ’
5 export PATH="$EMERALDROOT/ bin :$PATH"
6
7 export TERM=xterm−256 co lor
8
9 alias emx32="LD_PRELOAD=~/ bind_public . so emx"

10 alias ec32="LD_PRELOAD=~/ bind_public . so ec "

30

Hostname Location
ple1.cesnet.cz Prague, Czech Republic
planetlab3.cesnet.cz Prague, Czech Republic
planetlab1.cs.uit.no Tromsø, Norway
cse-yellow.cse.chalmers.se Gothenburg, Sweden
planetlab1.cesnet.cz Prague, Czech Republic
planetlab1.dtc.umn.edu Minnesota, USA
planetlab-1.ing.unimo.it Modena and Reggio, Italy
planetlab2.dtc.umn.edu Minnesota, USA
planetlab2.inf.ethz.ch Zürich, Switzerland
planetlab4.mini.pw.edu.pl Warsaw, Poland
node2.planetlab.mathcs.emory.edu Georgia, USA
pl1.rcc.uottawa.ca Ottawa, Canada
planetlab2.cs.ubc.ca Vancouver, Canada
planetlab2.cs.unc.edu North Carolina, USA
planetlab-5.eecs.cwru.edu Ohio, USA
planetlab5.eecs.umich.edu Michigan, USA
plink.cs.uwaterloo.ca Waterloo, Canada
ple4.planet-lab.eu Paris, France
planetlab1.cs.ubc.ca Vancouver, Canada
planetlab1.koganei.itrc.net Tokyo, Japan
planetlab2.cs.purdue.edu Indiana, USA
planetlab1.pop-mg.rnp.br Minas Gerais, Brazil
planetlab2.pop-mg.rnp.br Minas Gerais, Brazil
planetlab02.cs.washington.edu Washington, USA
planetlab04.cs.washington.edu Washington, USA
planetlab2.citadel.edu Carolina, USA
planetlab-02.bu.edu Massachusetts, USA
planetlab1.comp.nus.edu.sg Singapore
planetlab1.cs.uoregon.edu Oregon, USA
node1.planetlab.mathcs.emory.edu Georgia, USA
planetlab3.wail.wisc.edu Wisconsin, USA
planetlab3.comp.nus.edu.sg Singapore
planetlab-2.calpoly-netlab.net California, USA
planetlab2.c3sl.ufpr.br Paraná, Brazil
node1.planetlab.albany.edu New York, USA
planetlab01.cs.washington.edu Washington, USA
salt.planetlab.cs.umd.edu Maryland, USA
planetlab-1.sjtu.edu.cn Shanghai
planetlab-2.sjtu.edu.cn Shanghai
pl1.sos.info.hiroshima-cu.ac.jp Hiroshima, Japan
planetlab2.pop-pa.rnp.br Pará, Brazil
planetlab1.pop-pa.rnp.br Pará, Brazil
planetlab1.cs.purdue.edu Indiana, USA
planetlabeu-1.tssg.org Waterford, Ireland

Table 4.1: List of nodes with location.

31

32

Chapter 5

Testing

Node nr. Hostname Linux Distribution
1 planetlab1.cs.uit.no Fedora 25
2 cse-yellow.cse.chalmers.se Fedora 25
3 planetlab3.cesnet.cz Fedora 8
4 planetlab2.inf.ethz.ch Fedora 8
5 planetlab4.mini.pw.edu.pl Fedora 8
6 planetlab2.cs.ubc.ca Fedora 8
7 ple4.planet-lab.eu Fedora 25
8 planetlab1.pop-mg.rnp.br Fedora 8
9 planetlab1.comp.nus.edu.sg Fedora 8
10 planetlab-2.calpoly-netlab.net Fedora 8
11 planetlabeu-1.tssg.org Fedora 25
12 planetlab2.pop-pa.rnp.br Fedora 8
13 node2.planetlab.mathcs.emory.edu Fedora 8
14 pl1.rcc.uottawa.ca Fedora 8

Table 5.1: List of test nodes with Linux distribution.

5.1 Bandwidth usage

This section presents and comments on the results of the testing done
for the bandwidth on the nodes listed in Table 5.1, at page 33. The
research metrics used for this testing is listed in section 3.2.1, in Table
3.3 at page 20.

5.1.1 Baseline monitoring

Before any testing is done with either the Emerald software or my
program running on the computers, I needed to do some baseline
monitoring to see how the bandwidth usually behaves on each of the
nodes. The results of this testing is shown in Tables 5.1, 5.2, 5.3 and
5.4.

33

The reason we have to do a baseline testing for the bandwidth usage
is that the tool chosen for the bandwidth testing, ’bwm-ng’, doesn’t let
the user specify a specific process to monitor. You have to monitor the
traffic for the entire computer. As the testing for this thesis is not
done in a fully controlled environment, with computers out on the open
internet that are controllable by other people in the PlanetLab network,
the bandwidth testing wont be precise. This of course has a few negative
sides to it, but also a few positive. Unfortunately, we have to deal with
the negative parts in the testing, to get value from the positive sides
later on.

If we take a look at Figure 5.1, we can see that the average incoming
bytes per second is pretty low on all of the computers. The highest
average is approximately 0.358 megabytes/s on node 4, which really
isn’t that much of traffic. A few of the nodes has some bigger spikes,
as we can see from the column showing the maximum Bytes/s second
recorded, but this again is normal. These spikes lasts, for the most
part, just for short periods of time, where a bigger amount of data is
transferred to the computer.

In Figure 5.2, the chart showing outgoing bytes per second, we can
see that the story is pretty much the same as for the incoming bytes.
The highest average here is only about 0.09 megabytes/s, which is even
lower than for the incoming bytes. As for Figure 5.1, there are a few
spikes in the maximum outgoing bytes/s, but this is also normal as these
most likely are just periods of time where a few bigger chunks of data is
sent out from the computer.

I have also monitored the outgoing and incoming packets for each
of the nodes selected for testing. A chart for the incoming packets per
second, can be seen in Figure 5.3. If we compare this chart to the one in
Figure 5.1, we can see that the spikes are pretty much exactly the same.
This is of course because all data is transferred in packets, meaning that
for the nodes where there are transferred a bigger number of packets
per second, the bytes transferred per second will also be bigger. The
fact that these charts are pretty similar means that the monitoring done
with ’bwm-ng’ is working as it should be. The values in the y-axis is of
course smaller for the chart in Figure 5.3 than for the one in Figure 5.1,
because one packet always is bigger than one byte.

The last values to look at for the baseline monitoring, is the ones
shown in Figure 5.4. If we compare this chart to the chart in Figure
5.2, we can see that the spikes also match between these charts. This
is because of the same principle I explained for the incoming bytes and
packets. The y-axis does also have smaller values in Figure 5.4 than in
Figure 5.2, because incoming packets are of course also bigger than one
byte.

5.1.2 Monitoring of Emerald software

As explained in section 4.2.2, each of the nodes listed in Table 4.1 has
to be connected through the Emerald software before I can start testing

34

1413121110987654321

0

0.5

1

1.5

2

2.5

·107

B
yt

es
/s

in

Max Average

Figure 5.1: Bandwidth graph Bytes/s in, Baseline

1413121110987654321

0

1

2

3

4

·105

B
yt

es
/s

ou
t

Max Average

Figure 5.2: Bandwidth graph Bytes/s out, Baseline

35

1413121110987654321

0

0.5

1

1.5

2
·104

Pa
ck

et
s/

s
in

Max Average

Figure 5.3: Bandwidth graph Packets/s in, Baseline

1413121110987654321

0

1,000

2,000

3,000

4,000

Pa
ck

et
s/

s
ou

t

Max Average

Figure 5.4: Bandwidth graph Packets/s out, Baseline

36

with the Emerald program I have created. This also includes the nodes
I have chosen for testing, listed in table 5.1. Since this connection most
likely will produce some data transfer between the nodes, in addition
to the data that will be transferred from my program, I have monitored
the bandwidth of the 14 testing nodes while they are connected through
the Emerald software. The results of this monitoring can be seen in
Table 5.5, 5.6, 5.7 and 5.8.

Let us first take a look at the chart in Figure 5.5. If the testing
for this thesis had been done in a controlled environment, I would
have expected the incoming bytes per second to be at least the same
amount as for the baseline monitoring, or higher. Since I am not doing
the testing in a controlled environment however, this is not the case.
There are some similarities though, for example do nodes 4 and 14 have
kind of the same spike in the maximum bytes/s transferred, but there
are also some differences like node 5 also having a pretty big spike in
the maximum bytes/s transferred. The maximum bytes/s transferred
is, on the other hand, not the important part to look at here. The
important part is the average bytes/s transferred. If we compare the
average between the values in Figure 5.5 and Figure 5.1, we can see
that some of the nodes has a higher average, but some of the nodes
actually has a lower average as well. The biggest difference between
the two charts, is actually on the negative side. Node 14 has a lower
average of 0.14 megabytes/s than in the baseline. 0.14 megabytes/s is
not a huge difference however, and it is most likely just a coincidence
that this occurred, and if I would have done the monitoring with a few
minutes of difference, this could have just as much been on the positive
side of the spectrum. The conclusion here is that there doesn’t seem
to be any noticeable difference between the baseline monitoring and the
monitoring while the Emerald software is running, when it comes to the
incoming bytes/s.

For the outgoing bytes per second, shown in Figure 5.6, I would
expect a similar result in relation to the baseline monitoring, as we got
for the incoming bytes per second. If we take a look at the chart, and
compare it to the chart in Figure 5.2, we can see that that prediction
is pretty correct. The most noticeable difference here is the maximum
bytes/s from node 3. This is a bit lower in Figure 5.6, but other than that
the charts look pretty similar. The difference in the average outgoing
bytes/s is actually even smaller than for the incoming bytes/s, with the
biggest difference being just 177,32 bytes/s (0,00018 megabytes/s). This
again confirms my conclusion in the last paragraph, stating that the
Emerald software has very little impact on the bytes transferred per
second, if any at all.

As for the incoming packets/s, shown in Figure 5.7, we can see that
the chart, as expected, matches the chart in Figure 5.5. The spikes
in the maximum column of the charts are on the same nodes, and the
columns showing the average values also look pretty much alike. As
before, the y-axis does of course have lower values on the chart showing
packets/s, than on the chart showing bytes/s. Other than that, the

37

1413121110987654321

0

1

2

3

4

5

6

7
·106

B
yt

es
/s

in

Max Average

Figure 5.5: Bandwidth graph Bytes/s in, Emerald software running

charts matching each other as they should be.
When it comes to the chart showing the outgoing packets/s, shown

in Figure 5.8, I am expecting the same result as I did above. The chart
should match the chart for outgoing bytes/s. If we compare the chart
with the one in Figure 5.6, we can see that that expectation is correct.
The spikes on both the bars showing maximum packets/s, as well as the
bars showing the average packets/s, matches the corresponding bars in
the chart showing outgoing bytes/s. The only difference is, again, only
that the values in the y-axis of the chart showing packets/s are lower
than the values in the chart showing bytes/s.

5.1.3 Monitoring of the Program

After the baseline monitoring and monitoring of the Emerald software
is finished, the only thing left to monitor is the actual Program created
for this thesis. The data monitored in this section is the data that will
actually tell us something, and is the data that is going to be most
important when it comes to looking at how the bandwidth is affected.
All the data from this monitoring can be seen in Figures 5.9, 5.10, 5.11,
5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 5.18, 5.19 and 5.20.

As we have done for the earlier sections of this chapter, let us start
by looking at the incoming bytes per second. At first eyesight, the chart
in Figure 5.9 looks pretty much identical to the chart from the last
section, Figure 5.5. We see the same spikes on the same nodes, and
the differences are pretty minimal. If we compare it to the chart in
Figure 5.1, from the baseline, the differences are a bit bigger, but still
not that noticeable. To make it a bit easier to see the difference, I have

38

1413121110987654321

0

0.5

1

1.5

2

2.5

3

·105

B
yt

es
/s

ou
t

Max Average

Figure 5.6: Bandwidth graph Bytes/s out, Emerald software running

1413121110987654321

0

1,000

2,000

3,000

4,000

5,000

Pa
ck

et
s/

s
in

Max Average

Figure 5.7: Bandwidth graph Packets/s in, Emerald software running

39

1413121110987654321

0

500

1,000

1,500

2,000

2,500

Pa
ck

et
s/

s
ou

t

Max Average

Figure 5.8: Bandwidth graph Packets/s out, Emerald software running

created a chart that shows the difference from the chart in Figure 5.9 to
the baseline chart for incoming bytes/s. This chart can be seen in Figure
5.13. As we can see in that chart, the biggest differences here is the bars
showing the maximum bytes/s recorded. As I have mentioned earlier
in this chapter, the maximum bytes/s doesn’t directly tell us anything
about how the data traffic actually has been for most of time, as this
can be just one transfer of a file that is bigger than the usual data
transferred to this computer. Therefore, I have created another chart,
that shows the exact same data as in Figure 5.13, just that it only shows
the bars showing the average values. This chart can be seen in Figure
5.17. Here we can see that there are some differences in the average
incoming bytes/s, but it isn’t that big of a difference from the baseline.
The biggest difference is on the positive side though, but it is just about
0,386 megabytes/s, which really isn’t that much. I would say that that
is way inside the margin of error and that it could quickly have changed
based on the time this monitoring had been done. So it doesn’t seem
like the incoming bytes/s is affected that much, at least not enough for
us to notice with the tools used in this thesis.

For the outgoing bytes per second, the data from the monitoring is
shown in the chart in Figure 5.10. If we compare that chart to the
chart in Figure 5.6, we can actually see a bit of a difference. At least
more than we did for the charts from the incoming bytes per second.
We can also see a difference if we compare it to the chart from the
baseline, in Figure 5.2. Even though the biggest differences seem to
be in the bars showing the maximum outgoing bytes/s, there are also
some differences in the bars showing the average outgoing bytes/s. To
get a better look at the difference, I have, like for the chart showing

40

the incoming traffic, created a chart showing the difference between the
chart showing the outgoing bytes/s, in Figure 5.10, and the baseline
in Figure 5.2. This chart can be seen in Figure 5.14. Again, the bars
showing the maximum bytes/s are the ones with the biggest difference,
but the bars showing the average bytes/s are actually also showing a
bit of a difference, and mostly on the positive side. To get an even closer
look at the average bytes/s bars, I have created a dedicated chart just for
showing the average outgoing bytes/s. This chart can be seen in Figure
5.18. As we can see in that chart, almost everyone of the nodes has
either no difference from the baseline in average bytes/s or they have a
higher average. The only two nodes whit a lower average in outgoing
bytes/s are nodes 10 and 11. And then we are just talking about 695,68
bytes/s on the lowest. On the other hand, there are multiple nodes
with a higher average in outgoing bytes/s, with around, or over, 0,02
megabytes/s. The highest one is node 13 with a difference of 0,045
megabytes/s. Again, this is really not that much of traffic, but we might
be seeing an effect from the program, since it’s not just a couple of
the nodes that are showing an increase in average outgoing bytes per
second.

When it comes to the incoming packets per second, I have also
created a chart for that data. The chart can be seen in Figure 5.11.
If we compare that to the chart showing the incoming bytes/s, in Figure
5.9, we can see that the charts look pretty similar, as they should. I
also created a chart for the difference in the incoming packets/s from
this chart to the one created for the baseline. This chart can be seen in
Figure 5.15. Again, if we compare that chart to the one in Figure 5.13,
we can see that those charts look pretty similar as well. This again
confirms the fact that the ’bwm-ng’ tool has collected the data correctly.
Finally, I also created a chart for the difference in incoming packets/s
from the baseline, just showing the average incoming packets/s. This
can be seen in Figure 5.19. And if we compare that to the chart in
Figure 5.17, they should be pretty similar as well. Even though the
charts actually look a bit different, the difference in y-axis values are so
big, that it isn’t that off. We can see kind of the same trends in the bars.

The last metric to look at is the outgoing packets per second. The
chart showing this data can be seen in chart 5.12. If we compare that
chart to the one showing outgoing bytes/s, in Figure 5.10, we can see
that this to charts are pretty much alike, as expected. Again, there are
some differences, but the trend in the bars are pretty much the same. I
also created a chart for the difference in the outgoing packets/s from this
chart to the one created for the baseline. See Figure 5.16. If we take a
look at that chart, and compare it to the one in Figure 5.14, showing the
difference between the baseline and the outgoing bytes/s, we can see
that these charts also look the same. Lastly, to compare the outgoing
packets/s to the chart in Figure 5.18, I created a chart just showing the
average packets/s. This can be seen in Figure 5.20. If we compare those
charts as well, we can see that they also are pretty much the same, and
that the bars are showing the same trends.

41

1413121110987654321

0

2

4

6

8

·106

B
yt

es
/s

in

Max Average

Figure 5.9: Bandwidth graph Bytes/s in, Program running

1413121110987654321

0

2

4

6

·105

B
yt

es
/s

ou
t

Max Average

Figure 5.10: Bandwidth graph Bytes/s out, Program running

42

1413121110987654321

0

2,000

4,000

6,000

8,000

Pa
ck

et
s/

s
in

Max Average

Figure 5.11: Bandwidth graph Packets/s in, Program running

1413121110987654321

0

500

1,000

1,500

2,000

2,500

3,000

Pa
ck

et
s/

s
ou

t

Max Average

Figure 5.12: Bandwidth graph Packets/s out, Program running

43

1413121110987654321

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
·107

B
yt

es
/s

in

Max Average

Figure 5.13: Bandwidth graph Bytes/s in, Program running (baseline
subtracted)

1413121110987654321
−2

−1

0

1

2

3
·105

B
yt

es
/s

ou
t

Max Average

Figure 5.14: Bandwidth graph Bytes/s out, Program running (baseline
subtracted)

44

1413121110987654321

−1.5

−1

−0.5

0

0.5

·104

Pa
ck

et
s/

s
in

Max Average

Figure 5.15: Bandwidth graph Packets/s in, Program running (baseline
subtracted)

1413121110987654321

−1,000

0

1,000

2,000

Pa
ck

et
s/

s
ou

t

Max Average

Figure 5.16: Bandwidth graph Packets/s out, Program running
(baseline subtracted)

45

1413121110987654321

−1

0

1

2

3

4
·105

B
yt

es
/s

in

Average

Figure 5.17: Bandwidth graph Bytes/s in, Program running (baseline
subtracted, only showing average)

1413121110987654321

0

1

2

3

4

·104

B
yt

es
/s

ou
t

Average

Figure 5.18: Bandwidth graph Bytes/s out, Program running (baseline
subtracted, only showing average)

46

1413121110987654321

0

100

200

300
Pa

ck
et

s/
s

in

Average

Figure 5.19: Bandwidth graph Packets/s in, Program running (baseline
subtracted, only showing average)

1413121110987654321

0

100

200

300

Pa
ck

et
s/

s
ou

t

Average

Figure 5.20: Bandwidth graph Packets/s out, Program running
(baseline subtracted, only showing average)

47

5.2 CPU and Memory usage

This section presents and comments on the results of the testing done
for the CPU and Memory on the nodes listed in Table 5.1, at page 33.
The research metrics used for this testing is listed in section 3.3.1, in
Table 3.4 at page 22.

5.2.1 CPU

When it comes to the monitoring of the CPU usage, I was kind of
dependent on getting a baseline for the CPU usage, so I had something
to compare the data I’d get from monitoring the CPU while the Program
was running on the nodes. Unfortunately, all the CPU’s where at idle
when I was doing the testing an monitoring, so this section will just be
to take a look at how the CPU behaved after the program was running,
and look at the differences between the nodes and discuss them.

Let us start with the chart shown in Figure 5.21, at page 49. As we
can see, most of the nodes peaked at between 2% and 7% CPU usage.
There are two exceptions however. Node 2 peaks at 13.3% CPU usage,
and node 6 peaks at a whole 36% CPU usage. The one going up to
13.3% usage isn’t that bad, but the one going up to 36% usage is a
pretty significant difference from the other nodes. Keep in mind that all
of these nodes run the exact same program, and are pinging the exact
same nodes as everyone else. I thought first that it might be because of
geographical distance or maybe it had unusually long round-trip times
to the other nodes, but I didn’t see anything unusual when I checked
those to metrics. So there are basically two things I can think of that
could make this happen:

1. This one spike is just an anomaly, and the CPU usage was much
lower for the rest of the monitoring.

2. The CPU at this node is just that much slower than the CPU at
the other nodes.

Lets look at the first one of those possibilities. If we take a look at
the chart in Figure 5.22, at page 49, we can take a look at the average
CPU usage over the period that i monitored for. Here we see that all of
the nodes are averaging from 2% to 8% CPU usage, except from node 6
that is averaging 18% CPU usage. So it seems that node 6 still is using
a lot of the CPU. I took a look at the individual CPU usages of node
6, and I saw that the CPU usage jumped a lot up and down between
8% and 36% CPU usage over the time that i monitored it. This does
indicate that the CPU of that node is just that much slower than for the
other nodes, because the other nodes did also vary in CPU usage, only
that they varied inside a much smaller area.

48

1413121110987654321

0

10

20

30
C

P
U

%

Max

Figure 5.21: Max CPU % graph with Program running

1413121110987654321

0

5

10

15

C
P

U
%

Average

Figure 5.22: Average CPU % graph with Program running

49

5.2.2 Memory

For the monitoring of the Memory usage, I was able to do a baseline test
of the Memory usage when just the Emerald software was running on
all of the nodes. The data collected while monitoring the baseline can
be seen in the chart in Figure 5.23, at page 51. As we can see that the
nodes kept a pretty low memory usage during the monitoring of just the
Emerald software running. The nodes with the lowest usage had a 0%
average memory usage, while the two nodes with the highest usage had
a 0.7% average usage. The 5 nodes that are not using 0% or 0.7% are
using 0.1% of memory in average. If we take a look at Table 5.2, we can
see the total amount of memory each of the 14 test nodes has. If we then
use the % of memory usage we have in Figure 5.23 and multiply that
with the values we have in Table 5.2, we can calculate the approximate
KB of memory each node uses in average. This calculation has been
done, and are listed in Table 5.3. As we can see from that table, all the
nodes that didn’t have the average memory to 0%, are using around the
same amount of memory which makes sense, since they are running the
same software. The nodes that are listed with 0 KB are also probably
using around the same amount of memory in average as the other nodes,
its just that they have so much total memory that the percentage was
rounded down to 0% instead of up to 0.1%.

Now lets take a look at the chart in Figure 5.24, at page 51. This
chart shows the average memory usage after the test Program has been
started. As you can see, one of the nodes that was up in 0.7% has now
fallen down to 0.1%, while the other node that was at 0.7% has gone up
to 1.1%. We can also see that node 14 has gone up from 0% to 0.1%.
This kind of confirms my conclusion in the last paragraph, as it seems
that for the baseline testing the average memory usage laid just under
4000 KB, while it now has peaked over 4000 KB, meaning the average
amount of memory used is now closer to 0.1 %, of the 8312160 KB of
memory node 14 has, than 0%.

50

1413121110987654321

0

0.2

0.4

0.6
M

em
or

y
%

Average

Figure 5.23: Memory % graph baseline

1413121110987654321

0

0.2

0.4

0.6

0.8

1

M
em

or
y

%

Average

Figure 5.24: Memory % graph with Program running

51

Node nr. Hostname KB Memory
1 planetlab1.cs.uit.no 90071992
2 cse-yellow.cse.chalmers.se 90071992
3 planetlab3.cesnet.cz 4151704
4 planetlab2.inf.ethz.ch 15839832
5 planetlab4.mini.pw.edu.pl 4147476
6 planetlab2.cs.ubc.ca 12456540
7 ple4.planet-lab.eu 524288
8 planetlab1.pop-mg.rnp.br 4064976
9 planetlab1.comp.nus.edu.sg 4151704
10 planetlab-2.calpoly-netlab.net 4146528
11 planetlabeu-1.tssg.org 90071992
12 planetlab2.pop-pa.rnp.br 4142356
13 node2.planetlab.mathcs.emory.edu 4069716
14 pl1.rcc.uottawa.ca 8312160

Table 5.2: List of test nodes with total amount of memory in KB while
Program is running.

Node nr. Hostname KB Memory
1 planetlab1.cs.uit.no 0
2 cse-yellow.cse.chalmers.se 0
3 planetlab3.cesnet.cz 4151.704
4 planetlab2.inf.ethz.ch 0
5 planetlab4.mini.pw.edu.pl 4147.476
6 planetlab2.cs.ubc.ca 0
7 ple4.planet-lab.eu 3670.016
8 planetlab1.pop-mg.rnp.br 28454.832
9 planetlab1.comp.nus.edu.sg 4151.704
10 planetlab-2.calpoly-netlab.net 4146.528
11 planetlabeu-1.tssg.org 0
12 planetlab2.pop-pa.rnp.br 4142.356
13 node2.planetlab.mathcs.emory.edu 4069.716
14 pl1.rcc.uottawa.ca 0

Table 5.3: List of test nodes with amount of memory used in KB at
baseline.

52

Node nr. Hostname KB Memory
1 planetlab1.cs.uit.no 0
2 cse-yellow.cse.chalmers.se 0
3 planetlab3.cesnet.cz 4151.704
4 planetlab2.inf.ethz.ch 0
5 planetlab4.mini.pw.edu.pl 4147.476
6 planetlab2.cs.ubc.ca 0
7 ple4.planet-lab.eu 5767.168
8 planetlab1.pop-mg.rnp.br 4064.976
9 planetlab1.comp.nus.edu.sg 4151.704
10 planetlab-2.calpoly-netlab.net 4146.528
11 planetlabeu-1.tssg.org 0
12 planetlab2.pop-pa.rnp.br 4142.356
13 node2.planetlab.mathcs.emory.edu 4069.716
14 pl1.rcc.uottawa.ca 8312.160

Table 5.4: List of test nodes with total amount of memory in KB.

53

54

Chapter 6

Discussion

In this chapter I will discuss the test results I found in Chapter 6. The
goal of this chapter is to give an overview of the the results I found,
answer the research questions in section 1.1, and also look at what I
could have done different when it came to the testing scenarios.

The thesis considers the following metrics for the testing done in
Chapter 6:

• Round-trip time (RTT)

• Geographical distance

• Incoming bytes/s on the bandwidth

• Outgoing bytes/s on the bandwidth

• Incoming packets/s on the bandwidth

• Outgoing packets/s on the bandwidth

• CPU usage in %

• Memory usage in %

• Memory usage in byte

For the Bandwidth I found that the tool I used for testing might not have
been the best tool to test with. Since I couldn’t use the tool to specify a
process or program to monitor, I had to monitor the entire bandwidth of
the node. This bandwidth is shared with all other users connected to the
node, meaning the measurements I did wasn’t precise enough. On the
other hand, this is how it always will be in a real world environment. A
big part of this thesis was to do the testing in realistic circumstances,
and in the real world, a process on a computer will share the bandwidth
with all the other processes on it. The positive thing I found was that
since I didn’t notice a big increase in the bandwidth traffic, the program
couldn’t really have such a big impact one the bandwidth capacity on
the nodes. This was also kind of expected since all the program really
does is pinging all the nodes on the network. A ping doesn’t use that

55

much bandwidth, at least not compared to the upload and download
speeds that most servers use now a days.

When it comes to the CPU and Memory testing, the tool I used
worked pretty much just as I wanted it to. I was able to choose which
process I wanted to monitor, and the results I got from the tool seemed
to be really accurate. When it comes to the CPU monitoring, it was a bit
difficult to get that much out of the average and max CPU usage, when
I didn’t have a baseline for the CPU usage on the computers to go after.
We did however find out that one of the computers used for the testing,
seemingly had a slower CPU than the rest of the computers I did the
tests with. It doesn’t seem like the CPU was a bottleneck in any sense,
as we didn’t see any special outcome from that node on the other tests
I did, but it might had been a bottleneck if I had been able to increase
the number of nodes I could get Emerald software to run on.

Another note on the CPU and Memory testing is that I could have
used one other metric. The load average is a metric that shows
the amount of computational work the system performs. For Linux
computers, this is the number of processes in the R and D state at a
given time:

• R state: Processes that are running or runnable. [22]

• D state: Processes that are in uninterruptible sleep. This is
usually I/O processes. [22]

This could have given me even more information about how hard at
work the different nodes where under the load of the program, but
unfortunately I didn’t think of that metric before it was too late.

56

Chapter 7

Conclusive Remarks

7.1 Research findings

In this thesis, I have looked at the affect my network map had on a
group of nodes, in a realistic environment. All in all, the Network Map
I created worked as it should. It spread it self to all available nodes on
the network, and from there started to ping all available nodes. The
findings was pretty much as expected, as the Network Map didn’t have
a noticeable affect on neither the bandwidth, the CPU or the memory
on any of the Nodes.

It would have probably been better to test the program on a larger
amount of nodes then what I got to do, but that was unfortunately out
of my control. The load average would have also been a good metric to
use for the affect on the nodes hardware, instead of just the CPU and
memory monitoring.

57

58

Bibliography

[1] Domenico Amalfitano, Anna Fasolino and Porfirio Tramontana.
Rich Internet Application Testing Using Execution Trace Data.
Apr. 2010.

[2] Luciano Barbosa and Juliana Freire. Siphoning Hidden-Web Data
through Keyword-Based Interfaces. Jan. 2004.

[3] Kamara Benjamin et al. ‘A Strategy for Efficient Crawling of
Rich Internet Applications’. In: Proceedings of the 11th Interna-
tional Conference on Web Engineering. ICWE’11. Paphos, Cyprus:
Springer-Verlag, 2011, pp. 74–89. ISBN: 978-3-642-22232-0. URL:
http://dl.acm.org/citation.cfm?id=2027776.2027784.

[4] SUPRIYO BISWAS. A Guide to the Linux “Top” Command. 2019.
URL: https : / /www.booleanworld .com/guide - linux - top - command/
(visited on 02/04/2019).

[5] Paolo Boldi et al. ‘UbiCrawler: A Scalable Fully Distributed Web
Crawler’. In: 34 (July 2004).

[6] Sergey Brin and Lawrence Page. ‘The Anatomy of a Large-scale
Hypertextual Web Search Engine’. In: Comput. Netw. ISDN Syst.
30.1-7 (Apr. 1998), pp. 107–117. ISSN: 0169-7552. DOI: 10.1016/
S0169-7552(98)00110-X. URL: http://dx.doi.org/10.1016/S0169-
7552(98)00110-X.

[7] A. Broido, E. Nemeth and k. claffy k. ‘Internet Expansion, Refine-
ment, and Churn’. In: European Transactions on Telecommunica-
tions 13.1 (Jan. 2002), pp. 33–51.

[8] Suryakant Choudhary et al. ‘Building Rich Internet Applications
Models: Example of a Better Strategy’. In: Web Engineering. Ed.
by Florian Daniel, Peter Dolog and Qing Li. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 291–305. ISBN: 978-3-642-
39200-9.

[9] C. Duda et al. ‘AJAX Crawl: Making AJAX Applications Search-
able’. In: 2009 IEEE 25th International Conference on Data En-
gineering. Mar. 2009, pp. 78–89. DOI: 10.1109/ICDE.2009.90.

[10] Jenny Edwards, Kevin Mccurley and John Tomlin. ‘An Adapt-
ive Model for Optimizing Performance of an Incremental Web
Crawler’. In: (Apr. 2001).

59

http://dl.acm.org/citation.cfm?id=2027776.2027784
https://www.booleanworld.com/guide-linux-top-command/
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1109/ICDE.2009.90

[11] A. M. Fard and A. Mesbah. ‘Feedback-directed exploration of
web applications to derive test models’. In: 2013 IEEE 24th
International Symposium on Software Reliability Engineering
(ISSRE). Nov. 2013, pp. 278–287. DOI: 10 . 1109 / ISSRE . 2013 .
6698880.

[12] Free Software Foundation. GNU General Public License, version
2. 2017. URL: https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
(visited on 02/04/2019).

[13] Volker Gropp. bwm-ng. 2019. URL: https://github.com/vgropp/bwm-
ng (visited on 02/04/2019).

[14] Allan Heydon and Marc Najork. ‘Mercator: A Scalable, Extensible
Web Crawler’. In: 2 (July 1999).

[15] Bradley Huffaker et al. ‘k claffy. Distance metrics in the internet’.
In: in IEEE International Telecommunications Symposium. 2002,
pp. 200–2.

[16] Hsin-Tsang Lee et al. ‘IRLbot: Scaling to 6 Billion Pages and
Beyond’. In: 3 (Jan. 2008), p. 8.

[17] Stephen W. Liddle et al. ‘Extracting Data behind Web Forms’.
In: Advanced Conceptual Modeling Techniques. Ed. by Antoni
Olivé, Masatoshi Yoshikawa and Eric S. K. Yu. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 402–413. ISBN: 978-3-540-
45275-1.

[18] Netcraft Ltd. NetCraft Web Server Survey. 2018. URL: https : / /
news.netcraft .com/archives/category/web-server- survey/ (visited
on 16/05/2018).

[19] J. Lu et al. ‘An Approach to Deep Web Crawling by Sampling’.
In: 2008 IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology. Vol. 1. Dec. 2008,
pp. 718–724. DOI: 10.1109/WIIAT.2008.392.

[20] Clifford Lynch. ‘SEARCHING THE INTERNET’. In: Scientific
American 276.3 (1997), pp. 52–56. ISSN: 00368733, 19467087.
URL: http://www.jstor.org/stable/24993652.

[21] Seyed M. Mirtaheri et al. ‘A Brief History of Web Crawlers’. In:
(May 2014).

[22] Marek. Linux process states. 2012. URL: https://idea.popcount.org/
2012-12-11-linux-process-states/ (visited on 02/04/2019).

[23] A. Mesbah, E. Bozdag and A. v. Deursen. ‘Crawling AJAX
by Inferring User Interface State Changes’. In: 2008 Eighth
International Conference on Web Engineering. July 2008, pp. 122–
134. DOI: 10.1109/ICWE.2008.24.

[24] John Morris. Data Structures and Algorithms: Red-Black Trees.
1998. URL: https://www.cs.auckland.ac.nz/software/AlgAnim/red_
black.html (visited on 18/05/2018).

60

https://doi.org/10.1109/ISSRE.2013.6698880
https://doi.org/10.1109/ISSRE.2013.6698880
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://github.com/vgropp/bwm-ng
https://github.com/vgropp/bwm-ng
https://news.netcraft.com/archives/category/web-server-survey/
https://news.netcraft.com/archives/category/web-server-survey/
https://doi.org/10.1109/WIIAT.2008.392
http://www.jstor.org/stable/24993652
https://idea.popcount.org/2012-12-11-linux-process-states/
https://idea.popcount.org/2012-12-11-linux-process-states/
https://doi.org/10.1109/ICWE.2008.24
https://www.cs.auckland.ac.nz/software/AlgAnim/red_black.html
https://www.cs.auckland.ac.nz/software/AlgAnim/red_black.html

[25] H. M. Levy N. C. Hutchinson E. Jul. The Emerald Programming
Language. URL: http : / / www . emeraldprogramminglanguage . org/
(visited on 10/04/2019).

[26] OneLab. PlanetLab Europe Technical Overview. 2006. URL: https:
//www.planet- lab.eu/files/PlanetLab__Tech_Overview.pdf (visited
on 10/04/2019).

[27] Z. Peng et al. ‘Graph-Based AJAX Crawl: Mining Data from
Rich Internet Applications’. In: 2012 International Conference on
Computer Science and Electronics Engineering. Vol. 3. Mar. 2012,
pp. 590–594. DOI: 10.1109/ICCSEE.2012.38.

[28] The Trustees of Princeton University. Joining PlanetLab. 2018.
URL: https://www.planet-lab.org/joining (visited on 01/06/2018).

[29] The Trustees of Princeton University. PlanetLab. 2018. URL:
https://www.planet-lab.org/ (visited on 01/06/2018).

[30] Sriram Raghavan and Hector Garcia-Molina. ‘Crawling the Hid-
den Web’. In: Proceedings of the 27th International Conference on
Very Large Data Bases. VLDB ’01. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc., 2001, pp. 129–138. ISBN: 1-55860-
804-4. URL: http://dl.acm.org/citation.cfm?id=645927.672025.

[31] V. Shkapenyuk and T. Suel. ‘Design and implementation of a
high-performance distributed Web crawler’. In: Proceedings 18th
International Conference on Data Engineering. 2002, pp. 357–368.

[32] P. Zerfos, J. Cho and A. Ntoulas. ‘Downloading textual hidden
web content through keyword queries’. In: Proceedings of the 5th
ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’05).
June 2005, pp. 100–109. DOI: 10.1145/1065385.1065407.

61

http://www.emeraldprogramminglanguage.org/
https://www.planet-lab.eu/files/PlanetLab__Tech_Overview.pdf
https://www.planet-lab.eu/files/PlanetLab__Tech_Overview.pdf
https://doi.org/10.1109/ICCSEE.2012.38
https://www.planet-lab.org/joining
https://www.planet-lab.org/
http://dl.acm.org/citation.cfm?id=645927.672025
https://doi.org/10.1145/1065385.1065407

	Introduction
	Research questions
	Research methodology

	Background
	The Emerald programming language
	PlanetLab
	The community

	Distance Metrics
	The Metrics

	Web Crawlers
	The Concept
	How they work
	Challenges
	The evolution of crawlers

	Research Methodology
	Entire project
	Choice of programming language
	Choice of Operating System
	Performance metrics
	Methods used for data sampling

	Bandwidth usage
	Performance metrics
	Methods used for data sampling

	CPU and memory usage
	Performance metrics
	Methods used for data sampling

	Experimental setup
	PlanetLab Architecture
	Terminologies
	The Architecture

	Node setup
	Access to PlanetLab, and choice of nodes
	Configuring nodes for testing

	Testing
	Bandwidth usage
	Baseline monitoring
	Monitoring of Emerald software
	Monitoring of the Program

	CPU and Memory usage
	CPU
	Memory

	Discussion
	Conclusive Remarks
	Research findings

