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Preface

Use the talents you possess, for
the woods would be very silent if
no birds sang except the best

Henry Van Dyke

This thesis is submitted in partial fulfillment of the requirements for the
degree of Philosophiae Doctor at the University of Oslo. The research presented
here was conducted at the University of Oslo under the supervision of associate
professor Torkel Hafting, Professor Marianne Fyhn, Professor Gaute Einevoll and
associate professor Trygve Solstad. This work was supported by the Norwegian
Research Council through grant 231248 and 217920.

The thesis is a collection of three papers, presented in chronological order of
writing. The papers are preceded by an introductory chapter that relates them
together and provides background information and motivation for the work. Two
of the papers are joint work with Ane Charlotte Christensen and colleagues. I
am the sole author of the remaining paper apart from senior authors.
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Summary

Shaped by evolution, many brain areas and basic elements present in the human
brain, are also found in many species such as rodents. This similarity gives
an opportunity to study less complex brains as models for the human brain.
Still, how neural networks ultimately govern perception, cognition, and action is
one of the most elusive questions in contemporary neuroscience. Fortunately,
some neural networks are recently shown to be governed by simple dynamical
properties relative to their underlying complexity. This reduced dimensionality
allows a combination of animal models and relatively simple mathematical
models to understand information processing in the brain. The grid cell network,
underlying elements of navigation, express low dimensional activity, however,
the underlying mechanisms are still unknown. Whether the activity is governed
by oscillations, projected spatial input or connectivity, and how activity remains
stable across time and space remains to be revealed.

Using chronically implanted electrodes in the brain area of medial entorhinal
cortex (MEC) in rats, we study grid cells that form hexagonal patterns of activity
when the animal is searching for food rewards in an enclosed environment. In
MEC, strong oscillatory activity, known as theta oscillations (4 - 12 Hz), is
observed and is driven by pace making cells in the medial septal area (MSA).
These oscillations are believed to play a crucial role in how the hexagonal pattern
of grid cells emerge. To assess this proposed spatio-temporal relationship, we
endow inhibitory neurons in MSA with light sensitive ion channels allowing
precise control of oscillatory activity by pulsing laser light through an implanted
optic fibre in MSA, a method known as optogenetics. In Paper I, we find
that pacing oscillations at different frequencies, vanishes endogenous oscillatory
activity, while the spatial pattern of grid cells remains. The results strongly
indicate that spatial and temporal activity of grid cells can be dissociated, thus,
oscillatory activity of grid cells do not underlie their hexagonal pattern.

Grid cells show exceptional stability of activity at the population level.
This is proposedly due to stable connectivity underlying population activity
which attracts and confines single neuron activity, essentially reducing the
dimensionality of the population. We proposed that a specialized form of
extracellular matrix called perineuronal nets (PNNs) contribute to stability in
connectivity among grid cells. PNNs regulate the extent to which neurons can
change their connectivity with other neurons, known as synaptic plasticity. In
Paper II, we inject a bacterial enzyme, known as Chondroitinase ABC (chABC),
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into MEC breaking down PNNs. We observe that the pairwise spatial correlations
of grid cells and their pairwise temporal correlations were significantly reduced
in animals lacking PNNs. Results strengthen our hypothesis that PNNs restrict
plasticity in MEC and support the stable, low dimensional activity of grid cells.

Much of the literature concerning pairwise activity of grid cells together with
the results presented in this thesis, suggest rigid connectivity to underlie their
activity. Grid cells are identified based on their function (in vivo) and can thus
not be directly studied in extracted brain tissue (in vitro). Conclusive evidence
whether grid cells emerge due to connectivity or are e.g. subject to projected
place specificity from other brain areas remains unresolved. Using pairwise
recorded spiking activity to infer connectivity poses difficulty as correlations
between neurons do not imply causal interactions. Naive inference of connectivity
may thus reflect spurious correlation when background activity confounds the
system under study. To overcome these challenges we attempted in Paper III to
derive a method based on the instrumental variable technique, commonly used
in econometrics. By combining pairwise recording of spikes with optogenetics
the method allows inference of causal transmission probability between neurons.
We find that the method shows promising results in an example of three neurons
where it manages to remain causally valid while in naive methods validity is
hampered by confounders.

In conclusion, the results in the present thesis contribute to the understanding
of mechanisms that underlie brain activity and how this may explain cognitive
functions such as navigation and memory processing. As with any scientific
study, the research raises more questions that deserve further investigation.

Sammendrag

Formet av evolusjon, mange hjerneområder og grunnleggende elementer som er
til stede i den menneskelige hjernen, finnes også i mange arter, som for eksempel
gnagere. Denne likheten gir en mulighet til å studere mindre sammensatte
hjerner som modeller for den menneskelige hjernen. Fortsatt, hvordan nevrale
nettverk til slutt styrer persepsjon, erkjennelse og handling er et av de mest
unnvikende spørsmålene i samtidens nevrovitenskap. Heldigvis er det nylig vist
at noen nevrale nettverk styres av enkle dynamiske egenskaper i forhold til
deres underliggende kompleksitet. Denne reduserte dimensjonalitet tillater en
kombinasjon av dyremodeller og relativt enkle matematiske modeller for å forstå
informasjonsbehandling i hjernen. Et spesielt nettverk, under fokus i denne
avhandlingen som underligger navigasjonselementer, uttrykker lav dimensjonal
aktivitet, men de underliggende mekanismene er fremdeles ukjente. Hvorvidt
aktiviteten er styrt av svingninger, projisert stedsspesifisitet eller lokal tilkobling,
og hvordan aktiviteten forblir stabil over tid og rom gjenstår å avsløre.

Ved å bruke kronisk implanterte elektroder i hjerneområdet medial entorhinal
cortex (MEC) hos rotter, studerer vi gitterceller som danner sekskantede
aktivitetsmønstre når dyret søker matbelønning i et lukket miljø. I MEC
observeres sterk oscillerende aktivitet, kjent som teta-svingninger (4 - 12 Hz),
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og drives av tempoet fra celler i det mediale septale området (MSA). Disse
svingningene antas å spille en avgjørende rolle i hvordan det sekskantede
mønsteret til gitterceller dukker opp. For å vurdere dette foreslåtte rom-
tidsmessige forholdet, gir vi hemmende nevroner i MSA lysfølsomme ionekanaler
som tillater presis kontroll av oscillerende aktivitet, ved å pulse laserlys gjennom
en implantert optisk fiber i MSA, en metode kjent som optogenetikk. I
artikkel 1 finner vi at stimuleringspulser ved forskjellige frekvenser fjærner
endogen svingningsaktivitet, mens det romlige mønsteret til gitterceller forblir.
Resultatene indikerer sterkt at romlig og tidsmessig aktivitet i gitterceller kan
dissosieres, og derfor gir ikke oscillerende aktivitet til gitterceller grunnlag for
deres sekskantede mønster.

Gitterceller viser eksepsjonell stabilitet av aktivitet på populasjonsnivå. Dette
er antagelig på grunn av stabil underliggende tilkobling på tvers av celler som
skaper tiltrekkning i populasjonsaktivitet og begrenser nevronaktivitet, noe som
i vesentlig grad reduserer dimensjonaliteten til populasjonen. Vi foreslo at en
spesialisert form for ekstracellulær matrise kalt perinevrale nett (PNN-er) bidrar
til den stabile tilkoblingen blant gittercellene. PNN-er regulerer i hvilken grad
nevroner kan endre sin forbindelse med andre nevroner, kjent som synaptisk
plastisitet. I artikkel 2 injiserer vi et bakterieenzym, kjent som Chondroitinase
ABC (chABC), i MEC som bryter ned PNN-er. Vi observerer at de parvise
romlige korrelasjonene av gitterceller og deres parvise temporale korrelasjoner var
betydelig redusert hos dyr som manglet PNN. Resultat styrker hypotesen vår om
at PNN-er begrenser plastisiteten i MEC og støtter den stabile, lavdimensjonelle
aktiviteten til gitterceller.

Mye av litteraturen om parvis aktivitet av gitterceller sammen med
resultatene presentert i denne oppgaven, tyder på at bevarte tilkoblinger over
tid ligger til grunn for deres aktivitet. Gitterceller identifiseres basert på deres
funksjon (in vivo) og kan dermed ikke studeres direkte i ekstrahert hjernevev
(in vitro). Bevis på om gitterceller oppstår på grunn av tilkobling eller er f.eks.
projisert stedsspesifisitet fra andre hjerneområder forblir uavklart. Å bruke parvis
registrert fyringsaktivitet for å utlede tilkoblingen gir vanskeligheter ettersom
korrelasjoner mellom nevroner ikke innebærer årsaksinteraksjoner. Naiv inferens
av tilkobling kan således reflektere falsk korrelasjon når bakgrunnsaktivitet
konfunderer systemet som studeres. For å overvinne disse utfordringene forsøkte
vi i artikkel 3 å utlede en metode basert på instrumentell variabel teknikk,
vanligvis brukt i økonometri. Ved å kombinere parvis opptak av fyringsaktivitet
med optogenetikk, tillater metoden inferens av kausal transmisjonssannsynlighet
mellom nevroner. Vi finner at metoden viser lovende resultater i et eksempel på
tre nevroner der den forblir årsaksmessig gyldig, mens i naive metoder hindres
gyldigheten av konfundering.

Avslutningsvis bidrar resultatene i denne avhandlingen til forståelsen av
mekanismer som ligger til grunn for hjerneaktivitet og hvordan dette kan forklare
kognitive funksjoner som navigasjon og hukommelsesprosessering. Som med
enhver vitenskapelig studie reiser forskningen flere spørsmål som fortjener videre
undersøkelse.
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Chapter 1

Background

You’, your joys and your sorrows,
your memories and your
ambitions, your sense of personal
identity and free will, are in fact
no more than the behavior of a
vast assembly of nerve cells

Francis Crick

1.1 Introduction

You are reading this by means of a system that has been shaped through millions
of years of evolution - the human brain. Through eons of time, it has formed
into the most complex entity in the known universe - or at least, so thinks
the brain about the brain. Being isometrically scaled up from primates1, the
human brain is at the end of a long range of species struggling to survive with
the means given by its ancestors. With no little amount of dramatic events, it
has thus come to both fit inside your skull and be able to comprehend these
words. As successful species survived there were little to no revision on parts
that were already working sufficiently well2. Many of the brain regions that
developed in early mammalian history are therefore highly preserved across
species. For example, the brain area known as the hippocampus is found in
nearly all vertebrate brains3. This gives us an opportunity to study simpler
brains as relevant models of the human brain.

The brain is bounded in size, to support flexible navigation in complex
environments and be manageable for mothers during birth, but at the same
time be large enough to hold hardware (or wetware) that performs complex
calculations. Compared with many other species, humans are born early in
terms of development, completely reliable on caretakers years after birth. Being
of comparable size to other organs in your body, the brain requires the most
energy, consisting of about 86 billion neurons it draws about 20% of your life
support. Each neuron has on average about 10 000 synaptic connections, making
the brain a vast interconnected network of neurons.

Neurons communicate by means of electrical impulses, known as action
potentials, governed by ionic currents that flow through ion channels - which is
preserved throughout evolution in the vertebrate brain. From the vast complexity
of molecules to the intricate interactions that enable humans to scale the steepest

1Azevedo et al., 2009 2Northcutt, 2002 3Witter et al., 2017
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1. Background

mountainsides of earth, brains operate on multiple scales. Spatially, all the
way from picometer scale of molecular dynamics of ions, nanometer scaled ion
channels, micrometer scaled neurons to the millimeter scale of neural networks,
to meter scale brains. Temporally, ranging from nanosecond scale of ions moving
through ion channels along an electrical or chemical gradient, millisecond scale
of action potentials to networks storing memories spanning years. Due to the
complexity of dealing with such a variety of spatio-temporal scales, the study
of the brain spans multiple scientific fields, like biology, chemistry, philosophy,
psychology, engineering, physics and mathematics.

Experiments in neuroscience are typically very complex, usually combining
behavioral monitoring and various measurements of brain activity, recently
in genetically modified animals. This involves both small-scale physics on
particle interactions and electric fields, meso-scale complex systems-interactions
of neurons and macro scaled interactions between brain regions. Zooming out
even further is theory of learning and behavior, ranging from cognitive to social
sciences. On each scale or level, complex computational models are used, of
chemical interactions inside the cell, or single cell models using mathematical
tools such as dynamical systems and network theory, or normative computational
models of learning and behavior. This is why neuroscience is said to be one
of the most difficult scientific fields currently undertaken by human kind - the
endeavor of many brains to understand the brain.

The brain has been of interest for several millennia, with the earliest recorded
reference to the brain about 30-25th century BC4. With the advent of technology
such as the microscope, research has increased in intensity over the last century.
Many brain areas have been cataloged, much of the nerves are traced, and
the electrical activity of neurons is to a large part understood. But still, little
is known about how the brain works as a whole, how the components in the
brain co-orchestrate to give a stable and consistent integration of sensory input,
produce coherent thoughts and plan and perform actions - ultimately providing
the basis for consciousness. How then, are we to proceed scientifically in order
to further understand the brain?

1.2 Aims

In this thesis I will outline the background and history to give context to three
manuscripts which describes the work I have done during my PhD period in
more detail. I introduce neurons and how their activity can be measured in
living animals. I aim to give a brief overview of electrical activity in neurons,
with focus on how they can be modeled mathematically. Moreover to show that
seemingly complex systems of millions of interacting elements, the ion channels,
give rise to a fairly simple low dimensional dynamical system, producing action
potentials.

Then, I present neural networks and aim to show that at least in some
particular brain systems, there is evidence of a similar low dimensional

4Kamp et al., 2011
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Neurons

representation as in the single neuron, but now, instead of ion channels, the
acting elements are neurons communicating through action potentials, finally
producing population-level representations of sensory input. With these ideas
at hand I present one particular neural network, the grid cell network. I aim
to provide theory together with experimental findings that indicates that this
network indeed form a low dimensional representation of space and that it
underlies an important element in self-localization, namely, path integration.
Within this framework I present two papers, 1 and 2.

In Paper I we aim to perturb brain wide temporal activity while simultane-
ously monitoring grid cells to investigate whether temporal and spatial aspects
in this cell type can be dissociated.

In Paper II we aim to assess the effect on stability of grid cells when removing
an extracellular matrix surrounding cell bodies.

Questions in neuroscience are inherently causal, and it is easy to land on
wrong conclusions when analysing observational data. Therefore, in the final
part of the thesis I aim to introduce methods from causal inference that are
commonly used in other fields such as economy and machine learning, but less
so in neuroscience. With these methods at hand I aim to show that it is possible
to form causal hypothesis about brain function.

In the final Paper III, we aim to use a particular method from causal inference,
the instrumental variable technique, to infer causal interactions between neurons
under large scale perturbations.

Finally I aim to discuss the work and conclude that the future of neuroscience
can benefit from a population view in combination with causal inference in order
to lure out the inner workings of the brain.

1.3 Neurons

How information was transmitted throughout the vertebrate brain was one of
the primary questions that drove early neuroscience. The widely held view at
the time was that the brain was made up of a single network of nerve fibers
that were all directly connected to one another. In order to investigate this
view, Camillo Golgi stained brain tissue with silver nitrate, labelling a random
subset of neurons. With this sparse labeling, it was possible to see not only
nerve fibres, but also nerve cells or neurons, however how they communicated
remained unclear. It was still possible that neurons formed a continuum where
each neuron’s activity was continually altered by the activity of others. However,
this seemed not to be the case as neurons was later shown to be disconnected
by a synaptic cleft, indicated by Fridjof Nansen5, later confirmed by Ramon
Y. Cajal6. This finding had vast implications in neuroscience, and still has. It
hinted to the single neuron as an independent computational unit, and gave
rise to the neuron doctrine7, which led to intensified invested research in single
neuron dynamics.

5Nansen, 1887 6López-Muñoz et al., 2006 7Yuste, 2015
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The brain is typically separated into cortical and subcortical areas, where
cortical areas are subdivided into layers containing different neuronal types.
Throughout the brain, neurons and non-neuronal glial cells make up the gray
matter and axons make up the white matter which together form the main part
of the brain tissue. Neurons and glial cells represent about the same amount
of gray matter8, where the former is believed to be the main component in
information processing and the latter to be a support system. Neurons consist of
three parts, a soma, an axon and dendrites (Fig. 1.1A). The dendrites represent
the most complex structure of the neuron, and receives most of its input. Inputs
are received mainly through chemical synapses, transmitting signal molecules
called neurotransmitters between a presynaptic neuron and its postsynaptic
recipient or with electrical synapses called gap junctions. In chemical synapses,
synaptic transmission is activated by large deflections in the membrane potential
of neurons called action potentials (or spikes), generated in the soma of a
presynaptic neuron (the axon hillock to be precise), travelling down axons,
and ultimately reaching synapses activating transmission of neurotransmitters
(Fig. 1.1A). Neurons typically have either inhibitory or excitatory synapses, in
which neurotransmitters activate ion channels in the membrane that decrease
or increase the postsynaptic membrane potential (PSP) respectively (Fig. 1.1C
excitatory PSP). The most common neurotransmitters are γ-aminobutyric acid
(GABA) and glutamate for inhibitory and excitatory synapses, respectively.
Most of the input are integrated in dendrites, but synapses can also be found
directly on the soma, depending on the type of presynaptic neuron.

1.3.1 Measuring neural activity

Neurons communicate through action potentials which are recognizable as spikes
in the extracellular potential surpassing the amplitude of the (baseline) chatter
generated by background neural activity. In the work presented in this thesis we
have measured brain activity by extracellular electrophysiology with tetrodes,
and in what follows I introduce the basic concepts underlying this measurement
method.

After synaptic activation, currents travel through the membrane. These
currents are made up of charged ions that enter the dendritic tree or soma
due to opening of ion channels. When ions enter the top of a dendritic tree
and travel down towards the soma, an electric sink is generated at the input
and a source can be found in the soma. This activity, generates an electrical
field which can be picked up by electrodes placed in the extracellular space.
If neurons are aligned, such that the dendrites stretches in the same general
direction, and receives synchronous input, the fields are superposed and an even
larger deflection in potential can be measured. When recording from the brain
extracellularly, synchronous population activity gives rise the local field potential
(LFP), which can be observed with low-pass filtering of the signals as their
frequency content is below 300 Hz, (Fig. 1.2B).

8Bartheld et al., 2016
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Figure 1.1: Basic intracellular neurophysiology. A Three pyramidal
neurons in a small network (i=1-3). Action potentials travel down the axon and
induce release of neurotransmitters in the synapse. Postsynaptic potential (PSP)
then rise as a result of neurotransmitters opening ion channels in the synapse.
The two main ion channels involved in the action potential of neurons are voltage
gated sodium (Na+) channels and potassium (K+) channels. B Simplified circuit
of the three neurons to the left as conceptualized with point neuron models, with
an electrode measuring the membrane potential of neuron i=3. C Membrane
potential (u3(t)) measured at the soma of neuron i = 3 upon spikes tki received
from neurons i = 1, 2. Resting membrane potential (urest), threshold for action
potential (uthres) and refractory time tref
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When the signal is high pass filtered (> 300 Hz), the activity obtained is
referred to as multi unit activity (MUA), a signal containing the spiking activity
of many neurons (Fig. 1.2B). This signal consists of spiking activity (and high
frequency noise) from all neurons in a close vicinity9. In order to recognize and
quantify single neuron activity relative to behavior we have to distinguish which
spikes are being measured from which neuron. To this end, we preferably have as
many electrode channels as possible in close vicinity, to get a detailed “electrical
view” of the nervous tissue. With multiple channels measuring one neuron, it
is possible to better identify individual neurons (Fig. 1.2B). Multiple adjacent
recording sites are then used to distinguish which spikes comes from which
neurons in a process called spike sortingi. As the amplitude of the electrical
potential falls quickly with distance, it is possible to distinguish neurons by
their amplitude across electrodes (Fig. 1.2B). Moreover, it is possible to separate
inhibitory and excitatory neurons from their shape of the extracellularly recorded
action potential10. However, to ever increase the number and density of electrode
channels is technologically challenging, both in terms of fitting them into a tiny
brain, but also amplification and storage of the numerous channels. In addition,
an extra complication is implanting electrodes that can stay fixed in one brain
area and drift minimally. Therefore, bundles of four fine wires called tetrodes are
still often preferred when recording from freely behaving rats over long periods
of time. Being on the lower range of channel count they can still isolate single
neurons, however, to a less extent than with more recently developed high density
electrodes e.g. Neuropixels11.

1.3.2 Modelling the neuron

The proteins within the neuronal membrane known as ion channels allow ions
to flow across the membrane (Fig. 1.1A). Transport molecules use energy to
pump ions against their electrochmical gradient and ion channels allow bulk
flow of ions down their gradient. Some of the ion channels are passive (open all
the time), some are active (open and close as a function of membrane potential,
or chemical species such as calcium or neurotransmitters), however it is not
the single ion channel that gives rise to neuron dynamics - it is the collective
activity of thousands of ion channels. Therefore, it is more reasonable to speak
about populations of ion channels and which currents they give rise to. The
existence of ion channels was not known in early history of neuroscience as
they were simply too small to study. Hodgkin and Huxley13, thus studied the
total currents flowing in a closed system using a voltage clamp. This method
allowed for clamping the membrane potential to a steady value by combining one
electrode to inject currents and another to record the corresponding membrane
potential. Using long wires along the axon, they ensured that no axial current

9Buzsáki, 2004 10Barthó et al., 2004 11Jun et al., 2017 13Hodgkin and Huxley, 1952

iFor details on how spike sorting was performed in the works presented in this thesis see
the methods sections of the respective manuscripts.
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A B Raw

LFP

MUA

Figure 1.2: Basic extracellular neurophysiology. A Neurons in different
cortical layers, left: visual cortex of a human adult, middle: motor cortex of a
human adult, right: cortex of a 1 1/2 month old infant, adapted from Cajal12. B
Tetrode, consisting of 4 electrodes, recording neuronal activity. The raw signal
recorded from tetrodes is low pass filtered to obtain the local field potential
(LFP) and high pass filtered to obtain multi unit activity (MUA). To separate
the signal from different neurons from the MUA, the 4 separate channels on the
tetrode is finally triangulated by amplitude.

occurred, known as space clamp configuration. They varied the voltage across
the membrane and measured the current flow of different ions to establish a
mathematical model explaining the mechanisms underlying the action potential.
In other words, by using system-wide perturbations they were able to understand
activity of populations of ion channels that make up the dynamics of the system
at large. Finally, they reached the conclusion that the action potential was
governed by the following equations:

CV̇ = I − INa − IK − IL, (1.1)
where

INa = ḡNam
3h (V − ENa)

IK = ḡKn
4 (V − EK)

IL = gL (V − EL)

and

ṅ = αn(V )(1− n)− βn(V )n
ṁ = αm(V )(1−m)− βm(V )m
ḣ = αh(V )(1− h)− βh(V )h

7



1. Background

Here, V̇ is the time derivative of the membrane potential, C is the membrane
capacitance, I is the total ionic current, Ix is the specific current of ionic species
x ∈ {Na,K} or of leak L. The functions α, β describe the transition rates
between open and closed states of the channels which were fitted to experimental
results. The main point for showing the equations here is the fact that the
systems state is uniquely determined by the membrane potential V and the
gating variables n, m and h. This dynamical system is described by its state and
the law given in Eq. (1.1) determining how the state variables evolves over time.

The millions of elements that make up the axon were thus described with
high accuracy by only a small set of equations. This is known as dimensionality
reduction. Typically, in systems with many interacting elements, the activity
from a vantage point is contained in only a few dimensions. If each membrane
channel (dimension) is taken into account it can be very hard to understand
activity at a larger scale. Taken together, their activity, if acting in concert,
might hold a much simpler story. For instance, the Hodgkin and Huxley model
is given by 4 dimensions V , n, m and h.

Intense effort was invested by Hodgkin and Huxley to unveil the dynamics
of the axon and how it conducts action potentials. Paradoxically, in modern
computational neuroscience the axon is typically not included in network models
for just this reason - we know enough about the axon to confidently model
it as a simple transmission delay. However, the same dynamics can also be
used to model the neuronal membrane and laid the foundation for using point
neuron models in models of neural networks (Fig. 1.1B). Here, the dendritic
structure and axons are ignored while only the synapse and neuronal membrane
potential is modeledii. By studying how neurons enter the spiking event, known
as bifurcations, it was later understood that spiking behavior can be governed by
just a few types of bifurcations. More recent models have shown that neuron’s
spiking dynamics can also be reduced to just a two coupled equations15,16.

1.3.3 Postsynaptic potentials and integrate-and-fire neurons

By using an intracellular electrode it is possible to measure the difference in
electrical potential between the interior and the exterior of the membrane which
we will denote u(t) at time t (Fig. 1.1). When neuron i recieves no input, it has
a resting potential urest and upon an input, say from neuron j, the PSP is given
by εij(t) = ui(t) − urest. Following Gerstner et al.16, when receiving multiple
spikes k from multiple neurons arriving at time tkj the membrane potential is
given by the sum

ui(t) =
∑
j

∑
k

εij(t− tkj ) + urest (1.2)

15Izhikevich, 2007 16Gerstner et al., 2014

iiTo ignore the dendritic structure is not trivial as with the axon, and recent work has
shown that in some neurons, dendrites can perform non linear integration which might have a
significant impact on network computations14.
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The action potential has a remarkably stable shape across neurons, indicating
that information is not carried by the shape of the action potential. Rather,
information is carried by whether or not a spike is present, the inter arrival time
and number of spikes received per unit time (rate). Therefore, the widely used,
integrate-and-fire models of neurons does not model the shape of the action
potential as in the Hodgkin and Huxley model, but just the time in which it
is received and generated. When the membrane potential reaches a threshold
uthres, the neuron i is said to fire a spike, the time tki is stored and the membrane
potential is reset to rest u(t)→ urest. Action potentials are governed by active
ion channels which requires some time to open and close, after an action potential
is generated, there is a time period where the neuron is unable to generate a new
spike, known as the refrectory period tref . In the integrate-and-fire models the
refractory period is typically modeled “brute-force style” by rejecting all input
to the respective neurons just after a spike event.

The most simple neuron model is the leaky integrate-and-fire model, which
sees the neuronal membrane as a simple RC circuit and is given by

τm
du
dt = −(u− urest) +RI (1.3)

Here τm = RC is the membrane time constant, R is the resistance, and C
capacitance. I is an input current which can represent a synaptic input or
any other external currents (e.g. stimulation currents through an intracellular
electrode).

In Eq. (1.3) the right hand side is linear. Therefore, when combined with the
firing threshold uthres, the potential u returns to rest from any value u < uthres
when no stimulus is applied (I = 0). In real neurons however, the upswing
towards threshold is nonlinear17 and is much better matched by the exponential
integrate-and-fire neuron16,17.

Being a variant of the leaky integrate-and-fire neuron, the exponential
integrate-and-fire model is given by

τm
du
dt = −(u− urest) + ∆T exp

(
u− urh

∆T

)
+RI. (1.4)

Here, ∆T is a sharpness parameter which determines how the neuron enters
the spiking event where the sodium activation variable are approximated by an
exponential function18. The “rehobase threshold” urh marks the voltage level in
which the exponential term becomes positive and thus the action potential is
initiated, in addition, a hard “cutoff threshold” uthres is also used as the level in
which the potential is reset to rest u(t)→ urest.

Even though it is less physiologically accurate, the the leaky integrate-and-
fire neuron is very simple and fast to simulate. Therefore it is often used in
studies that investigate general aspects of interactions in neural networks. For
these reasons we use the leaky integrate-and-fire neuron in Paper III. When

17Badel et al., 2008 16Gerstner et al., 2014 17Badel et al., 2008 18Fourcaud-Trocmé
et al., 2003

9
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simulations are supposed to match experiments more closely, models that include
more of the details observed in experiments are often used. In Paper II, we use
the exponential integrate-and-fire for those reasons, which is shown to match
physiological properties of the stellate cell in medial entorhinal cortex19.

1.3.4 Synapse models

In synaptic transmission, a presynaptic spike depolarizes the synaptic terminal,
leading to an influx of calcium through presynaptic calcium channels which cause
neurotransmitters to be released into the synaptic cleft. The neurotransmitters
bind to postsynaptic channels which open and allow ionic currents to flow across
the membrane. Modeling the entire process mathematically would be rather
tedious and is typically circumvented by describing transmitter-activated ion
channels as time-dependent conductivity gsyn(t) similarly as in the Hodgkin and
Huxley model. When a family of ion-channels open, a current pass through the
membrane which depends on the difference between its reversal potential Esyn
and the membrane potential u given by

Isyn = gsyn(t)(u(t)− Esyn) (1.5)

For inhibitory synapses Esyn is typically negative and for excitatory synapses
Esyn = 0. Now, the function gsyn(t) can be used to model the response dynamics
of synapses and ultimately provide bases for the PSP.

In Paper II we use these conductance-based synapses in a model of a neural
network that govern navigation - a grid cell model. In Paper III we use a
simplified version of Eq. (1.5) which is not dependent on the membrane potential
and g is considered a current rather than a conductance, known as current-based
synapses.

1.4 Neural networks

Investigating the workings of single neurons might give a hint to how we
may proceed to understand some neural networks. By using systems wide
perturbations, a single neuron’s means of communication was understood by a
quite simplistic model, given the vast complexity of its underlying elements - the
Hodgkin Huxley model.

Given a brain with restricted resources, utilizing individual neurons to
represent external variables can give high information yield at low costiii by
representing N dimensions with N neurons - each neuronal state represent a
variable in each dimension. However, in highly unpredictable environments, such
systems can be vulnerable to noise, such as abrupt sensory input e.g. induced by a
sudden presence of danger, as there is no restoring dynamics. Therefore, it is not

19Pastoll et al., 2013

iiiWhere cost is defined in terms of energy expenditure, e.g. using one neuron to represent
one item cost less energy than using two neurons to represent one item.
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unlikely that through evolution, some brain systems, such as systems underlying
integration or memory, have settled on a trade-off between representational
dimensionality and stability, by for instance utilizing attractive states that arise
in dynamical systems20. Moreover, given the fast time constant of single neurons
it can be difficult to account for the slow timescale of behavior. A single neuron
integrates complex input and affects other neurons in its network. It contributes
to a population activity which in turn affects single neuron activity. Much
is known about single neurons, which has been studied for about a century,
however, how the interplay in large populations of neurons is governed, is still
under heavy investigation in contemporary neuroscience.

Below I will introduce a neural network which is the main focus in this thesis,
a network that presumably governs an important aspect of navigation in rodents
- the grid cell network.

1.4.1 Navigation

Being predator or prey, self-localization is of primary importance for an animal,
and it is not unlikely that stable systems excelling at this task have been favored
through natural selection. When entering a novel environment one cannot rely
on previously learned relations to environmental cues. In order to have spatially
stable neuronal representations of the environment, the animal must somehow
simultaneously deduce its position relative to cues and keep track of location
relative to its outset.

There are at least two ways in which to self-localize. One is to carefully
observe the surroundings and generate a map. Then in order to self localize one
can triangulate relative to environmental cues, similar to celestial navigation.
Another way, is to keep track of direction and distance traveled. Imagine walking
with your eyes shut, if you know the initial position, direction and speed, it is
possible to sum up distance traveled in all directions and then infer your final
destination, known as dead-reckoning or path integration.

It is reasonable to believe that both these methods are utilized in animals,
and there is evidence of both. In early work from Tolman, rats were subjected
to a maze with only one northern entry point leading to a goal in form of a
treat at a north-eastern point relative to the starting location, the animal was
familiarized with the maze and its surroundings (Fig. 1.3A left). Then, after 4
days of training, the maze was exchanged with a sunburst maze having multiple
entries, but with the northern entry closed (Fig. 1.3A right). Which direction
did the rat choose? If it associated the entry point with the goal, it would choose
entries adjacent to the northern entry (denoted R in Fig. 1.3A right), if however,
it associated the general direction towards the goal it would choose the entry
that led in that direction (denoted R in Fig. 1.3A right). With probability above
chance levels, the rat chose the direction in which laid on a straight line towards
the goal. With this experiment, Tolman21 concluded that the animal must keep

20Yoon et al., 2013 21Tolman et al., 1946
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some abstract representation of the environment which he termed a cognitive
map.

In another experiment22, the strong maternal instinct in gerbils was exploited.
By moving a pup out of its nest, the mother went searching for its lost pup,
being in complete darkness it had to rely on path integration in order to find
its way home (Fig. 1.3B). To make sure the mother did not find its way home
by odor, the nest was removed as soon as the mother ventured out, and it did
indeed return to where the old nest was located to begin with.

Together, these experiments indicated that rodents can use both methods
of localization, path integration and mapping distal cues. Moreover, it is likely
that they use them in combination. In order to use an internal map, it has
to first be generated. When only using path integration, errors accumulate
during navigation as small errors are integrated and accumulates over time. This
problem is known in the robotics literature as simultaneous localization and
mapping (SLAM) and is an active area of research.

1.4.2 Place cells and grid cells

How are these navigational issues solved in the rat brain? The area known as
the hippocampus was implied to play a crucial role in spatial memory after the
seminal work by Milner23 on the patient Henry Molaison (HM). Patient HM
had his hippocampi bilatterally lesioned to treat severe epilepsy. After surgery,
he was unable to form new episodic memories of the type what, where and
when. Later, O’Keefe and Dostrovsky24 began an electrophysiological survey of
the hippocampus in freely moving rats. With chronically implanted tetrodes in
the hippocampus CA1 in rats (Fig. 1.3C-D) it was possible to monitor neuron
activity when the animal was foraging for food in an enclosed environment.
Indeed, neurons with positional preferences were identified, termed place cells,
as their spikes were clustered in a few particular areas in two dimensional space,
termed place fields (Fig. 1.3G).

Since different place cells had place fields at different locations together with
the previously established relation between hippocampus and memory, O’Keefe
and Nadel25 hypothesized that place cells formed the cognitive map postulated
by Tolman - as abstract representations of space forming the context which
episodic memories are embedded in. Subsequent work showed that place cells
were under the control of distal visual landmarks26, but remained stable when
these cues were removed27 or the animal was placed in the dark28. Place fields
are thus not just simple correlates of spatial cues or specific external landmarks.
Place cells are, to a large degree, unrelated to specific sensory inputs and thus
seems to represent more abstract conceptions of space29.

Determinants of stability in place fields were hypothesized to be due to path
integration25. In order to update the map, information about spatial movement

22Mittelstaedt and Mittelstaedt, 1980 23Scoville and Milner, 1957 24O’Keefe and
Dostrovsky, 1971 25O’keefe and Nadel, 1978 26O’Keefe and Conway, 1978 27O’Keefe and
Speakman, 1987 28Quirk et al., 1990 29Knierim and Hamilton, 2011 25O’keefe and Nadel,
1978
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and objects in the surrounding seems necessary. The entorhinal cortical (EC)
area was thus investigated as it has strong projections to the hippocampus
(Fig. 1.3E). Indeed, neurons that had representations in space was later found in
the Medial and Lateral areas of EC termed MEC and LEC respectively. While
LEC show neural correlates about objects in space, MEC was found to hold
information about movement in space.

Investigating the upstream cortical area of hippocampus, cells with multiple
firing fields were identified in the MEC30–32. These neurons were termed grid
cells as their triangular patterns tessellate the explored environment forming
hexagonal grids with firing fields at the vertices (Fig. 1.3F). Grid cells have
from the outset been suspected to perform path integration31, and does indeed
provide input to the hippocampus33.

Large changes in either environmental cues26,34 or sensory inputs35 can
alter locations of place fields, termed remapping36,37 - which is thought to be
the cellular substrate for discriminating similar memories as well as context-
specific memories29. Once the place fields settle, place cells show stability in
terms of distance traveled, independent of sensory input35,38. However, the
spatial locations of grid fields seems relatively insensitive to particulars in the
environment, such as stability of their fields in cue-poor environments and
darkness31, while spatial responses in LEC and the hippocampus are more
prone to change upon environmental manipulations29,39. Grid cells can rotate
together with salient external cues31, resize their scale in response to rescaling
of a familiar environment40 and show firing-rate modulations41. However, the
relative insensitivity of grid cells to external cues suggest that self-motion is the
primary determinant of grid cell firing. Therefore, it is likely that the grid cells
compute or is subject to a path integrated estimate of the animal’s position.
For example, self-motion cues, such as the vestibular senses, optic flow, and
proprioception, provide information about velocity that is integrated over time
to yield an estimate of position. However, direct evidence of the role of grid cells
in path integration is still lacking.

1.4.3 Continuous attractor model of grid cells

When placed in different environments, neighboring populations of grid cells
show a coherent shift of grid fields42 that retains their relative spatio-temporal
relationships20. In contrast, place cells act more independently and remap
individually and relatively unpredictable. Moreover, grid cells are different
from place cells in that they have tightly organized multiple firing fields and
seems to form a population code with distinct modularity40,43, spread over the
dorso-ventral (DV) axis of MEC (Fig. 1.4B). Within one module, grid cells show

30Fyhn et al., 2004 31Hafting et al., 2005 32Sargolini et al., 2006 31Hafting et al.,
2005 33Rowland et al., 2018 26O’Keefe and Conway, 1978 34O’Keefe and Burgess, 1996
35Ravassard et al., 2013 36Kubie, 1983 37Muller and Kubie, 1987 29Knierim and Hamilton,
2011 35Ravassard et al., 2013 38Gothard et al., 1996 31Hafting et al., 2005 29Knierim
and Hamilton, 2011 39Derdikman and Knierim, 2014 31Hafting et al., 2005 40Barry et al.,
2007 41Savelli et al., 2008 42Fyhn et al., 2007 20Yoon et al., 2013 40Barry et al., 2007
43Stensola et al., 2012
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Figure 1.3: Self localization in mammals. A Experiment performed by
Tolman21 showing that rats can perform map-based navigation. In the pretraining
maze (left) the animal learn the location of a reward (R). After four days the
maze is changed to the choice version (right), where there is multiple exits, while
the exit that was available during training is closed. If rats associate the general
direction of the reward they choose a rightwards directing exit. B Experiment
performed by Mittelstaedt22 showing that gerbils can navigate by means of path
integration. A pup was removed from the nest, after the mother locates its
pup she managed to find the way home without relying on landmarks, as the
test was performed in darkness, or by odor, as the nest was relocated after the
mother ventured out. C By placing tetrodes, held with a microdrive, in the
hippocampus or MEC of rats it is possible to record the extracellular activity
of neurons. D The microdrive is conneced to an acquisition system while the
animal explores its environment, in this case a square box. E When recording
the postion simultaneously with neuron activity it is possible to find F place
cells in the hippocampus and G grid cells in MEC.
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similar spacing, orientation and field size, differing only in their relative phase
(Fig. 1.4B). This indicates that grid cells are part of a larger population dynamic,
each module forming a distinct population, in line with continuous attractor
models of grid cells.

One way to impose stability in a dynamical system of neurons is to organize
the coupling such that the system settles in a stable state. These states are
called attractive states when the system can withstand perturbations by settling
back to the same state. Many types of attractors can be found, determined
by the dynamics of the system under study. In some systems, stable states of
patterns form through instabilities or bifurcations.

Much like all the ion channels that gives rise to a collective dynamic in one
neuron generating the action potential, here many neurons give a collective
dynamic of the network state. Although, the comparison does not hold for long
as ion channels differ from neurons in many ways, in particular, neurons are
connected and communicate in complex ways, such as with different types of
synapses (inhibitory, excitatory, slow and fast etc.). How the connections make
up the network can determine the ways neurons are “allowed” to behave or self
organize. Early work with neural networks assumed the neurons made up a
continuous neural sheet - termed neural fields, which is still an active area of
research. This excitable medium is then given communication rules by means of
a connectivity kernel that can give rise to a plethora of patterns44. The type
of pattern-forming network typically used in order to model the population
dynamics of grid cells, known as continuous attractor networks (CANs), stems
back to early work by Wilson and Cowan45,46 and Amari47 (see Deco et al.48 for
a review). Following Ocko et al.49, a CAN model is typically of the form

ds(u)
dt = −s(u)

τm
+G

(∫
Ω
W (u, u′)s(u)du′

)
. (1.6)

Here s(u) is the activity of a neuron at position u which lives in the continuous
space Ω ∈ R, while τm is the neuronal membrane time constant. Moreover, G is a
nonlinear activity function, typically a rectifying function G(x) = max(0, x), and
W gives the connection strength between u and u′ which is typically translation
invariant i.e. W (u, u′) = J(u− u′).

When J has long range inhibition and nearby excitation e.g. a Mexican hat
function, the system can sustain stable attractor “bumps” (Fig. 1.4C). Early
work introduced these models with Ω as a periodic ring to describe the head
direction system50. With Ω as a 2D sheet, the system Eq. (1.6) can settle into
an hexagonal pattern. Much like the Turing pattern formation51, in which a
system of two chemical species self organize into an hexagonal pattern where
the inhibitory diffusion rate is larger than an excitatory diffusion rate. After
the discovery of grid cells, these models were adapted to model grid cells52–55.
From the perspective of a neuron at position u it allows nearby neurons to be

44Ermentrout, 1998 45Wilson and Cowan, 1972 46Wilson and Cowan, 1973 47Amari,
1977 48Deco et al., 2008 49Ocko et al., 2018 50Zhang, 1996 51Turing, 1952 52Samsonovich
and McNaughton, 1997 53Fuhs, 2006 54McNaughton et al., 2006 55Burak and Fiete, 2009
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active, but inhibits those in less proximity, until the end of its reach. There,
other neurons may be active and a self-organization occurs, each position tries to
dominate a local ring, and the optimal56 distribution of these rings is a hexagonal
pattern which the system settles into (Fig. 1.4C).

There are several ways to impose a hexagonal pattern in a CAN model,
the most common is using multiple bumps in a periodic or toroidal sheet, and
a-periodic sheets55, or a single bump in a twisted torus topology57 (see Zilli58
for a review).

In Paper II we use the exponential integrate-and-fire neuron in a multi bump
CAN model to investigate the effects of changes in excitatory to inhibitory
synaptic strength and changes in capacitance on inhibitory neurons.

1.4.4 Using grid cells to estimate position

When recording dorsal to more ventral locations of MEC, grid cells increase
in scale61 (Fig. 1.4A left). The populations along the dorso-ventral axis, when
combined, can theoretically provide a position code and a distance between two
locations62. Moreover, decoding location can be done optimally when the grid
scales are independent modules59,63, indeed, the grid scales are discretized43.
With a position code at hand it is further possible to estimate a distance vector
given by the difference between two position vectors59. This position vector
is hypothesized to give the basis for vector-based navigation64 which is shown
in a normative model of the grid cell network to aid learning in navigational
problems65.

Whether grid cells stem from place cells or the other way around is a
much debated topic. Grid cells are indicated to be primary determinants
of place cell firing60,66,67 (Fig. 1.4A). Place cells form before grid cells in
the developing rat68,69, and when inactivating the hippocampus grid cells
disappears70. Moreover, given the projections from hippocampus to MEC3,
it is not unlikely that grid cells can be dependent on place cell input. Following
this line of thought, other models of grid cells derive the pattern from place cell
input, where path integration is typically thought to be done in place cells. Kropff
and Treves71 considered grid cells to strengthen their synaptic input from place
cells when co-active. A sparse representation was then forced through firing rate
adaptation in grid cells leading to optimization of grid field packing in 2D and thus
a hexagonal pattern. This model was later updated to conform to the population
activity of grid cells forming a continuous attractor72. Dordek et al.73 considered
a single layer feed-forward neural network with Hebbian learning (strengthening
co active neurons) where grid cells formed when a non-negative input was forced
and it was noted that the architecture resembles principal component analysis

56Chang and Wang, 2010 55Burak and Fiete, 2009 57Guanella et al., 2007 58Zilli, 2011
61Brun et al., 2008 62Fiete et al., 2008 59Stemmler et al., 2015 63Mathis et al., 2012
43Stensola et al., 2012 59Stemmler et al., 2015 64Bush et al., 2015 65Banino et al., 2018
60Solstad et al., 2006 66Gil et al., 2017 67Hales et al., 2014 68Langston et al., 2010 69Wills
et al., 2010 70Bonnevie et al., 2013 3Witter et al., 2017 71Kropff and Treves, 2008 72Si
and Treves, 2013 73Dordek et al., 2016
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Figure 1.4: Position estimates from grid cells and the principle of the
CAN model A Sagittal view of MEC with four neurons in Layer 2 highlighted
and their activity from a recording when the rat was running in a square box.
To the right a hypothetical place cell based on input from these four neurons.
Grid cells in the same location (module) have similar spacing, but the scale of
grid cells increase along the dorso-ventral axis.43, By combining these modules
it is possible to accurately decode position59, as indicated with arrows ending in
a positional code, which can be interpreted as place cells60. B Within a module,
grid cells share scale, size and orientation but is shifted in phase. C Simple
illustration on how to achieve grid cells with CAN models. Within a neural
sheet (distance x distance in neural space) inhibitory connectivity is distance
dependent making up a doughnut around neurons (distant inhibition). With
this local inhibitory connectivity, neurons self organize in activity and form an
hexagonal pattern (black dots).
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(PCA). Stachenfeld et al.74 used reinforcement learning where the hippocampus
was considered a predictive map and grid cells then formed in eigenvectors of
the place cell activity also with a non-negativity constraint. Banino et al.65 and
Cueva and Wei75 used velocity input in a recurrent neural network and obtained
both place like activity and grid like activity. Moreover, in an attempt to unify
these different views Sorscher et al.76 proposed that grid cells form through
pattern formation dynamics that arise when error in estimated position from
place-field-like structures is minimized and a non-negativity constraint is forced.
All in all, it is not unlikely that information travels back and fourth between
hippocampus and MEC and that the entire parahippocampal structure must
rather be seen as one single system given the reciprocal connectivity between
hippocampus and MEC and that animals are likely to simultaneously update
some type of map and use path integration.

Adding to this discussion, in Paper II, we observe detriments in place cells
and grid cells after a bilateral local perturbation in MEC, indicating that there
is at least some dependency in place cells to changes in activity in MEC.

1.4.5 Path integration in CANs

Since position is the integral of velocity, a neuron that can maintain spatially
stable spiking can update its encoded position by perfectly integrating its velocity
input. Thus, when a stable hexagonal pattern is formed in a CAN, if shifted
according to velocity, it may be used to integrate self motion cues. In continuous
attractors, states of the pattern at different positions in the neural sheet are
identical, thus, by feeding the network with directional input modulated by
speed, it is possible to map the neural pattern to a spatial pattern - effectively
integrating the input (path integration).

Many models of the grid cell network now have some form of attractor
dynamics to match the experimental findings of grid cell modularity. However,
how the pattern is shifted in neural space relative to self-movement in order to
perform path integration is an active area of debate58,77.

There are several ways to shift the pattern, here I will introduce the two
most common ones. The first uses conjunctive direction-velocity49,52,55 neurons
with firing rates given by

sx(u) = vxs(u). (1.7)

Here, vx is the speed in direction x ∈ {east, west, north, south} and s(u) is given
by Eq. (1.6). Then these conjunctive rates are added in Eq. (1.6) as multiple
layers of direction-selective speed-modulated neurons that feed into the network
which maintain the hexagonal pattern.

ds(u)
dt = −s(u)

τm
+G

(∫
Ω
W (u, u′)s(u)du′

)
+ β

∑
x

sx(u+ ∆ux). (1.8)

74Stachenfeld et al., 2017 65Banino et al., 2018 75Cueva and Wei, 2018 76Sorscher
et al., 2019 58Zilli, 2011 77Giocomo et al., 2011 49Ocko et al., 2018 52Samsonovich and
McNaughton, 1997 55Burak and Fiete, 2009
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Here, ∆ux bias the connectivity from direction selective neurons in the preferred
direction x and as long as the strength parameter β is small enough such that
the attractive state is not diminished, its firing rate modulates which direction
the pattern moves.

1.4.6 Theta oscillations and MEC

Rhythmic neural activity in the form of brain oscillations are proposed to be
essential to synchronize activity for efficient population coding. Oscillations in
the theta frequency range (4-12 Hz) are particularly prominent in the MEC of
rats exploring their environments. Theta activity is proposed to govern sequences
of neural activity in the hippocampus and entorhinal cortex, possibly facilitating
plasticity and strengthening connections within neural ensembles78.

Theta oscillations in MEC are associated with the medial septum and the
diagonal band of Broca, together forming the medial septal area (MSA)79,80.
The MSA contains multiple cell types that together drive the pace-making
activity81,82, which drive theta oscillations in MEC by means of glutamatergic,
cholinergic and GABAergic projecting neurons83. The GABAergic projections
predominantly terminate on inhibitory interneurons, believed to be the main
driver of rhythmic activity in MEC through its coordination of the local inhibitory
circuitry84,85 (Fig. 1.5). The glutamatergic projecting neurons seems to encode
speed in their firing rate picked up downstream in the hippocampus86 and
MEC87. This speed code is indicated to carry speed information to grid cells53,55.
The cholinergic projection to MEC seems less relevant for grid cells, but rather
modulates behaviours associated with novelty or anxiety88. Theta nested gamma
oscillations has been proposed to underlie compression of sequences which is
multiplexed and sent to hippocampus89. Pharmacological inactivation of MSA
disrupts theta oscillations in MEC and impairs grid cell activity90,91. And
lastly, passive transport of animals remove the relation between speed and theta
frequency and power together with vanished spatial representations in grid
cells92.

Early on after the grid cells were first observed, the oscillatory activity of
these cells have been an active research topic90–94. In addition to the possibility
of positional decoding from multiple grid fields, information about location
within single fields is also observed. First discovered in place cells95, spiking
within a place field is closely related to where the spike falls relative to the
phase of theta - spikes fall progressively earlier in the theta phase with distance
traveled within a field, a phenomenon known as phase precession. Later observed

78Buzsáki and Moser, 2013 79Petsche et al., 1962 80Mitchell et al., 1982 81Müller and
Remy, 2017 82Leão et al., 2014 83Manns et al., 2001 84Gonzalez-Sulser et al., 2014 85Unal
et al., 2015 86Fuhrmann et al., 2015 87Justus et al., 2016 53Fuhs, 2006 55Burak and
Fiete, 2009 88Carpenter et al., 2017 89Colgin et al., 2009 90Koenig et al., 2011 91Brandon
et al., 2011 92Winter et al., 2015 90Koenig et al., 2011 91Brandon et al., 2011 92Winter
et al., 2015 93Burgess et al., 2007 94Schmidt-Hieber and Häusser, 2013 95O’Keefe and
Recce, 1993
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in grid cells96, this phase code can be used to decode a positional reference of
location within fields97.

Taken together, the studies mentioned above indicate that theta oscillations
are important or even necessary in order to perform path integration or otherwise
support a stable representation of space in grid cells. However, even if it is
possible to decode position from phase precession, this is not necessarily relevant
in a specific animal. Moreover, large-scale unspecific perturbations, such as with
pharmacological silencing90,91, can be miss-informative as they affect off target
neurons or brain areas (discussed further in Section 1.5).

In Paper I we investigate whether the temporal activity of grid cells, i.e.
theta oscillations and phase precession can be dissociated with spatial specific
activity.

1.4.7 Path integration by oscillatory interference

Another model of grid cells focus on the fact that grid cells phase precess and
generates grid fields by means of oscillatory interference (OI). By combining
velocity controlled oscillators (VCO) with an oscillatory background, e.g. driven
by MSA input to MEC, the difference in frequency in single neurons would
give rise to a constructive interference pattern that both gives phase precession
and hexagonal grid activity, known as OI models. Here, the directional velocity
(VCO) vφ(t) with direction-selectivity φ is defined as

vφ(t) = s(t) cos(d(t)− φ) (1.9)

where s(t) is the animal’s speed and d(t) the direction at time t. Consider two
oscillators, one with a constant frequency ω2, e.g. from MSA, the other with
frequency ω1 = ω2 + βvφ. Since an oscillator’s frequency ω is the time derivative
of its phase dΦ

dt = ω the derivative of their phase difference is the difference in
frequencies d(Φ1−Φ2)

dt = ω1 − ω2. Thus, the phase difference encodes position
as Φ1 − Φ2 = β

∫
vφ and is proportional to distance traveled in direction φ. In

order to cover multiple directions, Eq. (1.9) can be used to make multiple VCOs,
which again can be used to model the membrane potential in grid cells93.

However, as the OI model is a single neuron model it does not account for
the the population code within a single grid module. Recent work performed
patching of cells in MEC in vivo in order to look more closely at how the
membrane potential in grid cells behave during field crossings. They found
that the potential ramped up during field entry, as expected according to CAN
models, however, they also exhibited clear theta modulated spikes which also
phase precessed94,98. To account for both phase precession, ramping and the
population dynamics of grid cells a new model was proposed which combined OI
with CAN in so called hybrid OI-CAN models94,99. Briefly, a single bump CAN

96Hafting et al., 2008 97Reifenstein et al., 2012 90Koenig et al., 2011 91Brandon et al.,
2011 93Burgess et al., 2007 94Schmidt-Hieber and Häusser, 2013 98Domnisoru et al., 2013
94Schmidt-Hieber and Häusser, 2013 99Bush and Burgess, 2014
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MEC     medial entorhinal cortex
DG       dentate gyrus
CA1-3  cornu ammonis 1-3
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Figure 1.5: Outline of connections between medial septum area,
hippocampus and entorhinal cortex Medial septal area contains cholinergic,
glutamatergic and GABAergic cells which are interconnected and projects to
hippocampus and entorhinal cortex. The strongest MSA to MEC projection
is the GABAergic, mainly PV+ interneurons which we stimulate in Paper I,
which terminate on GABAergic cells in MEC and CA1. The glutamatergic
neurons of MSA project to glutamatergic neurons in CA1 and MEC. While the
cholinergic neurons of MSA projects to GABAergic neurons in CA1, it is not
fully determined their targets in MEC.
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is used to maintain a static pattern, then VCOs are used to focus the position
of the bump in relation to movement.

With the OI-CAN models a causal relationship is proposed between phase
precession and path integration. That is, phase precession and the appearance
of grid fields is proposed to be associated to such an extent that if neurons cease
to phase precess, they also loose their distinct spatial firing patterns. However,
it is through the difference in base frequency and VCO frequency that phase
precession occurs and in order to assess the spatio-temporal relation proposed in
OI-CAN models it is not enough to only change the base frequency. In Paper I
we thus investigate whether the hypothesis from hybrid OI-CAN models is true
by pacing PV+ neurons in MSA, both driving the brain-wide theta oscillations
and grid cell oscillations, by locking grid cells temporally to the pacing, phase
precession was abolished, allowing us to test directly the hypothesis from the
OI-CAN model.

1.4.8 Stability in the grid cell network

The patterns of grid fields are remarkably stable. When exposed to novel
environments, the pairwise activity of grid cells closely resembles that would
be expected of continuous attractors20. Similarly, pairwise correlations are also
stable in different stages of sleep100,101. Moreover, the location of the fields
remains unaltered during local perturbations of different cell types in MEC
besides changes to grid field firing rates or increased number of out-of-field
spikes102–104. These findings together point towards the grid cells forming an
attractive network state as postulated by CAN models. However, whether or
not this observed activity of grid cells stem from connectivity is still not known.

1.4.8.1 Perineuronal nets

If the grid cell network of MEC is determined by its connectivity, is it there from
birth or is it developed? During development, the brain goes through periods
of varying levels of plasticity. In early development, many sensory areas goes
through a critical period with high levels of plasticity where adequate sensory
input determines functional aspects of the circuits105,106. Place cells and grid
cells form at different time periods during development, where head direction
and place fields form as early as 16 days after birth (P16)68,69. Grid fields are
less distinct at this stage and does not show clear hexagonal periodic patterns
before P20-P22107.

Alongside development of grid cells, a specialized form of extracellular matrix
aggregates known as perineuronal nets (PNNs) surrounds the soma and proximal
dendrites of different sets of neurons, mainly the parvalbumin positive (PV+)
interneurons in MEC108. The PV+ neurons are believed to give recurrent

20Yoon et al., 2013 100Gardner et al., 2019 101Trettel et al., 2019 102Miao et al., 2017
103Kanter et al., 2017 104Zutshi et al., 2018 105Hensch, 2005 106Espinosa and Stryker,
2012 68Langston et al., 2010 69Wills et al., 2010 107Moser et al., 2015 108Lensjø et al.,
2017
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inhibition in the grid cell network109,110. In the neocortex, the PV+ cells mature
in parallel with the assembly of the PNNs late in postnatal development as the
critical period comes to an end111. The PV+ cells have been proposed as key
regulators of plasticity, both during development and in adulthood105,112.

PNNs are thought to restrict plasticity in the adult brain, both by acting
as a structural barrier preventing synapse formation and by effecting PV cell
physiology113.

This role of PNNs with regards to plasticity is supported by the fact that
degradation of PNNs in adult animals by the enzyme Chondroitinase ABC
(chABC) increases plasticity levels in several brain areas, including the visual
and auditory cortices114–116, perirhinal cortex117 and amygdala118. Removing
PNNs disrupts the recall of remote memories, and at a cellular level reduces
excitability and spiking activity of putative PV+ neurons115,119.

Given that PNNs emerge during development at the same time as grid cells,
and PNNs are thought to modulate the interactions of principal and GABA-ergic
interneurons, there are good reasons to expect that PNNs may play a role in
the grid cell network. There is a tight, developmentally regulated association
of PNNs with PV+ interneurons in MEC108, and there is relatively low degree
of remapping in mature grid cells compared to hippocampal spatial neurons.
How this stability of spatial representations in MEC arises developmentally has
remained unanswered. Moreover, whether there is a PNN-regulated confinement
of plasticity is not known.

In Paper II we aim to study the effects of PNNs on the function of grid cells
in the entorhinal cortex.

1.5 Causality in neuroscience

In neuroscience, we are currently undergoing a revolution in amount of methods
to measure and perturb neural systems.

The brain is a distributed system of neural networks and when measuring
brain activity in combination with behavior it is difficult to know that the activity
in the measured brain area actually causes the observed behavior. For instance,
the area under consideration might be downstream of the actual area that causes
behavior and might thus be spuriously correlated. Moreover, one system might
be a partly interacting element in a larger, system-wide computational effort
to cause a certain behavior. The interactions can be complex and non-linear
and, most importantly, we do not know a priori how a brain area supports
any given behavior and may thus not account for interactions. Therefore, by
simply investigating correlations between behavior and brain activity might give
a completely false mechanistic, or causal, idea of how the brain works.

109Couey et al., 2013 110Buetfering et al., 2014 111Hockfield et al., 1990 105Hensch,
2005 112Donato et al., 2013 113Fawcett et al., 2019 114Pizzorusso, 2002 115Lensjø et al.,
2016 116Happel et al., 2014 117Romberg et al., 2013 118Gogolla et al., 2009 115Lensjø
et al., 2016 119Thompson et al., 2017 108Lensjø et al., 2017
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Questions of causation started as a philosophical debate120, and causal
inference as a statistical tool is a fairly new development, as formal methods to
establish causal relations has been unavailable. In the latter half of the 20th
century this changed, thanks to the work of pioneering methodologists such as
Donald Rubin121, Judea Pearl122 and others123.

Historically, scientific inquiry has been hampered by a disability to speak
rigorously about causality124, much attributed to Pearson, inventor of the Pearson
correlation coefficient. In his opinion, the closest one could get at causal inference
was through high correlation. However, when two things A, B, for example have
a common cause C, their correlation can be spurious. There may be no causal
interaction between A and B, they are correlated only because of C - known as a
confounder. In complex systems with multiple interactions, confounders can be
abundant, and if not controlled for, they will impede attempts at understanding
the underlying mechanics or causal relations. One of the tools that sits at the
heart of causal inference is the graphical model known as a directed acyclic
graph (DAG). With this graph, a model can be stated rigorously not only with
mathematics but through a graphical illustration that omits any assumptions
about specific functional relations. For this reason, it is in my view a tool which
may become invaluable in neuroscience. It can be used to clearly communicate
hypothesis about causation, and as a starting point when designing experiments
in combination with mathematical models. The first use of a DAG was actually
in biology125, used to estimate the amount of heritage versus environmental
factors in how the fur was patterned in ginea pigs. The novel framework was
unfortunately forgotteniv only to be put in use mostly in fields outside biology,
such as in epidemiology, econometrics and machine learning (e.g. causal Bayesian
networks).

A DAG is a formalization of causal connections in a system, that is, the
arrows denotes statistical association and a parameter β is typically associated
with the strength of causation which we wish to estimate. An example of a DAG
is the following graph

C

A B
β

When drawing a DAG, one always starts with an exposure (A) and an outcome
(B), and then the other factors in the system, such as the confounder (C). Even if
A is associated with B i.e. the conditional probability of B given A is larger than
zero, or β = P (B|A) > 0, we cannot know if this represents a causal relationship

120Philosophy Archive, 2001 121Rubin, 1974 122Pearl, 2000 123Spirtes et al., 1993
124Pearl and Mackenzie, 2018 125Wright, 1920

ivNot only forgotten, but cast aside by followers of Pearson’s ideological scientific view
according to Pearl124
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because of the confounding factor C which occludes the estimation of β - if truly
zero, there is no causal relation between A and B. Let us imagine that A,B,C
represents a system in the brain, for example, A represents grid cells, B represents
path integration, and C represents some other brain system that can affect both,
and we do not necessarily know about it - to keep with the subjects in this
thesis. Furthermore, we want to establish that grid cells cause path integration.
To this end we need some type of intervention on A, which can be formalized
with the do-operator122 as P (B|do(A)) meaning the conditional probability of
B given experimental control over A. When confounders are present, typically
P (B|do(A)) 6= P (B|A), since experimental control of A removes confounding
effects, graphically presented as removing the arrows from C to A,B.

C

do(A) B
β

1.5.1 Interventions in neuroscience

One of the most important tools in neuroscience is the ability to intervene
in systems activity. Historically, the only tools available were coarse, such as
lesions and pharamcological interventions that affected entire brain areas. These
interventions have both a coarse spatial and temporal extent. To get a more
finely tuned temporal extent, electrical stimulation has been used, however, this
has no neuron type specificity. This lack of experimental control was recognized
as a problem already in the 70’s by Francis Crick126, and now we can give an
example with a DAG on why this can be problematic

C

AZ B
β

Here, an intervention is denoted by Z, but with lack of experimental control
one cannot rule out the possibility that the intervention also interacts with a
confounder and thus further occludes the attempt at estimating the causal effect
between A and B.

When there are no interventions available, or only imperfect interventions,
the data is called observational. If it is not possible to isolate the causal effect
under investigation, it is called unidentifiable. However, it can sometimes be
possible to circumvent introducing an intervention, or otherwise improve issues of
a certain intervention. By drawing an ever more detailed DAG of the system, e.g.
identifying some sub-systems affecting others, it is sometimes possible to estimate
P (B|do(A)) using do-calculus122. Or, with quasi-experimental methods, it is

122Pearl, 2000 126Crick, 1979 122Pearl, 2000
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possible to emulate randomized controlled trials (RCT) by utilizing randomness
innate in the system under consideration.

In order to get causally valid understanding of the brain we should improve
both experimental techniques and estimation techniques, preferably such that
the two goes hand in hand when starting analysis of experimental data. One
experimental refinement would be the ability to affect subsets of neuronal typesv.
Light would be the optimal activation medium as it does not have any natural
modes of interaction in the normal brain, but how to achieve this has been
elusive up until the recent discovery of light sensitive proteins.

1.5.2 Stimulating neurons with optogenetics

Microbial opsins of an ancient gene family adapted from organisms such as algae
and archaebacteria was found to be light sensitive. With each gene encoding a
distinct protein that directly elicits electrical current across cellular membranes
in response to light, make up the fundamental ingredients in the tool-set known
as optogenetics129. Here light-driven ion pumps and channels known as opsins
provide a rapid, specific transport of ions across the membrane130,131, enabling
neural activity to be driven or silenced by lightFig. 1.6. These are typically
introduced by viral vectors which carries the genes for opsin-clones to the cell
which are further mass-produced by the cells’ own machinery. In order to activate
opsins, the regular method is to implant an optic fiber attached to a laser or
micro LEDs into the brain-area of interest producing light at the opsins preferred
wavelength.

In this thesis we use optogenetics in an experimental setting and a modeling
setting in Paper I and Paper III respectively. Furthermore, we use methods from
causal inference specifically in Paper III.

1.5.3 Delivery of opsins to neuron specific targets

In order to induce expression of opsins in nerve cells, several methods can be
utilized. They can be genetically “knocked in” from birth in loci that confer cell-
type specific expression, such as under the parvalbumin promoter to facilitate
parvalbumin specific expression. However, having these exogenous proteins
expressed in the membrane from birth might lead to cytotoxicity and thereby
dysfunction or even cell death129. To lessen the risk for cytotoxicity and achieve
spatial specificity of expression it is common to deliver the genes that code for a
specific opsin by means of viral vectors. Viruses typically used in neuroscience
are modified to be replication deficient and unable to multiply and thus not
infectious. By gentically modifying viruses it is possible to delete their genes for

129Deisseroth, 2015 130Zemelman et al., 2002 131Boyden et al., 2005 129Deisseroth, 2015

vNeuronal genotype does not necessarily identify the functional aspects of neurons, for
example, both cells expressing calbindin127 and reelin128 are found to be grid cells, if these
distinct cell types represent two distinct functional types remains to be determined.
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Figure 1.6: Optogenetics: activation of light sensitive ion channels
and pumps The two main proteins used in optogenetics is the ion-channel
channelrhodopsin (ChR) and the ion-pump halorhodopsin (HR). ChR is activated
by blue light and upon activation typically opens for nonspecific cations
depolarizing the cell. HR on the other hand is activated by yellow/green light
and pumps chloride ions through the membrane and thus hyperpolarize the cell.

self-replication and insert genes that inscribe how to produce certain proteins -
such as opsins. The most common is the AAV virus, due to its ease of production
and relative harmlessness. In order to express genes in neuron specific targets,
one can either use promotors that have specific selectivity engraved in the DNA
of the viral vector or one may use a Cre-lox system. With a Cre-lox system,
a kind of “gene key hole” is knocked in from birth, and the viral vectors only
has to encode the “key” in order to be neuron specific. The Cre-lox system is
more versatile, as for example it can require two types of “keys” to be present at
the same time, but if only single type selectivity is aimed for, a promotor might
often be the best alternative - if the desired promotor is available that is.

As there were no PV+ promotors available for rats at the outset of Paper I,
we used a Cre-lox system in a novel rat line132 that has Cre expressed in PV+

neurons, allowing us to selectively express opsins in PV+ neurons.

132Yu et al., 2018
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1.6 Estimating connectivity

Activity of a network can be heavily influenced or directed by connectivity. In
MEC, the leading hypothesis on how grid cells are formed through pattern
formation is that of connectivity - forming continuous attractors. One of the
difficulties in obtaining connectivity experimentally from grid cells, is that they
are functionally identified. For example, when investigating slice preparations
from MEC it is possible to identify connectivity by tracing the axonal targets.
Once the slice is prepared, it is difficult to know if the neuron under study actually
was a grid cell - which is only possible to observe in vivo. The functional strength
of connections need measurements of electrical activity such as with patch
clamp techniques109. There have been several attempts at inferring connectivity
from statistical analysis of spike trains of simultaneously recorded neurons, in
which the membrane potential is considered a latent variable. By using cross
correlations between neurons where the effect of overlapping firing fields are
removed, grid cells with nearby spatial phases show positive correlations, with
no or negative correlation further away133,134, reminiscent of a Mexican hat type
connectivity. These noise correlations, however, cannot separate out other known
sources of correlations, such as theta oscillations and head direction tuning.
To circumvent this issue Dunn et al.133 found significant residual functional
coupling using a kinetic Ising model, that was positive for grid cells with nearby
phases and negative for larger phase differences. However, systematic errors in
connectivity inference is evident in networks with strong recurrent connectivity -
when the true network dynamics and the generative model assumed for inference
mismatch135.

Recently, connectivity inference was attempted by means of cross correlations
in combination with optogenetic stimuli136. However, large spread of activation
upon light stimulation can confound connectivity inference and it is thus illusive
if correlated activity is due to co-stimulated neurons, not necessarily measured,
or the activity itself. Understanding how neural activity reflect connectivity is
ultimately a causal question and it is not sufficient to look at correlates137,138.
Confounders are crucial to take into account when estimating the amount of
influence between neurons. Consider a simple system of three neurons A,B,C
where A and B have a common cause U and A is physically connected to C but
B is not. Due to U, A and B are correlated (cov (A,B) 6= 0), which will again
induce a spurious correlation between B and C (cov (B,C) 6= 0). With each
neuron in the brain having an order of 104 number of connections, confounders
can be abundant. Synaptic strength is typically distributed log-normally139,
where most connections are weak, but with a heavy tailed distribution, some
are considerably large. It usually takes many spikes to induce a postsynaptic
action potential, and indeed cross correlations between spike trains are typically
small140. With a heavy tail, some connections can however, be very influential.

109Couey et al., 2013 133Dunn et al., 2015 134Tocker et al., 2015 133Dunn et al., 2015
135Das and Fiete, 2019 136English et al., 2017 137Marinescu et al., 2018 138Mehler and
Kording, 2018 139Buzsáki and Mizuseki, 2014 140Cohen and Kohn, 2011
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With many long ranging connections across brain regions one may never be
certain that all confounders are taken into account even if a large population
of local neurons are recorded. When a population supports network states that
are attractive, such as in a CAN network, the network state itself can act as a
confounder135.

When data originates from randomized perturbations, correlations reflect
causal interactions. Randomization is typically induced with randomized
controlled trials (RCTs) which can be understood as a randomized perturbation.
(Z) which removes confounding, illustrated by the lack of arrows going from C
to A,B

C

AZ B
β

In an RCT, we can see the randomization as a random treatment assignment
indicator, in the binary case 1: treatment, 0: placebo. To emulate RCT the
assignement indicator can be approximated, known as in instrumental variable
(IV), and have a similar effect on a DAG as an RCT - when employed correctly,
incoming arrows from a confounder is abolished. This technique was utilized in
Paper III.

1.6.1 Perturbing neural systems

Randomizing activity of a putative presynaptic neuron is key when estimating
connectivity between neurons. Perturbations are thus used to separate imposed
activity from the confounding background. If perturbations only affect one
neuron by e.g. patch clamp technique, it is possible to infer causal connectivity.
Using a controlled graded stimulus S with strength s driving the potential vX ,
of neuron X such that vX(t) = f(s, t) for some function f , and time t allows
controlled spike times tXk , k = 1, 2, 3, ..., NX with NX spikes. The causal effect
β of neuron X on the postsynaptic potential v of neuron Y (a proxy for the
synaptic strength as measured by e.g. the peak EPSP) can be estimated by the
treatment effect

β = v(tXk + ∆t)− v′(tXk + ∆t). (1.10)

Here a treatment is referred to as a presynaptic spike tXk which is induced by
stimulations, and the response in vY is measured after ∆t. The term v′ is the
counterfactual value of v i.e. the value v would have had, at the exact time of
measurement, if there were no stimulation s = 0 i.e. no presynaptic spike. The
counterfactual, although, is not available, but may be estimated by a baseline

135Das and Fiete, 2019
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value v0 just before the treatment, estimating β with the average treatment
effect

β̂ = 1
NX

NX∑
i

(
v(tXk + ∆t)− v0

)
. (1.11)

In cases where the membrane potential is not available, but only the spikes
tXk , t

Y
k it is natural to define a causal effect as the interventional probability

β = P (y|do(x))122. Which reads: the probability of a spike y, when a spike x is
forced by the experimenter as indicated by the do(·) operator. In Paper III we
attempt to estimate the interventional probability when using optogenetics and
derive a method that, based on instrumental variables can give causal estimates
of transmission probability between neurons.

122Pearl, 2000
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Chapter 2

Objectives of Papers
In this thesis the following aims are sought:

Paper I aims to investigate if the temporal and spatial activity in grid cells
can be dissociated, and whether it is possible to perturb the temporal
oscillation in grid cells while the spatial representation remains stable.

Paper II aims to investigate how removal of perineuronal nets affects the grid cell
network, consistent with the idea that the appearance of PNNs stabilizes
the network during grid cell development.

Paper III aims to establish a method that can utilize optogenetics and causal
inference to abolish the confounding factors present when estimating
transmission probability from pairwise spiking activity of recorded neurons.
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Chapter 3

Summary of Papers

Paper I

Oscillations in the theta frequency band (4-12Hz), are particularly prominent
during animal exploration and are proposed to be essential for spatial navigation
and memory processing78. When silencing the medial septal area (MSA), theta
oscillations are disrupted alongside degradation in hexagonal firing patterns
of grid cells in the medial entorhinal cortex (MEC)90,91. Both speed-rate
correlations and grid cell firing ceased when disrupting the speed-frequency and
speed-amplitude correlations in theta oscillations when animals were passively
exploring an environment92. Combined, these studies propose that theta
oscillations have a causal role for the emergence of grid cells and thereby essential
for animal navigation.

A phenomenon known as phase precession where grid cells fire progressively
earlier in each theta cycle traversing through the grid field, has been taken as
evidence for a crucial link between theta activity and grid cell firing patterns93,96.
Recently, direct measurement of grid cell membrane potentials has been shown
to support a model that combine phase precession from oscillatory interference
(OI) together with a continuous attractor network (CAN)94,98.

There is also evidence that grid cells are reliant on input from the
hippocampus70. There are strong projections from MSA to the hippocampus,
thus, silencing MSA90,91 may indirectly affect other potential sources of input to
grid cells. Further, studies with measurements of membrane potentials94,98 lack
interventions, thus, direct experimental evidence for the hypothesis that theta
oscillations are crucial for grid cell firing is still lacking.

In this work we set out to investigate the relation between temporal
oscillations in grid cells and their spatial representation. Are these two aspects
intertwined or can they be dissociated?

MSA may have a critical role in controlling grid cell firing as grid cells
in superficial layers of MEC are interconnected through local interneuron
circuits109,141, targeted by inhibitory projections from MSA, particularly the
projections from parvalbumine positive interneurons (PV+). Selective activation
of these projections through inhibitory neurons of MSA opens the possibility to
directly assess the relation to grid cells spatial representations. Using a PVCre
rat line allowed cell-type specific optogenetic activation of PV+ cells in MSA. We
robustly drove oscillations in the local field potentials (LFP) in MEC at different

78Buzsáki and Moser, 2013 90Koenig et al., 2011 91Brandon et al., 2011 92Winter et al.,
2015 93Burgess et al., 2007 96Hafting et al., 2008 94Schmidt-Hieber and Häusser, 2013
98Domnisoru et al., 2013 70Bonnevie et al., 2013 90Koenig et al., 2011 91Brandon et al.,
2011 94Schmidt-Hieber and Häusser, 2013 98Domnisoru et al., 2013 109Couey et al., 2013
141Fuchs et al., 2016
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frequencies, completely abolishing the endogenous theta activity. We found that
optogenetic stimulation of MSA PV+ cell projections reliably activated grid cells
through disinhibition from local interneurons. Grid cells fixed their firing to the
stimuli and were thus not able to phase precess. This gave an opportunity to test
directly if the animal may sustain spatial stable patterns without performing
phase precession - testing directly the hypothesis given by OI type models.

During our intervention, grid fields remained remarkably spatially stable, with
some increased out-of-field firing during the time window of elevated response.
Since phase precession was abolished we concluded that phase precession is not
important for the spatial firing of grid cells.

While speed correlations in the local field potential was absent during
stimulation, the grid cells remained speed modulated. Therefore, speed
information in grid cells are unlikely to be obtained from theta oscillations.
The correlation between speed information in theta oscillations and grid cell
firing found by Winter et al.92 is indicated to be spurious. Taken together,
we show that theta oscillations and grid cell spatial activity patterns can be
dissociated, suggesting that the spatial coding of grid cells are independent of
the temporal code, contradictory to established theory of the emergence of grid
cells and path integration.

Paper II

The ability to encode novel environments without compromising old memories
are vital for survival and cognitive functions. Spatially tuned neurons in the
hippocampus and entorhinal cortex are key units for navigation and spatial
memory. Neurons in the medial entorhinal cortex (MEC) represent information
about self-location30 where grid cells have multiple, spatially specific firing fields
forming a characteristic hexagonal pattern spanning the entire surface of the
area visited by the animal31.

The network that controls grid cell spiking appears to rely on recurrent
inhibition for the specific activity of grid cells. Stellate cells, one of the two
principal cell types that display grid cell firing33, are connected via parvalbumin
expressing (PV+) inhibitory interneurons109,141. Whether PV+ inhibitory
neurons in MEC play a role for development of the grid cell network remains
elusive.

In rodents, grid cell firing patterns emerge around postnatal day 16-18 (P16-
P18) and transition over time from being unstable and non-periodic to highly
regular, reaching adult level grid scores around P28-P3468,142. A hallmark of
maturing PV+ cells is that aggregates of specialized extracellular matrix, called
perineuronal nets (PNNs), condense on the cell soma and proximal dendrites,
leaving openings only for synaptic connections143. PNNs are believed to help
stabilize the activity of PV+ cells by supporting synaptic integrity and limiting

92Winter et al., 2015 30Fyhn et al., 2004 31Hafting et al., 2005 33Rowland et al., 2018
109Couey et al., 2013 141Fuchs et al., 2016 68Langston et al., 2010 142Bjerknes et al., 2014
143Dityatev and Schachner, 2003
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synaptogenesis, in addition to supporting PV+ cell physiology144. By the time
PNNs in sensory cortex are fully mature, plasticity in the local network is strongly
reduced. However, juvenile levels of plasticity can be reinstated by experimentally
removing PNNs in adult animals, which both increases structural plasticity and
reduces inhibitory spiking114–116. Interestingly, the timeline for maturation
of PNNs in MEC coincides with the timeline for the development of grid cell
firing108,142. This co-occurrence suggests that grid cell activity could be shaped
during the developmental period with high levels of plasticity, and that the
later presence of PNNs ensures stability of established synaptic connections, and
thus maintains the integrity of the network and the spatio-temporal relationship
between grid cells.

Once established, the periodic spiking pattern of grid cells is remarkably stable
when animals revisit the same environment. Local perturbations of different cell
types in MEC cause changes to grid field spike rates or an increased number
of out-of-field spikes, but the location of the fields remains unaltered102–104.
Furthermore, when placed in a different environment, neighboring populations of
grid cells show a coherent shift of grid fields42 that retains their relative spatio-
temporal relationships20. This suggests that the mature grid cell network is
relatively hardwired. However, the mechanism by which information processing
is altered at the neuronal and network level by PNNs remains rather elusive.
We thus set out to examine the functional consequences of PNN removal on
neuronal representation of space in adult rat MEC.

To test if PNNs support the stability of the grid cell network, we
experimentally disrupted PNNs in MEC of adult rats and recorded from single
units while animals explored a familiar arena or a novel environment. We
observed reduced inhibitory spiking activity when PNNs were removed, and grid
cells displayed reduced spatial specificity and spatial information in the familiar
environment. Theta power was altered after PNN removal which is also observed
during learning, indicating a shift in network state. Moreover, we showed with
simulations that altered synaptic weights can give rise to reduced inhibition
in a continuous attractor network. This is in line with the role for inhibitory
neurons in shaping grid cell activity. When the MEC network was challenged
with new information by letting animals explore a novel environment, both the
pairwise spatial correlations of grid cells and their pairwise temporal correlations
were significantly reduced in animals lacking PNNs. Results indicate that the
novel place code remained unstable and the spatio-temporal relationship between
grid cells was impaired. The exposure to a novel environment also destabilized
the subsequent representation of the familiar arena, suggesting that PNNs are
important for maintaining consistent grid cell representations when a previous
environment is revisited.

Grid cells provide input to the hippocampus33 and are assumed to be the

144Wang and Fawcett, 2012 114Pizzorusso, 2002 115Lensjø et al., 2016 116Happel et al.,
2014 108Lensjø et al., 2017 142Bjerknes et al., 2014 102Miao et al., 2017 103Kanter et al.,
2017 104Zutshi et al., 2018 42Fyhn et al., 2007 20Yoon et al., 2013 33Rowland et al., 2018
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primary determinant of hippocampal place cell firing60,66,67. However, this
notion has been challenged by the fact that place cells appear before grid cells
during development68,69. Finally, we recorded place cells from hippocampal area
CA1 when PNNs were removed in MEC. Our data shows that the local changes
we observed in MEC were also reflected in place cell coding, supporting the
idea that the stability and high spatial specificity of grid cell representations are
necessary to provide accurate spatial information to place cells.

Because the PV+ cell type has been shown to play a critical role in spatial
representations in grid cells in MEC, and because narrow spike waveforms are
associated with fast-spiking interneurons, we conclude that alteration of PNNs
directly affects PV+ cells, which in turn alters spatial representations. Together,
our data shows that the presence of PNNs ensures precise spatial and temporal
coding needed to maintain the network configuration of grid cell and place cell
circuits.

Paper III

A central goal of neuroscience, arguably, is to understand the mechanisms or
causal chains that give rise to activity in the brain, to perception, cognition,
and action. Typical studies using e.g. electrophysiology or calcium imaging
only record from a small subset of all neurons with countless connections.
Obtaining estimates of connectivity that reflects the underlying mechanisms in
such complex systems is hard because of the numerous ways the contributing
elements may interact internally145. Even if we could record all neurons at the
same time, estimating causality and producing a mechanistic understanding
would be extremely challenging135.

Data obtained from pairwise activity of neurons is observational, which
means that it does not result from randomized perturbations. With such data
at hand, to understand the effect of one neuron on the other it is not sufficient
to know the correlations between them. In such cases, we can never know to
which level the observed activity was caused by other observed activity, or by
unobserved confounding activity. If mechanisms are estimated from observational
data in the presence of confounding, the consequence may be large errors and
incorrect conclusions146. Unobserved neural activity confounds estimates of
causal interactions and makes it difficult to estimate underlying mechanisms.

Confounding is the big threat to causal validity122 irrespective of the
use of simple regression techniques or advanced functional connectivity
techniques147–150. To estimate connectivity, it is first and foremost important
that the used signals reflect cause and effect, therefore we use the term causal
transmission probability. Naïve regressions in partially observed systems will
generally not reveal causality.

60Solstad et al., 2006 66Gil et al., 2017 67Hales et al., 2014 68Langston et al., 2010
69Wills et al., 2010 145Jonas and Kording, 2017 135Das and Fiete, 2019 146Angrist and
Pischke, 2008 122Pearl, 2000 147Stevenson et al., 2008 148Honey et al., 2009 149Aitchison
and Lengyel, 2017 150Pfau et al., 2013
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To estimate causal relationships between neurons, stimulating the presynaptic
neuron is the gold standard. In fact, a common definition of causality is in
terms of the effect of changing one variable in the system, independently of all
the other variables – an intervention122. If we stimulate single neurons, the
ability to estimate causal relationships by regression is within reach. However,
this is experimentally challenging and yields low cell count because it requires
intracellular, juxtacellular or two-photon stimulation151–154. Because gold-
standard perturbations are challenging, it is necessary and highly desirable
if causality could be obtained from optogenetic stimulation in combination with
neural recordings of large populations of neurons130,131.

Interpreting the results from optogenetic stimulation in terms of causal
interactions is difficult. In most experimental settings, optogenetic stimulation
will affect many neurons simultaneously. Hence, the stimulus will produce a
distributed pattern of activity. This distributed pattern of stimulation produces
activity which then percolates through the network of neurons. Thus any
postsynaptic activity induced by stimulation could in principle come from any
of the stimulated neurons, introducing problematic confounding.

For insights into how we may resolve the confounding problem induced by
optogenetic stimulation, we look to other fields that have addressed this problem
of endogenous regressors. The inference of causality from observational data is
addressed in the fields of statistics122, machine learning155 and econometrics146.
These fields have extensively worked on methods to estimate causality in the face
of potential confounding and may offer us clues on how to solve our problems.

In the final work we describe a method for inferring causal interactions
between neurons from spike train data. We demonstrate problems with naive
estimators of causal effects under influence of confounders, and propose a method
based on instrumental variables (IVs) and neural refractoriness.

We present a novel application of IV causal analysis to neural data.
Specifically, we use IV analysis to estimate connection strengths between neurons
which are being recorded via extracellular electrodes while a subset of those
neurons are stimulated with relatively local, one-photon optogenetic excitation.
We demonstrate the method on a toy simulation of three LIF neurons. The
proposed method shows clear advantages over previously used naive methods
based on correlations.

This manuscript is in preparation and the method remains to be tested in a
larger simulated network.

122Pearl, 2000 151Pinault, 1996 152Lerman et al., 2017 153Nikolenko et al., 2007
154Emiliani et al., 2015 130Zemelman et al., 2002 131Boyden et al., 2005 122Pearl, 2000
155Peters et al., 2017 146Angrist and Pischke, 2008
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Chapter 4

Discussion
In this thesis I have presented a brief introduction to experiments and theoretical
models in neuroscience. I introduced how the electrical activity of single neurons
was found to behave in a simple manner relative to the complexity of its structure.
By utilizing populations of ion channels that gives rise to currents, the neuron
produces action potentials. There has been much focus on the computational
aspects of single neurons, much due to technological limitations of measuring only
a handful of neurons7. Neurons have been found as specific as only responding to
images of Halle Berry156, termed grandmother cells, from the idea that one neuron
is responsible for holding information regarding your grandmother. Population
theory, interpret this finding as neuron activity manifested by population activity
and is part of an emergent signal of the population representing the person.
However, the same neuron can also take part in another population coding for
another person or event.

Many networks in the brain seem to form individual computational units,
such as the grid cell network that form distinct modules of populations that share
orientation, scale etc. This indicates that the brain is a network of networks
and by identifying functionality of these networks we might be able to simplify
models such that they do not have take into account the details of single neurons
- much like the single neuron models does not take into account the complexity
of ion channels. One example of such a model is the CAN model of grid cells
(Eq. (1.6) in Section 1.4.3).

Paper I

In Paper I we investigated the hypothesis of a causal relationship between
theta oscillations and the spatial representation of grid cells, as postulated by
experimental findings90–92, grid cell models by oscillatory interference (OI)93
and hybrid OI-CAN models94,99. While experimentally induced alterations of
theta oscillations in MEC impaired phase precession and speed-modulation of
grid cells, their spatial representations were intact. Our findings thus show that
the spatial and temporal firing pattern of grid cells can be dissociated.

By pacing MSA PV+ cells we were able to shift oscillations in MEC to higher
frequencies and abolish the endogenous theta. While grid cells were strongly
modulated by the new oscillatory frequency, this did not disrupt their overall
spatial firing patterns, although they showed slightly reduced peak activity and
spatial information rate. Optogenetic stimulation of PV+ cells activated grid cells

7Yuste, 2015 156Quiroga et al., 2005 90Koenig et al., 2011 91Brandon et al., 2011
92Winter et al., 2015 93Burgess et al., 2007 94Schmidt-Hieber and Häusser, 2013 99Bush
and Burgess, 2014
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through disinhibition, where grid cells showed a minor increase in out-of-field spike
probability, indicating that the local inhibitory network determines the position
of firing fields. We add support to the notion that inhibitory interneurons
in superficial layers of MEC recieve monosynaptic input from PV+ cells in
MSA84,141,157. Moreover, the rapid return of activity to the initial state after
stimulation indicate that the grid cell system is supported by attractor dynamics
where the inhibitory circuit of MEC are tightly connected to grid cells19,109.
Both grid cells and narrow spiking cells showed substantial phase locking to
the stimulation frequency with the effect of impaired grid cell phase precession.
However, cessation of phase precession did not affect the spatial position of
grid fields, strongly suggesting that grid cells do not rely on phase precession to
maintain stable spatial representations, thus falsifying the assumptions made in
OI type models93,94,99.

The stability of grid cells have been shown in multiple studies20,100–102,104
and here we also observe that the grid cell system is stable under disinhibition.
Although optogenetic stimulation initiated a brief increase in grid cell activity
causing increased out-of-field spiking, the fields remained remarkably stable when
looking at time-averaged rate maps. In many cases we observed a reduction in
the peak of grid cell rate maps during stimulation, despite robust excitatory
responses 5-10 ms after each stimulation pulse. This was likely caused by an
inhibitory response to disinhibition of excitatory cells which again activated the
inhibitory network due to widespread recurrent connections. Ultimately this
may have caused the grid cells to be more strongly inhibited just after the initial
response to laser pulses, compared to normal activity.

The results presented in Paper I together with literature of grid cell stability
may provide insight to the computational models of grid cells on multiple aspects,
both in terms of stable spatial representations under neuronal response but also
under phase locking oscillations. Typically, continuous attractor network models
(CANs) are associated with path integration arising from velocity input where
direction and speed are provided into the network. Even though these models can
sustain oscillatory input19, they do not normally account for temporal activity
in grid cells such as phase precession, with the exception of Navratilova et al.158.
Resting on attractor dynamics, CAN models would likely be able to sustain a
stable spatial pattern during interventions similar to those presented here.

Recent theoretical work159,160 links the temporal relation between MSA pace-
making theta and the resonance and rebound spiking found in stellate cells, to
underlie spatial representation, phase precession and theta cycle skipping of grid
cells. Taken together, these models strongly indicate that theta oscillations are
closely related to the grid cells spatial representations. This is in contradiction
to the experimental findings reported here and it will therefore be interesting

84Gonzalez-Sulser et al., 2014 141Fuchs et al., 2016 157Freund and Antal, 1988 19Pastoll
et al., 2013 109Couey et al., 2013 93Burgess et al., 2007 94Schmidt-Hieber and Häusser,
2013 99Bush and Burgess, 2014 20Yoon et al., 2013 100Gardner et al., 2019 101Trettel
et al., 2019 102Miao et al., 2017 104Zutshi et al., 2018 19Pastoll et al., 2013 158Navratilova
et al., 2011 159Hasselmo, 2014 160Shay et al., 2016
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to see if such models can accommodate the dissociation between temporal and
spatial grid cell properties.

Recent normative models65,73–75 does not rely on biologically detailed
mechanistic assumptions, but may thus still be used to test the stability of
the grid code. If these models are unable to sustain stable patterns under strong
perturbations, additional detail may be added into the models, such as inhibitory
connections or architecture that gives rise to attractor dynamics. This type of
stability testing can create an avenue to additionally inform modellers to create
models that better conform to experimental data.

It is well established that frequency and amplitude of the theta rhythm in
the field potential increase with running speed161–164, suggesting that theta
oscillations play a role in representation of speed. Passively transporting an
animal in an arena does not reduce overall theta rhythms, but eliminates the
linear velocity modulation of theta92. Our recordings show that the strong and
positive correlation between running speed and theta frequency is disrupted
when we pace MSA PV+ neurons with optogenetic stimulation. Interestingly, the
neurons’ firing rates are still modulated by speed during optogenetic stimulation.
The speed signal necessary to update a path integrator may still be provided.
This signal could be provided by glutamatergic projections from MSA87, but it is
likely that the glutamatergic neurons are also heavily affected by the stimulation
of PV+ cells in MSA as these are connected81. Importantly, the response effect
we see in grid cells are highly likely to be due to disinhibition as response
dynamics were similar for local stimulations of projecting synapses from MSA in
MEC.

Previous studies show that the animal’s position on a linear track can be
decoded using spike phase relations97, and that this phase relation is maintained
in 2D environments165. During Baseline II we found a change in the distribution
of precession/recession, indicating that phase relations can vary with time. As
Baseline I and II differ in many of the recorded parameters, the change between
baseline sessions is likely due to the stimulation session in between. Spike-relation
to phase may thus be modulated by MSA inputs, possibly providing control of
how a neuron’s activity relates to the phase of theta. This modulation might
indicate that spikes from grid cells are more robustly related to space than
theta phase. Using phase relations as a code for spatial position might thus
be problematic. If, for example, there is some context dependence to how a
neuron’s activity relates to the phase of theta, the information of position might
be difficult to decode from phase alone.

Whether oscillations in MEC may contribute to other behavioral aspects
such as spatial memory or decision making remains to be shown. At the
extreme of scepticism, phase precession and recession in MEC might just
be an epiphenomenon. If, however, theta oscillations underlie aspects of
behavior, our results may indicate that theta coordination is more important for

65Banino et al., 2018 73Dordek et al., 2016 74Stachenfeld et al., 2017 75Cueva and Wei,
2018 161Jeewajee et al., 2008 162Maurer et al., 2005 163Rivas et al., 1996 164Whishaw
and Vanderwolf, 1973 92Winter et al., 2015 87Justus et al., 2016 81Müller and Remy, 2017
97Reifenstein et al., 2012 165Reifenstein et al., 2014
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memory than navigation, as memory depends primarily on internally generated
neuronal sequences78. Colgin et al.89 propose that theta oscillations are
carrying multiplexed information in theta-gamma coupling. This could be
tested experimentally by finding behavior that is proposed to depend on theta-
gamma coupling and combine with stimulation of MSA which should eradicate
this coupling. To further determine the nature of spike-phase relations with
respect to position, future studies could investigate more closely the stability
of phase relations during exploration of novel environments20, or spike-phase
relations during context-dependent tasks166.

Paper II

A network of reciprocally connected interneurons and principal excitatory cells
is thought to be the basis of the grid cell continuous attractor network. In
Paper II we assessed the effect on stability in MEC when removing PNNs. We
show that degradation of PNNs changes grid cell network dynamics by altering
the temporal relationship between grid cells and impairing representations of
novel environments. Results from our simulations of the grid cell network in
a continuous attractor model indicate that reducing the level of inhibition is
sufficient to produce impairments in grid cell spatial specificity, similar to what
we observe in experimental data after removal of PNNs, and that this can arise
from reduced excitatory to inhibitory connection strength. These results support
the notion that PNNs stabilize the network through its effects on inhibitory,
putative PV+ neurons, and suggest a prominent role for PNNs in maintaining the
structural and functional organization that shapes the activity of microcircuits
in MEC.

Many of the components in PNNs are found in the general extracellular
matrix as well. It is worth mentioning that the enzyme ChABC also digests the
sugar chains outside the PNNs. ChABC treatment may have a general effect on
network function, and cannot be used as a definite proof that a particular neural
function is supported by PNNs. Other methods of disrupting PNNs exist, where
genes coding for proteins specific for PNNs are knocked out167. However, given
the stability and long life time of PNNs it takes several weeks before the PNNs
vanish in a knock-out model, in contrast to the immediate effect of enzymatic
treatments. It can thus be challenging to control when the PNN components are
properly disrupted, in addition to control for possible compensatory mechanisms
that can be activated during this long time window. If side effects occur in
specific matrix component knock-outs, possibly due to various compensatory
effects, this needs to be further studied in order to assess the specificity of the
PNN disruption. ChABC is widely used to study PNNs both functionally and
anatomically and the use of chABC has led to valuable insight into the functional
role of PNNs in the brain108,119. Thus, we chose to use chABC in this study.

78Buzsáki and Moser, 2013 89Colgin et al., 2009 20Yoon et al., 2013 166Aronov et al.,
2017 167Rowlands et al., 2018 108Lensjø et al., 2017 119Thompson et al., 2017
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If we assume that grid cell activity is governed by continuous attractor
dynamics which is maintained by connectivity, we might expect that the effects
from removing PNNs in MEC is graded. In a recent study by Chaudhuri et al.168
a low dimensional representation of the head direction system was obtained
through a novel dimensionality reduction technique on the head direction system.
They showed that this system had activity confined within a one dimensional ring,
which have properties of an attractor typically found in dynamical systems. The
ring was stable during sleep, indicating that the low dimensional representation
is a fundamental property of this network. They also performed simulations that
indicates that the grid cell activity is confined within a torus. Together with
findings that the grid cell network is remarkably stable20,100,101, this indicates
that the grid cell system has attractive properties. In such attractor systems
the activity of one neuron is stable due to the restorative force governed by the
population. This might indicate that the system does not require a stabilizing
element over a relative short timescale (days), but might need an extra element
of stabilization over the timescale of weeks, or during significant perturbations of
systems activity. With this taken into account, we might not expect to see abrupt
changes in grid cell representations after PNN removal as found in Paper II. It
might be that in order to see a stronger effect in grid cell spatial representations,
e.g. completely abolishing grid cell hexagonal firing, we would need both an
opening of plasticity and a second large-scale perturbation that force the network
to reshape. This could be accomplished through larger change in sensory input
such as solving a behavioral task or by using optogenetics. As shown in Lensjø
et al.115 the change in plasticity after PNN removal is not observed until there
is a major change in the input to the system/cortical area under investigation
(in that case eye-closeure).

Acute non-specific disruption of PV+ interneuron function by pharmaco-
genetic manipulations have been shown to impair grid cell firing patterns102.
Similarly we see a reduction in firing activity of putative PV+ neurons and one
might think that the effects we see are explained by reduced activity in PV+

cells alone. In the familiar environment, we found reduced spatial specificity,
maximum firing rate (both spatial and temporal), and a reduction in activity
inside grid fields. This is different from the results by Miao et al.102. When
acutely reducing PV+ cell activity they observed an increase in unspecific firing
outside fields, and activity inside fields were unchanged. If stable attractor states
would rely only on PV+ cell activity we should see reduced spatial stability also
in the familiar environment prior to novel environment exposure. Indeed, Miao
and colleagues find reduced spatial stability in grid cells as long as PV+ cells
are inhibited, but this is a much larger reduction in PV+ cell activity compared
to the one we see in our data. We do not see this instability in familiar environ-
ments, and the change in stability we observe happens only during and right
after the network encodes new information. Is it possible to separate changes in
activity from PV+ cells and changes in plasticity? Changes in one may lead to

168Chaudhuri et al., 2019 20Yoon et al., 2013 100Gardner et al., 2019 101Trettel et al.,
2019 115Lensjø et al., 2016 102Miao et al., 2017 102Miao et al., 2017
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changes in the other e.g. Vogels et al.169 shows that inhibitory plasticity regu-
lates population activity. Moreover, changes in activity due to pharmacogenetic
manipulations are shown to cause changes in PNN and plasticity170,171. We
thus find it unlikely that activity levels of PV+ cells is sufficient to explain our
results from novel environment experiments, and that removal of PNNs causes
alterations in network properties that can not be explained solely by an acute
reduction in PV+ cell activity.

When counting the number of excitatory and inhibitory synapses we found
an effect mainly on inhibitory to inhibitory connections. However, the observed
changes in synaptic connections is not necessarily representative of the results
obtained electrophysiologically as the animals were only placed in their home
cage after surgery for a shorter time period compared to the animals undergoing
the full experiment with electrophysiology. Thus, we might expect larger changes
in synaptic reorganization if the animals were subjected to larger environmental
changes or behavioral opportunities.

Computational models have shown that inhibitory connections are sufficient to
generate the hexagonal structure of the grid pattern19,55,109. Thus, the dispersed
grid cell patterns we observed after PNN removal is likely a consequence of
reduced inhibition, especially since the increased out-of-field spiking occurs where
grid cells presumably rely on inhibitory domination in normal circumstances. In
line with experimental data, we observed that lowering excitatory synaptic
strength onto inhibitory neurons caused reduced inhibitory spiking in the
continuous attractor model. It also led to a decrease in mean spike rate of
excitatory neurons, similar to what we observed in the experimental data. This
result is, at first glance, counterintuitive as reduced inhibition would be expected
to increase excitatory activity. However, the dynamical interactions in the model
and the spatial outreach of connections have a large influence on activity levels
of both inhibitory and excitatory neuron populations.

When modelling a system, one often use the most simplistic alternative.
To impose as little assumptions as possible on how the grid fields in neuronal
space is mapped to movement space, we did not include path integration. If we
assume that the hexagonal pattern is perfectly mapped to movement space we
would expect the fields observed in the model to be that observed experimentally.
If path integration would be included we would likely use either speed and
directional input as in Burak and Fiete55 or place cell input as in Dunn et
al.172. The quality of path integration would depend on several factors that are
different in the two simulated scenarios (with and without PNNs) that would
affect path integration differently. Spike irregularity has an effect on quality
of path integration55 and this is likely to be different with different levels of
inhibition. Strength of speed and directional input might affect the attractor
state differently as the attracting strength of the network is lower with lower
inhibition, at a certain point of reduced inhibition the attractor vanish. This

169Vogels et al., 2011 170Cisneros-Franco and Villers-Sidani, 2019 171Devienne et al.,
2019 19Pastoll et al., 2013 55Burak and Fiete, 2009 109Couey et al., 2013 55Burak and
Fiete, 2009 172Dunn et al., 2017 55Burak and Fiete, 2009
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would also be an issue if input was in the form of place cell input172.
When choosing the neuronal model type we had several options, spiking

neurons or rate-based neurons. We wanted to explore how changes in capacitance
affected grid fields and we therefore chose spiking neurons. Since the exponential
integrate-and-fire neuron has been used previously19, we also chose this particular
neuron model as it has been fit to experimental values of stellate cells, although
we chose values for resistance and capacitance based on Tewari et al.173. However,
we recognize that using a leaky integrate-and-fire neuron might have given similar
results, but the edges of firing fields might have been different. In the exponential
integrate-and-fire model the threshold is not modeled as a set value in which
spike response occurs, but rather a rheobase value in which the exponential part
of the model kicks in. Due to this fact, the edges of the firing fields might be
expected to extend more graded in the exponential model if compared with a
leaky model. We recognize that this could have been quantified, but it was not
prioritized in the current study.

Paper III

In Paper III we present a novel application of Instrumental Variable (IV) causal
analysis to neural data. We use IV analysis to estimate connection strengths
between neurons which are being recorded via extracellular electrodes while
a subset of those neurons are stimulated with relatively local, one-photon
optogenetic excitation. We demonstrate problems with naive estimators of
causal effects under influence of confounders, and show clear advantages when
using the IV method over previously used naive methods based on correlations.
We have found that this approach performs considerably better than the naïve
method. Moreover, we have found that neither a naïve linear regression model
nor a naïve cross correlation method produce reliable estimates of connectivity
between neuron pairs. The IV approach effectively reverse engineers causality by
looking at the response that is missing because of refractoriness which effectively
allows better estimates of causal effects.

The IV method shows promise in being able to give insight in population
connectivity, which is at best difficult with single neuron methods, such as with
patch clamp or two-photon optogenetic stimulation. For example, if estimating
the connectivity of the grid cell population one would require a large number of
pairs in which connectivity is estimated.

At the moment, we have no ground-truth dataset at hand to test our technique
and compare with other approaches. Ideally, we would have known causal effects
from single-cell stimulation (e.g. from two-photon optogenetics) to establish
causal effects. Such data should contain many randomly distributed, short and
intensive stimulation trials combined with traditional optogenetics, designed in a
way where refractoriness matter. Most optogenetic protocols use set stimulation
frequency, which is not ideal for the IV method. To the best of our knowledge, a

172Dunn et al., 2017 19Pastoll et al., 2013 173Tewari et al., 2018
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dataset with randomly distributed optogenetic stimulation, with short stimulation
pulses on the timescale of the refractory period, is currently not available and
prevents us from testing how good our estimator would work on experimental
data. Future experiments are needed to obtain reliable insights into the validity
and robustness of the IV method.

One aspect that might intervene with the predictive power of the IV method
presented in Paper III is mainly effects due to optogenetic stimulation. When
stimulating many neurons at the same time their co-activity or co-activity
of downstream targets might change their strength of connections due to
the stimulation. Especially considering the requirement of large number of
stimulations to obtain sufficient predictive power. Moreover, if neurons that
are co-stimulated synchronize over time, due to the highly synchronized input
to many neurons at the same time, the Markov assumption (that each trial is
independent from the previous) might be violated.

Also, stimulating multiple neurons may give overload of synaptic response such
that a single spike will never make a difference. In such scenarios, the downstream
neuron would respond on every trial, and this can be tested. Importantly, the
stimulation introduce a different network setting than what would be expected
from baseline activity.

With these considerations, the method might require additional considera-
tions.

To maintain a simplistic description of neural dynamics we used current-based
synapses with alpha-based shape and short synaptic time constants. This was
chosen in order to reduce variance in transmission strength, as this synapse type is
not dependent on the membrane potential. If conductance based synapses would
have been chosen, the input current would vary with the membrane potential
and the IV estimate would likely have larger variance, but this remains to be
tested. The effect of conductance based synapses on transmission probability
estimates should be quantified at a later stage of IV method development.

For the refractory period to be a good instrument, it is necessary that it
is not overly affected by the network activity. This will clearly be problematic
in many cases. After all, network activity affects neuron activity and hence
refractoriness. However, there are multiple scenarios where refractoriness will be
a good instrument. For example, if we have balanced excitation and inhibition,
we may expect largely independent refractory states of individual neurons. If a
neuron biophysically implements something like conditional Poisson spiking, its
refractory states will be random conditioned on the network state. Importantly,
we may expect the phase of a neuron to be far more random than the activity of
the network as a whole.

In the proposed IV approach it is necessary to manually set the response
windows of the stimulation, both in the presynaptic and postsynaptic neuron. If
this could be done automatically, that would be an advantage.

One of the strengths of the IV estimator presented here is that it only requires
one pair to be recorded because we can utilize the randomness of the refractory
periods along with random stimulations. Under those assumptions, the IV
estimator can produce actual causal estimates. One popular way of estimating

46



causal effects is fitting generalized linear models (GLMs) to simultaneously
recorded neuron activities174,175. GLMs are multiple nonlinear regressions and
require multiple neurons to perform well. Even if activity from all neurons
were recorded, GLMs might fail to estimate causal connections135. Complete
recordings are not possible in the mammalian brain, especially not in primates,
where recordings include only a very small subset of the neurons involved in the
actual computation. When using GLMs one may accurately estimate latency
distributions and sequences of spikes from individual neurons. These ideas
should, arguably, be merged with IV approaches.

174Pillow et al., 2008 175Roudi et al., 2009 135Das and Fiete, 2019
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Chapter 5

Future perspectives

Multimodal models

Brains are robust and can easily cope with changes, e.g. novel environmental or
contextual challenges. Therefore, neurons do not have only one mode of action.
If we measure brain activity from the same brain area in different environments
or contexts, we would expect neural activity also to be different176. Because of
this, saying that the brain encodes stimuli might be an inaccurate statement177 -
as decoding would depend on environmental or contextual aspects. To simplify
matters, it is common to isolate behavior to simplistic proxies of natural behavior
and study one type of stimulus at a time.

One of the strengths of the work of Hodgkin and Huxley was that they
initially modelled the action potential, but then, using this theory they were
able to accurately predict how fast an action potential travels down an axon13.
That is, their theory was multi modal. Given population theory, it is not enough
that the proposed model solves a task in only one context, it should be able
to also perform in other contextual settings. For example grid cells are active
during decision making in auditory tasks166, this has yet to be supported in grid
cell models, but a recent framework where grid cells emerge from minimizing
location-prediction in an arbitrary space might be a good candidate76.

Novelty also has little representation in grid cell models, however, some
models can already be interesting to test against experimental data. When
rodents are introduced to a novel environment, grid cells realign by a uniform
shift in phase and orientation42, temporarily expand in scale alongside reduced
spatial stability178, and are shaped by environmental geometry179. The CAN
model can show stretching of the single neuron response by an amplitude
modulation of head direction inputs tuned to the relevant head direction55. In
a recent study it is shown how landmark cells, such as border cells or place
cells can be used to stabilize the grid pattern in a CAN model and perform
error correction49. In this model, stable grid representations are obtained over
time as input from landmark cells are learned, thus in familiar environments a
stable representation is already achieved but in novel environments this has to
be relearned - possibly explaining how realignments and the initial weak stability
occur in novel environments. Notably, if grid cells utilize plasticity to stabilize
representations in novel environments as would be in Ocko et al.49, these are
unlikely to be related to PNNs in the first place as that would reduce plasticity
levels.

176Fusi et al., 2016 177Brette, 2018 13Hodgkin and Huxley, 1952 166Aronov et al., 2017
76Sorscher et al., 2019 42Fyhn et al., 2007 178Barry et al., 2012 179Krupic et al., 2015
55Burak and Fiete, 2009 49Ocko et al., 2018 49Ocko et al., 2018

49



5. Future perspectives

Another recent model of single grid cells uses excitatory and inhibitory
plasticity180 to show that grid representations arise through self organization.
They reproduce findings by Carpenter et al.88 where grid cells merge local
representations to form a global representation of localized environments when a
localization border is removed. The model also achieves unstable patterns when
learning new environments, but disregards the population representation evident
in experiments with pairwise comparison20,42.

Exploring the underlying principles which give rise to observed changes in grid
representations, normative models might be good candidates where reinforcement
learning is utilized such as Stachenfeld et al.74, which does account for reshaping
geometries, or maybe Banino et al.65 where novelty signals may possibly be
implemented to serve exploration in more realistic environments.

Causally understanding brain activity

Questions of causation are important if we are to understand the mechanisms
underlying brain activity. Recent considerations suggest that even if we can
causally identify relations between neurons we still might not be able to
understand it’s complexities. According to Ramaswamy181 there is an algorithmic
barrier to understanding the causal link between neural circuits and behavior,
indicating that we need exponentially many experiments in neurons - briefly said,
it would take more than a lifetime of experiments to understand just one brain.
Even with relatively simple models of learning, such as convolutional neural
networks that can learn to recognize cats and dogs from images, it can be very
hard to go backwards - understanding the rule of learning by only looking at the
network layout and output is hard182. Even if we cannot directly understand
how the brain generates behavior through solely using experiments, we might be
able to build models that narrow down the scope to emergent population activity
of neural circuits that underlie computations. If we can identify networks that
can be reduced to low dimensional models, we might be able to circumvent the
problem introduced by Ramaswamy181. Instead of considering all the neurons in
the brain we might only consider populations, by using dimensionality reduction
methods like those proposed by Chaudhuri et al.168. With population models,
it might be possible to understand how different populations causally interact
and give rise to behavior since Npopulations << Nneurons. When mapping out
neural connections, e.g. with the IV method, we can focus on which neural
circuits communicate on a large scale, and the circuit motifs. These are less
likely to change with learning as opposed to the detailed neuron to neuron
connections which are likely to be learned182. The framework in which to include
these populations could for example be causal inference with frameworks such
as DAGs, where each population is represented by a node and their activity is
represented in such a way that the causal interactions between these populations

180Weber and Sprekeler, 2018 88Carpenter et al., 2017 20Yoon et al., 2013 42Fyhn et al.,
2007 74Stachenfeld et al., 2017 65Banino et al., 2018 181Ramaswamy, 2019 182Lillicrap
and Kording, 2019 181Ramaswamy, 2019 168Chaudhuri et al., 2019 182Lillicrap and
Kording, 2019
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can be estimated. However, networks are context dependent, where neurons show
mixed selectivity176, and whether models that respect this multi modality remains
simple enough to be tractable to support a brain wide causal understanding, as
suggested above, deserves attention.

Adaptation in CAN models

There are two major classes of principal neurons in MEC layer II, pyramidal
cells and stellate cells (SCs), and reportedly two sub classes in each major
class141. A large part of the grid cells in MEC are stellate cells33. Stellate cells
can be identified by morphology and electrophysiological features, among them,
adaptation which cause burst firing measured in inter spike interval (ISI) due to
depolarization109.

Adaptation has been investigated with neural field theory where a common
aim is to determine stability in neural fields183,184. With adaptation a large
variety of pattern formation occurs, in some cases it destabilizes stationary
bumps, as each excitatory cell will as soon as excited, be diminished due to
adaptation. In a grid cell model governed by CAN, the “dominant” grid cell
will lose its competitive drive and a new cell will start being excited and thus
take the lead. When this is happening throughout the network, a continuous
attractor state may not emerge.

This raises the questions whether stellate cells can support continuous
attractor dynamics due to adaptation. Moreover, stellate cells exhibit a wide
variety of response properties which are typically neglected in modelling studies
such as depolarizing after potential141,185, sub-threshold membrane potential
oscillations (MPOs)185,186 and post inhibitory rebound spikes160,187. To assess
whether it is possible to obtain a stable grid cell representation with adaptation,
and other properties of the stellate cell, future work might use the adaptive
exponential integrate-and-fire neuron188 to model the stellate cell. Of course,
this would not be a proof that adapting neurons can not show grids through
CAN, but might show that this is a topic that deserves more attention.

Issues with optogenetics

Confounding is a major issue when regular optogenetics is employed to infer
connectivity between neurons as in e.g.136. There will be a population response
even though the light intensity falls quickly (≈ 1/r2) with distance r from the
end of the optic fiber. Since the illuminated area of brain tissue will expand by
≈ r2 the number of illuminated neurons per area is constant as a function of
distance. Neuronal spiking is believed to be induced by small membrane potential
fluctuations as neural networks in vivo are observed to be in a high conductance

176Fusi et al., 2016 141Fuchs et al., 2016 33Rowland et al., 2018 109Couey et al., 2013
183Coombes and Owen, 2005 184Ermentrout et al., 2014 141Fuchs et al., 2016 185Pastoll
et al., 2012 185Pastoll et al., 2012 186Erchova et al., 2004 160Shay et al., 2016 187Ferrante
et al., 2016 188Brette and Gerstner, 2005 136English et al., 2017
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5. Future perspectives

state where the membrane potential is generally close to threshold189–191. The
population response from optogenetic stimulation will thus increase with distance
since the photo induced current as a function of photo intensity falls proportional
to a logarithmic function192. Moreover, indications that light may travel through
the dendrites themselves193, suggests a large spread of activation upon light
stimulation.

189Destexhe et al., 2003 190Léger et al., 2005 191Kumar et al., 2008 192Wang et al.,
2007 193Thunemann et al., 2018
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Chapter 6

Conclusion
In conclusion, the results in the present thesis contribute to the understanding
of mechanisms that underlie brain activity and how this may explain cognitive
functions such as navigation and memory processing. Paper I contributes to the
study of temporal activity in the brain, strongly suggesting oscillations not to
underlie the hexagonal pattern formed by grid cells. Paper II contributes to the
field of plasticity mechanisms and indicates that PNNs stabilize low dimensional
activity of grid cells by restricting changes in neuronal connectivity. Paper
III contributes to the field of connectivity inference which is crucial to assess
structure versus function in neural networks.

As with any scientific study, the research raises more questions that deserve
further investigation. From Paper I, whether oscillations in MEC may contribute
to other behavioral aspects such as spatial memory or decision making remains
to be shown. From Paper II, specifically which connectivity motifs are degraded,
how much and the mode of action remains unclear. Moreover, if it is possible
to completely eradicate the hexagonal pattern of grid cells returning the MEC
network to it’s juvenile state remains to be shown. From Paper III, how the
method performs in real biological networks, and if it can be utilized to confirm
the hypothesis that connectivity underlies grid cell low dimensional activity is
still not clear.
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