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Abstract

The current study considers how the social cost of carbon responds to joint uncertainty
over climate sensitivity and damages. Climate sensitivity is the temperature response
to a doubling of pre-industrial carbon concentration in the atmosphere. Uncertainty
over damages is implemented over the damage exponent, and reflect that we do not
know how steeply damages increase at higher temperatures. These two uncertainties
interact, and therefore it is insightful to investigate their joint effect. In the literature
the two have only been studied separately. The analysis is carried out in a wide-spread
Integrated Assessment Model of Climate Change (IAM), more specifically a dynamic
programming version of the Dynamic Integrated Climate Economy model (DICE).
Uncertainty is implemented as a simplified Bayesian learning process. We simplify
the learning process by using the exogenous evolution of the variance in the normal-
normal Bayesian learning model. Comparing the results from the model with different
uncertainties to a deterministic version of the same model, we find that both joint and
single uncertainty contributes to a higher social cost of carbon (SCC). Uncertainty over
climate sensitivity contributes more to the SCC in the short term, while uncertainty
over the convexity of damages contributes more in the long term. The model is coded
in MATLAB.
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1 Introduction

The planet is getting warmer from greenhouse gas emissions, that much seems certain.
At the very least, it is "extremely likely", as The Intergovernmental Panel on Climate
change (IPCC) puts it. Yet, there is a lot we do not know about how climate change
will affect us; both future economic and climatic consequences are governed by vast
uncertainties. How to find policies that respond optimally to these uncertainties is an
important and hot topic in the field of economics today.

Integrated assessment models (IAM) are frequently applied in studies of the economic
consequences of climate change. This class of dynamic models incorporate how the
economy and the climate interact. Thus, they make a handy tool for understanding
the uncertainty in this context. In the current study, we use a widely applied IAM;
the Dynamic Integrated Climate Economy model (DICE). However, we use a dynamic
programming version of the model to study how learning over two key parameters
affects optimal policy.

The current study considers how the social cost of carbon respond to joint uncer-
tainty over climate sensitivity and damages. Climate sensitivity tells the temperature
response to a doubling of pre-industrial carbon concentration in the atmosphere. Un-
certainty over damages is implemented over the damage exponent, and reflect that
we do not know how steeply damages increase at higher temperatures. These two
uncertainties interact and therefore it is insightful to investigate their joint effect. In
the literature the two have only been studied separately. The analysis is carried out in
a wide-spread Integrated Assessment Model of Climate Change (IAM), more specif-
ically a dynamic programming version of the Dynamic Integrated Climate Economy
model (DICE). Uncertainty is implemented as a simplified Bayesian learning process.
We simplify the learning process by using the exogenous evolution of the variance
in the normal-normal Bayesian learning model. The variance falls exogenously over
time. This means that we abstract away from possible active learning, meaning that
the decision maker cannot emit more CO2 to faster gain knowledge over the climatic
system. However, Jensen and Traeger (2016) shows that this is of minor importance.
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2 Background

This section starts by introducing Integrated assessment models of climate change
(IAM). Then we will go on to discuss uncertainty implemented in such models. Finally,
we briefly review the literature on uncertainty in dynamic programming implementa-
tions of IAMs. More specifically, we explore uncertainties governing 1) the damage
function, and 2) the climate sensitivity.

2.1 Integrated Assessment Models of Climate Change

Integrated assessment models of climate change combines the scientific and socio-
economic aspects of climate change to assess climate policies (Kelly & Kolstad, 1999b).
The intergovernmental panel of climate change (IPCC) defines IAMs as "a method of
analysis that combines results and models from the physical, biological, economics and
social sciences, and the interactions among these components in a consistent frame-
work to evaluate the status and the consequences of environmental change and the
policy responses to it"(IPCC, n.d.). Integrated assessment models essentially model
the dynamic interactions between the climate and the economy. Researchers aim to
understand the underlying forces at play to inform policy makers. In the U.S., IAMs
are used to price greenhouse gas emissions in cost benefit analyses of federal policies
(Greenstone, Kopits, & Wolverton, 2013). The models are assessed on a regular basis
by the IPCC.

Within the class of integrated assessment models, there are significant variations
between models with respect to which assumptions they build on and the level of
complexity. An example of a complex IAM is the Global Change Assesment Model
(GCAM). This model represents in a detailed manner the behaviour and interactions
of five different systems; the energy system, water, agriculture and land use, the econ-
omy and climate. The purpose of this rather complex model is to explore future
scenarios and quantify the implications of possible future conditions (JGCRI, n.d.).
However, less complex cost benefit oriented models such as The Climate Framework
for Uncertainty, Negotiation and Distribution (FUND), Policy Analysis of the Green-
house Effect (PAGE) and The Dynamic Integrated Model of Climate and the Economy
(DICE), are frequently used. The current study applies a version of the latter. The
benefit of the less complex IAMs is that they are more transparant, and so one can
more easily understand the different drivers of policy.

The DICE model is developed byWilliam Nordhaus. In 2018 he was awarded the Nobel
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Memorial Prize in Economics Sciences "for integrating climate change into long-run
macroeconomics analysis"(Nobel Media AB 2020, n.d.). DICE extends the classic
Ramsey growth model to include a climate module. The first version of the model was
published in 1992 (Nordhaus, 1992), and has since been updated several times, most
recently in 2016 (Nordhaus, 2017). The current study applies a dynamic programming
implementation of the DICE-2013 (Nordhaus, 2013)(Traeger, 2014). The model is
outlined in section 3.

2.2 Uncertainty in IAMs

The first attempts to analyse the implications of uncertainty in IAMs mainly applied
Monte Carlo methods. However, this approach turned out to have some shortcomings.
First, Monte Carlo methods do not allow for feedback, and so the anticipation of
learning and the adaption of future policies to future shocks cannot be taken into
account. Second, the Monte Carlo approach has been shown to possibly get the sign
of the uncertainty effect wrong (Crost & Traeger, 2013).

In recent years, recursive dynamic programming implementations of IAMs have got
more attention. The approach was pioneered by Kelly and Kolstad in 1999, but by 2013
there were only two other studies conducted based on this method. Traeger (2014)
and with various co-authors took the lead in this method the last decade (Crost &
Traeger, 2013), (Crost & Traeger, 2014), (Jensen & Traeger, 2014) and (Traeger &
Lemoine, 2014). Today, analysing uncertainty in IAMs using recursive methods is a
popular approach (Lemoine & Rudik, 2017).

The remainder of this section reviews the relevant literature on uncertainty over the
climate sensitivity parameter and the parameter for damage convexity. It is important
to note that the models in the cited articles differ, and so they do not necessarily
represent comparable experiments.

2.2.1 Uncertainty over the climate sensitivity parameter

Climate sensitivity describes the relationship between the level of CO2 in the atmo-
sphere and global temperature. More specifically, it is defined by how many Celsius
degrees of global warming that result from a doubling of the CO2 concentration in the
atmosphere, as compared to pre-industrial times. Before the Industrial Revolution,
global average atmospheric CO2 concentration was about 280 ppm1. In april 2020 the
Mauane Loa Observatory in Hamwaii measured the CO2 concentration to be 416.21

1parts per million
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ppm (National Oceanic and Atmospheric Administration, 2020). Reducing the uncer-
tainty over the climate sensitivity parameter has been an important part of climate
research over the years. Yet, the progress has been modest. The first IPCC report
from 1990 used a likely range over climate sensitivity of 1.5◦C to 4.5◦C (IPCC, 1990).
The same range was used in the Charney report, which is considered to be one of the
first comprehensive works on the assessment of climate change due to CO2 emissions
(Charney, 1979). The most recent IPCC report still use the same range (IPCC, 2013).
However, the estimate is now based on more substantial evidence and we know more
about the climatic system today (Knutti, Rugenstein, & Hegerl, 2017).

As the true value of the climate sensitivity parameter is still unknown, it is useful
to gain an understanding of how to meaningfully incorporate the uncertainty into
the cost-benefit framework of integrated assessment models. Uncertainty over the
parameter has been studied in various settings. In the following, we review some of
the studies that have been conducted within a similar framework to the one at hand.

Kelly and Zhuo (2015) and Hwang, Reynès, and Tol (2017) study learning under a
fat tailed uncertainty distribution. Both studies find that the anticipation of learning
reduces optimal emission control compared to the case with only uncertainty and no
learning. The thicker the tail, the larger counteracting learning effect.

Fitzpatrick and Kelly (2017) evaluates the common policy recommendation of a 2◦C
temperature target with uncertainty and learning over the climate sensitivity. Like
the current study, Fitzpatrick and Kelly also use a dynamic programming version of
the DICE model. Their results suggest that in the short run it is difficult to meet
the 2◦C target, but with learning the social planner can achieve the target over time
with sustained abatement effort. One implication of their findings is that a stringent
target can induce welfare losses. That is because as we learn new information about
the climate system another target may be optimal.

2.2.2 Uncertainty over the damage function

Quantifying economic damages from a warmer climate is an important factor in esti-
mating the Social Cost of Carbon. Quantifying in a meaningful way how the costs of
abatement stand to the benefits of abatement is important for policy decisions today.
The problem is that we don’t know the economic cost of global warming, and there-
fore it is important to gain an understanding of how this uncertainty affects policy
making. This section reviews papers that investigate this in a dynamic programming
framework.
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Crost and Traeger (2014) looks at damage uncertainty as stochastic shocks over the
two parameters governing the levels and the convexity of damages. They study a
high- and a low-level scenario, and run both using expected utility and Epstein-Zin-
Weil utility. Their results indicate that uncertainty about the level of damages slightly
reduces the optimal abatement rate and optimal carbon tax. The optimal abatement
level is also higher under Epstein-Zin-Weil utility than under expected utility.

The perhaps most thorough examination of uncertainty over the damage function in
a dynamic programming framework, was undertaken by Rudik (n.d.). The author
analyses uncertainty over the DICE damage function using four different approaches.
First, in what is named the "uncertainty framework", the probability distribution is
implemented over the level- and the convexity-parameters. Second, in the "learning
framework", Bayesian learning is applied to the convexity-parameter. Third, in the
"robust control framework", he allows for the decision maker to be uncertain about
both the levels and convexity of damages, while also being aware that the damage
function itself may be misspecified. This implies that the social planner insures against
catastrophic outcomes. Finally, in the fourth framework he combines learning over
the damage exponent with robust control. The author finds that without learning the
total effect of uncertainty initially decreases the carbon tax by a small amount. Over
time, however, it increases the carbon tax by an amount up to 1%. When analysing
uncertainty with learning, the effect on the carbon tax is always that it increases
upwards, up to 5%. Robust control without learning increases the optimal carbon tax
by 1-2%, and slightly decreases the tax with learning.

Robust control incorporates the fact that we do not know the underlying form of
the damage function, but it also guards against unknown misspecifications, and so
guard against catastrophic events. This has the potential to induce big welfare losses
ex ante if it turns out that the damage function was correctly specified. Rudik (n.d.)
estimate that welfare loss can be 215 billion dollars in this case. He also find that
learning about the temperature elasticity of damages can produce welfare gains also in
the amount of hundreds of billions, and therefore state that research aimed at updating
damage functions has the potential to be valuable.

5



3 The Model

Our model is a dynamic programming implementation of the 2013 version of the DICE
model (Nordhaus, 2013). The dynamic programming adaption is from Traeger (2014),
which originally is based on the 2007 version of the DICE model Nordhaus (2007). Here
the model is updated to reflect the 2013 DICE model. Traeger (2014) reduces the state
space of the DICE model to only four state variables. Having as few as possible state
variables is useful because of the curse of dimensionality in dynamic programming. Im-
plementing uncertainty such as Bayesian learning in a dynamic programming model
requires additional state variables. The present study uses two additional state vari-
ables to implement learning over the climate sensitivity and the convexity of damages,
this will be outlined in section 3.3.

The main relationships in the model is illustrated in figure 1. World output is a func-
tion of the state variables capital, CO2 stock and temperature, as well as exogenous
variables such as labour and technological growth. Time is also a state variable, as this
captures time evolving exogenous processes without adding additional state variables.
Capital is used as an input in production, a bi-product of production is CO2 emissions
which accumulates in the atmosphere and increases the global temperature. Higher
temperatures leads to economic damages that decreases production. Output is either
invested in more capital or consumed. From consumption we get social welfare. With-
out the emissions-temperature-economy interaction this model represent a standard
Ramsey growth model.

Figure 1: Illustrated IAM. The oval boxes are the control variables, the
rectangular boxes are the state variables, and the two red colored boxes
represent the two uncertain state variables.
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3.1 The exogenous processes

The population/labor in each period is defined as:

Lt = L0
L∞
L0

−(1−gL∗)t

(1)

where L0 is the initial population, L∞ is the asymptotic population and gL∗ is the rate
of convergence to asymptotic population.

The technology level in each period is defined as:

At = A0 exp

[
gA,0

1− exp(−δAt)
δA

]
(2)

where A0 is the initial technological level in the economy, gA,0 is the initial growth rate
of technology and δA is the growth rate’s constant rate of decline.

The carbon intensity of production is assumed to decrease exogenously, and is defined
as:

σt = σ0 exp

[
gσ,0

(1 + δσ)t−1

ln(1− δσ)

]
(3)

where σ0 is the initial level of the carbon intensity in production, gσ,0 is the initial
negative growth rate, and δσ is the growth rate’s rate of decrease.

The abatement cost coefficient is an exogenous function of backstop technology.

Ψt =

[
a0σt
a2

]
exp(−gΨt) (4)

Abatement of emissions costs, but due to technological progress it becomes cheaper as
time goes by, this is represented by a0 which is the initial cost of backstop technology
(in 2013). a2 is the cost exponent and gΨ is the growth rate of abatement cost. As
time goes by the expression exp(−gΨt) goes towards zero, which means that we have
reached the backstop technology, where energy from renewable energy has become
cheaper than non-renewables, and so makes the latter obsolete.

CO2 emissions from land use change and forestry (LUCF)2 also follows an exogenous
2Emissions from human activities which either change the way land is used or has an effect on the

biomass in existing biomass stock (Pitesky, Stackhouse, & Mitloehner, 2009).
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process and is defined as:

Bt = B0 exp(−δBt) (5)

CO2 is the most important of the greenhouse gases but other types of greenhouse gases
also contributes to radiative forcing:

EFt = EF0 + 0.01(EF100 − EF0)× 10 + min(t, 90) (6)

where EF0 is external forcing in year 2000 and EF100 is external forcing in year 2100.

In DICE the carbon cycle is divided into three levels. The first level is the atmosphere
which absorbs emissions, but as the carbon concentration increase some carbon goes
into the second level, which is the lower biosphere and the shallow ocean. Third,
carbon from the second level escapes into the deep ocean. When emissions increases,
these boxes fill up. When the ocean reaches the limit of carbon uptake, we loose these
natural carbon sinks and emissions go straight into the atmosphere. In this model
these three dynamics are replaced by an exogenous process:

δM,t = σ0 exp[δM,0
(1 + δσ)t − 1

ln(1 + δσ)
]. (7)

3.2 The endogenous processes

The model contains six state variables, in this section the state variables capital Kt,
atmospheric carbon stockMt, temperature Tt and time tt will be explained. In section
3.3, we will discuss the two additional state variables, the uncertainty process over the
climate sensitivity and the damage exponent.

The model uses a Cobb-Douglas production function, that makes gross output a
function of labour Lt, technology At and capital Kt: Y gross

t = (AtLt)
1−κKκ

t . As Kt

changes a lot over time, approximating it becomes computationally expensive. That
is why the model normalizes capital to effective labour units, kt = Kt

AtLt
. Which gives

per capita gross production, ygrosst =
Y grosst

AtLt
= kκ. The same argument for capital goes

for consumption as well, which is also expressed in effective labor units, ct = Ct
AtLt

.

The interaction between the economy and the climate system is defined through net
production which is defined as:

ynett =
1− Λ(µt)

1 +D(Tt)
kκt =

1−Ψtµ
a2
t

1 + b1T
b2
t

kκt (8)
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Where ynett is decreasing in abatement cost, Λ(µt), and damages from increased tem-
perature, D(Tt).

The abatement cost is defined as:

Λ(µt) = Ψtµ
a2
t (9)

where µt is the emission control rate, or abatement rate, µt ∈ [0, 1], and it characterizes
the emissions avoided under a climate policy compared to a "business as usual" sce-
nario. a2 is the cost exponent and Ψt is the abatement cost coefficient, and is defined
in section 3.1 in equation (4).

The damage function is defined as a fraction of gross output:

D(Tt) = b1T
b2
t (10)

where b1 is the level of economic damages due to temperature increase over tempera-
tures in 1900, and b2 is the convexity of damages. In this thesis the mean over b2 is
uncertain and a state variable, how this is implemented is explained in section 3.3.

Time is also a state variable in this model. Having time as a state variable makes it
possible to approximate the value function with the time-varying exogenous parameters
without making them state variables. Time is natural unbounded, and therefore the
model uses a monotonic transformation, mapping time on the interval [0, 1) in equation
(11), (Traeger, 2014).

τ = 1− exp[−ζt] (11)

τ is referred to as artificial time, while t is real time. As will be explained more in-
depth in section 4 the model’s objective function is approximated at Chebychev nodes,
and the numerical parameter ζ decides how close to the early real time periods the
nodes concentrate. This thesis uses a value of 0.02, which is the same as in Traeger
(2014). The smaller the value of ζ, the closer to the early time periods the nodes will
be centered. It is useful to have it set to a small value as the DICE model states that
most action will be taken early in the time horizon (Traeger, 2014).

The equation of motion for capital is:

kt+1 = [(1− δk)kt + yt − ct] exp[−(gA,t + gL,t)]. (12)
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Next period capital is the previous period’s net production that is not consumed.
Capital also depreciates by the annual rate of δk. exp[−(gA,t + gL,t)∆t] reflects that
the effective labour unit have an annual growth rate of gA,t + gL,t.

Anthropogenic emissions is defined as:

Et = (1− µt)σtAtLtkκt +Bt (13)

and is the sum of industrial emissions (first part) and emissions from land use change
and forestry, Bt. σt is the emission intensity of production.

We assume today’s emissions add directly to the next period’s atmospheric carbon
stock, which is defined as:

Mt+1 = Mpre + (Mt −Mpre)(1− δM,t) + Et (14)

Mpre is the pre-industrial level of CO2 in the atmosphere, and so is the steady state
level in the absence of anthropogenic emissions. The carbon stock in the next period
is the sum of the pre industrial steady state level of carbon in the atmosphere and the
excess amount of carbon in the previous period. δM,t is the rate of carbon removal
from the atmosphere, represented in equation (7). Not all CO2 that is emitted goes
straight into the atmosphere, some also go into the shallow ocean and the biosphere.
The rate of this process is not stationary, its time and state dependent, as when the
excess amount of carbon grow the carbon reservoirs get filled up and so the ability to
take up more carbon decreases. Therefore δM,t is decreasing in time and the carbon
stock.

Global average temperature change is a delayed response to forcing from the atmo-
spheric carbon stock Mt, and other non CO2 sources, EFt. The equation of motion
for temperature is defined as:

Tt+1 = (1− σforc)Tt + σforcSt[
ln Mt

Mpre

ln 2
+
EFt
ηforc

]− σocean. (15)

Radiative forcing is the difference between the energy going into the earth’s atmo-
sphere and the energy going out. This energy imbalance leads to warming. Before
industrial times radiative forcing was quite stable, but an increased concentration of
greenhouse gases in the atmosphere stops more energy from going back out from the
earth’s atmosphere, and so the radiative forcing increases. Radiative forcing is loga-
rithmic in the atmospheric carbon stock Mt and EFt is radiative forcing from other
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sources than CO2. Climate sensitivity, St represent the equilibrium temperature re-
sponse to a doubling of CO2 in the atmosphere compared to pre-industrial levels. The
parameter also captures that we assume warming to be approximately proportional
to radiative forcing, and that the short term temperature response is proportional to
climate sensitivity. The parameter σforc captures that warming happens with a delay.
Another process is represented in σocean, and shows the cooling effect the ocean has on
global temperature. The ocean heats up slower than the atmosphere, and while the
ocean is catching up, it also cools down/slows the heating process.

3.3 Uncertainty

This section explains our implementation of the uncertainty governing climate sensi-
tivity mean, St, and the mean over the damage exponent b2,t. First, we discuss how
we imitate a Bayesian normal-normal learning process over the parameters, then we
go on to discuss the chosen prior probability distributions for each variable.

3.3.1 Model implementation

We use a modified first-order auto-regressive process, AR(1), to imitate a Bayesian
normal-normal learning process. In a normal-normal learning process both the prior,
governing the decision maker’s subjective uncertainty, and the shock, representing
nature’s stochasticity, are normally distributed. As a result, also the posterior after
Bayesian updating remains normally distributed. Thus, the evolution of uncertainty
can be captured by two parameters, the mean and the variance of the subjective
distribution. A convenient feature of the standard normal-normal Bayesian learning
model is that the variance falls over time independently of the signal realizations. Thus,
we can model it as an exogenous dependent process and avoid the use of an additional
state variable. Kelly and Kolstad (1999a) show for the case of climate sensitivity that
a more comprehensive updating would result in a normal-normal Bayesian learning
model where the evolution of the variance depends not only on time but also on the
evolution of the carbon stock. In principle, the decision maker can speed up learning
by emitting more carbon (active learning). However, Jensen and Traeger (2016) show
that the ability to actively increase the learning speed by increasing GHG emissions
will not play a quantitatively meaningful role in climate change. Thus, here we neglect
such active learning, which saves two state variables in an already high dimensional
dynamic programming problem.

We introduce a state variable for the mean of the climate sensitivity and the mean
damage exponent. Since both states follow a similar process, we let Υt represent either
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the mean of St or b2,t. The construction ensures that the long-term distribution over
the parameters converges to the decision maker’s prior (subjective) uncertainty. In
detail, the state’s equation of motion resembles a modified weighted AR(1) process:

Υt = γtΥt−1 + (1− γt)ω̃t where Υt ∈ {St, b2,t} (16)

where both the auto-regressive coefficient and the distribution over ω̃t evolve over time
to match the mean’s evolution under the normal-normal Bayesian learning model.

In a normal-normal Bayesian learning model the variance over the subjective prior
falls exogenously over time. This process is characterized by the precision, νt, which
grows linearly in equation (17). νt is the inverse of the subjective prior variance at
time t, σ2

t .

νt+1 = ν0 + tνε̃. (17)

The precision is a combination of two variances. Where ν0 = 1
σ2
o
, represent the precision

of our prior in period 0, which is our initial belief of the parameter value. νε̃ = 1
σ2
ε̃
,

characterizes the precision over the noise that slows learning3.

The evolution over the mean of the state variables are governed by the realized stochas-
tic shock in each period ω̃t and the AR(1) factor γt. The predictive distribution over
ω̃t, has a variance that is dependent on the variance over the prior distribution in
period t and the variance over the stochastic shock.

σ2
ω,t = σ2

ε̃ +
1

νt
. (18)

The AR(1) factor is defined in terms of the precision (17), and evolves over time in
the following manner:

γt =
νt

νt + νε̃
. (19)

Equation (19) and (18) govern the learning process in equation (16). The AR(1)
factor increases asymptotically towards unity and the predictive variance decreases
asymptotically towards the shock variance. Both are calculated so that standing in

3The current model is a simplified and also a more abstract learning model. If we literally had
an Bayesian learning model, we would learn about the parameters by observing the climate and the
economy. Hence the variance would in that case depend on the evolution of the climate and the
economy.
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period 0 the decision maker believe the real value of the parameters to lie within the
prior distribution in period 0, σ2

0. Moving forward in time νt ensure that learning takes
place. This exogenously decided learning process let’s us decide how fast the decision
maker learns. The parameter that let us do that is the variance over the stochastic
noise, σ2

ε̃ . This will be discussed further in section 5.2.

3.3.2 Prior distributions

The DICE damage function is stated in equation (10),

D(Tt) = b1T
b2
t

And from equation (8) we have that damages can be expressed as percentage damages
of gross product given a temperature. The percentage of damages is then equal to

kκ

1+D(Tt)
. The DICE model assumes a quadratic form, so that b2 = 2. b1 is estimated

by fitting the quadratic function to a set of existing damage estimates.

A probability distribution is implemented only over the damage exponent. That is
because this is considered the more interesting parameter as it changes the convexity
of the damage function, and so we expect it to be the most relevant for the uncertainty
effect. We use a prior distribution over b2 taken from Rudik (n.d.). To estimate the
distributions over the damage parameters he uses the regression in equation (20),
which is based on data from a recent metastudy by Howard and Sterner (2017). In
this study

lnD(Ti) = ln b1 + b2 lnTi + εi (20)

The estimated b̂2 have a normal distribution with a mean = 1.88 and a variance =
0.203. Rudik (n.d.) uses this as the prior over the damage exponent in his implemen-
tation of Bayesian learning, this thesis will do the same.

The prior distribution over the climate sensitivity is constructed by fitting a normal
distribution to reflect a 66 % confidence interval of 1.5◦C - 4.5◦C, with a mean value
of 3◦C. Which reflects what the latest published IPCC report (IPCC, 2013) uses as
the likely interval over the climate sensitivity. As discussed in chapter 2 the likely
range over the climate sensitivity has not changed much over the years. There’s many
studies that try to estimate the climate sensitivity and make the likely interval over
the parameter smaller. Knutti et al. (2017) looks into different studies that aim to
estimate the probability distribution over the parameter. They find that their overall
assessment is broadly consistent with the IPCC, and that the likely value of the climate
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sensitivity is 3◦C.
Based on this the chosen prior over climate sensitivity is a mean equal to 3◦C and

a variance of 2.47◦C.

The variance that governs the noise in the model, σ2
ε , has a value of 20 for both

variables. σ2
ε slows learning, a lower value means less noise and hence, faster learning.

To see how different speed of learning affects optimal policy, a value of 2 will also be
employed to represent fast learning.
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4 Solution method

This thesis solves a recursive dynamic programming implementation of the DICE
model. More specifically we solve the Bellman equation using the collocation method
and value function iteration. This segment will explain the solution approach in detail.

4.1 Dynamic programming and the Bellman Equation

The intuition behind dynamic programming can be summarized in the following ex-
cerpt from Bellman (1957, p. 83).

"An optimal policy has the property that whatever the initial state and
initial decisions are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision."

The method breaks a problem into simpler sub-problems in a recursive manner, in
our problem it breaks it down into a trade-off between welfare from consumption now
and from consumption in the next period. A dynamic programming system consists
of state variables and control variables. The state variables determine the economic
system in each period, and the decision maker will in each period optimize policy by
choosing the level of the control variables.

The benefit of this approach in solving dynamic models under uncertainty is that it
creates what we can call a closed loop system. In each period the decision maker will
be aware of the system’s state and make decision based on that. For our case with
learning, the decision maker will in each period be aware of which state the system
ended up in, what the remaining uncertainty is, and use that as a basis for decision
making.

The dynamic programming problem is defined in equation (21). It is constructed in the
form of a Bellman equation, and we assume standard preferences. The right hand side
of equation (21) is the value function V (Θt)

4. The left hand side is the instantaneous
time t welfare, represented by the utility function in period t, and the discounted
future welfare. We maximize over consumption ct and emission control rate µt. The
chosen value of the control rates decides what state the economic system will end up
in today and in the following period.

4Where Θt represents all six state variables in equation (21)
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V (kt,Mt, tt, Tt, S̃t, b̃2,t) = max
µt,ct

c1−η
t

1− η
+

βtE[V (kt+1,Mt+1, t+ 1, Tt+1, S̃t+1, b̃2,t+1)] (21)

The state variables are per capita capital, kt, atmospheric carbon stock, Mt, tempera-
ture, Tt, time, tt, the damage exponent, b2, and the climate sensitivity, St. The decision
maker chooses optimal policy by choosing the optimal level of the control variables,
which is the emission control rate, µt, and per capita consumption ct. The utility
discount factor is βt and incorporates the time changing population and technological
growth.

βt = exp(−δu + gA,t(1− η) + gL,t). (22)

The time dependence is a consequence of the time invariant growth rates, and does
not indicate a time inconsistent objective function. The factor βt determines the
contraction of the Bellman equation.

4.2 The collocation method and value function iteration.

We start by representing the Bellman equation (21) by a simplified version:

V (Θ) = max
x

[U(x) + βV (g(Θ, x))] (23)

where Θ represent the state variables, and x is the control variables. The function
g(Θ, x) is the state transition function, which simply state that the next period’s
states are a function of the prior period’s states and chosen values of control variables
x. In the following Θ will represent a one dimensional state space and x represent a
single control variable, this simplifies the explanation. The following explanation relies
on the work by Miranda and Fackler (2002). In section 4.2.1 we will go on explaining
this solution method applied on a higher dimensional state space, and in section 4.2.2
outline how uncertainty is incorporated in the model.

The approximate solution to the Bellmann equation is found by using the collocation
method. First the value function is written as a combination of chosen basis functions
φ1, φ2, ...φn, and coefficients c1, c2, ..., cn. It is the coefficients we will solve for. Based
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on this the value function can be written as the following approximation:

V (Θ) ≈
n∑
j=1

cjφj(Θ) (24)

The chosen basis functions are Chebychev polynomials with corresponding Chebychev
nodes and coefficients.

After choosing the basis functions, the coefficients are estimated by requiring the ap-
proximant to satisfy the Bellman equation at n collocation nodes, Θ1,Θ2, ...,Θn, within
a chosen interval, [Θmin,Θmax]. The system then consists of n non-linear equations
with n unknowns. The simplified Bellman equation (23) can now be written as:

n∑
j=1

cjφj(Θi) = max
x

[U(x) + β
n∑
j=1

cjφj(g(Θi, x))] (25)

where the value function is replaced by its’ approximant. The value function’s approx-
imant can be expressed in vector form as the collocation equation:

Φc = v. (26)

Where Φ is called the collocation matrix, and is a n by j matrix whose typical njth

element is the jth basis function evaluated at the nth collocation node, Φnj = φj(Θn),
(Miranda & Fackler, 2002). The right hand side of equation (26) is a n by one vector,
and has the typical ith element of equation (25) evaluated at the ith state node. c is a
n by one matrix, containing the estimated coefficients that satisfy equation (26). v is a
column vector where the nth element is the right hand side of equation (25) evaluated
at each node, Θn. Written out equation (26) looks like this:



φ0(Θ0) φ1(Θ0) . . . φj−2(Θo) φj−1(Θ0)

φ0(Θ1) φ1(Θ1) . . . φj−2(Θ1) φj−1(Θ1)
...

... . . . ...
...

φ0(Θn−2) φ1(Θn−2) . . . φj−2(Θn−2) φj−1(Θn−2)

φ0(Θn−1) φ1(Θn−1) . . . φj−2(Θn−1) φj−1(Θn−1)





c0

c1

...
cj−2

cj−1


=



v̂(Θ0)

v̂(Θ1)
...

v̂(Θn−2)

v̂(Θn−1)


(27)

The approximation scheme then continues by the application of the value function
iteration algorithm. We use either of the following iterative updating rules. If we
choose n = j so that the number of basis function is equal to the number of collocation
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nodes we have the updating rule in equation (28).

c = Φ−1v. (28)

If n 6= j we have the following updating rule of equation (29), which is the familiar
Ordinary Least Squares estimator.

c = (Φ
′
Φ)−1Φ

′
v (29)

Both equation (28) and (29) is dependent on the assumption that the basis functions
are linearly independent so that the inverse of the collocation matrix exists.

The function iteration proceeds as follows. First we start with a guess over the col-
location coefficients, c0, and solve the right hand side of equation (25) for every nth

node. Then we fit a new value function approximation using the guess from the last
iteration and so find new values for c1. This proceeds until the difference between ck−1

and ck is small enough to satisfy a given tolerance criterion, in this problem that is set
to 10−1. This algorithm is called value function iteration. The theoretical foundation
for this solution method is the contraction properties of the Bellmen equation. The
contraction mapping theorem states that when iteratively updating the value function
starting from any initial guess, the sequence will eventually converge to the one unique
solution. As it will converge to the unique solution asymptotically, one set a tolerance
criterion as mentioned above (Judd, 1998).

4.2.1 Higher dimensional state space

This thesis uses a dimensional state space consisting of six state variables. The solution
method is very similar to the one explained above when applied on a higher dimensional
state space. We still use the basis functions and collocations nodes as discussed above.
The difference is that we use the basis funciton and collocation nodes for each of
the state variable as a basis to form a multidimensional tensor product. The right
hand side of equation (25) now has to be solved for every point on a multidimensional
grid. This is where the "curse of dimensionality" in dynamic programming occur, as
the number of nodes we need to estimate the funciton on increases exponentially in
the number of states. If we assume that the order of approximation (order of basis
functions) is equal to the number of nodes in each dimension, and that we use the six
states variables used in this thesis, equation (28) can now be written as:

c = [Φ−1
k ⊗ Φ−1

M ⊗ Φ−1
t ⊗ Φ−1

T ⊗ Φ−1
S ⊗ Φ−1

b2
]v. (30)
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Which is the Kronecker product of the collocation matrices in each dimension.

4.2.2 Uncertainty

Under uncertainty each stage of the dynamic problem is governed by an uncertain
process. We rewrite equation (23) to equation (31):

V (Θ) = max
x

[U(x) + βEV (g(Θ, x, ε̃))]. (31)

Where ε̃ represent a state variable governed by a stochastic process. Now each stage
is decided not only by the chosen control variables, but also by an uncertain process
incorporated in ε̃. It follows that equation (25) can be written as:

n∑
j=1

cjφj(Θi) = max
x

[U(x) + βE
n∑
j=1

cjφj(g(Θi, x, ε̃))]. (32)

We follow the same solution procedure as above, but now we have to take the expec-
tation at each stage of the problem. To evaluate the optimal policy response we now
have to approximate the expectation integral. We do so by the use of Gauss-Legendre
quadrature. As it is infeasible to evaluate the value function at all possible realizations
of the random variable, Guass-Legendre quadrature helps us to simplify the random
variable ε̃ to a discrete random variable with mass points el and probabilities wl.

Bringing the explanation over to the problem presented in this thesis, uncertainty is
implemented by having the shock in equation (16) being estimated by Gauss-Legendre
quadrature. More specifically is the mean of climate sensitivity and the damage expo-
nent evaluated at mass points el.

Υl,t = γtΥl,t−1 + (1− γt)el where Υt ∈ {St, b2,t} and el ∈ {el,St , el,b2,t} (33)

The expectation in equation (21) is replaced by a set of weights, wl. We illustrate the
implementation of Gauss-Legendre quadrature in this problem in equation (34).

V (kt,Mt, tt, Tt, S̃t, b̃2,t) = max
µt,ct

c1−η
t

1− η
+

βt

L∑
l=1

wl[V (kt+1,Mt+1, t+ 1, Tt+1, Sl,t+1, b2,l,t+1)]. (34)
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Here the expectation is replaced by the weights, wl5 and the state variables is now
represented by Sl,t+1 and b2,l,t+1, where the subscript l represent that we evaluate the
value function on l different points within the state space interval. When generating
the Gauss-Legendre quadrature nodes and weights, we assume the covariance between
the two parameters to be zero.

4.3 Numeric implementation

For the numeric implementation it is more efficient to maximize over the abatement
cost Λ instead of the emission control rate, µt (Traeger, 2014). The constraints imposed
on consumption and abatement cost is:(

1
kκt

1+b1T
b2
t

0 1

)(
c

Λ

)
≤

(
kκt

1+b1T
b2
t

Ψt

)
(35)

where c,Λ ≥ 0. Said in words this state that the sum of consumption and and
abatement must be smaller or equal to net output, and that abatement cost Λ must
be smaller or equal to the abatement cost coefficient, ψ.

The numeric implementation is carried out in MATLAB and take use of the CompEcon
toolbox from Miranda and Fackler (2002), and KNITRO for the optimization routine.
The model use Chebychev polynomials with Chebychev nodes and coefficients at a
total number of 25 600. The node number for each state variable is given in table 1,
together with the starting values and intervals over the state variables.

5Here l represent weights for both variables. If we evaluate the state variables on 3 different nodes
each, then wl is a column vector of dimensions 9× 1.
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State Value Definition

K0 135 In trillions USD, initial global capital stock
M0 818.985 In GtC, stock of atmospheric CO2
T0 0.83 Temperature in ◦C
S0 3 Expected value climate sensitivity
b2,0 1.88 Expected value damage exponent

Interval Nodes

K [0.5 4] 10
M [550 2000] 5
t [0 1] 8
T [0 6] 4
S [1.5 5] 4
b2 [1.25 2.75] 4

Table 1: Starting values, number of nodes and intervals over the state
variables.

The intervals presented in table 1 represent the state space over which we estimate the
state variables. The interval over climate sensitivity is 1.5◦C to 5◦C. As discussed in
section 3.3.2 the likely interval over climate sensitivity is 1.5◦C to 4.5◦C. The approx-
imation interval employed in the current study reflects that, but also extend it a half
degree upwards6 This interval is narrow, and a valuable extension of the model would
be to increase this interval. The reason for why it is not, is due to convergence issues,
this will be explained more in section 6. The same problematic goes for the convexity
of damages as well, where a interval of 1.25◦C to 2.75◦C is implemented.

4.4 The Social Cost of Carbon

To abate or not to abate, or rather how much, is the question the Social cost of
carbon (SCC) aims to answer. On the one hand we experience economic damages
from emitting CO2 into the atmosphere and the temperature increase that leads to,
while on the other hand abatement comes with a cost. To find the optimal amount of
abatement we often rely on the SCC, which in this thesis is defined in equation 36:

SCCt = −1000
∂MtV

∂KtV
AtLt. (36)

The SCC is the marginal rate of substitution between atmospheric carbon concen-
6In the current study a normal distribution is employed over the parameters. However, for climate

sensitivity and damages a right-skewed distribution is more likely(Wagner & Weitzman, 2015).
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tration and capital7. It tells the value of emitting CO2 that accumulates in the at-
mosphere, expressed in terms of capital. More CO2 in the atmosphere leads to an
increase in temperature, which again leads to more economic damages, which again
decreases the capital stock. The SCC represent a trade-off between abatement cost
and economic damages.

The Carbon tax is often used interchangeably with the SCC. The difference between
the two is that the what is most often referred to as the carbon tax is the Pigovian tax
on carbon, i.e. the monetized external effect from CO2 emissions. When abatement
is rate is smaller than one, µt ≤ 1, the carbon tax and the SCC coincide. While when
abatement rate has reached its limit, when emissions are zero, then the carbon tax
only reflects the price of keeping it that way, and in this scenario the SCC may be
much higher than the carbon tax.

7Since capital is measured in trillions of dollars and the carbon stock in billions of tons, we have
to multiply the expression by 1000. The SCC is then expressed in terms of dollars per ton of carbon.
AtLt come into play because of normalization.
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5 Results

The discussion is divided into three parts. First we will discuss individual and joint
uncertainty, second learning and finally the control rules.

5.1 Individual and joint uncertainty

This section presents time paths where we assume that nature draws the expected
value in every period, but the social planner acts as if the world was uncertain. The
difference between the deterministic path and the uncertainty paths reflects the social
planner’s awareness of uncertainty. More specifically, we construct the time paths by
simulating the optimized value function (34) forward in time assuming the uncertain
state variables to be at their expected value.

The result presented in figure 2 compares the policy implications of joint to single
uncertainty. Joint uncertainty means that we have uncertainty over both parameters,
while we have single uncertainty when uncertainty is only implemented over each of
the variables separately.
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Figure 2: Comparison plots over the SCC and abatement rate. The plots com-
pare model runs for joint uncertainty, only uncertainty over the convexity of
damages, only uncertainty over the climate sensitivity and finally the determin-
istic case. The top figures shows the time paths simulated for the first 35 years,
while the bottom figures shows the same over a 180 years time horizon

Year Deterministic Joint Climate sensitivity Damage convexity

2020 50$ 59$ (17.3%) 56$ (11%) 53$ (4.7%)
2025 51$ 57$ (12.1%) 55$ (6.4%) 54$ (4.7%)
2030 55$ 61$ (9.3%) 58$ (4%) 58$ (4.7%)
2070 159$ 167$ (5.3%) 160$ (0.7%) 166$ (4.5%)
2120 493$ 515$ (4.5%) 494$ (0.3%) 513$ (4%)
2220 2188$ 2246$ (2.6%) 2192$ (0.2%) 2243$ (2.5%)

Table 2: Numeric values for the SCC for selected years from figure 2. In
parentheses is the percent increase from deterministic SCC to uncertainty
SCC.
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Year Deterministic Joint Climate sensitivity Damage convexity

2020 17.5% 19% 18.4% 18%
2025 18% 19.1% 18.6% 18.5%
2030 19.2% 20.1% 19.6% 19.7%
2070 38.8% 40% 38.9% 39.7%
2120 83.7% 85.8% 83.9% 85.6%
2220 100% 100% 100% 100%

Table 3: Numeric values for the abatement rate for selected years from
figure 2

.

It is not easy to separate the graphs in the plots over the long time horizon i figure 2,
therefore table 2 and 3 present the numeric values for these graphs.

Uncertainty over climate sensitivity and the damage convexity contributes to a higher
SCC in a given period if equation 36 is a convex function of climate sensitivity and dam-
age convexity in that period. More specifically if ESCC(b2,t, St) > SCC(E(b2,t, St)).
This is what is known as Jensen’s inequality. From figure 2 we can see that both
variables separately and together makes the case for a higher SCC compared to the
deterministic SCC.

When comparing the two types of uncertainty in figure 2, we notice that the climate
sensitivity alone results in a higher SCC and abatement rate at the beginning of the
period than the convexity of damages does on its own. This however, changes in
year 2029. One hypothesis that can explain the initially small effect from damage
uncertainty is the fact that in the beginning of the period we only experience low
temperatures, close to one degree. At one degree Celsius the parameter b2,t does not
have any effect. Standing in period 1 it is only the effect from the expected impact
over the course of the future that affect the SCC. In the future we will experience
higher temperatures, and so the uncertainty over damages becomes more important.
This is clear in table 2 where in 2120 only damage uncertainty SCC is 4.1% higher
than the deterministic SCC, while only climate sensitivity uncertainty is only 0.3%
higher. We will revisit this hypothesis in section 5.2.

A further study of figure 2 and table 2, show that the difference in the SCC decreases
over time. This reflects the learning process. We use the value function optimized un-
der uncertainty and simulated forward in time assuming nature draws the parameter’s
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expected value in all periods. We implement an exogenous declining variance over
both state variables, and so the value function is evaluated under a very low uncer-
tainty at the high time nodes. The difference between the deterministic path and the
uncertainty paths reflects the decision maker’s reaction to uncertainty. Over time the
variance fall and so reflect that we learn. The convergence towards the deterministic
path reflects that8.

The abatement rate and SCC increases over time, which is similar to the structure
of the DICE model. In the DICE model the optimal emissions reduction follows a
"policy ramp" where we start out with a modest abatement effort and then over time
increase the reductions of our GHG emissions (Nordhaus, 2007).

So far we have only depicted the expected paths. Figure 3 shows how the expected
path relates to other possible time paths under uncertainty. This is done by randomly
simulating our model forward in time 10 000 times. The starting values for St and b2,t

is their expected value in year 2020. Figure 3 show the resulting mean, median and
the 67% bound for the SCC.

Figure 3: The mean, median, expected path and 67% confidence interval
over the SCC simulated by 10 000 random paths 100 years into the future.
The graph show this simulation for joint uncertainty and a shock variance
of 20.

8The paths might not converge perfectly because by the time uncertainty resolves, the uncertainty
paths have a past of different decisions leading to different states in the present.
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In figure 3 we can see that the optimal SCC for 67% of the random paths lies between
approximately 200$ and 1000$. Which means that seen from today’s perspective
there is a 67% chance that the optimal SCC will lie between 200$ and 1000$ in year
2120. This reflects that from today’s perspective the climatic system is very uncertain.
Comparing this result to the expected paths in figure 2 it may seem surprising that
the latter does not reflect more effect from uncertainty. This can be explained by
how fast learning is resolved within this model. Figure 3 reflects the uncertainty the
decision maker faces in the present, while figure 2 reflects how the planner responds
to uncertainty at each point in time. The variance over both parameters fall quickly.
This means that while the decision maker faces much uncertainty now, he will be much
more certain about the true value of the parameters in the near future.

Studying figure 3 we also notice that the mean of the random paths are over the
expected time path, and the median of the random simulation lies beneath it. This
can be explained by the SCC being more convex or responsive to high realizations of
the parameters compared to lower realizations.

In figure 4 the effect two different prior variances have on optimal policy. The effect
is only shown for only uncertainty over the climate sensitivity. Here we notice that a
higher prior contributes to a higher SCC.

Figure 4: Optimal SCC for different prior distributions over the climate
sensitivity. Compares prior variances of 2.47 and 3 to the deterministic
SCC.
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5.2 Learning

The literature finds that learning is a slow process. Kelly and Kolstad (1999a) find a
theoretically expected learning time over climate sensitivity between 90 and 160 years.
The damage function in IAMs is the subject of high uncertainty, as every new tem-
perature increase represent unknown territory, a slow learning phase is also reasonable
for the convexity of damages. However, improvements in for instance computational
power that allows for more comprehensive predictive models, may make the case for
a shorter learning period. Therefore an interesting analysis is to vary the speed of
learning to see how that affects policy.

In this implementation of a learning model, we’ve introduced an exogenous falling
variance. This does not only have the benefit of reducing the state space, it also allows
us to easily set the rate of the declining variance, and hence the speed of learning. This
way we can easily compare how fast and slow learning affects optimal policy in this
model. The way we do that is by varying the variance over the noise in the model, σ2

ε̃ .
In figure 5 the difference in the SCC from a σ2

ε̃ of 2 versus 20 is shown. Only the effect
for the years up to 2055 is shown as this is the period where the effect of uncertainty
is the most apparent.
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Figure 5: Comparison plots over the SCC. Compares model runs for two dif-
ferent speed of learning. More specifically the plots depicts the difference σ2

ε̃ of
2 versus 20 yields compared to the deterministic case.

Year Deterministic Joint - 20 Joint - 2 CS - 20 CS - 2 D - 20 D - 2

2020 50.25 58.95 63.89 55.73 57.02 52.62 55.28
2025 51.28 57.49 55.73 54.57 51.97 53.69 54.98
2030 55.41 60.57 58.99 57.63 55.91 57.99 58.4
2070 159.03 167.48 163.67 160.2 159.97 166.09 162.09
2120 492.71 514.68 497.5 494.21 492.26 512.92 498.25
2220 2188.7 2246.1 2197.96 2191.99 2188.19 2243.19 2199.39

Table 4: SCC for plots in figure 5, and extended for years not shown in
the graph. Only uncertainty over the climate sensitivity = CS. Only un-
certainty over the convexity of damages = D.

Figure 5 displays the resulting SCC for different speed of learning for joint uncertainty
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and single uncertainty. We notice that fast learning means a higher initial SCC com-
pared to slow learning in all cases, while over time this dynamic changes, and so the
slow learning makes the case for the highest SCC.

To explain the underlying dynamics behind these results we’re going to connect
these results to how the variance over each of the state variables vary over time. In
figure 6 the variance over the state variables governing the mean of climate sensitivity
and the mean of damage convexity in each period t is illustrated for the two different
speed of learning. Note that it is the conditional variances over the parameters that
are displayed, the variance that the decision maker faces at every given point in time.

Figure 6: Conditional variance over climate sensitivity and damage convexity.
For σ2

ε̃ equal 2 and 20.

In both graphs in figure 6, a low σ2
ε̃ results in a high initial variance, but which

decreases quickly, while a high value of σ2
ε̃ results in the opposite. This can explain

why we see a higher initial SCC for a low σ2
ε̃ in figure 2. Fast learning implies that the

decision maker updates his belief over the long-run climate during a short period of
time. This results in a substantial updating of the variables during the first few years,
something which results in a high initial variance. While for the case of slow learning,
the decision maker updates his belief over a longer period of time, which results in a
lower initial variance that falls slowly.

From figure 5 we can also see that the fast learning is slower for the convexity of
damages than for the climate sensitivity. For climate sensitivity slow learning makes
the case for a higher SCC after only 2 years, while for damage convexity uncertainty
that is the case after 14 years. This is also what we see in figure 6, there’s more
updating over a longer time period in the fast learning case compared to the slow, for
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the state variable governing damage convexity mean. While for the climate sensitivity
slow learning quickly catch up with fast learning.

In the previous section we discussed a hypothesis over why uncertainty only over b2

has little initial effect on the SCC, while over time it contributes more relative to
uncertainty over St. This hypothesis was based on the fact that the parameter b2 has
a small effect on damages for low temperatures. Another hypothesis is that we use the
same absolute magnitude for σ2

ε̃ that slow learning for both variables. The absolute
magnitude of the prior uncertainty and the mean are much lower for damage convexity
than for climate sensitivity. Figure 6 shows us that for the same σ2

ε̃ , learning is indeed
much slower for damage convexity. This may also explain why uncertainty over climate
sensitivity contributes more in the short term, and uncertainty over damage convexity
more in the long term.

5.3 Control Rules

To get a more comprehensive understanding of the model we also depict the control
rules in figure 7. The control rules let us investigate optimal policy over different
realizations of the state variables than along their expected path. Here the control
rules for year 2040 and 2240 for the SCC over the climate sensitivity and the convexity
of damages are depicted. The other state variables are held fixed at their expected
year 2040 and 2240 level.

Figure 7: Control rules for the SCC over climate sensitivity (CS) and the dam-
age convexity (b2). The blue dots marks the expected path value for the year
2040 and 2240.

Looking at figure 7 we notice that the curvature of the two years are more or less the
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same. For low values of St the impact on the SCC from b2,t and vice versa is minimal.
That is because for low temperature levels the convexity of the damage function does
not contribute much to reducing economic output. For high values of both variables
the SCC is much higher. The overall SCC is higher in year 2240, which is due to higher
damage realizations from higher temperature levels, and the fact that we discount the
future.

In figure 8 the control rules for the joint and single uncertainty runs are compared. We
take the control rules for the joint uncertainty run and subtract the control rules for the
each of the single uncertainty runs. Hence the graphs show the difference in the SCC
between the joint and the single uncertainty runs. When the graphs show a positive
value, the SCC for the joint uncertainty run is higher compared to single uncertainty
SCC. Here the SCC for different values of the climate sensitivity and damage convexity
is shown for years 2040 and 2240. The other state variables are held fixed at their year
2040 and 2240 expected value.
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(a) Joint to only s uncertainty (b) Joint to only b2 uncertainty

(c) Joint to only S uncertainty (d) Joint to only b2 uncertainty

Figure 8: Difference in control rules for joint and single uncertainty runs at
year 2040 (figure a and b) and 2240 (figure c and d). Depicts optimal SCC for
different values of S and b2. The other state variables are held fixed at their
2040 expected value for figure a and b, and at their year 2240 expected value
for figure c and d.

Figure 8a and 8c show that only climate sensitivity uncertainty is more dominant for
lower values of b2. From figure 8b and d we see that only uncertainty over b2 is more
dominant for high values of climate sensitivity. Which is expected as damages are a
convex function of temperature.

In figure 8c and 8d we show the same just for year 2240. Figure 8c has the
same curvature as 8a. Which indicates that uncertainty only over St have the same
type of effect in both time periods. The difference is smaller, but that is due to the
diminishing effect of uncertainty over time due to learning. Figure 8d differ from figure
8b in curvature. For year 2240 the difference between damage convexity uncertainty
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and joint uncertainty is small for all values of St. Which is in line with what discussed
above, that uncertainty over b2 becomes more important over time as we experience
higher temperatures.
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6 Conclusion

In the present study we have implemented uncertainty over two important aspects of
climate change; the climate’s temperature response to carbon emissions and economic
damages from global temperature increase. This is done by implementing an exogenous
learning process in a dynamic programming version the widespread IAM, the DICE
model.

Our main result shows that the decision maker’s response to joint uncertainty is a
SCC of 59$ today, which is 8.5$ (17.3%) higher than the deterministic SCC. However,
this difference decreases quickly over time as uncertainty is resolved.

When considering the two uncertainties separately we find that uncertainty over the
climate sensitivity is more dominant in the beginning of the period. This effect is due to
the low observed temperature, and a higher prior variance over the climate sensitivity.
Over time the uncertainty over the convexity of damages becomes more influential as
temperatures increase. The results show that both uncertainties contribute to a higher
SCC compared to the deterministic SCC over the simulated period.

Depicting the control rules gave us a more comprehensive understanding over how the
interaction between climate sensitivity and damage convexity contributes to the SCC.
Here we saw that for low values of both or just one of our two uncertain variables,
neither made the case for a high SCC. While for high values of both variables the
corresponding SCC increased relatively much.

Inspecting the two different speeds of learning taught us that fast learning implies
a higher initial SCC than slow learning. This is due to substantial updating in the
beginning of the period, but the effect wears of as the decision maker learns fast. Slow
learning made the opposite case.

A limitation in the current study is the intervals employed over the mean of damage
convexity, and especially over the climate sensitivity mean. Wider intervals would be
beneficial. As there is a trade-off between higher order approximation of the value
function and stability, increasing the intervals made us encounter convergence issues,
and the present intervals are the highest the model manages to reach at this point.
An expansion of the model would be to increase these intervals.

A further expansion of the model would be to employ a right-skewed distribution
over the mean of climate sensitivity and damage convexity. There is evidence in the
literature that both variables are governed by such distributions (Wagner & Weitzman,
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2015).
This study employs expected utility. Within this framework we cannot separate

between risk aversion and the propensity to smooth consumption over time. An inter-
esting extension of the model would be to implement Epstein-Zin preferences. Crost
and Traeger (2014) show that with uncertainty over the damage function, the policy
implications from uncertainty is different under Epstein-Zin preferences as compared
to expected utility.
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A Parameters

Economic parameters

η 2 Intertemporal consumption smoothing preference
RRA 2 Coefficient of relative Arrow-Pratt risk aversion
b1 0.0027 Damage coefficient
δu 0.015 Pure rate of time preference per year
L0 6838 In millions initial population.
L∞ 10500 In millions, asymptotic population
g∗L 0.13449 Rate of convergence to asymptotic population
δK 0.1 Depreciation rate of capital per year
κ 0.3 Capital elasticity in production
A0 0.0067 Initial labor productivity
gA,0 0.0235 Initial growth rate of labor productivity
δA 0.006 Rate of decline of productivity growth rate per year
σ0 0.1334 Initial CO2 emissions per unit of output.
gσ,0 -0.01 Initial rate of decarbonization per year
a0 1.2613 Cost of backstop in 2013
a2 2.8 Cost exponent
g∗Ψ 0.005 Rate of convergence from initial to final backstop cost
δσ -0.1% Rate of decline of the rate of decarbonization
Climatic parameters
Mpre 588 In GtC, preindustrial stock of CO2 in the atmosphere
δM,0 -1% Initial rate of decarbonization
δσ -0.1% Rate of decrease in growth rate of decarbonization
B0 0.4202 In GtC, initial CO2 emissions from LUCF
δB -0.04 Growth rate of CO2 emissions from LUCF per year
ηforc 3.8 Forcing of CO2 doubling
λ 0.315 Ratio of forcing to temperature increase under CO2 doubling
EF0 -0.06 External forcing in year 2000
EF100 0.62 External forcing in year 2100 and beyond
σforc 2.6% Warming delay, heat capacity atmosphere, annual
σocean 0.18% Parameter governing oceanic temperature feedback, annual
σ2

0,s 2.47 Prior variance, climate sensitivity
σ2

0,b2
0.203 Prior variance, convexity of damages

σ2
ε̃ 2, 20 Variance over the stochastic shock

Table 5: Model parameters
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B Comparison to 4 state model

Here we compare our deterministic 6 state model to the 4 stated DICE model (Traeger,
2014). We want to test if the models coincide. The uncertainty is "switched off" in the
6 state model by optimizing the value function without Gauss-Legendre quadrature as
explained in section 4.2.2. Over the first years it almost perfectly overlap, while in the
end of the time period shown in the graphs, there’s only a minor difference between
the two.

Figure 9: Comparison plots over the SCC and abatement rate. Compares
the deterministic 6 state model to the deterministic 4 state model. The
top figures shows the time paths simulated for the first 50 years, while the
bottom figures shows the same over a 200 years time horizon

41


	Introduction
	Background
	Integrated Assessment Models of Climate Change
	Uncertainty in IAMs
	Uncertainty over the climate sensitivity parameter
	Uncertainty over the damage function


	The Model
	The exogenous processes
	The endogenous processes
	Uncertainty
	Model implementation
	Prior distributions


	Solution method 
	Dynamic programming and the Bellman Equation
	The collocation method and value function iteration.
	Higher dimensional state space
	Uncertainty

	Numeric implementation
	The Social Cost of Carbon

	Results
	Individual and joint uncertainty
	Learning
	Control Rules

	Conclusion
	Parameters
	Comparison to 4 state model

