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Abstract 

This thesis introduces a novel approach for the augmentation of acoustic instruments by providing 

musicians playing monophonic instruments the ability to produce and control the harmonic 

outcome of their performance. This approach is integrated into an interactive music system that 

tracks the notes played by the instrument, analyzes an improvised melodic phrase, and identifies 

the harmonic environment in which the phrase is played. This information is then used as the input 

of a sound generating module which generates harmonic textures in accordance with the identified 

scale. At the heart of the system is an algorithm designed to identify a scale from the played 

musical phrase. The computation relies on established music theory and is based on musical 

parameters retrieved from the performed melodic phrase. A database of audio recordings 

comprised of improvised phrases played by several saxophonists is used to test the algorithm. The 

results of the evaluation process indicate that the algorithm is reliable, and it can consistently 

recognize the scale of an improvised melody conveyed by a live musician. This discovery led to 

the exploration of the affordance to influence accompanying harmony by a monophonic line and 

integrating the phrase-to-scale match algorithm within an interactive system for music-making. By 

interacting and playing with the system using a repurposed controller mounted on the saxophone, 

performance strategies and practical ways are offered to play, modify, and further develop the 

system.  
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1. Introduction 

This thesis presents a novel approach for controlling harmony, sometimes referred to as the 

“vertical” aspect of music, with its “horizontal” aspect, the melodic line. The suggested approach 

includes a software application, an algorithm, and a method for repurposing a video game 

controller, to track the pitch of a saxophone, capture and analyze an improvised musical phrase, 

determine the scale of the phrase, and use that output for music generation in an interactive manner. 

Recent advances in the field of music production, and the technology available for anyone who 

wishes to produce music by electronic means, have enabled a wave of artists to develop a personal 

sound, produce their own music, invent instruments or write code to serve their artistic needs and 

aesthetics. Musicians are now able to invent and customize music applications to further their 

artistic research and remain original and inventive. Machine learning algorithms allow the 

musician of today to interact and play with artificial intelligence models with a great deal of 

communication and musical expression. The use of technology, in combination with traditional 

acoustic musical instruments in a wide range of musical genres, is becoming mainstream. 

Technological developments like the loop-pedal, the harmonizer effect, various instrument 

augmentation projects, and the invention of the electronic wind instrument controller, have helped 

the saxophone to maintain its place as one of the most popular instruments across musical genres. 

These advancements help it to remain at the forefront of bridging technology with acoustic musical 

instruments. 

Instrumentalists in general, but more specifically, saxophonists, face several limitations when it 

comes to using technology when playing, whether it is performing a concert, recording in a studio, 

or practicing at home. The saxophone, for example, cannot be muted in a considerable way without 

affecting the timbre quality or the overall experience of playing the instrument, unlike the electric 

guitar or the trumpet.1 A key challenge for saxophonists employing technology in a performance 

setting is the operation of additional devices, controllers, or interfaces while playing. They 

experience limited spare bandwidth since playing the saxophone requires using both hands, almost 

all fingers and the mouth. The solution for this is usually using foot-pedals or using the hands 

during musical pauses. 

From a personal perspective, playing the saxophone for over three decades, and being involved 

with performing improvised music for the past 20 years, I found myself in search of ways that will 

allow for harmonic control. The saxophone is a monophonic wind instrument capable of producing 

only one note at a time (disregarding advance Multiphonics techniques), and since note sustain 

and tone quality are determined by the length of the air stream and the physical combination of the 

instrument and player, this can be seen as limiting at times. I found that playing or controlling 

harmony by using additional devices can be quite tricky when considering both the limited 

physical bandwidth and the attention required. My motivation when approaching this thesis was 

 
1 Yamaha Silent Brass - https://no.yamaha.com/no/products/musical_instruments/winds/silent_brass/index.html 
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to develop a tool for woodwind players that will enable monophonic instruments to control or play 

harmony and, at the same time, that would ‘feel natural,’ be intuitive and promote creativity. 

In this paper, I will present an overview of past and recent state-of-the-art technologies and 

developments, designed explicitly for saxophonists who wish to extend their auditory outcome. 

After establishing the absence of a comprehensive music system meant for live performance, 

which allows for harmonic control by a melodic input, I will suggest and describe such a system 

design. Later, a primary portion of the system, an algorithm designed to match a musical scale to 

an improvised phrase, will be presented and evaluated. Also, a demo video is provided to show 

the complete system in action, including two sound generating modules.2 

1.1  Research question and objectives 

Motivated by the concept of controlling the harmonic output of an interactive music system with 

the melodic output of an improvised line, as well as identifying the lack of, and thus the need for  

a system that grants this type of interactivity, my research question becomes: Can a system and 

an algorithm be developed to successfully identify the scale of a musical phrase for collective 

music generation? By reflecting upon this question, my objectives were realized accordingly: 

1. Developing and evaluating an algorithm that will successfully identify the scale of an 

improvised musical phrase played by a monophonic wind instrument. 

2. Creating a database containing improvised phrases by several saxophone players in 

different keys and scales for evaluating the algorithm. 

3. Integrating the scale recognition algorithm in a real-time interactive music system available 

to users and developers as free and open-source software. 

4. Developing, exploring, and presenting a practical way to play and interact with the system. 

1.2  Thesis contribution and system overview 

The research and development presented in this thesis are directly related to several subjects that 

were taught and discussed during my studies at the Music, Communication, and Technology 

(MCT) master program at the University of Oslo (UiO) and the Norwegian University of Science 

and Technology (NTNU). Among those subjects are human-computer interaction, audio 

programming, and interactive music systems. With this thesis, my contribution to these fields 

primarily stands on the development of the Phrase to Scale Match (PSM) Algorithm. This 

algorithm analyzes a monophonic musical phrase of any length and outputs an estimated scale 

name that matches the input phrase from a dataset of 21 common scales. The algorithm calculates 

a matching scale based on several variables like the number of note repetitions, note duration, and 

other changeable weight-increasing factors for characteristic scale notes and note recurrences. 

Furthermore, a comprehensive system is presented for handling audio input, detecting pitch, 

 
2 Demo video of the system - https://youtu.be/u-ObVjojjyc 
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analyzing a musical phrase, and appropriating a retro game controller to be used as a control 

interface together with two sound generating modules. 

In the proposed system, the data flows through the following submodules: 

1. Analog to digital conversion of the microphone signal, which captures the musician’s 

improvised phrase 

2. Pitch tracking module 

3. Buffer capturing the performed notes, including controls allowing the musician to start 

and terminate the capturing process 

4. Scale recognition module, based on the method presented in this thesis 

5. Musical applications using the output of the recognition module (drone and arpeggiator in 

the current version) 

The proposed system and the scale recognition algorithm presented in this thesis offers a way to 

track the notes of a musical phrase, analyze it, calculate the tonality and scale, and output the 

result to several applications for music generation. The users can manipulate parameters of the 

system via a dedicated controller that is attached to the saxophone. The user interface (Figure 1) 

provides visual feedback of the audio input, detected notes, matched scale, bass note and pressed 

buttons of the controller. 

 

Figure 1: The user interface of the system 
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2. Background 

This chapter presents previous work and theoretical background related to the development of the 

system and algorithm presented in this thesis. Designing a music system that interacts with a 

musician via melody and harmony and developing an algorithm to identify the scale of a single 

melodic line without modulation requires reviewing research from a wide range of fields. Since 

the system is grounded in work from various fields, the chapter is organized as follows. The first 

section presents a brief description of electric wind controllers and saxophone augmentation 

projects. Followed by a section discussing pitch tracking in general and, more specifically, the yin 

algorithm and the yin object. The following section provides theoretical music concepts used in 

scale recognition, together with a review of techniques and applications that deal with tonal 

frameworks. I will later describe some MIR methods and algorithms related to the Phrase-Scale 

Match algorithm (PSM). The last section of the chapter is a summary where I will present my 

motivation as it is based on prior work in the field. I will finish by presenting the research question 

together with my contribution.  

2.1  Electric Wind Controller and Saxophone augmentation 

In the 1930s, American radio engineer and inventor Benjamin F. Miessner developed an 

electroacoustic clarinet that featured an electromagnetic pickup for the reed vibration. Registering 

his patent in 1936 marked the start of nearly a decade of innovation of enhancing wind instruments 

by electronic means. Since then, there have been numerous endeavors with various degrees of 

success, to augment acoustic wind instruments electronically or built electric wind instruments 

based on acoustic ones. Almost 40 years later, the Lyricon3 wind controller came to the market 

and was well-received by woodwind players. The Lyricon features a fingering system and 

mouthpiece setup based on the saxophone. It is highly expressive thanks to the ability to interpret 

reed articulation, breath-controlled dynamics, and embouchure-controlled pitch variation. The 

Lyricon has set the standard for hardware-based wind controllers, serving as the foundation for 

today’s modern MIDI wind controllers. Since the early 1980s, digital wind controllers have gained 

more traction and popularity. Controllers such as the WX series4 by Yamaha and EWI5 by Akai 

are capable of generating a standard MIDI data stream, allowing the control of any MIDI-

compatible synth with a high level of expressivity. 

In the early 1980s, the Synthophone was the first attempt to augment an actual saxophone body, 

converting it into a midi controller by using various sensors. As stated by Burtner (2002), the 

developers of the Synthophone wanted to preserve the tactile interface of the saxophone and were 

willing to sacrifice its actual acoustic sound. The Synthophone6 is considered to be the first MIDI 

saxophone controller. It does not produce any sound of its own, and the saxophone body function 

 
3 Lyricon Wikipedia page - https://en.wikipedia.org/wiki/Lyricon 
4 Yamaha WX5 - https://usa.yamaha.com/products/music_production/midi_controllers/wx5/index.html 
5 AKAI EWI series - https://www.akaipro.com/products/ewi-series 
6 Synthophone Zone - http://synthophone.info/indexh.htm 
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as a housing unit for the electronics. The MIDI data can be sent to synthesizers and various sound 

modules (Softwind Instruments, 1986; Andreas, 1988) 

The EMEO is being marketed as a digital practice horn for saxophone players. Just like the 

Synthophone, the EMEO7 is built up from an actual acoustic saxophone, but without the bell of 

the horn. The saxophone itself does not produce any sound but can connect via Bluetooth or USB 

cable to any DAW on smartphones, tablets, and computers to be used with VSTs for sound 

production. 

Since the 1990s, there have been several small-scale attempts of saxophone augmentation, using a 

variety of techniques meant to serve different artistic and esthetic goals. I will now present a short 

review of the main saxophone augmentation projects: 

Since 1997, Matthew Burtner (2002) has been developing the Metasaxophone8,  a “tenor 

saxophone fitted with an onboard computer microprocessor and an array of sensors that convert 

performance data into MIDI control messages.” His primary motivation was to “put signal 

processing under direct expressive control of the performer.” While maintaining the full acoustic 

functionality of the saxophone, the developer’s dedicated software can interpret the sensory data, 

and through MIDI protocol, can directly control digital signal processing. The sensors, located on 

the saxophone, are continuous voltage force sensing resistors (FSR), five triggers, and an 

accelerometer. The sensory data is mapped to control deferent parameters like reverb, delay, noise 

generators, and filter parameters of sound modules in Max/MSP. 

The Gluisax was developed by the Australian experimental electronic ‘Bent Leather Band’. It is a 

collection of three augmented and meta saxophone interface/instrument. Inspired by Matthew 

Burtner’s Metasaxophone, and by Schiesser and Traube’s saxophone project (Schiesser and 

Traube, 2006), the Gluisax developers were interested in creating playable instruments that are 

expressive, responsive, versatile and practicable. They mounted on the saxophone a joystick, dial 

knobs, force-sensitive resistors (FSR) and microphones connected to Sukandar Kartadinata’s 

Gluion interface to create ‘OSC saxophones’. The OSC data is streamed into Max/MSP for 

controlling pitch transposition, delay time, comb filters, rhythmic looping and re-sampling (Favila, 

2008). 

Developed at Dongguk University in Seoul, Korea, the Telesaxophone is created for saxophone 

players and multimedia performing artists. It is a hybrid saxophone interface consisting of an 

original saxophone neck and mouthpiece. The developers' goal was to create an interface that 

would be comfortable to control and play, just like a real acoustic saxophone. An additional goal 

was to be able to control various multimedia works by playing the Telesaxophone. It consists of 

14 button sensors, three dial sensors and sound sensors to detect the sound of the original 

mouthpiece and neck in real-time. An integrated Arduino board is used to obtain sensor data, 

 
7 The EMEO site - https://emeo.biz/ 
8 Metasaxophone Systems - https://ccrma.stanford.edu/~mburtner/metasax.html 
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fingering and controlling recognition. The data is transmitted to the Max/MSP programming 

environment for musical sound synthesis and processing, as well as controlling mapped parameters 

of media artworks (Hong and Kim, 2017). 

The Gest-O was developed in Columbia and presented at NIME 2012. It is an open-source tool for 

controlling the sound of the saxophone via the gestures of the performer. It is a hardware system 

containing an accelerometer and gyroscope sensors, connected via Bluetooth to a digital sound 

processing (DSP) system developed in Pure Data. Gestures are mapped to various effect 

parameters like Grane Sampling/Amplitude/Size, Ring Modulation, Reverb, Delay and 

Multiphonics. The developers investigated strategies to interpret and map gestures of a specific 

performer playing a specific piece. (Melo, Gómez and Vargas, 2012) 

Dr. Saxophone is a Hybrid Saxophone Interface developed in Korea and presented at the ICSAI 

in 2016. The interface consists of a mainboard placed inside the saxophone’s bell. It holds a tilt 

sensor and a pressure sensor (referred to as a sound sensor). Two switches and a dial have been 

installed instead of the last key of the saxophone (the last tone-hole, Bb). Having the mainboard 

inside the bell and modifying the Bb key compromises the acoustic sound of the saxophone. Data 

collected from the tilt sensor, pressure (sound) sensor, dial, and switches, is sent from an Arduino 

board via wireless technology (X-Bee pro), to sound effect parameters (reverb, delay, chorus) in 

Max/MSP (Hong, Kim and Han, 2016). 

HypeSax9 is a saxophone augmentation project in which a hybrid system enables an acoustic 

integration between the acoustic sound of the saxophone and electronics. Developed in New 

Zealand and presented at NIME 2019, the HypeSax system consists of several modular 

components attached to an alto saxophone. The system can work with some or all of its 

components. In addition to the touch, gyroscope and accelerometer sensors, pushbuttons, and a 

microphone, the developers introduce a new design of a saxophone’s mouthpiece that holds a 

barometric sensor measuring air pressure. Another interesting feature of the HypeSax is the Un-

mute unit, located inside the bell of the saxophone. The Un-mute is a self-contained audio system 

(soundcard and speaker) that allows the performer to add additional sound components into the 

final sound. The use of a speaker and the acoustic sound of the saxophone helps to achieve sound 

hybridization. It solves the common problem of sound source disembodiment, evident in many 

augmentation projects. The HypeSax connects via USB to a computer or a MIDI device. A server 

application was developed in Max/MSP to handle the sensory data and re-route it using either 

MIDI, OSC, Serial, or Max’s send/receive messages. The HypeSax is currently under 

development, and research regarding the use of audio components like feedback, additive 

synthesizer, and effects is still ongoing (Flores, Murphy and Norris, 2019). 

 

 
9 New Music Technology | HypeSax - https://www.hypesax.com/ 
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2.2  Pitch-tracking 

When designing an interactive music system that can analyze the melodic output of the saxophone 

in a live performance situation, the pitch-tracking component of the system must be reliable, robust 

and precise. The system presented in this thesis is heavily based on correctly detecting the notes 

of a live-played musical phrase rooted in a set key and scale. Avoiding initial pitch-tracking errors 

and being suitable for an interactive music application, the pitch-tracking algorithm should meet 

these four conditions: First, the algorithm must have the ability to function in real-time. Second, it 

should have as low as possible output delay (latency). Third, it should be accurate in a noisy 

environment. Forth, the algorithm should be sensitive to the musical requirements of the 

performance (De La Cuadra, Master and Sapp, 2001). 

2.2.1 Pitch detection algorithms 

Pitch Detection Algorithms (PDA) are designed to estimate the fundamental frequency (f0) of a 

quasiperiodic signal. PDAs are being applied in a range of fields dealing with speech (e.g., 

phonetics, speech coding, voice recognition, speech analysis-synthesis (vocoder) systems) and 

music (e.g., music information retrieval, musical performance systems, auto-tuning, beat 

detection, automatic score transcription). Several standard methods based on various mathematical 

principles are used to extract f0. Pitch is a perceptual quantity related to the fundamental frequency 

of a periodic or pseudo-periodic waveform; therefore, it should be sufficient to determine the 

period of such oscillation, the inverse of which is the frequency of oscillation. In a noisy 

environment or when more than one instrument is playing, and the waveform consists of more 

than a simple sinusoid, the appearance of pitch becomes less clear. This makes it more difficult to 

estimate the pitch correctly (Gerhard, 2003). 

 

The methods in which pitch detection algorithms operate can be divided into three groups (Cook, 

1992). The first group of pitch detection methods operates in the time-domain. “The theory behind 

these methods is that if a waveform is periodic, then there are extractable time-repeating events 

that can be counted, and the number of these events that happen in a second is inversely related to 

the frequency” (Gerhard, 2003). This group includes methods that use the detection and timing of 

some time-domain features and methods that use autocorrelations functions or different norms to 

detect similarities between the waveform and a time-lagged version of itself. In this method, the 

signal is usually preprocessed to accentuate some time-domain feature, then the time between 

occurrences of that feature is calculated as the period of the signal. A typical time-domain feature 

detector is implemented by low pass filtering the signal, then detecting peaks or zero crossings. 

The second group of pitch detection methods operates in the frequency-domain, where the signal 

is converted from its original domain of time and space to a representation in the frequency 

domain. The frequency-domain representation is inspected for the first harmonic, the greatest 

common divisor of all harmonics, or other such indicators of the period. To avoid spectral 

smearing, sometimes defined as spectral leakage, the process of windowing the signal is 

recommended. Windowing consists of multiplying the time-domain signal by a finite-length 



12 

 

window with an amplitude that varies smoothly and gradually toward zero at the edges. This 

smooths the endpoints of the waveform, resulting in a continuous waveform without sharp 

transitions. This technique is also referred to as applying a window (Lyons, 2004). To easily find 

frequency domain features, various linear preprocessing steps can be used, for example, 

performing a linear prediction on the signal and using the residual signal for pitch tracking. In 

addition, non-linear operations like peak limiting can also simplify the location of harmonics. The 

third group of pitch detection methods uses a combination of time and frequency-domain 

techniques to detect pitch (Cook, 1992). All three groups of pitch tracking methods follow these 

three steps: preprocessing (filtering, frames splitting), searching for a possible value for f0, and 

tracking - following the choice of the most probable f0 trajectory. Gerhard (2003) presents and 

survey standard pitch detection techniques and current state of the art pitch detection technology, 

and categorize them as such (Figure 2): 

 

 
Figure 2: Pitch-detection techniques categorization by Gerhard (2003) 

The pitch detection algorithm employed in my system is the YIN fundamental frequency estimator 

developed by Alain de Cheveigné and Hideki Kawahara. It is an off-the-shelf f0 estimator that is 

available as a Max/MSP object from the ‘Max Sound Box’10 for real-time interaction with Max 

modules. The YIN estimator is based on the well-known autocorrelation method with several 

additional modifications that combine to prevent errors. In the sections below, I will discuss the 

autocorrelation method, the YIN f0 estimator and the reasoning for the implementation of this 

specific method within my system. 

2.2.2 Autocorrelation method 

Autocorrelation is a method related to features detection in the time-domain. Measuring the 

correlation between two waveforms is a way to measure their similarity. “The waveforms are 

 
10 Max Sound Box | Ircam Forum - https://forum.ircam.fr/projects/detail/max-sound-box/ 

Time-domain methods 

•Time-event rate detection: 
Zero-Crossing rate (ZCR), 
Peak rate, Slope event rate

•Autocorrelation: YIN 
estimator

•Phase Space: Phase space and 
Frequency, Phase space of 
Pseudo-Periodic Signal

Frequency-domain 
methods

•Component Frequency ratios

•Filter-Based Methods: 
Optimum Comb Filter, 
Tunable IIR Filter

•Cepstrum Analysis

•Multi-Resolution Methods

Statistical Frequency 
domain methods

•Neural Networks

•Maximum Likelihood 
Estimators
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compared at different time intervals, and their “sameness” is calculated at each interval. The result 

of a correlation is a measure of similarity as a function of the time lag between the beginnings of 

the two waveforms. The autocorrelation function is the correlation of a waveform with itself” 

(Gerhard, 2003). When measuring the correlation of a waveform with itself, we expect exact 

similarity at a time lag of zero and an increased dissimilarity as the time lag increases. 

Mathematically, the autocorrelation corresponding to a delay time x is calculated by: 

1. finding the value of the signal at a time n 

2. finding the value of the signal at a time n + v 

3. multiplying those two values together 

4. repeating the process for all possible times, n, and then 

5. computing the average of all those products 

The process can be repeated for (all) other values of v, resulting in an autocorrelation, which is a 

function of the delay time v. The mathematical definition of the autocorrelation function for an 

infinite discrete function x[n] is shown in Equation 1 

 
𝑅𝑥(𝑣)  =  ∑ 𝑥[𝑛]𝑥[𝑛 + 𝑣]

∞

𝑛=−∞

 

 

(1) 

The mathematical definition of the autocorrelation function of a finite discrete function xꞌ [n] of 

size N is shown in Equation 2 

 

𝑅𝑥ꞌ(𝑣)  =  ∑ 𝑥ꞌ[𝑛]𝑥ꞌ[𝑛 + 𝑣]

𝑁−1−𝑣

𝑛=0

 

 

(2) 

The cross-correlation between two functions x[n] and y[n] is calculated using Equation 3 

 
𝑅𝑥𝑦(𝑣)  =  ∑ 𝑥[𝑛]𝑦[𝑛 + 𝑣]

∞

𝑛=−∞

 

 

(3) 

Applying autocorrelation on periodic waveforms results in a more accurate estimation of the 

pitch. However, problems with this method arise when the autocorrelation of a harmonically 

complex pseudo-periodic waveform is being measured. Another difficulty with autocorrelation 

techniques is that peaks occur at sub-harmonics as well, making it difficult to distinguish 

between fundamental frequency and harmonics or partials. The YIN estimator addresses these 

problems (Gerhard, 2003). 
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2.2.3 YIN – a fundamental frequency estimator 

The YIN f0 estimator is an algorithm developed by De Cheveigné and Kawahara (2002). The 

algorithm is named after the Taoist “yin-yang“ philosophical principle of balance, referring to the 

interplay between autocorrelation and cancellation it involves. In order to address the obstacles of 

using autocorrelation and reduce error rate, “YIN is based on the difference function (Equation 4) 

which, while similar to the autocorrelation, attempts to minimize the difference between the 

waveform and its delayed duplicate instead of maximizing the product (for autocorrelation)” 

(Gerhard, 2003). 

 

𝑑𝑡(𝜏)  =  ∑(𝑥𝑗 −

𝑊

𝑗=1

𝑥𝑗+𝜏)2 

(4) 

 

In order to reduce the occurrence of subharmonic errors, YIN employs a cumulative mean function 

(Equation 5) which de-emphasizes higher-period dips in the difference function: 

 

 

𝑑ꞌ𝑡(𝜏)  = {

1,                            𝜏 = 0    
𝑑𝑡(𝜏)

1
𝜏

∑ 𝑑𝑡(𝑗)𝜏
𝑗=1

   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

(5) 

The authors describe YIN’s method for f0 estimation in six steps that build upon one another. Here 

is an abridged version of these steps: 

Step 1: The autocorrelation method - finding the correlation of the signal with its delayed duplicate 

by a lag within a window with the autocorrelation function (ACF). Concluding that the ACF is 

quite sensitive to amplitude changes, which encourages the algorithm to choose a higher-order 

pick and make a too low of an error. The authors note that the “autocorrelation method makes too 

many errors” and offer further steps to reduce the error rate. 

Step 2: Difference function - modeling the signal in the form of a difference function by using 

amplitude as a bias translates into a significant decrease in error rate (from 10.0% for the unbiased 

autocorrelation function to 1.95% with the difference function). 

Step 3: Cumulative mean normalized difference function – replacing the difference function with 

a cumulative normalized difference, which de-emphasizes higher-period dips by avoid selecting 

values with zero lag. Lowering the sensitivity of the signal to amplitude modulations by 

introducing normalization makes the peaks more apparent than with the traditional autocorrelation 

method. 

Step 4: Absolute threshold - setting an absolute threshold to avoid the subharmonic error 

(sometimes referred to as the octave error). This step allows us to pick a number (threshold) that 

suits the approximate expected noise level. 
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Step 5: Parabolic interpolation – is independent from other steps, although it relies on the spectral 

properties of the ACF (step 1). Parabolic interpolation is applied to approximate the minimum of 

the sampling period. Each local minimum of dꞌ (𝜏) and its immediate neighbor is fit by a parabola, 

and the ordinate of the interpolated minimum is used in the dip-selection process. This results in a 

reduced fine error at all f0 and avoided gross error at high f0. 

Step 6: Best local estimate - is reminiscent of median smoothing or dynamic programming 

techniques but differs in that it considers a relatively short interval and bases its choice on quality 

rather than mere continuity. Applying the best local estimate function helps to avoid rapid 

fluctuation on the time scale of the fundamental period, ensuring stable f0 estimation. 

De Cheveigné and Kawahara (2002) summarize their method as such: 

The combination of steps 1-6 constitutes a new method (YIN)… It is worth noting how the 

steps build upon one another. Replacing the ACF (step 1) by the difference function (step 

2) paves the way for the cumulative mean normalization operation (step 3), upon which are 

based the threshold scheme (step 4) and the measure dꞌ (𝜏) that selects the best local 

estimate (step 6). Parabolic interpolation (step 5) is independent from other steps, although 

it relies on the spectral properties of the ACF (step 1). 

For a complete discussion of this method, including computational implementation and evaluation, 

please refer to the cited paper and the YIN algorithm documentation.11 

2.2.4 YIN evaluation in previous work 

After reviewing prior research evaluating the YIN method, it is evident that a large portion of the 

work has been done about voiced speech (De Cheveigné and Kawahara, 2002; Suk, Chung and 

Kojima, 2007; Zahorian and Hu, 2008; Ghahremani et al., 2014). Formal evaluation of the YIN 

method with music has been limited and mostly informal (Gerhard, 2003; von dem Knesebeck and 

Zölzer, 2010; Babacan et al., 2013; Robertson, 2014; Gao, 2015; Vasilik, Stillings and Cortazar, 

2015). However, by examining previous research, one can quickly determine that the Yin method 

is regarded as reliable and accurate for both speech and music, and the Yin algorithm is considered 

a top-tier algorithm for f0 estimation among peers. Gao (2015), as shown that the YIN algorithm 

can successfully retrieve all the notes in a musical phrase with note accuracy reaching 96.88%. 

Babacan et al. (2013) concluded that the YIN algorithm “achieved the best accuracy” among 

different pitch tracking techniques when compared against a database of singing sounds. De 

Cheveigné and Kawahara (2002) recognize that the “difficulties specific to music are the wide 

range and fast changes in f0,” to which  I would point out the challenge of a noisy signal in a real-

time performance setting. Although they state that “YIN has been only informally evaluated on 

music” and that other potential advantages of YIN like low latency “are yet to be tested”, they 

“expect that it is appropriate for the task (of detecting pitch in music). ” 

 
11 YIN algorithm documentation - http://mroy.chez-alice.fr/yin/index.html 

http://mroy.chez-alice.fr/yin/index.html
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2.2.5 Yin~ in Max 

Based on the work by De Cheveigné and Kawahara (2002), a Max abstraction object has been 

developed by Norbert Schnell at the Institute for Research and Coordination in Acoustics/Music 

(IRCAM12) as part of the Ircam Real-Time Musical Interaction (IMTR13) research and 

development team. Available for free use from the Max Sound Box Library14, the yin~ object is 

part of a Max collection of externals for real-time interaction, real-time analysis, synthesis and 

transformation of sound. By examining the help information of the yin~ object (Figure 3), one can 

identify the YIN algorithm parameters that can be fine-tuned. 

 

Figure 3: yin~ max help 

The yin~ object receives a signal input. It has four parameters (represented by numbers) that can 

be adjusted to balance between successful pitch prediction and computational power: 

downsampling, minimum frequency, output period, and threshold. Downsampling can be done by 

2(1), 4(2), 8(3) or none (0), and it is essential to keep in mind the tradeoff that “high downsampling 

lowers not only the computation cost but also the reliability of the estimation” as stated in the help 

 
12 Home | Ircam - https://www.ircam.fr/ 
13 IRCAM Real-Time Musical Interactions  - http://imtr.ircam.fr/imtr/IRCAM_Real-Time_Musical_Interactions 
14 Max Sound Box | Ircam Forum - https://forum.ircam.fr/projects/detail/max-sound-box/ 
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file by the developer. The Yin algorithm does not have an upper limit on the frequency search 

range, but a lower limit can be set (in Hz) to better pitch estimation and conserve computation 

power. Setting how often the yin~ object will be updating its output values can be adjusted with 

the output period (in milliseconds). The threshold parameter (set to 0.1 as default) relates to the 

absolute threshold (step 4) of the Yin algorithm, helping us to set the approximate noise level of 

the signal. 

There are three output values from the yin~ object: pitch, amplitude, and estimation quality factor. 

The pitch estimation is represented in Hz and will later be converted into a discrete symbolic form 

(MIDI). The signal amplitude, presented as a number between 0-1, will later assist in determining 

note repetition and other factors of the musical phrase (see Chapter 3). The estimation quality 

factor tells us how confident the yin~ is with its estimation of the pitch (0-not sure, 1-very sure). 

Setting a quality threshold will help us discriminate between noise and music. 

De La Cuadra et al. (2001) have stated that “No pitch algorithm can possibly cover all requirements 

and unanticipated conditions in interactive music performance,” however, by understanding how 

the YIN estimator operates, taking into consideration the musical and acoustical conditions it is 

applied in, and tuning its parameters accordingly, the result can be surprisingly sufficient. 

2.3  Scale recognition 

This sub-chapter provides background related to the technology to implement musical concepts 

with a music program. Identifying the key and scale of a monophonic musical phrase, composed 

or improvised, requires accommodating the practice of fundamental musicianship to a computer 

or a program. In the following, I present sections about music theory, tonality and several other 

musical concepts related to the Phrase-Scale Match (PSM) algorithm. Several existing methods 

for scale recognition are discussed as well. Formalizing musical concepts for a machine is a subject 

that involves research in the fields of music theory, music cognition, and artificial intelligence. 

The reviewed work and music theory sections described here are delimited by the framework of 

the offered algorithm and in no way forms a comprehensive overview of this broad field of 

machine musicianship. 

When discussing algorithmic analysis in his book ‘Machine musicianship’, Rowe (2004) manages 

to illustrate some of the main processes that can be applied to real-time analysis of musical input 

(Figure 4). Rowe talks about different levels of algorithmic processes, whereas pitch input and 

pitch tracking are first forwarded to lower-level processes like finding the root, key, or identifying 

chords. Higher-level processes like segmentation, style recognition, or pattern processing are 

based on the output of those lower-level analyses and come later in the process. The phrase to scale 

algorithm attends to low-level analyses of key and scale identification of a composed or 

improvised musical phrase played by a single melodic line. The PSM algorithm receives an array 

of any number of notes (MIDI integers), each with its specific duration and in the order they were 

just played. Within a few milliseconds, the algorithm is expected to complete the analysis of the 
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played phrase and to output its key and scale. Later, that information will be used for generating 

music together with an agent. 

 
Figure 4: main processes for real-time analysis 

2.3.1 General and related music theory concepts 

Sound is made of vibrations and our ears and brain interpret those vibrations. When the vibrations 

are faster, we hear them as being higher and when the vibrations are slower, we hear them as being 

lower. If the vibrations happen in a consistent rate, we perceive them as having a consistent pitch 

or frequency or a note. The vast majority of music from the 1600s onwards (i.e., European music, 

contemporary classical music, popular music, jazz) is made by using twelve notes, and by 

considering how those notes relate to each other. The meaning of tonality can be broad and has 

been identified and explained in many ways. Some refer to tonality as any systematic organization 

of pitch or the relation between the tones of a scale or a musical system; others, as any rational and 

self-contained arrangement of musical pitch. Too often, and incorrectly, the word tonality 

functions as a synonym for “key”. In the context of the PSM algorithm, finding the tonality of a 

melodic phrase means identifying the mode, a group of pitches, or scale, that forms the basis of 

the phrase. Diatonic or heptatonic scales in traditional western music consist of seven notes within 

one octave (Latin: octavus: eight). From each of the seven notes, a mode can be constructed. A 

mode is a system of notes, a scale, coupled with a set of characteristic melodic behavior. In use 
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since the middle ages and inspired by the theory of ancient Greek music, each mode consists of a 

unique interval sequence and has its own name. Modes that are constructed from the major and 

melodic minor scales and are separated by intervals of whole-tones (tones, W) and half-tones 

(semitones, H). Modes that are constructed from the harmonic minor scale include an interval of 

three semitones as well (Figure 5). Seven modes can be constructed out of each major (Figure 6), 

melodic and harmonic minor scales (21 modes all together).  

 

Figure 5: C major, melodic and harmonic minor scales 
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Figure 6: Modes constructed from C major, C melodic minor and C harmonic minor scales 

Since the PSM algorithm analyzes a musical phrase, it is important to expand on what a musical 

phrase means. For that matter, the term musical phrase, as referred to in this paper, is any length 

of a melodic line, played in-or-out of time, rooted within one tonality that completes a sense of its 

own. When improvising a phrase for the algorithm to analyze that is based in one tonality, three 

possible scenarios can accrue: (1) The phrase contains only seven unique notes that are required to 

form a scale (Figure 7). (2) The phrase contains more than seven notes (Figure 8). (3) The phrase 

contains fewer than the seven notes that are required to form a scale (Figure 9). 

 

 
Figure 7: D Dorian diatonic phrase 
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Figure 8: D Dorian phrase with additional note (A#) 

 

Figure 9: D Dorian phrase with a missing note (G) 

There are several qualities that make for a good melodic line. A sense of direction and a climax-

point are among the most important ones. Duration, dynamic level, and placement of notes within 

the melody will also affect the character of the outcome. When discussing the single melodic line, 

Kennan (1972) highlights the relative importance of notes. In a melodic line, 

certain notes are heard as being more important than others. This may occur when those 

notes are: (1) the highest or the lowest in a phrase or a longer segment; (2) the first and/or 

the last; (3) longer in value; (4) repeated, either immediately or later; (5) in a strong metric 

position; (6) accented dynamically; (7) harmonic as opposed to nonharmonic; (8) in a step-

progression. 

The PSM algorithm takes into account three of those points (2,3 and 4). In order for the PSM 

algorithm to work, the first note of the played phrase must be the tonic, the first degree of the scale. 

Secondly, the duration for each note in the phrase is collected, calculated and translated into a 

weight. Notes with a longer duration will be counted as more important than others. Thirdly, the 

number of occurrences for each note in the phrase is translated into a weight as well, where notes 

that have repeated more are counted as more important than notes that repeated less frequently or 

that were not present. 

While modes are characterized first and foremost by their 1st degree (the first note), they all have 

one and even sometimes two additional characteristic notes, which correspond to an interval that 

only they have.15 The natural modes of the major scale distinguish themselves due to their natural 

characteristic degrees (Appendix A). Altered modes from the melodic and harmonic minor scales 

distinguish themselves by their altered characteristic degrees (Appendix A). The PSM algorithm 

is provided with the natural (in major) and altered (in minor) characteristic degrees for each of the 

21 modes (referred to as indicator notes, Table 1). An adjustable weight can be defined to decide 

the impact of the indicator notes when calculating a scale rank. 

 
15 Characteristic notes in the modal system - Audiofanzine - https://en.audiofanzine.com/music-

theory/editorial/articles/characteristic-notes-in-the-modal-system.html 



22 

 

 

Table 1: Modes of the major, melodic and harmonic minor scales, including interval, pitch-class and indicator notes 

To summarize, several music theory concepts are being implemented within the PSM algorithm. 

Some require no real calculation, and some are calculated as weights to impact the output: 

1. The first note of the phrase is the tonic – a set condition, no calculation is being done 

2. Notes that repeat more in the phrase are viewed as more important 

3. Notes that are played longer are viewed as more important 

4. Characteristic notes are considered more important. 

2.3.2 Model analysis object 

The ‘Modal Object Library’ developed by Manzo (2007) is an open-source collection of 

algorithms16 meant to define and control modality in the Max/MSP/Jitter programming 

environment. The library was created to aid the author with his “own compositional interests 

including algorithmic composition and interactive music systems.” Available in that library is the 

‘Modal Analysis Object’ (Figure 10). It takes incoming notes (melody or phrase) and determines 

the mode and tonic of the melody by attempting to filter out repetitions and organize the notes. 

The object provides good analysis when the melody is exclusively constructed by the notes of the 

mode, however, it lacks any consideration for notes that are outside of the mode (chromaticism). 

Also, the modal analysis object filters out note repetition and does not care for notes' duration. In 

contrast, the PSM algorithm utilizes note repetition and notes duration to help determine the mode 

of a phrase. Manzo (2007) attests that the “Modal Analysis (object) has some shortcomings” 

because it considers the lowest pitch of the played phrase as the scale tonic (first degree). The 

PSM, in a way, solves this problem by setting the condition that the first note of the played phrase 

is the tonic of the scale. After playing the first note and by that, setting the tonic, the player may 

play in any range without affecting the set tonic. 

 
16 EAMIR - http://www.eamir.org/ 

Major Scales 1st Degree 2nd Degree 3rd Degree 4th Degree 5th Degree 6th Degree 7th Degree

Mode Name Ionian Dorian Phrygian Lydian Mixolydian Aeolian Locrian

Intervals 2212221 2122212 1222122 2221221 2212212 2122122 1221222

Pitch Classes 02457911 02357910 01357810 02467911 02457910 02357810 01356810

Indicator Notes 4 5 11 3 9 10 1 3 (8 10) 4 6 4 9 10 3 8 1 3 6

Minor Melodic 

Mode Name Melodic Minor Dorian b2 Lydian Aug Mixolydian #11 Mixolydian b6 Locrian Nat 9 Altered Dominant

Intervals 2122221 1222212 2222121 2221212 2212122 2121222 1212222

Pitch Classes 02357911 01357910 02468911 02467910 02457810 02356810 01346810

Indicator Notes 3 1 3 10 4 6 8 4 6 10 4 8 10 2 3 6 8 10 1 3 4 (6 8 10)

Minor Harmonic

Mode Name Harmonic Minor Locrian Nat 6 Ionian Aug Dorian #11 Phrygian Major Lydian #9 Altered Dominant bb7

Intervals 2122131 1221312 2213121 2131212 1312122 3121221 1212213

Pitch Classes 02357811 01356910 02458911 02367910 01457810 03467911 0134689

Indicator Notes 3 8 11 1 3 9 4 8 3 6 10 1 4 8 10 3 4 6 1 3 4 8 9
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Figure 10: Modal Analysis object by V.J. Manzo 

2.3.3 Music Information Retrieval (MIR) 

MIR, the interdisciplinary science of retrieving information from music, carries much of the 

research in the field of music analysis. Many MIR tasks and methods are being used by businesses 

and academics to categorize, manipulate, and create music. Music identification, plagiarism 

detection, and copyright monitoring are just some of the tasks being used by businesses regularly 

(Casey et al., 2008). The MIR field uses both symbolic and audio data sources to perform analysis 

by using approaches like metadata, and extraction of high-level and low-level audio features. Low-

level audio features are measurements of audio signals that contain information about a musical 

work and music performance. Low-level audio features are segmented in three different ways: 

frame-based segmentations, beat-synchronous segmentations, and statistical measures that 

construct probability distributions out of features. Numerous low-level audio features are based on 

the short-time spectrum of the audio signal. Among the many methods used are: short-time 

magnitude spectrum, Constant-Q/Mel spectrum, onset detection, and  Mel/Log-Frequency cepstral 

coefficients (Casey et al., 2008). Another method for low-level feature extraction that can help 

with identifying the key and mode (high-level features) of a given melody is the pitch-class profile 

or PCP (Chromagram). In this method, the octave is divided into 12 equally spaced pitch classes 

(the 12 notes of Western tonal music). This feature integrates the energy in all octaves of one pitch 

class into a single band. The result can be converted into a pitch-histogram and later analyzed and 

compared against a scale database to identify the key and mode (high-level music content 
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description) (Casey et al., 2008). The PSM algorithm works in the same way, in that it folds all 

the notes of a phrase into 12 pitch-classes and performs a comparison with a pre-defined scale 

database, while also taking into consideration the duration and number of occurrences of each 

pitch-class. Several chords and key recognition systems in MIR use the Hidden Markov model 

(HMM) to unify recognition and smoothing into a single probabilistic framework, other systems 

utilize estimation of melody and bass lines to identify tonality and harmony. These methods are 

mostly meant for research and are not designed to perform analysis and retrieve information for 

real-time interactive music systems. 

2.3.4 Other algorithms for scale recognition 

The first algorithm for detecting tonality was developed by Longuet-Higgins and Steedman (1987). 

The algorithm compares the tones of the musical input with the tonal region of each of the major 

and minor keys. Based on that idea, the Krumhansl-Schmuckler’s algorithm was developed 

(Temperley, 1999). The algorithm correlates the distribution of pitch-class weighted according to 

the duration with the 24 profiles of the major and minor scales. Coming to solve the limitation of 

only detecting major and minor scales, Zhao (2016) has proposed “an algorithm to identify the 

musical scale of a monophonic melodic without modulation, which is composed of any intervallic 

structure and not necessarily the structure of the most popular scales.” Without the need of prior 

knowledge of the profile scale, the algorithm can identify any scale of the 12-tone system with 

structure intervals of 1, 2 and 3 semitones. This is done by proposing a scale encoding system 

where “each scale is identified in a unique way with a numeric vector,” returning a scale code and 

not a scale name. Zhao’s method consists of four steps: pitch selection in symbolic data, 

representation and encoding of musical scales, a deterministic walk through the intervallic 

structure digraph and a scale code calculation of the last node visited. “The scale detector performs 

a deterministic walk through the nodes of a predefined graph (Figure 11). In this graph, each node 

is an interval structure and the edges represent the possible transformations that may have an 

intervallic structure when its intervals are fractionated. The walk between nodes is determined by 

a validation rule, which determines whether adding a new interval corresponds to a correct 

structure.” 
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Figure 11: Zhao's graph of valid structures 

This method showed high accuracy results when checked against a database of Finnish melodies 

composed of a full scale, and was able to detect both known and unknown scales. For melodies 

with an incomplete scale structure, Zhao reports that “the algorithm made a good estimate of the 

scale by measuring the percentage of harmonic similarity.” Regarding an additional database 

built of random melodies composed of both known and unknown scales, the author attests that 

although the method showed high accuracy, “the main difficulty is to identify the mode and 

tonic, due to the fact that [the] melodies do not follow a method of modal or tonal composition.” 

Zhao concludes that in order to correctly identify a musical scale, it is also necessary to consider 

the type of composition in the original melody. 

2.4  Summary, motivation and research question 

In jazz as well as other forms of improvised music, the collective's familiarity with musical 

concepts like rhythm, harmony, or groove provides the basis for the communication between the 

musicians while playing together. The exchange of information and ideas is happening at a very 

fast pace, and the quality of the performance is directly affected by the knowledge and skills of the 

individual musicians. Approaching this project, I was interested in conveying harmonic ideas by 

playing saxophone to a computer just like I would if a piano player was playing by my side. The 

first piece of information I wanted the computer to get from me was the tonality I was playing in. 

From the viewpoint of a saxophone player, being able only to produce one note at a time without 

harmonic context, my wish was to control harmony by the melodic output of the saxophone. I have 

searched for commercial and non-commercial applications that allow for this kind of exchange to 

happen in real-time for generating an expressive performance. After reviewing the field, I have 

decided to develop a system that will facilitate doing just that. Following advances by Robert Rowe 
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(2004), I was interested in designing an interactive system that would have “musical skills,” and 

that would be capable of analyzing and recognizing musical concepts, with the focus on harmony. 

The large number of electronic wind instruments, hybrid saxophones, and various augmentation 

projects intended to expand the output of the instrument revealed a fair amount of interest in the 

subject. Several of the above-discussed saxophone augmentation projects, like the HypeSax and 

the EMEO, present some new and exciting concepts in terms of instrument expansion (sound 

hybridization, connectivity); yet, almost all presented projects had to compromise and sacrifice 

something (i.e., the tactile interface of the saxophone, or acoustical sound). The majority of the 

projects utilize mapped sensory data to directly control digital signal processing, effects 

parameters, multimedia works, looping, or re-sampling. I have found little evidence or interest in 

affording the saxophone player with controlling harmony. 

Allowing the computer to extract any information from playing the saxophone required developing 

an application for real-time pitch-tracking. The yin~ object, which is a representation of the YIN 

algorithm, has been chosen for the task. Available for free as an abstraction object for the 

Max/MSP environment, and designed for real-time interaction by one of the world’s leading 

institutes for research in acoustics and music (IRCAM), going with the yin~ seem to be an 

appropriate choice. 

Once the computer can track the pitch, a program needed to be developed to collect, preprocess, 

and analyze this information. The programing environments of choice are Max17 by Cycling ’74 

and JavaScript. The Model Object Library by V. J. Manzo (2007), together with his practical guide 

to developing interactive music systems in Max (Manzo, 2016), served as a technical textbook as 

well as general inspiration. Theoretical musical concepts are easy to implement within the Max 

environment and will later be discussed. An algorithm for scale recognition had to be developed 

for the computer to analyze the notes of a phrase and determine the scale. Later in the chapter, I 

discussed several existing scale recognition-methods and algorithms that are applied in MIR 

research. 

In conclusion, a complete system composed of a pitch detection module, and an algorithm for scale 

recognition needed to be developed for real-time interaction between a computer and a saxophone 

player improvising a musical phrase. This kind of system would enhance the saxophone by 

allowing for harmony manipulation via indirect acquisition, a term borrowed from gestural 

instruments data acquisition, meaning, extracting information from the acoustic signal for 

interactive electroacoustic music performance (Traube, Depalle and Wanderley, 2003). 

The lack of a comprehensive music system designed for live performance has led me to this 

research question: Can a system and an algorithm be developed to successfully identify the scale 

 
17 Cycling '74 - https://cycling74.com/ 
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of a musical phrase for collective music generation? Furthermore, aim to explore and present 

practical ways in which the system can be used to promote creativity. 

  



28 

 

3. System Description 

This chapter presents an interactive music system allowing a saxophone player to improvise a 

phrase, track and analyze the notes, identify the scale, using the outcomes in applications for music 

generation and interaction. The system was developed in Max/MSP/Jitter environment (commonly 

referred to as Max), a visual programming language for music and multimedia by software 

company Cycling ’74. Max was chosen due to its flexibility for creating interactive music systems, 

the capability to generate audio and the ability to integrate other programming languages within 

its environment. The PSM algorithm part of the system is written in the JavaScript programming 

language since the procedural operations required to identify the scale are too difficult to 

implement using Max objects by themselves. Figure 12 shows the different parts and processes 

that make up the system. 

 

Figure 12: Diagram of the system 

3.1  Audio Input 

The Audio I/O Module consists of five user interface objects. (1) Audio output On/Off button. (2) 

Audio Input Menu where Live Mode is for performing live with the system while Sample Mode is 

designed to automatically play through pre-recorded samples for evaluating the PSM algorithm. 

(3) Level indicator to visually monitor the signal level. (4) Monitor On/Off  button to be able to 

mute the system. (5) Gain dial for adjusting the input level. 

For evaluating the system in Sample Mode, a database of audio recordings has been collected from 

five saxophonists (see chapter 4). The audio clips in the database were recorded by the players 

themselves with dynamic or condenser microphones or with a Zoom Handy recorder, in a quiet 

environment to increase accuracy when evaluating the PSM algorithm. Since using the system in 

a live mode means that the environment will be noisy, two types of microphones were used with 

the system. A condenser microphone with low gain was used for pitch tracking, and a dynamic 

microphone was used for recording the acoustic sound of the saxophone. 
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3.2  Pitch Detection 

The audio signal is being sent to the Pitch Detection Module for pitch tracking and note detection. 

The player can decide when the system will start and stop capturing the notes for processing by 

pressing the Capture On/Off  button. Only notes that are being played when the capture button is 

ON will be collected and sent to the algorithm for analysis. 

3.2.1 Tuning the yin~ object 

The yin~ Max object (as discussed in subsection 2.2.5) has several parameters that can be fine-

tuned to achieve a better estimation of the pitch. When using the system in Sample Mode for 

evaluating the algorithm, no computational power needs to be reserved since the system is only 

employed to estimate the pitch and analyze the phrase; therefore, downsampling has been turned 

off (0). The lower limit of the yin estimator frequency search range is set by using a conversion 

from MIDI to frequency. We set the minimum frequency by choosing the lowest note available on 

each saxophone in MIDI notes (Table 2). 

Instrument MIDI Note 

Number 

Note 

Name 

Frequency (Equal tuning at 440 Hz) 

Soprano Saxophone 56 G#2 207.65 

Alto Saxophone 49 C#2 138.59 

Tenor Saxophone 44 G#1 103.83 

Baritone Saxophone (Low Bb) 37 C#1 69.30 
 

Table 2: Saxophone's lowest note 

The output period, which sets how often the yin~ object will be updating its output values, has 

been set to 1 millisecond. The three values coming out of the yin~ object (estimated pitch in Hz, 

signal amplitude, estimation quality factor) are then being sent to another abstraction object called 

OMax.Yin+core. 

3.2.2 OMax and the OMax.Yin+core object tuning 

OMax18 (together with MoMax and WoMax19) is a computer-based improviser that analyses and 

recombines an instrumental sequence to play in real-time as a new musical partner. Designed by 

the Musical Representation team20 at IRCAM, OMax combines two computer music environments 

(Max/MSP and OpenMusic21) to learn style features and co-improvise with a musician. The OMax 

virtual improviser Max agent is offered as a free library for research and creation.22 The 

OMax.Yin+core abstraction (available from the OMax library) includes the bc.yinstats23 external 

 
18 OMax | Ircam Forum - https://forum.ircam.fr/projects/detail/omax/ 
19 WoMax Project Homepage - http://recherche.ircam.fr/equipes/repmus/WoMax/ 
20 Music Representations Team - http://repmus.ircam.fr/ 
21 OpenMusic -Music Representations Team - http://repmus.ircam.fr/openmusic/home 
22 This website | Ircam Forumhttps://forum.ircam.fr/article/detail/new-website/ 
23 WoMax yinstats - http://recherche.ircam.fr/equipes/repmus/WoMax/doc/html/structt__bc__yinstats.html#_details 
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that implements a statistical analysis of the raw output of pitch from the yin~ object by examining 

all the different pitches over a time window and outputs the more probable pitch. 

The OMax.Yin+core abstraction lets us adjust three crucial parameters for successful note 

detection. NoiseThresh defines a quality factor under which the input signal is rejected from the 

pitch detection, similar to a noise threshold. Window (ms) defines a time window after which an 

onset is validated if the estimated pitch remains stable during that time. Consistency directly relates 

to the estimation quality factor coming from the yin~, meaning, pitches with estimated quality 

under the value given will be ignored (Lévy, 2004). 

When evaluating the algorithm in Sample Mode against the database, the parameters were set as 

such: NoiseThresh (NT=0.7) Window (W=50) Consistency (C=0.8). This setup proved to be 

accurate and consistent enough that no additional tuning was required. The failed predictions by 

the PSM algorithm depended mostly on the musician’s level of playing and the modes being 

played, inaccurate indicator notes, weights adjustments within the algorithm or because of phrases 

containing less than seven unique notes. Additional work regarding the eventual setup for live 

performance and evaluation, see section 5.1. 

Two outputs from the OMax.Yin+core object are used: from the left-most outlet is an Activity 

button for indicating when played notes are being tracked (button turns yellow), and from the right-

most outlet are messages of pitch and velocity. The pitch/velocity messages are sent to a UI object 

to display the notes on a staff line together with their respected velocity presented on a slide. 

Having a notation representation of the notes being played can help the musician with identifying 

any false notes detected by the system. 

3.2.3 Calculating Note Duration and Array Output 

In the calculateDuration subpatch, the pitch/velocity messages are used to trigger a duration 

calculator. A high-resolution timer based on the CPU of the computer (cpuclock object) outputs 

the duration of each played pitch as floating-point numbers in milliseconds. The timer is only 

triggered by the initial velocity attack of each note, and it stops once a new or 0 velocities are 

received. 

Each detected pitch (as midi integers) is added into a coll file together with its corresponding 

duration. Pressing the Capture Off button will send the list (stored in the coll file) into the 

JavaScript object in the form of an array where each data point alternates between the note played 

and its duration. 

3.3  The Phrase to Scale Match (PSM) algorithm 

The proposed algorithm takes an improvised monophonic musical phrase and matches it to a 

musical scale from a scale-dataset of 21 scales. For the algorithm to successfully identify the scale 

to which the improvised phrase belongs, two conditions must be met. First, the first note of the 
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musical phrase must begin with the bass note (1st degree) of the scale. Second, the improvised 

phrase must be based on one scale only. 

 

Figure 13: The three parts of the PSM algorithm 

The PSM algorithm is comprised of 3 parts, as illustrated in Figure 13: 

1. Aligning the input notes, so that they are all in the same octave, and are relative to the 

first degree. 

2. Generating a histogram of the aligned notes played in the phrase, where each note is 

assigned a weight indicating its importance and impact. 

3. Comparing the histogram against a scale-dataset, calculating a rank for each scale, and 

selecting the one presenting the highest-ranked score. 

3.3.1 Preprocessing 

The input of the preprocessing block consist of the notes played in the phrase (as midi-integers) 

and their respected duration (Table 3). 

Playing 

order of 

notes 

Midi 

notes 

Duration 

1 62 600.30 

2 66 96.055 

3 68 48.92 

4 76 54.57 

5 59 135.45 

Table 3: Example of the input of the preprocessing block 

The data is received as an array, with each data point alternating between the note played and its 

duration. Example of an array (based on Table 3): [62, 600.30, 66, 96.055, 68, 48.92, 76, 54.57, 

59, 135.45]. For each phrase-note in the input phrase p, we calculate the corresponding pitch-class 

note npc, relative to the base note nb. Pitch-class, pc, is the numerical equivalent of a pitch 

regardless of the octave (Figure 14). By using modular arithmetic (Modulo 12), each midi note 
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integer is divided by 12. The remainder of this division is pitch-class (equation 6). For example, 

all C’s, regardless of octave designation, are equal to 0; all C#’s are equal to 1; all D’s equal 2, and 

so on. Pitch classes are numbered 0–11. The number 12 is a C, so it is regarded as pitch class 0 

(Manzo, 2016). 

 𝑋 𝑚𝑜𝑑 12 = 𝑝𝑐 (6) 
 

Equation 1: Modulo 12 equation 

 

Figure 14: Pitch-Classes presented in a circle 24 

Each of the n notes in the phrase p is denominated with a 0-based index, i. This means the first 

note in the phrase is always p0, the second p1, the third p2, through pn-1. In this preprocessing phase, 

we run through the phrase notes – skipping the first, bass note – and generate a new set, s, which 

holds the corresponding pitch-class value sk for each pi, where k=i-1. 

In some cases, the bass note nb is not necessarily the lowest note in the input, and pi - nb might 

result in a negative value. Running each pi through the “positive modulo” calculation, as seen 

below, guarantees that the result of each npc is in the range [0, 11]. Since the 1st degree (p0), 

sometimes referred to as bass note nb, is a member in each scale by definition, it is removed from 

any processing and calculations. The aligning algorithm described in pseudocode is presented in 

Figure 15: 

nb = p0   (bass note is indexed as the first note of the phrase) 

s = ∅   (represents an empty set) 

for i = 1 to n-1 do 

npc = (((pi - nb) % 12) + 12) % 12 

si-1 = npc 

 
24 Image taken from https://fundamentalsofmusictheory.umasscreate.net/unit-8/ 
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Figure 14: Positive modulo preprocessing block in pseudocode 

Table 4 displays an example run through the positive modulo for a given input set, p, resulting in 

the output set, s: 

p 67 62 57 62 58 70 64 

i - index 0 1 2 3 4 5 6 

s skipping 

i=0 

7 2 7 3 3 9 

k = i-1  0 1 2 3 4 5 
 

Table 4: Example of an input set and the result after running the positive modulo algorithm 

3.3.2 Calculating histograms 

The next step is to assign each unique pitch-class note npc with a value indicating its weight in the 

system – the higher the weight, the more impact that note will have on the ranking of scales that 

include that note. We first create two separate histograms: 

1. htd - a histogram accounting for the total duration ntd of the pitch-class note npc. 

2. hnr - a histogram accounting for the number of repetitions nr of the pitch-class note npc. 

We assign a linear impact for the total duration, ntd - meaning, a note that was played twice as long 

as a different note has double the impact on the weight given to it. As for the number of note 

repetitions, nr, we assign an exponentially increasing weight to notes that were played multiple 

times in the input phrase. Setting an exponential increase helps diminish the impact for seldomly 

played notes, while promoting the system to give a more prominent note weight, nw, to notes that 

were played multiple times. For example, setting a repetition factor fr to 1.2 will provide a 

sufficient increase in weight, without skewing the results too quickly, as can be seen in Table 5: 

Number of 

repetitions 

Weight 

impact 

𝑓𝑟
𝑛𝑟  

1 1.200 

2 1.440 

3 1.728 

4 2.073 

5 2.488 
 

Table 5: Weight impact by the number of repetitions 

For associating a single note weight nw to each pitch-class note npc, the two histograms are merged 

by using the equation (7) below. The weighted value assigned to each note, nw, equals that note’s 
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total duration ntd, multiplied by the repetition factor, fr, by the power of that note’s number of 

repetitions, nr, in the input phrase. 

 𝑛𝑤  =  𝑛𝑡𝑑  ∗  𝑓𝑟
𝑛𝑟 

 

(7) 

The rationale behind combining the ntd and nr into a single note weight nw is that in a melodic 

phrase, notes that repeat more often and are played longer, are usually considered more 

important than others (as discussed in subchapter 2.3.1 - General and related music theory 

concepts). Having a single weight combining those two factors helps simplify the process of 

determining the relative importance of notes. The result is a weighted histogram hw of pitch-class 

notes npc and their corresponding note weights nw. 

3.3.3 Ranking scales against the calculated weights 

For identifying the scale of the played phrase, two types of inputs are used in this block: (1) a 

weighted histogram hw for each npc (already calculated in the previous block); and (2) a scales 

dataset s consisting of 21 scales and their indicator notes (Table 6). The decision to only use these 

21 scales is based on the fact that they are the most common ones used in the majority of tonal 

music since the 1600s. Also, these 21 scales (7 modes of Major, Melodic Minor, and Harmonic 

Minor) are widely used when improvising within the Jazz genre. Each scale is represented by its 

name and consists of scale notes sn and scale indicator notes sin. The scale notes sn are six unique 

values between 1-11, which, together with the first-degree note (always a 0), complete the seven 

unique notes that form that specific scale. The scale indicator notes sin (a subset of sn) are 

characteristic notes that are unique to each scale (previously discussed in subsection 2.3.1 – 

General and related music theory concepts). When they appear in a phrase, indicator notes 

essentially function as small hints, helping us identify one scale over another. To give a bigger 

impact to indicator notes sin when calculating a scale rank, we introduce another factor - a linear, 

weight-increase factor of indicator notes fi. This factor gives a higher weight for scale indicator 

notes when observed in a given phrase. Attributing higher weights to notes that are indicator notes 

sin and to notes that repeat more often means essentially making them more important when 

calculating a scale rank. The example in Figure 16 illustrates the main idea behind the weight 

concept. The musical phrase consists of notes based in one of these two scales (Ionian or Lydian), 

but pitch-class note 6, which is also an indicator note of the Lydian scale, appears three times while 

pitch-class note 5 appears only one time. Therefore, the Lydian scale will score a higher rank than 

the Ionian scale. 
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Figure 16: Appling weight-increase to repeated and indicator notes 

 

 Scale Name Scale Notes Indicator Notes 

M
aj

o
r 

M
o
d
es

 

Ionian 2,4,5,7,9,11 4,5,11 

Dorian 2,3,5,7,9,10 3,9,10 

Phrygian 1,3,5,7,8,10 1,3,10 

Lydian 2,4,6,7,9,11 4,6,11 

Mixolydian 2,4,5,7,9,10 4,5,10 

Aeolian 2,3,5,7,8,10 3,8,10 

Locrian 1,3,5,6,8,10 1,3,6,8 

M
el

o
d

ic
 M

in
o
r 

M
o

d
es

 

Melodic Minor 2,3,5,7,9,11 3,11 

Dorian b2 1,3,5,7,9,10 1,3,9 

Lydian Aug 2,4,6,8,9,11 4,6,8 

Mixolydian #11 2,4,6,7,9,10 4,6,10 

Mixolydian b6 2,4,5,7,8,10 4,8,10 

Locrian Natural 9 2,3,5,6,8,10 2,3,6,8 

Altered Dominant 1,3,4,6,8,10 1,3,4 

H
ar

m
o
n

ic
 M

in
o

r 

M
o

d
es

 

Harmonic Minor 2,3,5,7,8,11 3,8,11 

Locrian Natural 6 1,3,5,6,9,10 1,3,9 

Ionian Aug 2,4,5,8,9,11 4,8 

Dorian #11 2,3,6,7,9,10 3,6,10 

Phrygian Major 1,4,5,7,8,10 1,4,10 

Lydian #9 3,4,6,7,9,11 3,4,6 

Altered Dominant bb7 1,3,4,6,8,9 1,3,4,8,9 
 

Table 6: Scales dataset 
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We first calculate each scale’s rank, sr, and then sort the scales based on their calculated rank. The 

higher the rank, the more likely it is that that scale is the one played in the input phrase. After 

outputting the scale name representing the highest score from the JavaScript Max object, music 

generating applications, and interactive systems can utilize this information for music-making. The 

pseudo-algorithm for this portion can be described as such (Figure 17): 

for i = 1 to size(s) (for each scale in the scales-dataset) 

r = 0 (holds the rank for the current scale, Si) 

for k = 1 to size(si) (run through the scale’s notes) 

n = sik (holds a note in the current scale) 

if n∈hrn:  (if that scale’s note appeared in the input phrase, then:) 

nw = hw,n (use the note’s calculated weight) 

if n∈sin (additionally, if the note is an indicator note) 

nw = nw * fi (increase weight by indicator factor) 

end if; 

r = r + nw (aggregate note weights as the scale’s rank) 

end if; 

Ri = r (save the rank for scale Si in the ranks set R) 
end loop; 

R = sort(R)   (sort the scales by their calculated ranks) 

return r0                (return the top-ranked scale) 

 

Figure 15: Calculating a scale rank 

In some instances, when evaluating the database, the algorithm would mark more than one scale 

with the same rank. This can happen when the phrase contains fewer than the seven notes that are 

required to form a full scale (see Figure 6). The solution I offer is to output the most top scale 

name as they appear in Table 7. To give an example, a phrase that contains the notes 2,4,7,9,10 

can be identified as both Mixolydian, the fifth mode of Major, or Mixolydian #11, the fourth mode 

of Melodic Minor. The solution offered is based on the idea that the first seven scales in the list 

are the modes of the Major scale and are the most used in popular and improvised music. Coming 

later in the list are the seven modes of the Melodic Minor scale, and last are the seven modes of 

Harmonic Minor modes. The solution is not optimal, and it can be addressed in future work. 

However, this offers a good compromise by allowing the system to choose a more accessible and 

more popular scale over difficult and less popular one, or even to not decide at all. 

Input Phrase 2,4,7,9,10  

Mixolydian 2,4,5,7,9,10 4,5,10 

Mixolydian #11 2,4,6,7,9,10 4,6,10 
 

Table 7: Example of a rank tie between two scales 
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3.4  Game controller adaptation 

A retro-like Super Nintendo Entertainment System (SNES) controller is used as the user-interface 

of the system, similar to the one in Figure 18 25. The Max hi object allows for obtaining data from 

human interface devices. The Nintendo USB gamepad features 12 momentary push buttons, and 

was chosen because its shape fits well on top of the low B and Bb key-guard of the saxophone, as 

visible in Figure 19, and also because it allows for easy access with the right-hand which is 

employed less than the left-hand when playing the sax. The adoption of the SNES controller is 

inspired by one of the principles of Cook (2009) on redesigning computer music controllers: 

”funny is often much better than serious.” A Nintendo controller illustration has been added to the 

GUI of the system together with an overlaying buttons layer to provide visual feedback when 

pressing the buttons. 

 

Figure 16: SNES Controller 

 

Figure 19: The Nintendo controller attached to an alto saxophone 

Since the majority of this project focuses on the pitch-detection and the PSM algorithm parts, only 

two fairly simple sound generating modules have been developed so far to demonstrate the 

 
25 Controller configs - https://www.raspberrypixtreme.com/page/controllerconfigs 
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system’s potential. For this reason, not all of the controller’s buttons are employed, and no 

meaningful mapping strategy has been formed. 

3.5  Music Generation Modules 

The JavaScript object outputs a scale name based on the analysis done by the PSM algorithm. This 

information can now be used in various ways for interactive music generation. At the moment, 

two music generating modules have been developed to give an example to the kind of opportunities 

the system offers. 

3.5.1 Drone Module 

In this module, the 1st, 3rd, 5th and 7th degrees of the output scale are extracted to form what is 

known as a “seventh chord”. The notes of the chord are converted from pitch-class notes to midi 

integers based on the key of the phrase, and then frequencies. The four frequencies, representing 

the four notes, are played by four sinusoidal oscillators with randomized amplitude in different 

time points and lengths. This creates a drone effect where the chord is continuously playing while 

offering a changing harmonic texture. A Rotary knob allows for controlling the gain output of the 

Drone module. The player can continue improvising on the scale until deciding to feed the 

algorithm with a new harmonic environment by pressing the Capture On/Off  button again.  

3.5.2 Arpeggiator Module 

The Arpeggio module is like the Drone module, but this case, all seven degrees of the output scale 

are converted to frequencies and are randomly played over three octaves with bell sounds. The 

notes are panned back and forth to play between the left and right channels (ping-pong effect); two 

rotary knobs allow for controlling the speed of the arpeggiator and the volume. The speed knobs 

of the arpeggiator and the option to set the step size of the speed buttons (by increments of 10, 

ranging between 10-100) are mapped to the controller’s D-Pad in this way: up – faster, down – 

slower, right – decrease step size, left – increase step size. 

A combination of the Drone and the Arpeggiator module gives a very subtle harmonic textural 

background for a performer to play and improvise over. This can also serve as a practicing tool to 

exercise scales and improvisation. By creating a randomized melody, the bell-like notes can also 

serve as a melodic inspiration for the improviser, though this interaction only goes one way. More 

examples of additional interaction opportunities this system can offer are discussed under the 

future work section. 
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4. Evaluation 

4.1  Evaluation Method 

The PSM algorithm can be evaluated in both live and sample mode. The benefit of using a database 

of recordings to evaluate the system is the assurance of accuracy and consistency compared to 

attempting to play the exact same phrase precisely in a live situation, for example. Another benefit 

is that the system and the algorithm can be monitored in real-time using log messages to identify 

any problems. The database can be pushed into the algorithm as many times as needed, to allow 

fine-tuning of the gain levels, the pitch detection parameters of the yin~ and OMax objects or the 

weight factors in the algorithm. 

In the development phase, I have used 84 recordings (4 recordings per scale, 21 scales) of myself 

improvising with an alto saxophone. The results from the algorithm were not consistent across my 

phrases, and around 60% of the phrases were recognized correctly. By viewing the scale-ranking 

log, I could identify that the problem lay with the indicator notes: whereas some scales held only 

one indicator note, other scales held three or four indicator notes. This affected the scale ranking 

calculation because scales with one or two indicator notes will rank lower than scales with three 

or four indicators. Realizing that the indicator notes required additional adaptation, I created a 

scale diagram (Figure 20) that illustrates all note alterations from the Major scale (Ionian, center). 

Scales marked in red have a lowered 3rd degree (pitch-class 3), scales marked in yellow have a 

natural 3rd degree (pitch-class 4), and scales marked in blue holds both (pitch-class 3 and 4). I 

grouped the scales based on their notes alterations and was able to visually identify scales that 

might be in conflict when calculating rank. This resulted in a more balanced set of indicator notes 

(see scales dataset - Table 6), which also helped to increase the success rate of the algorithm from 

60% to 90%. 
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Figure 20: Scales mind map organized by name, pitch-class, and alterations of the major scale 

Once the algorithm showed an improvement in the prediction rate, I expended the evaluation by 

inviting other saxophonists to try it as well. Having different saxophone players play with the 

system is crucial for the simple reason that saxophone players can be very diverse in terms of 

playing style, articulation, sound, improvisational vocabulary and melodic ideas. By increasing the 

test subjects, I essentially made sure the algorithm is not specifically designed for my own way of 

playing. Evaluating the algorithm with different saxophone players will help confirm that it is 

suitable for use by and can be beneficial to other musicians as well. 

To evaluate the PSM algorithm, I gathered a database that consists of audio recordings from five 

saxophone players. All players are trained as jazz saxophonists and hold (more or less) the same 

level of music education with a focus on jazz. Three of them have graduated from the Norwegian 

Academy of Music (NMH), one is a Berklee College of Music graduate, and another one from the 

Dutch academy of music located in Amsterdam (CvA). Out of the five Saxophonists, one is a 

female and their ages range between 25-40. Three play the alto saxophone, two play the tenor 
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saxophone, and between all five saxophone players, there are three nationalities. All of the players 

practice improvisation in their daily lives to various degrees and were approached because I was 

familiar with their level and quality of playing, trusting they hold the capacity to convey a scale 

by playing an improvised phrase. All players have received the same explanation and guidelines 

for performing the task (Appendix B) as well as a scale chart (appendix C) to make sure there will 

not be any confusion. Some of the key instructions in my letter to the other players were: (1) The 

first note of the phrase must be the first degree of the scale. The reason for that is that the 

preprocessing block of the algorithm, including the alignment of the notes and the conversion to 

pitch-classes, is in reference to the first note of the phrase. (2) The phrase must be based in only 

one key and one scale. The algorithm can only output one key and scale per phrase and is not 

designed to recognize any modulation. (3) The player should try to avoid bending notes because 

the pitch tracker will identify them as other notes than intended. (4) It is important to correctly 

label the sound files with the key and scale name because the software will eventually compare 

between the expected scale (based on the file name) and the outcome from the algorithm. 

Additional points that were mentioned are: to play the phrase just as they would try to convey a 

key and scale to a band standing with them on stage, to provide a decent quality of audio recording 

and to avoid rapid phrasing for the fear that the pitch detection module would miss some of the 

notes and therefore would fail the scale prediction. I have also mentioned to them that a “phrase 

can be long or short, can contain chromaticism, and may or may not have all the notes of the scale.” 

This remark is a vital one because I was interested in evaluating the performance of the algorithm 

in any of these three situations: (1) The phrase contains only seven unique notes that are required 

to form a scale. (2) The phrase contains more than the seven notes that form a scale. (3) The phrase 

contains fewer than the seven notes that are required to form a scale. 

Each saxophonist provided me with 21 audio clips of themselves playing an improvised phrase in 

all modes, in various keys and playing styles (straight/swing feel, different articulations, in- 

tempo/rubato). Recorded in a quiet environment, the lengths of the phrases varied between 7-20 

seconds. The speed of the phrases varied between the slow-and-fast-paced type of playing with 

different dynamic levels. Each file name was labeled by the player with the name of the scale they 

played in and the first note, the bass note, that they started with (for example, Ionian. F, Phrygian. 

Ab). Recorded with a Zoom Handy recorder or by a dynamic or condenser microphone, the audio 

clips were provided in mp3, wav, and aiff formats. No additional post-processing has been done 

to the audio files by me. 

4.1.1 Limitations 

The initial plan was to evaluate the whole system, and not only the algorithm, by having several 

saxophonists play with it. This would have included letting them use the attached controller 

together with the sound generation modules (Drone, Arpeggiator), but due to the COVID-19 

epidemic, and the quarantine and social distancing that were forced upon us, a full evaluation of 

the system was an impossible task to carry out. 
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4.2  Evaluation Process 

I created a playlist that holds all the audio clips for each saxophonist and a system that would 

automatically play through all samples and would trigger the capture On/Off button when a new 

audio clip starts and stops. The pitches are being tracked, and an array of the notes together with 

their duration is sent to the JavaScript max object for analysis. The JavaScript code includes a 

section responsible for comparing the input file name (labeled with the scale name) with the output 

of the algorithm. Log messages (Figure 21) with information about the analysis process and final 

results from the algorithm are sent to the Max console and allow for easy monitoring and 

troubleshooting. Log messages will show: (1) name of the file that started playing in the playlist, 

(2) original note input with rounded duration (only rounded for visual purpose), (3) bass note as a 

MIDI integer, (4) the processed input notes with duration (excluding the bass note) and aligned in 

reference to the bass note as pitch-classes, (5) a histogram of pitch-classes, number of repetitions, 

total durations and their calculated weights, (6) total amount of notes received, (7) number of 

unique notes received. 

 

Figure 21: Example of a log message 

The second part of the log file gives us a list of scales in ranking order. The example in Figure 22 

shows a successful match of the algorithm: the expected scale was Ionian, and the top-ranked scale 

calculated by the algorithm is indeed the Ionian scale. The two last messages of the log file show 

what was the expected scale (based on the labeled file name) and what scale the algorithm found. 
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Figure 22: Example of a log message showing a successful scale match 

Through the testing phase, the parameters of the pitch detection module were set as such: Noise 

Thresh (=0.7), consistency (=0.8), Window (ms) (=50), Min Pitch (=C#2), Down Sampling (=1). 

As previously mentioned (see 3.3), in the JavaScript code of the algorithm, there are two variables 

where one can adjust the factor values of the indicator notes fi and the number of repetitions fr, 

essentially giving more weight to notes in the phrase that are marked as indicator notes and that 

repeat more. 105 phrases were tested against the algorithm, or 21 phrases (in 21 scales) times five 

players. The entire database was pushed into the algorithm a total of eight times with different sets 

of factor (fi,  fr) values. The results are plotted in a graph (Figure 23), comparing the success rate 

of the eight tests. In test 1, the fi and fr values were set to 1.0, meaning no weight increase was 

applied. The success rate in test 1 is 84%. Tests 6 and 7 represent the highest success rate (89%) 

when tested with fi =1.1 and fr=1.1/1.15. The result of test 1 tells us the algorithm itself, without 

giving any increased weight to indicator notes or repetitive notes, already have a high success rate 

(an average of 17.6 phrases recognized correctly out of 21 per player). When reviewing the results 

in Figure 23, we can also establish that increasing the success rate can be achieved by setting very 

small fi and fr values. In test 5, where the increased factor values were higher in comparison to the 

other tests (fi =1.25 and fr=1.2), the success rate showed poor results (78%). 
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Figure 17: Comparing the success rate between eight tests 

It is important to discuss several crucial points when coming to evaluate the algorithm with the 

current database. First, we should keep in mind that improvised musical phrases can be seen (or 

heard) in a very subjective way, where one player can consider a phrase in one scale while another 

player can consider the same phrase in a different scale. The perception of phrases and their scales 

can differ substantially from one player to another. The PSM algorithm is, in a way, a deterministic 

algorithm, attending a subjective or an individual problem. Second, tuning (of pitch) affects the 

algorithm’s prediction. Several of the recorded phrases begin with a bent note or contain untuned 

notes throughout the phrase. A bent note at the beginning of a phrase means that the bass note of 

the phrase is being identified incorrectly by the pitch tracker, consequently swaying the phrase 

prediction. Phrases containing untuned notes will always be recognized falsely, and changing the 

weight factors will not affect their prediction outcome. As an example, in Table 8, player 1 holds 

a success rate of 95% in all tests, where 20 out of 21 phrases were recognized correctly. When 

inspecting the results, we can see that the Mixolydian scale was the one scale mistakenly 

recognized in all tests of player 1. This might suggest that there is a problem with the phrase itself 

and not necessarily with the algorithm. These kinds of database discrepancies make it difficult to 

evaluate the PSM algorithm and essentially mean that a larger and more accurate database is 

required for evaluation (See “future work” for additional reflections regarding a database). 

The presented tables (7-11) display a summary of the algorithm’s performance by player, with all 

eight tests over 21 scales. As mentioned above regarding player 1, a fault with the Mixolydian 

phrase sample (a bent note) was most likely the reason the algorithm did not identify the correct 
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scale in all tests. The results of players 2, 3, 4, and 5 show that the prediction rate was improved 

by increasing the weight factor when comparing test 1 to tests 6 and 7. Arguably, the least 

experienced player from the five subjects (player 4) demonstrated the lowest success rate in all 

tests, but still showed significant improvement in success rate when tested with added weights. 

Figure 24 presents a visual summary of Tables 8-12. 

 

Table 8: Player 1 

 

 

Table 9: Player 2 

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 1=Success

fi= 1.0 fi= 1.1 fi= 1.15 fi= 1.2 fi= 1.25 fi= 1.1 fi= 1.1 fi= 1.1 0=Fail

Player 1 fr= 1.0 fr= 1.2 fr= 1.2 fr= 1.2 fr= 1.2 fr= 1.1 fr= 1.15 fr= 1.25 Success Rate by Scale

Aeolian 1 1 1 1 1 1 1 1 100 %

Dorian 1 1 1 1 1 1 1 1 100 %

Ionian 1 1 1 1 1 1 1 1 100 %

Locrian 1 1 1 1 1 1 1 1 100 %

Lydian 1 1 1 1 1 1 1 1 100 %

Mixolydian 0 0 0 0 0 0 0 0 0 %

Phrygian 1 1 1 1 1 1 1 1 100 %

Altered Dominant 1 1 1 1 1 1 1 1 100 %

Dorian b2 1 1 1 1 1 1 1 1 100 %

Locrian Natural 9 1 1 1 1 1 1 1 1 100 %

Lydian Aug 1 1 1 1 1 1 1 1 100 %

Melodic Minor 1 1 1 1 1 1 1 1 100 %

Mixolydian #11 1 1 1 1 1 1 1 1 100 %

Mixolydian b6 1 1 1 1 1 1 1 1 100 %

Altered Dominant bb7 1 1 1 1 1 1 1 1 100 %

Dorian #11 1 1 1 1 1 1 1 1 100 %

Harmonic Minor 1 1 1 1 1 1 1 1 100 %

Ionian Aug 1 1 1 1 1 1 1 1 100 %

Locrian Natural 6 1 1 1 1 1 1 1 1 100 %

Lydian #9 1 1 1 1 1 1 1 1 100 %

Phrygian Major 1 1 1 1 1 1 1 1 100 %

Scales Identified Correctly 20 20 20 20 20 20 20 20

Total of Scales 21 21 21 21 21 21 21 21

Success Rate by Test 95 % 95 % 95 % 95 % 95 % 95 % 95 % 95 %

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 1=Success

fi= 1.0 fi= 1.1 fi= 1.15 fi= 1.2 fi= 1.25 fi= 1.1 fi= 1.1 fi= 1.1 0=Fail

Player 2 fr= 1.0 fr= 1.2 fr= 1.2 fr= 1.2 fr= 1.2 fr= 1.1 fr= 1.15 fr= 1.25 Success Rate by Scale

Aeolian 1 1 1 1 1 1 1 1 100 %

Dorian 0 0 0 0 0 0 0 0 0 %

Ionian 1 1 1 1 1 1 1 1 100 %

Locrian 1 1 1 1 1 1 1 1 100 %

Lydian 1 1 1 1 1 1 1 1 100 %

Mixolydian 1 1 1 1 1 1 1 1 100 %

Phrygian 1 1 1 1 1 1 1 1 100 %

Altered Dominant 1 1 1 1 0 1 1 1 88 %

Dorian b2 1 1 1 1 1 1 1 1 100 %

Locrian Natural 9 1 1 1 1 1 1 1 1 100 %

Lydian Aug 1 1 1 1 1 1 1 1 100 %

Melodic Minor 1 1 1 0 0 1 1 1 75 %

Mixolydian #11 1 1 1 1 1 1 1 1 100 %

Mixolydian b6 1 1 1 1 1 1 1 1 100 %

Altered Dominant bb7 1 1 1 1 1 1 1 1 100 %

Dorian #11 1 0 0 0 0 1 1 0 38 %

Harmonic Minor 1 1 1 1 1 1 1 1 100 %

Ionian Aug 1 1 1 1 1 1 1 1 100 %

Locrian Natural 6 0 1 1 1 1 1 1 1 88 %

Lydian #9 1 1 1 1 0 1 1 0 75 %

Phrygian Major 0 1 1 1 0 1 1 1 75 %

Scales Identified Correctly 18 19 19 18 15 20 20 18

Total of Scales 21 21 21 21 21 21 21 21

Success Rate by Test 86 % 90 % 90 % 86 % 71 % 95 % 95 % 86 %



46 

 

 

Table 10: Player 3 

 

Table 11: Player 4 

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 1=Success

fi= 1.0 fi= 1.1 fi= 1.15 fi= 1.2 fi= 1.25 fi= 1.1 fi= 1.1 fi= 1.1 0=Fail

Player 3 fr= 1.0 fr= 1.2 fr= 1.2 fr= 1.2 fr= 1.2 fr= 1.1 fr= 1.15 fr= 1.25 Success Rate by Scale

Aeolian 1 1 1 1 1 1 1 1 100 %

Dorian 1 1 1 1 1 1 1 1 100 %

Ionian 1 1 1 1 1 1 1 1 100 %

Locrian 1 1 1 1 1 1 1 1 100 %

Lydian 0 1 1 1 1 1 1 1 88 %

Mixolydian 1 1 1 1 1 1 1 1 100 %

Phrygian 1 1 1 1 1 1 1 1 100 %

Altered Dominant 1 1 1 1 1 1 1 1 100 %

Dorian b2 1 1 1 1 1 1 1 1 100 %

Locrian Natural 9 1 0 0 0 0 1 1 0 38 %

Lydian Aug 1 1 1 1 1 1 1 1 100 %

Melodic Minor 1 1 1 1 1 1 1 1 100 %

Mixolydian #11 1 1 1 1 1 1 1 1 100 %

Mixolydian b6 1 1 1 1 1 1 1 1 100 %

Altered Dominant bb7 1 1 1 1 1 1 1 1 100 %

Dorian #11 1 1 1 1 1 1 1 1 100 %

Harmonic Minor 1 1 1 1 1 1 1 1 100 %

Ionian Aug 0 0 0 0 0 0 0 0 0 %

Locrian Natural 6 0 0 0 0 0 0 0 0 0 %

Lydian #9 0 0 0 0 0 0 0 0 0 %

Phrygian Major 1 1 1 1 1 1 1 1 100 %

Scales Identified Correctly 17 17 17 17 17 18 18 17

Total of Scales 21 21 21 21 21 21 21 21

Success Rate by Test 81 % 81 % 81 % 81 % 81 % 86 % 86 % 81 %

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 1=Success

fi= 1.0 fi= 1.1 fi= 1.15 fi= 1.2 fi= 1.25 fi= 1.1 fi= 1.1 fi= 1.1 0=Fail

Player 4 fr= 1.0 fr= 1.2 fr= 1.2 fr= 1.2 fr= 1.2 fr= 1.1 fr= 1.15 fr= 1.25 Success Rate by Scale

Aeolian 1 1 1 1 1 1 1 1 100 %

Dorian 0 1 1 1 1 1 1 1 88 %

Ionian 1 1 1 1 1 1 1 1 100 %

Locrian 0 0 0 0 0 0 0 0 0 %

Lydian 1 1 1 1 1 1 1 1 100 %

Mixolydian 1 1 0 0 0 1 1 0 50 %

Phrygian 0 0 0 0 0 0 0 0 0 %

Altered Dominant 1 0 0 0 0 1 1 0 38 %

Dorian b2 1 1 1 1 1 1 1 1 100 %

Locrian Natural 9 1 1 1 1 1 1 1 1 100 %

Lydian Aug 1 1 1 1 1 1 1 1 100 %

Melodic Minor 0 0 0 0 0 0 0 0 0 %

Mixolydian #11 1 1 1 1 1 1 1 1 100 %

Mixolydian b6 0 0 0 0 0 0 0 0 0 %

Altered Dominant bb7 1 1 1 1 1 1 1 1 100 %

Dorian #11 1 1 0 0 0 1 1 0 50 %

Harmonic Minor 1 1 1 1 1 1 1 1 100 %

Ionian Aug 1 1 1 1 0 1 1 1 88 %

Locrian Natural 6 1 1 1 1 1 1 1 1 100 %

Lydian #9 1 1 1 1 1 1 1 1 100 %

Phrygian Major 1 1 1 1 1 1 1 1 100 %

Scales Identified Correctly 16 16 14 14 13 17 17 14

Total of Scales 21 21 21 21 21 21 21 21

Success Rate by Test 76 % 76 % 67 % 67 % 62 % 81 % 81 % 67 %
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Table 12: Player 5 

 

Figure 18: A visual summary of Tables 8-12 

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 1=Success

fi= 1.0 fi= 1.1 fi= 1.15 fi= 1.2 fi= 1.25 fi= 1.1 fi= 1.1 fi= 1.1 0=Fail

Player 5 fr= 1.0 fr= 1.2 fr= 1.2 fr= 1.2 fr= 1.2 fr= 1.1 fr= 1.15 fr= 1.25 Success Rate by Scale

Aeolian 0 0 0 0 0 0 0 0 0 %

Dorian 1 1 1 1 1 1 1 1 100 %

Ionian 1 1 1 1 1 1 1 1 100 %

Locrian 1 1 1 1 1 1 1 1 100 %

Lydian 0 1 1 1 1 1 1 1 88 %

Mixolydian 1 1 1 1 1 1 1 1 100 %

Phrygian 0 1 1 1 1 1 1 1 88 %

Altered Dominant 1 1 1 1 1 1 1 1 100 %

Dorian b2 1 1 1 1 1 1 1 1 100 %

Locrian Natural 9 1 1 1 1 1 1 1 1 100 %

Lydian Aug 1 1 1 1 1 1 1 1 100 %

Melodic Minor 1 1 1 1 1 1 1 1 100 %

Mixolydian #11 1 1 1 1 1 1 1 1 100 %

Mixolydian b6 1 1 1 1 1 1 1 1 100 %

Altered Dominant bb7 0 0 0 0 0 0 0 0 0 %

Dorian #11 1 1 1 1 1 1 1 1 100 %

Harmonic Minor 1 1 1 1 1 1 1 1 100 %

Ionian Aug 1 1 1 1 1 1 1 1 100 %

Locrian Natural 6 1 1 1 1 0 1 1 1 88 %

Lydian #9 1 0 0 0 0 0 0 0 13 %

Phrygian Major 1 1 1 1 1 1 1 1 100 %

SUM 17 18 18 18 17 18 18 18

out of 21 21 21 21 21 21 21 21

Success Rate by Test 81 % 86 % 86 % 86 % 81 % 86 % 86 % 86 %
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4.3  Playing with the system 

A way to evaluate the system can also be by playing with it and develop musical approaches to 

advance its potential. This kind of evaluation comes from personal reflections after I was able to 

experiment with the system. I would also recommend the reader to see the attached demonstration 

video and listen to the musical examples in it. 

By playing with the system in my rehearsal room, I have noticed that sound is bleeding back from 

the speakers into the microphone, creating false detection of notes and, eventually, scale outcome. 

My solution was to use two microphones, one, a condenser mic with low gain for pitch tracking, 

and the second, a dynamic mic for the acoustic sound of the saxophone. This solution significantly 

reduced the false detection of pitch and scales. I was standing directly in front of the speakers, 

which also contributed to the bleeding; therefore, for live performance, I would recommend 

standing behind the speakers and using headphones for monitoring. In any case, it is essential to 

be able to clearly hear the auditory output of the system to enhance creativity. 

Just like with any musical instrument, device, or controller, mastering requires mastery. Getting 

used to the controller requires time and practice, but after several hours of playing, my fingers 

were able to find the buttons instantaneously and without much searching and looking. Another 

concept that was a bit more difficult to grasp and one that will require more rehearsing is the 

concept of controlling the harmony by just playing the saxophone. This affordance is new to me, 

and it is one I have never experienced before. When talking about musical expression with new 

human-computer interfaces, Dobrian and Koppelman, (2006) state that to reach a level of 

sophistication achieved by major artists in other specialties like jazz or classical music, it is 

necessary to encourage further “dedicated participation by virtuosi” to utilize existing virtuosity 

and develop new virtuosity. A skillful musician with great technical skill and harmonic knowledge, 

and one that holds an advanced level of virtuosity, will undoubtedly be able to play with the system 

and benefit from this new affordance of controlling harmonic textures by playing melodic phrases. 

From an artistic standpoint, it is exciting and inspiring to play with the system. The long chordal 

Drone sounds, in combination with the rhythmic notes played by the arpeggiator, provide a subtle 

and comforting harmonic environment that allows for relaxed and intuitive improvisation. The 

system is responsive enough that I was able to communicate a scale with both short and long 

phrases. I was able to identify both correct and false scale matches of the system by looking at the 

UI on the computer screen and by hearing the sonic output of the system. This situation of staring 

at the computer screen is not ideal and is addressed in the future work section. While improvising, 

there were several instances in which the system recognized a different scale than what I 

communicated or intended to. This can happen due to noise, sound bleeding, or simply wrong 

playing on my part. I view those instances as a musical challenge and an opportunity to change the 

harmonic direction of the piece, just as if I would when playing with a live musician. I 

experimented playing with the Drone and Arpeggiator, both together and separately, and was able 
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to achieve diverse musical textures that provoked different kinds of playing on my side. Some 

performance strategies that I have developed by playing with the system over this short period are: 

1. Less is more – build the performance by adding and interacting with each sound generating 

module at a time. 

2. Keep in mind that it is possible to start a piece by playing the saxophone first and letting 

the sound modules join after, or by letting the sound modules play first and joining them 

after. 

3. It is sometimes hard to remember that the system can detect a scale with only a few notes. 

There is no need to play a lot to convey a scale, and certainly no need to play all the notes 

in scale order. 

4. By setting different speeds, the arpeggiator module provides three kinds of textural 

material: temporal, melodic, and harmonic. It is easier to play and interact with slower 

tempos, while rapid tempos can be perceived as harmony to the human ear. Experiment 

and employ all possibilities. 

5. In the current implementation, the system recognizes the scale of a phrase in reference to 

the first note of the phrase (the bass note). This forces the player to always start the phrase 

with the bass note, and it is a condition that can be somewhat limiting. A way to evade this 

is by starting to play a phrase from any note the player wishes to, and only press the capture 

button before playing the intended bass note of the scale. In this way, the listener will hear 

a phrase starting on one note, but the system will start capturing the phrase from a different 

note. 

4.4  Future work 

The system has great potential to become even more interactive and expressive, and many ideas 

for improvements and new features come to mind. It is certainly possible to use the system with 

other monophonic instruments with few minor adjustments to the pitch-detection parameters 

(windowing, minimum pitch, and downsampling). The Nintendo controller can be replaced by 

mapping the functions to other sensors or devices like foot pedals. Another approach for 

communicating the recognized scale by the system, or any other indications the player might need 

for that matter (capture on/off, sound-generating modules activity, bass note), is to design a small 

wireless system that will include a battery, a small LCD, and a few LEDs. Having this unit mounted 

on the saxophone’s neck, for example, will allow for the removal of the laptop from the stage, and 

will offer feedback in a more discrete way. 

The system should be further tested and evaluated with a more extensive database of phrases, with 

as many skillful musicians with a larger variety of instruments. Unsuccessfully detected phrases 

should be transcribed and analyzed to understand missed matches by the algorithm better. 

Additional scales should be added into the system for the algorithm to detect from, starting with 

the seven modes of the Harmonic Major and later with other common miscellaneous scales, 

including five, six, and eight-note scales. 
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With minor design modifications, the system can also function as an educational tool and serve 

aspiring improvisers. Musicians who begin their endeavor of learning jazz improvisation could 

use this system as a practicing tool by playing a phrase in a specific mode and get a confirmation 

if the phrase is indeed based on that mode. A substantial part of the education of a jazz musician 

is ear training or the ability to identify pitch, intervals, melody, chords, rhythm, and other basic 

elements of music, solely by hearing. For beginners with an undeveloped musical ear, the system 

can help validate whether they indeed have played a phrase in a particular scale. 

From the implementation point of view, the output from the PSM algorithm comes from the 

JavaScript object (js scale.js). The output of the detected scale name is connected to a coll object 

storing 21 scales by name and pitch-class, and the bass note (or key) of the phrase is being output 

as a midi integer. This output can be directed into any applications that accept and manipulate a 

set of notes for note generation and midi effects like arpeggiators, chord, and chord progression 

makers, melody randomizers, algorithmic composition, and improvisation agents, scale forcing, 

pitch correction, tuners, and vocoders. Those applications can then be connected to any sound 

synthesis modules like virtual instruments (VST) or hardware devices like sequencers and 

synthesizers. The output from the Drone and Arpeggiator modules is a multi-channel audio signal 

that can be directed into any applications that accept and manipulate audio. The auditory outcome 

of the system can be tremendously improved by using external effects like reverb, delay, filters, 

panning, and EQ. 

Regarding improvements of existing features, the system should be redesigned to be released from 

the paradigm that the first note of the phrase represents the key. For that to happen, both the system 

and the algorithm will require conceptual redesign and extensive work. A musician playing with 

the system will benefit greatly from having this issue resolved in the future. A better mapping 

strategy should be developed and implemented to combine existing and future features. 

Since the pitch detection module of the system is robust and reliable, indirect gestural acquisition 

based on continuous tracking of the pitch and amplitude envelop can enhance the system with new 

features. We can map playing parameters like playing notes in a different register to digital sound 

processing features like delay, for example. Playing features like high or low, loud or soft, fast or 

slow can be mapped to control some of the real-valued parameters of the drone and the arpeggiator 

to affect the system’s auditory outcome. It is also possible to add direct gestural acquisition 

functionality by adding sensors and implementing a more sophisticated way to control input 

information, for example, one-to-many mapping, can take the system to a new stage of instrument 

augmentation. 

The implementation of the system is available for users and developers as free and open-source 

software.26 Appendix D contains all necessary information regarding the available software, 

including system requirements, a list of related files, and an operation manual. 

 
26 PSM System repository on github - https://github.com/guysion/PSM-Interactive-Music-System 
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5. Conclusion 

The interest of conveying a harmonic environment to a computer by improvising a melody has led 

me to develop a system that augments the saxophone in a new and intriguing way. By reviewing 

existing saxophone augmentation works, I recognized the absence of an approach that grants 

monophonic instrumentalists with the ability to control the harmonic outcome of an interactive 

music system for music-making. Previous augmentation-works almost exclusively concentrated 

on enhancing the saxophone with various sensors designed to directly control sound synthesis, 

digital signal processing, effects, or even multimedia. Coming from the world of jazz and 

improvised music, where harmonic ideas are communicated among players instantaneously and in 

a nonverbal way while playing together, I focused on awarding a machine with the musical skill 

of recognizing a scale from a melody. 

Motivated by the work of Rowe (2004) in ‘Machine musicianship’, I recognized the necessity for 

an algorithm that would perform real-time low-level analysis of musical input to extract a scale 

from an improvised phrase. The Phrase to Scale Match (PSM) algorithm presented in this thesis 

can analyze a monophonic improvised phrase rooted in a single harmonic environment without 

modulation. The PSM algorithm may be regarded as this thesis most significant contribution to 

the field of music algorithmic analysis. When discussing the “paradox at the heart of the transfer 

of musical knowledge to a machine,” Rowe (2004) points out the extensive work required to “make 

a computer program perform the analysis required of a freshman music student,” while with music 

systems, “a little musical knowledge goes a long way.” Rowe’s measure of success regarding 

music programs, and certainly a measure I endorse, “is not whether these programs match 

empirical data from research with human subjects, but whether they output structures that make 

musical sense.” The PSM algorithm resembles an ear-trained musician with functional pitch 

recognition, a skill which involves identifying the relationship between a pitch and an established 

harmonic context. The algorithm has been evaluated with an audio database consisting of 105 

improvised musical phrases played by five saxophonists, with a successful matching rate of 89%. 

While certainly having some room for improvement, the level of accuracy seemed sufficient 

enough to try to evaluate the system as a whole by playing with it. 

The interactive music system integrating the PSM algorithm also presents third-party components 

taken off-the-shelf and customized for this specific application, such as the pitch tracking module 

processing the audio input. The system enables the musician to determine the length of the phrase 

to be analyzed by pressing the capture button via a dedicated tangible controller mounted on the 

saxophone. The captured phrase is processed and analyzed by the PSM algorithm, and the result, 

in the form of a scale name, is applied to be used for playing music in an interactive way. Following 

Rowe's (2004) premise that “adding an auditory component to interactive systems brings them 

much closer to the human experience of music,” two sound generating modules were developed. 

A drone and arpeggiator sound modules were added to the system to explore and present a practical 

way to play and interact with the system, and to expose the reader/listener to the interactive 
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possibilities the system can offer. The result of this explorative interaction can be seen and heard 

in a demo video.27 

To conclude, the work presented in this thesis successfully addresses my original research 

question. The algorithm is able to recognize the scale of a musical phrase with high accuracy, and 

the system offers the musician the ability to influence the harmonic output by merely playing an 

improvised phrase. The degree of randomization applied to the sound generating modules creates 

the impression of several entities collectively generating music and sharing the creative control, in 

almost the same manner as a group of live musicians would do. The outcome of this thesis provides 

musicians playing monophonic instruments a novel way to communicate harmony to a machine, 

in such a way that other algorithms and applications can use this information to contribute to the 

musician-driven sonic creative process. 

  

 
27 Demo video of the system - https://youtu.be/u-ObVjojjyc 
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Appendix A 

 

Appendix A-1. The natural modes of the major scale and their natural characteristic degrees 
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Appendix A-2. Altered modes from the melodic minor scale distinguish and their altered characteristic degrees 
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Appendix A-3. Altered modes from the harmonic minor scale and their altered characteristic degrees 
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Appendix B 
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Appendix C 
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