
Detecting Anatomical Landmarks in
3D Cardiovascular Images Using
Convolutional Neural Networks

Betina Høyer Wester
Master’s Thesis, Spring 2020

Abstract

Medical imaging enables us to visualize the interior of the body. Traditionally,
medical images have been analyzed by doctors, but lately, methods for extracting
information automatically from medical images have been explored. Automatical
feature extraction is time-saving and makes medical tools more accessible. Con-
volutional neural networks have proven to be a powerful tool in several medical
image processing tasks, with the potential to exceed human performance. In this
thesis, we have explored the use of convolutional neural networks for landmark
detection in 3D cardiovascular images. Landmark detection in 3D images is use-
ful to provide automatic registration between ultrasound and CT images of the
same patient. A patch-based convolutional neural network was used. Two types
of network architectures were tested; ResNet18 and a fully convolutional neural
network. To improve the performance of the networks, multi-task learning with
classification as a secondary task was combined with the landmark detection. In
addition, a weighted loss function was applied. The results from the classification
were later used to determine the final landmark prediction. The model providing
the lowest euclidean error was ResNet18. After post-processing, the average er-
ror was 8.78 mm. One application of this method is GE Vingemed’s CT-fusion
tool. The results were found to provide acceptable accuracy for a semi-automatic
landmark detection model.

ii

iii

Acknowledgements

I would like to express my very great appreciation to Eigil Samset for his valuable
and constructive suggestions during the development of this thesis. I would also
like to express my deep gratitude to Andrew Gilbert, for his patient guidance
and useful critiques. You have taught me so much this last year. Thanks to
Federico Veronesi for data and guidance in the CT-Fusion tool and to Børge Solli
Andreassen for helping me with the visualization.

Finally, I wish to thank everyone who made my 5 years at the University of Oslo
memorable, my friends and family.

iv

v

Contents

List of Figures . vi

1 Introduction 1
1.1 Motivation . 1
1.2 Related work . 4

2 Theory 10
2.1 Feedforward neural networks . 10
2.2 Convolutional Neural Networks . 11

2.2.1 Activation functions . 15
2.2.2 Building a convolutional neural network 17
2.2.3 Convolutional neural networks on three-dimensional data . . 17
2.2.4 Residual networks . 18
2.2.5 Classification using convolutional neural networks 19

2.3 Training a neural network . 20
2.3.1 Loss function . 20
2.3.2 Gradient descent . 21
2.3.3 Gradient decent with momentum 22
2.3.4 Gradient descent with Nesterov momentum 23
2.3.5 Training algorithm . 23

2.4 Overfitting and underfitting . 25
2.5 Batch normalization . 29
2.6 Multi-Task Learning . 30
2.7 Challenges of working with limited medical data 30
2.8 Splitting dataset . 31

3 Method 32
3.1 Data set . 32

3.1.1 Anatomical landmarks . 32
3.1.2 Dividing data into training, testing and validation set 35

3.2 Patch based learning . 35
3.2.1 Prepossessing of data . 36
3.2.2 Find displacement vector . 37

vi

3.2.3 Patch classification . 39
3.3 Network architectures . 39

3.3.1 Fully convolutional neural network 39
3.3.2 ResNet18 . 40

3.4 Loss function . 42
3.4.1 Loss function for regression 42
3.4.2 Loss function for classification 43

3.5 Post possessing . 44
3.6 Evaluation of the model . 46

3.6.1 Evaluation of landmark detection 46
3.6.2 Evaluation of classification 46
3.6.3 Evaluation of accuracy for CT-fusion tool 48

4 Experiments and results 49
4.1 Classification . 49
4.2 Regression . 50
4.3 Combining regression with classification and weighted loss 50
4.4 Predicting final landmark . 51
4.5 Visualization of final prediction . 51
4.6 Effect of patch size . 54
4.7 Application accuracy . 54

5 Discussion 55
5.1 Patch size . 55
5.2 Using convolutional neural networks for detecting anatomical land-

marks . 56
5.2.1 Deciding final landmark . 57

5.3 Errors made by the network . 58
5.3.1 Error in regression . 58
5.3.2 Error in classification . 64

5.4 Limitations . 64
5.4.1 Human error . 64
5.4.2 Working with ultrasound images 65

5.5 Further work . 65
5.5.1 improving the dataset . 66
5.5.2 Improving the model . 67
5.5.3 Improving the loss function 68
5.5.4 Improving methodology for evaluating the model 69
5.5.5 Improving post-processing 70

5.6 CT fusion tool . 70

vii

6 Conclusion 72

A Results from regression 75

B Results from landmark detection 77
B.1 Final landmark detection . 77
B.2 Results for all images . 79
B.3 Best results . 79
B.4 Worst results . 82

C Results classification 87

viii

List of Figures

1.1.1 GE Vingmed Ultrasound CT fusion tool 4
1.2.2 dataset used in Zhang et al. 5
1.2.3 T2DL from Zhang et al. 6
1.2.4 Error Zhang et al. 7
1.2.5 data set Noorhut et al. 7
1.2.6 Fully convolutional neural network from Noothout et al. . . . 8
1.2.7 Method from Andreassen et al. 9

2.1.1 Fully connected neural network 11
2.2.2 2D convolution . 13
2.2.3 Convolutional layer . 14
2.2.4 Common activation functions and their derivative 15
2.2.5 Feature extraction layers in a convolutional neural network . 17
2.2.6 3D convolution . 18
2.2.7 Residual block with shortcut connection 19
2.2.8 Residual network . 19
2.3.9 Gradient descent . 22
2.3.10 Gradient descent with momentum 23
2.4.11 Points from some distribution 25
2.4.12 Fitting model to data . 26
2.4.13 Overfitting . 27
2.6.14 Multi-task learning . 31

3.1.1 Anatomy of the human heart 33
3.1.2 Landmarks . 34
3.2.3 Outline of patch-based method 35
3.2.4 2D visualization of patches 38
3.2.5 Patches containing multiple landmarks 40
3.3.6 Fully convolutional neural network 41
3.3.7 ResNet18 . 42
3.5.8 Predicting final landmark . 47

4.5.2 Image from test set which represent average error 53

ix

5.0.1 Error distribution . 56
5.2.2 Error versus distance . 58
5.3.3 data set statistics . 59
5.3.4 predictions and true landmark 61
5.3.5 predictions and true landmark 61
5.3.6 Predicted and true landmarks from image 20 62
5.3.7 Predicted and true landmarks from image 20 63
5.4.8 Two different labeling of the same image 66
5.5.9 Original U-net from Ronneberg et al. 68
5.6.10 CT-fusion tool for predicted and true landmarks 71

2.3.1 Best prediction . 81
2.4.2 Worst prediction 1 . 84
2.4.3 Worst prediction 2 . 86

x

List of Tables

1.1 Results Noorhut et al. 8
1.2 Error for each landmark in Noorhut et al. 8

3.1 Patch classification . 39

4.1 Results from classification using ResNet 49
4.2 Results for classification using FCNN 49
4.3 Error regression . 50
4.4 Error for all tests . 50
4.5 Error after post-processing . 51
4.6 Error for each data set . 54
4.8 Fiducial registration error . 54

5.1 Human error . 64

A.1 Results for regression with weighted MSE loss 75
A.2 Results for regression with regular MSE loss and classification . . . 75
A.3 Results for regression with weighted MSE loss and classification . . 76

B.1 Mean of all predictions . 77
B.2 Weighted mean of all predictions 77
B.3 Using classification for deciding final landmark 78
B.4 Weighted mean of patches containing the landmark 78
B.5 Results test set . 79

C.1 Results from classification. Regression with regular MSE loss and
classification . 87

C.2 Results from classification. Regression with weighted MSE loss and
classification . 87

xi

Chapter 1

Introduction

1.1 Motivation
According to the World Health Organization, cardiovascular diseases are the num-
ber one cause of deaths worldwide. By detecting these kinds of diseases at an
early stage, we can start treatments to prevent them from going worse [8]. With
echocardiography, we can easily examine the size, structure, blood flow and move-
ment of various parts of the heart, including the heart valves, walls and chambers
[24]. Doctors can use information given from echocardiography to detect and di-
agnose a variety of cardiovascular diseases [33]. The heart size can indicate if a
person has high blood pressure, leaky heart valves, or heart failure. The thickness
of the wall can be used to discover valve diseases and congenital heart defects [19],
and the movement of the heart can tell whether any of the heart valves do not
open or close normally. We are also able to detect congenital heart defects, such
as holes in the heart, by looking at the structure of the heart.

Convolutional neural networks have become a popular tool for image classification,
segmentation, and other tasks. Using convolutional neural networks for computer
vision tasks have been studied since the 1960s, and the concept of neural networks
was inspired by how neurons in the cortex communicated with each other after
receiving stimulation. In 1999, researches started using convolutional networks for
feature-based object recognition, and the first algorithm for face recognition was
introduced [31]. From 2005, the Pascal VOC project started, which provided a

1

dataset for image classification and object detection. The intention was to estab-
lish a benchmark for investigating the performance of recognition methods [9]. As
a result of this, several state-of-the-art network architectures for classification and
object detection were introduced in the following years, each better than the other.
In 2015, the 152 layer deep residual network was introduced, which exceeded the
human level in image classification. As scientists were able to increase the accu-
racy of the networks, the exploration of convolutional neural networks for medical
applications started. In recent years, we have learned that CNNs can be used to
perform time-consuming tasks that until now have only been performed by pro-
fessionals [12]. For example have methods for detecting and segmenting different
types of cancer been developed. Convolutional neural networks are promising for
automatic, fast and accurate medical image analysis, which have the potential to
outperform experts [32].

Our goal was to use CNNs to detect six anatomical landmarks in 3D cardiovascular
images. These landmarks could, in turn, be used to automate workflows related
to landmark-based image registration, such as the CT-fusion tool made by GE
Vingmed Ultrasound. In the CT-fusion tool, the six anatomical landmarks in the
ultrasound image, together with the six corresponding landmarks in CT scans, are
used to merge the ultrasound image and CT scan to one image. The new image
contain more detailed information, as shown in figure 1.1.1. The CT-fusion tool
can be used to combine pre-operative CT with intra-operative echo during complex
cardiac interventions. Furthermore, the two imaging techniques complete each
other, as CT is able to visualize structures not easily seen in echo, and echo provides
real-time 3D modality that can be used to guide positioning and placement of
devices during an operation. The landmark registration task is currently manual
and may need to be repeated many times. The advantage of automatic landmark
detection is that this is less time consuming than finding the landmarks manually,
and we can be sure that the same landmarks are detected each time.

Applying convolutional neural networks on medical 3D data is challenging due to
anatomical variation among patients and differences in image acquisition [21]. We
will explore to what extent deep learning handles these problems and how well
they will perform in our problem. We will also look at how applying multi-task
learning can improve the performance of neural networks.

2

3

Figure 1.1.1: GE Vingmed Ultrasound CT fusion tool

1.2 Related work
In "Detecting Anatomical Landmarks From Limited Medical Imaging Data Using
Two-Stage Task-Oriented Deep Neural Networks," different deep learning methods
and network architectures for detecting anatomical landmarks in 3D MR images
and CT scans were compared. Due to limitations in some of the methods, two data
sets were used. The first data set consists of 500 MR-images of the brain labeled
with 1200 anatomical landmarks, and the second dataset consists of 73 CT scans
of prostate labeled with seven landmarks. Both data sets are 3D images. Samples
from the data are shown in figure 1.2.2.

In the paper, six different methods for landmark detection was tested and com-
pared. Some of the methods use whole images as input, while other methods use
only parts of the images as input. The methods which use parts of the images,
use extracted patches as input and are called patch-based methods. The meth-
ods that were tested are multi-atlas (MA), random forest (RF) regression, shallow
convolutional network (shallow-net), U-net, and a new method proposed by the
authors. MA is a patch-based method and returns displacement vectors between
the extracted patch and the landmarks. RF, shallow-net and U-net use whole im-

4

Figure 1.2.2: Anatomical landmarks from the two data sets. (a) is brain MR
dataset and (b) is prostate CT dataset

ages as input. RF and shallow-net return the coordinates to the landmarks, while
U-net returns one heat-map for each landmark, representing their most-likely co-
ordinates. The method proposed by the authors is a two-staged task-oriented deep
neural network (T2DL). This network consists of two sub-networks. The first net-
work (First-stage-only) is a 14-layer convolutional neural network that takes an
image patch as input and returns a displacement vector between the patch and
each landmark. The second part uses the same weights as the ones trained in the
first stage, with seven layers added at the end. The network uses the entire 3D
image as input, and the output is the coordinates to each of the landmarks. The
network is illustrated in figure 1.2.3. In the patch-based methods, the final land-
marks are decided by using a weighted mean from all the suggested landmarks.
The results from the tests are shown in table 1.2.4. As some of the methods were
not able to detect large scale landmarks, the authors created a new dataset from
the brain data set, by selecting 10 random landmarks from the original set. We see

5

Figure 1.2.3: Illustration of the purposed network in Zhang et al. [33], where (a)
is the first stage and (b) is the second stage. Conv3D represents 3D convolutional
layers, FC represents fully connected layers

from the results that the landmark detection problem can be solved with various
methods and that it is possible to achieve good results, although the data set is
limited.

In "CNN-based Landmark Detection in Cardiac CTA Scans", the same patch-
based method as in Zhang et al. was used. In this paper, the goal was also
to detect anatomical landmarks in medical data. The dataset used in the paper
is 198 CTA scans of the heart, labeled with six landmarks. A sample from the
data is shown in figure 1.2.5. In the paper, a new method for detecting these six
landmarks was proposed. This was done by using a patch-based method with a

6

Figure 1.2.4: Landmark detection error in brain dataset and prostate dataset (mm)

Figure 1.2.5: Samples from the dataset. The arrows are pointing at the different
landmarks

fully convolutional neural network. Hence the input of the network are patches
extracted from the 3D images. The network use multitask learning and combines
regression and classification. As shown in figure 1.2.6, the network consists of
six convolutional layers, with max-pooling layers after the three first. After these
layers, the network splits into the regression part and the classification part, each
consisting of a fully connected layer. The output of the network is displacement
vectors between the input patch and the landmarks, and a class indicating whether
the patch contains a landmark or not [21]. During training, the loss function to the
network was log-transformed, so that patches far away from the landmarks had less
influence on the updates of the network during backpropagation. This weighting
was added because the author assumed that patches far away from the landmarks
would make worse predictions than patches close to landmarks. The networks
were tested with and without classification, and with and without log-transform
loss function to see their effect. As seen in table 1.1, using classification and log-
transform improved the results. The network was trained for 60 000 iterations,
with a batch size of 25 patches. The error of each landmark is shown in table 1.2.
The article shows how important it is to lower the contribution of the patches that
are far away on the loss. Adding classification to the network or log-transform to
the loss function or both vastly improve the final results. Using the results from
the classification turned out to be useful when predicting the final landmarks from

7

Figure 1.2.6: Fully convolutional neural network from Noothout et al.

Log-transformed Classification Error Minimum Maximum
no no 29.07 ± 6.83 17.3 43.64
yes no 5.57 ± 3.35 1.32 16.9
no yes 6.33 ± 2.54 1.43 13.62
yes yes 2.19 ± 1.97 0.63 12.72

Table 1.1: Average Euclidean distance errors with standard deviations (Error), and
the minimum (Minimum) and maximum (Maximum) distance errors expressed in
mm. Effect of adding classification and log-transform [21]

Landmark Error Minimum Maximum
Right ostium 2.19 ± 1.97 0.63 12.72
Left ostium 2.88 ± 1.58 0.18 7.02
LM bifurcation 3.76 ± 2.58 0.59 10.83
Right aortic valve commissure 1.82 ± 0.97 0.40 4,56
non-coronary aortic valve commissure 2.10 ± 0.93 0.45 5.62
Left aortic valve commissure 1.89 ± 0.95 0.41 5.28

Table 1.2: Average Euclidean distance errors with standard deviations (Error), and
the minimum (Minimum) and maximum (Maximum) distance errors expressed in
mm for each landmark

all predicted displacement vectors. Using only patches classified to contain the
landmarks to decide the final landmark resulted in accurate predictions.

Applying convolutional neural networks to 3D cardiovascular images has already
been tested in "Mitral Annulus Segmentation Using Deep Learning in 3-D Trans-

8

esophageal Echocardiography" [2]. The goal was to detect the mitral annulus.
Like the papers presented earlier, the author had chosen to use parts of the 3D
images to feed the model. 2D planes from the original images were extracted by
rotating around the z-axis and sent through a U-net. For each slice sent through
the network, the U-net returned a heat-map. The heat-map represents where the
intersection between the mitral annulus and the plane is most likely to be. The
mitral annulus was found by fitting a spline to the predicted points. The method
is illustrated in figure 1.2.7, and the final error was only 2 mm. Hence it is possible
to get good accuracy applying convolutional neural networks to ultrasound images.

Figure 1.2.7: method used in Andreassen et al. [2]

9

Chapter 2

Theory

2.1 Feedforward neural networks
Given set of input values x and output values y, the purpose of a feedforward neural
network is to estimate the mapping between x and y with a function ŷ = f(x; Θ),
so that ŷ ≈ y. The parameters Θ are optimized to give the best approximation of
true mapping f [11]. Neural networks are created by combining multiple functions
like these, where each function represent a layer:

f(x; θ) = f3(f2(f1(x; Θ)))

f1 represents the first layer, f2 the second and f3 the third. The first layer uses
the data x as input, while the input of the next layers are the output from the
previous layer. Thus the information is passed through each layer of the network.
The first layer is called the input layer, the last layer is called the output layer,
and all other layers are called hidden layers. Within each layer, a given number of
neurons are representing a function of the form:

f(x) = Wx+ b (2.1)

where W is the weight and b is the bias. Hence the parameters that are to be
optimized are Θ = (W, b). After each layer, a non-linear function called activation
function is added. Without the activation function, all hidden layers collapse to
one single linear mapping, from x to y. If the network becomes a linear regression
model, it will to learn complex mappings from x to y. We will look more into

10

activation functions later in this chapter. Let a[l]k denote the activation of a neuron
k in layer l given by

alk = g

nl−1∑
j=1

wljka
l−1
j + blk

 (2.2)

where wljk is the weight from node j in layer l. The network is fully connected if
all neurons are connected to all neurons in the previous layer as shown in figure
2.1.1.

Figure 2.1.1: Visual representation of how neurons in the different layers pass
information in a fully connected layer

2.2 Convolutional Neural Networks
In the previous section, we showed how a mapping between input x and output
y could be represented as a neural network consisting of several layers, which
again consists of neurons. Up until now, only examples where the input x is one
dimensional have been considered. However, feedforward neural networks do not
handle multi-dimensional data well. Take an image as an example: Before sending
an image through a feedforward neural network, the image needs to be transformed
into a one-dimensional vector. If the image is an RGB image with 200 pixels in
height and width as input, this will result in a vector containing 200x200x3 = 120
000 elements. Each element in the first layer in the feedforward neural network

11

will contain the same amount of parameters as the size of the input. This results
in millions of parameters, which are computationally expensive and maybe even
impossible to compute.

To solve this, convolutional neural networks (CNN) were introduced. Cnn’s have a
lot in common with feedforward neural networks. They share the same structure of
layers containing neurons with trainable weights, but they use convolutions instead
of matrix multiplications.

A convolution can be compared to a cross-correlation. The concept of cross-
correlation is to slide a filter spatially across some input data, like an image,
and compute the sum of products in each position. Given a filter w with kernel
size 2K + 1 and some input data x in a point (p, q), the cross-correlation is given
by:

z[p, q] = w ∗ x =
K∑

r=−K

K∑
s=−K

w[r, s]x[p+ r, q + r] (2.3)

Convolutions are the same as cross-correlation, but the filter is rotated 180 degrees.
The general expression of a convolution is then:

z[p, q] = w ∗ x =
K∑

r=−K

K∑
s=−K

w[r, s]x[p− r, q − r] (2.4)

When performing convolution on the input data, the convolution can be calculated
in each pixel position, or some positions can be skipped. The spatial step between
each convolution is called stride. For stride = 1, the convolution is performed in all
pixel positions. As seen in figure 2.2.2, the entire filter needs to be inside the image
to perform a convolution, which means that the input image shrinks linearly with
the kernel size. To avoid this, the image can be broaden by adding extra pixels to
the edges of our image. This is called padding.

There are three main differences between CNNs and regular neural networks. The
first difference is sparse interaction. The output from a layer is only connected to a
limited number of pixels from the previous layer, and not all pixels. While moving
deeper into the network, neurons indirectly interact with an increasing part of the
input, which eliminates the need for fully connected layers. The number of input
pixels that are visible to a neuron in a CNN is called the receptive field. In some
computer vision tasks, the size of the receptive field is crucial for good performance

12

Figure 2.2.2: The result of one convolution with a 3x3 filter kernel. Illustration
from [3].

.

because it helps the network to understand connections between features extracted
from the first layers [18]. The receptive field increases with the depth of the
networks, so a way to increase the receptive field is to have a deep network. Another
solution is to increase the size of the filter kernel or to increase the stride. The
second difference is that the same parameters are used for several functions in
the same model. When a convolutional kernel is slid over the input data, the
filter kernel remains the same the entire time. A constant filter kernel results
in fewer network parameters compared to fully connected neural networks, where
there is one parameter per input value. This allows the network to limit the
amount of weights in each layer [10]. The third and last difference is equivariant
representation, which is a result of shared parameters. This means that if the
input fed to the network shift, then the output changes the same way [10].

A convolutional layer consists of n filters of equal dimensions. The depth of the
input is equal to the number of layers in the previous layer, and the number of
layers corresponds to the output depth of the current layer. Each neuron activation
is computed from a convolution between the input and the weights in a layer.

y = W ∗ x+ b (2.5)

Here x represent the input, W are the weights of the filter, and b is a bias. An

13

example of a convolutional layer is shown in figure 2.2.3. For each layer, padding
size, stride size, and kernel size are set. These parameters are set for this layer
and do not change.

Figure 2.2.3: The result of sending an input of size 32x32x3 through a convolutional
layer with two filters of size 5x5x3 with no padding and stride 1. The output has
the size 28x28x2. The figure is from [6]

Convolutional networks does not only consist of convolutional layers, but are sup-
plemented by other types of layers:

Fully connected layers

A fully connected layer means that all neurons in the current layer have a connec-
tion with all neurons in the previous layer. This layer is the same as the layers in
feedforward neural networks, which is equivalent to a matrix multiplication [22].
Fully connected layers are typically used as the last layer in a convolutional neural
network.

14

Pooling layers

Pooling layers progressively reduce the spatial size of the representation to reduce
the need for memory and the number of computations of the network. It is there-
fore common to let the pooling layer contain a 2X2-filter with stride 2 to downsize
the input with scale 2 in each dimension. Typical operators to use in pooling layers
are max-, average- and the L2-operator. Since a pooling layer downsamples the
input, the output can be considered a summarize of the input. Pooling layers are
also a tool to control overfitting, which will be explained further in section 2.4.

2.2.1 Activation functions

An activation function is a non-linear, differentiable function which modifies the
activation of neurons after a convolutional layer. The output of the activation
function is sent to the next layer and used as input. As mentioned earlier, without
the activation function, the network becomes a linear mapping from input to out-
put. The nonlinearities in the activation functions are critical because they allow
networks to calculate highly non-linear functions [17]. There is not a true answer
to which activation function is best. It depends on the problem, and all functions
have pros and cons. The activation function, which best fits a model, is found by
testing different functions. Some common activation functions are shown in figure
2.2.4. In this section, exploding and vanishing gradients are mentioned. These
expressions will be explained in section 2.3.2.

Figure 2.2.4: Some common activation functions and their derivative

Logistic Activation Function

Also known as Sigmoid function and is given by:

φ(z) =
1

1 + e−z
(2.6)

This means that φ(z) ∈ (0, 1). This activation functions is usually applied when
predicting probabilities, because the range of the function is the same as the proba-

15

bility range. If the task is to classify the input data, the logistic activation function
will output the probability of the input belonging to a class, for all classes.

The logistic activation function transform a large input space inside a small input
space, since φ(z) ∈ (0, 1). As a result of this, a large change in input will give
a small change in output [30]. Moreover, the gradient of the loss function is
small. Therefore, using this activation function may lead to vanishing gradients,
but exploding gradients are avoided. As seen in figure 2.2.4, the derivative of the
Sigmoid function is highest when the inputs are small. When the absolute value
of the input increases, the derivative decrease, which can result in slow learning.

Tanh

The tanh activation function looks a lot like the logistic activation function, but
the range of the Tanh activation function is wider than the logistic function. Tanh
∈ (−1, 1). Tanh can also cause vanishing gradients, but less likely than logis-
tic activation function. Since the derivative of tanh is steeper than the logistic
activation function, the derivatives are larger.

ReLU

ReLU, or rectified linear unit, is given by:

φ(z) = max(0, z) (2.7)

hence, φ(z) ∈ [0,∞). Unlike the logistic activation function, the derivative of
ReLU is not small, hence vanishing gradient is avoided using this activation func-
tion. However, this activation function "stop" the training process for a given
neuron if the input is negative, since negative input is set to zero. Exploding gra-
dients are also a risk using ReLU, but this can be handled with other methods, like
batch normalization. There also exists several variation of ReLU to avoid negative
values being set to zero, like exponential linear unit (ELU):

φ(z) =

{
z if z > 0

α(exp(z)− 1) if z < 0
(2.8)

and leaky ReLU:
φ(z) = max(αz, z) (2.9)

but these are more expensive to compute compared to ReLU.

16

2.2.2 Building a convolutional neural network

The hidden layers are usually convolutional layers and pooling layers. The num-
ber of layers used in the network is one of the hyperparameters that need to be
optimized. A general rule is that the more layers added to the network, the more
complex mappings the network can represent. The different layers in a CNN ex-
tract different types of features, where some of those are visualized in figure 2.2.5.
The first layers extract low-level features, like edges and lines. while moving deeper
into the network, the layers detect more complex features. This is called mid-level
features and high-level features. The last layer of a convolutional neural network
is fully connected. The output has the same shape as the true value y.

Figure 2.2.5: Different features extracted from each layer

2.2.3 Convolutional neural networks on three-dimensional
data

We can perform convolution on 3D images the same way as 2D images, by using
a three-dimensional kernel, as visualized in figure 2.2.6. Unlike the regular con-
volutional network, the filter kernels in a layer are smaller than the number of
channels in the input data. This enables the filter to move in all three directions
of the volumetric input data, making the output 3D as well. Hence, CNNs for
volumetric data can be created the same way as for 2D data. The expanding of
the filter kernels from 2D to 3D results in more parameters. In general, the more

17

parameters the network contains, the more data is needed for training. One would
assume that a CNN applied on 3D images would need more images than a CNN
used on 2D images. However, since one single 3D images contain more data, this
is not an issue.

Figure 2.2.6: Illustration of a 3D convolution from "A Comprehensive Introduction
to Different Types of Convolutions in Deep Learning" by Kunlun Bai.

2.2.4 Residual networks

An essential factor in the performance of a network is the number of layers. One
would think that better results are achieved when more layers are used. This
statement is only valid up to a certain number of layers before the accuracy of the
network becomes saturated. The gradient from the loss converges to zero after
several applications of the chain-rule [26]. When the gradient is close to zero, the
weights of the layers will not update. When propagating through the network,
the layers learn less as the gradient decrease. At best, only the last layers of our
network gets updated. This event is known as the vanishing gradient problem. A
solution to this is to add a so-called "shortcut connection". As shown in figure
2.2.7, the shortcut connection is an identity mapping, which skips a given number
of layers, and is later added to the output of the skipped layers. By considering a
neural network with input x, which is trying to learn a mapping H(x), the residual,
or difference, are given by:

R(x) = H(x)− x
Which gives us

H(x) = R(x) + x

18

The gradient can move through these shortcut connections and also reach the
initial layers [26], which enable us to train deeper networks. A residual network

Figure 2.2.7: Illustration of a residual block with shortcut connection

consists of residual blocks put together, as shown in figure 2.2.8. The residual
block in figure 2.2.7 has only two layers, but the number of layers within the block
is optional.

Figure 2.2.8: A plain neural network and an example of ResNet containing shortcut
connection

2.2.5 Classification using convolutional neural networks

When using neural networks for classifying objects, the network returns the prob-
abilities for the object belonging to each of the classes. The object is placed in

19

the class with the highest probability. The last layer of a network for classifica-
tion has a fully connected layer at the end, where the number of output values
match the number of classes. The most common choice of activation function for
classification is the Sigmoid activation function:

F (xi) =
1

1 + exi

or the softmax activation function:

F (xi) =
exi∑k
j=0 e

xj

for i = 1, ..., k classes.

Both of the functions return a probability between 0 or 1 for the object belonging
to each of the classes. Choosing the activation function depends on the data. More
specifically, it depends on whether an object can be classified into more than one
class or not. In the case where all objects only belong to one single class, the
best choice is softmax. The reason for this is that the softmax activation function
forces the sum of all probabilities to be equal to one. Hence if the probability
of one class increases, then the probability for the rest of the classes decreases.
The function then avoid suggesting multiple classes as an option and decides on
one. When using the Sigmoid activation functions, the sum over all probabilities
does not necessarily add up to one. Therefore, the Sigmoid function is used if the
objects fit into multiple classes.

2.3 Training a neural network
As mentioned, the purpose of a neural network is to estimate the mapping be-
tween x and y with a function ŷ = f(x; Θ), so that ŷ ≈ y. This section will
demonstrate how the parameters Θ are optimized to give the best approximation
of true mapping f .

2.3.1 Loss function

We can measure the performance of a network by using a loss function. The
purpose of the loss function is to measure the error between the prediction ŷ and
the true value y. Deciding which loss function to use depends on the task of
the network. There are two categories of loss functions, Regression losses and

20

Classification losses [23]. If the network is trying to classify items on images, a
good loss function can be cross-entropy loss:

Lcrossentropyloss = −(ylog(ŷ + (1− y)log(1− ŷ)) (2.10)

However, if the task of the network is to predict some value, a good loss function
can be a mean squared error:

LMSE =

∑n
i=1(yi − ŷi)2

n
(2.11)

2.3.2 Gradient descent

In calculus, the global minima is found by calculating the derivative of the function
and checking the extrema, which often works when the function is convex. A
function is convex if the second derivative is non-negative, which usually applies
to functions with few parameters. Hence this method can not be used for non-
convex functions, like the loss function to a neural network. Gradient descent is a
method for minimizing functions which are too complex to minimize using calculus
[20]. The gradient of a function f is a vector with the partial derivatives of f in
point x = (x1, x2, ..., xn) as components:

∇f(x) =

[
δf

δx1
(x),

δf

δx2
(x), ...,

δf

δx1
(x)

]T
(2.12)

The gradient tells in which direction the function decreases fastest and at which
rate in each point p. If the gradient is zero, then p is a stationary point. If the
gradient is non-zero, then f increases fastest at p in the same direction as the
gradient. If the task is to minimize a non-convex function f , this can be done by
iteratively taking small steps in the direction of the negative gradient [28]. For a
starting point x0 = (x01, x

0
2, ..., x

0
n), our new point x1 = x11, x

1
2, ..., x

1
n is:

x11 = x01 − α
δf

δx1
(x0)

x12 = x02 − α
δf

δx2
(x0)

...

x1n = x0n − α
δf

δxn
(x0)

where the learning rate α controls the step length. this can be generalized to:

xij = xi−1j − α δf
δxj

(xi−1) (2.13)

21

For each iteration, the point xij moves closer and closer to the minimum of f , as
shown in figure 2.3.9. However, there is a risk of getting stuck in a local minimum
or a saddle point when minimizing using gradient descent. This can be solved
using momentum.

Figure 2.3.9: Finding the minimum of some function using gradient descent. Figure
from [13]

2.3.3 Gradient decent with momentum

Adding momentum to gradient descent is a technique to avoid getting stuck in
local minima or saddle points. When moving along the negative gradient, the step
length is no longer dependent on just learning rate and size of the loss, but also
the momentum caused by the steepness of the function. This can be done by using
the velocity created by the slope and add this to the step length. The steeper the
function is, the larger velocity is achieved, and the step length increase. Remember
regular gradient descent was given by:

xij = xi−1j − α δf
δxj

(xi−1) (2.14)

for simplicity, xij is denoted as w and xi−1j as x:

w = x− λδw

We include momentum with the following equations:

v = ρv − λδw (2.15)
w = w + v (2.16)

22

Where ρ is the momentum parameter, and v is the velocity at a given point. If
the network comes across a local minimum or saddle point, this is passed if the
velocity is sufficiently large. The momentum is a hyperparameter that needs to be
optimized as well. If the momentum is too small, the network will still get stuck
in local minima and saddle points.

Figure 2.3.10: Momentum helps the network escape local minima.

2.3.4 Gradient descent with Nesterov momentum

Nesterov momentum differs from regular momentum because it considers previous
iterations when the velocity is calculated, and the momentum is built up. Also
since velocity is pushing us towards the point wahead = w + ρv,the gradient is
calculating in the point previous to the current point wprevious instead of w:

wprevious = w + µv

v = µv − λδw
w = w + v

2.3.5 Training algorithm

The first step in training a neural network is to send a batch of data through the
network. Next, the predicted values provided by the network are compared with
the true values, and the error between these values are computed. The total error
of our network is represented with a suitable loss function L, as described in section
2.3.1. The goal is to minimize the error of the network. The error is minimized by
optimizing the loss function. By using gradient descent on the loss function, all
the weights in each layer are updated through the backward propagation. Let z be

23

the weights in the final layer. The derivative of the loss function ∂L
∂z

is calculated
and used to find

∂L

∂w
and

∂L

∂b
(2.17)

We update w and b with the following equation:

w = w − λ∂L
∂w

(2.18)

b = b− λ∂L
∂b

(2.19)

where λ is a predefined learning rate. The algorithm starts in the last layer and
work backward until the first layer is reached, updating all parameters on the way.
Hence ∂L

∂wl
and ∂L

∂bl
is computed for all layers. This is calculated using the chain

rule. Consider a function y = f(x), where f depends on the functions g1, ..., gn,
then the derivative of f is given by:

δf

δx
=

n∑
i=1

δf

δgi

δgi
δx

(2.20)

First the loss is computed:
δL

δyl

in all layers l = 1, ..., n and then this is used to derive

δL

δwl
and

δL

δbl

Sending images through the network, calculating the loss, and updating the weights
with backpropagation is repeated until convergence.

There are two possible problems with using backpropagation with gradient descent,
vanishing gradient, and exploding gradients. Vanishing gradients means that the
gradient of the loss function converges to zero. The weight-update during back-
propagation is dependent on how large the gradient of the loss is. Larger gradients
result in more significant updates. We have vanishing gradients when the gradient
is close to zero. The changes of the weights during backpropagation becomes small,
and the network training becomes time-consuming. Exploding gradients are the
opposite issue. The large gradients make extensive updates in the weights of the
layers. The network will most likely not converge because the updates cause the
network to "hop" over the minima.

24

2.4 Overfitting and underfitting
When training a neural network, two problems might stop our network from achiev-
ing good results, underfitting and overfitting. Figure 2.4.11 is used as an example.
The points in the example are from a sine wave. The blue points represent samples
from the training set and red from the test set. We want to estimate the points

Figure 2.4.11: Points from an unknown function. The blue points represent sam-
ples from the training set and red from the test set.

with a model such that the model not only fits the points available for training
the model, but also fits unseen data points. Figure 2.4.12a shows an underfitted
model. This model is too simple and will not be able to represent the variety in the
data and perform badly for both the training set and the test set. An overfitted
model is shown in figure 2.4.12b. This model is customized to fit only the training
data, and perform poorly to unseen data.

Figure 2.4.12c shown a model that is not overfitted nor underfittet. To achieve
this, some error needs to be tolerated by the model.

It is possible to understand whether a neural network is overfitting or underfitting
by looking at the training loss and the validation loss. When training a neural
network, the loss from the validation set is expected to be slightly larger than
the loss of the validation set. During training, both losses should decrease at the
same pace. If the validation loss begins to saturate or increase as the training loss
continues to decrease, the network fits too well to the training set, and the network
is overfitting. This is shown in figure 2.4.13. A model is underfitted if the overall
performance is poor, and the loss does not improve during training [27].

25

(a) Underfitted model

(b) Overfitted model

(c) Good model. Not overfitted or underfitted

Figure 2.4.12: blue points symbolize the data used to fit a model to. The black
line is the purposed model.

26

Figure 2.4.13: Training loss and validation loss when the neural network is over-
fitting to the training data.

There are several techniques for avoiding underfitting and overfitting:

Add more data

If possible, collect more data for the training set. Increasing the training dataset
can help the network to generalize better, and therefore reduce the chance of
overfitting [15].

Data augmentation

Image augmentation is a collection of methods for increasing the number of training
samples. Data augmentation is a good alternative if, for some reason, it is not
possible to get more data. Creating more data can be as easy as flipping an image
vertically or horizontally, changing contrast and brightness, resizing images, or
create new data by using smaller parts of the original data. The last technique
will be further reviewed in section 3.2.

Dropout

Dropout means that the network is "dropping out units" during training [29].
In practice, this is done by setting random activations to zero and ignoring its
incoming and outgoing connections during training. A fixed probability p de-
notes the probability that a node is staying active. During testing, all nodes stay
active. When training a neural network using standard backpropagation, some

27

neurons might learn to correct other neurons mistakes, which leads to complex
co-adaptations [29]. These do not generalize well, and the network overfit to the
training data. By adding random dropout, all neurons need to perform well on is
own because the network can no longer rely on neurons to compensate for each
other’s mistakes. Besides, dropout prevents the network from becoming reliant on
any single set of neurons, as they might be dropped out. Adding dropout also stops
the network from relying on specific nodes; this means that "different" networks
are trained each round.

L2 Regularization

The network is more likely to overfit to training data if the weights in the network
become too large. An additional term is added to the loss function to prevent this.
For a given loss function l and the weights w in our network, a penalty is added
to the loss function:

l +
λ

2
||w||2 for λ ∈ [0, 1]

where λ regularization strength. The penalty will reduce the values of the weights
and therefore avoid overfitting.

Change network complexity

As seen in the example above, a too simple model will not give good predictions
because it does not capture the complexity of the problem, which results in un-
derfitting. This is solved by making the model more complex. This can be done
by adding more layers to the neural network. In the opposite case, if the network
is overfitting to the training data, removing some layers may help.

Early stopping

The concept of early stopping is to stop training if the model begins to overfit
to the training data. During training, the validation loss is monitored and saved
together with the weights of the model. If the loss increase compared to earlier loss
values during training, the training is terminated, and the model with the lowest
validation loss is returned. The loss will not necessarily decrease continuously, and
it might sometimes increase for a short period before it begins to decrease again.
A tolerance is defined for how many iterations the validation is allowed to increase
before training is stopped.

28

2.5 Batch normalization
When training a neural network, the parameters in each layer change, which again
changes the distribution of network activations. This is called The Internal Co-
variate Shift [14]. This complicates the training because the layers need to adjust
to changes in the input distribution, which forces us to choose a small learning
rate. A consequence of this is a slow convergence. A solution to this problem is
to add Batch normalization. For each layer k, the batch normalization scales a
d-dimensional input x = (x1, ..., xd) to have zero mean and a variance equal to 1:
[14]

x̂k =
xk − E[xk]√

Var[xk]
(2.21)

Then two parameters γ and β are added. These parameters shift and scale the
normalized data:

yk = γkx̂k + βk

where

γk = E[x]

βk =
√

Var[xk]

Consider a mini-batch B = {x1, ..., xm} of size m, the mean and variance are
calculated before normalization, scale and shift:

µB =
1

m

m∑
i=1

xi (2.22)

σ2
B =

1

m

m∑
i=1

(xi − µB)2 (2.23)

x̂i =
xi− µB√
σ2
B + ε

(2.24)

yi = γx̂i + β ≡ BNγ,β(xi) (2.25)

The ε is added to avoid zero division. In Ioffe et al. [14], it has been shown
that applying batch normalization to state-of-the-art image classification model
reach the same accuracy using fewer training steps, and also achieve lower error
in classification tasks.

Besides making the training more effective, batch normalization also has other
positive side effects, like prevent vanishing or exploding gradients and prevent the

29

model from getting stuck in a local minimum, besides having a regularizing effect
[16].

2.6 Multi-Task Learning
In standard machine learning, one single model are trained to perform some task.
Then the hyperparameters are fine-tuned until the performance no longer increases.
To further increase the performance of the network, multi-task learning can be
used. This means that the model is trained to solve a similar task simultaneously
with the main task. When a network is trained for only one task, the network
might ignore information that can help improve the model. Multi-task learning
can improve the performance of the model because it helps the model utilize this
information and to generalize the problem [1]. There are two types of multi-task
learning, hard parameter sharing and soft parameter sharing. Both types are
shown in figure 2.6.14 In hard parameter sharing, all tasks share the first hidden
layers, before the network split into task-specific output layers. In soft parameter
sharing, there is one model for each task, with no shared layers, but the parameters
in the models are regularized so that they are similar to each other.

Using multi-task learning has many benefits. Since the two task share layers,
the model is forced to learn a more generalized representation, which reduce the
chance of overfitting [1]. If data is limited or noisy, it can be difficult for å model
to identify essential features. When there are two tasks, the added task supply
with information about which features being most relevant, improving the feature
extraction of the network.

All the tasks have separate loss functions. A weighted sum over these losses is
used for backpropagation.

2.7 Challenges of working with limited medical data
It is well known that training convolutional neural networks require a large amount
of data. Unfortunately, there are some applications where a limited number of
training data is expected, such as medical applications. There are many reasons
why it is challenging to sample more data. For example, an expert is required to
label the dataset. There can be regulations on the processing of personal data or
not enough data subjects. Besides having fewer samples fore training, medical ap-
plications often require high precision to be accepted as a medical tool. There have

30

(a) Hard parameter sharing (b) Soft parameter sharing.

Figure 2.6.14: Images from "An Overview of Multi-Task Learning in Deep Neural
Networks" by Sebastian Ruder [1]

been proposed several solutions to solve the problems related to limited training
data [35, 4, 12]. These methods generally combine data augmentation and multi-
task learning.

2.8 Splitting dataset
Before the training of neural networks can begin, the dataset needs to be split
into three separate sets, one for training, one for testing and one for validation.
The training set will be used to train our model. The parameters of the model
is fit by the samples in the training set. During training, the model is tested on
the validation set as an unbias evaluation of the model. Hence the model is not
trained on this data. The validation set is used to fine-tune the hyperparameters
of the model and monitor the training process. After training the model, the test
set is used as a final evaluation of the model. The results from the test set defines
the final evaluation of the precision of the model.

31

Chapter 3

Method

A patch-based method combined with multi-task learning will be used for detecting
anatomical landmarks in 3D cardiovascular images.

3.1 Data set
The data set is provided by GE Vingemed Ultrasound. It consists of 127 3D
ultrasound images, each labeled with six anatomical landmarks using EchoPAC.
Each image is an echocardiogram, acquired by passing the ultrasound probe into
the patient’s esophagus. This imaging technique gives clearer images compared to
transthoracic echocardiogram.

There is a large variation in the size of each image in the dataset. Some of the
images show the entire heart, as shown in figure 3.1.2, while some are close-
ups of the valves. The smallest image is 6.17x6.23x4.86 cm, and the largest is
23.06x23.22x19.03 cm. By letting all images be 150x150x150 pixels, the resolution
will vary from 0.29x0.29x0.23 mm3 to 1.1x1.1x0.9 mm2.

3.1.1 Anatomical landmarks

The six landmarks ’MA1’, ’MA2’, ’P’, ’A’, ’Coap’ and ’Ao’, and their position is
shown in figure 3.1.2. The landmarks lie on two planes which intersect in Coap.
MA1 and MA2 are placed on each side of the mitral valve. A is placed at the root

32

of the mitral valve and the aortic valve. Ao at the opposite side of the aortic valve
from A, and is P on the opposite side of the mitral valve. Coap is midpoint of
MA1, MA2, P, and A. For a better understanding of the placement of the pints,
see figure 3.1.1.

Figure 3.1.1: Anatomy of the human heart from [5].

33

Figure 3.1.2: Red: MA2. Orange: MA1. Pink: Coap, White: P. Black: A. Brown:
Ao

34

3.1.2 Dividing data into training, testing and validation set

Before starting training models, the dataset are split into training, validation, and
test sets, as described in section 2.8. The training set is 96 images, the validation
set is ten images, and the test set is 21 images. The data is divided to ensure that
as much data as possible is used for training, while also having a large enough test
set to reflect the variation of the data to get representative test results.

3.2 Patch based learning
Training a convolutional neural network can be challenging if the data set consists
of a limited number of training subjects [35]. This can be solved using the data
augmentation techniques presented in section 2.4. One of these techniques was
to sample smaller patches from the original data, and use these as input to a
convolutional neural network instead of the whole images. The dataset used in
this thesis is relatively small (only 127 images). Using this simple approach, the
dataset can be increased without needing to collect more data, and therefore avoid
the problems related to limited data [33]. If the entire image is used as input, the
input would be of size 150*150*150 = 3375000, hence using patch-based methods
also avoid memory constraint.

Since the images in our dataset are three-dimensional, the extracted patches are
also three-dimensional. Instead of training the network to predict the coordinates
of a landmark, the network is trained to predict the displacement vectors between
the input patch and each of the six landmarks. The outline of the patch-based
method used in this thesis is shown in figure 3.2.3.

Figure 3.2.3: Outline of patch-based method

35

3.2.1 Prepossessing of data

The patch-based method requires preprocessing, which is patch extraction. Patches
used during training are sampled random, while patches used for testing are sam-
pled using a grid.

Random Patch Extraction

We start by extracting patches from each of the 3D images. The same number of
patches is extracted from each image. All 3D images are resized to 150x150x150
pixels. Since the original images vary in size, the resized images will be at dif-
ferent scales, which will help make the networks invariant to scale. Two datasets
with different patch sizes are generated. The first dataset has a patch size of
30x30x30 pixels, and the patch size of the second dataset is 60x60x60. The goal
of the network is to find the correlation between patches and landmark locations.
Moreover, the network needs to understand the location of the patch and use that
information to locate the landmark.

The random patch extraction work as data augmentation to prevent overfitting.
Since large parts of the original images contain no information, the extracted
patches are examined with an algorithm to ensure that the patches that are sent
through the network contain a sufficient amount of information. By looking at the
images shown in figure 3.1.2 and 3.2.4a, we see that the image data is contained
within a cone, and the areas outside this cone does not contain any information.
Hence we want to avoid extracting patches from this area. By looking at the image
data inside the cone, it is fair to assume that there is difficult for a network to
understand the location of the patch if it only contains tissue or homogeneous
noise caused by blood flow. Therefore, we want to avoid extracting patches from
these parts of the image as well. The parts of the image containing the most
information are the remaining areas, which includes the regions along the walls of
the heart chamber and around the valves. These are the areas the patches should
be extracted from.

First, a random patch is selected. Then, the pixel intensities are analyzed to
ensure that the patch is extracted from the desired area. The pixel intensities
range from 0 to 255. As seen on the color bar on figure 3.2.4a, the pixels can be
categorize based on their intensity. The area outside the cone has a pixel intensity
of approximately 0. The blood flow inside the heart chambers appear as noise with
pixel intensity between 1 and 100. The intensity of the tissue is between 100 and
255.

36

Pixel intensity Category
0 Area outside cone
1-100 noise created by blood flow
100-255 Tissue

We know that a patch is extracted from the area outside the cone if all pixels are 0.
Likewise, if all pixels are between 1 and 100, the patch is most likely extracted from
the blood pool inside a heart chamber. Patches where all pixels have an intensity
less than 100 can therefore be discarded. Patches extracted from the tissue have
all pixel intensities between 100 and 255, which means that these patches can also
be discarded. Since the desired patches are extracted from areas around the walls
and valves, the patches need to contain pixels with intensities from both tissue
and blood. Informative patches are therefore extracted by setting a minimum
threshold for how many pixels need to be present from each category, and only
accept the patches that fulfill these demands. In figure 3.2.4a, examples of wanted
patches (green squares) and unwanted patches (red squares) are shown.

patch extraction using grid search

The patches that are used for testing are sampled using a grid to make it easier
for others to recreate our results later. Only the patches that satisfy the same
criteria as the patches selected randomly are accepted, which means that many
of the extracted patches will not be used. This is to ensure that the patches are
similar to the patches in the training set.

3.2.2 Find displacement vector

After finding an approved patch, the displacement vectors between the patch and
each of the landmarks are calculated. The displacement vector is calculated using
the center of the patch as the reference point. The displacement vector is given by

di = [∆xi,∆yi,∆zi]

where ∆x, ∆y and ∆z is the displacement in each axis. A displacement vector is
visualized in figure 3.2.4b.

37

(a)

(b)

Figure 3.2.4: 2D visualization of patches (a): The green box represents a patch
containing a sufficient amount of information, while the red boxes represent patches
which do not. (b): The landmark MA1 and the displacement vector between these
two

38

3.2.3 Patch classification

The purpose of the classification is to decide if an image patch contains a landmark
or not. There is one class for each of the landmarks, and one class for the patches
which does not contain any landmarks. Hence, the patches can be divided into
seven different classes, as shown in table 3.1. As mentioned, the size of the images
in the dataset varies. For large images, the landmarks are closer together. In
the figures in 3.2.5, the six landmarks in the data set are visualized. In the same
figures, potential patches of size 30x30x30 pixels are drawn in, with the correct
ratio between image size and patch size. The figures show that a patch can belong
to multiple classes. In figure 3.2.5a, both Coap and MA1 fit inside the patch, and
belong to class 1 and 5. In figure 3.2.5b, three landmarks fit into one single patch.
As mentioned in section 2.2.5, if the network needs to be able to classify a patch
to multiple classes, a sigmoid activation function must be applied in the last layer.

class Description
1 MA1
2 MA2
3 P
4 A
5 Coap
6 Ao
7 No landmark

Table 3.1: The different classes in the classification problem

3.3 Network architectures
To perform landmark detection, two very different architectures are tested, one
state of the art network with skip connections, called ResNet18, and one more
simple network which has shown to perform well on a similar task.

3.3.1 Fully convolutional neural network

The first network architecture is presented in Noothout et al. [21]. For data set
with patches of size 30x30x30, the last max pool layer is removed, and for patches
of size 60x60x60, the original network is used. The original network architecture
are shown in figure 1.2.6 on page 8, while the network architecture used for smaller
patches are shown in figure 3.3.6. The network uses multi-task learning, where the

39

(a) (b)

Figure 3.2.5: The six landmarks are represented as red dots. (a) show MA2, Coap
and MA1, and (b) show P, Coap, A and Ao. The black squares represent potential
patches. A patch can contain several landmarks, and therefore belong to multiple
classes

main task is to predict the six displacement vectors to each of the landmarks,
and the second task is the patch classification. The two tasks use hard parameter
sharing and share the first eight layers, which consists of six convolutional layers
and three max pool layers. All convolutional layers have kernel size 3x3x3, stride
1x1x1, and exponential linear unit used as activation function. After this, the
network split into two fully connected layers for each of the tasks. The fully
connected layer used to predict the displacement vector has a linear activation
function, and the fully connected layer for the classification uses a Sigmoid aviation
function.

3.3.2 ResNet18

The second network used in this thesis is 3D ResNet18. The network is a residual
network, as described in section 2.2.4, which consists of 18 3D convolutional layers.
The architecture are visualized in figure 3.3.7. The First layer is a 3D convolutional
layer with kernel size 3x7x7 and stride 1x2x2. Next, there are four different residual
blocks, where each block is repeated twice. All convolutional layers in the residual
blocks have kernel size of 3x3x3, stride 1x1x1, and ReLU as activation function,
but the number of layers increases when move deeper into the network. 3D batch

40

Figure 3.3.6: Fully convolutional neural network. Conv3D-xx denotes a 3D con-
volution where xx is the number of channels in the output. FC represents fully
connected convolutional layers.

normalization is applied between each convolutional layer, and dropout is used
after each residual block. As the network presented in the previous section, the
original ResNet18 is modified to include multi-task learning with hard parameter
sharing, by splitting the last layer of the network into two fully connected layers
with the six displacement vectors and a class label as output.

41

Figure 3.3.7: Illustration of layers in ResNet18. Conv3D-xxx denotes a 3D con-
volution where xxx is the number of channels in the output. FC represent fully
connected convolutional layers.

3.4 Loss function
Since our model provides two outputs, each task has separate loss functions. These
losses are added together before backpropagation.

3.4.1 Loss function for regression

From Noorhut et al. [21] and Zhang et al. [33], we know that we can expect the
patches far away from a landmark to give more inaccurate prediction compare to
patches close to a landmark [34]. This argues for weighting the loss function ac-
cording to the distance between the patch and the landmarks for avoiding patches

42

far away from making larger updates of the network parameters [21]. Patches with
large displacement vector are given a small weight, while the ones with smaller dis-
placement vector get a larger weight. For an image patch, the displacement vector
between the patch and a landmark is given by

di = [∆x,∆y,∆z]

Let dp be the predicted displacement vector and dt be the true displacement vector.
The weight is defined as:

wi = e−
||dt||
α (3.1)

||dti|| is the length of the displacement vector and α is a scaling coefficient. The
weight is combined with a regular Mean squared error loss as described in section
2.3.1. For a predicted displacement vector dpi and the true displacement vector dti,
the loss becomes

Loss =
1

6

N∑
i=1

= wi||dti − d
p
i ||2 (3.2)

For i = 1, ..., 6 landmarks.

3.4.2 Loss function for classification

One-hot encoding is used for the classifications. The output is then a vector
with six values, which represent each of the landmarks. The value is 1 if the
patch contains the landmark. If all indices are 0, the patch does not contain any
landmark. For the classification, binary cross-entropy loss is applied:

l(y, ŷ) = L = {l1, ..., ln}T (3.3)

where

ln = −(y ∗ log(ŷ + (1− y)log(1− ŷ)) (3.4)

for each element n = 1, ..., N in a batch. There is a large imbalance in the classes,
because the majority of the patches will not contain any landmarks. Therefore,
it is necessary to weight the cross-entropy loss accordingly, or else the network
will most likely overfit to predicting that no patches contain landmarks. For each
landmark i = 1, ..., 6, m denotes the number of patches that do not contain the
given landmarks. The weight wi is then given by:

wi =
m

number of patches in class i

43

which gives
W = [w1, w2, w3, w4, w5, w6]

The final loss is the binary cross-entropy loss multiplied with the weights:

Loss = L ∗W

3.5 Post possessing
Our model predicts displacement vectors and not final landmark, hence the output
need post-processing to estimate the landmarks. The post-processing is only ap-
plied to output from networks during validation and testing, and does not impact
the training process of the networks.

By sending a single image patch through the neural network, the output is six
vectors and a class label. The six vectors are the displacement vector between the
midpoint of the input patch and each landmark, MA1, MA2, P, A, Coap and Ao,
and the class label indicates if the patch contains one of the landmarks or not.
The output may look something like table 3.2 and 3.3.

x y z
MA1 6.254 -2.156 1.429
MA2 6.179 -1.818 1.891
P 7.365 -2.070 1.696
A 5.029 -1.771 1.391
Coap 5.679 -2.087 1.652
Ao 3.546 -1.355 0.965

Table 3.2: Displacement vectors between the midpoint of a patch, to each of our
six landmarks

.

44

Class Output
Patch contain MA1 0
Patch contain MA2 0
Patch contain P 0
Patch contain A 1
Patch contain Coap 1
Patch contain Ao 0

Table 3.3: Results from classification
.

The next step is to use the displacement vectors to calculate the actual landmarks.
Let us start by considering only one landmark. Given a patch p with index i, the
coordinates of the midpoint of the patch is given by:

pi = [xp, yp, zp]

and the estimated displacement vector from the input patch to a given landmark
in cartesian coordinates is given by:

dpi = [∆xpi ,∆y
p
i ,∆z

p
i]

At the end, use the midpoint of the patch and the displacement vector to calculate
the landmark by simply adding them together.

li = pi + dpi

This is done for all landmarks.

From each image, N patches are extracted. This means that N propositions for each
of the six landmarks is obtained. These are used to estimate the final prediction.
This can be done in several ways:

1. Use all N predictions and let the final prediction be the average of all pre-
dicted landmarks:

L =
N∑
i=1

1

N
li (3.5)

This is shown in figure 3.5.8.

45

2. Use all N predictions. Instead of letting all predictions weight in equal, the
prediction is weight based on its distance from the landmark, so that pre-
dicted landmarks from patches far away from a landmark get a low weight,
while the patches close to the landmarks are assigned larger weights. The
same weights as the ones applied to the loss function is used, but the pre-
dicted displacement vector is used instead of the true displacement vector:

L =

∑n
i wili∑n
i wi

(3.6)

where

wi = e−
||dpi ||
α

3. If present, only the patches containing a landmark is used to decide the
prediction for that specific final landmark

4. Only use the patches predicted to contain the landmark and let the final
landmark be a weighted mean of these predictions.

3.6 Evaluation of the model
The models provide two outputs, and two separate methods are needed for evalu-
ating each of them. The method for evaluating the predicted displacement vector
is the most important because that is the main task of the network. The classifica-
tion also needs evaluation because the results for classification will be used during
the final landmark prediction.

3.6.1 Evaluation of landmark detection

The best way to evaluate the regression, is to measure how far away our predicted
points are from the true points. A suitable metric is the euclidean distance. Given
the true landmark y = [x1, x2, x3] and predicted point ŷ = [x̂1, x̂2, x̂1] the L2 norm
is given by:

||y − ŷ||2 =
√

(x1 − x̂1)2 + (x2 − x̂2)2 + (x3 − x̂3)2

3.6.2 Evaluation of classification

The results from the classification can be divided into four categories:

46

Figure 3.5.8: Example of combining multiple MA1 predictions (blue dots) into a
single proposed landmark (red dot) using averaging

.

• True positive (TP): The patch contains the landmark and was predicted to
contain the landmark.

• True negative (TN): The patch does not contain the landmark, and the model
predicted the landmark not to contain the landmark.

• False positive (FP): The patch does not contain the landmark, but the model
predicted the patch to contain the landmark.

• False negative (FN): The patch contains the landmark but was predicted not
to contain the landmark.

The classification can be evaluated by looking at the precision, sensitivity and
specificity of the model. The sensitivity denotes the percentage of correctly clas-

47

sified objects, relative to the total amount of samples in the class:

sensitivity =
TP

TP + FN

A sensitivity equal to 0 indicates none of the patches containing a landmark was
detected, while sensitivity equal to 1 means that all were detected.

The precision denotes the percentage of patches classified to contain a landmark,
actually contain the landmark:

Precision =
TP

TP + FP

A high precision indicates few misclassifications to the given class. While a low
precision means that many patches were classified to a class, which they do not
belong to. Hence, it is possible to achieve high sensitivity and low precision at the
same.

The last measurement is specificity:

Specificity =
TN

TN + FP

The specificity denotes the percentage of patches predicted correctly not to con-
tain a given landmark, relative to the total number of patches not containing the
landmark.

3.6.3 Evaluation of accuracy for CT-fusion tool

After landmarks in ultrasound images and CT images are detected, the images are
registered in a common coordinate system by using an affine transform T . The
fiducial registration error (FRE) denotes how far the paired landmarks are apart
after registration:

FRE = ||T (lus)− lct||

where lus is the landmarks from the ultrasound images, lct is the landmarks from
the CT scan and T is estimated using lus and lct.

48

Chapter 4

Experiments and results

4.1 Classification
Before combining classification and regression in a neural network, the models
performance on classification without regression is tested. Precision, sensitivity
and specificity are examined for each landmark individually. The results for ResNet
are shown in table 4.1 and the fully convolutional neural network are shown in table
4.2.

MA1 MA2 P A Coap Ao
Precision 0.13 0.36 0.16 0.21 0.26 0.0
Sensitivity 0.64 0.21 0.44 0.8 0.8 0.0
Specificity 0.78 0.95 0.69 0.37 0.38 0.73

Table 4.1: Results from classification using ResNet

MA1 MA2 P A Coap Ao
Precision 0.10 0.11 0.08 0.06 0.10 0.04
Sensitivity 0.46 0.08 0.45 0.78 0.90 0.50
Specificity 0.78 0.96 0.69 0.37 0.39 0.73

Table 4.2: Results for classification using FCNN

49

4.2 Regression
The regression is also tested alone. The results of this test provide a point of
reference for evaluating whether adding classification and weighted loss improves
the results. The results in table 4.3 show the average euclidean error of all dis-
placement vectors in cm for each landmark. The average results for all landmarks
are shown in table 4.4.

MA1 MA2 P A Coap Ao
ResNet 12.44 13.03 12.26 11.91 8.722 16.295
FCNN 37.03 35.80 38.25 21.80 29.30 39.51

Table 4.3: Average euclidean error for regression in mm

4.3 Combining regression with classification and
weighted loss

Three tests will be performed:

1. Weighted MSE loss and excluded classification

2. Regular MSE loss and included classification

3. Weighted MSE loss and included classification

The results from each of the tests for both network architectures are shown in
table 4.4.

Weighted loss Classification Error ResNet error FCNN
no no 12.443 33.615
yes no 11.820 28.74
no yes 11.436 24.73
yes yes 11.073 22.10

Table 4.4: Average error for all networks. Error is denoted in mm

50

4.4 Predicting final landmark
In this section, only the model with the lowest error for the displacement vec-
tors were used, which was ResNet18 with weighted loss and classification. Four
techniques for deciding final landmarks were tested:

1. Use all N predictions and let the final prediction be the average of all pre-
dicted landmarks.

2. Let final landmark be a weighted mean from all N predictions. Patches close
to landmarks are weighted heavier.

3. Only the patches predicted to contain the landmark are used to decide the
final landmark.

4. Only the patches predicted to contain the landmark are used and the final
landmark are a weighted mean of these predictions.

Weight Classification Mean Median Min Max
no no 9.12 8.18 1.21 33.77
yes no 8.96 8.10 1.14 33.91
no yes 8.88 7.60 0.81 30.08
yes yes 8.78 7.48 0.79 26.77

Table 4.5: Results of final landmark detection. Error is denoted in mm

4.5 Visualization of final prediction
The image below is a sample from the test set, which represents the mean error.
The best and worst prediction is shown in table B.

Sample MA1 MA2 P A Coap Ao
3 8.5 6.36 8.53 8.83 5.75 9.18

51

52

Figure 4.5.2: Image from test set which represent average error

53

4.6 Effect of patch size
ResNet18 is tested on two different data sets to see if patch size affect the perfor-
mance of the network. The results for each dataset is shown in table 4.6.

Patch size MA1 MA2 P A Coap Ao
30x30x30 15.13 14.99 15.43 13.47 10.88 18.49
60x60x60 11.61 11.10 11.79 10.02 7.66 14.23

Table 4.6: Error for each data set. The error is denoted in mm

4.7 Application accuracy
An extra data set consisting of four ultrasound images with matching CT scans
were used to evaluate registration accuracy using the identified landmarks. These
images are labeled with 5 landmarks. Hence the ’Coap’ landmark is excluded.
The error of the predicted landmarks in the new data set is shown in table 4.7.
The fiducial registration error for each sample is shown in table 4.8. The fiducial
registration error for the true landmarks are also included in the same table.

sample MA1 MA2 P A Ao
1 8.342 7.621 8.383 9.362 13.68
2 12.50 10.30 12.65 21.92 40.22
3 4.030 4.279 3.282 4.389 14.83
4 2.666 3.251 4.696 5.587 7.795

Table 4.7: Error data set 2 in mm

Sample 1 2 3 4 Average
FRE predicted 1.21 6.17 2.66 2.24 3.11
FRE true 0.46 1.86 1.11 1.65 1.27

Table 4.8: Fiducial registration error for predicted and true landmarks. The error
is denoted in mm.

54

Chapter 5

Discussion

We have shown that convolutional neural networks can be used to predict the
location of anatomical landmarks in 3D ultrasound images. The best performing
model was ResNet18, with an average error of 11.073 mm. After applying post-
processing to the displacement vectors to predict the final landmark, the average
error was 8.78 mm. The purpose of the detected landmarks was to align ultrasound
images with CT scans. The fiducial registration error was 3.11 mm, 1.84 mm more
than the fiducial registration error for the true landmarks. As shown in figure
5.0.1, the accuracy of the predictions vary. Therefore, the method is not sufficient
enough for automatic landmark detection. However, the predictions can be used
as suggestions in a semi-automatic landmark detection application. Although the
predictions from semi-automatic model might need corrections, it is easier and
more efficient than finding the landmarks manually.

In this chapter, we will discuss how different design choices, such as patch size and
network architecture, affect the final results, what kind of limitation we are facing,
and how our model can be improved as further work.

5.1 Patch size
To examine how the patch size affects the training, two datasets where created.
The first dataset was created by extracting 1000 patches of size 30x30x30 pixels
from each image, while the second data set was created by extracting 125 patches

55

Figure 5.0.1: Error distribution for test set
.

of size 60x60x60. Due to memory constraints, it was not possible to create larger
datasets than this. The different patch sizes did not have a significant impact
on the final results, but the results provided by the dataset with patches of size
60x60x60 were slightly better. The accuracy of the classification was also better
with the larger patches. This is probably because the larger patches better capture
the structures of the heart.

5.2 Using convolutional neural networks for de-
tecting anatomical landmarks

Four different tests were performed for using convolutional neural networks for de-
tecting anatomical landmarks. The first tests used "regular" convolutional neural
networks for regression without classification or weighted loss to establish a base-
line. ResNet and a fully convolutional neural network (FCNN) were used. ResNet
performed better than FCNN.

In the second test, the regular MSE loss was replaced with a weighted MSE loss to
avoid inaccurate predictions from patches far away from the landmarks to make
significant updates on the weights. Weighting the MSE loss decreased the error
for both network architectures. This was expected, as this technique has shown to
lower errors in similar applications [33, 21]

56

The third test used multi-task learning by combining regression and classification.
A regular MSE loss were used for the regression. This technique decreased the
error slightly more than the weighted loss did. Before training the networks for re-
gression, the networks were also trained for classification alone, without achieving
any impressive results. Although the accuracy of the classification was still low af-
ter applying multi-task learning, combining classification and regression improved
the performance of both tasks.

The last test used multi-task learning combined with the weighted loss function.
Of all the models, this model performed the best. This method also gave the best
results in Noorhut et al.

The ResNet architecture generally performed better in all tasks, which indicates
that the model benefits from having more hidden layers and skip connection. In
Noorhut et al., they achieved excellent results using the fully connected neural
network. Although our problem is quite similar to the problem in this paper, the
fully convolutional neural network performed poorly on our data set. Unlike the
results in the paper, adding classification or weighted loss to the fully convolutional
neural network did not have a significant improvement in the results. A possible
explanation for this is the size of their dataset. In the paper, they extracted 10 000
patches of size 72x72x72 pixels from each image. Hence extracting more patches
might have improved the performance of the fully convolutional neural network.
More reasons for why our results are worse than the results in Noorhut et al. will
be discussed in section 5.4.

5.2.1 Deciding final landmark

After finding the model with the lowest average error for the predicted displace-
ment vectors, four methods for deciding the final landmark were tested. Predicting
the final landmark from an average point of all patches performed the worst of all
three methods. Figure 5.2.2 show the error made by the network against the dis-
tance between the patch and an arbitrary landmark. The figure shows that the
error increases approximately linearly with the distance, and that predictions from
patches far away is increasing the error of the final prediction. This lead us to the
next method, which was to let the final landmark be a weighted mean of the pre-
dicted points. Weighting patches according to their distance from the landmarks
decreased the error.

The third method was to let the landmark be a weighted mean of the predictions

57

from patches containing the landmark. Since the model predicts whether a patch
contains a landmark or not, the patches labeled to contain the landmark was used.
This reduced the error even further. The last method, which was to weight the
predictions classified to contain the landmarks, resulted in the lowest error.

Figure 5.2.2: Error of predicted displacement vectors plotted against the distance
between the landmark and the center of the patch

.

5.3 Errors made by the network
To better understand how the model can be improved, the errors made by the
network are examined.

5.3.1 Error in regression

In table B.5 in the appendix, the error for all landmarks in all images are listed.
Many of the predictions are close to the true landmark, with some exceptions.
In order to better understand what kind of errors the network is making, the
displacement vectors are examined more thoroughly. Figure 5.3.4 is a scatter plot
of true landmark (black dot) and predicted landmarks (colored dots) from two
predictions with small errors. The colour of the predicted landmarks in figure
5.3.4a and 5.3.4b indicates the distance between the patch and the landmark. In
a majority of the predictions, patches agree on where the landmark should be, like
shown in figure 5.3.4a. In the cases where the predictions are more scattered, the
predictions from patches close to the landmark give the most accurate predictions,
as shown in figure 5.3.4b.

58

(a) rotations of the different images denoted in radian
.

(b) error plotted against angle of image
.

(c) error plotted against size of image
.

Figure 5.3.3: data set statistics

59

Figure 5.3.6 shows all predictions of four landmarks in the test image with the
worst predictions. From the scatterplot, it is clear to see that the predictions
have a low variance. In these cases, the patches close to the landmarks do not
necessarily give more accurate predictions than patches further away.

As mentioned, there is a significant variation in the images in the dataset; some of
the images are large and show the entire heart, and some images are smaller and
show only the valves. The size of the images in the dataset varies from 187cm3

to 10192cm3, and 75% of the images are less than 2000cm3. Hence the smaller
images are more represented in the training set. The images also have different
orientations. The angle of the two planes containing A, P, Coap and Ao are shown
in the histogram in figure 5.3.3a. From the histogram, we see that a majority of
the images have the same rotation. To determine whether this affects the results,
the average error for each image is plotted against image size and angle. As seen
in figure 5.3.3, there is no significant correlation between error an image size, nor
angle.

Figure 5.0.1 shows the error distribution in the test set. The mean is marked with
a dotted line. The figure shows that the error distribution is right-skewed. The
median error was only 7.48, and 61.9 % of the landmarks were less the mean error.
Hence the mean error is increased by several outliers. The two images with the
largest error in the test set are shown in figure 2.4.2 and 2.4.3 in appendix B.4.
A "shadow" is visible at the top of the cone on both images. Moreover, this does
not seem to appear on any of the other images in the test set. This artifact might
explain why these two images have unusually large errors. Excluding these from
the data set would reduce the error by 1 mm. The patch selection algorithm should
eliminate patches containing a shadow, as the pixel intensities are zero in these
areas. The shadows are close to the valves. Hence the patch selection algorithm
discards patches close to the valves and landmarks, while patches further away
are approved. Since these patches make poorer predictions, the error is large for
landmarks from these images.

Although a predicted landmark has low error, it does not necessarily mean that
the prediction is good enough for the application. By looking at the predicted
landmarks, it is clear that some of the predicted landmarks are inside the heart
chamber, where there is no tissue. This is seen in, for example, the prediction of
coap in figure 4.5.2. The error of the prediction is only 5.75 mm, which is below
average. Handling points outside tissue is difficult for the CT fusion tool, and
these predictions will need corrections from humans.

60

(a) (b)

Figure 5.3.4: Predicted landmarks (colored dots) and true landmark (black dot)
for two landmarks in the in the test set. The color of the prediction indicate
distance between patch and landmark.

(a)
(b)

Figure 5.3.5: predicted landmarks (blue and red dots) and true landmark (black
dot) for the same landmarks as in figure 5.3.4. Red dots are patches predicted to
contain landmark and blue dots are patches predicted to not contain landmark.

61

(a) MA1 (b) MA2

(c) P (d) a

Figure 5.3.6: Predicted landmarks (colored dots) and true landmark (black dot).
The colour of the prediction indicate distance between patch and landmark. The
predictions are from image number 20 in the testset.

62

(a) MA1 (b) MA2

(c) P (d) A

Figure 5.3.7: Predicted landmarks (colored) and true landmark (black dot). Red
dots are patches predicted to contain landmark and blue dots are patches predicted
to not contain landmark. The predictions are the same as the predictions shown
in figure 5.3.6

63

5.3.2 Error in classification

Achieving high accuracy in the classification of patches turned out to be a difficult
task. Before combining classification and regression, the performance of the clas-
sification was tested alone. Combining regression and classification improved the
performance of the classification as well as the regression. Although using multi-
task learning increased the performance, the precision and specificity remain low.
Hence many of the patches without landmarks are classified to contain one and
patches containing landmarks are assigned to the wrong class. From the scatter-
plot in figure 5.3.5b and 5.3.7, we see that the majority of the wrong predictions
are patches which are close to the landmarks. Increasing the threshold for clas-
sification from 0.5 to 0.7 had a positive effect. However, increasing the threshold
further eliminated too many of the predictions.

5.4 Limitations
In the process of creating a model for automatic landmark detection in 3D car-
diovascular images, limitations which affect the model’s ability to produce precise
predictions were discovered:

5.4.1 Human error

A random selection of 19 images from the dataset has been selected and relabeled
with the six landmarks a second time. The differences between the true landmarks
represent the human error. The average human error for the six landmarks is shown
in table 5.1. The difference between the two rounds of labeling are visualized in
figure 5.4.8. The human performance provides a measurement of how large error
is expected from the model. For the dataset used in this thesis, the average human
error is 4.422 mm. It is challenging to train a model to have a smaller error than
humans relabeling data. To exceed the human error, additional methods must be
applied, like having the dataset relabeled by multiple experts.

Error MA1 MA2 P A Coap Ao
Mean 4.358 5.090 4.692 4.0176 4.111 4.267
Max 9.029 8.588 11.36 6.341 8.350 9.584
Min 0.402 1.683 0.686 1.351 0.986 1.898

Table 5.1: average, minimum and maximum human error for all six landmarks
denoted in mm

64

Human error also affects the accuracy of the classification. Since the position of
the landmark vary, which patches containing a landmark may also vary. Hence
the large human error indicates that our training set contains misclassifications.
This might explain the low classification specificity and why the network tends to
classify patches close to landmarks to contain the landmark.

5.4.2 Working with ultrasound images

Comparing the results with Noorhut et al., The error from our networks was larger,
although the tasks were similar. The different data might be a reason for this. For
the method in Norrhut et al., they used CTA scans. CTA scans provide images
that are more detailed than ultrasound images. Ultrasound images also contain
more noise compared to the CTA scans. The noise in ultrasound images obscures
the structures of the heart, which made it hard for even humans to detect the
landmarks, as shown in section 5.4.1.

The effect of the image quality has also been studied in "Understanding how
image quality affects deep neural networks" [7] by Samuel Dodge and Lina Karam.
They examined how different types of noise affected the results of classification.
Several network architectures were tested. In the paper, they discovered that
all convolutional neural network architectures were sensitive to noise, and adding
noise to images decreased the accuracy. When looking at the response of the
different layers for a regular image and compared it to responses of the same image
with Gaussian noise added, they discovered that small changes in the response in
the first layers caused significant changes in deeper layers, causing the errors.
Assuming that these results also apply to other tasks, like regression in our case,
it is fair to believe that the noise in the ultrasound images might limit the results
and explain why our overall results are worse than the results in Noorhut et al.
However, in Andreassen et al., they achieved an error of only 2 mm in landmark
detection in 3D ultrasound images. Hence, improving our model and obtain a
lower error should be possible.

5.5 Further work
There exist many methods for using convolutional neural networks for detecting
anatomical landmarks. We have only investigated some of them in this thesis, and
will review some methods that might have improved the results.

65

(a) (b)

(c) (d)

Figure 5.4.8: Two different labeling of the same image. a and b are from the original
dataset, while c and d are from the relabeled images. Error for the different points:
MA1: 6.03 mm, MA2 7.05 mm, P: 11.36 mm, A: 3.41 mm, Coap: 8.35 mm, Ao:
5.95 mm

5.5.1 improving the dataset

Due to memory constraints, we were only able to extract a limited number of
patches from each image. As the performance of a convolutional neural network

66

depends on having enough data for training, increasing the number of extracted
patches would probably improved performance.

5.5.2 Improving the model

In this thesis, only patch-based methods have been used, and network architec-
tures that use whole images as input has not been considered. A downside with
using a patch-based method is that these methods can be more time-consuming.
First, patches need to be extracted from the image. Then all patches must be sent
through the network before the final predicted landmark is calculated. In "Detect-
ing Anatomical Landmarks From Limited Medical Imaging Data Using Two-Stage
Task-Oriented Deep Neural Networks", they suggested using U-net with whole
images as input. U-net has proven to achieve high accuracy in several computer
vision task with 3D medical data and limited training samples. This network is
most commonly used for image segmentation, but have also been tested for land-
mark detection. The network first downsample the data using pooling layers, and
afterward upsampled again to the original size, which gives the network the u-
shape, as shown in figure 5.5.9. Instead of returning landmarks in the form of
coordinates, the network returns one heatmap for each point with the same size as
input. The values in the heatmap represent the probability that the corresponding
pixel in the input image is a landmark.

Another drawback of using a patch-based method is that these networks can only
model local information, such as the correlation between patches and landmarks
inside the patch [33]. When using the whole image as input and combining this
with a network where the deep layers have a large receptive field, like U-net, the
network can capture more global information. A drawback of using networks with
whole images as input, such as U-net, is that these networks usually need more
layers to get a large field of view. This results in many weights that need training.
It should also be mentioned that the paper using this method had more training
data available; hence using this method might require more data.

In terms of applying multi-task learning to improve the performance of the net-
work, only patch classification has been used as a secondary task. Several other
tasks could have been used instead of classification. Other tasks are for example to
predict the position of the input patch or to estimate the two planes the landmarks
were extracted from. Another alternative is to add these tasks as third and fourth
tasks.

67

A last adjustment that could have improved the performance is to use more in-
formation from the data other than only the images. This information could, for
example, be the coordinates to the patches or size of the image. This would have
been added to the input as a fourth dimension. The additional information could
have helped the network to understand the input data better. Other information
that could have been utilized is the geometric relation between the landmarks.
The geometric relations could have been used in the post possessing. As the land-
marks belong to two planes, the network could have used the predicted landmarks
to estimate these two planes, and later project the predicted landmarks down on
these planes.

Figure 5.5.9: Original U-net from Ronneberg et al. [25]
.

5.5.3 Improving the loss function

For the regression, only mean squared error was used as loss function. Mean square
error is sensitive to outliers, So an alternative loss function could have been L1
loss:

L1(x, y) = |x− y|

68

Another good alternative to mean squared error is smooth L1 loss, which is a
combination of L1 loss and mean squared error.

smooth L1 loss(x, y) =

{
0.5(x− y)2 if |x− y| < 1

|x− y| − 0.5 otherwise

This loss function is better to use if the correct values have a large absolute value.
The squared error is used when the absolute error is less than one and an absolute
error otherwise, the smooth L1 loss is more likely to avoid exploding gradients.

5.5.4 Improving methodology for evaluating the model

From the human error in section 5.4.1, we know that the coordinates of the true
landmarks are highly inaccurate. As shown in table 5.1, the coordinates of a
landmark could potentially vary up to 1 cm. Hence evaluating the model by using
Euclidean distance might not be the best option. An alternative methodology for
evaluating the model is the percentage of correct keypoints. The method finds
the percentage of predicted landmarks within a reasonable distance from the true
landmark. Using this method requires a threshold for how large the distance
between true landmark and predicted landmark can become, for the prediction to
be good enough for the application. If a prediction is within this threshold, the
prediction is considered correct. The model is evaluated based on the percentage
of correct keypoints (PCK):

PCK =
Correct predictions

predictions

The challenge of using this method is to decide the threshold for labeling the
prediction as correct or not. For this application, the threshold is unknown, and
this threshold might also vary for each landmark, but an acceptable value to use
could be the maximum human error, which is 11.36 mm.

For evaluating the accuracy of the CT-fusion tool, only the fiducial registration
error is used. However, the target registration error (TRE) should also have been
included to assess the application accuracy. TRE denotes how far a paired points
without a landmark are apart after registration. TRE is given by the same equation
as FRE:

TRE = ||T (lus)− lct||

where lus is landmarks from the ultrasound image, and lct is landmarks from the
CT scan, and T is not estimated using lus and lct. Hence, an additional set of
points is needed.

69

5.5.5 Improving post-processing

Some of the landmarks are predicted to be in areas where there is no tissue. This
can be avoided by using information from patches and the belonging prediction
during post-processing. Landmark predictions outside tissue can be automatically
identified by looking at the pixel intensities surrounding the predicted coordinate.
If the pixel intensities are low, the predicted landmark is in the blood pool. If
the predicted landmark is identified to be outside the tissue, the landmark can be
re-predicted. A solution for re-predictions and avoiding predictions outside tissue
could be to eliminate all predictions which point outside tissue.

5.6 CT fusion tool
The purpose of the six landmarks was to align the ultrasound image with a CT
scan. Many of the predictions are close to the true landmarks, and the model
can be used for semi-automatic landmark detection. In practice, a semi-automatic
model means that the predictions are suggestions to the user. The landmarks will
need corrections for the tool to function optimally. However, this is less time-
consuming than finding the landmarks manually. In addition, the fiducial error is
low, with an average error of only 3.11 mm, which is only 1.84 mm worse than the
true error.

Sample 1 from the new dataset was used to test the CT-fusion tool. The error for
each of the predicted landmark in this sample was:

sample MA1 MA2 P A Ao
1 8.342 mm 7.621 mm 8.383 mm 9.362 mm 13.68 mm

The error of the landmarks in sample 1 was close to the average error for the
test set. The fiducial registration error for the predicted landmarks was 1.21 mm
and 0.46 mm for the true. A visualization of the true and predicted landmarks in
the CT-fusion tool are shown in 5.6.10. The difference between the images in the
CT-fusion tool is small. Hence he CT fusion tool works with predictions from our
model.

70

(a) True

(b) Predicted

Figure 5.6.10: CT-fusion tool for predicted and true landmarks

71

Chapter 6

Conclusion

Through this project, we have shown that convolutional neural networks can be
used for detecting anatomical landmarks in 3D cardiovascular images. This was
done by using a patch-based method. Two network architectures were tested,
ResNet and a fully convolutional neural network. Although the fully connected
neural network had proven to perform well in similar applications, ResNet provided
the best results. For the patch-based method, two datasets with different patch
sizes were used. Results showed that the different patch sizes affected the error of
the displacement vectors, and patches of size 60x60x60 pixels performed the best.

Two techniques were tested for improving the performance of the models. The
first technique was to include multi-task learning with hard parameter sharing
and classification as a secondary task. The second was to weight the loss function.
Each of the techniques improved the performance of the network, but combining
the two led to the lowest error. The average error for the displacement vectors
were then 11.073 mm.

After finding the displacement vectors created by the model, we experimented
with different methods for predicting the final landmark. As predictions from
patches far away from the landmarks were unreliable, only using the predictions
that were close to the landmarks resulted in the lowest error. The average error of
the final prediction was 8.78 mm. The error limits our model to a semi-automatic
landmark detection solution for the CT fusion tool. Furthermore, expanding the

72

post-processing to correct coordinates which misses on tissue would positionally
improve the predictions without needing to train a new model.

Several limitations for this application were discovered. The first limitation was the
small dataset. Applying more techniques for data augmentation is yet to be tested.
The second limitation is the noise in the ultrasound images obscures the structures,
which makes it hard for both networks and humans to detect the landmarks. We
discovered that the human error was 4.422 mm. Achieving a smaller error than
this is not possible with the current data set.

73

Appendix

74

Appendix A

Results from regression

Test 1: Regression with weighted MSE loss
MA1 MA2 P A Coap Ao

ResNet 11.55 12.30 11.88 10.94 8.78 15.47
FCNN 31.76 26.21 28.80 27.14 22.95 35.53

Table A.1: Results for regression with weighted MSE loss. Average euclidean error
in mm.

Test 2: Regression with regular MSE loss and classification
MA1 MA2 P A Coap Ao

ResNet 11.67 11.60 11.95 10.57 8.01 14.81
FCNN 24.41 25.04 24.71 24.54 20.53 29.16

Table A.2: Results for regression with regular MSE loss and classification. Average
euclidean error in mm.

75

Test 3: Regression with weighted MSE loss and classification
MA1 MA2 P A Coap Ao

ResNet 11.61 11.10 11.79 10.02 7.66 14.23
FCNN 20.67 22.37 23.24 20.69 18.87 26.75

Table A.3: Results for regression with weighted MSE loss and classification. Av-
erage euclidean error in mm.

76

Appendix B

Results from landmark detection

B.1 Final landmark detection
Mean of all predictions

MA1 MA2 P A Coap Ao
Mean 9.815 8.900 9.912 8.233 5.848 12.053
Min 1.507 1.210 3.319 1.493 1.337 2.851
Max 19.542 26.354 19.157 20.771 11.849 33.768

Table B.1: Mean of all predictions. Error in mm

Weighted mean of all predictions
MA1 MA2 P A Coap Ao

mean 9.734 8.914 9.884 8.153 5.740 11.790
Min 1.747 1.143 2.885 1.753 1.211 3.022
Max 19.741 26.186 19.458 20.82 11.080 33.909

Table B.2: Weighted mean of all predictions. Error in mm

77

Predict using patches containing the landmark
MA1 MA2 P A Coap Ao

Mean 9.724 9.139 9.844 7.915 5.301 11.373
Min 2.021 1.666 1.489 2.987 0.811 2.094
Max 20.676 23.549 20.160 20.128 10.702 30.084

Table B.3: Using classification for deciding final landmark. Error in mm

Weighted mean of patches containing the landmark
MA1 MA2 P A Coap Ao

Mean 9.655 9.070 9.742 7.844 5.261 11.105
Min 2.119 1.612 1.182 2.908 0.792 2.077
Max 20.845 23.118 19.014 19.014 10.665 26.776

Table B.4: Weighted mean of patches containing the landmark. Error in mm

78

B.2 Results for all images
Image MA1 MA2 P A Coap Ao
1 5.38 5.21 1.18 7.3 1.59 3.81
2 8.3 7.02 6.52 11.06 5.58 20.44
3 8.5 6.36 8.53 8.83 5.75 9.18
4 18.08 19.39 15.91 16.21 4.69 26.78
5 7.77 2.21 9.75 7.21 10.66 11.19
6 14.76 15.3 18.73 8.44 9.98 7.71
7 15.77 7.96 14.05 6.8 7.51 5.83
8 7.99 1.61 7.46 7.57 1.59 12.03
9 10.5 13.64 12.54 7.05 5.73 7.92
10 7.65 7.02 3.7 2.91 2.68 6.31
11 8.58 12.16 7.1 12.88 2.04 16.02
12 10.85 11.43 16.51 5.16 10.5 16.4
13 4.59 2.82 3.8 4.7 0.79 4.81
14 6.9 5.26 5.66 7.23 3.82 5.59
15 6.77 10.01 7.12 6.62 4.0 11.98
16 8.92 3.86 3.08 5.53 2.11 4.68
17 11.12 14.71 18.46 3.13 10.44 13.57
18 12.15 6.26 8.22 5.94 6.15 7.31
19 5.24 5.49 9.28 4.04 1.72 2.08
20 20.85 23.12 19.01 19.01 8.84 26.43
21 2.12 9.61 7.99 7.1 4.32 13.17

Table B.5: Results for all images in the test set

B.3 Best results
The image with the best predictions is shown below. the error is:

Image MA1 MA2 P A Coap Ao
13 4.59 2.82 3.8 4.7 0.79 4.81

79

80

Figure 2.3.1: Best prediction

81

B.4 Worst results
From the test set, there are two images with error wich pointed out as particularly
large. These images and the error of the predictions is shown below:

Image MA1 MA2 P A Coap Ao
20 20.85 23.12 19.01 19.01 8.84 26.43

82

83

Figure 2.4.2: Worst prediction 1

Image MA1 MA2 P A Coap Ao
4 18.08 19.39 15.91 16.21 4.69 26.78

84

85

Figure 2.4.3: Worst prediction 2

86

Appendix C

Results classification

Test 2: Regression with regular MSE loss and classification
MA1 MA2 P A Coap Ao

Precision 0.3964 0.1 0.2833 0.2833 0.5 0.1
Sensitivity 0.1393 0.0065 0.0494 0.0496 0.0937 0.0166
Specificity 0.9928 1.0 0.9943 0.9980 0.9980 1.0

Table C.1: Results of classification using ResNet

Test 3: Regression with weighted MSE loss and classification
MA1 MA2 P A Coap Ao

Precision 0.354 0.631 0.420 0.415 0.710 0.485
Sensitivity 0.988 0.884 0.944 0.994 0.890 0.929
Specificity 0.770 0.827 0.728 0.838 0.720 0.866

Table C.2: Results of classification using ResNet

87

Bibliography

[1] An Overview of Multi-Task Learning for Deep Learning. en.
https://ruder.io/multi-task/. Library Catalog: ruder.io. May 2017.

[2] B. S. Andreassen et al. “Mitral Annulus Segmentation Using Deep
Learning in 3-D Transesophageal Echocardiography”. In: IEEE Journal of
Biomedical and Health Informatics 24.4 (2020), pp. 994–1003.

[3] Best Practice Guide - Deep Learning.
https://www.researchgate.net/publication/332190148_Best_Practice_Guide_-
_Deep_Learning/references.

[4] Özgün Çiçek et al. “3D U-Net: Learning Dense Volumetric Segmentation
from Sparse Annotation”. In: arXiv:1606.06650 [cs] (June 2016).
arXiv: 1606.06650 [cs].

[5] Wikimedia Commons. File:Diagram of the human heart (cropped).svg —
Wikimedia Commons, the free media repository.
[Online; accessed 6-June-2020]. 2020.
url: https://commons.wikimedia.org/w/index.php?title=File:
Diagram_of_the_human_heart_(cropped).svg&oldid=415703023.

[6] CS231n Convolutional Neural Networks for Visual Recognition.
http://cs231n.github.io/convolutional-networks/.

[7] S. Dodge and L. Karam.
“Understanding how image quality affects deep neural networks”.
In: 2016 Eighth International Conference on Quality of Multimedia
Experience (QoMEX). 2016, pp. 1–6.

[8] Early Detection of Cardiovascular Disease - the Future of Cardiology?
https://www.escardio.org/Journals/E-Journal-of-Cardiology-
Practice/Volume-4/vol4n19-Title-Early-detection-of-cardiovascular-disease-
the-future-of-cardi.

88

https://arxiv.org/abs/1606.06650
https://commons.wikimedia.org/w/index.php?title=File:Diagram_of_the_human_heart_(cropped).svg&oldid=415703023
https://commons.wikimedia.org/w/index.php?title=File:Diagram_of_the_human_heart_(cropped).svg&oldid=415703023

[9] Mark Everingham et al.
“The Pascal Visual Object Classes (VOC) Challenge”. In: International
Journal of Computer Vision 88.2 (June 2010), pp. 303–338.
issn: 0920-5691, 1573-1405. doi: 10.1007/s11263-009-0275-4.
url: http://link.springer.com/10.1007/s11263-009-0275-4 (visited
on 05/27/2020).

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[11] Tushar Gupta. Deep Learning: Feedforward Neural Network. en.
https://towardsdatascience.com/deep-learning-feedforward-neural-network-
26a6705dbdc7.
Dec. 2018.

[12] Le Hou et al. “Patch-Based Convolutional Neural Network for Whole Slide
Tissue Image Classification”.
In: Proceedings. IEEE Computer Society Conference on Computer Vision
and Pattern Recognition 2016 (2016), pp. 2424–2433. issn: 1063-6919.
doi: 10.1109/CVPR.2016.266.

[13] Matthew HutsonMay. 3, 2018, and 11:15 Am.
AI Researchers Allege That Machine Learning Is Alchemy. May 3, 2018.
url: https://www.sciencemag.org/news/2018/05/ai-researchers-
allege-machine-learning-alchemy (visited on 06/09/2020).

[14] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift”.
In: arXiv:1502.03167 [cs] (Mar. 2015). arXiv: 1502.03167 [cs].

[15] Trond Linjordet and Krisztian Balog.
“Impact of Training Dataset Size on Neural Answer Selection Models”.
In: arXiv:1901.10496 [cs] (Jan. 2019). arXiv: 1901.10496 [cs].

[16] Ping Luo et al.
“Towards Understanding Regularization in Batch Normalization”.
In: arXiv:1809.00846 [cs, stat] (Apr. 2019).
arXiv: 1809.00846 [cs, stat].

[17] Wenjie Luo et al. “Understanding the Effective Receptive Field in Deep
Convolutional Neural Networks”. In: arXiv:1701.04128 [cs] (Jan. 2017).
arXiv: 1701.04128 [cs].

[18] Wenjie Luo et al. “Understanding the Effective Receptive Field in Deep
Convolutional Neural Networks”. en. In: (), p. 9.

89

https://doi.org/10.1007/s11263-009-0275-4
http://link.springer.com/10.1007/s11263-009-0275-4
http://www.deeplearningbook.org
https://doi.org/10.1109/CVPR.2016.266
https://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy
https://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1901.10496
https://arxiv.org/abs/1809.00846
https://arxiv.org/abs/1701.04128

[19] Kameswari Maganti et al.
“Valvular Heart Disease: Diagnosis and Management”.
In: Mayo Clinic Proceedings 85.5 (May 2010), pp. 483–500.
issn: 0025-6196. doi: 10.4065/mcp.2009.0706.

[20] Michael Nielsen. “Neural Networks and Deep Learning”. en. In: (), p. 224.

[21] Julia M. H. Noothout et al.
CNN-based Landmark Detection in Cardiac CTA Scans. 2018.
arXiv: 1804.04963 [cs.CV].

[22] Keiron O’Shea and Ryan Nash.
“An Introduction to Convolutional Neural Networks”.
In: arXiv:1511.08458 [cs] (Nov. 2015). arXiv: 1511.08458 [cs].

[23] Ravindra Parmar. Common Loss Functions in Machine Learning. en.
https://towardsdatascience.com/common-loss-functions-in-machine-
learning-46af0ffc4d23.
Sept. 2018.

[24] Priscilla J. Peters and Sean Reinhardt.
“The Echocardiographic Evaluation of Intracardiac Masses: A Review”. eng.
In: Journal of the American Society of Echocardiography: Official
Publication of the American Society of Echocardiography 19.2 (Feb. 2006),
pp. 230–240. issn: 1097-6795. doi: 10.1016/j.echo.2005.10.015.

[25] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
“U-Net: Convolutional Networks for Biomedical Image Segmentation”.
In: arXiv:1505.04597 [cs] (May 2015). arXiv: 1505.04597 [cs].

[26] Pablo Ruiz. Understanding and Visualizing ResNets. en.
https://towardsdatascience.com/understanding-and-visualizing-resnets-
442284831be8.
Apr. 2019.

[27] Rutger Ruizendaal.
Deep Learning #3: More on CNNs & Handling Overfitting. en.
https://towardsdatascience.com/deep-learning-3-more-on-cnns-handling-
overfitting-2bd5d99abe5d. Library Catalog: towardsdatascience.com.
Oct. 2018.

[28] Yang S. An Introduction to Gradient Descent. en.
https://towardsdatascience.com/an-introduction-to-gradient-descent-
c9cca5739307. Library Catalog: towardsdatascience.com.
Nov. 2019.

90

https://doi.org/10.4065/mcp.2009.0706
https://arxiv.org/abs/1804.04963
https://arxiv.org/abs/1511.08458
https://doi.org/10.1016/j.echo.2005.10.015
https://arxiv.org/abs/1505.04597

[29] Nitish Srivastava et al.
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”.
In: The Journal of Machine Learning Research 15.1 (Jan. 2014),
pp. 1929–1958. issn: 1532-4435.

[30] The Vanishing Gradient Problem - Towards Data Science.
https://towardsdatascience.com/the-vanishing-gradient-problem-
69bf08b15484.

[31] P. Viola and M. Jones.
“Rapid Object Detection Using a Boosted Cascade of Simple Features”.
In: Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001.
2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. CVPR 2001. Vol. 1.
Kauai, HI, USA: IEEE Comput. Soc, 2001, pp. I-511-I–518.
isbn: 978-0-7695-1272-3. doi: 10.1109/CVPR.2001.990517.
url: http://ieeexplore.ieee.org/document/990517/ (visited on
05/27/2020).

[32] Samir S. Yadav and Shivajirao M. Jadhav. “Deep Convolutional Neural
Network Based Medical Image Classification for Disease Diagnosis”.
In: Journal of Big Data 6.1 (Dec. 17, 2019), p. 113. issn: 2196-1115.
doi: 10.1186/s40537-019-0276-2.
url: https://doi.org/10.1186/s40537-019-0276-2.

[33] J. Zhang, M. Liu, and D. Shen.
“Detecting Anatomical Landmarks From Limited Medical Imaging Data
Using Two-Stage Task-Oriented Deep Neural Networks”. In: IEEE
Transactions on Image Processing 26.10 (Oct. 2017), pp. 4753–4764.
issn: 1057-7149. doi: 10.1109/TIP.2017.2721106.

[34] Jun Zhang et al. “Automatic Craniomaxillofacial Landmark Digitization
via Segmentation-Guided Partially-Joint Regression Forest Model and
Multiscale Statistical Features”. In: IEEE Transactions on Biomedical
Engineering 63.9 (Sept. 2016), pp. 1820–1829. issn: 1558-2531.
doi: 10.1109/TBME.2015.2503421.

[35] Yefeng Zheng et al. “3D Deep Learning for Efficient and Robust Landmark
Detection in Volumetric Data”. en. In: Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015.
Ed. by Nassir Navab et al. Vol. 9349.
Series Title: Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2015, pp. 565–572.

91

https://doi.org/10.1109/CVPR.2001.990517
http://ieeexplore.ieee.org/document/990517/
https://doi.org/10.1186/s40537-019-0276-2
https://doi.org/10.1186/s40537-019-0276-2
https://doi.org/10.1109/TIP.2017.2721106
https://doi.org/10.1109/TBME.2015.2503421

isbn: 978-3-319-24552-2 978-3-319-24553-9.
doi: 10.1007/978-3-319-24553-9_69.

92

https://doi.org/10.1007/978-3-319-24553-9_69

	List of Figures
	Introduction
	Motivation
	Related work

	Theory
	Feedforward neural networks
	Convolutional Neural Networks
	Activation functions
	Building a convolutional neural network
	Convolutional neural networks on three-dimensional data
	Residual networks
	Classification using convolutional neural networks

	Training a neural network
	Loss function
	Gradient descent
	Gradient decent with momentum
	Gradient descent with Nesterov momentum
	Training algorithm

	Overfitting and underfitting
	Batch normalization
	Multi-Task Learning
	Challenges of working with limited medical data
	Splitting dataset

	Method
	Data set
	Anatomical landmarks
	Dividing data into training, testing and validation set

	Patch based learning
	Prepossessing of data
	Find displacement vector
	Patch classification

	Network architectures
	Fully convolutional neural network
	ResNet18

	Loss function
	Loss function for regression
	Loss function for classification

	Post possessing
	Evaluation of the model
	Evaluation of landmark detection
	Evaluation of classification
	Evaluation of accuracy for CT-fusion tool

	Experiments and results
	Classification
	Regression
	Combining regression with classification and weighted loss
	Predicting final landmark
	Visualization of final prediction
	Effect of patch size
	Application accuracy

	Discussion
	Patch size
	Using convolutional neural networks for detecting anatomical landmarks
	Deciding final landmark

	Errors made by the network
	Error in regression
	Error in classification

	Limitations
	Human error
	Working with ultrasound images

	Further work
	improving the dataset
	Improving the model
	Improving the loss function
	Improving methodology for evaluating the model
	Improving post-processing

	CT fusion tool

	Conclusion
	Results from regression
	Results from landmark detection
	Final landmark detection
	Results for all images
	Best results
	Worst results

	Results classification

