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a b s t r a c t

Little is known about the brain’s functional organization during resting-state in children

with Tourette syndrome (TS). We aimed to investigate this with a specific focus on the role

of comorbid attention-deficit/hyperactivity disorder (ADHD). We applied graph theoretical

analysis to resting-state functional magnetic resonance imaging data of 109 8-to-12-year-

old children with TS (n ¼ 46), ADHD without tics (n ¼ 23), and healthy controls (n ¼ 40). First,

we compared these three groups, and in a second comparison four groups, distinguishing

TS with (TS þ ADHD, n ¼ 19) and without comorbid ADHD (TS�ADHD, n ¼ 27). Weighted

brain graphs were constructed for both comparisons to investigate global efficiency, local

efficiency, and clustering coefficient per acquired network. Local efficiency and clustering

coefficient were significantly lower in children with TS�ADHD in the default mode

network compared with healthy controls, and in the frontoparietal network compared with

ADHD; we also found associations with higher tic severity. Our study supports a different

functional brain network organization in children with TS�ADHD, compared with healthy

controls and children with ADHD.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction
Tourette syndrome (TS) is a childhood-onset disorder, char-

acterized by the presence of multiple motor and at least one

vocal tic that have persisted for more than one year

(Diagnostic and Satistical Manual of Mental Disorders, 2013).

In recent years, the notion that neurodevelopmental disorders

are associatedwith abnormal functional connectivity in large-

scale brain networks has gained widespread acceptance

(Zhang & Raichle, 2010). Resting-state functional magnetic

resonance imaging (fMRI) captures undirected brain activity

unrelated to a particular task, which enables the investigation

of the full organization of the brain (Van den Heuvel &

Hulshoff-Pol, 2010), and has been one of the fastest growing

fields in neuroimaging over the past decade, applied in a va-

riety of psychiatric disorders (Oldehinkel, Francx, Beckmann,

Buitelaar, & Mennes, 2013; Rosazza & Minati, 2011). In TS,

existing functional resting-state studies so far found signifi-

cantly altered connectivity in frontoparietal areas relative to

healthy controls (Church et al., 2009; Fan et al., 2018); these

areas are implicated in multitasking and are thought to have

an inhibitory role during inappropriate responses (Dosenbach

et al., 2007). Additionally, a recent resting-state study in adults

with TS observed low functional connectivity specifically in

the default mode network, implicated in task-independent

introspection or ‘mind wandering’, compared to healthy

controls (Fan et al., 2018). However, despite the increasing use

of resting-state studies, the functional brain organization in

children with TS remains largely unknown given the sparse

number of studies to date.

Recently, graph theoretical analysis emerged as an

increasingly popular method for analyzing resting-state fMRI

data, as it provides a powerful mathematical framework for

the characterization of connections of brain functional net-

works (Bullmore & Sporns, 2009; Power et al., 2011). Brain

networks are thought to be organized according to small-

world architecture, depending on the developmental stage

(Fair et al., 2009). Overall, anatomically close brain regions

(nodes) have more connections (edges) than distant nodes,

thereby satisfying the competitive demands of brain networks

in information processing (Bullmore & Sporns, 2009). There-

fore, graph theoretical analysis might be an important tool to

unravel the underlying neural mechanisms of TS by investi-

gating possible deviances in the topological brain

organization.

Only a few existing resting-state studies to date used graph

theoretical analysis to investigate the topological brain orga-

nization in TS. Studies that used graph theoretical analysis

showed alterations in different networks of the brain

compared with healthy controls. For instance, recently, Wen

et al. (2018) observed a disrupted functional network organi-

zation in children and adolescents with TS relative to healthy

controls in the default-mode areas. Furthermore, Church et al.

(2009) observed an abnormal pattern of functional connec-

tions in the frontoparietal network in childrenwith TS relative

to age-matched healthy controls, suggesting an immature

functional brain organization. Relatedly, Worbe et al. (2012)

found functional changes in cortico-basal ganglia networks

in adult TS patients compared with healthy adults. Overall,
there seems to be evidence for an atypical topological brain

organization in TS, especially in the default mode network

and frontoparietal network.

However, the few existing studies are hampered by

methodological challenges, making it difficult to compare

between studies, such as the use of small sample sizes and

wide age ranges. As the topological organization of the brain is

thought to be dependent on the developmental stage (Fair

et al., 2009; Power et al., 2011), brain organization investi-

gated in adults may not be representative for the TS patient in

childhood. Perhaps even more important, studies so far did

not take attention-deficit/hyperactivity disorder (ADHD) co-

morbidity into account. This is a particular concern, as co-

morbid ADHD, occurring in about 50% of individuals with TS

(Hirschtritt et al., 2015), is thought to play a predominant role

in TS with regard to the functional organization of the brain.

Indeed, in resting-state studies, similar deviant connectivity

patterns in TS were found, specifically in the default mode

network and frontoparietal network, in children with ADHD

(without tics) in comparison with healthy controls

(Castellanos et al., 2008; Marcos-Vidal et al., 2017; Tao et al.,

2017). Currently, it remains unclear to what extent children

with TS and ADHD show similar or dissimilar functional brain

connectivity patterns as shown by the topological organiza-

tion of the brain, and whether the frequently comorbid ADHD

symptoms in TS might underlie possible functional connec-

tivity abnormalities in TS versus controls or ADHD without

tics.

In the present study, we therefore investigated the func-

tional brain organization in 8-12-year-old children with TS

with and without comorbid ADHD, ADHD without tics, and

healthy controls. The age range of 8e12 years was chosen as

tics are most prevalent at that age (Cohen, Leckman, & Bloch,

2013). We analyzed the data in two sets: first, we compared

three groups of children: with TS irrespective of ADHD co-

morbidity, with ADHD without tics, and healthy controls; to

allow for comparisons with the existing literature. Second, we

compared four groups, distinguishing between TS with and

without comorbid ADHD. We hypothesized that comorbid

ADHD in TS would drive dissimilarities between TS and

healthy controls, specifically, lower functional connectivity in

the default mode network and frontoparietal network. Addi-

tionally, we investigated the graph measures in relation to tic

and ADHD symptom severity. Due to the paucity of previous

studies, we did not restrict our analyses to particular brain

regions, but adopted a data-driven, whole-brain approach,

using one of the largest sample sizes in a pediatric population

to date.
2. Methods

We here report how we determined our sample size, all data

exclusions, all inclusion/exclusion criteria, whether inclu-

sion/exclusion criteria were established prior to data analysis,

all manipulations, and all measures in the study. The condi-

tions of our ethics approval do not permit public archiving of

individual anonymized study data. Readers seeking access to

the data should contact the Donders Institute for Brain,

https://doi.org/10.1016/j.cortex.2020.01.006
https://doi.org/10.1016/j.cortex.2020.01.006
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Cognition and Behaviour, Radboud University Medical Center.

Access will be granted to named individuals in accordance

with ethical procedures governing the reuse of sensitive data.

There are no further conditions.

2.1. Participants

A total of 128 children aged 8e12 years participated in this

study, of whom 109 with usable functional resting-state data,

including a group of children with TS (n ¼ 46; n ¼ 19 of whom

had comorbid ADHD), with ADHD (n ¼ 23), and healthy con-

trols (n ¼ 40). Nineteen children were excluded from the an-

alyses due to excessive head motion (n ¼ 12), low scan quality

(n ¼ 6), or an incidental finding (n ¼ 1). There were no differ-

ences in group or symptom scores (tics or ADHD) between

included and excluded children. The sample size was a priori

determined. Affected children were recruited via child and

adolescent psychiatry and neurology clinics and patient or-

ganizations throughout the Netherlands; healthy controls

were recruited through local elementary schools. Inclusion

criteria for the participants included Caucasian decent, as this

study was part of a genetic cohort (see (Naaijen et al., 2016)),

IQ > 70, no past or present head injuries, neurological disor-

ders or major physical illness. Comorbid psychiatric condi-

tions in TS and ADHD were allowed, except for obsessive-

compulsive disorder (OCD) in the ADHD group, as this group

was also part of a study on OCD (Naaijen et al., 2016). Healthy

controls had to be free of any psychiatric disorder, as

confirmed by the parent-administered Kiddie Schedule for

Affective Disorders and Schizophrenia (K-SADS; https://www.

pediatricbipolar.pitt.edu/resources/instruments (Kaufman

et al., 1997)) based on DSM-IV-TR (Diagnostic and Satistical

Manual of Mental Disorders, 2000) criteria administered to

the parents, and by scores in the normal range on the Child

Behavior Checklist and Teacher Report Form (CBCL and TRF;

https://www.aseba.nl/home (Achenbach & Rescorla, 2001)).

No part of the study procedureswas pre-registered prior to the

research being conducted. Children were asked to refrain

from using stimulant medication 48 h prior to the testing day,

which is an often-used wash-out period for stimulant drugs

(Spencer et al., 2014), whereas other types of medication were

allowed. Written informed consent was provided by the par-

ents/guardians of the participant and by the child if 12 years of

age; younger children provided oral assent. The study was

approved by the regional ethics board (CMO Region Arnhem-

Nijmegen).

2.2. Procedures and clinical measures

Diagnostic interviews, neuropsychological and fMRI assess-

mentswere carried out by trained investigators and took place

during a single day. A chronic tic diagnosis according to DSM-

IV-TR (Diagnostic and Satistical Manual of Mental Disorders,

2000) criteria was confirmed using the Yale Global Tic

Severity Scale (YGTSS; https://www.kenniscentrum-kjp.nl/

wp-content/uploads/2019/06/Vragenlijst-YGTSS-DCI.pdf

(Leckman et al., 1989)), a semi-structured clinician-rated in-

strument that provides an inventory of the various past week

motor and vocal tics (range 0e50). The clinical-rated Child-

ren’s Yale-Brown Obsessive-Compulsive Scale (CY-BOCS;
https://www.nji.nl/nl/Download-NJi/CY-BOCS-Vragenlijst-

2009.pdf (Scahill et al., 1997)) was used to assess comorbid

OCD. A clinical diagnosis of ADHD was confirmed by the K-

SADS (Kaufman et al., 1997) based on DSM-IV-TR criteria.

Moreover, all children with ADHD fell in the clinical range (all

scores above the 97th percentile) as assessed by the TRF

(Achenbach & Rescorla, 2001). Furthermore, the K-SADS was

used to establish a diagnosis of oppositional defiant disorder

(ODD) and conduct disorder (CD). To rate ADHD symptom

count, the Conners’ Parent Rating Scale e Revised Long

version was used (CPRS-RL; https://mhs.com (Conners,

Sitarenios, Parker, & Epstein, 1998)), capturing 18 DSM-IV-TR

based ADHD symptoms (range 0e18).

2.3. MRI data acquisition

All children were scanned with a 3T Siemens Prisma scanner

(Siemens, Erlangen, Germany) at the Donders Centre for

Cognitive Neuroimaging in Nijmegen. The participants were

allowed to practice in a dummy scanner. During scanning the

lights were dimmed and a fixation cross was shown. Children

were asked to lie still, not to fall asleep, and to keep their eyes

open. Their heads were stabilized with cushions and tape to

minimize movement during scanning. Tics were not moni-

tored during the scanning. Nomore than one resting state run

was acquired per person.

Anatomical images were acquired using a T1-weighted

magnetization prepared rapid gradient echo (MPRAGE)

sequence (TR ¼ 2300 ms; TE ¼ 2.98 ms; TI ¼ 900 ms; Field of

View ¼ 256 mm; flip angle ¼ 9�; slice thickness ¼ 1.20 mm; in

plane resolution 1.2 mm; T1 ¼ 900 ms; acquisition time

5:30 min). The T2-weighted functional images during rest

were acquired with a Multi-Echo Planar imaging sequence

(TR ¼ 2300 ms; TE1 ¼ 12 ms; TE2 ¼ 28.41 ms, TE3 ¼ 44.82 ms;

flip angle¼ 80�; matrix size 64� 64; Field of view¼ 240mm; 33

axial slices; descending slice acquisition; slice

thickness ¼ 3.8 mm with 10% gap, 215 volumes; in-plane

resolution ¼ 3.8 mm; bandwidth ¼ 2442 Hz/pixel; iPAT factor

2; acquisition time 8:24 min).

2.4. Preprocessing of functional MRI images

First, functional images were converted to three Nifti filesets

(one per TE) using dcm2nii (https://www.nitrc.org/projects/

dcm2nii/; version 2may2016 (Rorden, Karnath, & Bonilha,

2007)). Subsequently, we applied multi-echo independent

component analysis (ME-ICA, https://github.com/ME-ICA/me-

ica; meica.py script version 2.5 (Kundu et al., 2013)) as a first

step in denoising the BOLD signal without normalization op-

tions. This promising method has been demonstrated to

remove complex non-BOLD artifacts, such asmotion, by using

TE dependence as a measure of BOLD signal (Kundu et al.,

2013; Power et al., 2018), and allow a better separation of

signal and noise in the time series (Power et al., 2018;

Satterthwaite et al., 2019). The images were spatially real-

igned to correct and investigate residual head motion

following ME-ICA, and subsequently co-registered to the

anatomical T1 image of the subject. The images were

normalized using DARTEL in SPM12 (WellcomeDepartment of

Imaging Neuroscience, London, UK). DARTEL allows

https://www.pediatricbipolar.pitt.edu/resources/instruments
https://www.pediatricbipolar.pitt.edu/resources/instruments
https://www.aseba.nl/home
https://www.kenniscentrum-kjp.nl/wp-content/uploads/2019/06/Vragenlijst-YGTSS-DCI.pdf
https://www.kenniscentrum-kjp.nl/wp-content/uploads/2019/06/Vragenlijst-YGTSS-DCI.pdf
https://www.nji.nl/nl/Download-NJi/CY-BOCS-Vragenlijst-2009.pdf
https://www.nji.nl/nl/Download-NJi/CY-BOCS-Vragenlijst-2009.pdf
https://mhs.com
https://www.nitrc.org/projects/dcm2nii/
https://www.nitrc.org/projects/dcm2nii/
https://github.com/ME-ICA/me-ica
https://github.com/ME-ICA/me-ica
https://doi.org/10.1016/j.cortex.2020.01.006
https://doi.org/10.1016/j.cortex.2020.01.006
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groupwise normalization by iteratively defining an average

template, based on all children in the three groups

(3 � 3 � 3 mm isotropic voxels). This template is registered to

MNI space, allowing the transformations to be combined so

that all the individual spatially normalized scans can also be

brought into MNI space. To remove sources of spurious vari-

ance, we applied regression of nuisance variables per gray-

matter voxel, incorporating six rigid body head motion pa-

rameters, the global signal, white-matter (WM) signal, and

cerebrospinal fluid (CSF) signal. To obtain the WM and CSF

signals, we performed segmentation to create masks and

extracted the first eigenvariate from the time-series of the

included voxels. Thereafter, a bandpass filter was applied

using a butterworth 9th order filter between .008 and .08 Hz.

Smoothing was applied using a 4 mm full-width-at-half-

maximum Gaussian kernel. Furthermore, we checked if vol-

ume censoring (scrubbing) was necessary as previously

described in Power et al. (2012, 2018) to further minimize

motion-related effects. Frame-by-frame head displacement

(FD) was calculated from realignment estimates, and frame-

by-frame signal change was calculated from the functional

connectivity image generated after functional connectivity

preprocessing. FD is calculated as the root of the sum of the

squared derivatives of themovement parameters per volume,

while DVARS is calculated as the root mean square of the

derivatives of the time series across voxels included in the

whole-brainmask per volume (Power et al., 2012). No volumes

exceeded FD > .2 mm and/or DVARS >.5% (Power et al., 2012,

2018), thus no additional steps were necessary. Finally, we

performed global signal regression, as this has shown to be an

important denoising step for mitigating motion artifact

(Power et al., 2018; Satterthwaite et al., 2019).

2.5. Group comparisons and network construction

We performed two sets of analyses. In the first set of our an-

alyses, we compared children with TS (n ¼ 46; irrespective of

ADHD comorbidity), ADHD (n ¼ 23), and healthy controls

(n ¼ 40). In the second set, we compared four groups

(TS�ADHD n ¼ 27, TS þ ADHD n ¼ 19, ADHD n ¼ 23, healthy

controls n ¼ 40). The following steps were performed for each

set.

In order to perform network statistics, brain parcellations

were applied based on Power et al. (2011) yielding 264 regions

of interest (ROIs) with 5 mm radius. To construct a connec-

tivity matrix per subject, the regional mean time series for

each of the 264 ROIs were extracted and Pearson correlations

were calculated between all pairs. Correlations were set to

zero if the distance between the centers of two ROIs was less

than 20 mm (Geerligs, Renken, Saliasi, Maurits, & Lorist, 2015;

Power et al., 2011; Servaas et al., 2015).

To enhance the contrast between strong and weak con-

nectivity values, an optimal threshold was calculated using

the method as described in Geerligs et al. (2015). First, corre-

lation matrices were binarized using a range of proportional

threshold values (retaining strongest .1% to the strongest 3%

of connections, with an increment of .01%). Second, these

matrices were averaged across subjects per threshold and the

entropy was calculated for each of them to indicate for which

threshold the edges showed the largest stability information-
wise (lowest entropy). These results were compared to the

results obtained via randomized matrices (for details, see

(Geerligs et al., 2015)). The optimal threshold is the threshold

where the original matrix shows the largest stability across

subjects (lowest entropy) and where the difference in entropy

is the largest between the original matrix and the average of

the randomized matrices.

The optimal threshold for both analyses in our study was

.0132. To achieve the optimal modular structure using the

threshold of .0132, we first partitioned the nodes into net-

works, using the algorithm of Blondel, Guillaume, Lambiotte,

& Lefebvre (2008), wherein nodes are divided in groups with

a maximum number of within-group edges and a minimum

number of between-group edges. This calculation was

repeated 1000 times to increase the chance of escaping local

maxima. Second, we applied the modularity fine-tuning al-

gorithm of Sun, Danila, Josi�c, & Bassler (2009), wherein nodes

are randomly assigned to other modules until modularity no

further improves.

2.6. Graph metrics

Graph metrics (i.e., global efficiency, local efficiency and

clustering coefficient) were calculated on weighted graphs for

each network individually per group using the selected

threshold, by using functions from the Brain Connectivity

Toolbox (www.brain-connectivity-toolbox.net(Rubinov &

Sporns, 2010)). We specifically chose for measures that are

frequently used, to allow for comparisons with the literature.

2.6.1. Global efficiency
The global efficiency is the average inverse shortest path

length (Latora & Marchiori, 2001). A short path length in-

dicates that, on average, each node can reach other nodes

with a path composed of only a few edges (Rubinov & Sporns,

2010). Thus, the global efficiency is one of themost elementary

indicators of integration (i.e., the degree to which the network

can share information between distributed regions).

2.6.2. Local efficiency
Local efficiency was measured as the average inverse shortest

path length between a node and its direct neighbors (Rubinov

& Sporns, 2010), which indicates the average efficiency of in-

formation transfer within neighborhoods.

2.6.3. Clustering coefficient
The clustering coefficient represents the fraction of triangles

around a node and is equivalent to the fraction of the node’s

neighbors that are neighbors of each other (Rubinov& Sporns,

2010), thus indicating how close its neighbors tend to cluster

together (Watts & Strogatz, 1998). Accordingly, the average

clustering coefficient is considered as a direct measure of its

segregation (i.e., the degree to which the network is organized

into local specialized regions (Bullmore & Sporns, 2009)).

The measures chosen are indicative of how well children

can process information within networks, i.e., how efficient

they are in transferring information to neighboring regions

(local efficiency) and remote regions (global efficiency), and

how well they can process specialized information within

densely interconnected groups of nodes (clustering

http://www.brain-connectivity-toolbox.net
https://doi.org/10.1016/j.cortex.2020.01.006
https://doi.org/10.1016/j.cortex.2020.01.006


T
a
b
le

1
e

G
ro

u
p
ch

a
ra

ct
e
ri
st
ic
s.

H
C
(n

¼
4
0
)

T
S
(n

¼
4
6
)

T
S
e
A
D
H
D
(n

¼
2
7
)

T
S
þ

A
D
H
D
(n

¼
1
9
)

A
D
H
D
(n

¼
2
3
)

T
e
st

S
ta
ti
st
ic

p
-v
a
lu
e

D
ir
e
ct
io
n

M
a
le

se
x
,
n
(%

)
3
0
(7
5
)

4
0
(8
7
)

2
5
(9
2
.6
)

1
5
(7
8
.9
)

1
6
(6
9
.6
)

c
2
¼

3
.5
1
a

p
<
.0
1

T
S
>
A
D
H
D

c
2
¼

3
.5
2
a

p
<
.0
1

T
S
-A

D
H
D

>
A
D
H
D

IQ
(r
a
n
g
e
)

1
0
6
.3

±
1
2
.3

(8
0
.6
e
1
2
9
.1
)

1
0
4
.8

±
1
2
.0

(8
0
.6
e
1
2
7
.7
)

1
0
5
.9

±
1
2
.4

(8
0
.6
e
1
2
7
.7
)

1
0
3
.4

±
1
1
.6

(8
4
.8
e
1
2
3
.6
)

1
0
2
.8

±
1
2
.8

(7
0
.9
e
1
2
3
.6
)

A
g
e
,
Y
e
a
rs

1
0
.9

±
1
.0

1
0
.7

±
1
.3

1
0
.7

±
1
.3

1
0
.7

±
1
.4

1
1
.0

±
1
.3

T
ic

se
v
e
ri
ty

e
2
2
.5

±
8
.5

2
1
.1

±
7
.5

2
4
.5

±
9
.5

e
.

A
D
H
D

sy
m
p
to
m

co
u
n
t

.6
±
1
.3

6
.9

±
4
.6

4
.7

±
3
.8

1
0
.0

±
3
.8

9
.4

±
4
.2

F
¼

5
4
.8
4
b

p
<
.0
1

T
S
>
H
C

T
S
-A

D
H
D

>
H
C

T
S
þ

A
D
H
D

>
H
C

A
D
H
D

>
H
C

T
S
þ

A
D
H
D

>
T
S
-A

D
H
D

A
D
H
D

>
T
S
-A

D
H
D

C
o
m
o
rb

id
d
ia
g
n
o
se

s

O
C
D
,
n

0
1
0

6
4

0

O
D
D
/C

D
,
n

0
2

1
1

2

M
e
d
ic
a
ti
o
n

0
6

3
3

3

V
a
lu
e
s
p
re
se

n
te
d
a
s
n
,
p
e
rc
e
n
t
o
r
m
e
a
n
±
st
a
n
d
a
rd

d
e
v
ia
ti
o
n
.
H
C
,
h
e
a
lt
h
y
co

n
tr
o
ls
;
T
S
,
T
o
u
re
tt
e
sy

n
d
ro

m
e
;
A
D
H
D
,
a
tt
e
n
ti
o
n
-d

e
fi
ci
t/
h
y
p
e
ra

ct
iv
it
y
d
is
o
rd

e
r;

T
S
-A

D
H
D
,
T
S
w
it
h
o
u
t
co

m
o
rb

id
A
D
H
D
;

T
S
þ

A
D
H
D
,
T
S
w
it
h

co
m
o
rb

id
A
D
H
D
;
O
C
D
,
o
b
se

ss
iv
e
-c
o
m
p
u
ls
iv
e
d
is
o
rd

e
r;

O
D
D
/C

D
,
o
p
p
o
si
ti
o
n
a
l
d
e
fi
a
n
t
d
is
o
rd

e
r/
co

n
d
u
ct

d
is
o
rd

e
r.

T
ic

se
v
e
ri
ty

a
ss
e
ss
e
d

b
y
th

e
Y
a
le

G
lo
b
a
l
T
ic

S
e
v
e
ri
ty

S
ca

le

(L
e
ck

m
a
n
e
t
a
l.
,1

9
8
9
)(
ra
n
g
e
0
e
5
0
);
A
D
H
D

sy
m
p
to
m

co
u
n
t
a
ss
e
ss
e
d
b
y
th

e
C
o
n
n
e
rs
’P

a
re
n
t
R
a
ti
n
g
S
ca

le
e
R
e
v
is
e
d
L
o
n
g
(C
o
n
n
e
rs

e
t
a
l.
,1

9
9
8
)
(r
a
n
g
e
1
e
1
8
).
M
e
d
ic
a
ti
o
n
d
e
n
o
te
s
th

e
n
u
m
b
e
r
o
f
ch

il
d
re
n

w
h
o
w
e
re

u
si
n
g
m
e
d
ic
a
ti
o
n
d
u
ri
n
g
th

e
te
st
in
g
d
a
y
.
B
e
tw

e
e
n
-g
ro

u
p
d
if
fe
re
n
ce

s
w
e
re

te
st
e
d
b
y
a

a
P
e
a
rs
o
n
’s

ch
i-
sq

u
a
re
d
te
st

fo
r
m
a
le
s,

a
n
d

b
a
n
a
n
a
ly
si
s
o
f
v
a
ri
a
n
ce

fo
r
A
D
H
D

sy
m
p
to
m

co
u
n
t;
N
o
n
-

si
g
n
ifi
ca

n
t
re
su

lt
s
a
re

n
o
t
sh

o
w
n
.

c o r t e x 1 2 6 ( 2 0 2 0 ) 6 3e7 2 67
coefficient). By selecting these graph measures, we may un-

ravel to what extent the information processing of children

with TS and ADHDwithin networks are similar, and whether

the frequently comorbid ADHD symptoms in TS might un-

derlie possible atypical information processing in TS versus

controls or ADHD without tics.

2.7. Statistical analysis

Differences in group characteristics were tested by an anal-

ysis of variance (ANOVA) for IQ, tic severity and ADHD

symptom count, the non-parametric ManneWhitney U test

for age, and a Pearson’s chi-square (c2) test for sex, using

SPSS version 23 (SPSS Inc., USA). An ANOVAwas also used to

test between-group differences in residual headmotion after

ME-ICA.

We investigated differences between groups in graph

metrics (i.e., global efficiency, local efficiency and clustering

coefficient) per network, using SPM12, implemented in

Matlab 8.6.0. (The Mathworks Inc., Natick, MA). We applied

non-parametric permutation testing, as we did not meet the

assumptions for an ANOVA, where each measure was

compared against a null distribution based on randomly

permuted samples (1000 permutations). We chose these two

separate sets of comparisons over a 2 � 2 factorial design as

we argued that ADHD in the context of TS might differ from

ADHD as such. We used a p-value of .025 on either direction

to indicate significance.

In addition, linear regression analyses were performed in

SPSS version 23 (SPSS Inc., USA), to investigate the relation-

ship between graphmeasures and tic severity (using the total

score of the YGTSS (Leckman et al., 1989)) in the TS sample

(n ¼ 46), and ADHD symptom count (using the CPRS-RL

(Conners et al., 1998)) across the whole sample (n ¼ 109),

with age, sex and IQ included as covariates. No part of the

study analyses was pre-registered prior to the research being

conducted.

2.8. Sensitivity analyses

Furthermore, to remove potential influence of medication

and gender, the analyses were subsequently re-donewithout

the participants who used stimulant and non-stimulant

medication during the test day, and without females. Addi-

tionally, we performed linear regression analyses between

graph measures and ADHD severity in the TS and ADHD

group only (excluding healthy controls).
3. Results

3.1. Demographics

See Table 1 for group characteristics. The TS group consisted

of significantly more boys compared with the ADHD group.

This was particularly true for TS�ADHD compared with

ADHD. ADHD symptom count was lowest in healthy controls

compared to the diagnostic groups, lower in TS�ADHD

compared to TS þ ADHD and ADHD, and not significantly

different between the TS þ ADHD and ADHD groups.

https://doi.org/10.1016/j.cortex.2020.01.006
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Fig. 1 e Module decomposition. Color indicate the different modules partitioned from the full sample of participants

(n ¼ 109). The nodes below to: somatomotor network (red; 69 nodes),fronto-parietal network (yellow; 49 nodes), default

mode network (green; 87 nodes), visual network (light blue; 46 nodes), and subcortical network (dark blue; 13 nodes). Nodes

are pasted overlaid on an inflated surface of the human brain using BrainNet viewer (Xia et al., 2013). Different views are

shown: a.left side, b.top side, c.right side.
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About 30% of the children with TS�ADHD, 50% of the chil-

dren with TS þ ADHD, and 70% of the children in the ADHD

group without tics used medication in general (Supplement 1),

that is stimulant and/or non-stimulant medication. Three

children with ADHD did not comply with refraining from using

stimulant medication 48 h prior to the testing day, while six

children used non-stimulantmedication during the testing day

(antipsychotics: n ¼ 3 children with TS�ADHD, n ¼ 2 with

TS þ ADHD; clonidine: n ¼ 1 child with TS þ ADHD).

3.2. Brain decomposition

Five distinct modules emerged, as shown in Fig. 1: the soma-

tomotor network, frontoparietal network, default mode

network, visual network and subcortical network.
Fig. 2 e Result of local efficiency and clustering coefficients in t

between HC, TS-ADHD, TSþADHD and ADHD. HC, healthy cont

hyperactivity disorder; TS-ADHD, TS without comorbid ADHD;

permutation (1000 permutation) was used, therefore standard d

network results of global efficiency, local efficiency and clusteri
3.3. Graph metrics

The results for the graph metrics (i.e., global efficiency, local

efficiency and clustering coefficient) are shown in Fig. 2 and

Supplements 2 and 3. Lower local efficiency and clustering

coefficient values were found in the default mode network for

TS, specifically for TS�ADHD compared to healthy controls. Of

note, the values for local efficiency and clustering coefficient

in TS þ ADHDwere in a similar range of those with TS�ADHD

and ADHD, and not of healthy controls.

Additionally, in our three-group comparison, comparing

TS, ADHD, and healthy controls, we observed a significant

difference between TS and ADHD in the frontoparietal

network. Our four-group comparison revealed that specif-

ically TS�ADHD showed significantly lower local efficiency
he default mode network and fronto-parietal network

rols; TS, Tourette syndrome; ADHD, attention-deficit/

TS þ ADHD, TS with comorbid ADHD; a non-parametric

eviations are not applicable. *p < .025, see for additional

ng coefficients Supplement 2.
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Table 2 e Results of graphmetrics in association with tic severity in the TS sample (n¼ 46) and ADHD symptoms in the total
study sample (n ¼ 109).

Tic severity ADHD severity

В ± SE b В ± SE b

Global efficiency

Somatomotor network 401.88 ± 391.16 .10 �74.00 ± 161.54 �.04

Fronto-parietal network 47.42 ± 377.42 .01 �58.15 ± 154.41 �.04

Default mode network �132.43 ± 206.62 �.06 �185.29 ± 80.85 �.21

Visual network 157.90 ± 441.74 .03 �65.89 ± 180.93 �.03

Subcortical network 527.94 ± 1191.55 .04 �89.83 ± 489.01 �.02

Local efficiency

Somatomotor network �13.08 ± 15.22 �.08 3.79 ± 6.26 .06

Fronto-parietal network �50.46* ± 18.50 �.25 7.81 ± 8.05 .09

Default mode network �45.14* ± 23.73 �.19 5.74 ± 10.03 .06

Visual network 6.71 ± 13.14 .05 .54 ± 5.39 .01

Subcortical network �3.84 ± 9.48 �.04 �.75 ± 3.89 �.02

Clustering coefficient

Somatomotor network �18.76 ± 19.31 �.09 4.28 ± 7.96 .05

Fronto-parietal network �59.89* ± 24.38 �.22 11.95 ± 10.44 .11

Default mode network �56.57* ± 31.48 �.17 9.63 ± 13.23 .07

Visual network 7.05 ± 16.53 .04 �1.16 ± 6.78 �.02

Subcortical network �3.48 ± 10.57 �.03 �1.64 ± 4.33 �.04

B, unstandardized beta; SE, standard error for the unstandardized beta; b, standardized beta; TS, Tourette syndrome; ADHD, attention-deficit/

hyperactivity disorder; tic severity assessed by the Yale Global Tic Severity Scale (Leckman et al., 1989) (range 0e50); ADHD symptom count

assessed by the Conners’ Parent Rating Scale e Revised Long (Conners et al., 1998) (range 1e18). Linear regression analyses were used, with age,

sex IQ as covariates; *p < .05.
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and lower clustering coefficient compared to ADHD. We

observed no differences in global efficiency in our three-

groups or four-groups analyses. Furthermore, we found no

significant group differences in the somatomotor network,

visual network or subcortical network in both sets of analyses.

Finally, there were no differences in residual head motion

between groups (F[4,105] ¼ 1.09, p ¼ .82).

3.4. Dimensional analyses

We observed a negative association between tic severity and

local efficiency and clustering coefficient in the default mode

network, and in the frontoparietal network (See Table 2 for

results). No associations were observed between ADHD

symptom count and network measures.

3.5. Sensitivity analyses

The results remained similar after excluding all females and

medication-users during the testing-day from the analyses

(Supplements 4 and 5). However, after removing healthy

controls from the dimensional analyses, thus only using the

TS and ADHD group, we observed a negative relation between

global efficiency in the default mode network and ADHD

severity, and a positive relation between local efficiency and

clustering coefficient in the default mode network, and ADHD

severity (Supplement 6).
4. Discussion

This study is among the first to investigate the functional

brain organization using graph theoretical analysis in children
with TS compared with healthy controls and ADHD, and to

investigate the role of comorbid ADHD in TS. Overall, we

observed a disrupted topological brain organization in TS,

specifically decreased short-range connectivity in children

with TS�ADHD in the default mode network compared with

healthy controls, and in the frontoparietal network compared

with children with ADHD; and in relation to higher tic

severity.

We found support for low short-range network connec-

tivity (lower local efficiency and clustering coefficient) in the

default mode network in our TS group compared to healthy

controls, specifically in TS�ADHD, and not TS þ ADHD as we

initially expected. Lower local efficiency is predominantly

related to less efficient short-range connections between

neighboring regions (Bullmore & Sporns, 2009), while lower

clustering coefficient implies that the neighboring regions are

less likely to be connected to each other, thereby indicating

that they are less synchronized, more segregated, and more

independent of each other, resulting in less efficient infor-

mation transference (Rubinov & Sporns, 2010). The observed

lower local efficiency and clustering coefficient in the default

mode network of children with TS in our study are compara-

ble with previously reported results of low resting-state con-

nectivity of the default mode network in children and adults

with TS (Cui et al., 2014; Wen et al., 2018), which may

contribute to impaired task-independent introspection (mind

wandering), such as thinking about the past (less efficient

episodic memory), and impaired thinking about the future

(e.g., planning (Buckner, Andrews-Hanna, & Schacter, 2008)).

In contrast toWen et al. (2018) we did not observe lower global

efficiency (i.e., information transfer between remote regions)

of default mode areas in children with TS. As the develop-

mental stage of children influences the strength of

https://doi.org/10.1016/j.cortex.2020.01.006
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connections within the brain (Church et al., 2009; Fair et al.,

2009), perhaps the broader age range of 3-16 years old chil-

dren as used in Wen et al. (2018) as opposed to our restricted

age range (8-12 years old children) may explain the discordant

results. Interestingly, although not significantly different, the

local efficiency and clustering coefficient of the default mode

network in TS þ ADHD appeared more similar to TS�ADHD

than to healthy controls. Therefore, also given the associa-

tion between higher tic severity and decreased local effi-

ciency, our study supports that low local functional

connectivity in the default mode network represents a TS-

related deficit.

The frontoparietal network in our TS�ADHD group indi-

cated also lower local efficiency and clustering coefficient

compared to ADHD. Deviances of short-range connections in

this network have been identified before by Church et al.

(2009), indicating an immaturity (‘a developmental delay’) of

the connections within the frontoparietal network of children

and adolescents with TS (irrespective of comorbid ADHD)

during resting-state, compared to their age-matched healthy

peers. Healthy developing children are thought to have

strongly correlated short-range functional connections (i.e.,

connections between regions close in space), that tend to

decrease in strength over age, while long-range functional

connections (i.e. connections between regionsmore distant in

space) will increase in strength over age (Church et al., 2009;

Fair et al., 2009). Connections showing a delay in develop-

ment may therefore (temporarily) remain either too strong or

too weak (Bos et al., 2017). The observed lower integration

between short-range connections (i.e., low local efficiency)

within both the default mode network and the frontoparietal

network in TS in our study may therefore be indicative of an

overall (immature) suboptimal neural functioning (Marcos-

Vidal et al., 2017). While it should be noted that we did not

find differences in the frontoparietal network compared with

healthy controls, associations between higher tic severity and

decreased local efficiency in both aforementioned networks

may support our assumptions of maturational delay and an

atypical functional brain network organization in TS. How-

ever, more research is warranted to corroborate these con-

clusions, and to elucidate relations with tic severity.

As mentioned, we observed higher local efficiency and

clustering coefficient in the frontoparietal network in children

with ADHD versus TS. Higher short-range connectivity in re-

gions of the frontoparietal network in childrenwith ADHDhas

been observed before compared to healthy controls (Bos et al.,

2017; Marcos-Vidal et al., 2017), yet, other studies have

observed lower short-range connectivity in the frontoparietal

network (Lin, Tseng, Lai, Matsuo,& Gau, 2015; Tao et al., 2017).

Regarding the default mode network, no differences between

ADHD and the other groups were found in our study, despite

previous findings (Castellanos et al., 2008; Marcos-Vidal et al.,

2017; Tao et al., 2017). Discordant findings between studies

may be explained by differences in age ranges and symptom

severities, as our study included children with a restricted age

range (between 8-12-year-old) with a relatively low ADHD

symptom count (on average 9 out of 18 symptoms), suggesting

a less severe ADHD group. Indeed, after removing healthy

controls from our dimensional analyses, we observed associ-

ations in the default mode network between lower global
efficiency values and higher ADHD severity, and between

higher local efficiency and clustering coefficient in relation to

higher ADHD severity, in line with previous observations (Lin

et al., 2014; Wang et al., 2009). Overall, brain networks are

thought to evolve to maximize the cost efficiency of parallel

information processing (i.e., high efficiency of parallel infor-

mation transfer at low costs (Sporns, Chialvo, Kaiser, &

Hilgetag, 2004)). Therefore, ADHD symptoms (i.e., hyperac-

tivity, inattention) may place aberrant demands on networks

(e.g., frontoparietal and default mode network) to work as

efficiently as possible, possibly resulting in a disorder-related

shift of the network topology (Wang et al., 2009). Similarly, for

TS, given the association between higher tic severity and

lower short-range network connectivity, perhaps an altered

network organization of both aforementioned networks is

necessary to maximize the cost efficiency in the presence of

(severe) tics. Evidently, the network architecture, specifically

that of the frontoparietal network, seems to be disorder

dependent, as shown in higher short-range connectivity

values for ADHD and lower values for TS. Interestingly, how-

ever, given that the local efficiency and clustering values of

the frontoparietal network for TS þ ADHD were more similar

to TS�ADHD than to those of ADHD, perhaps the presence of

tics may be of more influence on the architecture of this

specific network than the presence of ADHD symptoms,

despite a similar ADHD symptom count in TS þ ADHD and

ADHD without tics. Nevertheless, future research is war-

ranted to confirm these findings.

Strengths of this studywere a sizeable sample of 8-12-year-

old children with TS (with and without comorbid ADHD),

ADHD without tics, and healthy controls. As we examined

clinical groups where movement is often problematic, we

specifically chose multi-echo independent component anal-

ysis, as it can robustly detect motion and other non-BOLD

related signals, and implemented global signal regression

(Kundu et al., 2013; Power et al., 2018). Limitations of this study

included, first, the high percentage of males in the TS group

compared with ADHD and the control group, and second, the

use of stimulant and non-stimulant medication during the

assessment day of a few participants. However, the results did

not change after removing females or medication-users from

the analyses. Third, as studies in tic suppression in adults

with TS observed changes in control regions (Bohlhalter et al.,

2006; Peterson et al., 1998), the possibility that some children

may have suppressed their tics, might have influenced our

results. Relatedly, while subtle tics may not necessarily cause

motion artifacts, theymay be associatedwith brain activation.

Future researchmay benefit from careful monitoring of tics in

the scanner. Fourth, other comorbid disorders apart from

ADHD may have influenced our results. Unfortunately, the

sample size did not allow for making corrections of these

confounding factors. However, TS rarely presents by itself,

and our sample composition reflects the complexities

encountered in clinical practice (i.e., male predominance, use

of medication, presence of comorbidities, suppression of tics).

In conclusion, we observed a different functional brain

network organization in TS, specifically in TS�ADHD,

compared to healthy controls and ADHD, and in relation to

higher tic severity. This supports an overall suboptimal

immature topological brain organization inherently related to

https://doi.org/10.1016/j.cortex.2020.01.006
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TS. Our study underlines the importance of future studies on

resting-state connectivity in TS, preferably using larger sam-

ples and exploring the influence of comorbidities in TS, and

furthermore to investigate the potential influence of tic

severity on brain alterations in TS.
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