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Università Sapienza di Roma

Dipartimento di Scienze di Base e Applicate per l’Ingegneria
via A. Scarpa 16

I-00166 Roma, Italy
E-mail: roberto.conti@sbai.uniroma1.it

Abstract

We continue our study of the Fourier-Stieltjes algebra associated
to a twisted (unital, discrete) C*-dynamical system and discuss how
the various notions of equivalence of such systems are reflected at
the algebra-level. As an application, we show that the amenability of
a system, as defined in our previous work, is preserved under Morita
equivalence.

1 Introduction

The classical notion of Fourier-Stieltjes algebra of a locally compact group

G [24] was extended in [9] to a (unital, discrete) twisted C*-dynamical

system Σ = (A,G, α, σ). In short, the outcome is a Banach algebra B(Σ)
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attached to Σ with a rich analytical structure that can be better described

in terms of coefficients of the so-called equivariant representations of Σ. In

the case where A is trivial, any such a representation is nothing but a uni-

tary representation of G on a Hilbert space, and one therefore recovers the

Fourier-Stieltjes algebra B(G). Some aspects of the classical theory survive

to the new setting, notably the inclusion of B(Σ) in the completely bounded

full/reduced multipliers of Σ, as well as the fact that B(Σ) is spanned by

the Σ-positive definite functions, which themselves give rise to completely

positive maps of the full and reduced twisted crossed product C∗-algebras

associated to Σ. We note here that in the case of an untwisted system our

concept of Σ-positive definiteness can be reformulated using the notion of

completely positive Herz-Schur Σ-multiplier (cf. [29]). We also recall that

B(G) continuously embeds into B(Σ), although these two algebras differ

significantly from each other for it can be shown that, under mild assump-

tions, B(Σ) is always noncommutative (actually, B(G) is contained in the

center of B(Σ)). Finally, we mention that one can use the aforementioned

coefficients of equivariant representations of Σ to introduce suitable approx-

imation properties for Σ, such as amenability (cf. [9]) and the Haagerup

property (cf. [29]), that parallel the analogous notions for G and provide

intrinsic features of the dynamical system Σ.

The main motivation for this paper was to explore to which extent the

Fourier-Stieltjes algebra B(Σ) depends on Σ. We recall that if G1 and G2

are locally compact groups, then Walter showed in [32] that B(G1) and

B(G2) are isometrically isomorphic as Banach algebras if and only if G1 and

G2 are topologically isomorphic. Hence one may hope that B(Σ) is better

suited to characterize Σ than other algebras associated to it. Now there

are several natural notions of equivalence between two dynamical systems

Σ = (A,G, α, σ) and Θ = (B,H, β, θ), most notably exterior equivalence,

conjugacy, and cocycle conjugacy, but also Morita equivalence (in the case

where G = H). It is immediate that the first two notions are stronger

than the third one, which is itself stronger than the last one. We show in

Theorem 3.8 that B(Σ) and B(Θ) are isometrically isomorphic whenever Σ

and Θ are cocycle conjugate (up to a group isomorphism), in a way that

preserves the classical Fourier-Stieltjes algebras of the corresponding groups,

and also the canonical copies of the corresponding algebras. In connection

with this result, we also note that the Fourier-Stieltjes algebra of a system

does not detect a perturbation of the system by a T-valued group 2-cocycle,

cf. Remark 3.10. In the case of Morita equivalent systems, the connection
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between the Fourier-Stieltjes algebras remains somewhat more elusive, but

we are at least able to show that these algebras can be determined from

each other, see Corollary 4.6. However, as a byproduct of this study, we

obtain an interesting consequence for Morita equivalent systems, namely

we show in Theorem 5.1 that the amenability of a system (as defined in [9])

is preserved under such an equivalence.

The paper is organized as follows. After some preliminaries in Section 2,

we review in Section 3 some of the natural notions of equivalence for twisted

C∗-dynamical systems (exterior equivalence, (group) conjugacy, and cocycle

(group) conjugacy) and prove that the Fourier-Stieltjes algebra is invari-

ant, up to isometric isomorphism, under cocycle group conjugacy (which

is the most general among these notions). In Section 4 we consider two

Morita equivalent systems and point out that there is, up to isomorphism,

a one-to-one correspondence between the equivariant representations of the

respective systems. We use this to show that the corresponding Fourier-

Stieltjes algebras can then be recovered from each other. Finally, in Section

5, we recall our definition of amenability for a system and show that this

property is Morita invariant.

2 Preliminaries

We only consider unital C∗-algebras in this paper, and a homomorphism be-

tween two such algebras will always mean a unit preserving ∗-homomorphism.

Isomorphisms and automorphisms between C∗-algebras are therefore also

assumed to be ∗-preserving. The group of unitary elements in a C∗-algebra

A will be denoted by U(A), the center of A by Z(A), and the group of

automorphisms of A by Aut(A). The identity map on A will be denoted by

id (or idA). If B is another C∗-algebra, A ⊗ B will denote their minimal

tensor product.

By a Hilbert C∗-module, we will always mean a right Hilbert C∗-module,

unless otherwise specified, and follow the notation introduced in [28]. In par-

ticular, all inner products will be assumed to be linear in the second variable,

LB(X, Y ) will denote the space of all adjointable operators between two

Hilbert C∗-modules X and Y over a C∗-algebra B, and LB(X) = LB(X,X).

A representation of a C∗-algebra A on a Hilbert B-module Y is then a ho-

momorphism from A into the C∗-algebra LB(Y ). If Z is another Hilbert

C∗-module (over C), we will let π ⊗ ι : A → LB⊗C(Y ⊗ Z) denote the

amplified representation of A on Y ⊗ Z given by (π ⊗ ι)(a) = π(a) ⊗ IZ ,
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where the Hilbert B⊗C-module Y ⊗Z is the external tensor product of Y

and Z (cf. [28]), and IZ denotes the identity operator on Z. If Z is a Hilbert

space, then we consider Y ⊗ Z as a Hilbert B-module.

The quadruple Σ = (A,G, α, σ) will always denote a twisted unital dis-

crete C∗-dynamical system. This means that A is a C∗-algebra with unit

1A, G is a discrete group with identity e and (α, σ) is a twisted action of G

on A (sometimes called a cocycle G-action on A), that is, α is a map from

G into Aut(A) and σ : G×G→ U(A) is a normalized 2-cocycle for α, such

that

αgαh = Ad(σ(g, h))αgh,

σ(g, h)σ(gh, k) = αg(σ(h, k))σ(g, hk),

σ(g, e) = σ(e, g) = 1A

for all g, h, k ∈ G. Of course, Ad(u) denotes here the (inner) automorphism

of A implemented by the unitary u in U(A). If σ = 1 is the trivial 2-cocycle,

that is, σ(g, h) = 1A for all g, h ∈ G, then α is a genuine action and Σ

is an ordinary C∗-dynamical system (see e.g. [33, 12]), usually denoted by

Σ = (A,G, α). If σ is central, that is, it takes values in U(Z(A)), then α

is also a genuine action of G on A, and this is the case studied in [34]. In

the sequel we will often just use the word system to mean a discrete unital

twisted C∗-dynamical system.

An equivariant representation of Σ on a Hilbert A-module X (see e.g. [7,

8]) is a pair (ρ, v) where ρ : A→ LA(X) is a representation of A on X and

v is a map from G into the group I(X) of all C-linear, invertible, bounded

maps from X into itself, which satisfy:

(i) ρ(αg(a)) = v(g)ρ(a)v(g)−1, g ∈ G, a ∈ A,

(ii) v(g)v(h) = adρ(σ(g, h))v(gh), g, h ∈ G,

(iii) αg
(
〈x, x′〉

)
= 〈v(g)x, v(g)x′〉, g ∈ G, x, x′ ∈ X,

(iv) v(g)(x · a) = (v(g)x) · αg(a), g ∈ G, x ∈ X, a ∈ A.

In (ii) above, adρ(σ(g, h)) ∈ I(X) is defined by

adρ(σ(g, h))x =
(
ρ(σ(g, h))x

)
· σ(g, h)∗, g, h ∈ G, x ∈ X.

Note that the equivariant representations of Σ may instead be presented in

terms of (Σ,Σ)-compatible actions, as in [18, 19], cf. Remark 4.1. Note also

that condition (iii) implies that each v(g) is isometric.
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For completeness, we mention some examples of equivariant representa-

tions. First, the trivial equivariant representation of Σ, which is the pair

(`, α) acting on A, considered as a right A-module over itself in the canon-

ical way, where ` : A → LA(A) is given by left-multiplication. Next, let

AG := `2(G,A) denote the right A-module given by

AG =
{
ξ : G→ A |

∑
g∈G

ξ(g)∗ξ(g) is norm-convergent in A
}
,

with the obvious right A-module structure, and inner product given by

〈ξ, η〉 =
∑
g∈G

ξ(g)∗η(g).

Then the regular equivariant representation of Σ on AG is the pair (ˇ̀, α̌)

acting on AG defined by

(ˇ̀(a)ξ)(h) = aξ(h), (α̌(g)ξ)(h) = αg(ξ(g
−1h))

for a ∈ A, ξ ∈ AG and g, h ∈ G.

More generally, if (ρ, v) is an equivariant representation of A on a right

Hilbert A-module X and w is a unitary representation of G on some Hilbert

space H, then (ρ⊗ ι, v⊗w) is an equivariant representation of Σ on X⊗H.

One can also form the tensor product of equivariant representations.

Assume that (ρ1, v1) and (ρ2, v2) are equivariant representations of Σ on

some Hilbert A-modules X1 and X2, respectively. We can then form the

internal tensor productX1⊗ρ2Y , which is a right Hilbert A-module (cf. [28]);

we will suppress ρ2 in our notation and denote X1⊗ρ2X2 by X1⊗AX2, as it

is quite common in the literature. Then the tensor product (ρ1, v1)⊗(ρ2, v2)

acts on X1 ⊗A X2 as follows. For a ∈ A, let (ρ1 ⊗ ρ2)(a) ∈ LA(X1 ⊗A X2)

be the map determined on simple tensors by

(ρ1 ⊗ ρ2)(a)(x1⊗̇x2) = ρ1(a)x1⊗̇x2 for x1 ∈ X1and x2 ∈ X2.

Moreover, for every g ∈ G, let (v1 ⊗ v2)(g) in I(X1 ⊗A X2) be the map

determined on simple tensors by

(v1 ⊗ v2)(g)(x1⊗̇x2) = v1(g)x1⊗̇v2(g)x2 for x1 ∈ X1 and x2 ∈ X2.

Then (ρ1, v1)⊗ (ρ2, v2) := (ρ1⊗ ρ2, v1⊗ v2) is an equivariant representation

of Σ on the right Hilbert A-module X1 ⊗A X2 (cf. [19, 7]).

Let (ρ, v) be an equivariant representation of Σ on a Hilbert A-module

X and let x, y ∈ X. Then we define Tρ,v,x,y : G× A→ A by

Tρ,v,x,y(g, a) =
〈
x, ρ(a)v(g)y

〉
for a ∈ A, g ∈ G,
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and think of Tρ,v,x,y as an A-valued coefficient function associated with (ρ, v).

The Fourier-Stieltjes algebra B(Σ) is defined in [9] as the collection of

all the maps from G × A into A of the form Tρ,v,x,y for some equivariant

representation (ρ, v) of Σ on a Hilbert A-module X and x, y ∈ X. Then

B(Σ) becomes a unital subalgebra of L(Σ), where

L(Σ) = {T : G× A→ A | T is linear in the second variable}

is equipped with its natural algebra structure: for T, T ′ ∈ L(Σ) and λ ∈ C,

we let T + T ′, λT , T · T ′ and IΣ be the maps in L(Σ) defined by

(T + T ′)(g, a) := T (g, a) + T ′(g, a)

(λT )(g, a) := λT (g, a)

(T · T ′)(g, a) := T (g, T ′(g, a))

IΣ(g, a) := a

for g ∈ G and a ∈ A. Given T ∈ L(Σ) and g ∈ G, we will sometimes write

Tg for the linear map from A into itself given by Tg(a) = T (g, a) for all

a ∈ A.

If T ∈ B(Σ), letting ‖T‖ denote the infimum of the set of values ‖x‖‖y‖
associated with the possible decompositions of T of the form T = Tρ,v,x,y, one

gets a norm on B(Σ) such that B(Σ) is a unital Banach algebra w.r.t. ‖ · ‖.
We also recall that there is a canonical way of embedding B(G) into B(Σ)

(cf. [9, Proposition 3.2]): For f ∈ B(G), define T f ∈ L(Σ) by T f (g, a) =

f(g)a for g ∈ G and a ∈ A. Then T f ∈ B(Σ), and the map f → T f gives

an injective, contractive, algebra-homomorphism of B(G) into B(Σ).

The Fourier-Stieltjes algebra B(Σ) also contains a copy of A. Indeed, for

b ∈ A, let T b ∈ L(Σ) be given by T b(g, a) = ba for all g ∈ G and a ∈ A. Then

we have that T b = T`,α,b∗,1A ∈ B(Σ) and ‖T b‖ ≤ ‖b‖. From this, one readily

deduces that the map b → T b gives an isometric algebra-homomorphism

from A into B(Σ).

Finally, we recall that, as in the classical case, B(Σ) is spanned by its

positive definite elements (cf. [9, Corollary 4.5]). For the ease of the reader,

we review how positive definiteness is defined in our setting. Let T ∈ L(Σ).

Then T is called positive definite (w.r.t. Σ), or Σ-positive definite, when for

any n ∈ N, g1, . . . , gn ∈ G and a1, . . . , an ∈ A, the matrix[
αgi

(
Tg−1

i gj

(
α−1
gi

(
a∗i ajσ(gi, g

−1
i gj)

∗)))σ(gi, g
−1
i gj)

]
is positive in Mn(A) (the n×n matrices over A). As shown in [9, Corollary

4.4], which is an analogue of the Gelfand-Raikov theorem, this is equivalent
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to requiring that T may be written as T = Tρ,v,x,x for some equivariant

representation (ρ, v) of Σ on some Hilbert A-module X and some x ∈ X. It

then follows that

‖T‖∞ := sup{‖Tg‖ | g ∈ G} = ‖Te(1A)‖ = ‖〈x, x〉A‖

(cf. [9, Corollary 4.3]). We set

P (Σ) =
{
T ∈ L(Σ) | T is positive definite (w.r.t. Σ)

}
.

3 Cocycle group conjugate systems

There are various notions of equivalence for C∗-dynamical systems in the

literature. In this section we will study how the notions of exterior equiva-

lence, (group) conjugacy and cocycle (group) conjugacy are reflected at the

level of the Fourier-Stieltjes algebras.

Definition 3.1. Consider a system Σ = (A,G, α, σ), and let w : G→ U(A)

be a normalized map, that is, such that w(e) = 1A. Then it is well known

(cf. [30, Section 3]) that we get another twisted action (αw, σw) of G on A

by setting

αwg = Ad(w(g)) ◦ αg and σw(g, g′) = w(g)αg(w(g′))σ(g, g′)w(gg′)∗

for all g, g′ ∈ G. We then set Σw := (A,G, αw, σw) and call Σw a perturbation

of Σ by w.

Remark 3.2. Another way to perturb a system Σ = (A,G, α, σ) is as

follows. Let α′ denote the restriction of α to a (genuine) action of G on

Z(A), and let η : G×G→ U(Z(A)) be a normalized 2-cocycle for α′. (For

example, we can let η : G × G → T be any normalized 2-cocycle for the

group G and consider η as a 2-cocycle for α′.) Then we get a twisted action

(α, ση) of G on A by setting

ση(g, g
′) := σ(g, g′)η(g, g′)

for all g, g′ ∈ G. The system Σ(η) := (A,G, α, ση) is called a perturbation of

Σ by η.

Definition 3.3. Two systems Σ = (A,G, α, σ) and Θ = (A,G, β, θ) are

called exterior equivalent, and we write Σ ∼e Θ, when Θ = Σw for some

map w : G→ U(A) (which is then necessarily normalized).
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Example 3.4. Let α and β be two genuine actions of G on A and set

Σ = (A,G, α, 1) and Θ = (A,G, β, 1). We recall that a map w : G→ U(A)

is called a 1-cocycle for α when it satisfies that w(gg′) = w(g)αg(w(g′)) for

all g, g′ ∈ G. Then we have that Σ ∼e Θ if and only if there exists some

1-cocycle w : G → U(A) for α such that βg = Ad(w(g)) ◦ αg for all g ∈ G.

One usually says that β is a perturbation of α by w in this case.

Assume now that α and β agree up to inner automorphisms, that is,

they satisfy that βg = Ad(u(g)) ◦ αg for some map u : G → U(A), which

may be assumed to be normalized. Set

∂u(g, h) := u(g)αg(u(h))u(gh)∗

for all g, h ∈ G. Then it can easily be checked that ∂u is a 2-cocycle for

β taking its values in U(Z(A)). If ∂u 6= 1, i.e., u is not a 1-cocycle for

α, then we get that (β, ∂u) is a twisted action of G on A satisfying that

Σ = (A,G, α, 1) ∼e (A,G, β, ∂u). Similarly, Θ ∼e (A,G, α, ∂u∗), where

u∗(g) := u(g)∗ for all g ∈ G.

We note that if the map u above takes its values in U(Z(A)) (so we have

β = α), and α′ denotes the restriction of α to an action of G on Z(A),

then ∂u is a normalized 2-cocycle for α′ (called a coboundary for α′). A

perturbation of Σ by u is then clearly the same as a perturbation of Σ by

∂u (in the sense of Remark 3.2), i.e., we have Σu = Σ(∂u), and we get that

Σ ∼e Σ(∂u) in this case.

Next, consider Σ = (A,G, α, σ) and note that if φ : A → B is an

isomorphism of C∗-algebras and ϕ : G → H is an isomorphism of groups,

then we get a new system Θ = (B,H, β, θ) by setting

βh = φ ◦ αϕ−1(h) ◦ φ−1 and θ(h, h′) = φ
(
σ(ϕ−1(h), ϕ−1(h′))

)
for all h, h′ ∈ H. This motivates the following notion.

Definition 3.5. Two systems Σ = (A,G, α, σ) and Θ = (B,H, β, θ) are

said to be group conjugate if there exist an isomorphism φ : A→ B and an

isomorphism ϕ : G→ H such that

(i) βϕ(g) = φ ◦ αg ◦ φ−1,

(ii) θ
(
ϕ(g), ϕ(g′)

)
= φ

(
σ(g, g′)

)
for all g, g′ ∈ G, in which case we write Σ ∼gc Θ. In the case where H = G,

we will say that Σ and Θ are conjugate, and write Σ ∼c Θ, if ϕ can be

chosen to be the identity map.
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Definition 3.6. Two systems Σ = (A,G, α, σ) and Θ = (B,H, β, θ) are

said to be cocycle group conjugate if Σw ∼gc Θ for some normalized w :

G → U(A), in which case we write Σ ∼cgc Θ. Equivalently, as one readily

checks, Σ ∼cgc Θ if and only if Θ is exterior equivalent to some group

conjugate of Σ. In the case where H = G, we will say that Σ and Θ are

cocycle conjugate, and write Σ ∼cc Θ, if Σw is conjugate to Θ for some

normalized w : G→ U(A).

Discarding set-theoretical problems, one may show without much trou-

ble that ∼cgc (resp. ∼cc) satisfies the properties of an equivalence relation.

Moreover, it is evident from the definitions that (group) conjugacy and ex-

terior equivalence are stronger notions than cocycle (group) conjugacy.

Example 3.7. Assume again α and β are genuine actions of G on A.

Then we have (A,G, α, 1) ∼cc (A,G, β, 1) if and only if (A,G, αw, 1w) ∼c
(A,G, β, 1) for some normalized w : G → U(A), in which case we get

1 = 1w(g, g′) = w(g)αg(w(g′))w(gg′)∗ for all g ∈ G, so that w is a 1-cocycle

for α. Hence (A,G, α, 1) ∼cc (A,G, β, 1) if and only if there is a perturbation

of α by a 1-cocycle for α which is conjugate to β, i.e., α is cocycle conjugate

to β (as defined for example in [11, II.10.3.18]).

It is part of the folklore that the C∗-crossed products associated to co-

cycle conjugate systems are isomorphic, both in the full and in the reduced

case, via an isomorphism that preserves the “diagonal” algebra (for partial

results in this direction, see e.g. [30, Lemma 3.2] and [33, Lemma 2.68]). In

our setting, we have:

Theorem 3.8. Assume Σ = (A,G, α, σ) and Θ = (B,H, β, θ) are cocycle

group conjugate. Then B(Σ) and B(Θ) are isometrically isomorphic.

More precisely, there exists an algebra-isomorphism Ψ : B(Θ) → B(Σ)

such that

1) Ψ is isometric;

2) Ψ maps the copy of B(H) inside B(Θ) isometrically onto the copy of

B(G) inside B(Σ) (w.r.t. the norms of B(G) and B(H));

3) Ψ restricts to an isomorphism from the copy of B inside B(Θ) onto

the copy of A inside B(Σ), and the associated map from B to A is

∗-preserving (hence isometric).
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Proof. It clearly suffices to prove the result in the two separate cases where

Σ and Θ are group conjugate or exterior equivalent.

Assume first that Σ ∼gc Θ via isomorphisms φ : A→ B and ϕ : G→ H.

Then the reader should have no trouble in verifying that the map Ψ :

B(Θ)→ B(Σ) given by

[Ψ(S)](g, a) = φ−1
(
S(ϕ(g), φ(a))

)
for S ∈ B(Θ), g ∈ G and a ∈ A, is a well-defined algebra-isomorphism

satisfying 1), 2) and 3).

Next, assume that Σ and Θ are exterior equivalent, so we have Θ = Σw

for some normalized map w : G → U(A), where Σw = (A,G, αw, σw).

Noting that L(Σw) = L(Σ), it is straightforward to check that the map

Π : L(Σ)→ L(Σw) given by

[Π(T )](g, a) = T
(
g, aw(g)

)
w(g)∗

for T ∈ L(Σ), g ∈ G and a ∈ A, is an algebra-isomorphism.

Now, let T ∈ B(Σ), so T = Tρ,v,x,y for some equivariant representation

(ρ, v) of Σ on a Hilbert A-module X and x, y ∈ X. Then set ρ̃ = ρ and

define ṽ : G→ I(X) by ṽ(g) = adρ(w(g))v(g), i.e., for each g ∈ G,

ṽ(g)x =
(
ρ(w(g))v(g)x

)
· w(g)∗

for all x ∈ X. We claim that (ρ̃, ṽ) is an equivariant representation of Σw

on X.

Indeed, let g, h ∈ G, a ∈ A and x, y ∈ X. Then, using the properties of

(ρ, v) repeatedly, we get:

(i)

ρ̃
(
αwg (a)

)
ṽ(g)x = ρ

(
w(g)αg(a)w(g)∗

)((
ρ(w(g))v(g)x

)
· w(g)∗

)
=
(
ρ(w(g))ρ(αg(a))v(g)x

)
· w(g)∗

=
(
ρ(w(g))v(g)ρ(a)x

)
· w(g)∗

= ṽ(g)ρ̃(a)x,
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(ii)

ṽ(g)ṽ(h)x =
(
ρ(w(g))v(g)ṽ(h)x

)
· w(g)∗

=
(
ρ(w(g))v(g)

(
(ρ(w(h))v(h)x) · w(h)∗

))
· w(g)∗

=
(
ρ(w(g))

((
(v(g)ρ(w(h))v(h)x) · αg(w(h))∗

)))
· w(g)∗

=
(
ρ(w(g))

(
(ρ(αg((w(h)))v(g)v(h)x) · αg(w(h))∗

))
· w(g)∗

=
((
ρ(w(g))ρ(αg(w(h)))v(g)v(h)x

)
· αg(w(h))∗

)
· w(g)∗

=
(
ρ(w(g))ρ(αg(w(h)))

(
(ρ(σ(g, h))v(gh)x) · σ(g, h)∗)

))
· αg(w(h))∗w(g)∗

=
(
ρ(σw(g, h))ρ(w(gh))v(gh)x

)
· σ(g, h)∗αg(w(h))∗w(g)∗

=
(
ρ(σw(g, h))ρ(w(gh))v(gh)x

)
· w(gh)∗w(gh)σ(g, h)∗αg(w(h))∗w(g)∗

=
(
ρ(σw(g, h))

(
(ρ(w(gh))v(gh)x) · w(gh)∗

))
· σw(g, h)∗

=
(
ρ(σw(g, h))

(
ṽ(gh)x

))
· σw(g, h)∗

= adρ̃(σ
w(g, h))ṽ(gh)x,

(iii)

αwg
(
〈x, y〉

)
= w(g)αg

(
〈x, y〉

)
w(g)∗

= w(g)
〈
v(g)x, v(g)y

〉
w(g)∗

= w(g)
〈
ρ(w(g))v(g)x, ρ(w(g))v(g)y

〉
w(g)∗

=
〈(
ρ(w(g))v(g)x

)
· w(g)∗,

(
ρ(w(g))v(g)y

)
· w(g)∗

〉
=
〈
ṽ(g)x, ṽ(g)y

〉
,

(iv)

ṽ(g)(x · a) =
(
ρ(w(g))v(g)(x · a)

)
· w(g)∗

= ρ(w(g))
(
(v(g)x) · (αg(a)w(g)∗)

)
= ρ(w(g))

(
(v(g)x) · (w(g)∗αwg (a))

)
=
(
ρ(w(g))

(
(v(g)x) · w(g)∗

))
· αwg (a)

= (ṽ(g)x) · αwg (a),
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as claimed. Now for all g ∈ G and a ∈ A we have

[Π(T )](g, a) = Tρ,v,x,y
(
g, aw(g)

)
w(g)∗ =

〈
x, ρ(aw(g))v(g)y

〉
w(g)∗

=
〈
x,
(
ρ(a)ρ(w(g))v(g)y

)
· w(g)∗

〉
=
〈
x, ρ̃(a)ṽ(g)y

〉
= Tρ̃,ṽ,x,y(g, a),

so we get that Π maps B(Σ) into B(Σw) and that ‖Π(T )‖ ≤ ‖x‖‖y‖. Since

this inequality holds for any ρ, v, x, y such that T = Tρ,v,x,y, it follows that

‖Π(T )‖ ≤ ‖T‖. By symmetry, we then see that Π restricts to an isometric

algebra-isomorphism between B(Σ) and B(Σw). It follows that Ψ := Π−1 is

an algebra-isomorphism from B(Θ) = B(Σw) onto B(Σ) such that 1) holds.

In passing, we note that one can also easily deduce that Π(T ) is Σw-positive

definite whenever T is Σ-positive definite, either by a direct computation,

or using what we just have done in combination with the Gelfand-Raikov

characterization of positive definiteness (cf. [9, Corollary 4.4]).

Let now f ∈ B(G) and consider T f ∈ B(Σ). Then we have that

Π(T f )(g, a) = T f
(
g, aw(g)

)
w(g)∗ =

(
f(g)aw(g)

)
w(g)∗ = f(g)a = T f(g, a)

for all g ∈ G and a ∈ A, which shows that Π(T f ) = T f ∈ B(Σw). Thus it

is clear that Π restricts to the identity map from B(G) (inside B(Σ)) into

B(G) (inside B(Σw)), hence that Ψ = Π−1 satisfies 2).

Finally, let b ∈ A and consider T b ∈ B(Σ). Then we have that

Π(T b)(g, a) = T b
(
g, aw(g)

)
w(g)∗ = baw(g)w(g)∗ = ba = T b(g, a)

for all g ∈ G and a ∈ A. Thus it is clear that Π restricts to the identity map

from A (inside B(Σ)) into A (inside B(Σw)), hence that Ψ = Π−1 satisfies

3).

Remark 3.9. The converse of Theorem 3.8 is not true in general. Indeed,

set

Z2(G,T) = {ω : G×G→ T | ω is a normalized 2-cocycle on G}.

Then let ω ∈ Z2(G,T) and consider the systems Σ = (C, G, triv, 1) and

Θ = (C, G, triv, ω), where triv denotes the obvious action of G on C. Then

we have that B(Σ) = B(G) = B(Θ), but Σ is not cocycle group conjugate

to Θ if ω is not a coboundary.

Remark 3.10. In order to look for a converse of Theorem 3.8 one option is

to weaken cocycle group conjugacy as follows. If Σ = (A,G, α, σ) is a system
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and ω ∈ Z2(G,T), then we may regard ω as a normalized 2-cocycle for the

restriction of α to Z(A) and perturb Σ by ω (cf. Remark 3.2). Obviously, Σ

and Σ(ω) = (A,G, α, σω) have then the same equivariant representations,

so we have that B(Σ) = B(Σ(ω)).

If Θ = (B,H, β, θ) is another system, let us say that Σ and Θ are weakly

cocycle group conjugate if Σ(ω) is cocycle group conjugate to Θ for some

ω ∈ Z2(G,T). Using Theorem 3.8 we get that B(Θ) is then isomorphic to

B(Σ(ω)) = B(Σ) via an algebra-isomorphism satisfying 1), 2) and 3).

Let us now assume that the conclusion of Theorem 3.8 holds. One may

then wonder under which additional requirements it would be possible to

conclude that Σ and Θ are weakly cocycle group conjugate. A result in this

direction goes as follows.

By invoking Walter’s theorem recalled in the introduction we get from 2)

that Ψ determines an isomorphism ϕ : G→ H, while 3) gives that there is

a ∗-isomorphism φ : A→ B. For each g ∈ G, set γg := φ−1βϕ(g)φ ∈ Aut(A).

Then one may check whether γg and αg agree up to inner automorphisms

for every g ∈ G. Assume that this happens to be the case, i.e., there exists

some normalized map w : G → U(A) such that γg = Ad(w(g))αg for all

g ∈ G. Then, letting u : G×G→ U(A) be defined by

u(g, g′) = φ−1
(
θ(ϕ(g), ϕ(g′))

)
for all g, g′ ∈ G,

we get a twisted action (γ, u) of G on A. Define then a map ω : G × G →
U(A) by

ω(g, g′) := u(g, g′)σw(g, g′)∗

for all g, g′ ∈ G. Then, using the two expressions for γ and making use of

some cocycle identities, one verifies that ω takes its values in Z(A), and

that it is a 2-cocycle for α′ (the restriction of α to Z(A)). Since u = (σw)ω,

it follows that

Θ = (B,H, β, θ) ∼gc (A,G, γ, u) = (A,G, αw, (σw)ω) = Σw(ω)

(using notation as in Remark 3.2). Hence, if A (and therefore B) has trivial

center, we get that ω ∈ Z2(G,T) and Θ is group conjugate to Σw(ω), which

is exterior equivalent to Σ(ω). Thus, Σ and Θ are weakly group cocycle

conjugate in this case.

As a consequence, we obtain the following.

Theorem 3.11. Consider two systems Σ = (A,G, α, σ) and Θ = (B,H, β, θ).

Assume that there exists an algebraic isomorphism Π : B(Σ) → B(Θ) sat-
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isfying that

(3.1) Π(T )
(
ϕ(g), φ(a)

)
= φ

(
T (g, aw(g))w(g)∗

)
for all g ∈ G, a ∈ A,

for some isomorphism ϕ : G → H, some ∗-isomorphism φ : A → B and

some map w : G→ U(A), which also satisfies

(3.2) Π(T`A,α,x,y) = T`B ,β,φ(x),φ(y)

for all x, y ∈ A. If the center of A is trivial, then Σ and Θ are weakly cocycle

group conjugate.

Proof. Using (3.1) and (3.2), one deduces that φ−1βϕ(g)φ = Ad(w(g))αg for

all g ∈ G. We are then in the position to proceed as we did above, and the

desired assertion follows at once.

4 On Morita equivalent systems

Let us consider two twisted unital discrete C∗-dynamical systems Σ =

(A,G, α, σ) and Θ = (B,G, β, θ) over the same group G. (We will briefly

discuss the more general situation in Remark 4.8.) Our main aim in this sec-

tion is to show that if Σ and Θ are Morita equivalent in the sense of [13, 27],

then the Fourier-Stieltjes algebras B(Σ) and B(Θ) can be determined from

each other. Morita equivalence for (untwisted) C∗-dynamical systems goes

at least back to [16]. For the ease of the reader, we review the definitions of

the concepts that we will use.

Following [19], we say that a right Hilbert B-module Z is a right Hilbert

A-B bimodule if there is a homomorphism κ : A→ LB(Z).1 We set a · z =

κ(a)z for a ∈ A and z ∈ Z, and frequently write AZB for Z. A right Hilbert

A-B bimodule isomorphism Φ :AZB →AWB between two right A-B Hilbert

bimodules Z and W (or simply an isomorphism, for short) is a bimodule

isomorphism such that 〈Φ(z),Φ(z′)〉B = 〈z, z′〉B for z, z′ ∈AZB. Left Hilbert

A-B bimodules and their isomorphisms are defined in a similar way.

Let AZB be a right Hilbert A-B-bimodule. A map δ from G into I(Z)

(the group of invertible C-linear bounded maps from Z into itself) is called

a (Σ,Θ)-compatible action of G on AZB when the following conditions are

satisfied for g ∈ G, a ∈ A, z, ζ ∈ Z and b ∈ B:

• δ(g)(a · z) = αg(a) · (δ(g)z),

1We recall that by our standing assumptions, κ is then unit preserving, hence nonde-
generate, as required in [19].
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• δ(g)(z · b) = (δ(g)z) · βg(b),

• δ(g)δ(h)z = σ(g, h) · (δ(gh)z) · θ(g, h)∗,

•
〈
δ(g)z, δ(g)ζ

〉
B

= βg(〈z, ζ〉B).

We will let Sδ,z,ζ : G× A→ B be the map defined by

Sδ,z,ζ(g, a) =
〈
z, a · (δ(g)ζ)

〉
B

for all g ∈ G and a ∈ A. Clearly, if g ∈ G is fixed, the map a→ Sδ,z,ζ(g, a)

from A into B is linear; moreover, it is bounded, since one easily shows that

‖Sδ,z,ζ(g, a)‖ ≤ ‖z‖‖ζ‖‖a‖

for all a ∈ A.

Two (Σ,Θ)-compatible actions δ and δ′ of G, acting respectively on AZB

and AZ
′
B, are called equivariantly isomorphic if there exists an isomorphism

of right Hilbert A-B-bimodules between AZB and AZ
′
B which intertwines δ

and δ′.

Remark 4.1. If (ρ, v) is an equivariant representation of Σ on a right

Hilbert A-module X, then X is a right Hilbert A-A-bimodule (using ρ as

the left action of A on X) and v is a (Σ,Σ)-compatible action of G on

AXA. Conversely, if v is a (Σ,Σ)-compatible action of G on a right Hilbert

A-A-bimodule X, where the left action of A on X is given by some homo-

morphism ρ : A → LA(X), then (ρ, v) is an equivariant representation of

Σ on X. For example, if we consider A as a right Hilbert A-A-bimodule in

the obvious way, then the map α : G→ I(A) is a (Σ,Σ)-compatible action

of G on AAA, corresponding to the trivial equivariant representation (α, `)

of Σ on A.

We recall that a right Hilbert B-module X is called full when 〈X,X〉 =

B. Fullness of a left Hilbert C∗-module is defined in a similar way. An

A-B imprimitivity bimodule Z = AZB (sometimes called an equivalence A-

B-bimodule) is a full right Hilbert A-B-bimodule w.r.t. a B-valued inner

product 〈·, ·〉B, which is also a full left Hilbert A-B-bimodule w.r.t. to an

A-valued inner product A〈·, ·〉, in such a way that

A〈z, z′〉 · z′′ = z · 〈z′, z′′〉B

for all z, z′, z′′ ∈ Z. It then follows that ‖A〈z, z〉‖ = ‖〈z, z〉B‖ for all z ∈ Z,

hence that the two norms on Z associated to the left and the right inner

products coincide.
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Following [13, 27], we say that the two systems Σ and Θ are Morita

equivalent when there exist an A-B imprimitivity bimodule Z together with

a (Σ,Θ)-compatible action δ of G on Z; we then write Σ ∼(Z,δ) Θ. We note

that δ automatically satisfies

• A

〈
δ(g)z, δ(g)ζ

〉
= αg(A〈z, ζ〉),

see e.g. the argument given in [19, Remark 2.6 (2)].

It is easy to check that Σ and Θ are Morita equivalent whenever they are

cocycle conjugate (see e.g. [16, Section 9] for the untwisted case). Moreover,

Morita equivalent twisted C∗-dynamical systems have Morita equivalent C∗-

crossed products (see [13, Theorem 2.3] for the full case, and [17, Sections

2.5.4 and 2.8.6] for the reduced case). We also mention the following result,

which is probably a part of the folklore on this topic.

Proposition 4.2. Assume that Σ = (A,G, α, σ) and Θ = (B,G, β, θ) are

Morita equivalent, and that A and B are commutative. Then the action α

of G on A is conjugate to the action β of G on B, i.e., there exists an

isomorphism φ from A onto B which intertwines these actions. Moreover,

Σ is conjugate to the system (B,G, β, σφ), while Θ is conjugate to the system

(A,G, α, θφ−1), where σφ(g, h) := φ(σ(g, h)) and θφ−1(g, h) := φ−1(θ(g, h))

for all g, h ∈ G.

Proof. The assumption says that Σ ∼(X,δ) Θ for some A-B imprimitivity

bimodule Z and some (Σ,Θ)-compatible action δ of G on Z. In particular,

A and B are Morita equivalent. As A,B are both commutative, we can then

apply [10, Theorem 2.24] to conclude that there is a unique isomorphism

φ : A→ B satisfying that

(4.1) φ(A〈z, z′〉) = 〈z′, z〉B for all z, z′ ∈ Z,

and we also have that a · z = z · φ(a) for all a ∈ A and z ∈ Z. Using

properties of δ in combination with (4.1) we get

φ
(
αg(A〈z, z′〉)

)
= φ

(
A
〈δ(g)z, δ(g)z′〉

)
= 〈δ(g)z′, δ(g)z〉B

= βg(〈z′, z〉B) = βg
(
φ(A〈z, z′〉)

)
for all g ∈ G and z, z′ ∈ Z. Since Z is full as a left Hilbert A-module, it

follows that φαg = βgφ for every g ∈ G, hence that α and β are conju-

gate. This shows the first part of the proposition. The second part follows

immediately.
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In the setting of Proposition 4.2, it is not clear that Σ and Θ are conju-

gate. However, this is certainly the case when σ and θ are both trivial:

Corollary 4.3. Suppose that (A,G, α) and (B,G, β) are (untwisted discrete

unital) C∗-dynamical systems with both A and B commutative. Then these

systems are Morita equivalent if and only if they are conjugate, in which

case the associated Fourier-Stieltjes algebras are isometrically isomorphic.

Proof. This follows from Proposition 4.2 and Theorem 3.8.

Assume now that Ω = (C,G, γ, ω) is another twisted discrete unital C∗-

dynamical system, δ is a (Σ,Θ)-compatible action of G on AXB and η is a

(Θ,Ω)-compatible action of G on BYC . If π : B → LC(Y ) denotes the left

action of B on Y , we can form the internal tensor product X⊗π Y , which is

a right Hilbert C-module (cf. [28]); we will suppress π in our notation and

denote X ⊗π Y by X ⊗B Y in the sequel, as is common in the literature.

Moreover, X⊗B Y can be turned into a right Hilbert A-C bimodule, the left

action of A on X⊗BY being given on simple tensors by a·(x⊗̇y) = (a·x)⊗̇y,

and we can define a (Σ,Ω)-compatible product action δ⊗Bη of G on A(X⊗B
Y )C , which is given on simple tensors by (δ⊗B η)(g)(x⊗̇y) = δ(g)x⊗̇η(g)y.

Indeed, as a sample, consider g, h ∈ G, x ∈ X and y ∈ Y . Then we have(
(δ ⊗B η)(g)(δ ⊗B η)(h)

)
(x⊗̇y) = (δ ⊗B η)(g)

(
δ(h)x⊗̇η(h)y

)
= δ(g)δ(h)x⊗̇η(g)η(h)y

=
(
σ(g, h) · (δ(gh)x) · θ(g, h)∗

)
⊗̇
(
θ(g, h) · (η(gh)x) · ω(g, h)∗

)
=
((
σ(g, h) · (δ(gh)x) · θ(g, h)∗

)
· θ(g, h)

)
⊗̇
((
η(gh)y

)
· ω(g, h)∗

)
= σ(g, h) ·

(
δ(gh)x⊗̇η(gh)y

)
· ω(g, h)∗

= σ(g, h) ·
(
(δ ⊗B η)(gh)(x⊗̇y)

)
· ω(g, h)∗

Thus, by continuity, it follows that δ⊗Bη satisfies the third property required

for being a (Σ,Ω)-compatible action. The reader will find more details about

this construction and its properties in [18, 19]. These articles deal with the

untwisted case, but it is easy to adapt the proofs to our setting. In particular,

arguing as in the proof of [19, Theorem 2.8 and Remark 2.9], we obtain that

the following facts hold:

• Up to equivariant isomorphism, the product of compatible actions is

associative.

• Recalling that α is a (Σ,Σ)-compatible action of G on AAA, the (Σ,Θ)-

compatible product action α⊗A δ of G on A(A⊗AX)B is equivariantly
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isomorphic to δ. In a similar way, the product action δ ⊗B β of G on

A(X ⊗B B)B is equivariantly isomorphic to δ.

• Assume that Σ and Θ are Morita equivalent with Σ ∼(Z,δ) Θ. Then

we have:

– Θ ∼(Z̃,δ̃) Σ, where Z̃ is the right Hilbert B-A bimodule conjugate

(or reverse) to Z and δ̃ is the (Θ,Σ)-compatible action of G on

Z̃ given by δ̃(g)z̃ = δ̃(g)z.

– The product action δ ⊗B δ̃ of G on A(Z ⊗B Z̃)A is equivariantly

isomorphic, as a (Σ,Σ)-compatible action, to α.

– The product action δ̃ ⊗A δ of G on B(Z̃ ⊗A Z)B is equivariantly

isomorphic, as a (Θ,Θ)-compatible action, to β.

Next, consider a (Σ,Σ)-compatible action v of G on a right Hilbert A-A

bimodule X. We will use the same notation as in [19] and let [X, v] denote

the class of all pairs (X ′, v′) where v′ is a (Σ,Σ)-compatible action of G on a

right Hilbert A-A-module X ′ such that v′ is equivariantly isomorphic to v.

Further, we will let A(Σ) denote the collection of these equivalence classes.

Using the above properties, one sees that A(Σ) can be equipped with an

associative product given by

[X1, v1][X2, v2] := [X1 ⊗A X2, v1 ⊗A v2],

and that [A,α] acts as a unit in A(Σ). Moreover, one readily gets the fol-

lowing result.

Proposition 4.4. Assume that the systems Σ and Θ are Morita equivalent

with Σ ∼(Z,δ) Θ, and let v be a (Σ,Σ)-compatible action on a right Hilbert

A-A bimodule X.

Then w := (δ̃⊗Av)⊗Aδ is a (Θ,Θ)-compatible action on the right Hilbert

B-B-bimodule Y := (Z̃ ⊗A X)⊗A Z.

Moreover, the action δ ⊗B (w ⊗B δ̃) on the right Hilbert A-A-bimodule

Z̃ ⊗B (Y ⊗B Z) is equivariantly isomorphic to v.

Hence, the map [X, v] 7→ [Y,w] gives a one-to-one correspondence be-

tween A(Σ) and A(Θ) which preserves products.

Taking into account Remark 4.1 this result says that, up to isomorphism,

the equivariant representations of two Morita equivalent systems are in a

one-to-one correspondence. As we will soon see, this has some relevance
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for the associated Fourier-Stieltjes algebras. By isomorphism of equivariant

representations of a system, we mean the following.

Let (ρ, v), (ρ′, v′) be equivariant representations of Σ on right Hilbert

A-modules X and X ′, respectively. Then (ρ, v) and (ρ′, v′) are said to be

isomorphic if v and v′ are equivariantly isomorphic as (Σ,Σ)-compatible

actions of G, i.e., there exists an isomorphism of right Hilbert A-modules

φ : X → X ′ which intertwines v and v′, as well as ρ and ρ′. We note that

in this case we have

(4.2) Tρ,v,x,y = Tρ′,v′,φ(x),φ(y)

for all x, y ∈ X. Indeed, for each a ∈ A and g ∈ G, we have

Tρ,v,x,y(g, a) =
〈
x, ρ(a)v(g)y

〉
=
〈
φ(x), φ

(
ρ(a)v(g)y

)〉′
=
〈
φ(x), ρ′(a)v′(g)φ(y)

〉′
= Tρ′,v′,φ(x),φ(y)(g, a).

The following notation will be useful. If S : G×A→ B, T : G×A→ A

and R : G × B → A are maps, then we let S · T : G × A → B and

T ·R : G×B → A be the maps given by

(S · T )(g, a) = S(g, T (g, a)), (T ·R)(g, b) = T (g,R(g, b))

for all g ∈ G, a ∈ A and b ∈ B. Moreover, we let S · T · R : G× B → B be

given by

S · T ·R := (S · T ) ·R = S · (T ·R).

Proposition 4.5. Assume that the systems Σ and Θ are Morita equivalent

with Σ ∼(Z,δ) Θ, and let (ρ, v) be an equivariant representation of Σ on a

right Hilbert A-module X. Let x, x′ ∈ X and z, z′, ζ, ζ ′ ∈ Z. Then the map

Sδ,z′,ζ′ · Tρ,v,x,x′ · Sδ̃,z̃,ζ̃ : G×B → B

belongs to B(Θ). Thus we get a linear map Fz,z′,ζ,ζ′ : B(Σ) → B(Θ) given

by

Fz,z′,ζ,ζ′(T ) = Sδ,z′,ζ′ · T · Sδ̃,z̃,ζ̃
for every T ∈ B(Σ). Similarly, the assignment T ′ 7→ Sδ̃,z̃,ζ̃ · T ′ · Sδ,z′,ζ′ gives

a linear map from B(Θ) into B(Σ).

Proof. Let Y = (Z̃ ⊗A X) ⊗A Z and w = (δ̃ ⊗ v) ⊗ δ : G → I(Y ) be as in

Proposition 4.4, and let τ : B → LB(Y ) denote the homomorphism coming

from the left action of B on Y , so (τ, w) is an equivariant representation of

Θ on the right Hilbert B-module Y .
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Let g ∈ G and b ∈ B. Then we have

Tτ,w,(z̃⊗̇x)⊗̇z′ ,(ζ̃⊗̇x′)⊗̇ζ′(g, b) =
〈
z′, Tρ,v,x,x′

(
g,A
〈
z · b, δ(g)ζ

〉)
· δ(g)ζ ′

〉
B
.

Indeed,

Tτ,w,(z̃⊗̇x)⊗̇z′,(ζ̃⊗̇x′)⊗̇ζ′(g, b) =
〈

(z̃⊗̇x)⊗̇z′, τ(b)w(g)(ζ̃⊗̇x′)⊗̇ζ ′
〉
B

=
〈

(z̃⊗̇x)⊗̇z′,
(
((δ(g)ζ) · b∗)̃⊗̇v(g)x′

)
⊗̇δ(g)ζ ′

〉
B

=
〈
z′,
〈
z̃⊗̇x, ((δ(g)ζ) · b∗)̃⊗̇v(g)x′

〉
A
· δ(g)ζ ′

〉
B

=
〈
z′,
〈
x, 〈z̃, ((δ(g)ζ) · b∗)̃〉A · v(g)x′

〉
A
· δ(g)ζ ′

〉
B

=
〈
z′,
〈
x,A 〈z, (δ(g)ζ) · b∗〉 · v(g)x′

〉
A
· δ(g)ζ ′

〉
B

=
〈
z′,
〈
x, ρ
(
A
〈z · b, δ(g)ζ〉

)
v(g)x′

〉
A
· δ(g)ζ ′

〉
B

=
〈
z′, Tρ,v,x,x′

(
g,A
〈
z · b, δ(g)ζ

〉)
· δ(g)ζ ′

〉
B
,

as asserted. Since

Sδ̃,z̃,ζ̃(g, b) =
〈
z̃, b · (δ̃(g)ζ̃)

〉
A

=
〈
z̃,
(
(δ(g)ζ) · b∗

)̃〉
A

= A

〈
z, (δ(g)ζ) · b∗

〉
= A

〈
z · b, δ(g)ζ

〉
,

we get that(
Sδ,z′,ζ′ · Tρ,v,x,x′ · Sδ̃,z̃,ζ̃

)
(g, b) = Sδ,z′,ζ′

(
g, Tρ,v,x,x′

(
g, A
〈
z · b, δ(g)ζ

〉))
=
〈
z′, Tρ,v,x,x′

(
g,A
〈
z · b, δ(g)ζ

〉)
· δ(g)ζ ′

〉
B
.

This shows that

Sδ,z′,ζ′ · Tρ,v,x,x′ · Sδ̃,z̃,ζ̃ = Tτ,w,(z̃⊗̇x)⊗̇z′,(ζ̃⊗̇x′)⊗̇ζ′ ∈ B(Θ)

and the first claim follows. The remaining claims are then easily obtained.

Corollary 4.6. Assume Σ and Θ are Morita equivalent with Σ ∼(Z,δ) Θ.

Then B(Θ) can be determined from B(Σ) and Z (and similarly for the other

way around). Indeed, we have

(4.3) B(Θ) = Span
{
Fz,z′,ζ,ζ′(T ) | T ∈ B(Σ), z, z′, ζ, ζ ′ ∈ Z

}
.

Proof. Using Proposition 4.5 we get that the right-hand side of (4.3) is

contained in B(Θ). To show the reverse inclusion, we first observe that for
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z, z′, ζ, ζ ′ ∈ Z, g ∈ G and b ∈ B we have(
Sδ,z′,ζ′ · Sδ̃,z̃,ζ̃

)
(g, b) = Sδ,z′,ζ′

(
g, Sδ̃,z̃,ζ̃(g, b)

)
= Sδ,z′,ζ′

(
g, A
〈
z · b, δ(g)ζ

〉)
=
〈
z′, A

〈
z · b, δ(g)ζ

〉
· (δ(g)ζ ′)

〉
B

=
〈
z′, z · b ·

〈
δ(g)ζ, δ(g)ζ ′

〉
B

〉
B

=
〈
z′, z

〉
B
b
〈
δ(g)ζ, δ(g)ζ ′

〉
B

=
〈
z, z′

〉∗
B
bβg
(
〈ζ, ζ ′〉B

)
Now, since Z is full as a right Hilbert B-module, we can use Lemma 2.5 in

[10] to find z1, z
′
1, . . . , zn, z

′
n ∈ Z such that

(4.4)
n∑
i=1

〈zi, z′i〉B = 1B (the unit of B).

(In fact, proceeding as in [25, p. 90], one may even choose z′j = zj for all

j = 1, . . . , n, but we won’t need this). We note that

(4.5)
n∑

i,j=1

Fzi,z′i,zj ,z′j(IΣ) =
n∑

i,j=1

Sδ,z′i,z′j · Sδ̃,z̃i,z̃j = IΘ.

Indeed, for g ∈ G and b ∈ B, using (4.4), we get( n∑
i,j=1

Sδ,z′i,z′j · Sδ̃,z̃i,z̃j
)

(g, b) =
n∑

i,j=1

〈
zi, z

′
i

〉∗
B
bβg
(
〈zj, z′j〉B

)
=
( n∑
i=1

〈
zi, z

′
i

〉
B

)∗
bβg
( n∑
j=1

〈zj, z′j〉B
)

= b.

Let T ′ ∈ B(Θ). For each i, j, k, l ∈ {1, . . . , n}, set

T ′i,j,k,l := Sδ̃,z̃i,z̃j · T
′ · Sδ,z′k,z′l ,

which belongs to B(Σ) (by Proposition 4.5). Then, using (4.5), we get that

n∑
i,j,k,l=1

Fzk,z′i,zl,z′j
(
T ′i,j,k,l

)
=

n∑
i,j,k,l

Sδ,z′i,z′j · Sδ̃,z̃i,z̃j · T
′ · Sδ,z′k,z′l · Sδ̃,z̃k,z̃l

=
( n∑
i,j=1

Sδ,z′i,z′j · Sδ̃,z̃i,z̃j
)
· T ′ ·

( n∑
k,l=1

Sδ,z′k,z′l · Sδ̃,z̃k,z̃l
)

= IΘ · T ′ · IΘ = T ′,

which shows that T ′ ∈ Span
{
Fz,z′,ζ,ζ′(T ) | T ∈ B(Σ), z, z′, ζ, ζ ′ ∈ Z

}
, as

desired.
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In view of the last statement of Corollary 4.3, one might wonder under

which assumptions the Fourier-Stieltjes algebras associated to Morita equiv-

alent systems are actually (isometrically) isomorphic, cf. Theorem 3.8 (see

also Remark 4.7). Also, it would be interesting to investigate whether in gen-

eral those Fourier-Stieltjes algebras could be Morita equivalent as Banach

algebras in some suitable sense (see e.g. [26] or [31]). However, elaborating

on this topic would require the development of additional machinery, and

we won’t discuss this here.

Remark 4.7. It may be worth to point out that in general Morita equiv-

alence of systems is not sufficient to ensure that the associated Fourier-

Stieltjes algebras are isomorphic. Indeed, consider Σ = (C, G, triv, 1) and

Θ = (M2(C), G, triv, 1) for some discrete group G (where triv denotes the

trivial action in both cases). It is then easy to see that Σ and Θ are Morita

equivalent. On the other hand, B(Σ) = B(G) is commutative, while B(Θ)

is not as it contains a copy of M2(C).

Remark 4.8. Consider two systems Σ = (A,G, α, σ) and Θ = (B,H, β, θ)

where H might be different from G, as in the previous section. If ϕ : G→ H

is an isomorphism, we obtain a new system Θϕ = (B,G, βϕ, θϕ) by setting

βϕg = βϕ(g) and θϕ(g, g′) = θ(ϕ(g), ϕ(g′)). One easily checks that B(Θ) is

isometrically isomorphic to B(Θϕ). Now, let us say that Σ and Θ are weakly

Morita equivalent if there exist some ω ∈ Z2(G,T) and some isomorphism

ϕ : G → H such that Σ(ω) is Morita equivalent to Θϕ. Corollary 4.6 gives

then that B(Σ) = B(Σ(ω)) can be determined from B(Θϕ), hence from

B(Θ), and vice-versa. Finally, we mention that Σ and Θ are weakly Morita

equivalent whenever they are cocycle group conjugate, as the reader will

easily verify.

5 An application to amenable systems

Amenability is an important topic within operator algebras, and it has re-

ceived a good deal of attention, also in connection with C∗-dynamical sys-

tems (see e.g. [4, 5, 20, 23, 12, 7, 22, 9, 29, 14, 3, 15] and references therein).

Using the technique used in the proof of Corollary 4.6, we will show that

amenability of a system, as defined in [9], is preserved under Morita equiv-

alence. As before, we let Σ = (A,G, α, σ) and Θ = (B,G, β, θ) denote two

twisted unital discrete C∗-dynamical systems. We recall that Σ is said to

be amenable whenever there exists a net {T ν} in P (Σ) such that
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• each T ν is finitely supported, i.e., the set {g ∈ G | T νg 6= 0} is finite

for each ν,

• {T ν} is uniformly bounded, i.e., supν ‖T ν‖∞ <∞,

• limν ‖T νg (a)− a‖ = 0 for every g ∈ G and a ∈ A.

Assume for example that Σ has Exel’s (positive) approximation property

[20, 22, 23], that is, there exists a net {ξν} of finitely supported functions

from G into A such that

(a) supν
∥∥∑

g∈G ξν(g)∗ξν(g)
∥∥ <∞;

(b) limν

∥∥∑
h∈G ξν(h)∗aαg

(
ξν(g

−1h)
)
− a
∥∥ = 0 for all g ∈ G and a ∈ A.

Then Σ is amenable because setting T νg (a) =
∑

h∈G ξν(h)∗aαg
(
ξν(g

−1h)
)

for

all g ∈ G and a ∈ A gives a net {T ν} satisfying the required properties.

Note that if all ξν ’s take their values in Z(A), then (b) is equivalent to

lim
ν

∥∥∑
h∈G

ξν(h)∗αg
(
ξν(g

−1h)
)
− 1A

∥∥ = 0

for all g ∈ G. Thus it readily follows that if σ = 1, then Σ is amenable

whenever the action α is amenable in the sense of [12], a notion that is

stronger than Anantharaman-Delaroche’s original definition of amenability

of α in [4]. Notice also that as long as σ is scalar-valued then the amenability

of Σ does not depend on σ. As shown in [9, Theorem 4.6], amenability

of Σ implies that Σ is regular, i.e., the full and the reduced C∗-crossed

products associated to Σ are canonically isomorphic. Several other notions

of amenability (for untwisted systems) are discussed in [14, 15]. We note

that if A is commutative, G is exact and σ = 1, then it follows readily from

[14, Theorem 5.2] that all existing notions of amenability for Σ (including

ours, and regularity) are equivalent.

Strong and weak equivalence of Fell bundles over groups are studied in

[1, 2, 3]. Having in mind that Σ gives rise to a Fell bundle over G in a

canonical way (cf. [21]), one may for instance deduce from [2, Corollary 4.5]

and [3, Theorem 6.23] that regularity and Exel’s approximation property

are preserved under Morita equivalence of systems. We prove below that

this is also true for amenability in our sense.

Theorem 5.1. Assume that the systems Σ and Θ are Morita equivalent,

with Σ ∼(Z,δ) Θ. Then Θ is amenable whenever Σ is amenable.
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Proof. Assume that Σ is amenable. As in the proof of Proposition 4.5, we

can find z1, z
′
1, . . . , zn, z

′
n ∈ Z such that

n∑
i=1

〈zi, z′i〉B = 1B.

For later use, we set K =
(∑n

i=1 ‖zi‖‖z′i‖)2. Let then F : B(Σ)→ B(Θ) be

the linear map given by

F =
n∑

i,j=1

Fzi,z′i,zj ,z′j .

We first note that F maps P (Σ) into P (Θ). To show this, we use the notation

introduced in the proof of Proposition 4.5. Let T = Tρ,v,x,x ∈ P (Σ) and set

y :=
∑n

i=1(z̃i⊗̇x)⊗̇z′i ∈ Y := (Z̃ ⊗A X)⊗A Z. Then we have

F (T ) =
n∑

i,j=1

Fzi,z′i,zj ,z′j(Tρ,v,x,x) =
n∑

i,j=1

Tτ,w,(z̃i⊗̇x)⊗̇z′i,(z̃j⊗̇x)⊗̇z′j

=
n∑
j=1

Tτ,w,y,(z̃j⊗̇x)⊗̇z′j = Tτ,w,y,y ∈ P (Θ).

This computation also gives that

‖F (T )‖∞ = ‖〈y, y〉B‖ = ‖y‖2 ≤
( n∑
i=1

‖(z̃i⊗̇x)⊗̇z′i‖
)2

≤
( n∑
i=1

‖z̃i‖‖x‖‖z′i‖
)2

= K‖x‖2 = K‖T‖∞

(since ‖z̃‖ = ‖z‖ for all z ∈ Z). Further, we note that F (T ) is easily seen

to be finitely supported whenever T ∈ B(Σ) is finitely supported.

Let now {T ν} be a net in P (Σ) witnessing the amenability of Σ. Then

{F (T ν)} is clearly a net of finitely supported elements in P (Θ). Moreover,

we have that

sup
ν
‖F (T ν)‖∞ ≤ K sup

ν
‖T ν‖∞ <∞,

so {F (T ν)} is uniformly bounded. Finally, let g ∈ G and b ∈ B. Then

F (T ν)(g, b) =
n∑

i,j=1

(
Fzi,z′i,zj ,z′j(T

ν)
)
(g, b) =

n∑
i,j=1

(
Sδ,z′i,z′j · T

ν · Sδ̃,z̃i,z̃j
)
(g, b)

=
n∑

i,j=1

Sδ,z′i,z′j
(
g, T νg

(
Sδ̃,z̃i,z̃j(g, b)

))
.
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Consider now i, j ∈ {1, . . . , n}. Using that the map a → Sδ,z′i,z′j
(
g, a
)

from

A into B is continuous, we get that

lim
ν
Sδ,z′i,z′j

(
g, T νg

(
Sδ̃,z̃i,z̃j(g, b)

))
= Sδ,z′i,z′j

(
g, lim

ν
T νg
(
Sδ̃,z̃i,z̃j(g, b)

))
= Sδ,z′i,z′j

(
g,
(
Sδ̃,z̃i,z̃j(g, b)

))
=
(
Sδ,z′i,z′j · Sδ̃,z̃i,z̃j

)
(g, b).

Hence, using Equation (4.5), we get that

lim
ν
F (T ν)(g, b) =

n∑
i,j=1

lim
ν
Sδ,z′i,z′j

(
g, T νg

(
Sδ̃,z̃i,z̃j(g, b)

))
=

n∑
i,j=1

(
Sδ,z′i,z′j · Sδ̃,z̃i,z̃j

)
(g, b) = IΘ(b) = b.

This shows that Θ is amenable, as desired.

An immediate consequence of this result is that amenability of a system

is also preserved under weak Morita equivalence (as defined in Remark 4.8).

Remark 5.2. A result of a nature similar to Theorem 5.1 is Theorem 2.2.17

in [6], which says that topological amenability of locally compact groupoids

is invariant under topological equivalence (whose definition is hinted by

Morita equivalence of C∗-algebras).
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