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a b s t r a c t

The coupled Darcy–Stokes problem is widely used for modeling fluid transport in
physical systems consisting of a porous part and a free part. In this work we consider
preconditioners for monolithic solution algorithms of the coupled Darcy–Stokes problem,
where the Darcy problem is in primal form. We employ the operator preconditioning
framework and utilize a fractional solver at the interface between the problems to obtain
order optimal schemes that are robust with respect to the material parameters, i.e. the
permeability, viscosity and Beavers–Joseph–Saffman condition. Our approach is similar
to that of Holter et al. (2020), but since the Darcy problem is in primal form, expressing
mass conservation at the interface involves the normal derivative, which introduces
some mathematical challenges. These challenges will be specifically addressed in this
paper, in particular we will employ fractional Laplacians at the interface. Numerical
experiments illustrating the performance are provided. The preconditioner is posed
in non-standard Sobolev spaces which may be perceived as an obstacle for its use
in applications. However, we detail the implementational aspects and show that the
preconditioner is quite feasible to realize in practice.
© 2020 TheAuthors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let Ω = Ωf ∪ Ωp, where Ωf is the domain of the viscous flow, Ωp is the domain of the porous media and
Γ their common interface. Further let the domain boundaries be decomposed as ∂Ωf = Γ ∪ ∂Ωf ,D ∪ ∂Ωf ,N and
∂Ωp = Γ ∪ ∂Ωp,D ∪ ∂Ωp,N , where subscripts D,N signify respectively that Dirichlet and Neumann boundary conditions
are prescribed on the part of the boundary. The boundary of Γ , i.e., the intersection of Γ and ∂Ω is denoted by ∂Γ . An
llustration is given in Fig. 1.

The Stokes problem reads:

µ∆uf − ∇pf = f in Ωf , (1)

∇ · uf = 0 in Ωf , (2)

hile the Darcy problem in primal form reads:

− K∆pp = g in Ωp. (3)
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Fig. 1. Schematic domain of Darcy–Stokes problem. Dirichlet conditions shown in dashed line, and interface in red. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)

Here, uf , pf are the unknown velocity and pressure for the Stokes problem (1)–(2) in Ωf , pp is the unknown pressure
of the Darcy problem (3) in Ωp. The material parameters are the fluid viscosity µ and the permeability K . Here we shall
consider the problem with the Dirichlet boundary conditions

uf = u0
f on ∂Ωf ,D, pp = p0p on ∂Ωp,D

and Neumann conditions(
µ∇uf − pf I

)
· nf = h on ∂Ωf ,N , ∇pp · np = hp on ∂Ωp,N ,

where nf , np are the outer unit normals of the respective subdomains. In particular we assume that |∂Ωi,D| > 0 and
|∂Ωi,N | > 0 for i = p, f . Moreover, the coupled problem must be equipped with interface conditions expressing the
continuity of stress as well as mass balance. We postpone their description until we describe the weak formulation of the
problem.

The discretization of the coupled Darcy–Stokes problem with the Darcy problem in a mixed form is challenging since
the Darcy and Stokes problems, respectively, call for different schemes. For example, typical finite element methods for
the Darcy problem, like the Raviart–Thomas or Brezzi–Douglas–Marini elements, are not stable for Stokes problem as
the discretization of the flux specifically targets the properties of H(div) rather than H1 which is natural for Stokes
discretizations. For this reason, a wide range of methods have been proposed over the last decade that address this
particular challenge. For example, new elements robust for both the Darcy and Stokes problem have been proposed
in [1–5]. Alternatively, stabilization or modifications of standard methods may be used as in [6–10]. In this work we
will consider the coupled problem with the Darcy equation in a primal form and a Lagrange multiplier to couple the
Stokes and Darcy problems. Standard elements in both the Darcy and the Stokes domain can then be used, but a main
problem with such schemes is the stability of the discretization at the interface.

The well-posedness of the Darcy–Stokes problem coupled together through the use of a Lagrange multiplier is well-
known when the Darcy problem is in mixed form [11,12], where both the continuous setting and various discretizations
were proposed. Other solution and discretization algorithms for the coupled problem are presented in e.g. [13,14],
see [11,15] for an overview. For the mixed formulation we have, in our previous work [16], developed monolithic
solvers that are robust with respect to all material parameters by utilizing fractional solvers on the interface. Here, we
continue with the same type of approach, but address the difficulty of the Darcy problem in primal form, where the
main concern from a mathematical point of view is the normal gradient at the interface. However, as the interface is of
lower dimension, the number of degrees of freedom at the interface is typically small compared to the overall problem
and preconditioning blocks at the interface based on fractional Laplacians are hence feasible to realize without sacrificing
performance. Furthermore, multilevel solvers are available for fractional Laplacians [17,18] if the interface requires more
degrees of freedom than can be solved for by direct methods. We remark that the problem to be studied further is
symmetric and includes an explicit variable, the Lagrange multiplier, on Γ . In this respect it differs from the more common
primal formulation, which leads to a non-symmetric system to be solved for uf , pf and pp. Well-posedness of the latter
problem was established in [15] with efficient solvers proposed and analyzed e.g. in [19–21].

An outline of the paper is as follows: Section 2 describes the notation, introduces the symmetric primal Darcy–Stokes
problem and illustrates the difficulties in its preconditioning. The main challenge for the solver construction, i.e. the
proper posing of the coupling operator, is addressed in Section 3. Parameter robust preconditioners are then established
in Section 4.

2. Preliminaries

Let Ω be a bounded Lipschitz domain in Rn, n = 2 or 3, and denote its boundary by ∂Ω . We denote by L2(Ω) the
Lebesgue space of square integrable functions, with the norm ∥u∥2

=
∫

|u|2 dx, and by H1(Ω) the Sobolev space of
Please cite this article as: K.E. Holter, M. Kuchta and K.-A. Mardal, Robust preconditioning for coupled Stokes–Darcy problems with the Darcy problem in
primal form, Computers and Mathematics with Applications (2020), https://doi.org/10.1016/j.camwa.2020.08.021.
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functions with first derivative in L2(Ω) with norm ∥u∥2
H1(Ω)

= ∥u∥2
L2(Ω)

+∥∇u∥2
L2(Ω)

. Note that the spaces are both Hilbert
spaces, with the standard inner products. These spaces are defined in the same way when u is a vector field, in which
case we will write u in boldface. We also define the subspace H1

0 (Ω) to be the completion in ∥ · ∥H1(Ω) of C
∞

0 (Ω), the
space of smooth functions on Ω whose restriction to ∂Ω is zero.

For a Lipschitz domain Ω with Γ ⊂ ∂Ω , we can define a trace operator T by Tu = u|Γ for smooth u. This can be
extended to a bounded, surjective and right-invertible operator H1(Ω) → H

1
2 (Γ ) (cf. e.g. [22]), where the space H

1
2 (Γ )

ill be defined later. Given a subset ∂ΩD of ∂Ω , we let H1
0,∂ΩD

(Ω), or for readability just H1
0,D(Ω), be the subspace of

1(Ω) for which the restriction to ∂ΩD is zero, where the restriction is defined in terms of the trace operator. Typically,
ΩD will be the subset of ∂Ω on which Dirichlet conditions are prescribed. We also define the semi-norm L2τ(Γ ) on H1(Ω)
o be the L2(Γ ) norm of the tangential component of u at Γ . In 2D, this is just ∥u|Γ ·τ∥L2(Γ ) where τ is a tangent unit
ector, while in 3D it is more conveniently written as ∥u|Γ −(u|Γ ·n)n∥L2(Γ ).
For any inner product space X , we let (·, ·)X denote its inner product. When X = L2(Ω), we will omit the subscript if

here is no cause for confusion. We write the space of continuous linear operators from X to Y as L(X, Y ), or just as L(X)
f Y = X . For any two Sobolev spaces X, Y both contained in a common ambient space, we define the intersection and
um spaces X ∩ Y and X + Y in terms of the norms

∥u∥2
X∩Y = ∥u∥2

X + ∥u∥2
Y and ∥u∥2

X+Y = inf
x+y=u
x∈X,y∈Y

∥x∥2
X + ∥y∥2

Y .

For any c > 0, we define the scaled space cX to be just X as a set, but with the inner product (u, v)X = c(u, v)X . Its
orm is trivially equivalent to ∥ · ∥X , but because the equivalence constant depends on c , the distinction between the two
orms becomes important when we need to establish the independence of bounds with respect to problem parameters.
We define the fractional space Hs(Γ ) following [23]. Let S ∈ L(H1(Γ )) be the operator such that (Su, v)H1 =

S(I − ∆)u, v) = (u, v)L2 for all v ∈ H1(Γ ). We can then find a basis of H1(Γ ) of orthonormal eigenfunctions ei of S
ith eigenvalues λi > 0. Writing u =

∑
i ciei in this basis, we define the norm ∥u∥2

Hs(Γ ) =
∑

c2i λ
−s
i for any s ∈ [−1, 1].

urther, let the space Hs(Γ ) be the completion of C∞(Γ ) with respect to ∥ · ∥Hs(Γ ). We also define the space Hs
00(Γ ) in the

ame manner, except that we then apply Dirichlet boundary conditions by choosing S in L
(
H1

0 (Γ )
)
. Furthermore, Hs

00(Γ )
s the completion of C∞

0 (Γ ) rather than C∞(Γ ).
For the sake of completeness we review here the construction of a matrix realization of fractional operators given

n [23]. To this end let Vh ⊂ H1(Γ ), n = dim Vh, be a finite dimensional finite element subspace with basis functions φi,
= 1, . . . , n and A, M ∈ Rn×n be the symmetric positive definite (stiffness and mass) matrices such that

Aij = (∇φj, ∇φi) and Mij = (φj, φi).

n case Vh ̸⊂ H1(Γ ) and piecewise constant (P0) discretization is used we let

Aij =

∑
ν∈N

{{h}}−1
ν ([[φj]]ν, [[φi]]ν)ν,

here N is a set of all the facets of the finite element mesh. Further the (facet) average and jump operators are defined
s {{u}}ν =

1
2 (u|K++u|K− ), [[u]]ν = u|K+−u|K− with K+ and K− the two cells sharing facet ν. When ν is an exterior facet,

e define [[u]]ν = {{u}}ν = u|K , where K is the unique cell with ν as facet.
It follows that the generalized eigenvalue problem (A+M)U = MUΛ has only positive eigenvalues and a complete set

f eigenvectors that form the basis of Rn so that the powers of S = UΛ(MU)T are well defined. For s ∈ [−1, 1] we then
set H(s) = MSs. Letting u be the vector of degrees of freedom of uh ∈ Vh, i.e. uh =

∑n
i uiφi, we finally have

∥uh∥Hs =

√ n∑
i,j=1

uiHij(s)uj.

When u is a vector function, we define the normal trace Tnu = u|Γ ·n using the trace operator T component-wise.
As such Tn is a continuous map H1(Ω) → H

1
2 (Γ ). Moreover, we let Tτ be the tangential trace operator. We remark that

in 2D and 3D the operator maps to scalar, respectively vector fields. The normal derivative, ∂nu = ∇u · n|Γ , is more
challenging to define properly in this context. Let us therefore briefly sketch an approach, which at least in the authors’
opinion at first glance seems like a natural starting point. However, as we will show, the approach does not yield robust
preconditioners in our context. First, notice that if we impose additional regularity on u and require that ∆u ∈ L2 then
n is well defined. In detail, let w ∈ H1/2(∂Ω) and E : H1/2(∂Ω) → H1(Ω) be a (harmonic) extension operator. Then ∂nu
learly lies in H−1/2(∂Ω) because∫

∂Ω

∂nu · w ds =

∫
Ω

∆u · Ew dx +

∫
Ω

∇ · (Ew) · ∇u dx ≤ ∞.

his extra regularity assumption is, however, hard to express in the operator preconditioning framework. In particular,
o the authors’ knowledge, there are no standard finite elements that would enable us to exploit the extra regularity. A
Please cite this article as: K.E. Holter, M. Kuchta and K.-A. Mardal, Robust preconditioning for coupled Stokes–Darcy problems with the Darcy problem in
primal form, Computers and Mathematics with Applications (2020), https://doi.org/10.1016/j.camwa.2020.08.021.
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ossible approach could be NURBS [24] or C1 discretizations developed for fourth order problems. However, the latter
often show poor performance for second order problems [25].

Alternatively, we may attempt to define ∂n as a composition of the first order derivative operator, ∇ , with the 1/2 order
normal trace operator Tn. The composition ∂n could then be expected to be a 3/2 operator ∂n : H1(Ω) → H−1/2(∂Ω). From
n operator preconditioning point of view, this would be feasible to realize, as we will see below. However, as we will
emonstrate, robustness will not be obtained if we realize ∂n as a 3/2 operator. In fact, robustness is only obtained if
n is a first order operator, ∂n : H1(Ω) → L2(∂Ω). We remark here that while the operator in a continuous setting is
n : H1(Ω) → L2(∂Ω), in the discrete setting we will include a scaling parameter, i.e. the mesh size, because we use the
inite element method. To see that this is reasonable, notice that for finite elements, the mass matrix, as representation
f the identity, is differently scaled in different dimensions. In Example 3.2 we detail the scaling in a simplified example.
In order to demonstrate why posing the ∂n operator properly is required, let us now formulate the coupled Darcy–

tokes problem, where the Darcy problem is in a primal form. As a starting point, let the Lagrangian of the coupled
roblem be,

L(uf , pf , pp, λ) =

∫
Ωf

1
2

(
µ(∇uf )2 − f · uf

)
dx +

∫
Γ

1
2
D(uf · τ)2 ds +

∫
Ωp

1
2
K

(
(∇pp)2 − g pp

)
dx

+

∫
Ωf

∇ · uf pf dx +

∫
Γ

(Tnuf − K∂npp)λ ds.

ote that the sign of pf has been changed from (1). Here, the Lagrange multiplier λ in
∫

Γ
(Tnuf − K∂npp)λ ds is

sed to ensure mass conservation, while the extra term
∫

Γ
1
2D(uf · τ)2 ds, where D = αBJS

√
µ

K corresponds to the
Beavers–Joseph–Saffman condition [26].

The corresponding weak formulation is obtained by the first order optimality conditions of the Lagrangian, that is;
∂L
∂uf

= 0, ∂L
∂pf

= 0, ∂L
∂pp

= 0, and ∂L
∂λ

= 0. A variational formulation hence reads: Find (uf , pp, pf , λ) such that

a((uf , pp), (vf , qp)) + b((vf , qp), (pf , λ)) = f ((vf , qp)) ∀(vf , qp),
b((uf , pp), (qf , w)) = g((qf , w)) ∀(qf , w),

(4)

where the bilinear forms a, b are defined as

a((uf , pp), (vf , qp)) = µ(∇uf , ∇vf )Ωf + D(uf · τ, vf · τ)Γ + K (∇pp, ∇qp)Ωp ,

b((uf , pp), (qf , w)) = (∇ · uf , qf )Ωf + (Tnuf , w)Γ − K (∂npp, w)Γ .
(5)

e shall refer to (4) as the (primal) Darcy–Stokes problem. Note that the resulting formulation is symmetric.
While appropriate function spaces are readily available for uf , pp, pf and their corresponding test functions, it is less

lear what the appropriate requirements are for w and λ. This will be addressed below.

xample 2.1 (Preconditioner for coupled Darcy–Stokes problem assuming ∂n : H1
→ H−1/2). Let us assume that ∂n is a

/2 operator so that K∂npp ∈
1

√
K
H−1/2 for pp ∈

√
KH1

0,D(Ωp). Next, observe that since uf ∈
√

µH1
0,D(Ωf ) ∩

√
DL2τ(Γ )

hen Tnuf ∈
√

µH1/2. Per assumption the coupling term Tnuf − K∂npp belongs to
√

µH1/2
+

1
√
K
H−1/2 so that the

ual variable w ∈
1

√
µ
H−1/2

∩
√
KH1/2. In turn, we consider the following weak formulation: Find uf , pp, pf , λ ∈

√
µH1

0,D(Ωf ) ∩
√
DL2τ(Γ ),

√
KH1

0,D(Ωp), 1
√

µ
L2(Ωf ), 1

√
µ
H−1/2

∩
√
KH1/2 such that

a((uf , pp), (vf , qp)) + b((vf , qp), (pf , λ)) = f ((vf , qp)) ∀(vf , qp) ∈
√

µH1
0,D(Ωf ) ∩

√
DL2τ(Γ ) ×

1
√

µ
L2(Ωf ),

b((uf , pp), (qf , w)) = g((qf , w)) ∀(qf , w) ∈
√
KH1

0,D(Ωp) ×
1

√
µ
H−1/2

∩
√
KH1/2.

(6)

The coefficient matrix associated with (4) reads

A =

⎛⎜⎝ −µ∆ + DT ′
τTτ (∇·)′ T ′

n
− K∆ −K∂ ′

n
∇·

Tn −K∂n

⎞⎟⎠ . (7)

Assuming that the proposed spaces indeed lead to a well-posed operator A, the operator preconditioning frame-
work [27] yields as a preconditioner the Riesz mapping

B =

⎛⎜⎜⎝
−µ∆ + DT ′

τTτ

− K∆
1
µ
I

1 −1/2 1/2

⎞⎟⎟⎠
−1

. (8)
Please cite this article as: K.E. Holter, M. Kuchta and K.-A. Mardal, Robust preconditioning for coupled Stokes–Darcy problems with the Darcy problem in
primal form, Computers and Mathematics with Applications (2020), https://doi.org/10.1016/j.camwa.2020.08.021.
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(I + ∆) + K (I + ∆)
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Fig. 2. Mesh refinement vs. iteration counts (left) and condition numbers (right) for Example 2.1. All subplots share x- and y-axes. For fixed µ, K
the x-axis range in the iterations subplot extends from (mesh size) h = 2−2 to h = 2−10 . In the condition number plots the range is from h = 2−2

o h = 2−8 . In all cases, αBJS = 1.

n order to test the preconditioner, we solve problem (6) on Ω = [0, 2] × [0, 1], where Ωf = [0, 1] × [0, 1] and Ωp =

[1, 2] × [0, 1] and the Dirichlet boundary domains are ∂Ωf ,D = {(x, y) ∈ ∂Ωf , x = 0} and ∂Ωp,D = {(x, y) ∈ ∂Ωp, x = 2},
cf. Fig. 1. The mesh is a uniform triangular mesh, consisting of 4N2 equally sized isosceles triangles. To discretize (4), we
use lowest order (P2-P1) Taylor–Hood elements for the Stokes velocity and pressure, while piecewise quadratic elements
(P2) were used for the Darcy pressure and piecewise constant elements (P0) for the Lagrange multiplier. Discretization is
carried out in the FEniCS library [28], with coupling maps between the interface and domains and the fractional Laplacians
being implemented by the extension FEniCSii [29].

Approximation of the preconditioner (8) is constructed by using single sweep of V -cycle of algebraic multigrid
BoomerAMG from the Hypre library [30] for all the blocks except for the interface block, which is inverted exactly. Starting
from a random initial vector, we count the number of iterations required to solve the preconditioned linear system using
the MINRES solver from the PETSc library [31] with convergence criterion based on relative tolerance of 10−8 and absolute
tolerance of 10−10. Additionally, the condition numbers of B−1A are computed using an iterative solver from the SLEPc
library [32]. In the condition number computations the operator B is computed exactly, that is, all the blocks are inverted
by LU. We remark that this solver setup is used also in the subsequent examples.

The results of the experiment are plotted in Fig. 2. By the failure of the iteration counts to stabilize, we see that
using 1

µ
(I + ∆)−1/2

+K (I + ∆)1/2 as multiplier space does not lead to a robust preconditioner over the whole parameter
ange. Note, however, that in the regime where µ is significantly smaller than K (i.e. the lower left region of the plots
n Fig. 2), iteration counts and condition numbers appear to be stable as the mesh is refined. In this regime, the norm of
he multiplier space is dominated by the part from 1

√
µ
H−1/2, which is determined by posing of the trace operator. This

uggests that the choice of
√
KH1/2, i.e. wrong posing of the ∂n operator, is responsible for the lack of boundedness.

. Approximating the trace normal gradient operator

A crucial step in the analysis of the Darcy–Stokes problem will be the mapping properties of the operator ∂n. As a
computationally practical choice of space for the Darcy pressure is

√
KH1, we immediately run into the problem discussed

in the preliminaries because ∂n cannot be defined on all of H1. This necessitates either an assumption of extra regularity
or an alternative approach.

Motivated by the observation in [33], that in a discrete finite element setting the trace operator is stable as a map
L2(Ω) → L2(∂Ω), we propose an alternative approach to construct the preconditioners. We start off by outlining the
construction of an operator ∂n,ϵ : H1(Ωp) → L2(Γ ) which will be an approximation to ∂n. Suppose Γ is a sufficiently
regular subset of ∂Ω , and that Γ is of co-dimension 1 in Ω . The ϵ-thick envelope Γ = {y ∈ Ω , dist(y, Γ ) < ϵ} is a
Please cite this article as: K.E. Holter, M. Kuchta and K.-A. Mardal, Robust preconditioning for coupled Stokes–Darcy problems with the Darcy problem in
primal form, Computers and Mathematics with Applications (2020), https://doi.org/10.1016/j.camwa.2020.08.021.
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igher-dimensional approximation of Γ . For any v ∈ H1(Ωp),

1
ϵ

∫
Γϵ

v φ dx →

∫
Γ

Tv Tφ ds as ϵ → 0, (9)

where φ is a test function in H1(Ωp).
Note that although the integral over Γ is not well-defined for a general v ∈ L2(Ωp), the integral over Γϵ is. Provided Γ

s sufficiently regular and ϵ sufficiently small, we assume that there exists a vector field nΓϵ on Γϵ which approximates the
ormal vector nΓ of Γ at Γ . Using nΓϵ , we further assume that we can define a bounded extension Eϵ : L2(Γ ) → L2(Γϵ)
long nΓϵ for which

∫
Γ

w ds ≈
1
ϵ

∫
Γϵ

Eϵw dx for any w ∈ L2(Γ ). Provided nΓϵ and Eϵ can be defined, then for any u ∈ H1(Ωp)
e can define ∂n,ϵu by∫

Γ

∂n,ϵu · w ds =
1
ϵ

∫
Γϵ

∇u · nΓϵEϵw dx

or any w ∈ L2(Γ ), thus defining the required map ∂n,ϵ : H1(Ωp) → L2(Γϵ) approximating ∂n. We assume that the resulting
perator ∂n,ϵ is both surjective and bounded, with ∥∂n,ϵu∥L2(Γ ) ≤ C∥u∥H1(Ωp), and that ∂n,ϵ has a bounded right inverse.
We emphasize that ∂n,ϵ is just an analytical tool constructed for the analysis in the continuous setting and that ϵ is

ot related to the mesh size h. In fact, we can choose ϵ far smaller than the mesh size and for any practical purposes in
omputations we assume that ∂n,ϵ will be practically identical to ∂n. We summarize the assumption as follows:

ssumption 1. Given a sufficiently regular Γ ⊂ ∂Ωp, ∂n,ϵ : H1(Ωp) → L2(Γ ) is a bounded surjection which approximates
n on the subspace of H1 on which ∂n can be defined. Further, ∂n,ϵ has a bounded right inverse.

Although characterizing the conditions under which Assumption 1 holds is beyond the scope of this paper, we motivate
he existence of the required constructions Eϵ,nϵ in a few simple examples below.

xample 3.1. Let Γ be the y-axis, and Ωp be the positive half-plane. The construction of Eϵ,nΓϵ is then given by
Γϵ = nΓ = (−1, 0) and for w(y) ∈ C1(Γ ) we let (Eϵw)(x, y) = w(y). This continuously extends to all of L2(Γ ). Clearly
n,ϵu → ∂nu as ϵ → 0 for u ∈ C1. Given any w(y) ∈ C0(Γ ), define u by u(x, y) = −xw(y). Then the map w → u
ontinuously extends to a right inverse of ∂n,ϵ , as by linearity ∂n,ϵu = ∂nu = w.
Next, suppose Ωp is the unit disk, and Γ its boundary. By parametrizing Γ with e.g. polar coordinates, this case can

e effectively translated to the above. nΓϵ is now the unit radial vector ir , and for any w(θ ) ∈ C1(Γ ), (Eϵw)(r, θ ) = w(θ ).
gain, this definition of Eϵ extends to all of L2(Γ ). Because 1

ϵ

∫
Γϵ

∇u · nΓϵEϵw dx =
∫ 2π
0 w(θ ) ·

∫ 1
1−ϵ

1
ϵ

∂u
∂r rdr dθ and

1
ϵ

∫ 1
1−ϵ

f (r) dr → f (1) as ϵ → 0, we again have ∂n,ϵu → ∂nu as ϵ → 0 for u ∈ C1. Analogously to the previous case,
right inverse can be defined by sending any w(θ ) ∈ C0(Γ ) to u(r, θ ) = rw(θ ).

Before considering the Darcy–Stokes problem, we justify Assumption 1. First we consider a simplified example in
rder to illustrate how the scaling of mass matrices in different dimensions affects preconditioners constructed via
he application of trace operators. Then, in Example 3.3 we construct preconditioners for a Poisson problem with a
n-constraint which is to be enforced by a Lagrange multiplier, cf. the Babuška problem [34] involving the trace operator.

xample 3.2 (Trace Constrained L2 Projection). Let Ω be a bounded domain with Γ ⊆ ∂Ω and V = H1(Ω). We then
onsider the problem

min
u∈V

∫
Ω

u2 dx − 2
∫

Ω

fu dx subject to
∫

Γ

(Tu − g) p ds = 0. (10)

etting p denote the Lagrange multiplier associated with the boundary constraint, the extrema u ∈ V , p ∈ Q = L2(Γ ) of
he Lagrangian of (10) satisfy the variational problem: Find u ∈ V and p ∈ Q such that∫

Ω

uv dx +

∫
Γ

pTv ds =

∫
Ω

f v dx ∀v ∈ V ,∫
Γ

qTu ds =

∫
Γ

gq ds ∀q ∈ Q .

(11)

he operator of the preconditioned continuous problem then reads

BA =

(
I

S

)−1 (
I T ′

T

)
, (12)

here S is to be constructed such that the condition number of the discrete problems is bounded in the discretization
arameter h. Here we shall consider three constructions. We remark that when using the finite element realization of
he identity operator, we mean the mass matrix and denoted it by I . The mass matrix has eigenvalues such that both

d

Please cite this article as: K.E. Holter, M. Kuchta and K.-A. Mardal, Robust preconditioning for coupled Stokes–Darcy problems with the Darcy problem in
primal form, Computers and Mathematics with Applications (2020), https://doi.org/10.1016/j.camwa.2020.08.021.

he smallest and largest eigenvalues scale as h on uniform mesh. First we consider S = I , with eigenvalues ≈ h because
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Table 3.1
Condition numbers of (12) with different preconditioners and discretization by P2-P1 elements on (us) mesh from
Fig. 3. Boundedness is obtained with the Schur complement preconditioner h−1I .
h I (−∆ + I)−1/2 h−1I

2−2 8.72 24.08 4.63
2−3 12.11 47.84 4.63
2−4 16.91 95.15 4.63
2−5 23.70 189.9 4.63
2−6 33.31 379.2 4.63
2−7 46.90 758.0 4.63
2−8 66.12 1515 4.63

Table 3.2
Condition numbers of (12) with preconditioner using S = h−1I . Boundedness with different types of triangulations, cf.
Fig. 3, and discretizations can be observed.
l P2-P1 P2-P0

(us) (uu) (nu) (us) (uu) (nu)

1 4.63 4.63 4.10 4.63 4.63 3.98
2 4.63 4.06 4.32 4.63 4.07 4.33
3 4.63 4.20 4.28 4.63 4.20 4.31
4 4.63 4.29 4.31 4.63 4.32 4.34
5 4.63 4.45 4.50 4.63 4.43 4.45
6 4.63 4.25 4.28 4.63 4.32 4.37
7 4.63 4.25 4.36 4.63 4.28 4.39

Γ is a 1D manifold. Then, following [33], we let S = h−1I , i.e., a matrix with eigenvalues ≈ 1. Finally, the choice of
= (−∆ + I)−1/2 is included to show that the relevant trace space in (12) is not (by viewing the trace as an order 1/2
perator) H1/2 so that dual variable would reside in H−1/2.
We remark that the first two operators are in practical computations assembled as weighted mass matrices where the

eights for the respective operators are 1 and inverse cell volume. Recalling Section 2 the matrix representation of the
ractional operator is H(1/2).

To compare the three preconditioners, we let Ω be a unit square, Γ = {(x, y) ∈ ∂Ω, x = 0}. Further, the domain shall
e discretized uniformly into 4N2 isosceles triangles with size h = 1/N , see Fig. 3. Such discretization shall be in the
ollowing referred to as uniformly structured (us). Considering finite element discretization by P2-P1 elements Table 3.1
ists spectral condition numbers of (12). It can be seen that only the S = h−1I preconditioner leads to results independent
f h.
The growth of the condition number in Table 3.1 due to the preconditioner with −1/2 power indeed confirms that

1/2 is not appropriate in our setting. Alternatively, an attempt to establish the trace space could be based on viewing
he trace as an 1/2 operator. Starting from L2 a formal calculation then leads to the space H−1/2 and H1/2 as the multiplier
pace. While we do not include here the results for S = (−∆ + I)1/2 we remark that the condition number behaves
ractically identically to S = I .
In order to verify that the properties of the h−1I preconditioner are not due to the uniformly structured (us) mesh, we

lso consider refinements of two additional discretizations of Ω shown in Fig. 3, which we refer to as uniform unstructured
uu) and non-uniform unstructured (nu) respectively. In the uniform unstructured mesh, the vertices of the mesh are no
onger on a uniform square grid, but the mesh elements are still close to uniform in size. In the non-uniform unstructured
esh, the vertices are not on a square grid, and the mesh elements close to Γ are finer than the ones further away.
Using these triangulations, problem (12) shall be discretized by P2-P1 elements as well P2-P0 elements to provide more

vidence for the preconditioner construction. Indeed, Table 3.2 shows that the condition numbers of (12) are bounded
rrespective of the underlying mesh and the finite element discretization considered.

xample 3.3 (Babuška problem with Neumann boundary conditions). Let Ω be a bounded domain with the boundary
artitioned into non-overlapping subdomains ∂Ω = ∂ΩD ∪ ∂ΩN ∪ Γ such that |∂ΩD| > 0 and |Γ | > 0. We will consider
oth the case that ∂ΩD ∩ Γ = ∅ and later the case that ∂ΩN ∩ Γ = ∅. Let V = H1

0,∂ΩD
(Ω) and consider the problem

min
u∈V

∫
Ω

|∇u|2 dx − 2
∫

Ω

fu dx subject to
∫

Γ

(∂nu − g) p ds = 0. (13)

ith p the Lagrange multiplier associated with ∂n-constraint (13) leads to a variational problem: Find u ∈ V and
∈ Q = L2(Γ ) such that∫

Ω

∇u · ∇v dx +

∫
Γ

p∂nv ds =

∫
Ω

f v dx ∀v ∈ V ,∫
q∂nu ds =

∫
gq ds ∀q ∈ Q .

(14)
Please cite this article as: K.E. Holter, M. Kuchta and K.-A. Mardal, Robust preconditioning for coupled Stokes–Darcy problems with the Darcy problem in
primal form, Computers and Mathematics with Applications (2020), https://doi.org/10.1016/j.camwa.2020.08.021.
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Table 3.3
Condition numbers of (15) discretized by P2-P1 elements on uniform refinements of (us) mesh in Fig. 3. Boundedness
in discretization is obtained only with S = h−1I .
h (−∆ + I)1/2 I h−1I

2−2 11.99 6.70 4.88
2−3 14.55 9.27 4.88
2−4 18.47 12.89 4.88
2−5 24.44 18.01 4.88
2−6 33.25 25.26 4.88
2−7 45.96 35.52 4.88
2−8 64.10 50.02 4.88

Table 3.4
Condition numbers of (15) using S = h−1I preconditioner discretized on uniform refinements of parent meshes in Fig. 3 using two element types.
Refinement level is indicated by l. (Left) Γ intersects ∂ΩN . (Right) Γ intersects ∂ΩD .
l P2-P1 P2-P0 l P2-P1 P2-P0

(us) (uu) (nu) (us) (uu) (nu) (us) (uu) (nu) (us) (uu) (nu)

1 4.88 4.77 6.64 3.49 3.49 3.06 1 5.34 5.25 6.67 3.48 3.45 3.04
2 4.88 5.98 6.56 3.49 3.04 3.37 2 5.34 6.25 6.67 3.49 2.99 3.37
3 4.88 5.78 5.67 3.49 3.24 3.36 3 5.34 5.94 5.84 3.49 3.24 3.36
4 4.88 6.31 6.67 3.49 3.40 3.40 4 5.34 6.52 6.93 3.49 3.40 3.40
5 4.88 5.25 5.68 3.49 3.44 3.48 5 5.34 5.56 6.07 3.49 3.44 3.48
6 4.88 5.71 5.89 3.49 3.41 3.44 6 5.34 5.91 6.17 3.49 3.41 3.44
7 4.88 6.14 6.61 3.49 3.35 3.47 7 5.34 6.40 6.85 3.49 3.35 3.47

Fig. 3. Parent meshes for uniform refinement. From left to right: uniform structured (us), uniform unstructured (uu), non-uniform unstructured (nu).
on-uniform mesh has finer (by factor 3) mesh size close to Γ . (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

The preconditioned continuous problem then reads

BA =

(
−∆

S

)−1 (
−∆ ∂n

′

∂n

)
. (15)

Following the preliminaries where ∂n was regarded as a 3/2 operator we let S = (−∆+ I)1/2. Alternatively, S = h−1I is set
following Assumption 1. Finally S = I is considered. Matrix realization of the S operators shall be identical to Example 3.2.
We shall also use the tessellations described in Example 3.2 as well as identical eigenvalue solvers.

To compare the three preconditioners we let Ω be a unit square and Γ = {(x, y) ∈ ∂Ω, x = 0} (marked in red in Fig. 3)
and we consider first the (Neumann) case where ∂ΩN = {(x, y) ∈ ∂Ω, y = 0 or y = 1}, i.e. where the multiplier domain
intersects the part of boundary with Neumann boundary conditions. On ∂ΩD, we have the Dirichlet boundary condition
u = g , and on ∂ΩN homogeneous Neumann condition ∇u · n = 0 is assumed.

Using the uniform meshes (marked as (us) in Fig. 3) and P2-P1 elements, Table 3.3 shows the spectral condition
numbers of (15). As in Example 3.2 only S = h−1I preconditioner (based on Assumption 1) leads to results independent
of h.

Table 3.4 shows that the performance of h−1I in (15) remains robust if different tessellations and finite element
discretizations are used.

In the context of multiscale problems, compatibility of boundary conditions of the multiplier space and the boundary
conditions prescribed on the domain intersecting Γ is known to present an issue, cf. e.g. [12]. Here, we address this
problem by considering (15) with |∂NΩ| = 0, i.e. we let Γ intersect only the Dirichlet boundary. We remark that until
this point only intersection with Neumann boundary was considered.
Please cite this article as: K.E. Holter, M. Kuchta and K.-A. Mardal, Robust preconditioning for coupled Stokes–Darcy problems with the Darcy problem in
primal form, Computers and Mathematics with Applications (2020), https://doi.org/10.1016/j.camwa.2020.08.021.
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In Table 3.4 the Dirichlet problem is considered with an unmodified h−1I preconditioner. In particular, with P2-P1
discretization we impose no boundary conditions on the multiplier space. Using this construction the condition numbers
can be seen to remain bounded on all the meshes and with both finite element discretizations.

We remark that the h−1I preconditioner is equally unaffected by the Dirichlet boundary conditions on ∂ΩD = ∂Ω \ Γ
in the trace-constrained L2 projection problem (10) with V = H1

0,∂ΩD
(Ω), cf. Example 3.2. This is in contrast to the H1

problems considered in [16], where the appropriate preconditioner was H
−

1
2

00 or H−
1
2 depending on whether the interface

ntersected the Dirichlet boundary or not. Let us note that in the continuous setting boundary values have measure zero
nd this may then be perceived as support for our assumption that the L2 space is the correct one in our discrete setting.
f course, the counterargument in the continuous setting is that then the trace cannot be defined. However, in the discrete
etting, this can be done.
Without including the simulation results we comment here that the condition numbers of the Dirichlet problem

re practically identical to those presented in Tables 3.1 and 3.2. In addition, with the two preconditioners S = I and
= (−∆ + I)1/2 on the unstructured meshes a growth of condition numbers with h is observed similar to Table 3.3.

We remark that the stability of the preconditioner h−1I in Example 3.3 provides numerical evidence for well-posedness
f (14), i.e. the Darcy subproblem in the coupled Darcy–Stokes system (4).

. Robust preconditioners for the Darcy–Stokes system

In Example 2.1, we showed that the efficiency of the preconditioner (8) for the primal Darcy–Stokes problem (7) varied
ubstantially with the material parameters even though the Stokes block and the Darcy block were preconditioned with
ppropriate preconditioners, and argued that the reason was a poor preconditioner at the interface. In this section we
emonstrate that robustness with respect to mesh resolution and variations in material parameters can be obtained by
osing the Lagrange multiplier in properly weighted fractional spaces, namely the intersection space XΓ =

√
KL2(Γ ) ∩

1
√

µ
H−1/2(Γ ). No modifications of the velocity or pressure space norms will be required. Our analysis is closely related

to [16], and based on Assumption 1 along with an assumption of stability for the Stokes problem. We remark that although
Assumption 1 is motivated by the discrete problem, our analysis is carried out in a continuous setting.

Let ∂Ωi = ∂Ωi,D ∪ ∂Ωi,N ∪ Γ for i = f , p such that ∂Ωf ,D ∩ Γ = ∅. We shall prove well-posedness of the coupled
Darcy–Stokes problem (4) with spaces

Vf =
√

µH1
0,D(Ωf ) ∩

√
DL2τ(Γ ), Qf =

1
√

µ
L2(Ωf ), Qp =

√
KH1

0,D(Ωp), XΓ =
√
KL2(Γ ) ∩

1
√

µ
H−1/2(Γ ). (16)

ote that in case Γ intersects only the Dirichlet boundary ∂Ωf ,D the space H−1/2 needs to be modified to reflect H1/2
00 as

he appropriate trace space of Vf . We refer to [16] for a thorough discussion of the subject.
As a prerequisite for the coupled problem to be well-posed, we require that each subproblem is well-posed. For the

tokes subproblem the property has been demonstrated by numerical experiments in [16]. Here we state the result
ithout proof.

ssumption 2. Let Ωf be such that ∂Ωf = ∂Ωf ,D ∪ ∂Ωf ,N ∪ Γ , |∂Ωf ,D| > 0 and ∂Ωf ,D ∩ Γ = ∅. We define
S =

√
µH1

0,D(Ωf ) ∩
√
DL2τ(Γ ) ×

1
√

µ
L2(Ωf ) ×

1
√

µ
H−1/2(Γ ) and the forms

aS((uf , pf , λ), (vf , qf , w)) =µ(∇uf , ∇vf ) + D(uf · τ, vf · τ)Γ + (pf , ∇ · vf ) + (∇ · uf , qf ) + (Tnuf , w)Γ + (λ, Tnvf )Γ ,

LS((vf , qf , w)) =(f, vf ) + (g, qf ) + (hD, w)Γ ,

where f ∈
1

√
µ
H−1(Ωf ), g ∈

√
µL2(Ωf ), hD ∈

√
µH

1
2 (Γ ) are arbitrary. Then we assume that the Stokes problem: Find

(uf , qf , λ) ∈ Vs such that

aS((uf , pf , λ), (vf , qf , w)) = LS((vf , qf , w)) ∀(vf , qf , w) ∈ VS

satisfies the Brezzi conditions and hence has a unique solution (uf , pf , λ) ∈ VS and the following bound holds

∥(uf , pf , λ)∥VS ≤ C
(

∥f∥2
1√
µ
H−1(Ωf )

+ ∥g∥
2
√

µL2(Ωf )
+ ∥hD∥

2
√

µH
1
2 (Γ )

) 1
2

.

Here the constant C depends only on Ωf , ∂Ωf ,D and Γ .

Corresponding well-posedness of the Darcy problem with ∂n-constraint was demonstrated numerically for K = 1 in
Example 3.3. Here, we analyze the general case.

Lemma 1. Suppose Ωp, Γ are such that Assumption 1 holds and |∂Ωp,D| > 0. Then for any f ∈
1

√
K
H−1(Ωp), h ∈

1
√
K
L2(Γ ),

he problem of finding (pp, λ) ∈
√
KH1

0,D(Ωp) ×
√
KL2(Γ ) so that

K (∇pp, ∇qp)Ωp + K (λ, ∂n,ϵqp)Γ = (f , qp) ∀qp ∈
√
KH1

0,D(Ωp),
√

2
(17)
Please cite this article as: K.E. Holter, M. Kuchta and K.-A. Mardal, Robust preconditioning for coupled Stokes–Darcy problems with the Darcy problem in
primal form, Computers and Mathematics with Applications (2020), https://doi.org/10.1016/j.camwa.2020.08.021.

K (∂n,ϵpp, w)Γ = (h, w)Γ ∀w ∈ KL (Γ )
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as a unique solution satisfying

∥pp∥√
KH1

0,D(Ωp) ≤ C
(

∥h∥2
1√
K
L2(Γ )

+ ∥f ∥2
1√
K
H−1(Ωp)

) 1
2

,

here C is a constant depending only on Ωp.

roof. Let V =
√
KH1

0,D(Ωp), Q =
√
KL2(Γ ). We consider the left-hand side of (3) as an operator(

A B′

B

)
: V × Q → V ′

× Q ′, (18)

where (App, qp) = K (∇pp, ∇qp)Ωp and (Bpp, w) = K (∂n,ϵpp, w)Γ .
The statement of the theorem follows from the Brezzi theory [35] once the Brezzi conditions are verified. That is, we

must show that A, B are bounded, A is coercive on ker B and that the inf–sup condition infq∈Q supv∈V (Bv, q) ≥ β∥v∥∥q∥
olds for some constant β > 0.
Here the boundedness of A and the coercivity on V are evident. For the latter we recall that |∂Ωp,D| > 0 is assumed

and invoke the Poincare inequality. Assumption 1 is needed to show the properties of B. Because

K (λ, ∂n,ϵqp)Γ ≤ K∥λ∥√
KL2(Γ )∥∂n,ϵqp∥ 1√

K
L2(Γ ) ≤ ∥∂n,ϵ∥∥λ∥√

KL2(Γ )∥qp∥√
KH1(Ωp),

we have boundedness with constant ∥∂n,ϵ∥. For the inf–sup condition, we recall the bounded right inverse E of ∂n,ϵ . Letting
p∗
p = E(λ), we have K (λ, ∂n,ϵp∗

p) = ∥λ∥
2
√
KL2(Γ )

and ∥p∗
p∥

√
KH1

0,D(Ωp) ≤ ∥E∥∥λ∥√
KL2(Γ ) so that

sup
pp∈

√
KH1

0,D(Ωp)

K (λ, ∂n,ϵpp)
∥pp∥√

KH1
0,D(Ωp)

≥
K (λ, ∂n,ϵp∗

p)

∥p∗
p∥

√
KH1

0,D(Ωp)
=

∥λ∥
2
√
KL2(Γ )

∥p∗
p∥

√
KH1

0,D(Ωp)
≥

∥λ∥
2
√
KL2(Γ )

∥E∥∥λ∥√
KL2(Γ )

≥
1

∥E∥
∥λ∥√

KL2(Γ ).

This proves all the Brezzi conditions. □

Having discussed well-posedness of the Stokes and Darcy subproblems our main result concerning the coupled Darcy–
Stokes problem (4) is given in Theorem 1. We remark that given two well-posed subproblems the coupled system could
be analyzed with the framework of [16]. Here we provide a standalone proof.

Theorem 1. Let Ωf , Ωp be as defined in Assumption 1 and Assumption 2. Further let

Vf =
√

µH1
0,D(Ωf ) ∩

√
DL2τ(Γ ), Qf =

1
√

µ
L2(Ωf ), Qp =

√
KH1

0,D(Ωp), XΓ =
√
KL2(Γ ) ∩

1
√

µ
H−1/2(Γ ).

hen the operator A in (7) is an isomorphism mapping W to its dual space W ′ such that ∥A∥L(W ,W ′) ≤ C and ∥A−1
∥L(W ′,W ) ≤

1
C , where C is independent of µ, K , and D.

roof of Theorem 1. We aim to apply Brezzi theory [35] to the Darcy–Stokes operator (7) in the abstract form (18). To
his end let V = Vf × Qp and Q = Qf × XΓ where for brevity Xf =

1
√

µ
H−1/2(Γ ), Xp =

√
KL2(Γ ) and we let the operators

, B be defined in terms of bilinear forms from (5) as

(A(uf , pp), (vf , qp)) = µ(∇uf , ∇vf )Ωf + D(uf · τ, vf · τ)Γ + K (∇pp, ∇qp)Ωp ,

(B(uf , pp), (qf , w)) = (∇ · uf , qf )Γ + (Tnuf , w)Γ − K (∂n,ϵpp, w)Γ .

We proceed to verify the Brezzi conditions. Note that by assumption |∂Ωi,D| > 0, i = p, f so that by Poincare inequality
on both subdomains A is coercive. For boundedness of A observe that µ(∇uf , ∇vf ) + D(uf · τ, vf · τ)Γ < ∥uf ∥Vf ∥vf ∥Vf
by Cauchy–Schwarz inequality. Moreover, following Lemma 1, we have K (∇pp, ∇qp) ≤ ∥pp∥Qp∥qp∥Qp . Combining the two
bounds and applying the Cauchy–Schwarz inequality,

(A(uf , pp), (vf , qp)) ≤ ∥uf ∥Vf ∥vf ∥Vf + ∥pp∥Qp∥qp∥Qp ≤ ∥(uf , pp)∥V∥(vf , qp)∥V .

To show boundedness of B we recall that ∥∇ ·uf ∥Q ′
f
= ∥∇ ·uf ∥√

µL2(Ωf ) ≤ C∥uf ∥Vf , where C depends on the dimensionality
f Ωf . Further, by the trace inequality ∥Tnuf ∥X ′

f
= ∥Tnuf ∥√

µH
1
2 (Γ )

≤ ∥Tn∥∥uf ∥Vf , and by Assumption 1 ∥K∂n,ϵpp∥X ′
p

=

K∂n,ϵpp∥ 1√
K
L2(Γ ) = ∥∂n,ϵpp∥√

KL2(Γ ) ≤ ∥∂n,ϵ∥∥pp∥Qp . Hence, per definition of dual norms,

(∇ · uf , qf )Γ + (Tnuf , w)Γ ≤ ∥∇ · uf ∥Q ′
f
∥qf ∥Qf + ∥Tnuf ∥X ′

f
∥w∥Xf ≤ max(1, C)∥uf ∥Vf

(
∥qf ∥Qf + ∥Tn∥∥w∥Xf

)
nd

K (∂ p , w) ≤ ∥K∂ p ∥ ′ ∥w∥ ≤ ∥∂ ∥∥p ∥ ∥w∥ .
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S

f

R

Combining the two estimates we show boundedness of B

(B(uf , pp), (qf , w)) ≤ 2max(1, C, ∥Tn∥, ∥∂n,ϵ∥)∥(uf , pp)∥v∥(qf , w)∥Q .

Finally, we turn to the inf–sup condition. Let R−1
Qf

, R−1
Xf

, R−1
Xp be the inverse Riesz maps of their respective spaces, so

that RVu = (u, ·)V ∈ V ′. Let (qf , w) ∈ Qf × X be arbitrary. We first define two extensions by using the two subproblems.
Recalling the notation of Assumption 2, let (u∗

f , p
∗

f , λ
∗

1) be the solution of

aS((u∗

f , p
∗

f , λ
∗), (v′

f , q
′

f , w
′)) = (R−1

Qf
qf , q′

f ) + (R−1
Xf

w, w′)Γ for all (v′

f , q
′

f , w
′) ∈ VS .

Per assumption, there is a constant Cf so that we have the bound

∥u∗

f ∥Vf ≤ Cf

(
∥R−1

Qf
qf ∥2

√
µL2(Ωf )

+ ∥R−1
Xf

w∥
2
√

µH
1
2 (Γ )

) 1
2

= Cf

(
∥qf ∥2

Qf
+ ∥w∥

2
Xf

) 1
2
, (19)

where the right equality follows from the fact that
√

µL2(Ωf ) = Q ′

f ,
√

µH
1
2 (Γ ) = X ′

f and that the Riesz map is an isometry.
imilarly, let p∗

p, λ
∗

2 be the solution of

K (∇p∗

p, ∇q′

p)Ωp + K (λ∗

2, ∂n,ϵq′

p)Γ + K (∂n,ϵp∗

p, w
′)Γ = (R−1

Xp w, w′)Γ (q′

p, w
′) ∈

√
KH1

0,D(Ωp) ×
√
KL2(Γ ).

By Lemma 1, we then have the bound

∥p∗

p∥Qp ≤ Cp∥R−1
Xp w∥ 1√

K
L2(Γ ) = Cp∥w∥Xp (20)

or a constant Cp. Observe now that by our definitions of u∗

f , p
∗
p ,

(∇ · u∗

f , qf )Γ + (Tnu∗

f , w)Γ − K (∂n,ϵp∗

p, w)Γ = (R−1
Qf

qf , qf )Γ + (R−1
Xf

w, w)Γ − (R−1
Xp , w)Γ

=∥qf ∥2
Qf

+ ∥w∥
2
Xf + ∥w∥

2
Xp = ∥qf ∥2

+ ∥w∥
2
X .

Using (19), (20)

∥(u∗

f , p
∗

p)∥V =

(
∥u∗

f ∥
2
Vf + ∥(p∗

p)∥
2
Qp

) 1
2

≤ C
(
∥qf ∥2

Qf
+ ∥w∥

2
Xf + ∥w∥

2
Xp

) 1
2

= C
(
∥qf ∥2

Qf
+ ∥w∥

2
X

) 1
2
,

where C = max(Cf , Cp). Putting this together, we can prove the inf–sup condition:

sup
(uf ,pp)∈V

(∇ · uf , qf )Γ + (Tnuf , w)Γ − K (∂n,ϵpp, w)Γ
∥(uf , pp)∥V

≥
(∇ · u∗

f , qf )Γ + (Tnu∗

f , w)Γ − K (∂n,ϵp∗
p, w)Γ

∥(u∗

f , p∗
p)∥V

≥
1
C

∥qf ∥2
+ ∥w∥

2
X(

∥qf ∥2
Qf

+ ∥w∥
2
X

) 1
2

=
1
C

∥(qf , w)∥Q .

Hence, the inf–sup condition holds with β =
1
C . By Brezzi theory, Theorem 1 follows, and the problem is well-posed. As

in the argument of [16], we note that due to our use of parameter weighted spaces, all constants are in fact independent
of the problem parameters, and the operator preconditioner is therefore robust to parameter variations. □

Using operator preconditioning and Theorem 1 a suitable preconditioner for the primal Darcy–Stokes problem (4) is a
iesz map with respect to the inner product of W in (16), that is, the operator

B =

⎛⎜⎜⎝
−µ∆ + DT ′

τTτ

K∆
1
µ
I

−µ (I + ∆)
−1/2
Γ +

K
h I

⎞⎟⎟⎠
−1

. (21)

We remark that all of the components of the preconditioner can be realized in an efficient, order optimal manner
with multilevel schemes. In particular, the only non-standard component here is the multilevel scheme for the fractional
operator which, however, has been established in [18].

Example 4.1 (Robust Darcy–Stokes preconditioning). We consider the setup from Example 2.1, i.e., a P2-P1-P2-P0 discretiza-
tion, while using the operator (21) as preconditioner. As before, the leading blocks of the preconditioner are realized using
single algebraic multigrid V -cycle. The multiplier block is then assembled using the eigenvalue decomposition and its
inverse is computed by a direct solver.

The obtained iteration and condition numbers are plotted in Fig. 4. It can be seen that both quantities are bounded in
mesh size N as well as the physical parameters µ, κ and αBJS.
Please cite this article as: K.E. Holter, M. Kuchta and K.-A. Mardal, Robust preconditioning for coupled Stokes–Darcy problems with the Darcy problem in
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Fig. 4. Mesh refinement vs. iteration counts (left) and condition numbers (right) for Example 4.1 using the preconditioner (21). All subplots share
- and y-axes. For fixed µ, K the x-axis range in the iterations subplot extends from h = 2−2 to h = 2−11 . In conditioning plots the range is from
= 2−2 to h = 2−8 . The value of αBJS is indicated by the line marker. Triangular markers on top of each other look like squares.

xample 4.2 (Alternative choices of function spaces for the coupled problem). As demonstrated in Example 3.3, the Darcy
ubproblem also appears to be stable when discretized by P2-P1 elements. According to the reasoning given in [16], we
ould therefore expect our preconditioner for the coupled problem to remain robust if we instead use a P1 element for
he multiplier. Additionally, because the P2-P0 element is known to be stable for the Stokes problem, we would also
xpect that our preconditioner would remain robust if the P2-P0 element was used to discretize the Stokes subproblem
nstead.

Altogether, this suggests three new discretizations for the coupled problem: Vf × Qf × Qp × X = P2-P0-P2-P0, P2-
0-P2-P1, or P2-P1-P2-P1. We repeat the experiment performed in Example 4.1 for all three discretizations. The results
or αBJS = 1 are shown in Fig. 5. It can be seen that the preconditioner appears robust both in the mesh size and in
he physical parameters for all three choices of discretizations. We remark that experiments were also carried out with
BJS = 10−2 and 102. The results were substantially similar to Example 4.1, and for legibility are therefore not shown.

emark 1. Below we consider the validity of Assumption 1 in a continuous and discrete setting. Clearly, in a continuous
etting it is easy to find a function that violates the assumption. Consider the case where ϵ ≪ h while Ω and Γ are
oth unit sized. Further, let u ∈ H1(Ωp) be a function which is zero in Ω\Γϵ and has a gradient of 1 in Γϵ . Recalling our
efinition of the operator ∂n,ϵ : H1(Ωp) → L2(Γϵ) by∫

Γ

∂n,ϵu · w ds =
1
ϵ

∫
Γϵ

∇u · nΓϵEϵw dx,

e see that ∂n,ϵu ∈ L2(Γϵ) is the unit constant function whereas ∥u∥1 ≈
√

ϵ. Hence ∥∂n,ϵ∥ ≥
∥∂n,ϵu∥L2(Γϵ )
∥u∥H1(Ωp)

≈
1

√
ϵ
, which is

ery large for small ϵ. Clearly, this function violates Assumption 1.
The above construction of a function that violates the assumption is however clearly not relevant in our discrete setting

s these functions are below the resolution of our finite element mesh. Indeed, in our numerical experiments, we use
iscrete subspaces of H1(Ωp), so that any function whose gradient is nonzero on Γ also has nonzero gradient at distance

h from Γ . This means that if ϵ is chosen smaller than h, functions like u above which are zero immediately outside of Γϵ

are not admissible.
For a relevant finite element function uh, constructed as above, i.e., such that uh is zero everywhere except having

a gradient of 1 on the finite elements with facets on Γ , assuming that ϵ ≪ h, we have
∥∂n,ϵuh∥L2(Γϵ )
∥uh∥H1(Ωp)

≈
1

√
h
. Indeed this

estimate corresponds to the scaling shown in Examples 3.2 and 3.3.
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Fig. 5. Mesh refinement vs. iteration counts (left) and condition numbers (right) for alternative discretizations. The line marker indicates the
discretization used. All subplots share x- and y-axes and have αBJS = 1. For fixed µ, K the x-axis range in the iterations subplot extends from
h = 2−2 to h = 2−10 . In conditioning plots the range is from h = 2−2 to h = 2−8 .
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