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Abstract. A Helson matrix is an infinite matrix A = (am,n)m,n≥1 such that
the entry am,n depends only on the product mn. We demonstrate that the
orthogonal projection from the Hilbert–Schmidt class S2 onto the subspace of
Hilbert–Schmidt Helson matrices does not extend to a bounded operator on
the Schatten class Sq for 1 ≤ q 6= 2 < ∞. In fact, we prove a more general
result showing that a large class of natural projections onto Helson matrices
are unbounded in the Sq-norm for 1 ≤ q 6= 2 < ∞. Two additional results are
also presented.

1. Introduction

Let γ = (γk)k≥0 be a sequence of complex numbers. A Hankel matrix is an
infinite matrix of the form

(1) Hγ = (γi+j)i,j≥0 .

We consider the matrices (1) as linear operators on `2(N0), where N0 = {0, 1, 2, . . . }.
The multiplicative analogues of Hankel matrices — that is, matrices whose entries
depend on the product rather than the sum of the coordinates — are known as
Helson matrices. To be precise, a Helson matrix is an infinite matrix of the form

(2) M% = (%mn)m,n≥1

for some sequence of complex numbers % = (%k)k≥1. In this case, we consider the
matrices (2) as linear operators on `2(N), where N = {1, 2, 3, . . . }.

Helson matrices, whose study was initiated in the papers [4, 5], play a similar role
in the analysis of Dirichlet series as (additive) Hankel matrices play in the analysis
of holomorphic functions in the unit disk. As such, questions regarding whether
or not classical results for Hankel matrices can be extended to the multiplicative
setting have attracted considerable recent attention (see e.g. [2, 7, 8, 11]). This
note deals with one such question.

Recall that a compact operator A : `2 → `2 is in the Schatten class Sq if its
sequence of singular values s(A) = (sk(A))k≥0 is in `q and in this case

‖A‖Sq
= ‖s(A)‖`q .

Note that the Hilbert–Schmidt class S2 is a Hilbert space with inner product

(3) 〈A,B〉 = Tr(AB∗) =

∞∑
i=0

∞∑
j=0

ai,jbi,j .
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The averaging projection P onto the set of Hankel matrices is defined by

(4) P : (ai,j)i,j≥0 7→ Hγ , γk =
1

k + 1

∑
i+j=k

ai,j .

It is not hard to see that the restriction of P to S2 is the orthogonal projection
onto the subspace of Hilbert–Schmidt Hankel matrices. A well-known result due to
Peller [9] (see also [10, Ch. 6.5]) is that the averaging projection P is bounded on
the Schatten class Sq for every 1 < q < ∞.

The main purpose of this note is to show that the analogous statement for
Helson matrices is false. We therefore define the averaging projection P onto Helson
matrices by

(5) P : (am,n)m,n≥1 7→ M%, %k =
1

d(k)

∑
mn=k

am,n,

where d(k) denotes the number of divisors of the integer k. As before it is clear
that the restriction of P to S2 is the orthogonal projection onto the subspace of
Hilbert–Schmidt Helson matrices. Our first result is the following:
Theorem 1. The projection P is unbounded on Sq for every 1 ≤ q 6= 2 < ∞.

Although the natural projection P given by (4) is unbounded on S1, there do
exist bounded projections onto the trace class Hankel operators. Let ϕ : N×N → R
be a non-negative function such that for every integer k ≥ 0 it holds that

(6)
∑

i+j=k

ϕ(i, j) = 1.

Consider the weighted averaging projection Pϕ defined by

(7) Pϕ : (ai,j)i,j≥0 7→ Hγ , γk =
∑

i+j=k

ϕ(i, j)ai,j .

The condition (6) ensures that Pϕ is indeed a projection. For α ≥ 1, consider

1

(1− z)α
=

∞∑
j=0

cα(j)z
j , cα(j) =

(
j + α− 1

j

)
.

The weight ϕα,β(i, j) = cα(i)cβ(j)/cα+β(i + j) satisfies the condition (6) and the
projection Pϕα,β

is bounded on S1 if α, β > 1 (see [10, Ch. 6.5] and [1]). Note that
the averaging projection (4) corresponds to the endpoint case α = β = 1.

It is natural to ask if we can similarly find a weighted averaging projection onto
Helson matrices which is bounded in Sq for some 1 ≤ q 6= 2 < ∞. We will show
that if the weight function is multiplicative (see Section 2.2 for the definition), this
question has a negative answer.
Theorem 2. Let Φ: N×N → R be a non-negative multiplicative function such that
for every integer k ≥ 1 it holds that

(8)
∑

mn=k

Φ(m,n) = 1.

Define the weighted projection PΦ by

(9) PΦ : (am,n)m,n≥1 7→ M%, %k =
∑

mn=k

Φ(m,n)am,n.

Then PΦ is unbounded on Sq for every 1 ≤ q 6= 2 < ∞.
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The Riemann zeta function can be represented, when Re s > 1, by an absolutely
convergent Dirichlet series or by an absolutely convergent Euler product,

(10) ζ(s) =

∞∑
n=1

n−s =
∏
p

(1− p−s)−1.

The Euler product is taken over the increasing sequence of prime numbers. For
α ≥ 1, the general divisor function dα(n) is defined by

ζα(s) =

∞∑
n=1

dα(n)n
−s.

Note that d2 is the usual divisor function d appearing in the projection (5). One
family of weights that satisfy the assumptions of Theorem 2 are

Φα,β(m,n) =
dα(m)dβ(n)

dα+β(mn)

for α, β ≥ 1. Note that the averaging projection (5) again is equal to the endpoint
case α = β = 1, and hence Theorem 1 is a special case of Theorem 2.

Organization. The present note is organized into four sections. In Section 2
we collect some preliminary material on infinite tensor products and multiplicative
matrices. Section 3 is devoted to the proof of Theorem 2. The final section contains
two additional results. The first is that there are no bounded projections from the
spaces of compact and bounded operators to Helson matrices, while the second is
a corollary of Theorem 1 showing that the usual duality relation between Hankel
matrices in Sq does not extend to Helson matrices.

2. Infinite tensor products and multiplicative matrices

In the present section we seek to represent `2(N) as an infinite tensor product of
`2(N0). We will then discuss multiplicative matrices, with particular emphasis on
Helson matrices. Our presentation and notation is inspired by [6].

2.1. Tensor product representation of `2(N). For each prime p, consider the
index set 〈p〉 = {pκ : κ ∈ N0}. It evidently holds that `2(N0) ' `2(〈p〉) through
the obvious mapping. Note also that `2(〈p〉) is a natural subspace of `2(N) since
〈p〉 ⊆ N. Let (ek)k≥1 (resp. (ek)k≥0) denote the standard orthonormal basis of
`2(N) (resp. `2(N0)). Then (epκ)κ≥0 is an orthonormal basis of `2(〈p〉); throughout
we will identify each operator on `2(〈p〉) with its matrix in this basis.

Let
⊗

p≤pN
`2(〈p〉) denote the Hilbert space tensor product of `2(〈p〉) over the

first N primes. The linear extension of the map

⊗p≤pN
xp 7→ (⊗p≤pN

xp)⊗ e1

gives an embedding of
⊗

p≤pN
`2(〈p〉) into

⊗
p≤pN+1

`2(〈p〉). The inductive limit of
this system as N → ∞ can be identified with the linear span of all elements of the
form ⊗pxp such that only finitely many of the xp ∈ `2(〈p〉) are different from e1.
We can endow the limit with an inner product by setting

(11) 〈⊗pxp,⊗pyp〉 =
∏
p

〈xp, yp〉
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and extending linearly. The infinite tensor product
⊗

p `
2(〈p〉) is defined to be the

completion of the inductive limit with respect to the norm induced by the inner
product (11).

Consider the prime factorization

(12) n =
∏
p

pκp

and note that for every integer n ≥ 1, it holds that κp = 0 for all but a finite number
of primes p. In view of (12), we define a linear map from `2(N) to

⊗
p `

2(〈p〉) by
setting

en 7→ ⊗pepκp .

It is easily seen that this map extends to a unitary operator and thus allows us to
make the identification

(13) `2(N) '
⊗
p

`2(〈p〉).

For each prime number p, let Rp denote the orthogonal projection from `2(N)
to `2(〈p〉), i.e. the operator defined by

(14) Rpen =

{
en if n = pκ,

0 otherwise,

and extending linearly. For a matrix A : `2(N) → `2(N), set Ap = RpAR∗
p. We

consider Ap an operator on `2(〈p〉) and note that its matrix can be obtained by
deleting all rows and columns of A whose index is not a power of p. It evidently
holds that ‖Ap‖ ≤ ‖A‖ and the same estimate holds also for the Sq-norms. Note
that if A is the Helson matrix (2) generated by the sequence % = (%k)k≥1, then Ap

is the Hankel matrix (1) generated by γ = (γκ)κ≥0 = (%pκ)κ≥0.

2.2. Multiplicative functions. A function F : N → C is said to be multiplicative
if F (1) = 1 and

F (mn) = F (m)F (n)

whenever m and n are coprime. Similarly, a function of two variables f : N×N → C
is called multiplicative if f(1, 1) = 1 and

f(m1n1,m2n2) = f(m1,m2)f(n1, n2)

whenever m1m2 and n1n2 are coprime. If F : N → C is multiplicative, then
f(m,n) = F (mn) is evidently also multiplicative. We shall also have use of the
following basic result, which is certainly not new. However, we include a short proof
for the benefit of the reader.

Lemma 3. If f : N× N → C is multiplicative, then the convolution

F (k) =
∑

mn=k

f(m,n)

is also multiplicative.
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Proof. Suppose that k and l are coprime. If mn = kl, then we can factor m = m1n1

and n = m2n2 such that m1m2 = k and n1n2 = l. Clearly m1m2 and n1n2 are
coprime, and so it holds that

F (kl) =
∑

mn=kl

f(m,n) =
∑

m1m2=k
n1n2=l

f(m1n1,m2n2)

=
∑

m1m2=k
n1n2=l

f(m1,m2)f(n1, n2) = F (k)F (l)

as desired. �

2.3. Multiplicative matrices. For every prime p let Ap be a bounded linear
operator on `2(〈p〉). If

∏
p ‖Ap‖ converges, and each of the sums∑

p

∣∣‖Ape1‖ − 1
∣∣ and

∑
p

∣∣〈Ape1, e1〉 − 1
∣∣

also converge, then the infinite tensor product
⊗

p Ap defines a bounded operator
on
⊗

p `
2(〈p〉) (see e.g. [3, Prop. 6]). Suppose in addition that Ap ∈ Sq for each p,

and
⊗

p Ap ∈ Sq. Then as a consequence of [6, Thm. 2.4] we have that

(15)
∥∥∥⊗

p

Ap

∥∥∥
Sq

=
∏
p

‖Ap‖Sq
.

We remark that the identity (15) is also valid for the operator norm. By the
identification (13) we can regard A =

⊗
p Ap as an operator on `2(N).

A matrix A = (am,n)m,n≥1 is called multiplicative if there is a multiplicative
function f : N×N → C such that am,n = f(m,n). In the case A =

⊗
p Ap discussed

above, it is easily verified that A is multiplicative if 〈Ape1, e1〉 = 1 for every p. Note
that in this case, we also have Ap = RpAR∗

p where Rp is as in (14). Conversely, if
A is multiplicative, then we have A =

⊗
p Ap, where again Ap = RpAR∗

p.
Returning to the case of Helson matrices, we find that a Helson matrix M% is

multiplicative if and only if %k = F (k) for a multiplicative function F . As mentioned
in Section 2.1, in this case RpM%R∗

p = Hγ where γj = F (pj).

3. Proof of Theorem 2

The proof of Theorem 2 is inspired by the counter-examples to Nehari’s theorem
for Helson matrices constructed in [2, 8]. We will demonstrate that any weighted
averaging projection (7) onto Hankel matrices cannot be contractive on Sq for
1 ≤ q 6= 2 < ∞. Specifically, we will prove that there is a universal lower bound for
the norm of Pϕ on Sq which is strictly greater than 1.

If Φ is multiplicative, then the projection PΦA given by (9) will preserve the
tensor structure A =

⊗
p Ap of a multiplicative matrix and factor into a tensor

product of the projections PϕpAp given by (7), for some weight functions ϕp. The
result will then follow from a standard argument.

Note that for the projection P given by (4), it is not hard to show, using Peller’s
criterion for Hankel operators of class Sq (see [10, Ch. 6.2]), that there is a constant
C such that

‖P‖Sq→Sq
≥ C√

q − 1
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as q → 1+. By a duality argument it also follows that as q → ∞ we have

‖P‖Sq→Sq ≥ C
√
q.

In particular, the projection P cannot be a contraction on Sq for q sufficiently close
to 1 or q sufficiently large. The key point of the following result therefore is that
this also holds for q close to 2 and that the lower bound holds uniformly for all
weighted averaging projections.

Lemma 4. Fix 1 ≤ q 6= 2 < ∞. There exists some δ = δq > 0 such that for
every non-negative function ϕ : N × N → R satisfying (6), the weighted averaging
projection Pϕ given by (7) satisfies the bound ‖Pϕ‖Sq→Sq

≥ 1 + δ.

The proof consists of three parts. We first compile some preliminary information.
The two cases 1 ≤ q < 2 and 2 < q < ∞ will then be handled separately, but by
fairly similar arguments.

Proof. For non-negative real numbers t we will consider the following matrices:

A(t) =

1 0 0
0 t 0
0 0 0

 B(t) =

1 0 t
0 0 0
0 0 0



C(t) =

1 0 t
0 0 0
t 0 0

 D(t) =

1 0 t
0 t 0
t 0 0


The singular values of A(t) are 1 and t, while B(t) has only one singular value√
1 + t2. A direct computation yields that the singular values of C(t) are

s(C(t)) =

{
1

2
+

√
1

4
+ t2, −1

2
+

√
1

4
+ t2

}
.

The same computation also yields that s(D(t)) = s(C(t)) ∪ {t}. We will only have
need to refer to ϕ(0, 2), ϕ(1, 1) and ϕ(2, 0) and so for ease of notation we set

ϕ0 = ϕ(0, 2), ϕ1 = ϕ(1, 1), ϕ2 = ϕ(2, 0).

Recalling that ϕ(0, 0) = 1 we find that

PϕA(t) = D(ϕ1t), PϕB(t) = D(ϕ0t), PϕC(t) = D((ϕ0 + ϕ2)t).

Suppose that 1 ≤ q < 2. We consider A(t) and find that

(16) ‖Pϕ‖Sq→Sq
≥ lim

t→∞

‖PϕA(t)‖Sq

‖A(t)‖Sq

= lim
t→∞

‖D(ϕ1t)‖Sq

‖A(t)‖Sq

= 31/qϕ1.

We now consider B(t). We estimate the Sq-norm of PϕB(t) = D(ϕ0t) from below
by considering only the two largest singular values, and noting that the largest is
bounded below by 1. Hence we obtain

(17) ‖Pϕ‖Sq→Sq
≥ sup

t≥0

‖PϕB(t)‖Sq

‖B(t)‖Sq

≥ sup
t≥0

(1 + (ϕ0t)
q)

1
q

(1 + t2)
1
2

≥
(
1 + ϕ

2q
2−q

0

) 2−q
2q ,

where in the final estimate we chose t = ϕ
q/(2−q)
0 . Considering the matrix transpose

of B(t) we see that the estimate (17) also holds if ϕ0 is replaced by ϕ2. Recalling
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that ϕ0 + ϕ1 + ϕ2 = 1, we conclude that ϕ1 ≥ 1 − 2x with x = max(ϕ0, ϕ2).
Combining (16) and (17) we hence obtain the uniform lower bound

‖Pϕ‖Sq→Sq
≥ inf

0≤x≤1
max

(
31/q(1− 2x),

(
1 + x

2q
2−q
) 2−q

2q

)
=
(
1 + x

2q
2−q
q

) 2−q
2q ,

where 0 < xq < 1 denotes the unique positive solution of the equation

(18) 31/q(1− 2x) =
(
1 + x

2q
2−q
) 2−q

2q .

This completes the proof in the case 1 ≤ q < 2.
Next, we suppose that 2 < q < ∞. We consider C(t) and after recalling that

PϕC(t) = D((ϕ0 + ϕ2)t), we obtain the lower bound

(19) ‖Pϕ‖Sq→Sq
≥ lim

t→∞

‖PϕC(t)‖Sq

‖C(t)‖Sq

=

(
3

2

)1/q

(ϕ0 + ϕ2).

We now consider A(t) and estimate PϕA(t) = D(ϕ1t) from below by considering
only the largest singular value and using a trivial inequality, to obtain

‖PϕA(t)‖Sq
≥ 1

2
+

√
1

4
+ (ϕ1t)2 ≥

√
1 + (ϕ1t)2.

Hence we find that

(20) ‖Pϕ‖Sq→Sq
≥ sup

t≥0

‖PϕA(t)‖Sq

‖A(t)‖Sq

≥ sup
t≥0

(
1 + (ϕ1t)

2
) 1

2

(1 + tq)
1
q

≥
(
1 + ϕ

2q
q−2

1

) q−2
2q ,

where we in the final estimate chose t = ϕ
2/(q−2)
1 . Recalling that ϕ0 + ϕ2 = 1− ϕ1

and setting x = ϕ1, we combine (19) and (20) to obtain

‖Pϕ‖Sq→Sq ≥ inf
0≤x≤1

max

((
3

2

)1/q

(1− x),
(
1 + x

2q
q−2
) q−2

2q

)
=
(
1 + x

2q
q−2
q

) q−2
2q ,

where 0 < xq < 1 denotes the unique positive solution of the equation(
3

2

)1/q

(1− x) =
(
1 + x

2q
q−2
) q−2

2q .

This completes the proof in the case 2 < q < ∞. �

Remark. We can solve the equation (18) for q = 1 and obtain the explicit lower
bound

‖Pϕ‖S1→S1
≥ 3

35

(
4
√
11− 1

)
= 1.0514142138 . . .

which holds for all weighted averaging projections (7).

Proof of Theorem 2. For each prime p set ϕp(i, j) = Φ(pi, pj). Since Φ satisfies (8),
we see that ϕp satisfies (6). Suppose that A =

⊗
p Ap is a multiplicative matrix.

Since the weight Φ is also assumed to be multiplicative, we find by Lemma 3 that
the sequence

%k =
∑

mn=k

Φ(m,n)am,n
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is multiplicative. This means that PΦA is a multiplicative Helson matrix, and since
clearly RpPΦAR∗

p = PϕpAp by the discussion in Section 2, we get that

PΦA =
⊗
p

Pϕp
Ap.

Fix a positive integer N . For p ≤ pN , we choose Ap such that ‖Ap‖Sq = 1 and
‖Pϕp

Ap‖Sq
≥ 1 + δ, where δ > 0 depends only on 1 ≤ q 6= 2 < ∞. Observe that as

a consequence of Lemma 4, we can always make such a choice for Ap. For p > pN
we choose Ap = He0 so that Pϕp

Ap = He0 . We then obtain from (15) that

‖PΦ‖Sq→Sq
≥ (1 + δ)N .

Then letting N → ∞ we see that PΦ is unbounded on Sq. �

Remark. The weights Φα,β and ϕα,β discussed in the introduction are related as in
the proof of Theorem 2. Indeed, inspecting the Euler product of the Riemann zeta
function (10) we find that dα(p

j) = cα(j) for every prime p and every j ≥ 0.

4. Additional results

4.1. Projections on spaces of compact and bounded operators. Consulting
Theorem 5.11 and Theorem 5.12 in [10, Ch. 6.5], we recall that there are no bounded
projections Pϕ from the space of compact (resp. bounded) operators onto the space
of compact (resp. bounded) Hankel matrices. It is trivial to extend this result to
Helson matrices, and in this case we do not require the weight to be multiplicative.

Theorem 5. There are no bounded projections from the space of compact (resp.
bounded) operators onto the space of compact (resp. bounded) Helson matrices.

Proof. Clearly, a bounded projection PΦ must satisfy (8). Then ϕ(i, j) = Φ(2i, 2j)
satisfies (6). For any compact (resp. bounded) operator A : `2(N0) → `2(N0) define
the operator Ã : `2(N) → `2(N) by

ãm,n =

{
ai,j if m = 2i and n = 2j ,

0 otherwise.

Since PΦÃ = P̃ϕA, we see that if PΦ acts boundedly on the space of compact (resp.
bounded) operators on `2(N), then Pϕ acts boundedly on the space of compact
(resp. bounded) operators on `2(N0). However, this is impossible by the results
mentioned above. �

Remark. We actually have Ã = A⊗He0 ⊗He0 ⊗ · · · as in the proof of Theorem 2.

4.2. Duality. We fix 1 < q < ∞ and set 1/q + 1/r = 1. It is a standard fact that
(Sq)

∗ ' Sr with respect to the pairing arising from the inner product (3) of S2, i.e.
the pairing 〈A,B〉 = Tr(AB∗) for A ∈ Sq and B ∈ Sr.

Let HSq and MSq denote the spaces of Hankel matrices and Helson matrices
respectively of class Sq. It is well-known that the pairing (3) also yields the du-
ality (HSq)

∗ ' HSr. Clearly, the map M% 7→ 〈·,M%〉, is an embedding of MSr

into (MSq)
∗. We now show that in contrast to Hankel matrices, this is not an

isomorphism unless q = 2.

Corollary 6. Let 1 < q 6= 2 < ∞ and set 1/q + 1/r = 1. The map M% 7→ 〈·,M%〉
from MSr to (MSq)

∗ is not surjective.
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Before proceeding, we fix some notation. For a subset X ⊆ Sq, we denote by
X⊥ the annihilator of X in Sr, i.e. X⊥ consists of all B ∈ Sr such that 〈A,B〉 = 0
for all A ∈ X.

Proof. First observe that for a Helson matrix M% ∈ Sq and A = (am,n)m,n≥1 ∈ Sr

we have that

〈M%, A〉 =
∞∑

m=1

∞∑
n=1

%mnam,n =

∞∑
k=1

d(k)%k
1

d(k)

∑
mn=k

am,n = 〈M%,PA〉.

Therefore (MSq)
⊥ = KerP ∩ Sr, where P is the averaging projection (5). In

particular, this shows that KerP ∩ Sr is a closed subspace of Sr. Suppose that
M% 7→ 〈·,M%〉 is surjective. Then by the open mapping theorem we have the
isomorphism MSr ' (MSq)

∗, with the pairing (3). By elementary functional
analysis it follows that MSr ' Sr/(KerP ∩ Sr) and so

Sr = MSr ⊕ (KerP ∩ Sr).

However, this would imply that P is bounded on Sr (by e.g. [12, Thm. 5.16]),
contradicting Theorem 1. �

References
1. F. F. Bonsall and D. Walsh, Symbols for trace class Hankel operators with good estimates for

norms, Glasgow Math. J. 28 (1986), no. 1, 47–54.
2. Ole Fredrik Brevig and Karl-Mikael Perfekt, Failure of Nehari’s theorem for multiplicative

Hankel forms in Schatten classes, Studia Math. 228 (2015), no. 2, 101–108.
3. A. Guichardet, Tensor products of C∗-algebras, part II: Infinite tensor products, Aarhus

Universitet Lecture Notes Series, no. 13, Aarhus Universitet, 1969.
4. Henry Helson, Hankel forms and sums of random variables, Studia Math. 176 (2006), no. 1,

85–92.
5. , Hankel forms, Studia Math. 198 (2010), no. 1, 79–84.
6. Titus Hilberdink, Matrices with multiplicative entries are tensor products, Linear Algebra

Appl. 532 (2017), 179–197.
7. Nazar Miheisi and Alexander Pushnitski, A Helson matrix with explicit eigenvalue asymp-

totics, J. Funct. Anal. 275 (2018), no. 4, 967–987.
8. Joaquim Ortega-Cerdà and Kristian Seip, A lower bound in Nehari’s theorem on the polydisc,

J. Anal. Math. 118 (2012), no. 1, 339–342.
9. V. V. Peller, Hankel operators of class Sp and their applications (rational approximation,

Gaussian processes, the problem of majorization of operators), Mat. Sb. (N.S.) 113(155)
(1980), no. 4(12), 538–581.

10. Vladimir V. Peller, Hankel operators and their applications, Springer Monographs in Mathe-
matics, Springer-Verlag, New York, 2003.

11. Karl-Mikael Perfekt and Alexander Pushnitski, On Helson matrices: moment problems, non-
negativity, boundedness, and finite rank, Proc. Lond. Math. Soc. (3) 116 (2018), no. 1,
101–134.

12. Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill
Book Co., New York-Düsseldorf-Johannesburg, 1973.

Department of Mathematical Sciences, Norwegian University of Science and Tech-
nology (NTNU), NO-7491 Trondheim, Norway

Email address: ole.brevig@math.ntnu.no

Department of Mathematics, Kings College London, Strand, London WC2R 2LS,
United Kingdom

Email address: nazar.miheisi@kcl.ac.uk


