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Abstract

With a global decline in fish stocks and a growing demand for seafood,
there is a need for non-intrusive technological systems that can improve
automatic data collection for conservation efforts and economic efficiency
in the fishing industry. Previous studies have utilized computer vision
and machine learning techniques to analyse data captured by underwater
cameras and extract information regarding the size and species of the fish
present in the images. Underwater footage is often of poor quality, and
challenging to analyse due to the high variability in the fish’s shape and
intensity.

SINTEF has developed an innovative range-gated camera system
capable of 3D estimation underwater. This thesis presents an algorithm
which utilizes the depth map produced by this system to detect, track and
estimate the lengths of the fish observed by the camera.

Multiple segmentation techniques, based on global and local threshold-
ing, edge detection and background subtraction, were applied to 93 hand-
segmented frames and evaluated using four validation metrics. A highly
customizable tracking algorithm based on a minimum-cost flow network
was developed, capable of tracking the fish through occlusions and missed
detections. Using a dataset with three known fish lengths, ways of alle-
viating length estimation errors due to inaccuracies in the depth map or
the segmentation were explored. The tracker ensures that the length estim-
ates can be refined using multiple observations of the same fish, increasing
the likelihood of the fish being observed in an optimal position for length
estimation.

The final algorithm was able to accurately detect and track all fish
appearing in a test set consisting of 501 frames with three free-swimming
codfish, using Euclidean distance to link detections and the estimated
velocity direction of the fish to resolve occlusions. The average percentage
error in the length estimation was approximately 10%.

These results are promising, but more data with known fish lengths is
needed in order to thoroughly analyse the length estimation algorithm. The
algorithm was applied to a dataset containing schooling fish with unknown
lengths; in this case the fish were only partially tracked due to a high
number of occlusions and the velocity directions of the fish being largely
the same.
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Chapter 1

Introduction

The aim of this thesis is to develop an algorithm that can reliably detect
and track the movement of free-swimming fish captured in 3D by a range-
gated underwater camera, and use this information to return an accurate
length estimate for each observed fish. A successful algorithm is a step
towards a system that can provide efficient and non-intrusive monitoring
of the biomass, health and species of the fish present in the monitored area.

1.1 Background and motivation

The collapse of the cod stocks off the coast of Newfoundland, Canada,
serves as a grim warning of the possible consequences of overexploitation.
In 1992, the cod biomass dropped to one percent of its previous levels. [18]
A moratorium was announced in the summer of 1992; initially intended as
a short-term solution, it is still largely in effect. The collapse affected some
39000 jobs [40] and by 2015, the total spawning cod biomass in the region
measured only about a third of the biomass prior to the collapse. [63]

The sea provides economic stability and food security to hundreds
of millions of people, but the current exploitation of marine species is
unsustainable. [15] From 1974 to 2015, the portion of the world’s fish
stocks that are overfished rose from 10% to 33%. The lowest percentage
of sustainable fish stocks are found in the Mediterranean and Black Sea
region; 62% of the fish stocks in this area are depleted due to overfishing.
[70] Simultaneously, global seafood consumption per person doubled
between 1960 and 2016, from about 10 kg to 20 kg, and it is expected to
continue to rise. [15]

In addition to depleting stocks of the target fish species, commercial
fishing can cause great harm to non-target species. 40% of all global
marine catches is estimated to be bycatch, incidentally caught non-target
fish, discarded at sea or at port due to wrong species, size or quality. [12]
One example would be the hundreds of thousands of pelagic dolphins
killed in purse seines, surrounding walls of nets drawn closed at the
bottom underneath schools of fish, in the 1960s and 70s. [33] New netting
technologies along with trade restrictions have greatly reduced the dolphin
mortality, but the population is still not recovered. [33]
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With the global decline of fish stocks and a growing demand for
seafood, the development and implementation of sustainable fishing
practices is paramount. SMARTFISH H2020 is a four-year long, EU-funded
project which aims to develop and test new technological systems that
improve automatic data collection. Accurate and easily available data can
increase economic efficiency, reduce unintended fish mortality and ensure
compliance with regulations. [46]

This thesis was written in collaboration with SINTEF, one of several
partners in this project. All data analysed in this thesis stems from tests and
demonstrations of a range-gated underwater camera system developed by
SINTEF. Such a system can, for instance, provide real-time monitoring of
the interior of a trawl to ensure no unwanted species are caught. [64]

1.2 Goal and method

While the main objective of this thesis is to produce accurate length
estimates for all fish detected by the camera in a certain time period, the
success of the length estimation is dependent on reliable detection and
tracking of the fish. Accurate detection, or segmentation, ensures that the
fish length is not constantly underestimated due to parts of the fish missing.
With a reliable tracking algorithm, the length estimate can be refined using
multiple observations of the same fish.

To find a segmentation method capable of detecting fish extremities
such as fins and tails in addition to the main body, several popular
image segmentation methods were evaluated using a number of validation
metrics. The non-uniform lighting, low contrast and the variability in the
shape of a fish depending on its position and orientation with regards to the
camera make segmentation difficult, but by utilizing the 3D-information
from the range-gated camera, these challenges can be overcome.

The tracker will be based on a minimum-cost flow network, with a
specially adapted cost function developed to maximize the probability of
linking two observations belonging to the same fish. Several possible cost
functions will be evaluated using multiple tracking validation metrics. The
tracker should be capable of keeping a fish’s unique identification number
even in challenging cases of missed detections or occlusions over several
frames.

Accurate length estimation is difficult due to the contortions of the fish
as it swims or its orientation with regards to the camera, which may result
in some parts of the fish not being visible in the frame. The final length
estimate is therefore based on several detections of the same fish, increasing
the likelihood of the fish being observed in an optimal position for length
estimation. Possible sources of errors as well as ways to minimize these
will be investigated. The success of the length estimation will be evaluated
by comparing the estimated length to the true length of the fish.
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1.3 Scope

This thesis is based on data captured by a range-gated underwater camera
system developed by SINTEF. This system is still under development, with
limited data available. While it has been tested in the sea, the data from
these particular tests had too much noise and too few fish sightings to be
used in this thesis. Instead, this thesis only considers data collected in
pools under far better conditions than one can expect to find in the sea.
Another difference to note is that we observe the fish from the side in these
datasets; when the camera is affixed to a trawl, we would observe the fish
from above.

The results in this thesis should only be treated as "proof-of-concept” as
they have yet be rigorously tested on data collected under more realistic
conditions; most of this thesis is based on a single dataset. The evaluation
of the final estimated lengths is based on the measured lengths of three
codfish. Naturally, three data points are not sufficient to properly estimate
the final error.

The peak-finding algorithm used to generate high-resolution depth
maps from the raw sensor data was developed by SINTEE. It is described
in Section 3 and in further detail in Risholm et al. [54]

1.4 Contributions

The final algorithm is intended to be a step towards a more complex
data collection system for trawling, able to estimate the biomass of the
fish currently in the trawl. With meticulous testing of how various
popular segmentation methods perform on this type of data, this thesis
identified several possible methods that return results with high accuracy
and minimal segmentation noise.

The tracking algorithm outlined in this thesis performs well on the main
dataset analysed; it was capable of correctly tracking the fish in the test set
through occlusions involving all three fish. The algorithm is not expected
to be successful on datasets with a lot of fish in each frame, but it will likely
be able to return some partial results. The algorithm can also easily be
adapted to other types of datasets.

The estimated percentage error of the length estimation algorithm was
around 10%. These are promising results, but keep in mind that with only
three known fish lengths in datasets analysed, rigorous error evaluation
of the length estimation was not possible. More testing is necessary. It
is however clear that basing the length estimate on multiple observations
were necessary as the length estimates vastly improved for well-positioned
fish.

1.5 Thesis structure

Part II, Theory and Methodology, is divided into several chapters. First,
previous work related to fish detection and tracking is presented in Chapter



2. Then, the range-gated camera system and the process of extracting real
world coordinates for length estimation is described in Chapter 3. Chapter
4 presents the data produced by the camera, and describes the formats
of the validation datasets. Then follows an overview of the proposed
pipeline in Chapter 5, before methods that may be used in the segmentation
and tracking parts of it are described in chapters 6 (segmentation) and 7
(tracking) before fish length estimation is described in Chapter 8. Finally, an
overview of the metrics used to validate the results is presented in Chapter
9.

While results and discussion are typically presented in different
chapters, this thesis presents results and their related discussions together
in part III, Experimental Results and Discussion, for ease of reading.
Part III, chapter 10 presents all experimental results and is divided into
four sections; the first three concerns segmentation, tracking and length
estimation on the main dataset studied in this thesis, while the fourth
section demonstrates the algorithm’s performance on a different dataset.
Part III, Chapter 11 summarizes the results in Chapter 10.

Finally, part IV contains a conclusion and suggestions for further work
in this field.
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Chapter 2

Related work

A common way to gather data regarding the average weight and size
distribution of a fish population (highly important information for both
conservation efforts and in aquaculture) is to capture and measure a small
sample. This manual procedure is time-consuming, often inaccurate, and
may cause physical harm to the fish. [34] Efforts have therefore been
made to develop more accurate and non-invasive biomass measurement
methods, often utilizing computer vision and machine learning techniques
to analyse the data captured by underwater cameras. A few selected
approaches are outlined in the following section. Li et al. [34] offers a more
comprehensive review of biomass estimation techniques for aquaculture
specifically.

Analysing underwater footage comes with certain challenges. Under-
water images are often low contrast with non-uniform lighting. The fish
themselves display a high variability in intensity and shape. Therefore,
most methods have only been successfully tested in controlled environ-
ments [39], such as tanks or narrow channels where the background is uni-
form and the fish is likely to be captured from the side. Such data collec-
tion methods are not harmful to the fish, and certainly applicable to the fish
farming industry, but they are difficult to adapt to data collected in the sea
with less uniform backgrounds, likely more turbulent water and more ran-
dom motion of the fish. There is still need for a system capable of collecting
and analysing data from, for instance, a trawl.

Fish detection and segmentation

Tillett et al. [67] used a 3D point distribution model (PDM) to estimate
dimensions of free-swimming fish. The model was fitted to 3D images
collected in a tank with stereo cameras and achieved an average error
in length estimation of 5%. However, the model required manual
initialization of the points and was very sensitive to the initial point
placement. The authors noted the difficulty in analysing images of salmon
in regular production cages, as opposed to the tank, due to light scattering
in the water, the natural camouflage colouring of the salmon and a non-
uniform background which may occlude the fish.

Lines et al. [36] took steps towards a system for estimating the biomass



of free-swimming salmon in sea cages. Once again, the problem of the
low difference in contrast between the fish and the background was noted.
An n-tuple binary classifier was used to identify the characteristic crescent
shape of a fish head when subtracting an image slightly separated in time
from each frame. Points are identified automatically along the fish body
using a PDM similar to Tillett et al. and the mass was estimated from
linear measurements. The mean mass measurement error was 18% after
preliminary tests on 60 frames with 17 fish.

Zion et al. [75] analysed images of fish swimming, one by one, through
a narrow channel with background light. Segmentation by subtracting an
image with no fish produced a clear contour of the fish. Object contour
signatures were extracted and used to classify three fish species.

Chuang et al. [9] describes an algorithm for automatic segmentation of
fish sampled by a trawl-based underwater camera system. The algorithm
first finds positions of probable fish using local thresholding. The initial
segmentation is then further refined. The final method achieved a 78%
recall against ground truth on low-contrast underwater images.

Atienza-Vanacloig et al. [3] also tested their method on underwater
images acquired under real conditions. Their fully automatic method
segments the fish using background subtraction or local thresholding
(which they remark is fast and behaves well when the background is not
uniform). After segmentation, a deformable fish model is automatically
adjusted to the fish shape and size. The model achieved a 90% success
rate on videos captured in natural conditions. The authors note that
overlapping fish is a problem that still needs to be resolved.

Multiple-object tracking

Qian et al. [50] presents a method for tracking multiple zebrafish which
was adapted to be used in this thesis. The fish were dark against a static
white background, making segmentation by background modelling fairly
simple. The cost function is based on fish head position and direction,
optimized between consecutive frames. Basing the cost function on fish
heads minimized occlusions, as the model could still be updated when
other parts of the fish were obscured.

Network flows as used by Qian et al. have previously been used to
solve general tracking problems, as the cost function can easily be adapted
to different situations. Zhang et al. [74] adapted a network flow-based
optimization method to track multiple pedestrians. The algorithm was
expanded with occlusion hypotheses, added to the observation set in
instances where an object was considered likely to be directly occluded by
another object. The algorithm showed improvement compared to previous
results on the same dataset, and the authors note that the framework can
be easily adapted to tracking any class of objects.

Henriques et al. [21] applied a similar network flow-based optimization
method to a pedestrian tracking problem. Contrary to Zhang et al., this
method pre-linked detections yielding a set of tracklets (track segments).
The tracklets were then linked using an optimal matching method, in this
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case the Hungarian method, to form the final set of tracks. Occlusions
were accounted for by allowing merges and splits to connect to virtual
termination and initialization nodes respectively.
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Chapter 3

Range-gated camera system

The range-gated camera system developed by SINTEF delivers real-time
3D estimation underwater, based on a peak determination algorithm that
is robust to scattering. The camera system consists of a camera with a black-
and-white CMOS chip and a 542 nm solid-state laser with a repetition rate
of 1 kHz. It is discussed in more detail in Risholm et al. [54]

Energy received

GATE CLOSED GATE OPEN

0 20 40 60 80 time (ns)

Figure 3.1: The graph shows the reflected signal I'(x,y, z) from a laser pulse. By
gating out the first 50 ns (marked in orange) most of the reflected signal from
particles in the water (backscatter) is removed from the image. The camera shutter
is only open for a short time window, capturing objects at distance increments A,
from the camera. Figure from [38].

Let I'(x,y, z) represent the number of photons collected at pixel (x,y)
from an infinitesimal range at distance z. Integrating I’ from a distance z
and beyond produces an image I(x, y, z) gated at distance z (see Figure 3.1).

I(x,y,z) = /Zoo I'(x,y,z)dz (3.1)

With gating delay steps of A; = 1.67 ns and the speed of light underwater
being ¢, ~ 22.5 cm/ns, the system has a spatial sample increment of
A, = %Atcw = 18.8 cm. For each distance z = z,,, + Azi,i = 1,...,,N,,
an average image 1(x,y,z) is calculated from N, images from the same
distance. Increasing the number of images used in the averaging reduces
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noise, but N, is constrained by the transfer rate between the camera and
the PC used for processing and visualization. [54]

In environments with no scattering, the best depth estimate will be the
range from which the most number of photons are reflected; meaning that
the highest peak in the differentiated delay sweep curve at pixel (x,y),
I'(x,y,z), corresponds to the distance to the target. To be used underwater,
the system needs to handle the effects of light scattering and introducing
false peaks in the signal. As shown in Figure 3.1, the peaks due to forward
and backwards scatter may be higher than the signal peak due to the actual
target. [54]

The effects of scatter can also be seen in Figure 3.2. The object in
the turquoise square is 7 m from the camera. The peak at 3.2 m in the
differentiated delay sweep curve is forward scatter from the target to the
right, ranged at 3.2 m. This peak is higher than the peak at 7 m due to
attenuation of the signal with distance. Backscatter from particles close to
the camera causes the rise in the signal from 2 m to 0 m.

Signal (AD counts)
AD counts per time-unit

0 1 2 3 4 5 6 7 8
Distance (m)

Figure 3.2: The histogram-equalized intensity image gated at 2 m from the camera
(left). Right shows the effects of scattering on the negative differentiated delay
sweep curve (dashed red) from the turquoise square. The blue graph is the signal.
The object in the turquoise square is 7 m from the camera, but peaks due to
backscatter close to the camera and forward scatter from the target to the right
at 3.2 m are higher than the peak due to the actual target. Figure from [54].

The algorithm takes the effects of scattering into account by selecting
the most distant peak higher than a noise floor T,,. A good threshold
was selected through simulations. The derivation is done by convolving
the signal with a derivative kernel combined with a smoothing filter in
the z-direction. The smoothing filter reduces the effects of noise, which
is increased in the derivation.

Higher resolution was achieved through interpolation of the discrete
signal. Noting that the peak of the curve resembles a parabola, a parabolic
fit based on three central points was used in the interpolation to find
the center position. Experimental results showed that the parabolic fit
was more robust than a weighted average with more points, due to the
average being biased with regards to the selection of the points. With signal
interpolation and the parabolic fit, resolution was increased from Az = 18.8
cm to 0.8 cm.
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The signal-to-noise ratio was further improved by binning the images
before computing the depth map. After computing the depth map,
uncertain depth estimates are removed. The peak height is used as an
uncertainty metric. Laser intensity noise is reduced in the foreground by
averaging intensity images gated close to the camera. Similarly, sensor
noise is reduced by subtracting an averaged background image, an image
gated at a distance far away from the camera, from the foreground.

3.1 Real-world coordinates from the depth map

The real world coordinates (X,Y,Z) of a point in the image can be
calculated from the angle of view (AOV) and the point’s distance to the
camera z. AOV, illustrated in Figure 3.3, describes the part of a 360-degree
circle (horizontal or vertical) that is captured by the sensor. [13, p. 121]
Knowing the focal length f and the dimensions of the sensor in millimetres,
the total horizontal and vertical AOV can be calculated as follows: [69]

Angle of View

[ Distance from camera |

Bl Bl

Depth Focal length

Figure 3.3: 2D Pinhole camera model illustrating AOV for a pixel at position x.
Using x, AOV and distance from camera z, the real world coordinates (X, Z),
where Z is the object’s depth, can be calculated.

AOV, = 1172tan_1(2w) (3.2)
and
1 h
AOV, = =2tan~(— (3.3)
] (2f )

w and h represent the horizontal and vertical dimensions of the sensor
respectively (width and height). The sensor dimensions are 960 x 512
pixels, and each pixel is 14ym. Thus w = 13.44 mm and h = 7.17 mm.
n ~ 1.32 represents the refractive index of air/water. [53]

In order to maximize the accuracy of the calculated coordinates, the
AOV of each individual pixel is calculated, rather than simply dividing the
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total AOV by the horizontal or vertical number of pixels. Consider a pixel
at position (x,y). Let £ and § represent that pixel’s horizontal and vertical
distance to the image center. The horizontal and vertical AOV at pixel (x, y)
is calculated:

1 _1,Xxp
AOV; = —2tan~! (3.4)
U] ( f )

and

1 j *
AOVy = 2tan 1 fp ). (3.5)
Here, p = 14um represents the size of each pixel. The change in horizontal
AOV based on pixel distance from image center is illustrated in Figure 3.4.

Knowing the AOV and z, the point’s distance to the camera, the
horizontal and vertical real world coordinates may be calculated as follows:

AOV;

X = sin( > )z (3.6)
Y:sin(AOszA) o (3.7)

50

—— AQV for each pixel
AOV based on image width

N w B
o o o

Angle of View

-
o

-200 -100 0 100 200
Pixel distance from image center

Figure 3.4: Comparison of the horizontal AOV calculated for every pixel, and
AOV calculated based on the image width. Note that non-linear increase in the
AOQOV calculated for every pixel; the difference in AOV between neighbouring
pixels is larger near the image center than near the edges of the image.

Finally, the real world depth coordinate Z is easily calculated using
Pythagoras theorem:

Z=-\V2-X2-Y? (3.8)
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Chapter 4

Datasets

41 3Cod

The main dataset used in this thesis was filmed in a pool and includes three
free-swimming cod. The lengths of the fish were manually measured to be
71 cm, 54 cm and 41 cm. Note that the conditions are likely better than we
can expect to find in the sea, with less noise due to the water being less
turbulent and a more uniform background.

(a) Intensity frame 39 (b) Depth map frame 39

Figure 4.1: Example images from the 3 Cod dataset. The white parts of the
depth map indicate None-entries; pixels for which the depth could not be reliably
estimated.

As Figure 4.1 illustrates, the depth map contains a lot of None-entries,
mainly located around the edges of the image, due to high uncertainties in
the distance calculations. Since very little information could be extracted
from these areas, each frame was trimmed from the original size of 480 x
256 to 300 x 150 (see Figure 4.2).

4.1.1 Validation sets

Two validation sets were created from the 3 Cod dataset; one to measure
the accuracy of the segmentation and one to measure the accuracy of the
tracking. The segmentation dataset is a set of 93 images (approximately
every 20th frame in the video) with manually drawn binary masks, as
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(a) Intensity frame 39 (b) Depth map frame 39
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(c) Intensity frame 372 (d) Depth map frame 372
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(e) Intensity frame 626 (f) Depth map frame 626

Figure 4.2: Cropped example images from the 3 cod dataset. Most of the None-
entries from the depth map have been removed. The depth map illustrates the fish’s
and the background’s distance to the camera in cm.

shown in Figure 4.3. The fish were not individually labelled, as the
goal is to measure how successful the initial segmentation of the fish and
background was.

Figure 4.3: Example images from the segmentation validation dataset. The hand-
segmented binary mask is marked in red.
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The dataset used for testing the tracking methods is a set of 501
subsequent frames. In every frame, the approximate midpoint of each fish
was marked and labelled with a unique ID by hand. In merge situations, as
shown in Figure 4.4 (b), the merged fish are marked with a single ID. This
dataset was used to validate both the tracklet generator and the tracklet
linker. When used to validate the tracklet generator, fish do not regain
their original ID after a merge as this is the desired output from the tracklet
generator. When used to validate the tracklet linker, the ground truth IDs
are changed so that the fish do regain their original ID.

(a) Individual fish (b) Two merged fish with a single ID

Figure 4.4: Example images from the tracking validation set. Note that the
observation with ID 11 in (b) is an observation containing two fish detected as
one as they swim close to each other.

A known issue with the tracking validation set is that the hand
annotated dataset will almost certainly mark a merge at a slightly earlier
or later frame than the algorithm will, causing ID swaps to be recorded
where they should not. This needs to be taken into account when testing,
as it may negatively affect the tracking validation results.

4.2 Fish Schools

This second dataset is more challenging than the first. It consists of 725
frames in total, filmed in an aquarium containing fish of several species.
The dataset includes several schools of fish swimming closely together, as
well as several instances of larger fish occluding multiple smaller fish. In
addition, large parts of the depth map have None-entries. Similarly to the
3 Cod dataset, the edges of the depth map contain mostly None-entries.
Therefore, every frame in this dataset was also cropped from the original
size of 480 x 256 to 300 x 150 pixels. However, in contrast to the 3 Cod
dataset, large parts of the background in the top half of the image are also
missing distance entries.

Figure 4.5 shows some examples of the cropped images. Due to the
high complexity both in the segmentation and the tracking of the fish in
the Fish Schools dataset, the 3 Cod dataset was used to generate most of
the experimental results in this thesis. The Fish Schools dataset will be
used to illustrate how well the final algorithm performs when applied to
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new data, and perhaps how the algorithm needs to be tweaked in order to
achieve good results under different circumstances.
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Figure 4.5: Example images from the Fish Schools dataset. The white parts of the
depth maps indicate missing (None) entries. Frame 133 likely contains too many
fish for the tracker to accurately handle. Note how a large number of fish overlap
in the depth map (b); some of these fish are never detected alone. Middle images (c)
and (d) illustrate a group of fish more likely to be tracked. Lower images (e) and
(f) illustrate how the depth map is missing most information about the large fish in
the image; using only the depth map, this fish may be detected as several smaller

fish.
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Chapter 5
Proposed pipeline

The final algorithm is intended to extract information about individual
fish from the input data. The input data consists of a set of N intensity
and depth map images. In the first step, a corresponding set of N binary
masks is produced, in which probable fish pixels are marked with ones
and probable background pixels are marked with zeros. A list of connected
components for every frame, computed from the binary mask of that frame,
is returned.

In the next step, series of observations with a high probability of
belonging to the same fish are linked to form tracklets. The observations
are linked by solving the assignment problem for every frame; maximizing
the probability of pairing each observation in the current frame with an
observation in the previous frame. The probability that two observations
are linked is calculated using a cost function consisting of one or more cost
features. Cost features describe the similarity between two observations.
The choice of a cost feature or cost features is paramount to the success of
the tracklet generator.

After successfully generating tracklets, the tracklets are processed to
estimate the fish’s velocity vector and length. A set of length estimates for
each tracklet is produced using every observation in the tracklet. The final
length estimate is based on a percentage of the highest length estimates in
each tracklet, as the length of the fish is more likely to be underestimated
(due to contortions and segmentation errors) than overestimated. The
fish’s velocity vector is estimated using a Kalman filter. Merges, situations
in which multiple fish are detected as a single object as they swim past
one another, are not solved by the tracklet generator. Using cost features
relying on frames after the merge as well as prior to the merge, such as the
velocity vector, makes it possible to solve more difficult observation linking
problems.

The tracklet linking step considers every tracklet in the selected time
range in order to solve occlusions and missed detection cases correctly.
If successful, it will return a set of tracks. Each track includes every
observation of a single fish, along with length and speed estimates for every
frame it is visible. A final length estimate for each track is also calculated.

The success of the proposed algorithm is dependent on the individual
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success of the segmentation and the tracking algorithms (the cost feature
selection in particular). Possible solutions to each step are explored in
depth in the theory and result sections.

( START )
Intensity
Peak Position
Segmentation

List of connected
components

Tracklet
Generation

List of
tracklets

Cost Features

Calculation v

List of tracklets
(with cost features)

Tracklet Linking G—J

/ List of tracks /

END

Figure 5.1: Proposed pipeline. After segmentation of every frame of the initial input data, connected
components are linked, frame-by-frame, to form short tracklets. The linking is done by solving the assignment
problem for every frame with a cost function that estimates the likelihood of two observations belonging to
the same fish. The cost function is based on one or more cost features. After the tracklets have been generated,
further cost features that cannot be estimated from a single frame are extracted. With a new cost function,
tracklets are linked to create tracks. Each track should contain every observation of a single fish. The length
estimation algorithm calculates the length for every observation in a track, before the final length is estimated
to be a high percentile of the track lengths.
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Chapter 6

Segmentation

Image segmentation divides an input image into multiple regions, where
each region has a certain characteristic. In this thesis, each frame will be
segmented into two regions: the foreground (fish) and the background
(everything else). The output of the segmentation process is a binary
mask where ones denote pixels belonging to a fish and zeros denote the
background.

This chapter contains four main sections. In the first section, I will
discuss global and local segmentation techniques based on thresholding.
Segmentation based on background subtraction is discussed in Section 6.2.
Section 6.3 concerns edge detection, as there are often sharp edges between
two regions in an image. Finally, Section 6.4 considers noise removal prior
to and after segmentation. As most of these methods can be applied to both
the intensity image and the depth map, "intensity" in this section may refer
to the value of pixels in the intensity image or the value of pixels in the
depth map.

Parts of this chapter are based on my Master Essay "A discussion and
comparison of segmentation methods in images," June 2019.

6.1 Thresholding

Thresholding is a way to do a binary partition of an image; useful for
separating foreground objects from the background. A threshold T is
selected, and any pixel (x,y) with an intensity value I larger than the
threshold is given the value one. Pixels where I(x,y) < T are given the
value zero. Selecting a good threshold is essential for this operation to
return meaningful results.

6.1.1 Global thresholding
Otsu’s method

In many cases, foreground objects have an intensity distribution that differs
from the background, and a carefully selected threshold T might be able to
separate the foreground from the background. One of the most popular
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algorithms for calculating T is Otsu’s method. [59] The method uses class
variance as a metric to measure the "goodness of a threshold". [45]

Given an image with G gray levels and histogram probabilities p(i)
for each gray level i = 1,..,G, Otsu’s method aims to maximize the
separability in graylevels of the resulting classes. After applying a
threshold T, the probabilities for the two classes C; and C; are as follows:

T
P(T) =) p(i) (6.1a)
i=1
P (T) =1—Pi(T) (6.1b)
The mean values are:
:Ziczlip(i) _ L. 6.2
T u(t) i:lep(l) (6.2a)
_Zz’T: ip(i) _ZzG:T 1ip(i)
11 (T) _ﬁ 12(T) _W (6.2b)
Note that
Py (T)p1(T) + Papa(T) = p. (6.3)

The between-class variance for 2 classes is defined as

op = P(T) (1 — p)* + Po(T) (42 — p)?
= Pi(T)P2(T)(p1 — p2) (6.4)

Using equations 6.1 and 6.3, equation 6.4 can be rewritten as a function of
a threshold T.

~ (urPy(T) — u(T))?
(1) = BT = B

(6.5)

To find the value T* that maximizes equation (6.5), one may simply
evaluate it for all G gray levels for which 0 < P;(T) < 1

Through simulations with varying noise, object size and mean differ-
ence, Lee and Park [31] showed that Otsu’s method produces good res-
ults if the histogram have a bimodal distribution with a clear, deep valley
between the peaks. In cases with excessive noise, or a smaller difference
between the mean intensity values of the object and the background com-
bined with large within-class variances, there are no clear peaks and Otsu’s
method alone will not produce a good result.

The total error for Otsu’s method rapidly increases as log10(P1/P»)
approaches 1, and Otu’s method should only be used when 0.1 < % < 10.
[1] If the object area is small compared to the background, Otsu’s method
alone is not a good fit.
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Kittler-Illingworth’s method

In 1985, Kittler and Illingworth proposed a different criterion for an
optimal threshold. [27] Assuming the gray level histogram results from an
unknown mixture f of two Gaussian distributions, Kittler and Illingworth
suggest the threshold T that minimize the Kullback-Leibler divergence |
from the observed histogram p(i) to the unknown distribution mixture
f. The Kullback-Leibler divergence measures the difference between two
probability distributions and is defined: [72]

L .
i (20)
J= i)ln () (6.6)
L i
fori = 1,..,G gray levels. We work under the assumption that the

observed histogram is the result of a mixture of two Gaussian distributions
hy and hy with means p; and pp and variances (712 and (T%, and that the
probabilities for the two distributions are P; and P, respectively.

f(i) = Pihi (i) 4+ Poho(i) =

2 2
i N ©7)
\/ 271y \ 27109
The criterion | (equation 6.6) can be rewritten:
L . . L . .
J =Y p@)in(p(i) - ) P@)n(f(i) (6.8)
i=1 i=1

Realising that the first term does not depend on the unknown parameters
in f, we only need to minimize the second term [19, p 23-28] in order to
find a minimal J.

H=-—

i

p()In(f(i)) (6.9)

L
=1

We assume that the two unknown distributions that make up f are well
separated. In this case, f(i) can be written

, _<T_,,21>2
L_p 27 i<T
N~ V27107 ¢ —
fi) = U (6.10)
P2 2(72 .
\/27723 2, 1>T

for some threshold T separating the two distributions. [19, p 23-28].
Inserting equation 6.10 into equation 6.9 and simplifying, we obtain the
following optimization criterion: [42]

J(T) =14 2[P(T)Ino1(T) + Po(T)Inop(T)]

=2[Py(T)InPy(T) + Po(T)InPy(T)] (6.11)
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If T is indeed the threshold separating the unknown distributions, the
estimated means and variances from the histogram p(i),i = 1,...,G will
be close to the true means and variances ji1, yz, 01,07 that define f. [19,
p 23-28]. J(T) can be evaluated for each threshold T using equation (6.1) to
estimate parameters for P;(T) and P>(T), equation (6.2b) to estimate 1 (T)
and p»(T) and the following equation to estimate 01 (T) and 0»(T):

)
)

6.12
(i (6.12)
)

This criterion can be evaluated for every threshold T, or be found through
an iterative search. In the latter case, an unfortunate starting value may
give a meaningless threshold. Using a start threshold obtained by Otsu’s
method ensures convergence towards a minimum error threshold. In this
thesis, an exhaustive search was used to find the optimal threshold.

Previous experimental results show that Kittler-Illingworth’s method
performs better than Otsu’s method on images with small objects com-
pared to the background. [37] In 2004, Sankur and Sezgin evaluated
the performance of 40 thresholding methods, including Otsu’s method
and Kittler-Illingworth’s method, based on five different performance cri-
teria. They ranked Kittler-Illingworth’s method first. [59] Albregtsen com-
pares eight thresholding methods, including Otsu’s method and Kittler-
Nlingworth’s method, on normalized binormal histograms with varying
probability ratio and distance between the peaks. [1] Kittler-Illingworth’s
method has a stable error rate even for larger probability ratios, while
the error rate for Otsu’s method increases rapidly as the probability ratio
grows. Albregtsen notes that Kittler-Illingworth is always close to the ideal
error rate. [1]

6.1.2 Adaptive thresholding

In some cases, for instance when an image has some intensity gradient, a
global threshold is not optimal for separating foreground and background
elements. In these cases, adaptive thresholding methods might prove to be
a better solution. When adaptive thresholding methods are used, the value
of T is calculated for every pixel and changes depending on the intensity
values in a local neighbourhood.

Adaptive mean and Gaussian thresholding

A common threshold chosen is the mean value for a local neighbourhood of
size w X w minus a constant C. Increasing the constant C results in larger
parts of the image being segmented. This value may be set to 0 or even
negative.
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The Gaussian adaptive thresholding algorithm utilizes a weighted
sum of the local neighborhood instead of the mean, ensuring that close
neighbours have a higher influence on the threshold than more distant
neighbours. The threshold for each pixel (x,y) is calculated by cross-
correlating each neighbourhood window of size w x w with a Gaussian
kernel g(o) of the same size:

T(x,y) =g(o) xI(x,y) = C (6.13)

o is calculated from the size w of the local neighborhood: ¢ = 0.3((w — 1) *
0.5—1) +0.8. [44]

Niblack’s method

Developed in 1986, Niblack’s local threshold method is based on the mean
and standard deviation in a local window. The threshold T, in a local
window w is calculated as follows:

Ty = My + k X 0% (6.14)

my, and oy, represents the mean and standard deviation in the window. The
constant k and the window size w are predetermined; Niblack suggested
k = —0.2. [4] This method tends to correctly identify the foreground, but
returns large amounts of noise in empty areas of the image. [25]

Sauvola’s method

Sauvola’s method from 1997 attempts to fix the noise problems in Niblack’s
method. The approach is similar to Niblack’s method, but it includes a
constant gray-level range value R, set to 128 for 8-bit images by the authors.
[60] The thresholding formula for each window is as follows:

Ty = 11y (1 —k (1 — %“’)) (6.15)

where k is a constant in the range [0.2,0.5]. [4] While this method largely
solves the noise problem in Niblack’s method, it struggles when the
contrast between the foreground and the background is relatively small.

[4]

Bataineh’s method

This method from 2011 was an attempt to address the weaknesses of
the previous methods, including noise, low contrast and the issue with
manually choosing parameters. Bataineh’s method uses the mean and
standard deviation of both the local window and the entire image in the
threshold calculation: [4]

m2, x oy

(mg + 0w) X (04 + o)

Tw = My — (616)
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my and oy, are the mean and standard deviation of the local window.
mg represents the mean of the entire image. o, is an adaptive standard
deviation calculated using the overall image minimum and maximum
standard deviation values:
Ow — Omi
o, = —2mn (6.17)

Omax — Omin

6.2 Background subtraction

In some scenarios, for instance when a camera is affixed to a trawl pointing
down towards the sea bed, the depth map will have a fairly constant,
homogeneous background with the fish being closer to the camera. It may
be possible to segment the fish by subtracting a model of the background
from each frame. The background is not always a flat, planar surface,
therefore a simple threshold is not sufficient. Instead, the background is
modelled as a function f(x,y) of polynomial degree d:

d ]
£=flxy) =Y ) Agxy"™ (6.18)
j=0i=0
Sampling #n random points in the depth map with coordinates (x1,y1),
(x2,¥2), -, (xn,yn) and distances z, = [z1,22,..,z4)’, a linear system is
constructed. Equation 6.19 shows a linear system of degree d = 2. This
method easily extends to higher dimensions.

1 x1 y1 xn xi yi b z1
1 X2 2 XYy X b2 2y
C e - (6.19)
1 xy yn Xuln x% y% by Zn

The system of linear equations is solved by using the ordinary least squares
method (OLS) to find the b that minimizes the cost function:
1& ’
C=- —Zk)%, 20
- k;(zk Zx) (6.20)
where z,k = 1,...,n are the measured distances at the randomly chosen
coordinates and Zy = f(xx, i),k = 1,...,n are the distances estimated with
equation 6.18. [22]
After solving the linear system, the segmentation is completed by com-
puting the absolute difference D(x,y) between the depth map background
estimate 2 and the current depth map frame z. A mask M(x, y) is created:

1, ifD(x,y)>T

. (6.21)
0, otherwise

M(X,y) = {

While there are more robust methods available for solving such systems
of linear equations, OLS seems to be sufficient to model the background
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in this case. If too many foreground object (fish) points are included in the
background estimation, the mask will likely include a large number of false
positives. This may be avoided by iteratively calculating the background,
selecting new random points for the fitting function every time, and
keeping only areas of the image consistently marked as foreground.
Careful selection of the segmentation threshold T, the polynomial degree 4
and the number of random points used for the plane fitting may also help.

6.3 Edge detection

If the background is fairly smooth and homogeneous, edge detection can
be used to capture the contour of the fish. The goal of edge detection
algorithms is generally to mark connected lines in the image at locations
where there is a sudden change in pixel intensity values, for instance the
sudden change in the depth map from a background pixel to a fish pixel.

In this thesis, edge detection is used in conjunction with a segmentation
method to improve the segmentation near the edges of the fish.

6.3.1 Canny’s edge detector

One of the most popular edge detection algorithms is Canny’s edge
detector. The edge detector aims to consistently detect only true edges,
place the edge marker point in the center of the true edge and eliminate
multiple responses to a single edge point. [7] These criteria were expressed
mathematically and solutions approximated using numerical optimization.
Modelling a step edge in 1-D with added white Gaussian noise, Canny
found that the first derivative of a Gaussian was a sufficient approximation
of the optimal step edge detector. [17]

In 2D, one needs to apply the 1D edge detector in all directions to find
the edge normal, the direction for which the 1D results still applies. This
can be accomplished by first smoothing the image and then computing the
gradient magnitude and direction. [17, p. 729-732]

Is(x,y) = g(x,y) * I[(x,y) (6.22)

The image I(x,y) is smoothed by convolving with a Gaussian function
(equation 6.23) to create I;(x, y).

x24y?
g(x,y) =e2? (6.23)
Next, the gradient magnitude ||VI;(x,y)|| and direction 6(x,y) are com-
puted. The horizontal and vertical gradients can be found by using Sobel
operators which yields g and g.

VI )] = /(6 9)? + 8y (x,y)? (6:24)
0(x,y) = tan_l[m (6.25)
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Non-maximum suppression is used to thin the wide ridges around local
maxima, resulting in the non-maximum suppression image I,. Let K
denote the value of ||VI|| at a detected edge point (x,y). Search a
predefined local neighbourhood around (x,y). If K is less than the value
at a neighbouring point in the direction of the edge, the point (x,y) is
suppressed (I,(x,y) = 0). Otherwise, I,,(x,y) = K. [17].

The gradient magnitude image is thresholded to define the edges.
In order to suppress false positives, Canny’s edge detector uses two
thresholds Ty and Ti, so-called hysteresis thresholding, to create two
thresholded images.

Lip(x,y) = Iy(x,y) < Ty (6.26)

Lin(x,y) = In(x,y) < Tp (6.27)

Note that Ty > Tr, meaning I,,;, will contain all non-zero pixels in I,,;7 and
some additional. The non-zero pixels in I,,;, not in I,y are denoted weak
edges, while all non-zero pixels in I,y are denoted strong edges. All strong
edge points are initially marked as true edge points. A pixel point in a
weak edge is suppressed if it is not connected to a strong edge point using
8-connectivity. If a pixel point in a weak edge is connected to a strong edge,
the point is marked as a true edge point.

Utilizing hysteresis thresholding will form longer, connected edges and
preserve true edge points that would otherwise have been suppressed
without picking up on too much noise.

6.4 Noise removal

Underwater images are especially subjected to noise, more so that images
captured in air. As light travels through water, it is exponentially
attenuated, which, depending on the turbidity of the water, can severely
limit the visibility distance. Forwards and backwards scattering blurs and
lowers the contrast of the intensity image, [61] and may introduce false
peaks in the depth map as discussed in Chapter 3. These factors affect the
segmentation of both the intensity image and the depth map.

Bilateral filtering can be used to smooth the depth map and still keep the
important sharp transition from the background distances to a fish intact.
Morphological operations can be used post-segmentation to remove small
noise particles.

6.4.1 Bilateral filtering

In general, smoothing of an image is done using a lowpass filter; a filter
that reduces the difference between pixel values by replacing the intensity
of each pixel with a (sometimes weighted) average of nearby pixels. [47]
Let I(p) represent the original intensity value and H(p) be the output of
the lowpass filter at pixel position p = (x,y). H(p) is calculated:
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H(p) = ng(llp—qll)l(q) (6.28)
qc

Here, q are pixel positions in the window S and g is a weighting function.
A popular choice for g is a normalized Gaussian function:

X2
§(X)e = 5——exp(—53) (6.29)
where a large o gives more weight to distant locations and thus results in
more blurring. [68]

The lowpass filter will smooth the edges along with the rest of the
texture in the image. However, a bilateral filter preserves the edges while
smoothing non-edges and is thus useful for removing texture and noise
in the image while keeping important edge information. The filter is
based on a low-pass filter, but with an additional normalization term. The
normalization term ensures that not only spatial location but also pixel
intensity ranges determine whether two pixels are close to each other. [68]

H(p) = W, (p) ngas(llp —ql))ge (I(p) — 1(q))1(q) (6.30)
qe

S represents all possible pixel positions in the image, and g is a weighting
function. [47] W, is defined:

Wo =) 8o (llp — all)ge (Ip — Ig) (6.31)
qes

The spatial variance o; influence the amount of blurring, while the intensity
range variance ¢, controls which features will be smoothed. [68] For a large
s, the bilateral filter resembles the low-pass filter. Increasing o, allows
intensity values with larger differences between them to be smoothed. [47]
In neighbourhoods with more uniform intensities, the normalization will
be close to one and the output is similar to a standard low-pass filter.

6.4.2 Morphological operations

Morphological operations are very useful in processing and extracting
information about geometrical structures, such as objects in a binary
image. We will mainly use them to remove small noise elements from
binary images. The operations are based on set theory, where the sets
are collections of 2D coordinates. Two types of sets are typically used:
objects and structuring elements. In this case, objects are defined as sets of
foreground pixels (pixels with value equal to one in a binary image) while
structuring elements can contain both foreground and background pixels.
[17, p. 636]

Let S denote the set of all image coordinates in an image. We define
two morphological operations based on vector addition of set elements of

an object A and a structuring element B. Note that A and B are subsets of
S. [20]
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A®B={ceS|lc=a+Dbforsomeac Aandb € B} (6.32)

The dilation of set A using structuring element B, denoted A @ B is "the
set of all possible vector sums of pairs of elements, one coming from A
and one coming from B." [20]. When applying dilation to an binary image,
the objects in the image will "grow" according to the shape and size of the
structuring element. Dilation can, for instance, help connect parts of an
object if the object was only partially segmented.

Ao B={ceS|c+be Aforeveryb € B} (6.33)

The erosion of a set A using the structuring element B is the set of all points
c such that "B, translated by [c], is contained in A". [17, p. 639] It "shrinks"
A according the shape and size of B and is useful in removing small noise
elements/false positives from binary images as it will erase objects smaller
than the structuring element.

Erosion and dilation can be combined to form further morphological
operations; two important ones being opening and closing. Both will
generally smooth the contour of an object. Opening removes sharp peaks
and eliminates small islands, while closing bridges narrow gaps and
eliminates small holes. [20]

The opening of a set A using a structuring element B is defined as
erosion of A by B followed by the dilation of the result by B:

AoB=(ASB)®B (6.34)

The closing of a set A using structuring element B is defined as the dilation
of A by B followed by the erosion of the result by B: [17, p. 645]

AeB=(A®B)SB (6.35)

The example images in Figure 10.20 illustrate how opening and closing can
remove noise from the segmentation.

(a) Original segmentation output (b) After morphological opening (c) After morphological closing

Figure 6.1: Morphological opening removes most of the small noise particles.
Morphological closing eliminates the gap between two of the fish.

32



Chapter 7

Tracking

Tracking the fish is not an easy task. The three codfish in the 3 Cod dataset
are relatively similar in size and appearance. The intensity and the shape
of the fish, two features commonly used in tracking, continuously change
as the fish change direction. The direction and speed of the free-swimming
fish change frequently as well, making tracking based on position estimates
with Kalman filters difficult. This thesis uses a tracking algorithm based
on a minimum-cost flow network as it is easily customisable and includes
occlusion handling.

A cost-flow network is an intuitive way to represent a set of tracks. Let
every observation be a node in the graph. Directed arcs, or edges, link
observations together, creating a set of possible tracks. An observation
may also be linked to a source or sink node, representing the fish entering
and exiting the frame respectively. The weight of the edges represents the
likelihood of linking two observations. The graph defines a maximum
a posteriori (MAP) problem. Figure 7.1 illustrates what one such graph
along with a possible solution may look like. Weak cost features in the cost
function calculating the weight of each edge is the main cause of failure for
this algorithm.

In this thesis, observations in neighbouring frames are initially linked
to form tracklets; sets of observations belonging to the same fish. Features
such as the fish’s velocity vector and length can be estimated from the
tracklets. Tracklets are linked to form the final tracks, using features
calculated based on multiple observations. Occlusions and missed
detections can be resolved at this stage using information prior to the "loss"
of the fish and after the fish has been detected again.

7.1 Tracklet generation

Consider a set of n observations O' = o}, 0}, ..., 0!, detected in frame ¢. Our
goal is to find the most likely set of edges that connects each observation in
frame t to an observation in a set of m observations in the previous frame
t—1.

The most likely edges connecting the two sets of observations can be
found by solving the assignment problem. Figure 7.2 illustrates a graph
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Figure 7.1: An example of a cost-flow network for tracking. Each node represents
an observation. There is a possible flow from the source node to every observation,
as well as a possible flow from every observation to the sink. For every node in
time step t, there is a possible flow from every node in time step t — 1. An example
solution with three tracks is marked in color. There is no flow along the grey arcs.
Note that this network does not allow multiple incoming or outgoing flows for
the observation nodes, meaning the network must be adjusted in order to correctly
solve merge situations.

G(Otfl, O!E ) with two sets of nodes (observations) and a set of edges E.
Each node o/~ € O'~! is connected to all nodes 0j € O'byanedgee; € E
with a weight c;;. The weight represents how likely it is that observation

-1
0;

asks for the bipartite graph G'(O'~!,0f, E’), where each node in O'~! is
connected to one node in O by an edge in E’ C E such that the sum of the
weights is minimized. [51]

€ O'"!and o} € O' belong to the same fish. The assignment problem

The assignment problem can be solved using the Hungarian method in
time O(nk + n?log(n)) if |0'~!| = |Of| = n and |E| = k. [51] However,
the number of observations in two neighbouring frames will frequently
be different, for instance due to occlusions or on occasions where fish
have entered or exited the frame. That is, the graph is unbalanced. The
simplest way to transform an unbalanced graph into a balanced one is to
add enough new nodes with zero-cost edges connecting them to all the
nodes in the larger part, until |O'~!| = |Of|. This is not efficient for larger
optimization problems, but in this case the number of observations per
frame will remain small. [51] As illustrated in Figure 7.2, an observation
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Figure 7.2: A section of the graph in Figure 7.1. At time step t — 1, there are two
observations (m = 2) represented by node 1 and 2. At time step t, a new fish
has appeared in the frame (n = 3). Therefore, a new node SRC is added to the
left side so that m = n and the solution marked in colors may be found using the
Hungarian method.

being connected to a non-observation node v represents a connection to the
source if v is added to O'~! or the sink if v is added to Of. An observation
being connected to the source or the sink represents the fish entering or
exiting the frame respectively.

7.1.1 Cost matrix

Let ¢;; represent the cost of linking of~! and o]t-. The cost is calculated

by taking the negative logarithm of a linking probability Py (0!, 0;),
meaning that a high cost indicates a low likelihood that two observations
belong to the same fish. The linking likelihood is calculated as the product
of a set of cost features (discussed further in Section 7.3), normalized with

a zero-mean Gaussian function.

Cij = —ZOgPZink(Of_lfojt‘) (7.1)

For every frame t, the cost of linking every observation 0j € O,j=1,..,n
with every observation of_l € Ot1i =1,..,min the previous frame is
calculated and represented in an n x m cost matrix C:

c11 C12 ... Cim
C=1|: : : (7.2)
Cnl an “ o Cnm

If m > n, extra zero-rows are added until the matrix is square (representing
connections to the source). If m < n, extra zero-columns are added until
the matrix is square (representing connections to the sink).
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7.1.2 The Hungarian method

After the cost matrix has been calculated, the Hungarian method! may be
used in order to find the bipartite graph which minimizes the total cost of
the edges. This method was developed in 1955 by Harold Kuhn [28] and
can be described in six steps for a cost matrix of size n x n: [49]

1. Find the minimum value m; in each row and subtract m; from every
entry in that row.

2. For each zero Z in the resulting matrix, check if there is a starred zero
in its row or column. If not, star Z.

3. Cover the columns containing a starred zero. Check for optimality:
if n columns are covered, the starred zeros indicate the optimal
solution. If the optimality test fails, go to step 4.

4. Prime an uncovered zero. If its row contains a starred zero, cover
the row and uncover the column containing the starred zero. Repeat
until there are no uncovered zeros. Go to step 6. If the row contains
no starred zeros, go to step 5.

5. Start a process to construct a series Zy, Z1, Z... of alternating primed
and starred zeros. Let the uncovered zero found in step 4 be Z,.
Z1 denotes the starred zero found in the column of Z; (if any). Let
Z, be the primed zero in the row of Z;. Continue the series until a
primed zero is found that has no starred zero in its column. Unstar
each starred zero and star each primed zero of the series. Remove all
primes, and uncover every line in the matrix. Return to step 3.

6. Find the minimum uncovered value. Add it to every covered rows,
and subtract it from every uncovered column. Return to step 4.

Steps 3-4 will repeat until an optimal solution is found. Note that the
process of constructing the series of primed and starred zeros will increase
the number of assignments by one. [28] The number of assignments are
bounded above by 7, since each label can be connected to at most one
observation.

7.2 Tracklet linking

Using the approach described previously, single observations have been
connected to form a set of tracklets. No attempt has been made so far to
solve merges and splits. It should also be noted that the method above
will restart a tracklet if even a single observation is missed by the detector.
I hope to solve these issues by solving an extended minimum-cost flow
network graph problem, similar to the one described above with some
modifications.

IKuhn referred to his method as "the Hungarian method" because it was based on the
work of two Hungarian mathematicians: Dénes Kénig and Jen6 Egervéry.
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Let 7 = {T;} be a set of tracklets created by linking observations frame-
by-frame using the Hungarian method. Each tracklet T; = (Oj, A}, t)
contains a list of successive detections with high probability of association
Oj, a number of descriptors used in the calculation of cost features (for
instance length in centimetre) A; and the time step the first observation
appeared t;. The tracklet generator algorithm should be designed to
somewhat aggressively end tracklets if a highly probable link to an
observation cannot be found. Therefore, we assume that no ID swaps occur
in the tracklets; meaning that each tracklet either contains observations of
a single fish or observations of multiple fish in an occlusion situation.

A track is defined as an ordered list of tracklets: Sy = {Ty,, Tk,, ..., Ty, }. A
candidate solution is a set of tracks: S = {S;} and the goal is to maximize
the probability of S given a set of tracklets 7. It is customary to add the
restriction that no tracks may share a tracklet to reduce the solution space
(SiNS; = Q,Vi #j). [21] [74]

7.2.1 Extended cost matrix for tracklet linking

The tracklet linking algorithm uses an extended version of the cost
matrix described earlier. Tracklet likelihoods, termination likelihoods and
initialization likelihoods are calculated in addition to the likelihood of
linking tracklets.

The initialization and termination likelihoods are based on the reason-
able assumption that new objects only appear near the image borders.

Pinit(Ta) = N (dy(Oan1), 0v) (7.3a)
Pterm (Ta> - N(db (Oa,—l)/ Ub) (73b)

dy represents an observation’s distance to the image border. O, ; and O,,_1
represent the first and last observation in T, respectively. ¢;, is a fixed
parameter based on the expected distance from the image edge detection
or loss of detection will occur.

The likelihood of a tracklet T, being accepted P* or discarded P~ is
based on the miss rate of the detector p and the length of the tracklet |T,|:
[21]

PH(T,) = (1- )" (7.4a)
P~ (T,) = p/™! (7.4b)

In this thesis B = 107#, calculated from the rate of false negatives in the test
set.

Finally, the likelihood of a link from a tracklet T, to a tracklet T, is
defined, as in the previous sectipn, as the product of n, carefully selected
normalized similarity features P},i =1, ..., n,:

ns )
Piink(Ta, Ty) = [ [ PH(Ty | Ta) (7.5)
i=1
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Let the final observation in T, occur in frame ¢,, and the first observation
of T, occur in frame t,. The tracklets can be linked if and only if t, < t;,
otherwise Plink(Tar Tb) =0.

In order to accommodate the initialization and termination blocks, the
cost matrix for n tracklets is a 2n x 2n square matrix with the following
structure: [21]

Clink Cterm]
C =
|:Cinit 0111

The Cjiyx = [c;j] block handles tracklet-to-tracklet linking and tracklet
likelihoods: [21]

o —logP;, ifi=j 76)
) —log[\/ P Pk (T3, T)) /P]ﬂ, otherwise '

Cterm and Cjjy are diagonal matrices with tracklet termination and initializ-
ation costs along the diagonals and infinity everywhere else. [21]

Cinit = DIAGeo(—10g [ Piniti\/ Py ]) (7.7)
Crerm = DIAGoo(_log [Pterm,k \/ P]j_] ) (7.8)

Using the Hungarian method with input C, an optimal solution may
be found. Tracklets being linked to themselves in the optimal solution
indicates a false detection.

7.2.2 Resolving merges and splits

The approach described above needs to be further augmented in order
to handle merge situations. After finding a solution S, a search is done
for possible merge situations. These situations are identified by a tracklet
terminating or initializing far from the border and near another tracklet, as
illustrated in Figure 7.3.

Consider a pair of tracklets, T, and T}, that both end in time step ¢ r and
a tracklet T;,, whose first observation occur in time step t,, = ¢ Tt 1. Assume
T, was linked to T,, and T}, was linked to the sink node in the solution S. If
the final observation of T}, occurred relatively far away from the border and
relatively close to the first observation of T}, it is likely that T}, is a tracklet
consisting of observations of the two fish in T, and Tj, one occluding the
other or the fish swimming so close together that they are not detected as
separate fish.

In such cases, an occlusion hypothesis is added to 7. [74] T;, is removed
from 7T, replaced by two new tracklets T5 (O, Aq, ) and T,5’1(Om, Ap, tm).
The new tracklets have the same list of observations and start frame as T},
but the descriptors of T, and Tj,.

In order to solve situations where two fish are merged as they enter
the frame and later split, or merge situations with more than two fish, the
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Figure 7.3: An unsolved merge situation. Three tracks are illustrated, marked with
different colors. Each node represents a tracklet. Tracklet 3 contains observations
of the fish in tracklet 1 and tracklet 2, swimming too close together to be detected
as two fish. As only one incoming and one outgoing edge is allowed for each
node, only tracklet 1 is connected to tracklet 3, while tracklet 2 is terminated and
reinitialized as tracklet 5.

algorithm searches for splits as well as the merges described above. Splits
are indicated by pairs of tracklets, T, and T, that both initialize in time step
ts far from the border, near the final detection of a tracklet T, terminating
at time step t; — 1.

Figure 7.4: Tracklet 3 has been replaced by two copies of itself with descriptors
from tracklet 1 and tracklet 2. The cost matrix has been re-calculated, and the new
solution is the correct one.

Figure 7.4 illustrates how the merge situation in Figure 7.3 was correctly
resolved after an occlusion hypothesis was added. The situation in Figure
74 is a fairly simple one, albeit common. The merge may be more
complicated if more than two fish merges. Therefore, the final algorithm
attempts to solve merges recursively, until no further merge hypothesis is
created or a threshold for the number of attempts has been reached.
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7.3 Cost features

A good cost function is paramount to the success of the tracking algorithm.
Two different cost functions will be developed; one cost function that links
observations frame-by-frame to form tracklets, and one cost function that
links tracklets in order to form the final tracks.

The cost function is the product of a number of cost features, each cost
feature normalized as a zero-mean Gaussian function. The normalized cost
features represent the probability that two observations (or tracklets) o; and
0j belong to the same fish. A good cost feature, prior to the normalization,
is expected to return values near zero when o; and o; belong to the same
fish, and values in a higher range when 0; and o; belong to different fish.

Two cost features that perform well separately may not always perform
well together, due to high correlation between the cost features. The
cost features used for frame-by-frame tracking may be different from the
tracklet linking cost features, as the latter features are required to remain
relatively constant over longer time periods.

7.3.1 Histogram comparison

The intensity distribution of an object in a gray-scale image describes
the overall brightness of the object. Due to the high frame rate of
the camera, this distribution will likely be relatively consistent across
neighbouring frames; thus a metric that describes the similarity between
two distributions may be used to link observations frame-by-frame.

Minkowski distance

The Minkowski distance Dy, is a straight-forward, bin-by-bin similarity
metric that considers the pair-wise difference between each bin in the two
histograms. [56]

1

v :
1, (H,G) = (Dm —g#’) 79)

where H and G are the two distributions and N is the number of bins.
p is typically 1 or 2, equivalent to the Manhattan and Euclidean distance
respectively. [56]

The Earth Mover’s Distance (Wasserstein Metric)

The Earth Mover’s Distance (EMD), also known as the Wasserstein metric,
measures the minimum distance between two distributions. Informally,
EMD is often described as the least amount of work required to fill a
collection of holes in the ground with some piles of dirt. The holes represent
one distribution, the piles of dirt represent the other. [56]

Let the intensity histogram {/;} be represented as a signature {s; =
(mj,w;)}. The signature is a set of feature clusters represented by its mean
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m; and the fraction of pixels belonging to that cluster w;. If s; = (m;, w;)
represents the bin /; in a histogram, w; corresponds to the number of pixels
in that bin, while m; is the central value in bin i. [56] Computing EMD
is based on the transportation problem: a set of suppliers (the piles of
dirt) with a certain amount of goods (the amount of dirt in each pile) are
required to supply a set of consumers (the collection of holes), each with a
limited capacity (depth of the hole).

This can be formalized as a linear program problem. Let P =
(p1,wp1), (P2, Wp2), ..., (P, Wpn) be the first signature consisting of n clusters
and Q = (q1,wg2), (92, Wg2), s (m, Wym) be the second signature with m
clusters. A flow between the two signatures is a matrix F = [f;;], where f;;
is the amount of weight at p; matched at g;. [10] A flow is feasible if and
only if it fulfils the following constraints: [56]

fi>0 i=1.,nj=1,.m (7.10a)
n
Y fi<wy i=1,.,n (7.10b)
i=1
m
Y fi<w, i=j,..,m (7.10¢)
j=1

n m n m
Yo fi=min Y wy, Y wy (7.10d)
i=1j=1 T

1 1=

The first constraint allows movement from P to Q only. The second
constraint ensures that one cannot move more "dirt" from a cluster in P than
the cluster contains, while the third constraint limits the amount of "dirt" a
hole in Q can receive to the depth of the hole. [10] The final constraint forces
the total amount of weight to match the lighter distribution; meaning that
the maximum possible amount of weight is moved. [56] After solving the
transportation problem, one is left with the EMD:

n m
EMD(P, Q) = ot Bt i 7.11)
i=1 Zj:l fij

Here, d;; represents the L; distance between clusters p; and g;. Note that the
EMD is normalized by the total flow. [56] For distributions with different
total weights, this normalization helps ensure that the smaller signature
is not favoured. [56] Unlike the Minkowski distance and other bin-by-
bin methods, the distance between bins is considered instead of simply
comparing corresponding bins. EMD also allows for partial matches. [56]

7.3.2 Position and velocity

Assuming some distance between the fish, an observation o; in frame t
should in almost every case be matched with the closest observation o;
in frame t — 1. Euclidean distance may fail in situations where fish are
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swimming close together, but is otherwise likely to be a useful cost feature
for frame-by-frame observation linking.

After tracklets have been generated, we can apply a Kalman filter [24]
to estimate the velocity vector of the fish from noisy, multidimensional
midpoint coordinate measurements. Kalman filters are used to filter out
noise from a series of measurement variables by recursively updating an
estimate of the state of a linear system. For each time step, the state variable
x; is estimated from the previous state x;_; using equation 7.12. The
relationship between the state variable and the measurement z; is modelled
according to equation 7.13. [8]

xt =F. X¢—1 + B- Up_1 + Wi—1 (712)
Z'=H x4+ v (7.13)

x and z; represent the estimated state variable and measurement variable
at time t. The state transition matrix is denoted F, the measurement matrix
is denoted H. B and u represent the control-input matrix and the control
vector respectively. In some systems, external variables such as sudden
braking or acceleration are known. In this case, however, these variables
are unknown and thus B is set to zero. [66] System noise and measurement
noise are assumed to be constant, white and independent of each other, and
represented by w; and v;, modelled as normal probability distributions:
[29]

w1 ~ N(0,Q) (7.14)

v ~ N(0,R) (7.15)

The algorithm is generally divided into two steps: the prediction step and
the update step. In the prediction step of the algorithm, the current state of
the system x,” and state covariance P, are predicted according to equations

7.16. Note that in this step, only previous measurements are taken into
account. [29]

xt_ = Ft,1 “ X1+ But (716a)
P = AP AT +Q (7.16b)

In the update step, the a posteriori state of the system is estimated with
equations 7.17:

Yy =z — HX, (7.17a)

K; = P H'(HP, H' + R)™! (7.17b)
£ =2 + Ky (7.17¢)

P = (I - K:H)P; (7.17d)
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Predicted (prior) estimates are marked with the superscript -, updated
(posterior) estimates are marked with the superscript +. P is the state error
covariance. y; is the measurement residual, i.e. the difference between
the measurement z; and the estimated measurement H%£, . Multiplying
the residual with the Kalman gain K; provides the correction K;y; to the
predicted estimate £, . [26]

The filter is initialized with an initial guess of the state estimate £; and
the error covariance matrix, along with noise estimation variables R and Q.

Kalman filter for linear tracking

In the case of 1D linear tracking with constant acceleration, xt will be a
vector containing object’s midpoint coordinate, velocity and acceleration:
xt = (x',0',a"). [48] Using Newton’s equations of motion, the state
transition matrix is defined:

1 ot 36t
F={0 1 4t (7.18)
0 0 1

with 0t being the sampling interval. [57] In the case of a point-only-
measured system, where only the position and not the velocity of the object
is measured, H = (1,0,0). This is easily extended to higher dimensions by
extending the state transition matrix with copies of F along the diagonal
and updating H to reflect more measurements. Q and R are usually not
known and can be used as tuning parameters. The initial error covariance
guess Py is usually large in order to ensure a quicker convergence. [26]
As the initial speed and acceleration of the fish are unknown, the filter is
initialised with the midpoint of the first observation of the fish and speed
and acceleration set to zero. This means that the estimated velocity will be
wrong for a number of frames before the filter stabilizes.

Velocity vector comparisons

The 3-dimensional velocity vectors 7; = (vy,, vy, vz;) and 7; = <ij, vy, UZ],>
for two observations may be compared simply by calculating the absolute
difference between the two them:

Ds 5 = \/(vxi —0x;)? + (vy; — vy,;)? + (07 — )2 (7.19)

As the speed of the fish generally changes more rapidly than its general
direction, it may be prudent to consider the angle 0; ; between the vectors
as well. A large angle indicates a large difference in the directions of the
fish.

U; - U
0;j = cos™! <Ji) (7.20)
17|55
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7.3.3 Length estimate

The length calculation itself will be discussed the next chapter. After a
tracklet has been generated, we have a number of length estimates equal
to the number of observations in the tracklet. By considering a high length
estimate percentile, following the logic that the length is quite likely to be
underestimated due to contortions of the fish, but seldom overestimated, a
single length estimate is returned for each tracklet. These length estimates
could be useful for tracklet linking, but relies on the fish being in a good
position for length calculation at least once per tracklet, which is not always
the case.
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Chapter 8

Length estimation

The fish length is estimated by calculating the length of a line segment
between two real world coordinate points (X3, Y3, Z1) and (Xp, Y2, Z;) on
the fish; one placed at the tip of the head and one at the end of the tail.
The real world coordinates of these points are calculated as described in
Section 3.1. For the sake of simplicity, the fish is always assumed to be
straight when the length is calculated.

When the fish’s velocity vector is not perpendicular, or almost perpen-
dicular, to the optical axis, the length estimate may be less accurate due to
parts of the fish no longer being visible. Tracking the fish across multiple
frames increases the likelihood of observing the fish in a good position, i.e.
relatively straight and with a direction perpendicular to the optical axis.

8.0.1 End point coordinates selection

The pixel coordinates (x1,y1) and (x2,y2) should be carefully selected to
actually represent extreme points along the fish. After a binary mask is
produced, a bounding ellipse is fitted to each probable fish shape. The
ellipse was chosen rather than a rotated bounding box as it fits the general
shape of the fish better. The bounding ellipse is defined by its midpoint
coordinate (x, y), the length of the major and minor axes and the orientation
of the ellipse with regards to the x-axis. The end point pixel coordinates can
be determined by finding the intersections between the edge of the fish and
a line along the major axis of the ellipse.
An ellipse can be represented by the implicit form F(d, ¥) = 0, where

F(d, %) = AxxX] + AxyXiyi + Ayyyi + Axxi + Ayyi + Ag
= [xiz/ XiYi, ylz, Xi, Yi, 1] : [Axx/ Axy/ Ayyz Ax/ Ay/ AO] (81)
=Xi- a.
X; = (x;,y;) denotes a 2D data point. 7 contains constants which determine
the shape, size and orientation of the ellipse. Given a set of data points
P = {x;}! ; belonging to a detected fish, the goal is to find the best fitting

ellipse to this data. The ellipse parameters are found by minimizing the
algebraic distance €?(#@); the sum of the distance from every point (x;,v;)
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in P to the curve defined by the parameter vector 4. [16] If all points fit
perfectly on the the ellipse, the error will be zero.

n
2(@) =Y _F(d x)* = ||D|? (8.2)
i=1
where
|Dd||* = a'D'Da (8.3)
and ||7]> = 1. D is an n x 6 matrix with rows x;. Using a Lagrange

multiplier A, a constrained objective function E is defined: [16]

E=d"D'Dd - A(@"d 1) (8.4)

The constrained objective function is minimized to find the solution 4,,,:

V+E=2D"Dd -2\ =0 (8.5)

dmin, the best fitting ellipse to the set of points P, is the eigenvector
corresponding to the smallest eigenvalue of DTD and can be found by
solving the eigensystem using Hessenberg reduction and QR-factorization.
[16]

Determining the fish’s distance to the camera

The distances z; and z; at the end points are difficult to determine. The
distance measurements at the end points frequently resemble background
distance values due to possible segmentation errors and noise in the depth
map. Therefore, z; and z; should be estimated using several points along
the major axis of the fish, or alternatively all points on the fish.
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Chapter 9

Validation metrics

9.1 Segmentation

The classification results were evaluated using four criteria: accuracy, total
misclassification error, the Jaccard index and boundary F1 score. The first
three are based on the amount of correctly and incorrectly segmented
pixels, while the boundary F1 score evaluates how closely the contour of
the segmented objects resembles the ground truth contour.

A high value returned for a single validation metric is not necessarily
an indication of a successful validation. Additionally, lower results for
other validation metrics, more specifically the boundary F1 score and the
Jaccard index is expected and somewhat acceptable as a perfect border
segmentation for every fish in every frame is difficult and likely not needed
for this thesis.

Pixel-based validation metrics

Accuracy refers to the amount of correctly classified object pixels compared
to the true object area:

TP
~ TP+FN

TP refers to the number of true positives (pixels correctly classified as fish)
and FN is the number of false negatives (pixels incorrectly classified as
background). This metric should give an idea of how much of the target
object is correctly identified.

The total misclassification error (ME) is the ratio of correctly classified
pixels.

acc 9.1

_TP+TN
- N

TN refers to the number of true negatives (correctly classified background
pixels), and N is the total number of pixels in the image. Note that ME is
not independent of the size of the objects of interest, meaning that for small
objects no attempt at segmentation could still result in a seemingly good
ME value (since TN would be a high).

ME 9.2)
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The Jaccard index, also known as intersection over union, was chosen
due to its popularity as a similarity measure for two sets. It is defined as the
ratio of the union of correctly classified object pixels over the intersection
of ground truth object pixels and the model’s predicted object pixels.

TP
FP+4+ TP+ FN

The Jaccard index is closely related to another popular segmentation
validation metric: the Dice Coefficient. The Dice coefficient D can be
calculated from the Jaccard index | using the following formula: [43]

2]
T14J

Due to the high positive correlation between these two metrics, only
the Jaccard index was used in this thesis. Note that although the Dice
coefficient is also known as the F1 score, this metric is not the same as
the boundary F1 score described in the following section; the boundary
F1 score is a contour-based, not pixel-based, validation metric.

jacc = 9.3)

(9.4)

Contour-based validation metrics

The methods above do indicate the success of the segmentation. However
they do not give much information about how closely the segmented
boundary resembles the true boundary. Since accurate segmentation of the
fish’s extremities will help the length estimation, the boundary F1 score
(BF1), introduced in [11], was also included as a segmentation validation
metric. It gives an indication of the fraction of the pixels in the predicted
boundary that are within a certain distance of the ground truth boundary.
It is defined as the harmonic mean between modified precision P, and recall
R.:

Po= o Y [ld(= BY) < 6] 95
|BP’ ZEB)

R, Y [ld(z B;) < 6]] (9.6)
| g| zZ€Bg

B, and By represent the predicted object countour and the ground truth
object countour respectively, and 6 is the distance error tolerance set to 75%
of the object diagonal. [[z]] is the Iverson bracket; [[z]] = 1 if z is true, and
0 otherwise.

P.x R,
P. + R,

The Hausdorff distance is another contour-based metric, often used in
segmentation challenges. The Hausdorff distance H is the maximum of
the (Euclidean) distance from a point in any of the contours to the nearest
point in the other contour. [55] It is defined:

BF1 =2 9.7)
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H = max { %aaz(rbrlelgd(a,b),rlr}eag(rarggld(b,a)} (9.8)
where A and B are the sets of all the points in each contour, and d(a, b)
represents the Euclidean distance from point 4 to point b. The Hausdorff
distance is highly sensitive to outliers; a single FP far from the true contour
will cause a large Hausdorff distance. This problem can be alleviated
by only considering a fixed percentile f of the distances, ensuring that
f% of the points are within the returned Hausdorff distance. [23] That
being said, in instances with large amounts of noise, the partial Hausdorff
distance will not give an indication of the portion of outlier points and
the portion of points relatively close to the ground truth border. As some
of the segmentation methods are expected to return large amounts of
segmentation noise, but also segment the fish relatively well, the boundary
F1 score was chosen over the Hausdorff distance to evaluate the segmented
contour.

9.2 Tracking

As the segmentation success is evaluated separately, the correctness of the
tracker is evaluated using only the fish’s midpoints. A successful tracker
should be able to track the fish as long as it is in the frame and produce
only one track per fish. The tracklet generator and the tracklet linker will
be evaluated differently. In the case of the tracklet generator, it is acceptable
that it ends tracklets if the fish is lost for even one frame and it should
start new tracklets in splitting and merging situations. The tracklet linker
should be able to handle occlusions and short-term loss of detections due
to segmentation errors.

Consider a ground truth track (GT) and a system track (ST). [73] Some
error in midpoint position is expected and acceptable; we consider a target
o € GT and an object hypothesis 1 € ST at time step ¢ to be a valid
correspondence if they are within a certain distance from each other: [5]

Cloh) = {1, if dist(o,h) < T, ©9)

0, otherwise

Since a single ground truth track may be assigned to multiple system
tracks due to ID swaps or missed detections, a tracker-to-target mapping
is calculated for every time step using the Hungarian method described in
Section 7.1.2 with Euclidean distance as the cost function.

If, for a hypothesis h € ST at time step ¢, dist(h, oj) > Ty, Vo; €
GT;, the hypothesis is considered a false positive. Similarly, if a target
0 € GT; does not have a valid correspondence to any hypothesis, a false
negative is counted. [41] An identity swap (ID swap) is counted when a
target is matched with a hypothesis with a different ID than the previous
correspondence. [41] For the tracklet linker, it is important to keep the
number of ID swaps low; this is less important for the tracklet generator.
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Using the tracker-to-target mapping, the following tracking validation
metrics can be calculated.

Multiple object tracking precision

Multiple object tracking prediction (MOTP) evaluates how precisely the
tracker estimates the object’s position, i.e. the target’s midpoint. It is
defined as the sum of the distance d; between all corresponding object-
hypothesis pairs i, averaged by the number of correspondences. [41]

Y ridi
Y G

C: represents the number of correspondences in time step t.

MOTP =

(9.10)

Multiple object tracking accuracy

Multiple object tracking accuracy (MOTA) is one of the most widely used
multiple object tracking validation metrics. [41] It is derived from three
error ratios: the ratio of false positives, the ratio of false negatives and the
ratio of ID swaps in the sequences. Summed up, these ratios gives us the
total error rate. [5]

FP+FN +IDSW
Y GT
GT describes the number of ground truth objects, targets, in each frame.

FP and FN represent the total number of false positives and false negatives
respectively, and IDSW represents the number of ID swaps.

MOTA =1 — Lt

(9.11)
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Chapter 10

Experimental Results

This chapter contains experimental results, presented together with their
related discussions. It is divided into four main sections. The first
three sections concerns the testing of segmentation, tracking and length
estimation algorithms on the 3 Cod dataset. The most promising
algorithms are then applied to the Fish Schools dataset in Section 10.4.

10.1 Evaluation of segmentation methods

All segmentation methods described in Chapter 6 were tested using the
hand-segmented validation data set consisting of 93 frames extracted from
the 3 Cod dataset. The segmentation validation metrics described in
Section 9.1 are used to evaluate the results.

Note that the depth map was adjusted to contain values in the [0, 255]
range by multiplying every entry with —1 x 22 (700 cm being the
theoretical largest distance from the camera) in order to utilize efficient
image processing functions from the Python library OpenCV. Experiments
using functions that accept any range of values showed that this conversion
to 8-bit gray-scale images had no major effect on the final results. The
conversion replaces None-values in the depth map with zero. This was
judged acceptable, as the amount of None-entries is very low in this dataset

(about 0.025% of the total number of entries in the dataset).

Box plots are used in this section to illustrate the segmentation
validation metrics results. The box plots extend from the first quartile
to the third quartile, with the median marked with a line. The whiskers
extend to the most extreme data point within 1.5 x the interquartile range
distance from the first and the third quartile. Outlier data points beyond
the whiskers are marked with circles.

Grid searches were performed to determine the optimal combination of
input parameters for several methods in this section. The result of a grid
search is presented as a heat map with the mean validation metrics results
for each parameter combination tested.
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10.1.1 Global thresholding

Global segmentation was attempted on the intensity image and the depth
map using the methods of Otsu and Kittler-Illingworth. While these
methods are very popular, they did not produce good results in this case.
The intensity of the fish varies a lot, and the fish are not necessarily
brighter than the background. This, in addition to some noise in the image,
makes intensity-based segmentation very difficult. The depth map has a
horizontal gradient as well as noise. This caused the global segmentation
methods to fail on the depth map as well.

Otsu's method on the intensity image Otsu's method on the depth map
I—h» Jacc. l-\ (o]
—( [ .

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
Validation metrics scores Validation metrics scores
Kittler-lllingworth's method on the intensity image Kittler-lllingworth's method on the depth map
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Figure 10.1: Global segmentation on the depth map and the intensity image with
the methods of Otsu and Kittler-Illingworth. The low mean error scores in most of
the box plots indicate that these methods produce a large amount of false positives.
When Kittler-Illingworth’s method was applied to the intensity image, the mean
error score improved, but the low accuracy indicates that this method completely
fails to segment the fish.

As the plots in Figure 10.1 illustrates, the median mean error scores
were less than 80% for almost all methods, indicating a large amount of
false positives. The one exception, Kittler-Illingworth’s method on the
intensity image, has a very low accuracy; the fish were hardly segmented.
The wide boxes and long whiskers in the box plots show that the success
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of the methods vary widely from image to image. After investigating
the images that produced the lowest scores for these methods, it becomes
apparent that the methods struggle particularly with images devoid of (or
nearly devoid of) fish.

The accuracy for both methods increases on the depth map compared
to the intensity image. The intensity of the fish varies widely as it changes
direction, and in some cases the fish appears darker than the background
making segmentation on the intensity image difficult. When the methods
were applied to the depth map, the fish were more consistently marked as
foreground objects, but due to the gradient background, other parts of the
image were marked as foreground as well. While the validation metrics
results of the global segmentation methods were poor, they indicate that
we should focus on the depth map rather than the intensity image.

10.1.2 Local thresholding

Due to the gradient background in the depth map, local thresholding
methods may be better suited to segment the fish.

Adaptive mean and Gaussian thresholding

Initial tests showed that basing the threshold on the local mean value
or the weighted sum of the local neighbourhood produced very similar
results. Adaptive Gaussian thresholding was selected as the noise particles
appeared to be slightly less concentrated compared to adaptive mean
thresholding.

Accuracy Jaccard Index Boundary F1

Ll

234567 234567 234567 234567
C

0.0 0.2 0.4 0.6 0.8 1.0

Window size

Figure 10.2: Visualized average validation metrics results for various combina-
tions of window size and C, the two input parameters to the adaptive Gaussian
thresholding method.

A grid search was performed in order to determine the best input

55



parameters (window size w and a constant C, described in Section 6.1.2).
Figure 10.2 shows improved average accuracy and mean error scores
compared to global segmentation as the window size increases. Increasing
the constant C improves the average Jaccard index and boundary F1 scores
by decreasing the number of false positives.

Unfortunately, no single combination of window size and C maximised
the score for every metric. It seems clear that larger window size is
necessary to obtain a decent accuracy score. A larger C leads to loss in
accuracy, but gains for all other metrics (due to reducing the number of
false positives). Investigating the effect of changing the constant C (Figure
10.3 with corresponding validation metrics scores in Figure 10.4) reveals
that increasing C decreases the segmentation noise, but also removes parts
of the fish segmentation.

(a)C=2 (b)C=3 (c)C=4

Figure 10.3: Changing the constant C reduces the accuracy due to some parts of the
fish no longer being segmented, but improves all other validation metrics results
as the segmentation noise decreases. The window size was set to 71.

From Figure 10.3, it seems that a substantial amount of the error
stems from a large number of small false positives, largely located around
the image edges. Unlike previous attempts with global thresholding,
these "noise particles" are small enough that they may be removed using
morphological operations. If a large enough area of the fish is correctly
segmented, i.e. C is kept low enough, the actual foreground objects should
not be too affected by this operation.

Adaptive Gaussian with C=2 Adaptive Gaussian with C=3 Adaptive Gaussian with C=4
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(a) C=2 (b)C=3 (c)C=4

Figure 10.4: The decrease in false positives, as seen in Figure 10.3, is reflected in
the increase of the median Jaccard index, boundary F1 score and mean error score.
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Niblack’s thresholding method

Niblack’s local thresholding method requires two parameters to be determ-
ined by the user: the window size and a constant k. A grid search was
performed in order to determine the best input parameters.

Accuracy ME Jaccard Index Boundary F1
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Figure 10.5: Visualized average validation metrics results for various combina-
tions of window size and k, the two input parameters to Niblack’s method.

Figure 10.5 shows that Niblack’s suggested k = —0.2 returns low
average mean error results for all window sizes tested. This indicates a
large presence of false positives. Increasing k reduces the accuracy, but
increases the results of the other metrics. A window size of 41 or more
combined with a k in the range [0.4,1.0] may reduce the amount of false
positives sufficiently so that they may be removed at a later stage, while
keeping enough of the fish segmentation intact. This is admittedly a
large range, and should be investigated further in conjunction with noise
reduction methods.

(a) k=04 b)k=1.0

Figure 10.6: Example images showing how changing k in Niblack’s method affects
the segmentation. Increasing k decreases noise, but the segmented object area is
also decreased. The window size = 71 in both examples.
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Figure 10.7: Validation metrics for Niblack’s method with varying k and constant
window size = 71. As k increases, the decreased noise level results in improved
validation metric scores, with the exception of accuracy as the segmented object
area decreases.

Figure 10.6, along with the corresponding validation metrics box plots
in Figure 10.7, illustrates how the amount of noise varies with k. Similarly
to the adaptive Gaussian method, most of the noise is placed around the
image edges. However, the noise is more concentrated compared to the
adaptive Gaussian method; this may make it more difficult to remove in a
subsequent processing step.

Sauvola’s thresholding method

As mentioned in Section 6.1.2, Sauvola’s method does not generally
perform well on images where the difference between the foreground
intensity and the background intensity is relatively small. However, with
histogram equalization prior to the segmentation, this method did return
some worthwhile results. The gray-level standard deviation R was set to
128 in accordance with the author’s advice, leaving us to explore window
size and k.

Figure 10.8 indicates that the number of false positives decreases with
an increasing k, and once again this decrease is at the cost of a lowered
accuracy. Figure 10.9 illustrates how the segmentation is affected by an
increasing k. Once again most of the false positives are situated near the
borders.

Bataineh'’s thresholding method

Finally, Bataineh’s local thresholding method was investigated. This
method has the advantage that only one parameter needs to be set: the
window size. Supposedly it also solves the problems with the methods
of Niblack and Sauvola: false positives when the window passes over
empty areas and difficulties dealing with small differences between the
foreground and the background. Unfortunately, it quickly became clear
that the output from this method contains too much noise to be useful.
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Figure 10.8: Visualized average validation metrics results for various combina-
tions of window size and k, the two input parameters to Sauvola’s method.
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Figure 10.9: Validation metrics scores for Sauvola’s method with varying k and
constant window size = 21. Similar to Niblack’s method, an increased k results in
a decreased amount of segmentation noise, but also a decreased accuracy.

Figure 10.10 shows the large amount of noise in the segmented images. The
noise did not significantly decrease when the window size was changed.

59



BF1

Jacc.

ME

The high concentration of the noise makes it difficult, if not impossible, to
remove. Therefore Bataineh’s method was not used moving forward.

Bataineh's method with window size=11 Bataineh's method with window size=41
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(a) window size = 11 (b) window size = 41

Figure 10.10: Bataineh’s method failed to produce adequate results, with large
amounts of noise regardless of the window size. The high accuracy scores in the
box plots indicate that the fish are mostly segmented, but the results of the other
validation metrics are relatively low.

10.1.3 Segmentation by background subtraction

If the background of the depth map is relatively smooth and homogeneous,
it may be modelled as described in Section 6.2. Once a function has been
fitted to the depth map, a background model can be subtracted from every
frame. Every pixel for which the difference between the current frame
and the estimated background is larger than a threshold Tp is assumed
to belong to a fish. The depth map background modelling process includes
some parameters that may require tuning: degree of the fitted function, the
number of points used to fit the function, and the difference threshold Tp.
Using 50 random points in the function fitting and a difference
threshold of 3 pixels, the effect of changing the degree d of the polynomial
function modelling the background (see equation 6.18) was investigated.
As the depth map has been converted to an 8-bit image, a threshold Tp = 1
pixel is approximately equivalent to 2.75 ~ 7% cm. Figure 10.11 shows that
while there are only minor changes in the validation metrics scores as the
degree increases, it seems that degree d = 3 offers an improvement in mean
error compared to degree d = 2. The difference between degree d = 3 and
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degree d = 4 seems negligible. In order to avoid over-fitting, degree d = 3
was used moving forward.

Degree = 2 Degree =3 Degree = 4
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Figure 10.11: Validation metrics results of various degrees of the polynomial
function used to model the background. Increasing the degree only slightly
improves the result.

Next, a suitable number of points for the fitting of the polynomial
function must be selected. The function is faster to compute with a smaller
number of input points, but it may not be accurate enough. A high number
of points will create a more accurate model, but the model may also be
over-fitted. Figure 10.12 shows that using more than 50 random points
hardly improves the segmentation.

Lo Metrics for varying nr of points in the model

—— Accuracy
Mean error
0.8 —— Jaccard Index
\ —— Boundary F1
0.6 4
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0.2 1
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Nr of points in the background model

Figure 10.12: Number of points used in depth map background estimation. There
is little improvement in the results of the performance metrics results for more than
50 points.

If the depth map background is not relatively smooth, the fitted
function will not be able to model the background accurately enough. A
bilateral filter (as described in Section 6.4.1) was applied to the depth map
prior to the fitting in the hope that it would improve model by smoothing
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the background while preserving the edges of the fish. Figure 10.13 shows
that applying the smoothing filter does remove noise. All validation
metrics results are improved except from accuracy (as it removes parts of
the object segmentation as well).

No smoothing Smoothing with bilateral filter
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s

(a) No smoothing (b) Bilateral Filter

Figure 10.13: Deph map model with degree d = 3 based on 50 randomly selected
points and a difference threshold Tp = 3. The bilateral filter size was 7 x 7, with
0 = 05 = 30. Applying the bilateral filter to the depth map prior to estimating the
background model removes a large amount of noise. However, one of two partially
segmented fish in (a) is not detected in (b), and the segmentation of the other is
much poorer.

A more suitable difference threshold Tp may help keep the object
segmented and still remove most of the noise. Figure 10.14 displays the
averaged validation metrics results for various thresholds and degrees of
the fitted function. It is clear that when the mean error increases, most
likely due to false positives being removed, the accuracy decreases. Keep in
mind that a high mean error is achievable by no segmentation whatsoever,
as the foreground objects are small compared to the background.

An important thing to note in Figure 10.13 is the large interquartile
range and the high number of outliers in the box plots, which indicates
that this segmentation method does not return consistent results. The
background model is based on a number of randomly selected points,
and this random point selection process is likely the cause of the high
variability in the results. The hope was that since the foreground is small
compared to the background, the majority of these points would belong
to the background and when foreground points were inevitably included,
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Figure 10.14: Averaged validation metrics results for various combinations of
difference thresholds and polynomial degrees. The depth map was smoothed using
a bilateral filter prior to the segmentation.

they would not disturb the model too much. However, the high variability
indicates that the random selection affects the model greatly. Figure 10.15
shows how the random point selection causes the background subtraction
segmentation to output three very different segmentation results for the
same input image.

Figure 10.15: Even with the same input parameters, the randomness in the point
selection process produces very different results; from near-perfect to unusable.

Assuming that even in poorly segmented frames, the amount of true
positives stays high and that the randomness results in varying amounts
and positions of false positives, an iterative solution may be viable. By
calculating and subtracting the depth map multiple times for every frame
and labelling pixels as fish only if they belong to the set of the most
frequently segmented pixels, a reliable and accurate segmentation may be
achieved.

Figure 10.16 indicates that such an algorithm depends on how often
false positives are produced, as it will still fail if one area is continuously
mislabelled as fish. The number of iterations should be kept as low as
possible for the sake of computational speed while still be high enough for
the randomization to return some well-segmented frames. The threshold
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Cumulative segmentation Cumulative segmentation

Figure 10.16: Heatmaps showing the number of times each pixel is marked as
foreground after ten iterations using a difference threshold T; = 2 (left) and
Ty = 3 (right). The majority of the fish is segmented in every iteration.

Tp must be carefully selected so that that the number of false positives is
minimized and the fish is still consistently segmented.

Figure 10.17 illustrates the validation metrics results for an iterative
background subtraction method with ten iterations. All pixels labelled
as fish at least nine times are assumed to belong to the foreground. The
validation metrics results have improved from Figure 10.13. That being
said, this segmentation method is much less computationally efficient than
the global and local threshold methods described previously.

Iterative background subtraction model with Tdiff=2 Iterative background subtraction model with Tdiff=3
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Figure 10.17: Validation metrics results for the iterative background subtraction
method with ten iterations, accepting all pixels labelled as foreground at least nine
times. Compared to Figure 10.13, all metrics results except accuracy are improved
for Tp = 3, indicating a reduced number of false positives.

10.1.4 Noise removal

Of the methods tested in this section, adaptive Gaussian and iterative
background subtraction returned the most promising results. Granted,
adaptive Gaussian had a large amount of false positives if the C-
variable was kept low enough to segment most of the fish, but the false
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positives were mainly small, separated particles that should be easily
removable using morphological operations. The iterative background
model subtraction returned less segmentation noise and better validation
metrics scores than the adaptive Gaussian thresholding, but the noise
particles were generally larger and more difficult to remove. Additionally,
this segmentation method was significantly slower than all other methods
tested in this section. It seems likely that adaptive Gaussian thresholding
can return equivalent or better validation metrics results after noise
removal.

Morphological opening is an operation that removes small components
from a binary image. As long as the segmented components of the fish
are larger than the noise particles, the opening should not disturb the
segmentation of the fish significantly apart from smoothing the edges. A
high accuracy was prioritized as it gives a good indication of how much of
the fish is correctly segmented. From Figure 10.4, a high window size seems
to increase the accuracy up to a point. Therefore, window size w = 111 in
the following calculations. The constant C was kept low, again to keep the
accuracy high.
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Figure 10.18: Grid search to determine the kernel size of a square structuring
element for noise removal. It seems that a 3 x 3 structuring element combined
with C = 2 returns high accuracy and improved Jaccard index and boundary F1
scores.

The size and shape of the structuring element determines the size
and shape of the noise particles it can remove. It is important to choose
a structuring element that removes a large amount of the noise while
keeping the true fish segmentation intact. A grid search for the size of the
structuring element and a good corresponding C was performed. Figure
10.18 shows that a 3 x 3 square structuring element combined with C = 2
returns high mean accuracy and improved the mean Jaccard index and
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boundary F1 scores.
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Figure 10.19: Grid search for the ideal size of the structuring elements used for
morphologcial opening opening and closing. It seems that a 3 x 3 opening element
pairs well with a 3 x 3 or 5 x 5 closing element.

The possibility that morphological closing would further improve
the results by closing potential holes created by the opening was also
investigated. Figure 10.19 indicates that the 3 x 3 opening element for the
opening pairs well with either the same closing element or a 5 x 5 closing
element. Investigating these two options reveals that closing with a 5 x 5
structuring element yields a slightly higher accuracy at the expense of a
slightly lowered boundary F1 score.

Figure 10.20 shows the effect of morphological opening and closing on
an image from the segmentation validation set. Before the morphological
opening, there is a large amount of small noise components around the
edges of the image. After morphological opening, almost all of these
noise components have been removed and the Jaccard index along with
the boundary F1 score have been vastly improved. We accept a small drop
in accuracy; this is due to small, disconnected segmentation components in
the fish being removed. The morphological closing improves the accuracy
marginally at the expense of border accuracy (we see for instance that the
two lower fish have merged into one observation).

10.1.5 Edge detection

While the adaptive Gaussian thresholding and iterative background
modelling returned relatively good validation metric results, the edges of
the fish are often poorly segmented (as an example, consider the leftmost
fish in Figure 10.20, which lost parts of its tail in the noise removal).
Detecting edges and adding them to the segmented image may improve
the segmentation.
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(a) Before noise removal (b) After morphological opening (c) After morphological closing

Figure 10.20: Noise reduction with morphological closing and opening, both with
a square 3 X 3 structuring element.

When applying the edge detection to the depth map, only edges
belonging to the fish should be returned, as the depth map background
in the 3 Cod dataset contains no other abrupt transitions. A bilateral
smoothing filter was applied to the depth map prior to the edge detection
to smooth small errors and noise. The effect of the bilateral filter is
demonstrated in Figure 10.21. The detected edges are added to the binary
mask returned by the adaptive Gaussian threshold.

For Canny’s edge detection, the lower and upper thresholds T; and Ty,
need to be determined by the user. Low thresholds mark more of the fish
edges, but also return a higher number of false positives. Several thresholds
were tested; Figure 10.21 shows that T;, = 10 and Ty; = 20, along with the
bilateral filter, marked most edges on the fish with minimal noise.

(a) No bilateral filter (b) Bilateral filter

Figure 10.21: Applying a bilateral filter prior to the edge detection significantly
reduces the amount of noise returned.

Canny’s edge detection combined with adaptive Gaussian thresholding
followed by morphological opening was tested for various structuring
element sizes. To avoid the edges being removed by the morphological
opening, the edge detection output was dilated before being added to the
adaptive Gaussian thresholding mask.
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Canny's edge detection combined with adaptive Gaussian
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Figure 10.22: Canny'’s edge detection, dilated with a 2 x 2 elliptical structuring
element, combined with adaptive Gaussian thresholding with window size 111 and
C = 2. Noise was removed with a 3 x 3 square structuring element. Comparing
the validation metrics results with the results in Figure 10.20, the edge detection
does improve the accuracy at the cost of adding false positives, evident in the
decreased boundary F1 and Jaccard index scores.

While adding the edge detection did improve the accuracy, the
improvement was accompanied by an increase in noise, as illustrated by
Figure 10.22. Most of the false positives added by the edge detection are
relatively small and can likely be removed at a later step by checking the
sizes of all connected components. However, the benefits of adding the
edge detection was judged to be minor compared to the detriments of
possibly adding false detections. Additionally, Canny’s edge detection will
likely produce a larger number of false positives on other datasets, such
as placing an edge at the transition between None-entries and background
entries in the Fish Schools dataset. Therefore, Canny’s edge detection was
not used moving forward.

10.1.6 Segmentation summary

Due to high variability in the intensity of the fish (it may be lighter
or darker than the background), segmentation on the intensity image
was discarded. Instead, the fish were segmented using the depth map,
where the fish are generally closer to the camera than the background.
Global segmentation yielded poor validation metrics results, but the local
thresholding methods all performed better. Of the four local thresholding
methods tested, adaptive Gaussian thresholding with window size=111
and C = 2 will be used moving forward, as it returned a near 70% median
accuracy and the segmentation noise consisted mainly of small particles.
While morphological opening and closing with a square 3 x 3 structuring
element reduced the median accuracy to 59%, it removed most of the noise
particles and vastly improved the other metrics (the median mean error
rose from 90% to 99%, the median Jaccard index rose from 0.12 to 0.53 and
the median boundary F1 score rose from 0.06 to 0.62).

Iterative segmentation by background subtraction on the depth map
returned promising results. However, this method is slow compared to the
thresholding methods tested and it did not outperform adaptive Gaussian
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with morphological noise removal. Edge detection with Canny’s edge
detector did pick out the edges of the fish. Combing the results with
the output of the adaptive Gaussian segmentation did improve accuracy,
but not the other validation metric results. As the edge detection has the
potential to introduce false observations in the tracking due to some larger
noise particles, it was not used in the final algorithm.

In conclusion, adaptive Gaussian thresholding seems likely to detect
most fish while not introducing many false detections that may confuse
the tracker. A perfect segmentation of each detection was deemed an
unreasonably difficult task; the adaptive Gaussian thresholding seems
capable of producing near-perfect segmentation in many instances where
the fish is well-positioned (i.e. relatively straight and close the camera).
This should be sufficient to return a good length estimate, as the
calculations are based on multiple observations of the same fish.

10.2 Cost features and tracking results

10.2.1 Cost features

In order to link different observations of the same fish, a selection of
features that describe the similarity between the two observations must be
found. The requirements for these features are different for the tracklet
generator and the tracklet linker; for the tracklet generation we are only
concerned with consistency between subsequent frames, while in the
tracklet linking process consistency over several frames is essential.

Using validation data sets where each fish x]t., j = 1,2,3, observed
at time t, is marked with a unique ID, the cost features were tested by
comparing each observation to a fish with a predetermined ID in the
previous frame. For the feature to be useful in the tracking algorithm,
it should return lower scores when x!~! is compared with x! rather than
x]t-, j # i. In all the following examples, each fish x]f-, j=1,2,3in frame t of
the validation data sets is compared to x, ! (Fish 2) in the previous frame
t—1.

Euclidean distance

An obvious cost feature is the center coordinate of an object. Since the
video has a high frame rate, the fish will not move much between frames
and unless an occlusion occurs, an observation should usually be linked to
the closest observation in the previous frame.

Figure 10.23 shows that Euclidean distance using only the (x,y)-
coordinate of a fish’s midpoint separates the fish clearly. It also marks
merge and split situations well, as the distance to any object at these
points are larger than usual. In Figure 10.24, the midpoint distance z was
added. This did not make this cost feature more reliable. For 3-dimensional
Euclidean distance to be used as a cost feature, the fish’s position may need
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Euclidean distance to Fish 2
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Figure 10.23: The Euclidean distance from the midpoint (excluding the midpoint
distance z) of every fish to the midpoint of Fish 2 in the previous frame.
Unsurprisingly, the distance is always smallest when comparing Fish 2 with Fish
2. (b) displays a merge situation. The merge and the split is clear in the plot; the
distance from the merged observation in red to Fish 2 around frame 1082 and the
distance from Fish 2 to the merged observation at frame 1000 is unusually large.

to be smoothed with a Kalman filter prior to the cost calculation. This will
hopefully remove some outliers due to, for instance, segmentation errors.
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Figure 10.24: The Euclidean distance from the midpoint (including the midpoint
distance z) of every fish to the midpoint of Fish 2 in the previous frame. Adding the
midpoint distance does not make this cost feature more reliable. In some cases, the
midpoint is placed outside the fish as the fish bends or due to segmentation errors,
causing jumps in distance.

Major axis angle

The angle of the major axis may help to differentiate fish swimming close
to each other. For frame-by-frame tracklet generation, no attempt at
orientation estimation or head-tail detection was made, so the maximum
angle difference would be 90 degrees for two fish whose major axes are
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perpendicular to each other. Figure 10.25 shows that the major axis angle
does work as a cost feature for most frames; it generally returns low results
when comparing x,~! and x5 as the fish’s orientation usually does not
change much between frames. However, it does occasionally also return
low results when comparing xéﬁl and x!,i # 2 as multiple fish are often
oriented similarly with regards to the x-axis.
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Figure 10.25: The difference in the major axis angle to the x-axis of every fish
compared to Fish 2 in the previous frame. For large parts of the two sequences, this
angle can be used to link together observations of Fish 2, but the costs of these links
are not consistently lower than the costs of other links (for instance in (a), time

steps 660 to 670).

Intensity histogram comparison

The intensity of the fish varies greatly. This caused problems when
attempting global segmentation, as the fish are not necessarily brighter
than the background. However, it may be useful when comparing the
intensity histograms of the fish frame-by-frame. Using the segmentation
mask, the intensity values at every point on the fish was retrieved. Figure
10.26 shows that the intensity histograms are clearly different for each of
the three fish in the frame. If they do not change too much from frame to
frame, the histograms may be the basis of a useful cost feature.

Using Minkowski distance with L; and L, as a similarity measure, the
histogram difference was calculated over time for various numbers of bins.
In this case, a lower number of bins seems to separate the fish better than
a high number. The choice of L; or L, distance appears to affect the scale
of the plots in Figure 10.27 more than the separation. All cost features will
be scaled using a Gaussian function, so in reality there is little difference
between the two. Figure 10.27 shows that using 25 bins and L; in the
the Minkowski distance calculation correctly indicates which observation
should be linked to the previous observation of Fish 2.

Earth Mover’s Distance (EMD) was also investigated as a cost feature.
EMD has an advantage over Minkowski distance in that it does not depend
on the number of bins and allows partial matches. Figure 10.28 indicates

71



Number of pixels

Histogram distance to Fish 2

(a) Frame nr 626

Fish3 Fish1 Fish2

l 200

.
— i |
N -

Intensity Intensity Intensity

Figure 10.26: The intensity histograms of three fish in the same frame. Fish 1
(middle) is clearly darker and covers a smaller area than the two other fish. Fish 3
(left) and Fish 2 (right) seem to have similar brightness levels, but their histograms
peak at different intensity values, and have different shapes.
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Figure 10.27: Comparing the histogram of every fish in each frame to the histogram
of Fish 2 in the previous frame. With 25 bins and L, distance, there is a clear
separation. The only exception is around frame 1082 and frame 1100, where the
intensity histogram changed suddenly due to Fish 2 and Fish 3 merging.

that EMD generally returns higher values when comparing two different
fish. Note that the EMD between a merged object and its components in
the previous frame is small due to partial matching of the distributions
(clearly seen in Figure 10.28 (b); the EMDs from Fish 2 and Fish 3 to the
first merged observation of the two fish, marked in red, are small). This
may be useful information at a later state when attempting to solve merge
situations.
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Figure 10.28: Calculating the minimum cost of comparing the histogram of every
fish in each frame to the histogram of Fish 2 in the previous frame. As EMD
allows partial matching, the separation from the merged observation around frame
1082 to Fish 2 and Fish 3 is smaller than when using the Minkowski distance.
The separation is at times poorer than the Minkowski distance results, especially
around frame 628 in (a).

Velocity vector comparisons

After having used a cost feature, or a combination of cost features, to create
short, connected tracklets, one may use these tracklets to extract further
information about the targets, such as their velocity. A Kalman filter is
applied to a fish’s midpoint over time. The hope is that the Kalman filter
will smooth errors in the position, especially the fish’s distance, and return
a velocity vector estimate for every observation.

Estimed speed using Kalman filter without acceleration

/\/\
670 680

Frame nr

Figure 10.29: The estimated position and speed over time, with no acceleration in
the Kalman filter. Orange dots indicate original measurements, the blue line is
the Kalman filter output. Local speed minima are marked in the graph and in the
image; they mainly correspond to changes in direction.

Initially, the Kalman filter was run without acceleration. Figure 10.29

shows that applying the filter smooths the curve and that local speed
minima usually correspond to changes in direction. Adding acceleration in
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the filter produced similar results (see Figure 10.30), but with different peak
heights. We cannot know whether adding acceleration to the filter returns
more accurate velocity estimates as the fish’s true speed is unknown, but
investigating the track shows that adding acceleration improved the filter
lag slightly. Note that in both cases, the filter was initialized with zero
velocity and zero acceleration. The filters are seemingly stabilized within
10 frames.

Estimed speed using Kalman filter with acceleration

)
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Figure 10.30: Estimated position and velocity over time with acceleration included
in the Kalman filter. Note that the peaks are higher compared to Figure 10.29,
where acceleration was not included

The Kalman filter returns a velocity vector estimate for every obser-
vation in a tracklet, with the exception of tracklets consisting of a single
observation. If the direction of the fish does not change rapidly, calculating
the difference between the velocity angles of detected fish may be useful in
solving occlusions.

Figure 10.31 shows the velocity angle difference between all fish
observed in time step t and the velocity angle of Fish 2 in time step t — At.
Note that the time separation At is larger than one time step in these
calculations, as the velocity is intended to help solve instances of occlusion
or loss of detections. Neither graph shows a good separation. However,
the camera moves in this particular data segment which may negatively
influence the results. The same calculations were completed on another
data segment, which includes a merge. Once again, the results in Figure
10.32 are not conclusive; initially there are several instances when the angle

between Fish 2 and a previous observation of Fish 2, xé’At, is larger than

the angle between another fish and x5 %!, perhaps due to the Kalman filter
needing time before it is stabilized. However, in this instance the angle is
helpful in solving the merging of Fish 2 and Fish 3, marked with grey in

the plots.

The velocity vectors themselves were also compared in a similar
fashion using the absolute difference between the vectors on the same data
segments. Once again, the results were inconclusive, but showed some
improvement on the second merge segment with a stationary camera.
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Figure 10.31: Left shows the angle between a target’s velocity vector in the current
frame compared to the velocity vector of Fish 2 10 frames ago. Right shows the same
angle difference with a gap of 20 frames. Neither graph show a good separation
when comparing the same fish and a different fish. The results are likely influenced
by the camera moving in this time segment; all fish appear to have a very similar

velocity. The camera is mostly stationary between frame 650 and 660; these frames
in the left plot indicate that vector angle difference can be a useful cost features.
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Figure 10.32: Velocity vector angle difference between each fish in the current
frame and Fish 2 in an earlier frame. The merge of Fish 2 and Fish 3 is marked
in dark gray. In this particular example, velocity vector angle difference would be
able to solve the merge situation.

10.2.2 Tracklet Generation

Having investigated segmentation methods and cost features individually,
tracklet generation may be attempted. The output of the tracklet generator
is evaluated using the tracking validation dataset described in Section 4
and the tracking validation metrics described in Section 9. The fish are not
tracked through occlusions; a new tracklet is initiated with the midpoint of
the merged fish. After the merged fish split again, a new tracklet with a
new ID is created for each fish. The goal is to create short tracklets that will
be connected in a later step.
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The set of tracklets generated by the algorithm (system tracklets, ST)
are compared to a set of ground truth tracklets (GT) over 501 frames. An
observation in ST at time ¢ is linked to the nearest observation in GT at time
t using the Hungarian method, as long as the distance between them is less
than a distance threshold T;. A 10-frame time delay was allowed in merge
instances before an ID swap was counted as it became clear that system
tracklets did not always merge in the same time step as the ground truth
tracklets. A mere one frame delay in merging was counted as an ID swap,
heavily influencing the results.

Unless the segmentation method changes, the MOTP (sum of the
distances between the GT points and their matches in ST, averaged by
the number of matches) will stay constant for each distance threshold T,
regardless of the cost function, as will the number of false negatives and
false positives. Using the adaptive Gaussian thresholding method with
window size 111, C = 2 and noise removal with a square 3 x 3 structuring
element, the results in Table 10.1 were achieved.

Table 10.1: MOTP, FN and FP for adaptive Gaussian thresholding on the 501-
frame test set. The MOTP indicate that the calculated midpoint is, on average, a
little over 3 pixels removed from the ground truth midpoint. FN and FP decreases
with an increasing Ty up to a point as more distant matches are allowed. Ty = 20
seems to adequately link the system tracklets to the ground truth tracklets.

Distance Threshold T; | MOTP | EN | FP
10 3.17 94 | 43
15 3.36 75 | 24
20 3.42 71 | 20
25 3.42 71 | 20

Euclidean distance, major axis angle difference, Minkowski distance
and EMD were investigated as potential sole cost function features. The
cost features were all normalized using a Gaussian function, with a mean
# = 0 and a variance ¢ based the maximum allowed difference between
two linked observations.

Table 10.2: Tracking metrics results for the tracklet generator using a cost function
based on a single cost features. Multiple c-values were tested for each cost feature.
This table presents the best MOTA results with corresponding ID swaps numbers,
and the smallest o achieving those results.

Cost feature o MOTA | IDSW, | IDSWy,
Euclidean distance | oy = 15 0.902 4 5
Major axis angle Oangle = 35 | 0.897 8 8
Minkowski Omink = 400 | 0.902 4 6
EMD Opmd = 10 0.898 7 2

The optimal ¢ for each feature was found by examining the MOTA
and ID swaps for each ¢. Both ST ID swaps IDSW; (a system tracklet
being linked to multiple ground truth tracklets) and GT ID swaps IDSW;,
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(a ground truth tracklet being linked to multiple system tracklets) were
considered. A high IDSW; indicates that a system tracklet is not split when
multiple fish merge, which makes it more challenging to solve merges at a
later stage. A high IDSW; indicates poor observation linking. At this stage,
poor linking is somewhat acceptable, as these poorly linked tracklets will
likely be linked in the tracklet linking stage. Nevertheless, if IDSW, is too
high, the tracklets will be too short to extract meaningful information from
them.

The results of the o-search can be found in Table 10.2. Euclidean
distance seems to be the best sole cost feature with MOTA = 0.90,
IDSW, = 4 and IDSW,, = 5. The two histogram comparison methods,
Minkowski distance in particular, also showed promise. Note that EMD
has the lowest IDSW),-rate; this indicates that this cost feature generally
ends tracklets if two fish merge or split as the intensity histogram abruptly
changes. Minkowski distance results for ¢;,;,x < 350 had similar IDSW,-
rates, but lower MOTAs than for ,,;,,, = 400.
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Figure 10.33: MOTA results for tracklets generated using a cost function with
Euclidean and Minkowski distance and various 04 and -

Hoping to decrease the number of ID swaps, Euclidean distance was
combined with Minkowski distance and a grid search was performed
to find the optimal variances. Figure 10.33 shows that there is no
improvement in the MOTA when combining the two cost features. Figure
10.34 illustrates that there is no improvement in number of ID swaps either,
compared to the best results using only Euclidean distance. The grid search
was repeated for cost functions combining distance and major axis angle
difference, and distance and EMD. Once again, there was no improvement
compared to distance alone.
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Splitting function

As a high IDSW), mostly indicates failure to split in merge situations, mak-
ing it difficult to correctly identify merges and add occlusion hypotheses by
copying those tracklets, an algorithm that attempts to identify merge situ-
ations and split tracklets if necessary was created. The algorithm simply
searches for all instances where a tracklet terminates or initializes abruptly
far from the border. For every instance, all tracklets in the subsequent (or
previous) frame are split as shown in Figure 10.35.
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Figure 10.35: In this example, tracklet 2 terminates far from the border and an
observation in tracklet 1 is sufficiently close to the last observation in tracklet 2.
It is likely that parts of tracklet 1 contain merged observations of the two fish in
tracklet 1 and tracklet 2. Therefore, tracklet 1 is split and a new tracklet 3 is created,
initialized one time step after the final observation in tracklet 2.

Table 10.3 presents the effect of the splitting function on the validation
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metrics results. MOTA decreases due to IDSW; increasing, as the splitting
function splits tracklets in non-merge situations. This is expected and
trivial, as these split tracklets should be easily re-connected at a later stage.
However, there are no instances of a system tracklet being connected to two
or more ground truth tracklets, indicating that the splitting function works
as intended.

Table 10.3: MOTA and ID swaps before and after splitting tracklets. There are
no more instances of a system tracklet being connected to two or more ground
truth tracklets. IDSWy has unsurprisingly increased and MOTA (which depends
on IDSW,) has decreased due to the splitting function splitting tracklets in non-
merge situations.

MOTA | IDSW, | IDSWy,
Before splitting | 0.902 4 5
After splitting | 0.894 11 0

10.2.3 Tracklet linking

After the tracklets have been created, it is possible to extract more
information about the fish, most notably the fish’s length and velocity, in
order to connect the tracklets and create the final tracks. In the testing of
the tracklet linking algorithm, all tracklets containing multiple fish were
ignored due to the difficulty in assigning the correct GT tracks to the ST
tracks when multiple system tracks share one node and because correctly
solved merges sometimes returned unfavourable results when splits or
merges occurred slightly earlier or later in the test set. Ignoring nodes with
multiple fish was judged appropriate; the main issue is making sure the
tracked fish keep their original ID after a merge event.

Table 10.4: The tracklet connector improves the ID swap values for the ground
truth, but distance alone does not correctly resolve merge situations. The higher
MOTA after splitting compared to Table 10.3 is due to tracklets containing more
than two fish being ignored.

MOTA | IDSW, | IDSW;, | FN | FP
After splitting | 0.906 9 0 50 |8
Oaist = 15 0916 |3 3 50 |7

An initial test run using only Euclidean distance in the cost function
demonstrated how the tracklet linker largely corrected the increased
MOTA and IDSW, caused by the splitting function (see Table 10.4) by
reconnecting split tracklets, as well as slightly improving the ratio of false
positives (as the tracklet likelihood function removes unlikely detections).
That being said, Euclidean distance alone cannot correctly solve merge
situations; all the ID swaps in this case are due to tracklets not regaining
their correct ID after a merge. The tracker produced better results when the
linking of two tracklets, one terminating and one initializing in the same
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frame t, was allowed, as two parts of the same fish would occasionally be
detected separately in a frame.

Earth Mover’s Distance, length, velocity angle and velocity vector
difference were tested as sole cost functions for varying ¢s. The best results
for the various metrics are presented in table 10.5 along with the lowest ¢
that achieved the result.

Table 10.5: Best MOTA results for the tracklet linker using cost functions based
on a single cost feature.

Cost feature o MOTA | IDSW, | IDSWy
Euclidean distance | 0y = 5 0.916 3 3
EMD OUEMD = 5 0.914 4 4
Length difference | 0jegmn = 15 0.916 3 3
Velocity angle Tangle = 30 0.912 4 2
Velocity vector Ovel. vector diff, = 10 | 0.910 5 5

Investigating the cost features individually reveals that the Euclidean
distance and histogram comparison such as EMD are able to solve
situations in which a few detections are missing from a track, but are unable
to solve long-term loss of detections such as occlusions.

Length as a cost feature is very sensitive to the contortion and
orientation of the fish. The test set includes a case in which the length of
one fish involved in a merge is severely underestimated (due it’s direction
not being almost perpendicular to the optical axis at any point prior to the
merge). Even though the lengths of the other fish involved in the merge
were more accurately estimated, this resulted in all three fish swapping
IDs after the merge. In this dataset, it is known that all the three fish have
different lengths, but this is not necessarily true for other datasets. If several
of the fish observed in a video have similar lengths, length as a cost feature
is useless.

Comparing velocity angles is impossible in situations where a tracklet
contains a single detection. These situations occur predominately near the
edges of the image; the area of the detected fish is small as it enters or
exits the frame and some detections may be discarded as noise. These
situations are generally correctly resolved using features based on distance
or intensity histograms. That being said, velocity angle correctly resolves
all merges in the test set, including a challenging merge-and-split involving
all three fish (as illustrated in Figure 10.36).

The velocity vector difference produced worse results than the velocity
vector angle difference; in general failing to resolve merge situations.
The velocity vector difference takes the speed of the fish, in addition to
direction, into account. As the fish are changing speed rapidly and the
camera is occasionally moving as well, this is less stable than comparing
directions only.

As different cost features resolved different issues with the tracklet
linker, a combination of cost features is likely the best option. Euclidean
distance proved useful in linking tracklets with missing detections, while
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Figure 10.36: A merge and subsequent split illustrated. In this case, the IDs in the
nodes indicate which track the observation belongs to, and the arcs illustrate the
connections between them. Node 4 and node 5 are special cases of nodes containing
more than one fish, as they have multiple incoming and outgoing arcs. Note
that the direction of fish 3 is useful in recovering the right ID. Fish 2 swimming
away from the camera as it comes into frame from the left makes accurate length
estimation difficult. Velocity angle difference was the only single cost feature that
correctly solved this merge example.
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Figure 10.37: The MOTA results for the tracklet linking with a cost function based
on Euclidean distance and velocity angle difference for various 0uugie and ogjs.
Tangle = 25 along with o4y € {10,15,20} produced the highest MOTA results.
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Figure 10.38: ID swaps for tracklet linking with a cost function based on Euclidean
distance and velocity angle difference and various Oyngle and 0gjst. Oangle = 25
along with 0 € {10,15,20} had no ID swaps, indicating that all fish in the test
set regained their original ID after a merge.

velocity angle difference was a helpful feature in resolving merge situ-
ations. Intensity histogram comparisons, length and velocity vector dif-
ference were discarded as cost features due to instability or only linking
tracklets that are also linked using angle difference or distance.

The MOTAs presented in Figure 10.37 and the ID swaps presented
in Figure 10.38 shows that 0,5, = 25 and o4y € {10,15,20} correctly
resolved all merge situations and linked tracklets with missing detections
as well. The MOTA was increased to 0.920; this is higher than any MOTA
result achieved with a single feature.

While this cost function works well on the 3 Cod dataset, it relies on the
fish mostly swimming in different directions, which is not always the case.
Additionally, the fish needs to be observed separately prior to and after the
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merge in order to estimate the velocity. A school of fish swimming close
together in the same direction would likely result in merge situations with
seemingly multiple possible solutions. The algorithm connected tracklets
on the 501-frame tracking validation set quickly, but as the number of fish
increases, so does the complexity of the assignment problem.

Provided the number of fish is not very high, the tracklet generator can
work in real time. Despite not correctly solving merges, useful data can be
extracted from its output.

10.2.4 Tracking results summary

Of the four cost features tested separately for the tracklet generator,
simply using the Euclidean distance returned the best combination of
MOTA (0.90) and ID swaps results. The two histogram comparison
methods, Minkowski distance and EMD, ended tracklets more effectively
in occlusion situations. This largely ensured that each tracklet contained
observations of only one fish. A similar effect was accomplished by
combining the tracklets generated using Euclidean distance with a splitting
function. As this approach was simple yet effective, it was used in the final
algorithm. Combining Euclidean distance with a histogram difference-
based comparison method did not improve the results compared to using
Euclidean distance alone.

The tracklet linker required cost features that are somewhat constant
across multiple frames. Using the estimated length of the fish in each
tracklet seemed promising, but proved to be very sensitive. One fish
being underestimated can result in multiple fishing swapping IDs, even
if the other length estimates are relatively accurate. Focusing instead on
the direction of the fish, comparing the velocity angle returned promising
results but failed in many cases to link tracklets with only one observation.
Finally, velocity angle comparison and Euclidean distance were combined
to form the final cost function; Euclidean distance was able to effectively
link short tracklets and velocity angle was able to correctly resolve all
occlusions in the test dataset. With this cost function, a MOTA of 0.92 was
achieved.

All these tests were performed on a single tracking validation dataset
consisting of 501 frames. In a sense, these cost functions are specifically
adapted to this dataset; there is no guarantee that they will perform equally
well on other datasets. A difference in frame rate may require a different
o-value when using distance as a cost function. A dataset capturing fish
mostly swimming in the same direction could render velocity angle useless
as a cost function. The movement of the camera is also a concern; while the
camera is mostly stationary in this dataset, this may not always be the case.

That being said, the tracking algorithm is easily adaptable to other cost
functions. The tracklet linking algorithm is more likely to fail than the
tracklet generator, but useful data could be extracted from the tracklets
only. Average lengths could be estimated using lengths estimated from
each tracklet, along with some function designed to remove tracklets likely
to contain multiple fish (perhaps based on EMD, as Figure 10.28 indicates
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that it is capable of identifying two fish merging).

10.3 Length estimation results

The length of the fish is estimated to be distance between two real world
coordinate points on the fish. These real world coordinates are calculated
using the equations in Chapter 3. The calculations require two points in
the image, (x1,y1) and (x2,12) (placed at the head and the tail of the fish,
as demonstrated in Figure 10.39), and their distances to the camera z; and
2.

Figure 10.39: Two extreme points on the segmented fish mask are found using
the major axis (marked with a yellow line in the image). The fish is, for sake of
simplicity, assumed to be straight any time its true length is calculated.

10.3.1 Investigating point selection errors

Taking into account the non-linear increase in the area of view (AOV)
from pixels near the image center to pixels near the image border, the
length estimation algorithm calculates the AOV for each individual pixel.
A linear increase would indicate that the AOV difference between two
neighbouring pixels, horizontally or vertically, is always the same, while
in reality this difference is slightly larger near the the image center.
Provided the fish is relatively well-positioned and well-segmented,
the length estimation algorithm should return the same estimated length
regardless of the fish’s position in the image. In order to make sure that
this was the case, the length of one fish was estimated at irregular intervals
over 320 frames. Figure 10.40 shows the length plotted against the fish’s
distance to the image center. The estimated length of the fish varies; this is
due to the fish not always being well-positioned. However, there seems to
be no correlation between the distance from the center and the maximum
estimated length at that distance. Since the length of the fish is more
likely to be underestimated, due to segmentation errors or contortions, than
overestimated, the largest calculated lengths of a track are assumed to best
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reflect the true length of the fish. The relatively constant maximum length
at different distance intervals from the center indicates that the length
estimation algorithm is indeed stable for objects at any point in the image.

Object length vs distance from center
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Figure 10.40: 30 length estimates for the same fish, measured at irregular intervals
over a time period of 320 frames. The length was plotted against the fish’s absolute
distance to the image center. The distance from camera z was calculated as the
median of a number of hand-selected points along the fish, and the fish was assumed
to be perpendicular to the optical axis (i.e. zy = zp = z). The estimated length
varies due to contortions of the fish, but the maximum estimated length for a given
distance interval is relatively consistent, regardless of the distance to the image
center.

Next, the effect of errors in selecting the end points of the fish, and
determining their distances to the camera, was considered. These errors
may stem from errors in the segmentation, errors in the ellipse fitting
algorithm or noise in the depth map. A virtual fish, as illustrated in
Figure 10.41 was defined by two coordinates in an image along with their
distances to the camera: (x1,y1,z1) and (x2,¥2,22). Initially, both points
were placed at the same distance to the camera z; = z = z, meaning the
fish is assumed to be perfectly perpendicular to the optical axis.

The fish’s distance from the camera, z, is generally not constant
along the fish. This could be due to the fish’s position and orientation
with regards to the camera, possible segmentation errors resulting in the
algorithm selecting the distance to the background instead of the fish, or
inaccuracies in the depth map. The effect of small perturbations in z on
the length estimate was investigated. Figure 10.42 shows that the absolute
percentage error in the calculated fish length is about 1% per cm change
in distance from the camera z for objects 100 cm from the camera. The
error per cm change in distance decreases for objects further way from the
camera.
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(X1,71)

(X2,72)

Figure 10.41: 2D illustration of the virtual fish defined by two points marked in
blue. Real world coordinates (X1,Z1) and (Xo, Z2) can be calculated from the
point’s horizontal pixel position in the image x1 and xo and their distances from
the camera z1 and z5.
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Figure 10.42: A virtual fish with a constant length of 100 pixels was placed in the
image at different distances from the camera z. The fish length was estimated at
each z and compared the length calculated at z + 1. For a fish at 100 cm from the
camera, the small perturbation in z changes the length by about 1%. At greater
distances from the camera, small changes in z have a much smaller effect on the
length estimate, due to the pixel length not changing.

Due to segmentation errors or inaccuracies in the edge point retrieval
algorithm, there are likely errors in the placement of the end points as
well; changing the pixel length of the fish. Using the virtual fish, with
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z1 = zp = z, the length was calculated for a left point at x, + i, i € [—30, 30]
and compared to the original length. The absolute percentage error in the
estimated length per pixel change in one point was between 0.98% and
1.1%, regardless of z, as illustrated in Figure 10.43. A change in pixel length
has the largest impact near the edges of the image.
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Figure 10.43: A virtual fish of 100 pixels was placed in the image and the absolute
percentage error per pixel change in the x-direction for the left point was calculated
for various mid-point positions of the object. The error is slightly larger near the
image border.

So far, the assumption has been that the fish is perpendicular to the
optical axis; meaning that all points on the fish are at the same distance
to the camera z. This assumption is of course not generally true. By
keeping z; = z constant and gradually changing z,, as illustrated in the
simplified 2D diagram in Figure 10.44, the possible resulting error due to
this assumption was investigated.
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Figure 10.44: A simplified 2D illustration of the virtual fish defined by two points.
Only the x-axis (distance from dotted center line) and the z-axis (point distance
from camera) is shown. One point’s position is kept constant, while the depth of the
other is changed. The new estimated length (red line) is compared to the original
length (green line).
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Figure 10.45: Absolute percentage error due to a perturbation in the distance to
one of the points defining the virtual fish. It is unsurprising that changing z has
a larger influence on the estimated length for objects close to the camera, compared
to an object further away; after all both objects have the same pixel length.

Figure 10.45 shows that the difference in estimated length after
changing the distance to one point may be quite dramatic, especially for
objects close to the camera. Fortunately, the distance estimates are more
accurate the closer an object is to the camera. The "bump" between 0 and
10 cm in Figure 10.45 (b) is explained by Figure 10.44; an object’s estimated
length is minimal when the line between the points is perpendicular to the
distance vector, before increasing again.

10.3.2 Estimating distance to camera

If the segmentation is fairly accurate and the fish is well positioned, the
length estimate should be consistent across frames for the same fish. The
pixel coordinates of the fish’s head and tail, (x1,y2) and (x2,y2) need to be
determined as well as their distances from the camera z; and z».

For the sake of simplicity, the fish is assumed to always be straight.
Following a straight line along the major axis of the fitted ellipse, the points
are placed at the intersections of the line and the segmentation border. In
the case of more than two intersections, the two intersections furthest from
the fish’s midpoint are selected.

Due to uncertainties in the pixel points and inherent inaccuracies in
the depth map, selecting the distances z; and z, at the pixel points would
in most cases return the distance to the background rather than the fish.
Instead, the distances were estimated using various methods which were
later compared. Initially, zy = 2z, were set equal to the median of a
percentage of the distances, nearest to the midpoint, along the major axis
of the fish. Taking the median removes outliers, and using distances near
the midpoint lowers the likelihood that distances to points outside the fish
are included.

Two attempts were also made at fitting a function to a selection of
distances along the fish in order to estimate z at the end points. A plane
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was fitted to all segmented points on the fish, and a line was fitted to
points along the major axis. All length estimates from these functions
were compared to lengths calculated using hand-selected end points and
the observed distances at these points.

First, the percentage of points used in the line fit and the median
distance estimates was evaluated and compared to the hand-selected point
estimates. Figure 10.46 shows that the median estimate hardly changed
as the percentage of points used in the estimate grew from 40% to all.
However, the line fit estimates grew closer the the hand-selected point
estimates as more points were included.
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Figure 10.46: The distances z1 and z; are estimated using the median and a line
fitted to k = {40, 60,80,100} % of the distance measurements along the major axis
of the fitted ellipse. k% of the closest points to the ellipse midpoint are used in each
length estimate. When using the median to estimate distance, the length estimate
hardly differs for different k. Increasing the number of points used in the line fit
seems to return a more stable length estimate, increasingly closer to the estimate
based on hand-selected points.

Figure 10.47 shows estimated lengths using the various methods
(median, line fit and plane fit) to estimate z; and z; over time on two hand-
segmented fish. The frames were chosen so that the fish were relatively
well-positioned in each frame. One frame was selected to illustrate how
the methods estimate the distances differently (see Figure 10.48).

Overall, using the median to determine the distance z seems to follow
the hand-selected points most closely. It is also the most consistent method.
While the lengths of the fish are known (71 cm, 54 cm and 41 cm), they are
not marked, so we do not necessarily know the true length of the fish used
to test the distance estimation methods. However, the length estimated
in the right graph in Figure 10.47 is slightly concerning, as it is not clear
whether the lengths in the graph are due to the length of the 41 cm long
fish being overestimated by the fitted line and plane, or the length of the
54 cm long fish being generally underestimated when using the median or
the hand-selected points.
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Figure 10.47: Estimation of the length of a hand-segmented fish over time. It seems
that estimating the distance z using the median of points along the major axis of the
fish is a relatively stable method with results relatively close to the hand-selected
points. The line fit and the plane fit methods seem to consistently overestimate the
length compared to the hand-selected points.
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Figure 10.48: Frame 540 illustrates how the different methods return different
length estimates. The median returned the lowest length estimate in this frame,
likely due to the increase in z along the major axis. The line fit, plane fit and
hand-selected points have similar angles, but the hand-selected distances are clearly

closer than the plane fit distances (the furthest away from the camera and returning
the largest estimated length).

10.3.3 Length estimation based on multiple observations

Using the tracking validation set, the fish are followed over longer periods,
allowing for the length to be estimated multiple times. Additionally, all
three fish are present in certain frames, making it possible to determine
which track belongs to which fish. Taking all tracks that contain more than
one observation, final length estimates were produced for each track based
on length at the 75th percentile, the 90th percentile and the maximum of all
estimated lengths in that track. Figure 10.49 illustrates how the final length
for the track with the most observations may be calculated. An example of
a well-positioned fish, resulting in a good length estimate, and an example
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Figure 10.49: (a) shows the estimated length of track 8, with z estimated as the
median of all distances along the major axis, over a period of more than 400 frames.
The true length of the fish, the maximum length estimate and the length at the 90th
and 75th percentile are shown in the plot; in this case the maximum length estimate
is the closest to the true length. Two length estimates are marked with stars in the
plots, (b) and (c) show the position of the fish at these points.

of a badly positioned fish resulting in a poor length estimate are marked in
this figure.

Selecting the tracks with the most observations for each fish, the length
was calculated for every observation in that track using median, line fit
and plane fit to estimate the distance z. Figure 10.50 illustrates the 75th and
90th percentile as well as the maximum of all estimated lengths for each
method. No method correctly estimated the length for all three fish. The
length of the largest fish was generally underestimated, while the length
of the smallest fish was always overestimated. The maximum estimated
length value using the median distance resulted in the smallest error for
the three tracks: the average absolute percentage error was 10.8%.

That being said, I am hesitant to conclude that this method is better
than the others. It overestimates the smallest fish by more than 17% of
the original fish length, and underestimates the largest fish by 14%. Using
the maximum length estimated may also make this method sensitive to
outliers. If all tracks in the test set with more than one observation were
included, taking the 90th percentile of lengths estimated based on a fitted
line returned the lowest average absolute percentage error: 9.6%. 6 tracks
were included in this calculation; the largest fish was included thrice as
it entered and exited the frame multiple times, the second-largest fish
was included twice and the smallest fish was included only once. The
maximum of length estimations based on a median distance returned an
average absolute percentage error of 10.8% on this dataset as well. I assume
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Figure 10.50: Three tracks, each belonging to a different fish were selected. The
length was calculated for every observation, using the median distance, and
distance estimated using a fitted line and a fitted plane. A final length estimate was
calculated as the 75th percentile, the 90th percentile and the maximum estimated
length.

that if the calculations were repeated on a different dataset with multiple
larger fish, the line fit or plane fit methods would return the best results as
they generally return larger estimates.

It should be noted, once again, that the orientation of the fish very
heavily influences the result of the length estimation. In the tracking
validation dataset, the largest fish appeared in three separate tracks. Its
length was generally underestimated in track 13 illustrated in Figure 10.50,
but in an earlier (and shorter) track, its orientation with regards to the
camera seems to have been optimal for length estimation; the maximum
of the line fit lengths and the plane fit lengths both resulted in a length
estimate which deviated by less than 2% from the true length.

10.3.4 Length estimation summary

After noise removal, adaptive Gaussian thresholding returned an accuracy
of a little less than 60% on the segmentation test set. Some of the fish
are near perfectly segmented, but it is likely that the extreme parts of the
fish will be missing in many frames. A one pixel change in pixel length
resulted in the length estimate changing by around 1%. One might expect
the fish length to be continuously underestimated. However, the length of
the smallest fish in the test set was continuously overestimated, regardless
of the method used to estimate its distance to the camera z.

Depending on the fish’s distance to the camera, changing the distance
of one of the end points used to measure the fish length by 1 cm could
result in a 2% change in the fish length. Due to noise in the depth map
and segmentation errors, errors in z are likely to affect the length estimate.
In an attempt to alleviate errors in z, attempts were made at estimating
the distance by fitting a line or a plane to selected points along the fish,
or simply taking the median of points along its major axis. The length is
estimated once for every observation in a track. The final length estimate
for each track must be based on a portion of the largest lengths in that track.
Results on the 3 Cod dataset indicate that using line fitting to estimate

92



distance, and then estimating the final length based on the 90th percentile
of the lengths in the track, produce the best results. Using this approach
to estimate the lengths of fish in six tracks resulted in an average absolute
error of 9.6%.

However, this method still consistently underestimates small fish and
overestimates larger fish. I believe more data with a range of known
fish lengths is needed in order to truly analyse the issues with the length
estimation and develop a method which more consistently returns length
estimates with less deviation from the true lengths.

10.4 Results on the Fish Schools Dataset

As seen in chapter 4, the depth maps in this dataset contain a much larger
amount of None-entries compared to the 3 Cod dataset. Almost 30% of the
total depth map entries in this dataset are None-entries. While the handling
of None-entries in the 3 Cod dataset hardly affected the final results, it now
has a major effect. Replacing these values with 0 is not a viable option, as
the thresholding methods are greatly affected by this and end up mostly
segmenting the None-entries as illustrated in Figure 10.51.

o P e e T S e

Figure 10.51: Left illustrates the depth map with None-entries replaced by 0. Right
is the resulting segmentation using adaptive Gaussian thresholding with block size
=111 and C = 3. All None-entries are perceived to be close to the camera.

Instead, every None-entry is considered to be as far away from the
camera as possible (i.e. at a depth of 700 cm). In addition, the constant
C is increased at the risk of missing some fish near the bottom of the
image where the background depth is calculated, but with the benefit of
not segmenting large parts of the background. Figure 10.52 shows how this
improved the segmentation. Replacing None-entries with the maximum
depth value achieved better results than an alternative algorithm which
ignored None-entries and calculated the threshold based on only entries
with a high-certainty value, as the alternative algorithm weighted high-
certainty entries in areas with many None-entries too heavily.

Another issue caused by the large amount of None-entries is the
Kalman filter being initialized with initial distance to the camera zyp = None.
While the Kalman filter is able to return predictions when it is updated with
None-entries, it cannot be initialized with None-entries. By letting zo be the
median of distances along the fish’s centerline, rather than distance at the
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Figure 10.52: Using a C-value which resulted in a relatively successful
segmentation on the 3 Cod dataset results in large parts of the floor being
segmented in this case. An increased C = 20 removes most of the false positives
while still segmenting the fish.

the fish’s mid point, the Kalman filter ran without issue on all Fish Schools
tracklets tested.

Most parts of this dataset contain too many fish to run the tracklet
connector. As the number of tracklets increases, so does the complexity
of the assignment problem. A large number of fish swimming close to
each other means that every merge situation has multiple solutions in
the tracklet connector. The fish having approximately the same size and
swimming in the same general direction with the same speed make it more
unlikely that the correct solution is returned. The tracklet linker was run
on certain parts of the Fish Schools dataset with smaller numbers of fish.
Unsurprisingly, it struggled with resolving merges and ultimately returned
very little additional information compared to the information from the
tracklet generator.

Ten frames were selected from the dataset. The fish were manually
counted and the count was compared to estimated number of fish using
the tracklet generator and the tracklet linker. The tracklets were generated
and connected using the cost functions that performed the best on the 3
Cod dataset (i.e. using distance with oy;; = 15 to generate tracklets, and
distance and velocity angle with 0y;5; = 15 and 07,41, = 25 to connect them).

Figure 10.53 indicates that the algorithm is able to keep track of at least
ten fish reasonably well, but when the number of fish rises above thirty, the
number of occlusions is too large for the algorithm to handle.

Nevertheless, the tracklet generator returns information with regards
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Figure 10.53: The bar plot illustrates the true number of fish in each test frame,
along with the estimated number of fish using only the tracklet generator (equal to
number of connected components after segmentation) and the count after applying
the tracklet linker as well. The tracklet linker failed to run on the two first example
frames due to the large number of fish. Otherwise it produced similar results to the
tracklet generator.

to the direction and speed of the school of fish. By estimating the length
of multiple tracklets, a length estimate for an "average" fish in the school
might be estimated. An attempt was made at estimating the lengths of
the fish observed between frame 200 and 400 in this dataset. The length
for each observation was estimated with a fitted line to determine the
distance at the end points, and the final length estimate for each track
with more than ten observations was based on the 90th percentile of the
lengths in the track. The average length of the fish was estimated to be
about 43 cm, which is plausible. The maximum length estimated was
almost 75 cm; in this case, the tracking algorithm failed to recognize two
fish merging. Disregarding this outlier, the algorithm returned 19 length
estimates between 24.8 cm and 59.6 cm.

95



96



Chapter 11

Final algorithm overview

The proposed pipeline was presented in Chapter 5. After having
investigated the performance of various segmentation, tracking and length
estimation methods, the final algorithm is presented in this chapter with
more details.

The final algorithm broadly consists of three parts. The first part is a
tracklet generator, illustrated in Figure 11.1, which detects fish in every
frame and attempts to link them to observations in the previous frame.
The second part is a tracklet linker, illustrated in Figure 11.2, which applies
a Kalman filter to all tracklets from the tracklet generator and attempts
to link the tracklets to form the final tracks. The tracklet linker works
iteratively to solve occlusions by identifying and copying tracklets that
likely contain observations with more than one fish. Finally, a length
estimation algorithm can produce the final length estimate for each fish
based on the tracks.

Due to the variability in intensity of the fish and the background,
segmentation should be done using the depth map, or alternatively
combining results from the depth map and the intensity image. Due
to a gradient in the depth map, adaptive Gaussian thresholding with
noise removal using morphological operations and segmentation using
background subtraction returned the best validation metrics results. Of
the two, adaptive Gaussian was used in the final algorithm for reasons of
computational speed. The success of these methods depends on a fairly
homogeneous background. All foreground objects are assumed to be fish,
which may not always be the case. If more accurate segmentation is
needed, for example for classification purposes, background subtraction
may be applicable, perhaps only for certain frames. Both methods
occasionally fail to detect fish, usually near the edges of the image or on
occasions where the fish is especially far from the camera.

The simple tracklet generator algorithm based on distance between
observations worked well on both the 3 Cod dataset and the Fish Schools
dataset. The tracklet linking algorithm successfully identified and solved
merge situations and occurrences of lost detections in the 3 Cod dataset.
It was determined that the best cost function combined distance and
direction comparisons. The distance and the direction was determined
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using Kalman filters, providing velocity vector estimates and allowing for
estimating the position of a fish from earlier observations.

Investigating the effect of errors in the placement of the end points for
length estimation revealed that small perturbations in the pixel position or
distance to the camera at these end points had the potential to drastically
change the length estimate. Due to inherent inaccuracies in the depth map,
especially near the edges of the fish, and errors in the segmentation, end
point errors are likely to affect the length estimates. Using the distance
measured at the end points proved to be too imprecise; instead attempts
were made at estimating the distance using the median of distances along
the center line of the fish, a line fitted to the center line of the fish and a
plane fitted to all points of the fish.

The final length was estimated as 90th percentile of the lengths es-
timated for every observation (using the binary mask from the segment-
ation, the fitted ellipse modelling the fish and a fitted line to estimate the
fish’s distance to the camera). On the test set with 501 frames and known
fish lengths, this method achieved an average absolute percentage error of
9.6%. Due to the small sample size, the error in the length estimate was
difficult to ascertain. A dataset with more fish with known lengths is ne-
cessary for an in-depth study of length estimation. It is, however, clear that
a large number of estimates per fish is an advantage; the fish are relatively
seldom in an optimal position for length estimation.

The tracklet linking algorithm was not successful on the Fish Schools
dataset, indicating that there exists an upper limit for the number of fish the
algorithm can track. A tentative threshold of ten fish is suggested, but this
is highly dependent on the quality of the input data and the behaviour of
the fish (a school of fish swimming close to each other in the same direction
is suboptimal for this type of algorithm).
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Figure 11.1: Tracklet generator algorithm overview.
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Figure 11.2: Tracklet linker algorithm overview. Note that occlusion hypothesis
(copies of tracklets that likely contain observations with more than one fish) are
removed if they are unused, i.e. linked to the source and sink in the proposed
solution. This is in order to prevent the model from adding false tracks.
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Chapter 12

Conclusion

12.1 Conclusion

The aim of this thesis was to detect, track and estimate the length of
free-swimming fish captured by an underwater 3D camera. This study is
largely based on a video containing three codfish filmed in a pool. The
detection of the fish was based on Gaussian adaptive thresholding, though
iterative background subtraction also returned promising results. The
tracking algorithm was based on solving a minimum-cost flow problem
multiple times. Initially, observations were linked frame-by-frame to form
tracklets. Using information about the entire time sequence, occlusions
were identified and tracklets were linked to form continuous tracks. Two
cost functions were developed and tested for the tracklet generation
and the tracklet linking steps. The cost functions were based on the
fish’s position and velocity rather than intensity or texture due to the
variability in illumination and the fish being the same species with no
obvious markings separating them. The length was estimated for every
observation. Knowing that the contortions of the fish often results in the
length being underestimated, the final length estimate should be based on
a high percentile of all the length estimates in a track.

The segmentation and tracking were evaluated separately. The
segmentation was evaluated using four validation metrics. Lowering
the number of false positives was a major concern and deemed more
important than a perfect segmentation of the edges of the fish in every
frame. Gaussian adaptive thresholding followed by noise removal with
morphological operations achieved a 59% median accuracy, 99% median
mean error, a median boundary F1 score of 0.62 and a median Jaccard
index of 0.53, calculated using 93 hand-segmented images (including some
devoid of fish).

The final tracking algorithm, using a cost function based on Euclidean
distance to generate tracklets and a cost function combining Euclidean
distance and velocity angle difference to link tracklets, achieved a multiple
object tracking accuracy (MOTA) of 92%. All fish in the 501-frame tracking
validation data set retained their original ID through occlusions. The
multiple object tracking precision was 3.4 , meaning the midpoint of each
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observation was on average 3.4 pixels removed from the hand-selected
midpoint.

The estimated lengths for each observation were computed based the
length of the line segment between two end points of the fish. The distance
to the camera of these two points proved difficult to determine, as the
uncertainty of the depth estimates increases near the edges of the fish.
Therefore, the distances at the end points were estimated by fitting a line
to all distances measured along the major axis of the fish. The final length
for each track was estimated as the 90th percentile of all lengths calculated
in that track. This method achieved an absolute percentage error of 9.6%,
based on six long tracks in the test set. These are promising results, but
more data is needed for a true analysis of the error in the length estimation.
The estimated error was based on only three data points: three codfish with
known lengths, some repeatedly entering and exiting the frame and thus
creating more tracks.

Applying the algorithm to a different dataset containing several schools
of fish revealed the limitations of this algorithm. One is the fact that
the segmentation parameters currently needs to be determined for each
dataset. Another is that an increasing number of fish decreases the
efficiency and accuracy of the tracking. The tracklet linking algorithm
was not able to solve the occlusions in this dataset due to the fish
swimming closely together and often in the same direction. That being
said, the adaptive Gaussian threshold produced promising results with
minor parameter changes and the tracklets generated could potentially be
used to estimate the average length of the fish in the frame.

12.2 Future work

This thesis provides a basis for more complex systems with more extensive
functionalities useful for fishing, fish farming and conservation. I
have outlined some suggestions below for improvements and further
development of the algorithms presented in this thesis.

¢ Biomass estimation

Provided that the tracking and length estimations for each fish
are accurate, the biomass of the fish observed in the frame can
be calculated. Many studies have been done on the relationship
between the length of a fish and its weight. Fish length and weight
relationships are generally calculated: [62]

W = alLb (12.1)

where W and L represent the fish’s weight and length respectively,
and a and b are constants estimated using empirical evidence for each
fish species. The regression coefficient b is expected to be roughly
equal to 3 for all fish species, as the volume of a 3-dimensional object
is roughly L3, where L is the length of the object. [6] For north sea cod,
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a = 0.0081 and b = 3.0502, while the coefficients for atlantic salmon
area = 0.0274 and b = 2.7802. [62]

Species classification

Accurate biomass calculations are evidently only possible if the fish
species are known. The segmentation and tracking provide a basis
for a classification algorithm able to determine the species of the
fish. The initial segmentation indicates the locations of possible fish;
a second local segmentation focusing only on these areas may help
to restore details lost in the morphological noise removal process.
Using the distance data available for each observation, along with
the calculated velocity vector and the positions of potential other fish
in the frame, ideal observations can be selected and analysed. These
observations should be as close to the camera as possible and with a
velocity vector perpendicular to the optical axis so that characteristic
features such as the fins are likely to be well segmented.

Previous studies have used shape and texture analysis to determine
the fish species. Fabic et al. [14] used Zernike moments to match
segmented fish to moment signatures of two fish species stored in a
database. While the system did not quite match the human count, it
was deemed "a viable alternative to manual methods." Spampinato et
al. [65] combined texture features and shape features extracted using
the Curvature Scale Space transform and the histogram of Fourier
descriptors of boundaries to classify classify ten different fish species
with an average correct rate of 92%. Larsen et al. [30] analysed
shape and texture of three fish species and achieved a 76% recognition
rate (on a manually outlined training set). Lee et al. [32] used a
hierarchical classification tree and a set of color, shape and texture
properties to classify ten fish species. They achieved an average recall
rate of 90%.

In recent years, deep learning approaches have become more popular.
Salman et al. [58] achieved a correct classification rate of more than
90% using a convolution neural network (CNN) model to extract
species-dependent features of fish. Rathi et al. [52] also used image
processing techniques to enhance images and a CNN to classify 23
fish species with an accuracy of 97%. Allken et al. [2] developed
a deep learning neural network specifically for trawl monitoring
with an accuracy of 94% for three species of fish. Deep learning-
based models in general seems to achieve a higher accuracy when
compared to other models, but the drawback is the amount of data
required. The development of the model in [2], for example, was
based on a thousand manually curated images, from which a larger
synthetic dataset was produced.

Improving the detection and tracking

While the tracklet generator described in this thesis is able to return
an estimate of the number of fish in each frame, the accuracy
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decreases with an increasing number of fish. Deep learning can also
be used to detect the fish and to aid in the tracking. While local
thresholding methods performed well on the 3 Cod dataset, a deep
learning based detector may be able to distinguish individual fish
in situations where they are detected as one by the segmentation
methods presented here. Xiuli et al. [35] used a so-called Fast R-
CNN (region-based convolutional neural network) to simultaneously
detect and classify free-swimming fish, achieving a mean average
precision of 81%. Wang et al. [71] used a scale-space Determinant of
Hessian blob detector to detect fish heads and a specifically adapted
CNN to identify the head pattern of each fish in the frame for data
association across frames.

In this thesis,  have outlined the shortcomings of some of the features
used in the data association step. A CNN such as the one described in
[35] may be used to improve the cost function. The success of the deep
learning approaches depends largely on the amount, and quality, of
the labelled training data available. Synthetic data can be produced
to expand smaller datasets.

Thorough error evaluation of the length estimation

Finally, more samples are needed to perform a proper analysis of the
length estimation. The reasons why the error is generally larger for
the smallest and largest fish, while the length of the medium-sized
tish tends to be almost perfectly estimated, need to be examined
using a larger dataset. It is possible that some of the methods tested
in this thesis under- or overestimates the length in a consistent and
predictable manner that is not apparent in this dataset.
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