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1. Introduction

1.1. A heuristic argument for the truth of the Jacobian conjecture

The famous Jacobian Conjecture is the following statement:

Jacobian Conjecture. Let F = (F1, . . . , Fn) : Cn → Cn be a polynomial map

such that JF (the Jacobian matrix (∂Fi/∂xj)1≤i,j≤n) is invertible at every point.

Then, F has a polynomial inverse.

The Jacobian conjecture was first stated by Keller in 1939. Polynomial maps

with invertible Jacobian matrices are called Keller maps. We denote by JC(n)

the Jacobian Conjecture in dimension n, and by JC(∞) the statement that JC(n)

holds for every n. In the literature JC(∞) is usually called the generalized Jacobian

Conjecture. This conjecture has attracted a lot of works, and many partial results

were found. For example, Magnus - Applegate -Onishi -Nagata proved JC(2) for

F = (P,Q) where the GCD of the degrees of P,Q is either a prime number or ≤ 8;

Moh proved JC(2) for deg(F ) ≤ 100; Wang proved that JC(n) holds if deg(F ) = 2;

and Yu (also Chau and Nga) proved that if F (X)−X has no linear term and has

all non-positive coefficients then JC holds for F . For more details the readers can

consult the reference list and the references therein. An excellent survey is the

book [19]. We note that the R-analog of JC(2) (in this case, we require only that
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the map F is bijective, since its inverse may not be a polynomial as the example

F (x) = x+ x3 shows) is false, by the work of Pinchuk (Section 10 in [19]).

There have been many reductions of the generalised Jacobian Conjecture

JC(∞). One of these reductions is due to Bass, Connell, Wright and Yagzhev,

who showed that to prove JC(∞), it is enough to prove for all F (x) = x + H(x)

and all n, where H(x) is a homogeneous polynomial of degree 3 (Section 6.3 in [19]).

Druzkowski made a further simplification (Section 6.3 in [19])

Theorem 1.1 (Druzkowski). JC(∞) is true if it is true for all the maps F of

the form F (x) = (x1 + l1(x)3, . . . , xn + ln(x)3) with invertible Jacobian JF , here

l1, . . . , ln are linear forms.

Later, Druzkowski [14] simplified even further showing that it is enough to show

for the above maps with the additional condition that A2 = 0, where A is the n×n
matrix whose i-th row is li. We then simply say that a matrix is Druzkowski if

the corresponding map FA(x) = (x1 + l1(x)3, . . . , xn + ln(x)3) is Keller, i.e. the

determinant of its Jacobian is 1.

A lot of efforts have been devoted to showing that the Druzkowski maps are

polynomial automorphisms (Section 7.1 in [19] and for recent developments see [6–8],

and for a comprehensive reference on this topic see [4]). There are many partial

results proved for this class of maps, for example it is known from the works of

Druzkowski, Hubbers, Yan and many other people that the Druzkowski maps are

polynomial automorphisms if either the rank of A is ≤ 4 or the corank of A is ≤ 3.

In particular, the Jacobian conjecture was completely checked for Druzkowski maps

in dimensions ≤ 8 (see [4], also for stronger properties that can be proved for these

polynomial automorphisms). Some new results on Druzkowski maps in dimension

9 have been obtained recently in [30] and [6–8]. A common theme of these proofs is

that in these cases the Druzkowski maps are ”equivalent” to some other polynomial

maps for which the Jacobian conjecture is previously known to be true. It is not

easy to see whether this strategy can work for higher ranks or coranks.

Despite these encouraging results, there has been little progress on checking

the Jacobian conjecture for Druzkowski maps in higher dimensions. One of the

difficulties for this lies in the fact that the structure of the Druzkowski maps is

not well-understood, in the sense that for a large enough n there is no easy way

to produce all n × n Druzkowski matrices (for small values n = 3, 4, 5, there are

classifications by Meisters, Wright and Hubbers, see [19] and [22]). Because of this,

even if we have already verified the Jacobian conjecture for the Druzkowski maps up

to a certain dimension, say n = 10, it is still hard to decide whether the Jacobian

conjecture will hold for these maps in higher dimensions. A striking illustration

of this undecidability is the following fact proved by Rusek [26], that the set of

n × n Druzkowski matrices is not irreducible for n ≥ 530. This result implies that

an obvious geometric approach to JC(∞), based on the irreducible of the set of

Druzkowski matrices of a given dimension n, does not work. However, we will later

show that JC(∞) is equivalent to a geometric condition based on connectedness of
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certain varieties related to Druzkowski matrices.

The main purpose of this paper is to propose some conditions (namely, Condi-

tions C1 and C2 below) which are more amenable to using computer programs to

check - on Druzkowski matrices - than conditions currently used in checking the

Jacobian conjecture. This is justified by that these conditions concern smaller sys-

tems of polynomials, and that they concern only the injectivity of a map - which

is weaker than the bijectivity of a map. (See Section 5 for more detail on this.)

The validity of these conditions for either a generic Druzkowski matrix or for all

Druzkowski matrices with integer coefficients will prove the Jacobian conjecture.

We also show, theoretically and via examples, that these conditions make the com-

putations needed for the direct approach (that of showing Druzkowski maps are

injective) a lot faster. Contrast to the case of dimension 2, we note that the truth of

the Jacobian conjecture in higher dimensions is not universally believed, the main

reason is because of lack of enough evidence (for example the paper [17] reported

that the majority of participants of a conference in 1997 voted that the Jacobian

conjecture is false). We hope that this paper will give some more support to the

opposite conclusion and illustrate the idea that computers may be used in seeking

of a solution to the Jacobian conjecture JC(∞). More precisely, the idea is to inves-

tigate the small dimensions using computer programs and then make an inductive

guess.

Heuristic argument for the truth of the Jacobian conjecture. In The-

orem 1.5, we will show that Conditions C1 and C2 below hold for many square

matrices, in particular for a dense set of all square matrices. Hence it is very rea-

sonable that they are also true for a dense set of Druzkowski matrices, and the

latter claim is enough for the truth of the Jacobian conjecture (see below). Another

evidence for this heuristic argument is Theorem 1.8 below.

Remark on the effectiveness (time-saving) of our approaches. In Theo-

rem 1.8 we will show that a generic Druzkowski matrix satisfies the Conjecture NC

below. In other words, this equivalent formulation of the Jacobian conjecture holds

with the probability of 100 percent. Based on this, we explain in Section 5.1 that

we expect to be able to check whether a given Druzkowski matrix satisfies these

criteria very quickly. This is a sign that our approaches seem very promising.

The arguments in this paper are based, besides the Druzkowski reduction and

Theorem 1.7 and Lemma 3.1 to be stated below, on two other results on polynomial

automorphisms. The first of these results belongs to Connell and van den Dries

(Proposition 1.1.19 in [19]) :

Proposition 1.1. If for some n ≥ 2 there is a counter example to JC(n) then

there is a counter example to JC(N) (for some N > n) with integer coefficients.

Applying this proposition, in order to prove the Jacobian conjecture for every

dimensions, it suffices to do so for polynomials with integer coefficients. From the

proof of the reductions by Bass, Connell, Wright, Yagzhev and Druzkowski ( [19]), it

is clear that we need to consider only Druzkowski matrices with integer coefficients.
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The second of the results mentioned above is an invertibility criterion for polyno-

mial maps using derivations (Section 3.1 in [19]). Here we briefly recall this criterion.

Let F = (F1, . . . , Fn) : Cn → Cn be a polynomial map such that F (0) = 0 and

det(JF ) = 1. We then define related derivations by the formula

(
∂

∂F1
, . . . ,

∂

∂Fn
)t := ((JF )−1)t(

∂

∂x1
, . . . ,

∂

∂xn
)t.

(Here (.)t means the transpose of a matrix.) Now we add n new variables y1, . . . , yn
and consider the derivation

DF := y1
∂

∂F1
+ . . .+ yn

∂

∂Fn
.

Let d = deg(F ) and put N = dn−1 + 1. We have (Proposition 3.1.4 in [19])

Proposition 1.2. F has a polynomial inverse if and only if DN
F xi = 0 for all

i = 1, . . . , n.

Applying this proposition, we see that to prove the Jacobian conjecture in every

dimensions, it suffices to do so for a dense set of Druzkowski maps. We summarise

these as the following

Theorem 1.2. For the Jacobian conjecture to hold in every dimensions, it suffices

to either

i) Show that all Druzkowski maps whose matrix has integral coefficients satisfy

the Jacobian conjecture,

or

ii) Show that a dense set of Druzkowski maps satisfies the Jacobian conjecture.

Remarks. While the reduction to integer coefficients have been studied quite

extensively (e.g. Section 10.3 in [19], and also for the related topic of Jacobian

conjecture in positive characteristics), it seems that the reduction to a dense set of

maps has not been widely discussed. (Note that in [9], a good dense subset of all real

polynomial maps whose Jacobian is invertible everywhere was identified. However,

for polynomials on the field of real numbers, the density property does not work.)

1.2. Main results in this paper

Let us fix some notations to be used throughout the paper.

Notations. We will use the following notations. For vectors u, v ∈ Cn, we define

u ∗ v := (u1v1, . . . , unvn) (coordinate-wise multiplication) and uk = u ∗ u ∗ . . . ∗ u
(k-th self-multiplication of u), and we define by ∆[u] the diagonal n × n matrix

whose (i, i)-th entry is ui. Thus, the Druzkowski maps and their Jacobians can be

written as (here x ∈ Cn is viewed as a column vector)

F (x) = x+ (A.x)3,

JF (x) = Id+ 3∆[(A.x)2].A.
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For a fix n, we let Mn denote the set of all n × n matrices with coefficients in

C. We also use the following notations:

Vn := {(y, z, A) ∈ Cn × Cn ×Mn : det(Id+ ∆[(sz + ty)2].A) = 1 ∀s, t ∈ C,
z +A.(z3 + z ∗ y2) = 0},

Wn := {(y, z, A) ∈ Cn × Cn ×Mn : det(Id+ ∆[(sz + tA.y)2].A) = 1∀s, t ∈ C,
z +A.(z3 + z ∗ (A.y)2) = 0}.

Note that while these two varieties look very similar, they are different in that in

Vn only y appears in the equations and in Wn only A.y appears in the equations.

Note also that for a Druzkowski matrix A, then in Wn we do not need to check the

condition det(Id+ ∆[(sz + tA.y)2].A) = 1.

The starting point of our work is the following, to be derived in Section 3.

Theorem 1.3. Let A be an n × n matrix and FA(x) = x + (A.x)3 : Cn → Cn

the corresponding cubic linear map. Then FA is an automorphism if and only if for

every y, the solutions to z +A.(z3) +A.(z ∗ (A.y)2) = 0 are exactly z = 0.

Based on Theorem 1.3, we are now ready to state the two conditions.

Condition C1. An n×n matrix A satisfies Condition C1 if whenever (y, z, A) ∈ Vn
then z = 0.

Condition C2. An n×n matrix A satisfies Condition C2 if whenever (y, z, A) ∈Wn

then z = 0.

As a first application of the new formulation of the injectivity of a Druzkowski

map in Theorem 1.3, we give a simple and direct proof of the following result,

which generalises the well-known result ( [5] and [13]) that a Druzkowski map whose

Jacobian is symmetric satisfies the Jacobian conjecture (the results in these papers

correspond to the case J = Id and B = At is the transpose of A in the next

theorem). The same proof can be applied to some similar situations.

Theorem 1.4. Condition C2 holds for an n×n matrix A if there is a matrix B and

a diagonal matrix J , such that for all x ∈ Cn we have ∆[(Ax)2].A = B.∆[(Ax)2].J .

Condition C2 is clearly weaker than Condition C1, and for Druzkowski matrices

it will be seen later that Condition C2 and the Jacobian conjecture are equiv-

alent. Let D be an invertible diagonal n × n matrix. It can be easily checked

that if (y, z, A) ∈ Vn then (Dy,Dz,DAD−3) ∈ Vn, and if (y, z, A) ∈ Wn then

(D3y,Dz,DAD−3) ∈Wn. In particular, if A is a Druzkowski matrix, then DAD−3

is also a Druzkowski matrix. More generally, it can also be checked that a matrix

A satisfies Condition C2 iff any matrix B cubic-similar to it satisfies Condition C2

(for definition and some properties of cubic-similarity, see [25]).

Condition C1 holds in the cases when A has small sizes (n = 2, 3) but it does

not hold for n = 4 and bigger (see Section 2). In contrast, as stated in Section 3,

we conjecture that Condition C1 holds for all Druzkowski matrices. By standard



March 5, 2020 12:38 WSPC/INSTRUCTION FILE
NewResultJacobianCv2

6 Tuyen Trung Truong

arguments, it is easy to check that Condition C1 holds in the following cases: i) A

has rank 1; ii) A is an upper or lower triangular matrix; and iii) all the principal

minors of A are non-zero. In particular, Condition C1 holds for a generic n × n

matrix. This is in line with the heuristic argument for the truth of JC(∞) which we

presented above. The following result gives more support to the heuristic argument.

Theorem 1.5. Let r > 0 be a positive integer. Then Condition C1 is satisfied for

a generic matrix of rank r.

Referring to the above result by Rusek [26], we show that in fact a geometric

equivalent formulation of JC(∞) is available, in terms of connectivity of some affine

varieties.

Theorem 1.6. JC(∞) holds iff for all n ∈ N the affine variety W ′n := {(y, z, A) ∈
Wn and A is a Druzkowski matrix} is connected.

In particular, if Wn is connected for every n ∈ N then JC(∞) holds.

In the remaining of this subsection, we state our main new reformulation of

JC(∞) and some related results. These are again in line with the heuristic argument

for the truth of the Jacobian conjecture mentioned above. Let k be a positive integer

in the range {1, . . . , n}. We denote by Zk = (1, . . . , 1, 0, . . . , 0)t the vector whose

first k entries are 1 and whose last n− k entries are 0.

Conjecture NC. Let A be an n × n Druzkowski matrix, n ≥ 3. For each k =

1, . . . , n, the equation Zk +AZ3
k +A(Zk ∗ (Ay)2) = 0 has no solutions y ∈ Cn.

The following result shows the significance of Conjecture NC.

Theorem 1.7. Conjecture NC is equivalent to JC(∞).

We note that by the proof of Theorem 1.4, if A satisfies the nilpotent condition

A2 = 0 (recall the further reduction by Druzkowski) then A satisfies Conjecture

NC. It will be shown in Lemma 4.4 that Conjecture NC is satisfied for small values

k = 1 and 2.

In Section 2 we will illustrate the effectiveness (i.e. time saving) of using Conjec-

ture NC and Conditions C1 and C2 on specific examples. In Section 5 we will explain

theoretically this effectiveness and compare our approaches to several existing ap-

proaches. This explanation uses the following observation that a generic Druzkowski

map automatically satisfies Conjecture NC. We note that a similar result holds if

we employ Condition C1 instead of Condition C2.

Theorem 1.8. a) A generic Druzkowski map satisfies Conjecture NC.

b) More generally, if V is a subvariety of the set of Druzkowski matrices and

is invariant under the action of the group of invertible diagonal matrices, i.e.

DVD−3 = V for all invertible diagonal matrix D, then a generic element of V

satisfies Conjecture NC.

Among the many known reductions of the Jacobian conjecture, our Theorem
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1.3 and Conjecture NC are different and promising, both theoretically and compu-

tationally, for the following reasons.

- Hilbert’s Nullstellensatz tells us how to show that a system of polynomial equa-

tions has no solutions. Recasting the Jacobian conjecture in terms of the solvability

of such systems invites an effective computational approach, including numerical

methods (see for example Section 5, Chapter 7 in [10]), to resolving the conjecture.

- For any Druzkowski matrix A, Theorem 1.8 shows that for a generic invertible

diagonal matrix D, the Druzkowski matrix DAD−3 satisfies Conjecture NC. Thus

Conjecture NC holds for a generic Druzkowski matrix. As far as we know, Conjecture

NC is the only equivalent formulation of JC(∞) that has been shown to hold with

probability 1.

- Experimental results in Section 2.5 below shows that Theorem 1.3 provides a

fast method to check whether a given Druzkowski matrix is an automorphism or

not.

- The existing approaches to check the Jacobian conjecture for Druzkowski ma-

trices usually employ either a nilpotent condition or induction on the rank of the

matrix A. Our new reformulations provides new approaches, including using induc-

tion on k. This will be elaborated in more details in Section 5.

The remaining of this paper is organised as follows. To illustrate the effectiveness

of the methods, in Section 2, we present the experimental computations, including

those on some Druzkowski matrices previously considered by other authors. In the

next sections, we present theoretical results. In Section 3 we explain how Conditions

C1 and C2 are derived, and why they imply the Jacobian Conjecture. We state there

one generalisation of the Jacobian conjecture. In Section 4, we prove the above

theorems. In Section 5, we give details of the approaches together with detailed

strategies to employ them. In the same section we also explain theoretically the

effectiveness (time saving) of our approaches in practice, compare them with other

existing approaches, state some generalisations of the Jacobian conjecture together

with both theoretical and experimental evidences to support them.

A longer version of this paper, with supplementary and additional facts and

results and Mathematica codes, is available at the website [27].

2. Results proven with the help of computer programs

In this section we present the results we obtained with the help of computer pro-

grams. We have used two main resources: a Mathematica software run on a normal

personal MacBook Air laptop and a MuPad software run on the BigMem cluster

of the Tizzard super computer of eResearch SA. For the MuPad computations, the

typical configuration is 1 node whose memory size is about 120GB plus 100GB

virtual, and the working duration is about 4 to 5 days. We compute the Groebner

basis of the corresponding polynomial systems, and (except Section 2.3) look

to see whether z1, . . . , zn appear in the Groebner Basis.
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Remark. We will consider in this section Conditions C1 and C2 with the ad-

ditional requirement det(A) = 0, which is satisfied by Druzkowski maps (the main

focus of the Jacobian conjecture and this paper).

2.1. The case n = 2

In this case, since det(A) = 0 we have that A has rank 1. Hence Condition C1 is

satisfied.

2.2. The case n = 3

Using Mathematica, we find that Condition C1 is true for 3 × 3 matrices A with

det(A) = 0.

2.3. The case n = 4, rank = 2

For the case n = 4, the computation requires so long time and big memory that it

does not terminate on a personal computer. Hence we have to use MuPad on the

super computer. We found there is (y, z, A) in V4 (recall the notations Vn and Wn

from the Introduction) such that z = (1, 1, 1, 0) and A has rank 2. (This means that

Condition C1 does not hold for general matrices, but we do not know whether it

is true or not for Druzkowski matrices.) The time to compute the Groebner Basis

was 9911 seconds, and the Groebner Basis has 179 elements. The Groebner Basis

is too complicated (it takes more than 70 pages to print out) to extract any useful

information at the moment. In particular, we cannot conclude whether there is such

a counterexample with integer coefficients.

Using MuPad, we check that there is no (y, z, A) in W4 such that z = (1, 1, 1, 0)

and A has rank 2. However, the check with z = (1, 1, 1, 1) could not terminate,

hence the situation for Condition C2 is still unclear for us. Note that for a tuple

(y, z, A) ∈W4, the matrix A do not need to be Druzkowski. Hence, even if Condition

C2 does not hold, it does not follow that Jacobian condition is not true. (Recall

that Jacobian conjecture is equivalent to that Condition 2 holds for all Druzkowski

matrices only, and not for more general matrices.)

2.4. Random matrices with integer coefficients

Before we proved the results in the Subsections 4.2 and 2.3, in a previous version

we used Mathematica to investigate Condition C1 on randomly generated 4 × 4

matrices with integer coefficients in the interval [−25, 25]. On all of those examples

we found that Condition C1 is satisfied and the Groebner Basis has 6 elements.

From the results in Section 4.2 below, we know that for a generic matrix with

integer coefficients then Condition C1 is satisfied. It is still open whether Condition

C1 is satisfied by all matrices with integer coefficients.
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We have used MuPad to investigate higher dimensions and ranks. Below is a

summary, the matrices here are randomly generated with integer coefficients lying

between 0 and 1012:

- n = 4, rank = 3: The Groebner Basis has 8 elements, time to compute it is 16

seconds.

- n = 5, rank = 3: The Groebner Basis has 9 elements, time to compute it is

358 seconds.

- n = 5, rank = 4: The Groebner Basis has 15 elements, time to compute it is

15641 seconds.

For n = 10, rank = 3 or n = 7, rank = 4 the computations are usually terminated

because of running out of time or memory, even when we restrict the entries to a

smaller range.

2.5. Some examples of Druzkowski matrices

We present here the experiments with some examples of Druzkowski matrices previ-

ously considered by other authors. We recall that for a Druzkowski matrix A, then

the matrix ∆[(Ax)2].A is nilpotent. Then, its nilpotent index is the least positive

integer j such that (∆[(Ax)2].A)j = 0 for all x ∈ X. This notation has been used by

Druzkowski in early papers on the subject of cubic linear maps. It has been shown

first in [16] and then in [6], by different methods, that if the nilpotent index of A is

3 then the corresponding Keller map satisfies the Jacobian conjecture.

Example 1. This example is taken from [20] (also page 140 in [19]), where Gorni

and Zampieri developed their pairing between cubic homogeneous maps and cubic

linear maps (see the citations for more details). In this example, A is the following

15× 15 matrix

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −2 −1 1 1 1 0 0 −1 0 0 −1 0

0 0 −1 0 −1 0 1/2 0 0 1/2 0 −1/2 −1/2 0 0

0 0 1 −2 0 0 0 1 −1 −1 −1 0 0 0 1

1 0 1 −2 0 0 0 1 −1 −1 −1 0 0 0 1

0 1 1 −2 0 0 0 1 −1 −1 −1 0 0 0 1

1 0 −1 0 −1 0 1/2 0 0 1/2 0 −1/2 −1/2 0 0

1 0 0 −2 −1 1 1 1 0 0 −1 0 0 −1 0

0 1 0 −2 −1 1 1 1 0 0 −1 0 0 −1 0

1 0 1 0 1 0 −1/2 0 0 −1/2 0 1/2 1/2 0 0

0 1 −1 2 0 0 0 −1 1 1 1 0 0 0 −1

0 1 0 2 1 −1 −1 −1 0 0 1 0 0 1 0

1 1 1 −2 0 0 0 1 −1 −1 −1 0 0 0 1

1 1 0 −2 −1 1 1 1 0 0 −1 0 0 −1 0


This is a Druzkowski matrix and the corresponding Keller map satisfies the so-

called globally analytically linearisable condition, whose conjugations are polyno-
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mial maps. We check that A2 = 0, A is of rank 5 and it has some non-zero 2 × 2

principal minor. Its nilpotent index is > 3.

Using Mathematica, we check that this matrix A satisfies Condition C1. The

computation of the Groebner basis takes 9.62 seconds. We observe that when try-

ing to check that the corresponding Druzkowski map is injective, an interesting

phenomenon occurs. If we use the more obvious condition, that is x + (Ax)3 +

(Ax) ∗ (Ay)2 = 0 implies x = 0, then under the same setting (i.e. the same choice

of monomial ordering as in the computation for Condition C1) it takes a very long

time (610.90 seconds) to compute the Groebner basis. However, if we use the trans-

formation in Lemma 3.1, that is z + A.(z3 + z ∗ (Ay)2) = 0 implies z = 0, it takes

only 0.361 seconds to compute the Groebner basis.

Example 2. This example is taken from page 197 in [19]. Here A is the following

17× 17 matrix



0 0 0 1/6 1/6 −1/3 −1/6 −1/6 1/3 0 0 0 0 0 0 0 1
0 0 0 1/6 1/6 −1/3 −1/6 −1/6 1/3 0 0 0 0 0 0 0 −1
0 0 0 1/6 1/6 −1/3 −1/6 −1/6 1/3 0 0 0 0 0 0 0 0

1/6 1/6 −1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 1
−1/6 −1/6 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 −1/6 −1/6 1/3 1/12 1/12 −1/12 −1/12 1
0 0 0 0 0 0 0 0 0 −1/6 −1/6 1/3 1/12 1/12 −1/12 −1/12 −1
0 0 0 0 0 0 0 0 0 −1/6 −1/6 1/3 1/12 1/12 −1/12 −1/12 0

1/6 −1/6 −1/6 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1/6 −1/6 −1/6 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
1/6 −1/6 −1/6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/6 1/6 −1/3 1/6 1/6 −1/3 −1/6 −1/6 1/3 0 0 0 0 0 0 0 1
1/6 1/6 −1/3 −1/6 −1/6 1/3 1/6 1/6 −1/3 0 0 0 0 0 0 0 −1
1/6 1/6 −1/3 1/6 1/6 −1/3 −1/6 −1/6 1/3 0 0 0 0 0 0 0 −1
1/6 1/6 −1/3 −1/6 −1/6 1/3 1/6 1/6 −1/3 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



It is a Druzkowski matrix of rank 5. While A2 6= 0, A3 = 0. The corresponding

Keller map is a counterexample to the cubic-linear globally linearisation condition,

mentioned in Example 1. The nilpotent index of B is > 3.

For this example, we do not know whether it satisfies Condition C1 or not (see,

however, Section 5.1). Checking the Jacobian conjecture on this example is still very

quick. Computing the Groebner Basis for the system x+ (Ax)3 + (Ax) ∗ (Ay)2 = 0

takes 0.577 seconds, and computing the Groebner Basis for the system z +A.(z3 +

z ∗ (Ay)2) = 0 takes 0.337 seconds.

One difference between this example and other examples considered in this sub-

section is that it has some non-zero principal 3× 3 minors. We may speculate that

because of this the computation of the Groebner Basis for Condition C1 takes a

longer time. We also remark that Conjecture NC is satisfied on this example, and

the time needed to compute it is quite fast. For example, with k = 17 then the time

needed to compute the Groebner Basis for the polynomial system in Conjecture NC

is only 0.17979 seconds. This is what to be expected from Theorem 1.8.

Example 3. This example is taken from the paper [1], where the authors pro-
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posed an approach toward the Jacobian conjecture. Here A is the 13× 13 matrix

0 0 0 1/6 1/6 −1/3 −1/6 −1/6 1/3 0 0 0 1

0 0 0 1/6 1/6 −1/3 −1/6 −1/6 1/3 0 0 0 −1

0 0 0 1/6 1/6 −1/3 −1/6 −1/6 1/3 0 0 0 0

1/6 1/6 −1/3 0 0 0 0 0 0 0 0 1 0

1/6 1/6 −1/3 0 0 0 0 0 0 0 0 −1 0

1/6 1/6 −1/3 0 0 0 0 0 0 0 0 0 0

0 0 −1/3 0 0 0 0 0 0 1/6 1/6 0 1

0 0 −1/3 0 0 0 0 0 0 1/6 1/6 0 −1

0 0 −1/3 0 0 0 0 0 0 1/6 1/6 0 0

0 0 0 1/6 1/6 −1/3 −1/6 −1/6 1/3 0 0 1 0

0 0 0 1/6 1/6 −1/3 −1/6 −1/6 1/3 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0


This is a Druzkowski matrix of rank 5 and satisfies A2 = 0. It has nilpotent index

> 3. For this example, the method in [1] consists of showing that certain 1170

Wronskians belong to a certain ring. The computation is quite involved and is

contained in a big PDF file on the authors’ website [2].

We have checked by Mathematica that this matrix satisfies Condition C1, and

the computation of the Groebner Basis takes 0.137 seconds. Computing the Groeb-

ner Basis for the system x + (Ax)3 + (Ax) ∗ (Ay)2 = 0 takes 0.535 seconds, and

computing the Groebner Basis for the system z+A.(z3 + z ∗ (Ay)2) = 0 takes 0.116

seconds.

We also did computations and obtained similar results with some other examples:

a 4× 4 Druzkowski matrix from [30] of nilpotent index 3, and a 16× 16 Druzkowski

matrix from [20] of rank 4 and nilpotent index > 3.

3. Derivation of the Conditions

In this section we explain the derivation of the Conditions C1 and C2 and show

why they imply the Jacobian Conjecture. The plan is that we first prove Theorem

1.5. Then we state Conjecture (weaker version) and Conjecture (stronger version).

By Lemma 3.1, we have that the condition on Wn in Theorem 1.6 is equivalent to

Conjecture (stronger version) for Druzkowski matrices. Hence Conjecture (stronger

version) for Druzkowski matrices is equivalent to JC(∞). Since either C1 or C2

implies Conjecture (stronger version), it follows that either of them implies JC(∞).

There is a well-known result that a polynomial self-map of Cn is an automor-

phism if it is injective (Chapter 3 in [19]). In theory, we can check, for each given

dimension n, whether all Druzkowski maps are injective by using a computer pro-

gram (for example Mathematica) to find the Groebner basis for the ideal I defined

by the equations x+ (A.x)3 = y + (A.y)3 and

det(Id+ ∆[(A.z)2].A) = 1 (3.1)
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for all z ∈ Cn, to see that x−y belongs to this Groebner basis. However, in practice

one faces the difficulty that the number of polynomials in the ideal defined by the

system det(Id + ∆[(A.z)2].A) = 1 for every z ∈ Cn - with variables the n2 entries

of the matrix A, and hence consists of coefficients of det(Id + ∆[(A.z)2].A) = 1

regarded as a polynomial in z - grows very fast with respect to the dimension

n: it is roughly the same as the number of monomials of degrees at most n in n

variables. We note that an explicit procedure for writing down these equations was

given in [21].

Remark. However, we note from the experiments (Section 2 above), that in

practice it is quite effective to use Theorem 1.3 to check that any given Druzkowski

map satisfies the Jacobian conjecture with the help of a computer program.

This paper grew out of the author’s curiosity to see whether we can reduce the

number of equations defining the ideal I. (It is a classical result, [18] and references

therein, that any algebraic subvariety of CN is defined by N equations, however it

is quite challenging to find the equations for explicit examples.) It also originated

from our trying to ponder on the following question:

Question. If a formal proof of the Jacobian conjecture is to be found for all

Druzkowski maps of degree 3 in all dimensions n, how can we make use of the

assumption that JF is invertible?

To be more explicit about this Question, let us first make some simple algebraic

reductions, which provide a proof of Theorem 1.3. Let u, v ∈ Cn be such that

F (u) = F (v), that is u+ (A.u)3 = v + (A.v)3. Then by subtracting and using that

A is a linear map, we find that

(u− v) + (A.u−A.v) ∗ ((A.u)2 + (A.u) ∗ (A.v) + (A.v)2) = 0.

If we define x = u− v then we can write the above equation as

x+ (A.x) ∗ ((A.x)2 + 3(A.x) ∗ (A.v) + 3(A.v)2) = 0.

Now, by substituting

y =
√

3v +

√
3

2
x,

and then replacing x by x/2, we see that the above equation is reduced to

x+ (A.x) ∗ ((A.x)2 + (A.y)2) = 0. (3.2)

Then, the fact that F is injective is the same as that the equation x + (A.x) ∗
((A.x)2 + (A.y)2) = 0 has only the solution x = 0.

We see that y appears in the ideal I only through A.y. Hence it is natural to

ask whether the Jacobian conjecture is in fact stronger, that is in Equation (3.2),

we can replace Ay by y (which of course must satisfy a condition compatible with

Equation (3.1)) and still obtain the same conclusion? Hence, we state the following

conjecture:
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Conjecture (weaker version). Let A be a Druzkowski n×n matrix. Assume that

y ∈ Cn satisfy

det(Id+ ∆[(A.x+ ty)2].A) = 1

for all t ∈ C and all x ∈ Cn. Then, if x + (Ax) ∗ ((Ax)2 + y2) = 0, we must have

x = 0.

Remark. If A is an n× n matrix for which det(Id+ ∆[(A.x+ ty)2].A) = 1 for

all t ∈ C and x ∈ Cn then A must be a Druzkowski map as we can readily see by

putting t = 0 in the equality. Hence the above Conjecture, while a bit stronger than

the Jacobian conjecture, is only for Druzkowski matrices.

We may push this investigation further, by asking that in showing that x +

(A.x) ∗ ((A.x)2 + y2) = 0 has only the solution x = 0, do we need the assumption

(3.1) somehow on the plane generated by A.x and y only? This leads us to state a

stronger conjecture.

Conjecture (stronger version). Let A be a Druzkowski n × n matrix. Assume

that x, y ∈ Cn satisfy

det(Id+ ∆[(sA.x+ ty)2].A) = 1

for all s, t ∈ C. Then, if moreover x+ (Ax) ∗ ((Ax)2 + y2) = 0, we must have x = 0.

These two conjectures can be seen to be more general than the original Jacobian

conjecture. If we ask for not only Druzkowski matrices but general n× n matrices

and use the following Lemma, we arrive at Condition C1, by substituting A.x in

the statement of Conjecture (stronger version) by a new variable z.

Lemma 3.1. The following two statements are equivalent:

1) There is a non-zero solution x to x+ (A.x)3 + (A.x) ∗ y2 = 0,

and

2) There is a non-zero solution z to z +A.(z3 + z ∗ y2) = 0.

Proof. (⇒) If x is a non-zero solution to x+ (A.x)3 + (A.x) ∗ y2 = 0 then z = A.x

is non-zero. Moreover, we have

0 = A(x+ (A.x)3 + (A.x) ∗ y2) = A(x+ z3 + z ∗ y2)

= A(x) +A(z3 + z ∗ y2) = z +A(z3 + z ∗ y2).

(⇐) If z is a non-zero solution to z + A(z3 + z ∗ y2) = 0, by defining x =

−(z3 + z∗y2) we see that Ax = z. In particular, x is also non-zero. Moreover,

0 = x+ z3 + z ∗ y2 = x+ (A.x)3 + (A.x) ∗ y2.

Experimental evidences in Section 2 support these Conjectures. In Section 5.1

we give theoretical reasons to support these Conjectures.
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4. General properties

In the first subsection of this section, we prove Theorems 1.4, 1.6 and 1.8. The

proofs of Theorems 1.7 and 1.5 are given in the second subsection, where we also

prove some other results. In the third subsection, we give a simple and direct proof

of the fact that symmetric Druzkowski maps satisfy the Jacobian conjecture.

4.1. Proofs of Theorems 1.4, 1.6 and 1.8

Proof of Theorem 1.4. Assume that ∆[(Ax)2].A = B.∆[(Ax)2]J , where J is a

diagonal matrix, and both B and J are independent of x. Then, for all x, y ∈ Cn,

since diagonal matrices commute we have:

A.∆[(Ax)2].A.∆[(Ay)2] = A.B.∆[(Ax)2].J.∆[(Ay)2]

= A.B.∆[(Ay)2].J∆[(Ax)2]

= A.∆[(Ay)2].A.∆[(Ax)2].

In other words, A.∆[(Ax)2] and A.∆[(Ay)2] commute. Moreover, if (y, z, A) ∈Wn,

then A.∆[y2] is nilpotent. We can proceed as in Section 4.3 below.

Proof of Theorem 1.6. If JC(n) holds then W ′n = {(y, 0, A) : y ∈ Cn and A is a

Druzkowski matrix}, and hence is connected since the set of Druzkowski matrices

is connected. (If A is a Druzkowski matrix then tA is also a Druzkowski matrix for

any t ∈ C. In particular, there is a path connecting A and 0.)

For the proof of the reverse implication, we first show that if V is an irreducible

component of Vn or Wn such that V ∩{z = 0} 6= ∅ then V ⊂ {z = 0}. Assume that

there is (y, 0, A) ∈ V and a sequence (y(j), z(j), A(j)) ∈ V such that

z(j) 6= 0, ∀j,
(y(j), z(j), A(j)) → (y, 0, A).

We will show a contradiction.

We define, as in the proof of Lemma 3.1,

x(j) = −z(j) ∗ z(j) ∗ z(j) − z(j) ∗ y(j) ∗ y(j).

Then x(j) 6= 0 for all j and x(j) → 0. Moreover, x(j) + (A(j)x(j))3 + (A(j)x(j)).y(j) ∗
y(j) = 0 for all j. We can rewrite this equation as

(Id+A(j).∆[(A(j).y(j))2]).x(j) = −(A(j).x(j))3.

Since (y(j), z(j), A(j)) ∈ Vn, it follows that det(Id + A(j).∆[(A(j).y(j))2]) = 1 for

all j (see the proof of Lemma 3.1 for more details). The fact that (y(j), z(j), A(j))

converges to (y, 0, A) implies that the inverse matrices (Id+A(j).∆[(A(j).y(j))2])−1

are bounded. From

x(j) = −(Id+A(j).∆[(A(j)y(j))2])−1.(A(j)x(j))3,
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it follows that ||x(j)|| ≤ C||x(j)||3 for some positive constant independent of j. The

assumption that x(j) → 0 then implies that x(j) = 0 for large j, as wanted.

We now finish the proof of Theorem 1.6. If W ′n is connected, then the above

paragraph shows that W ′n ⊂ {z = 0} and hence JC(n) holds. Finally, if Wn is

connected, then Wn ⊂ {z = 0}, and hence so is W ′n.

Proof of Theorem 1.8. We give only the proof of a), since the proof of b) is

identical.

We will use the arguments and notations of the next subsection. Let A be a

Druzkowski matrix. Then the set consisting of all matrices of the form DAD−3,

where D runs over all invertible diagonal matrices, belongs to the same irreducible

component of all Druzkowski matrices. (In fact, let f be the map from the set of

invertible diagonal matrices to the set of Druzkowski matrices defined by D 7→
DAD−3. This is a regular morphism between algebraic varieties. Since the set of

invertible diagonal matrices is irreducible, it follows that there is an irreducible

component W of the set of Druzkowski matrices for which f−1(W ) is the whole of

invertible diagonal matrices.) We need to show only that at least one among these

matrices satisfy Conjecture NC. Assume otherwise. Then, by Lemma 4.4 below, in

particular A does not satisfy Conjecture NC with respect to some k ∈ {3, . . . , n}.
Let A1,1 be the k × k submatrix of A as in the next subsection. Then the

arguments in the next section shows that A1,1 is nilpotent, in particular is of rank

< k. We will show that for a generic choice of the invertible diagonal matrix D,

then (1, . . . , 1)t does not belong to the image of D1A1,1D
−3
1 where D1 is the k × k

submatrix of D as in the next subsection. Therefore, for such a choice of D, there

is no y for which (y, z = Zk, DAD
−3) ∈ Vn, as wanted. Assume that this is not the

case, we will deduce a contradiction.

In fact, assume that for all invertible diagonal matrix D then (1, . . . , 1)t belongs

to the image of D1A1,1D
−3
1 . Then we see that D−11 (1, . . . , 1)t belongs to the image

of A1,1D
−3
1 and hence to the image of A1,1 for all such D. But the set of all such

vectors D−11 .(1, . . . , 1)t is exactly the set {(x1, . . . , xk) ∈ Ck : x1 . . . xk 6= 0}. Since

A1,1 is nilpotent, it cannot contain all of this set. This gives a contradiction as

desired.

Then the intersection of all these generic sets, when k runs over all the set

{3, . . . , n}, is still a generic set. All matrices in this intersection set satisfies Con-

jecture NC for all k ∈ {3, . . . , n}.
Finally, using the properties of the projections of affine algebraic varieties (in

particular, the Closure Theorem in Section 6, Chapter 5 in [11]), we conclude that

there is a proper subvariety (and moreover does not contain any irreducible com-

ponent) of the set of all Druzkowski matrices outside which Conjecture NC holds.
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4.2. More matrices satisfying Condition C1

Note that Vn (and Wn) are invariant under the group action by invertible diago-

nal matrices (see the paragraph after the statement of Theorem 1.4): (y, z, A) 7→
(Dy,Dz,DAD−3) . Hence, we can reduce the study of Vn (and Wn) to a simpler

case as follows. Let (y, z, A) be in Vn. Let us define w = (w1, . . . , wn)t where wi is

an arbitrary nonzero complex number if zi = 0, and wi = 1/zi otherwise. Then the

diagonal matrix D = ∆[w] is invertible, (y′, z′, A′) = (Dy,Dz,DAD−3) is also in

Vn and z′ has the special form concerned in Conjecture NC: coordinates of z′ are

either 0 or 1. In particular, (z′)2 = z′.

Fix r > 0 a positive integer. Let us choose (y, z, A) an element in Vn such

that z2 = z and A is of rank r. After a permutation, we can assume that z =

(1, . . . , 1, 0, . . . , 0)t has the first k entries to be 1 and the last n− k entries to be 0.

Moreover, if we choose w in the above appropriately, we can assume that y satisfies

additionally the constraints y2k+1 = yk, . . ., y2n = yn. This gives the proof of Theorem

1.7. Indeed, by Theorem 1.3 and Lemma 3.1, JC(∞) does not hold then there is

a Druzkowski matrix A and a pair y, z such that z + Az3 + A(z ∗ (Ay)2) = 0 and

z 6= 0. Then the above arguments show that we can choose z to be Zk, where k is

the number of non-zero coordinates of z. Hence, Conjecture NC also does not hold.

On the other hand, we note that Conjecture NC is indeed a special case of JC(∞).

Hence JC(∞) and Conjecture NC are equivalent.

We write A in the block form (
A1,1 A1,2

A2,1 A2,2

)
where A1,1 is of the size k × k. The set Er of n × n matrices for which all minors

up to dimension r are non-zero is dense in the set of all matrices of rank r, hence

we can consider only these matrices. We now deduce two simple conditions which

A must satisfy if (y, z, A) ∈ Vn.

Lemma 4.1. Assume that A has the above block form, and z = (1, . . . , 1, 0, . . . , 0)t

as above. Then:

1) A1,1 is a nilpotent k × k matrix and has rank exactly r.

2) (1, . . . , 1)t (k entries) is in the image of A1,1.

Proof. 1) In the condition det(Id + ∆[(sz + ty)2].A) = 1 for all s, t ∈ C, if we

choose t = 0 we see that det(Id + s2∆[z2].A) = 1 for all s, and hence ∆[z2].A is

nilpotent. Since z = (1, . . . , 1, 0, . . . , 0)t, we deduce that A1,1 is a nilpotent k × k
matrix. Since A ∈ Er, it follows that k ≥ r, and hence A1,1 has rank exactly r.

2) Since z+A.(z3 + z ∗y2) = 0, we deduce in particular that z is in the image of

A. Since z = (1, . . . , 1, 0 . . . , 0)t, it follows moreover that (1, . . . 1)t is in the image

of A1,1.

If k ≥ 2 then the set of all k×k matrices A1,1 satisfying the above two conditions
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is a very small set (more specifically, of high codimension) in the set of all k × k
matrices of rank r. We formally state and prove this statement.

Lemma 4.2. The set of k×k matrices A1,1 of rank exactly r satisfying conclusions

1) and 2) in Lemma 4.1 is of codimension at least k in the set of all k× k matrices

of rank r.

Proof.

Any nilpotent k × k matrix A1,1 of rank exactly r can be written as A1,1 =

D−1JD, where D is an invertible matrix and J is a nilpotent matrix of Jordan

form of rank exactly r. Since there are only a finite number of matrices of Jordan

form, it is sufficient to prove the claim for nilpotent matrices A1,1 with a fixed such

Jordan form J . To this end, for a fixed non-zero vector v, we will show that the

set Γv of such nilpotent matrices whose image contains v has dimension at most

2kr − r2 − k. Note that 2kr − r2 is the dimension of the set of k × k matrices of

rank exactly r.

It can be checked easily that v is in the image of A1,1 iff Dv is in the image

of J . The set of all matrices D with this property consists of invertible elements

in a vector space S of square matrices of dimension exactly k2 − (k − r). We note

that two such matrices D−11 JD1 and D−12 JD2 are the same iff D = D1D
−1
2 is in

the group G of invertible matrices commuting with J . Thus the dimension of Γv is

exactly

dim(S)− dim(G) = k2 − (k − r)− dim(G).

Hence we need to show that

dim(G) ≥ k2 − (k − r)− (2kr − r2 − k) = k2 − 2kr + r2 + r = (k − r)2 + r.

The dimension of G can be determined easily from the sizes of the blocks of the

Jordan matrix J , from the classical results in the theory of matrix group (see e.g.

Section 1.2 in [23]). We recall here how to compute it. Let W1, . . . ,Wl be the blocks

of the Jordan matrix J of sizes µ1, . . . , µl. Then µ = (µ1, . . . , µl) is a partition of k,

i.e. µ1 + . . . + µl = k. The dual partition of µ is given by ν = (ν1, . . . , νk), where

νi = the number of j’s for which µj ≥ i. (Here ν may not be a partition in the usual

sense since some of its elements may be 0.) Then

dim(G) = ν21 + . . .+ ν2k .

Since J has rank exactly r, it follows that

(µ1 − 1) + . . .+ (µl − 1) = r,

from this we get r+l = k, or l = k−r. Thus ν1 = l = k−r. Therefore, ν2+. . .+νk =

r. From this we obtain

dim(G) ≥ ν21 + (ν2 + . . .+ νl) = (k − r)2 + r,

as wanted.
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In the above, we showed that the set Φk = {A : there exist y, z so that

(y, z, A) ∈ Vn and z = (1, . . . , 1, 0, . . . , 0)t} ⊂ Λk, k ≥ 2, where Λk has codimension

at least k in the set of all matrices. From the beginning of this subsection, we also

saw that if Φ̂k = {(y, z, A) ∈ Vn where z has exactly k non-zero coordinates}, then

for every (y, z, A) ∈ Φ̂k - after a permutation of coordinates - there is an invertible

matrix D so that DAD−3 ∈ Φk. We now show that Φ̂k has codimension at least 1

in the set of all matrices.

Lemma 4.3. Φ̂k has codimension at least 1 in the set of all matrices.

Proof. Define Λ̂k = {DAD−3 : A ∈ Λk, D : invertible diagonal matrix }. Then

Φ̂k ⊂ Λ̂k, and hence it is enough to show that Λ̂k has codimension at least 1 in the

set of all matrices.

Let A ∈ Λk with the block form as above, and D be an invertible diagonal n×n
matrix. If D has the block form (

D1 0

0 D2

)
where D1 is of size k × k, then DAD−3 has the block form(

D1A1,1D
−3
1 D1A1,2D

−3
2

D2A2,1D
−3
1 D2A2,2D

−3
2

)
Since Λk is defined by k homogeneous equations and the set of all diagonal

matrices D1 is of dimension k, the total dimension of the orbit of Λk is only =

dim(Λ) + k − 1 (and not dim(Λ) + k). Hence, by Lemma 4.2, Λ̂k is of codimension

at least 1 in the set of all k × k matrices.

Now we prove Theorem 1.5. We need to show that the set of matrices A so that

there is y, z such that (y, z, A) ∈ Vn and z 6= 0, is of codimension at least 1 in the

set of all matrices. Indeed, choose (y, z, A) ∈ Vn, where z has exactly k ≥ 1 non-zero

coordinates. By Lemma 4.3, if k ≥ 2, then we are done. The next Lemma deals with

the remaining case k = 1.

Lemma 4.4. Let k = 1 or 2. There is no (y, z, A) in Vn with z = (1, . . . , 1, 0, . . . , 0)

where the first k entries are 1 and the last n− k entries are 0.

Proof. We first consider the case k = 1. Assume that there is (y, z, A) in Vn where

z = (1, 0, . . . , 0). Then, there is s ∈ C such that (sz + y)2 = z2 + y2. From this we

have

0 = z +A.(z3 + z ∗ y2) = (Id+A.∆[z2 + y2]).z

= (Id+A.∆[(sz + y)2]).z

which will imply z = 0 provided that Id + A.∆[(sz + y)2] is invertible. To this

end, it suffices to show that det(Id + A.∆[(sz + ty)2]) = 1 for all s, t ∈ C. In fact,
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since (y, z, A) is in Vn, we have that det(Id+D(s, t).A) = 0 for all s, t ∈ C, where

D(s, t) = ∆[(sz + ty)2]. The latter is the same as D(s, t).A is nilpotent, that is

(D(s, t).A)n = 0. Then,

(A.D(s, t))n+1 = A.(D(s, t).A)n.D(s, t) = 0,

which implies that A.D(s, t) is also nilpotent for every s, t. This then implies that

det(Id+A.D(s, t)) = 1 for all s, t as wanted.

It remains to consider the case k = 2. In this case, we write A in the block form

as (
A1,1 A1,2

A2,1 A2,2

)
where

A1,1 =

(
a b

c d

)
is a 2× 2 matrix. We have as before A2

1,1 = 0 and

(1, 1)t +A1,1.(1 + y21 + y22)t = 0.

Multiplying the above system with A1,1, using that A2
1,1 = 0, we find that

c+ d = b− d = a+ d = −1 + d(y21 − y22) = 0.

Now consider again the condition det(Id + ∆[(sz + ty)2]) = 0 for all s, t ∈ C.

Expanding the left hand side as a polynomial in variables s, t, we have that its

homogeneous part of degree 2, which is

a1,1(s+ ty1)2 + a2,2(s+ ty2)2 + a3,3(ty3)2 + . . .+ an,n(tyn)2,

must be 0. In particular, consider the coefficient of the term st, we find that a1,1y1+

a2,2y2 = −d(y1− y2) must be 0. This contradicts the condition −1 + d(y21 − y22) = 0

we found in the above.

The conclusion of Lemma 4.4 does not hold for the case k = 3 and bigger, see

Section 2. For Druzkowski maps, see however Sections 3 and 5.1.

The set of matrices which satisfies Condition C1 is big, and is dense in the

set of matrices of a given rank r. Here is an explicit calculation illustrating the

above arguments. Here we illustrate the situation when n = 2. In this case, by the

same argument as that of Lemma 4.4, the set of matrices A which do not satisfy

Condition C1 is the set of all 2× 2 matrices A of the form A = DA0D
−3, where D

is an invertible diagonal matrix and A0 is the matrix(
1 −1

1 −1

)
Hence this set is only of dimension 2, and since the set of 2× 2 matrices of rank at

most 1 has dimension 3, we see that almost all matrices satisfy Condition C1.



March 5, 2020 12:38 WSPC/INSTRUCTION FILE
NewResultJacobianCv2

20 Tuyen Trung Truong

4.3. Application: The case of symmetric Druzkowski maps

A Druzkowski map FA(x) = x + (Ax)3 is called symmetric if its Jacobian is a

symmetric matrix. This is the same as that ∆[(Ax)2].A is a symmetric matrix for

all x ∈ Cn. In [5] and [13], it was shown that symmetric Druzkowski maps satisfy the

Jacobian conjecture. The proofs in these two papers are quite similar, and proceed

by induction on the dimension n. In this subsection, we give a simpler and more

direct proof of this fact.

Proof. Assume that FA(x) is a symmetric Druzkowski map. To show that FA

satisfies the Jacobian conjecture, it suffices to show that if z+A(z3)+A.((Ay)2∗z) =

0 then z = 0.

First, we observe that

A.[∆(Ax)2].A.[∆(Ay)2] = A.[∆(Ay)2].A.[∆(Ax)2]

for all x, y ∈ Cn. In fact, because FA is symmetric and ∆[(Ax)2] is a diagonal

matrix, we find that

∆[(Ax)2].A = (∆[(Ax)2].A)t = At.∆[(Ax)2].

Here (.)t means the transpose of a matrix. Applying this and using that diagonal

matrices commute we have

A.[∆(Ax)2].A.[∆(Ay)2] = A.At.[∆(Ax)2].[∆(Ay)2]

= A.At.[∆(Ay)2].[∆(Ax)2]

= A.[∆(Ay)2].A.[∆(Ax)2].

Using this observation, now we finish the proof, i.e. showing that if z +A(z3) +

A.((Ay)2.z) = 0 then z = 0. Note that z in the image of A, hence we can

write z = Ax for some x. Since FA is a Druzkowski map, we have (A.∆[z2])n =

(A.∆[(Ax)2])n = 0. The equation for z implies that

z = −(Id+A.∆[z2])−1.(A.∆[(Ay)2]).z.

Hence we are done if it can be shown that (Id + A.∆[z2])−1.(A.∆[(Ay)2]) is a

nilpotent matrix. The latter fact is equivalent to that (A.∆[(Ay)2]).(Id+A.∆[z2]),

and hence (Id + A.∆[z2]).(A.∆[(Ay)2]), is nilpotent. Using the fact proven above

that A.∆[z2] and A.∆[(Ay)2] commute, we find that

[(Id+A.∆[z2]).(A.∆[(Ay)2])]n = (Id+A.∆[z2])n.(A.∆[(Ay)2])n = 0.

The last equality follows since A is a Druzkowski matrix.

Remarks.

1) Besides showing that symmetric Druzkowski maps satisfy the Jacobian con-

jecture, [5] and [13] also classified all such maps. While our proof does not do so,

it also proves the more general result of Theorem 1.4. Indeed, the first part of the

above proof is only to establish that A.∆[x2] and A.∆[y2] commute for all x, y, and
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then the last part of the above proof uses only this commutativity and the fact that

A.∆[(Ay)2] is nilpotent. In the proof indicated in Subsection 4.1, we also established

these needed conditions, and hence the remaining of the proof of Theorem 1.4 can

proceed as here.

2) Meisters [24] defines a matrix A to be beautiful if ∆[Ax].∆[Ay].A is

nilpotent for all x, y ∈ Cn, which is similar to the condition that (Id +

∆[(Ax)2].A)−1.(∆[(Ay)2].A) is nilpotent which we used in the above proof. We

note that both of these conditions are closed under taking limit in the usual topol-

ogy on the entries of the square matrices, and are not satisfied by Example 1 in

Section 2.5 above.

5. Some approaches

We propose in this section several approaches towards resolving the Jacobian conjec-

ture and detailed strategies for implementing them. We start with some comments

on the effectiveness of the approaches proposed and the comparisons to several

existing approaches of other authors.

5.1. The effectiveness of our reformulations and comparisons to

existing approaches

In this subsection we explain theoretically why the Conditions C1 and C2, and

Theorems 1.7 and 1.8 are quite effective in practice. We also compare our approach

to several existing approaches.

In many of the existing approaches, a common theme is to construct the inverse

of a given Keller map. Usually, this is achieved by writing out a formula for the in-

verse and giving a bound for the degree of the inverse. The bound is then translated

into a corresponding system of polynomials. For example, the derivation criterion

Proposition 1.2 is of this nature, and the bound there is dn−1 which grows expo-

nentially. For a Druzkowski map in dimension n this bound is 3n−1 which is quite

big even if n is small. There are several approaches (for example [16] and [1]) which

reduce the complexity. However, as illustrated in [1] (see Example 3 in Section 2.5

above), in practice the computations following this ”finding inverse” approach are

still quite large.

Our approach is to check instead only the injectivity and does not try to con-

struct the inverse map. For a general map, checking whether it is injective may be

not any easier than finding its inverse. However, this turns out to be very suitable

for Druzkowski maps, because of special properties of Linear Algebra. Here, given

an n × n matrix A, we only need to check that a system of n equations of degree

3 in 2n variables y1, . . . , yn and z1, . . . , zn has a very simple solution set, meaning

{z1 = . . . = zn = 0}. Moreover, the application of the simple transformation in

Lemma 3.1 turns out to be very essential in order to reduce to the special cases in

Theorems 1.7 and 1.8 and to save time in practical situations. The work we need
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to do is reduced and since the solution set is very simple, we expect that it is quite

effective to use in practice. The results in Section 2.5 illustrate this point.

In the same vein (and actually with more evidences as will be shown), we can also

see that applying Theorem 1.7 is quite effective in practice. In fact given a matrix

A and a special value z = Zk, the system we need to check for Conjecture NC

consists of only n equations in n variables y1, . . . , yn. The solution set we look for is

the simplest possible, that is the empty set. Moreover, a generic Druzkowski matrix

satisfies Conjecture NC automatically, as shown in Theorem 1.8. When k < n, the

proof of Theorem 1.7 shows that we can consider only special values y for which

y2k+1 = yk, . . ., y2n = yn, thus the mentioned system becomes one of n equations in

only k variables y1, . . . , yk and hence is expected to have no solutions because of the

dimension reason. All these points come together to help us to solve these systems

very quickly in practice, as illustrated in Section 2.5.

Here we note one other feature, that of the generality of the approaches. Most of

the existing approaches are for Keller maps only, because they consist in construct-

ing inverse maps. So while these approaches are useful in that they not only check

that a given Keller map has an inverse but also construct that inverse, they are not

intended for maps which are not invertible. The Mathieu subspaces approach in the

paper [12] is one of the rare generalisations of the Jacobian conjecture which still

holds until now. Our approaches here point out some more possible generalisations

of the Jacobian conjecture: one is that Condition C1 is true for all Druzkowski ma-

trices, one other is that Conditions C1 and C2 are true for all matrices with integer

coefficients, and yet another one is that Wn is connected. The authors of [12] show

that the conditions in their paper are satisfied by many polynomial maps which

are not invertible. Likewise, here we show that Conditions C1 and C2 are true for

many matrices which are not Druzkowski. Moreover, we show that Conditions C1

and C2 are true for a dense set of square matrices, and this enables us to propose a

heuristic argument for the truth of the Jacobian conjecture. However, the Mathieu

subspaces approach in [12] is probabilistic in nature and their conditions involve all

polynomials and a parameter m to run all over N, hence seems not easy to employ

computer programs to study (and there is no such attempt as far as we know).

In contrast, our approach is algebraic in nature, and hence is very easy to employ

computer programs.

5.2. Approach 0: Checking Conjecture NC with a generic

Druzkowski map

This is the approach that we find most practical and is based on the arguments

in Section 5.1. The idea is as follows. As pointed out in Section 5.1, a generic

Druzkowski map satisfies the criteria in Theorem 1.8, hence we expect to be able to

check very quickly that the Groebner Basis for the system Zk+A.(Z3
k+Zk∗(A.y)2) =

0 (or even the stronger system Zk +A.(Z3
k + Zk ∗ y2) = 0) is {1}. Then, we will be

able to write 1 in terms of the n polynomials defining the system. If we have done
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this for a big enough number of Druzkowski matrices in a certain dimension n, we

will be able to write down (using extrapolation) 1 in terms of the n polynomial for

a general Druzkowski matrix of that given dimension n.

The difficulty here is that we do not know much about Druzkowski matrices in

higher dimensions. However, we do not really need to know all Druzkowski matrices

in a certain dimension. What we really need is to be able to generate a (finite)

”good” set of such Druzkowski matrices. Then, for each of Druzkowski matrices in

this finite set we expect to be able to check very quickly. This is very promising, for

example we can generate many such maps by starting from some classes of polyno-

mial automorphisms (there are many good such ones, for example the tame class)

and then going through the procedures given by Bass, Connell, Wright, Yagzhev

and Druzkowsk to produce Druzkowski matrices.

5.3. Approach 1: Proving inductively on k

From Theorem 1.7, there is also one approach that we can utilise that is of in-

ductively proving on k. This approach seems to be quite natural. Right now we

know that for k = 1 or 2, the approach works. The proofs in these cases show that

for these small values of k, only a small portion of the polynomials defining the

Druzkowski matrices is needed (more precisely, only polynomials of total degrees

1 and 2 are needed). Hence, we expect that to check Conjecture NC for a certain

value k, only polynomials of total degrees up to k are needed. Then, we can use

computer programs to check Conjecture NC for small values of k, and to deduce an

inductive argument based on the observed patterns.

We note that commonly, the approach used by other authors is to restrict the

ranks of A. However, the results proven using this approach all reduce to showing

that if the rank of A is very small (1, 2, 3) or very large n− 1, n− 2, n− 3, then A

is ”equivalent” to a matrix of a very special type. It is not expected that for other

values of the rank, the matrix A is still ”equivalent” to matrices of these types. So

it is not clear how to proceed with this approach for other values of rank A.

5.4. Some other approaches

Here we mention some other possible approaches.

- Approach 2: Checking Conditions C1 and C2 on a larger variety. For

Druzkowski matrices, Condition C2 is equivalent to the Jacobian conjecture. From

the experimental computations above, it seems that the stronger Condition C1 may

be also true for Druzkowski matrices. We also know that Condition C1 is true for

many other varieties. So if we assume that the Jacobian conjecture is true, then

there are varieties strictly containing the Druzkowski matrices on which Condition

C2 (and may be also Condition C1) holds. If we can find a ”nice” such variety (for

example if it is defined by less equations), then we can facilitate the use of computer

programs. To guess what should be such nice varieties, we may again do experiments
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with small dimensions or specific matrices. The ideal case is that Condition C2 is

true for all matrices. See the Remark in Section 5.1 for support to this approach.

- Approach 3: Checking Conditions C1 and C2 for integer matrices. Here is

another approach, which we feel is also promising. We know that it is sufficient to

check either Condition C1 or C2 is true for all integer matrices. This is in general

a hard problem belonging to the field of Diophantine equations, but we may go

around it in the following way. We can compute the projections from Vn∩{z = Zk}
(or Wn∩{z = Zk}) to the set of all n×n matricesMn. Since this image is contained

in a strictly smaller subvariety of Mn (Theorem 1.5), the closure of the image is

also contained in the same strictly smaller subvariety. The ideal defining the latter

(which then must be bigger than 0) can be computed explicitly ( [11]), and we can

look to see whether it contains some special polynomials P which is always nonzero

on rational numbers (in particular, if it is always positive on real numbers). (More

generally, we can check whether there is a polynomial P whose zero set is easy to

study.) We have searched on randomly generated matrices of various dimensions

and ranks, and did not yet find any counterexample to this approach.

- Approach 4: Checking that W ′n or Wn is connected. This approach is based on

Theorem 1.6, which says that JC(∞) is equivalent to the fact that W ′n is connected

for all n ∈ N. In particular, if Wn is connected for all n ∈ N then JC(∞) follows.

Connectedness of a variety is a classical subject in Algebraic Geometry, and in

principle it is easier to check whether a variety is connected than to compute the

Groebner Basis of the ideal defining it. The fact that Wn is defined by only n+ n2

equations makes the computations faster.

- Approach 5: Numerical methods. We can use numerical methods and ideas

behind them to help resolving Conjecture NC. One such method is the homotopy

continuation, which proposes to study a homotopy between a system of polynomial

equations S1 and another simpler system of polynomial equations S2, which we

expect to have the same number of solutions. In Conjecture NC, we expect that the

systems Zk + A.(Z3
k) + A.(Zk ∗ (A.y)2) = 0 have no solutions for any k = 1, . . . , n.

Hence, if S1 is the system in Conjecture NC with some value k, we can choose S2

any system without solutions. In particular, we may choose S2 to be the system in

Conjecture NC with a smaller value of k (e.g. 1 or 2), for which we already knew the

answer. This can be also done numerically by using computer programs on which

these methods are already installed.

5.5. A related problem

To prove JC(∞) it suffices to prove for generic Druzkowski matrices. It is hence an

important task to be able to generate more Druzkowski matrices so we can test the

approaches. If we are able to do so, we can use Theorems 1.7 to effectively check.
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