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Abstract

Climate is getting hotter — both in fact and as a research topic. Yet there is lit-

tle scientific consensus on the conflict potential carried by changes in climate and

weather patterns. Previous studies investigating the links between drought and con-

flict have relied on precipitation-based measures of drought. However, in the same

way that peace is not just the absence of war, drought is not just the absence of pre-

cipitation. What is needed is a greater focus on the relationship between the impacts

of drought and conflict potential. In this thesis, I identify three contrasting drought

indicators that are assumed to capture different theoretical concepts of drought:

a precipitation-based measure (SPEI); a vegetation-based measure (NDVI); and a

socio-economic measure (EM-DAT). These three measures are not only assumed

to capture different theoretical concepts of drought, but also different stages in the

drought cycle. Lack of precipitation may lead to less vegetation, loss of crops and de-

terioration of pasture, which in turn may spark a socio-economic disaster. By using

these three measures, I answer the research question: Do different conceptualisations

of drought affect the likelihood of communal conflict?

Drawing on novel high-resolution data on communal conflict events and droughts

in Sub-Saharan Africa from 1989 to 2014, this thesis evaluates the relationship be-

tween drought and communal conflict on the local level. Results from mixed-effects

multilevel logistic regression show that all three drought measures are associated

with a higher risk of communal conflict, but the effect differs across the various

measures. The higher the measurable physical impact of drought, or the closer we

get to measuring the socio-economic impacts of the drought, the higher the risk of

experiencing communal conflict.1

1Dataset and do-file used in this thesis can be downloaded from the following Dropbox folder:
https://www.dropbox.com/sh/6wqi2xdooqo7nkz/AADpOzER0DZ5SZ0QL9QwaFc6a?dl=0
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Chapter 1

Introduction

Climate is getting hotter — both in fact and as a research topic. In the preceding

years the relationship between climate and conflict has received broad attention. In

2007, Al Gore and the Intergovernmental Panel on Climate Change (IPCC) were

awarded the Nobel Peace Prize on the basis that climate change may lead to “in-

creased danger of violent conflicts and wars, within and between states” (Mjøs,

2007). Two years later, in his award speech for receiving the Nobel Peace Prize,

Barack Obama stated that “[t]here is little scientific dispute that if we do nothing,

we will face more drought, more famine, more mass displacement — all of which

will fuel more conflict for decades” (Obama, 2009). Yet neither of these statements

were built on solid scientific ground. For the last 15 years a number of researchers

has tried to unveil the true relationship between climate variability and conflict,

but results are diverging (Mach et al., 2019). In fact, results are so diverging that

other scholars have felt the need to call for peace among climate-conflict researchers

(Solow, 2013).

In order to better understand the causal mechanisms at play, I shed light on

what I argue to be a problematic aspect in the existing literature: how to measure

drought. Most research on the climate-conflict nexus focuses on the implications of

drought as drought is the natural hazard commonly assumed to carry the largest

conflict potential (von Uexkull, Croicu, Fjelde & Buhaug, 2016, p. 2). However,

with few exceptions, former researchers use precipitation-based measures as proxies

for drought (see e.g. Buhaug, 2010; Miguel, Satyanath and Sergenti, 2004; or von

Uexkull, 2014). This is problematic as a drought is much more than the lack of

1



rainfall. In the same way that peace is not just the absence of war, drought is not

just the absence of precipitation. Hence, I argue that precipitation-based measures of

drought lack operational validity as they are not always coherent with the researchers

own theoretical claims. In order to overcome this challenge, I use three different

measures of drought in order to answer the research question:

Do different conceptualisations of drought affect the likelihood of communal con-

flict?

These three different measures are The Standardized Precipitation Evapotranspira-

tion Index (SPEI), the most commonly used drought index which is mainly based

on precipitation anomalies; The Normalized Difference Vegetation Index (NDVI),

a remotely-sensed measure taking into account the level and quality of vegetation;

and The Emergency Events Database (EM-DAT), a database compiled of disaster

data from various crisis reports. My main reason for using these three indicators

of drought is twofold. First, these indicators may reflect three different theoreti-

cal definitions of drought. SPEI can be perceived as a measure of meteorological

drought, NDVI as a measure of agricultural drought and EM-DAT as a measure of

socio-economic drought. Second, these three measures may represent a sequence of

drought, from lack of precipitation to lower vegetation quality to a socio-economic

disaster, all playing a key role in the hypothesised link between drought and armed

conflict.

To investigate the conflict potential carried by these drought indicators I use

communal conflict incidences as the dependent variable. Communal conflicts are

small-scaled, non-state conflicts and are commonly assumed to be particularly prone

to climate variability (Butler & Gates, 2012; Fjelde & von Uexkull, 2012; Nord-

kvelle, Rustad & Salmivalli, 2017). These conflicts are particularly prominent in

Sub-Saharan Africa (Brosché & Elfversson, 2012). Moreover, a large number of

communal conflicts in Sub-Saharan Africa is between farmers and herders2, which

has been a prominent conflict type for decades. Since both farmers’ and herders’

livelihood rely on stability from nature, farmers rely on water for crops and herders

on healthy pasture, these are expected to be particularly vulnerable to climatic

shocks. For these reasons I limit the scope of this thesis to focus on Sub-Saharan

2In this thesis I use the term “farmer-herder conflict” as an umbrella term for all conflicts
consisting of either farmers, pastoralists or both.

2



CHAPTER 1. INTRODUCTION

Africa. Due to the availability of data, I focus on the time period between 1989 and

2014.

In order to construct a convincing answer to the research question, I run a

spatially disaggregated multilevel logistic regression analysis. To capture the local

dynamics, I use grid cells as units to allow for variation in drought and conflict

within countries and sub-national units. Since communal conflicts tend to be small-

scaled conflicts often taking place close to the source of disagreement (Fjelde &

Østby, 2014), using grid cells seems analytically favourable. Moreover, since data

are nested in a panel-data structure, I apply multilevel logistic regression as this

estimator is well suited to handle nested observations. In other words, contrary to

regular logistic regression or ordinary least squares (OLS) regression, the multilevel

model does not assume independence of all observations. This is favourable as it

allows measuring both whether some areas are more prone to experience drought

and conflict, and whether the droughts and conflicts also tend to happen within the

same temporal unit. Thus, I do not only consider the variation between cells, but

also within cells over time.

1.1 Relevance and Contribution

To the author’s knowledge this is the first large-N study investigating the effect of

drought on violent conflict measuring different theoretical definitions of drought.

Existing studies have examined the impact of various drought indicators, but all

indicators have captured the same theoretical version of drought, namely meteoro-

logical drought (see e.g. Theisen, Holtermann & Buhaug, 2011). Meteorological

drought is commonly defined as a measure based on the lack of rainfall. However, it

is not the lack of precipitation per se that carries conflict potential, it is rather the

impact of the lack of precipitation. Therefore, this thesis attempts to get closer to

the tipping point where a drought may spark a conflict, by looking at more concrete

operationalisations of drought.

Based on Wilhite and Glantz (1985), I argue that SPEI can be used as a proxy

for meteorological drought, NDVI as a proxy for agricultural drought and EM-DAT

as a way of measuring socio-economic drought. As briefly touched upon, these

3



1.1. RELEVANCE AND CONTRIBUTION

three measures do not necessarily reflect three different concepts of drought, but

can also be perceived as three different components in the causal chain of a drought.

However, regardless of whether these indicators reflect three different concepts or

three different components of the same concept, this would still mean that both

NDVI and EM-DAT are closer to measuring the social impacts of a drought than

SPEI. Ultimately, it is the social impacts of drought we expect to carry conflict

potential.

Based on existing theory and former findings, I create two testable hypotheses.

The first hypothesis suggests that there should be a positive relationship between all

three drought indicators and the likelihood of communal conflict. Since all droughts

are assumed to deteriorate living conditions of farmers and herders, the likelihood

of violent conflict over scarce resources are assumed to be higher during and after

droughts (Homer-Dixon, 1999). The second hypothesis states that the greater phys-

ical impact of the drought, the higher likelihood of experiencing conflict. Here I

assume that measuring meteorological drought can be perceived as a measure con-

taining a low degree of physical impact. Measuring the vegetation quality can be

perceived as measuring the physical impact of a drought to a higher extent than

solely relying on precipitation-based measures. And measuring the socio-economic

consequences of a drought can be perceived as the measure containing the highest

level of physical impact. The hypothesis therefore suggests that the closer we get

to the tipping point where the impacts of drought are expected to contribute to

conflict, the higher the likelihood of conflict. Hence, I expect SPEI to a have a

low, albeit positive, effect on the likelihood of communal conflict; NDVI to have a

medium effect; and EM-DAT to have a strong effect.

This study is an important contribution to the research frontier as it raises

questions on elements largely neglected in previous research: what is a drought

and how should we measure it? Thus, the aim of the study is to examine other

operationalisations of drought, which in turn may be used to measure drought in

future research. Moreover, the relationship between the different operationalisations

of drought and conflict also reflect different implications.

4



CHAPTER 1. INTRODUCTION

1.2 Findings and Implications

My thesis offers several findings and implications concerning the relationship be-

tween drought and conflict. First, all three drought indicators are positive in the

main model where I consider the direct, indirect and total effect of drought. Thus,

they all point in the same direction that droughts are associated with a higher like-

lihood of seeing communal conflict across Sub-Saharan Africa. This supports the

first hypothesis that all drought measures are associated with a higher likelihood of

communal conflict.

Second, although the three drought indicators point in the same direction, the

size of the coefficients vary in line with my second hypothesis. The SPEI variable

is only significant when considering the lack of precipitation in neighbouring areas.

When all neighbouring cells experience a SPEI drought, the odds of seeing commu-

nal conflict increase by 47% controlled for confounding factors. NDVI, on the other

hand, is significant in all models and suggests that an NDVI drought increases the

odds of experiencing conflict by 39-92% depending on whether the drought occurs in

the main cell, neighbouring cells or both. EM-DAT obtains by far the strongest pos-

itive and significant coefficients, suggesting that a socio-economic drought doubles

the odds of experiencing violent conflict. This supports the second hypothesis that

the larger physical impact of the drought, the higher probability of experiencing a

communal conflict. Moreover, this could also be interpreted as the closer we get to

measuring the social impacts of a drought, the higher the conflict potential.

The third major finding in this thesis is that comparing vegetation quality

(NDVI) across land types is problematic. Some areas consisting of cropland, shrub-

land and grassland have a higher variation in vegetation than areas covered by trees

and rainforest. This raises a fundamental question: Do all land types have the same

probability of experiencing drought? The answer to this question affects the compu-

tation of the NDVI cutoff. I argue that some areas are more prone to experiencing

droughts, hence I calculate a percentage-based cutoff from the cell mean, instead

of basing the cutoff on the standard deviations of each cell. This makes some ar-

eas more likely to experience NDVI droughts than others. However, this imposes a

problematic aspect concerning the causal claims as only some areas are able to expe-

rience drought and these tend to be the same areas experiencing communal conflict.

5



1.3. STRUCTURE OF THE THESIS

To further investigate this, I run a subset regression analysis of the Sudano-Sahelian

Zone and results show that two of the three NDVI estimates are negative, albeit

not significant. This means the correlation between NDVI drought and communal

conflict is based on spatial correlation (taking place in the same areas) rather than

temporal correlation (taking place in the same years). Thus, the generalisability of

the effect of NDVI drought on conflict should be carefully considered.

Nonetheless, the findings in this thesis are important. First they have scientific

implications. Since there are differences between SPEI, NDVI and EM-DAT regard-

ing the relationship between drought and communal conflict, they capture different

aspects of a drought. I am not to say that NDVI or EM-DAT measure drought better

than SPEI, but they arguably capture some aspects of drought that SPEI are not

able to capture. Hence, further research should take this into consideration when

measuring drought. Moreover, the findings also have political implications. If socio-

economic drought carries a larger conflict potential than meteorological drought;

how can we prevent meteorological droughts becoming socio-economic droughts?

Drought resilience, such as irrigation and general improvements in living standards,

makes people less vulnerable to meteorological drought. Hence, results from this

thesis also suggest that these improvements could potentially reduce the risk of

experiencing communal conflict.

1.3 Structure of the Thesis

I have started this thesis with a summary of the project and a short introduction of

the knowledge gap this thesis is trying to fill. The remaining structure of the thesis

is as follows:

Chapter 2: I continue the thesis with an outline of the ongoing research debate

through a literature review. First, I summarise the research conducted on climate

variability and conflict in general, with a particular focus on the relationship between

drought and conflict. Moreover, I present a discussion of the literature on communal

conflict. Through the literature review I highlight the knowledge gap which this

thesis seeks to fill.

6



CHAPTER 1. INTRODUCTION

Chapter 3: In chapter three I present my theoretical framework and argument. In

this chapter I elaborate on the exact definitions of drought and conflict applied in

this thesis. Here I also present my theoretical argument and argue why this thesis

is scientifically interesting. I end the chapter by formulating the hypotheses I will

be testing in the analysis.

Chapter 4: In the fourth chapter I present the data used in the analysis. Since

one of my main contributions to the research frontier is the use of new and un-

conventional ways of measuring drought, I devote a relatively large space to this

chapter. I carefully discuss the strengths and limitations with the different drought

indicators and examine the correlation between them. Finally, I discuss the use of

control variables, which has been source of debate in this research field, and outline

the control variables used in the analysis.

Chapter 5: Chapter five is devoted to the research design and statistical methods

applied in order to test the various hypotheses. I begin this chapter with a brief

discussion of the role of causality in social science, before I elaborate on the value

of the multilevel logistic regression model. I end the chapter by examining the most

important assumptions in order to be able to draw causal inferences from the results

estimated by the multilevel model.

Chapter 6: In the sixth chapter I present and analyse the results from the regres-

sion models. In order to make sure these results are robust; I run several robustness

tests and discuss whether using a sample consisting of the whole Sub-Saharan Africa

is problematic when examining the relationship between drought and conflict. Fur-

thermore, I briefly discuss whether the three drought indicators should be considered

three different components of a drought, rather than three different definitions of

drought.

Chapter 7: In the final chapter I summarise the thesis, discuss its strengths and

limitations, as well as its political and scientific implications. I end the chapter, and

thesis, by proposing several interesting avenues for future studies on the drought-

conflict nexus.
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1.4. TECHNICAL NOTE

1.4 Technical Note

This paper has been written in the Computer Modern font made by Donald E. Knuth

using LATEX. All data processing and statistical analyses have been conducted in

Stata/SE 15.1. All graphs have been made in R using the ggplot2-package and

maps have been made using QGIS version 3.8.3-Zanzibar. Spatial weights have

been constructed using GeoDa 1.14.
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Chapter 2

Literature Review

This chapter is devoted to the existing literature on the climate-conflict nexus. I

divide the chapter in two. First, I begin by outlining the literature on climate

variability and conflict. This is a relatively new research field emerging mostly

during the last two decades. Second, I outline the literature on communal conflicts

in particular, with the main theoretical focus on farmer-herder conflicts.

2.1 Climate Variability and Conflict

The idea that weather and climatological factors carry conflict potential has ex-

isted for centuries. For instance, in Shakespeare’s Romeo and Juliet, Benvolio tells

Mercutio that the hot weather makes it more likely that a fight will break out.

Instead of retreating inside, they stay outside, and violent clash breaks out. Sim-

ilarly, in L’Étranger by Camus, the protagonist Mersault suffers a heat stroke on

the beach and eventually ends up shooting a man. And in Roman Blood by Saylor,

Gordianus explains to Tiro that the number of stabbings usually increase during

warmer weather in Rome.

Although all these three examples are from fictional literature, they all portray

the same scenarios where humans are more violent during harsh weather conditions.

Are the relationships the authors illustrate solely fictional or are they rather based

on real connections?

The research field on climate and conflict has emerged over the last two decades.

When researchers first started exploring the field, the focus was mainly put on the
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direct linkages between climate variability and conflict such as the effect of tempera-

ture or precipitation on conflict. In Africa, Burke, Miguel, Satyanath, Dykema and

Lobell (2009) find a positive relationship between higher temperatures and more

conflict, suggesting that more conflicts take place during warmer years. Similarly,

Miguel et al. (2004) find a positive relationship between less precipitation and more

conflicts in Sub-Saharan Africa. However, both these studies have been challenged

in later years. Buhaug (2010) argues that Burke et al.’s (2009) findings are only

valid for one specific operationalisation of conflict, and the significant relationship

diminishes with further robustness tests. Similarly, Ciccone (2011) finds that Miguel

et al.’s (2004) findings are only valid when using data between 1979-1999, not when

the data are extended to 2009. In a response, Miguel and Satyanath (2011) suggest

that this may be due to Africa’s recent economic growth in non-agrarian sectors

making people less vulnerable to climatic shocks.

In following years, most research has focused on the relationship between drought

and conflict, as drought is the climatic hazard commonly assumed to carry the

largest conflict potential (von Uexkull et al., 2016, p. 2). When measuring drought,

researchers have tended to use proxies such as either raw precipitation data or

standardised measurements such as The Standardised Precipitation Index (SPI).

Counter-intuitive to most hypotheses, Theisen (2012) and Witsenburg and Adano

(2009) find that wetter years are associated with both more conflicts and more in-

tense conflicts in Kenya. Meier, Bond and Bond (2007) find the same association

in the Karamoja Cluster – the border region between Kenya, Uganda, South-Sudan

and Ethiopia. A suggested explanation for this relationship is that more rainfall

leads to higher vegetation and more camouflage, which in turn makes it easier to

track and ambush cattle without getting caught (Meier et al., 2007, p. 731). Simi-

larly, wetter years lead to higher economic value of raiding pastoralists’ cattle than

during dryer years and with increased rainfall, violent actors may find it easier to

expropriate wealth from the population (Theisen, 2012, p. 84; Salehyan & Hendrix,

2014, p. 241). On the other hand, other scholars find that warmer years see more

conflicts in East-Africa and Sub-Saharan Africa in general, whereas precipitation

does not matter (O’Loughlin et al., 2012; O’Loughlin, Linke & Witmer, 2014).

In recent years, researchers have evolved beyond the use of sole precipitation
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data to more complex drought-measures. Salehyan and Hendrix (2014) use Palmer’s

Drought Severity Index (PDSI)3 and find that across Africa, more precipitation, not

droughts, are associated with more conflicts. Von Uexkull et al. (2016), Harari and

Ferrara (2018) and Döring (2020) all use the Standardized Precipitation Evapotran-

spiration Index (SPEI) which builds on SPI, but also takes into account potential

evapotranspiration such as temperature. Evapotranspiration is defined as the sum

of evaporation, which comprises water vaporisation from non-living objects such

as soil, water bodies and wet surfaces, and transpiration, which includes water va-

porisation from plants (Berner Jr, 2009). Although both PDSI and SPEI arguably

measures drought better than solely relying on precipitation, they primarily measure

meteorological drought.4

Additionally, researchers have focused on different types of conflict. Hendrix

and Salehyan (2012) use a broad definition of conflict by including disruptive activi-

ties such as demonstrations, riots, communal conflict and anti-government violence.

Across Africa, they find that wetter years are associated with more violent conflict.

Whereas extreme deviations, such as particularly dry and wet years, are associated

with all types of conflict – not just violent conflict. Similarly, in East-Africa, Raleigh

and Kniveton (2012) find differences between conflict types. Particularly dry years

are associated with more rebel conflicts, whereas wet years are associated with more

communal conflicts.

A large focus has been put on communal conflicts as these conflicts are expected

to be particularly prone to weather events. By focusing solely on communal conflicts,

Fjelde and von Uexkull (2012) find that the likelihood of experiencing communal

conflict is higher following a drought in Sub-Saharan Africa. Nordkvelle et al. (2017)

find that droughts increase the likelihood of experiencing communal conflicts in

Nigeria, Kenya, Uganda, Sudan and India. Similarly, Döring (2020) finds that the

lack of water availability, not just rainfall, but also the lack of ground water, is

associated with more communal violence.

Due to a lot of contradictory findings and a lack of consensus, researchers have

argued that there does not seem to be any clear direct linkages between climate

3The PDSI measures meteorological drought through a combination of precipitation, tempera-
ture and soil condition (Salehyan & Hendrix, 2014).

4I elaborate more on various drought definitions in Chapter 3.
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variability and conflict. Instead researchers should better specify the contextual

factors in which climate variability is assumed to affect conflict (von Uexkull et al.,

2016). Some of these factors have been agricultural production and agricultural de-

pendence. In Sub-Saharan Africa, von Uexkull (2014) finds that areas with rainfed

croplands see an increased risk of civil conflict violence following droughts. Simi-

larly, Harari and Ferrara (2018) find that droughts during growing season are both

associated with more conflict events and conflict onsets in Africa in general. On the

other hand, when examining ethnic groups dependent on agriculture, von Uexkull

et al. (2016) find no clear relationship between drought and conflict onset, but a

relationship between drought and conflict events, suggesting that droughts may lead

to longer conflicts, but not necessarily more conflicts.

Focusing on ethnic groups, Theisen et al. (2011) investigate the relationship

between drought, ethnic marginalisation and conflict. They do not find any evidence

of a relationship between drought and civil conflict, although they find a strong link

between ethnic marginalisation and conflict. Suggesting that politics and structural

factors cause conflicts, not the environment.

When focusing on drought and communal conflict, researchers often assume the

conflict potential induced by drought is mediated through resource scarcity. A sec-

ond way drought is assumed to affect conflict potential is through the loss of food

production and higher food prices. Buhaug, Benjaminsen, Sjaastad and Theisen

(2015) find a strong connection between weather patterns and changes in food prices,

but no relationship between food prices and violent conflict. On the other hand,

Koren (2018) finds that in years where wheat and maize yields are higher, coun-

tries see more conflicts. Fjelde (2015) investigates individuals’ propensity to take

up weapons, and finds that income shocks in the agricultural sector substantially

increase the risk of violent events, suggesting that loss of income makes farmers and

pastoralists more inclined to join rebel groups. Similarly, in Africa, both Vestby

(2019) and von Uexkull, d’Errico and Jackson (2020) find that participation in vi-

olence would have been more likely if an individual experienced a deterioration of

living conditions due to drought. On the other hand, Linke, O’Loughlin, McCabe,

Tir and Witmer (2015) find little support that droughts make people more likely to

support the use of violence in three specific regions in Kenya.
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From this literature review so far, it is evident that research on the climate-

conflict nexus is prone to different contextual specifications and operationalisations.

Even two meta-studies trying to sum up the debate reach different conclusions

(Hsiang, Burke & Miguel, 2013; Theisen, Gleditsch & Buhaug, 2013). Moreover,

Busby (2018) argues that a reason for this conundrum is due to the inclusion or

exclusion of control variables. According to Busby, studies not including control

variables tend to find a strong relationship between climate variability and conflict,

whereas studies including these not tend to find any clear relationship. I elaborate

more on the importance of, and reason for, including control variables in Chapter 4

and 5.

In order to make a robust recap of the ongoing debate on climate and conflict,

Mach et al. (2019) conduct expert interviews with eleven climate and conflict ex-

perts.5 They find that all experts agree that climate variability have affected armed

conflict within countries in some way over the past century. However, they also agree

that other factors carry a larger conflict potential than climate variability, such as

low socioeconomic development, low capabilities of the state, inter-group inequality

and recent history of conflict (Mach et al., 2019, p. 194). Across these experts, there

is low confidence in the exact mechanisms through which climate variability affects

conflict risks. In particular, economic shocks and dependency on natural resources

are judged likely to be one possible mechanism of the climate-conflict relationship.

Climatic hazards can hinder agricultural productivity or affect food prices, while

also have direct effects such as floods, droughts, heat waves or cyclones (Mach et

al., 2019, p. 195). However, on the other hand, dependency on natural resources

can also stimulate cooperation and thus decrease conflict risk if conditions are un-

favourable for sustaining an armed group (Mach et al., 2019, p. 195). One example

of this is Witsenburg and Adano (2009) finding that people in northern Kenya do

not necessarily engage in violent conflict over access to water resources. Instead

of causing conflicts, droughts and times of resource scarcity foster cooperation and

warring communities are seen to reconcile in order to use water and pasture together

(Witsenburg & Adano, 2009, p. 520).

5These eleven experts are Halvard Buhaug, Marshall Burke, James D. Fearon, Christopher
B. Field, Cullen S. Hendrix, Jean-Francois Maystadt, John O’Loughlin, Philip Roessler, Jürgen
Scheffran, Kenneth A. Schultz and Nina von Uexkull.
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To sum up the literature on climate and conflict, it seems as if findings diverge

based on the inclusion or exclusion of contextual variables and the causal pathways

examined. Yet one of the few things researchers have in common is the use of

precipitation-based drought measures as their explanatory variable. Hence, there is

a scientific knowledge gap regarding whether other operationalisations of drought

yield different estimates on the conflict risk.

2.2 Communal Conflict

The literature on communal conflicts tends to be different from the literature on

climate and conflict relationships. Whereas most research on the climate-conflict

nexus is quantitative, research on communal conflicts tends to be qualitative with

in-depth case studies and ethnographic research.

A communal conflict is often defined as a conflict between informal groups

(Brosché & Elfversson, 2012). In short, this means that neither conflict part is

a state nor a permanent rebel group. In Sub-Saharan Africa, a large part of com-

munal conflicts is between farmers and herders (von Uexkull & Pettersson, 2018).

According to Turner, Ayantunde, Patterson and Patterson (2011) the literature on

farmer-herder conflicts has mainly clustered around two strands. The first strand

portrays these conflicts as often induced by resource scarcity and environmental

security. The second strand argues that these conflicts reflect cultural animosities

between farmers and herders, and should not be reduced to a simple case of envi-

ronmental security.

The first strand of literature on this type of conflict relates to the resource-

scarcity hypothesis suggested by Homer-Dixon (1999). Homer-Dixon (1999) pro-

pose that scarcity of renewable resources can contribute to civil conflicts – such as

insurgencies or ethnic clashes. Scarcity of renewable resources can include water

resources, grazing land and arable land. Although Homer-Dixon (1999) is care-

ful in stating the exact linkages between scarcity and conflict and denotes that

“[e]nvironmental scarcity is never a sole or sufficient cause of large migrations,

poverty, or violence[...]” (Homer-Dixon, 1999, p. 16), he has often been depicted

as one of the forerunners of the environmental scarcity strand. One reason for this
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is that he argues that with the coming climate changes, we are likely to see more

conflicts with an environmental connection. This has led many to believe that there

exists a link between resource scarcity and conflict.

In the literature, there exist several examples on how drought and scarcity may

affect conflict. For example, Moorehead (1989, cited in Shettima & Tar, 2008) finds

that conflict between farmers and pastoralists in the Niger River delta erupted when

the delta became drier. Since the delta became drier, farmers started cultivating

new parts of the delta, overtaking pastoralists’ grazing areas. Eventually, this led

to violent conflicts between the two groups. Similarly, Hundie (2010, p. 141) argues

that droughts in the mid-1990s in Ethiopia resulted in scarcity of rangeland. This

resulted in new routes for pastoralists, which eventually led to more frequent violent

confrontations between the Karrayyus group and the Afar group. Hundie (2010, p.

142) also found these conflicts to be more intense during droughts.

In South Sudan, the two most populous groups, the Dinka and the Nuer, have

been fighting each other for almost a century over agricultural land (Wig & Krom-

rey, 2018, p. 415). And across the border, in the state of Southern Kordofan in

Sudan, droughts have affected both the timing and the migratory routes pastoralist

groups use when moving north in the rainy season and south during the dry season

(Bronkhorst, 2011, p. 15). Conflicts have frequently erupted between pastoralists

and farmers because of these shifting routes (Bronkhorst, 2011). In the Asante

Akim North District in Ghana, droughts in neighbouring countries have led to a

large immigration of Fulani herders (Amankwaa, 2019). This is a typical example

of rural-to-rural migration which is often assumed to spark tensions between the

indigenous “sons-of-the-soil” and new migrants (Fearon & Laitin, 2003).

Even though there are many examples of conflicts where climate variability seems

to have played an important role, the scarcity-strand has been heavily criticised

for creating overly simplistic, reductionistic portrayals of conflicts which in fact

are socially produced (Benjaminsen, Maganga & Abdallah, 2009; Turner et al.,

2011). Similarly, Turner (2004) have argued that farmer-herder conflicts are complex

conflicts that environmental security analysts have used to extend the notion of

scarcity induced conflicts to more modern resource wars.

In Sub-Saharan Africa, occupations of farmers and herders are often tied to eth-
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nic and caste identities (Turner, 2004). Often these relationships are even more

complex where they are composed by social, political and economic strands such

as patron and client; landlord and tenant; sellers and buyers; or livestock owner,

trader, and herder (Turner, 2004, p. 872). Thus, solely reducing the conflict to

an ethnic climate war, may be simplistic. However, although the different groups

are dependent on each other, Breusers et al. (1998, cited in Shettima & Tar, 2008)

find that droughts in the 1970s and 1980s resulted in a breakdown in the balance

between farmers and pastoralists. Previously, farmers had depended on meat and

milk from pastoralists, and pastoralist had depended on crops and vegetables. Dur-

ing the droughts farmers started cattle breeding and pastoralists started cultivating.

Thereby leading to the disappearance of the interdependency between the groups

and larger competition between them. These new groups are often referred to as

agropastoralists.

Other scholars have argued that farmer-herder conflicts often have a political

origin associated with an ongoing process of pastoral marginalization (Benjamin-

sen, Alinon, Buhaug & Buseth, 2012; Benjaminsen & Ba, 2009). In many African

countries, national legislation tends to favour farmers in farmer-herder disputes, as

farmers are stationary and add ‘productive value’ to the land, whereas pastoralists

are non-stationary and exploit the land (Benjaminsen et al., 2009, p. 424). In the

Kilosa District in Tanzania, there is a narrative shared by farmers and local author-

ities that the main reason for farmer-herder conflicts is that herders overgraze their

own land and subsequently enter farmers’ land (Benjaminsen et al., 2009, p. 433).

Hence, as suggested during the expert interviews by Mach et al. (2019), political

marginalisation may be a more important contributor to the conflicts than climatic

factors. Moreover, in rural areas of Sub-Saharan Africa, institutions are usually

scarcely developed. Rent-seeking and corruption among government officials have

undermined people’s trust in institutions (Benjaminsen et al., 2012, p. 109). As

there are trust in institutions to settle these disputes, people often tend to take the

matters into their own hands.

Thus, whether or not climatic factors have played a causal role in these conflicts

is difficult to say. In some conflicts, there might be a combination of both strands

where there are political and economic underlying tensions and a drought may act as
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a triggering element of these grievances. In this thesis, I am not trying to determine

to what extent the drought causes the conflict or whether there are underlying

factors triggered by the drought. Instead, I am trying to unveil whether droughts

are associated with more communal conflict incidences.

In this chapter I have outlined the literature on both climate variability and

conflicts, as well as communal conflicts in particular. The literature on climate vari-

ability and conflict has gradually developed from focusing on the direct linkages to

more complex and conditional relationships between climate and conflict. However,

there is still a problematic paradigm — most researchers only measure meteorolog-

ical drought. As I will discuss further in the next chapter, this is in most cases not

compatible with the researchers’ own theoretic claims. The literature on communal

conflicts, on the other hand, has been characterised by a hard line between those

who believe climate variability have played a role in the conflicts, and those who

believe that all conflicts are essentially a result of social processes and politics. In

the next chapter I discuss how this thesis relates to this debate, and argue why

communal conflict is the most likely conflict type during drought.
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Chapter 3

Theoretical Framework

It has been argued that the elusiveness of the concepts climate and conflict can

explain why there is a scientific conundrum in the climate-conflict field (Salehyan,

2014, p. 1). Similarly, von Uexkull et al. (2016, p. 1) argue that the failure to

properly specify the political and socioeconomic context in which climate extremes

can aggravate tensions, may lead to ambiguous findings. Hence, specifying exactly

what is meant by a drought and how the drought is expected to affect the likelihood

of conflict, is of particular importance in this thesis. In order to carefully specify

these conditions, I divide this chapter in two. I begin the chapter by defining the

concepts of drought and communal conflict. In this part I go through commonly

used definitions of the concepts, but the main aim is to provide a clear picture of

what I put into these two concepts in this thesis. In the second part, I discuss how

drought may lead to conflict and outline the scientific value of this thesis arguing

why this research is crucial in a research field dominated by ambiguous findings.

3.1 Key Concepts

Before starting an in-depth analysis of the relationship between drought and conflict,

it is essential to provide clear and concise definitions of these two concepts.

3.1.1 Drought

What is a drought? People tend to have a relatively clear idea of what a drought is,

namely the absence of water. This coincides with Wilhite’s (2000) short definition
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of a drought as a “shortage of water to meet essential needs”. But what causes

this shortage of water? Is it caused by less precipitation than normal? Is it due

to higher temperatures causing more evapotranspiration? Or is it rather a result

of over-exploitation of available water reserves or other forms of mismanagement of

existing water resources? And is there a difference between shortage of water and

shortage of precipitation?

A drought is often described as a slow onset hazard (Wilhite, 2000). Unlike

sudden weather events such as tornadoes, earthquakes and tsunamis, it can be dif-

ficult to determine the exact start and end point of a drought. Hence, drought has

often been characterised as a “creeping phenomenon” (Tannehill, 1947). Moreover,

drought is a highly complex phenomenon as it may last for days, weeks, months or

even years, and both the direct and indirect effects of a drought can differ between

being slightly noticeable to being highly fatal. Thus, the harmful effects of a drought

may be difficult to identify.

Although “drought” is a widely used concept, the exact definitions tend to vary.

Wilhite and Glantz (1985) found over 150 different definitions of droughts when

examining published articles on drought. To systematise this, they created four dif-

ferent overarching categories: (1) meteorological drought, (2) agricultural drought,

(3) hydrologic drought and (4) socio-economic drought. In this thesis I use three

different measures of drought: SPEI, NDVI and EM-DAT. In order to theoretically

conceptualise the use of these drought indicators, I argue that SPEI can be labelled

as a measure of meteorological drought, NDVI as a measure of agricultural drought

and EM-DAT as a measure of socio-economic drought.6

A meteorological drought is based on precipitation anomalies (Wilhite & Glantz,

1985). Usually this is measured by comparing the rainfall from one period against

the average of the same period within an area. For instance, in 2014, The Democratic

Republic of Congo had an average rainfall of 1543mm per year, while Niger only had

151mm (FAO, 2016). This means that a meteorological drought in DR Congo would

require a much larger deviation in precipitation than in Niger, and hence comparing

absolute deviations in rainfall does usually not make sense. This also highlights the

6I do not have a measure capturing the concept of hydrologic drought as I started with the data
before I linked the measures to the theoretical concepts. For a thorough analysis of the relationship
between hydrologic drought and conflict see Döring (2020).
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need to look at drought by comparing local anomalies to the local normal as people

have adapted to these local living conditions for centuries. In particular, farmers

tend to cultivate in crops that benefit from the local environment, both in terms of

precipitation and temperature, but also in terms of soil condition. Hence, measuring

absolute rainfall deviations is not comparable across areas. Since SPEI is a measure

mainly based on the lack of rainfall, I argue that SPEI can be perceived as a measure

of meteorological drought.

An agricultural drought, on the other hand, refers to the amount of water needed

by crops during different growing stages (Wilhite & Glantz, 1985). A plant’s demand

for water is not constant, but dependent on the biological characteristics of each

plant and their respective growing season. For example, the root system of sweet

potatoes has a big surface allowing it to easily access available soil water, contrary to

other staple crops such as maize, cowpeas and rice (Loebenstein and Thottappilly,

2009). This makes the sweet potato more resilient to rainfall deviations than other

crops. In order to be characterised as an agricultural drought, the drought needs

to affect the crops. Just like the example of DR Congo and Niger, a field of sweet

potatoes would require larger rainfall deviations than a field of maize for it to be

characterised as an agricultural drought. Similarly, areas covered by rainforest are

much more resilient to rainfall deviations than grassland or cropland. An agricultural

drought also depends on the timing of the precipitation deviation. A meteorological

drought occurring during the winter would most likely not result in an agricultural

drought as it does not affect the plants’ growing season. Since NDVI measures the

quality of vegetation, it arguably captures these effects to a larger extent than SPEI.

Hence, I argue that NDVI can be labelled a measure of agricultural drought.

The third drought type is hydrologic drought. A hydrologic drought occurs when

the drought affects the water volumes in streams, rivers and water reservoirs. This

is often out of sync with meteorological and agricultural droughts, as this tends to

happen several months later than the rainfall deviation (Wilhite & Glantz, 1985,

p. 7). A strict interpretation of hydrologic drought only includes surface water.

However, some scholars have argued for ground water drought to either be included

in this category or added as an additional drought type (Mishra & Singh, 2010).

The fourth and last type of drought, socio-economic drought, occurs when the
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drought starts affecting humans’ daily life (Wilhite & Glantz, 1985). In other words,

when the water demand exceeds the supply. This could be caused by the lack of

precipitation during crucial times. But this could also be caused by human activity,

such as too much irrigation, over-exploitation of water resources or lack of proper

water management. Lack of proper water management can either be a result of

purpose, as seen in Israel and Palestine (Corradin, 2016), or as a result of a general

lack of capacity (Homer-Dixon, 1999). Sometimes the lack of water management

is referred to as “water scarcity” rather than “drought” (Pedro-Monzońıs, Solera,

Ferrer, Estrela & Paredes-Arquiola, 2015). However, I will not discuss the differences

between “water scarcity” and “drought” further as this debate is outside the scope

of this thesis. Instead I apply a broad concept of drought comprising more than

just the lack of precipitation. Since EM-DAT is based on crisis reports, it measures

droughts that affected people’s daily life to a large extent. Hence, I argue that

EM-DAT can be perceived as a measure of socio-economic drought.

As discussed in the previous chapter, most researchers on the climate-conflict

nexus tend to use the definition of a meteorological drought without an explicit

discussion of different drought types. When measuring meteorological droughts,

however, we are not able to properly determine whether the drought actually affected

the human life. Is a drought expected to carry conflict potential even though it does

not affect the people living in the respective area? This is a challenging question

this thesis seeks to provide a better understanding of.

The role of climate change

The growing focus on climate’s effect on human behaviour has emerged as a con-

sequence of the human induced climate change. Climate is usually defined as the

mean and variability of temperature, precipitation and wind over a longer period

— often 30 years (Cubash et al., 2013). Climate change, in particular, is defined

as a change in this mean over an extended period, typically decades or longer. If

we were to use data on the mean of climate over decades or longer, it would leave

us with very few data points and a limited variation in order to explain causality.

Hence, researchers have put the focus on climate variability instead. In conflict

literature, climate variability refers to shorter-term descriptions of weather, such
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as weeks, months or years, as opposed to the decade long time periods of climate

change (Vestby, 2018, p. 11).

Since 1880 the average global surface temperature on Earth has increased by

0.85◦C (Hartmann et al., 2013). This increase is further expected to exceed at least

2◦C compared to the 1850-1900 average (Collins et al., 2013).7 Even if countries

comply with their nationally determined obligations in the Paris Agreement, the

mean temperature is still expected to exceed 3-4◦C, even though the overarching goal

of the Paris Agreement is to prevent the temperature of exceeding 1.5◦C (Young,

2016).

Although the exact implications of climate change are still relatively uncertain,

there is evidence that there will be more climate extremes (Collins et al., 2013).

These trends are complex and diffuse and climate extremes will most likely affect

areas differently. For instance, there are indications that there will be more heavy

precipitation in North America, Central America and Europe, while there will be

less precipitation in other regions, such as Southern Australia and Western Asia.

Likewise, there exist indications that the number of droughts will increase in some

regions, such as the Mediterranean and parts of Africa, and decrease in others, such

as central North America and Australia (Collins et al., 2013).

With increased temperature, potential evapotranspiration is predicted to increase

by 1.5%–4% per ◦C warming (Scheff & Frierson, 2014). This leads to droughts being

projected to happen five to ten times more frequent in Africa, and current 100-year

events could occur every two to five years under 3◦C of warming (Naumann et al.,

2018). Furthermore, water supply-demand deficits could become fivefold in size for

most of Africa (Naumann et al., 2018). These effects have gradually started to

take place. In a recent round of Afrobarometer (2018), 48.3% of the population in

Sub-Saharan Africa said droughts had been much more or somewhat more severe

the last ten years, as opposed to 28.3% stating they were much or somewhat less

severe. Since droughts are expected to be more frequent in the future, there is a

7In the Fifth Assessment Report of IPCC (AR5) four different climate change projections are
used. These four projections are called Representative Concentration Pathways (RCP) and are
based on the radiative forcing in year 2100 relative to 1750. These four RCPs include one mitigation
scenario with low forcing level (RCP2.6), two stabilisation scenarios (RCP4.5 and RCP6.0) and
one scenario with high greenhouse gas emissions (RCP8.5). Temperature is unlikely to exceed 2◦C
for RCP2.6, while as likely as not to exceed 2◦C for RCP4.5, and likely to exceed 2◦C for RCP6.0
and RCP8.5 (Collins et al., 2013).
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growing demand for scientific knowledge on the exact causes and future implications

of droughts in particular, and other implications of climate change in general. One

of these implications may be violent conflict.

Impacts of drought

The impacts of drought can be devastating. Typical characteristics for drought im-

pacts are that they are non-structural and often spread over large geographical areas

(Wilhite, 2000). Thus, they may spand over large areas, but affect these areas differ-

ently. As discussed previously, there can easily be a meteorological drought without

any socio-economic consequences. This could be if the meteorological drought oc-

curs outside the growing season, or if the meteorological drought takes places where

there are few inhabitants or natural resources dependent on rainfall. In rural areas

dominated by rainfed agriculture, societies are particularly vulnerable to drought

(Cooper et al., 2008). These are areas without irrigation, meaning that agriculture

is solely dependent on rainfall and surface runoff. In Sub-Saharan Africa, more

than 95% of all agriculture are rainfed (International Water Management Institute,

2010). Combined with the fact that more than half of all workers in Sub-Saharan

Africa are employed in the field (Dercon & Gollin, 2014), this region is extremely

vulnerable to drought.

When farmers are dependent on rainfall, a drought can lead to severe losses of

income and livelihood. This is not only true for farmers, but also for pastoralists who

rely on drinking water and grazing land for cattle. In periods with severe droughts

this may fatally deteriorate their living conditions. If large societies are dependent

on rainfed agriculture, droughts may lead to loss of food production and eventually

result in famines. In these cases, the drought does not only affect the workers

dependent on rainfall such as farmers or herders, but whole populations. In the

period 2010-2012 the Horn of Africa experienced one of the worst famines in recent

years, putting more than 12 million people in need of urgent assistance as a result

of drought (FAO, n.d.). The exact number of deaths vary largely depending on the

source. While the EM-DAT database reports 20.000 fatalities (Guha-Sapir, Below

& Hoyois, 2016; Rosvold & Buhaug, 2020), Checchi and Robinson (2013) estimate

that approximately 250.000 lost their lives as a consequence of the drought.
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Although the direct impacts of drought, such as famines, water shortage and loss

of livelihood are well documented in the literature, there is still large uncertainty on

the conflict potential carried by drought.

3.1.2 Communal Conflict

Another central concept that needs a clear definition is communal conflict. In this

thesis I apply the definition used by the Uppsala Conflict Data Program (UCDP),

which defines a communal conflict as a “violent conflict between non-state groups

that are organised along a shared communal identity” (Brosché & Elfversson, 2012,

p. 35). This definition consists of three main parts which deserve further clarifica-

tion. First, a violent conflict refers to the fact that parties use lethal violence to

gain control over resources. This violence can be conducted with modern weapons

such as guns, or with less technical equipment such as sticks and stones. The re-

sources they fight over can either be physical resources, such as land areas, or more

abstract resources such as political power. Second, the actors are non-state groups.

This means that the groups are neither representing the state, nor the armed forces.

Finally, these groups are organised along a shared communal identity, which means

that the members share a common identity and the groups are not formally organ-

ised rebel groups. Communal identity is sometimes referred to as a common ethnic,

religious or national identification. However, similarly to Brosché and Elfversson

(2012), I leave this definition purposefully more open, as group identification can

be based on more than just ethnicity, religion or nationality, such as for instance

common history, culture or core values.

Farmer-herder conflicts

As mentioned previously, a large share of communal conflicts in Sub-Saharan Africa

consists of farmer-herder conflicts. In an in-depth study of non-state conflict data,

von Uexkull and Pettersson (2018) find that most communal conflicts in Africa

between 1989 and 2011 were between pastoralists and pastoralists (23%), pastoralists

and agropastoralists (17.5%) or farmers and pastoralists (13.6%). Less than 10% of

all communal conflicts in Africa contained neither farmers, nor pastoralists. Figure

3.1 shows a pie chart of the livelihood of the different actors in communal conflicts.
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Figure 3.1: Actors in communal conflicts

Hence, although I include all communal conflicts in the analysis, the main theoretical

focus will be on farmer-herder conflicts since these comprise a large share of the

conflicts included in the dataset.

Farmer-herder conflicts frequently erupt over the use farmland, grazing areas,

stock routes or access to water points (McDougal, Hagerty, Inks, Dowd & Conroy,

2015). Von Uexkull and Pettersson (2018) find that in 56.4% of all communal

conflicts either agricultural land, water resources or livestock were seen as an issue.

The rest of the conflicts were made up of other territorial issues (35.3%) such as

border demarcation that do not fall into agricultural land/water sub-issue category;

authority issues (26.5%) such as control of the local administration and influence in

the state administration; religion (6.1%) or other issues (13.6%). These categories

are not mutually exclusive, and since farmers and herders often are tied to different

ethnic groups, it can be hard to determine whether a conflict should be labelled as

a farmer-herder conflict, ethnic conflict or religious conflict (Turner et al., 2011).

One example of this is the ongoing conflict between Muslim herders and Christian

farmers in Nigeria. This conflict has been going on for decades, consisting of many

small-scale conflicts. These conflicts have commonly been portrayed by the media

as triggered by frequent droughts and the disappearance of grazing land and water

sources (Blomfield, 2018). However, in recent years terrorism by Boko Haram have
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been fuelling these tensions (Onapajo & Usman, 2015) and hence it might be even

harder to detect the cause of each conflict.

3.2 Theoretical Argument

The aim of this study is twofold. First, it is explanatory as I try to determine the

causal relationship between drought and communal conflict in Sub-Saharan Africa.

Second, it is exploratory in the sense that I use new ways of measuring drought than

previously used on the climate-conflict nexus.

3.2.1 Explanatory Argument

As pointed out previously, the exact pathways between drought and violence are still

not fully understood. One proposed way in which drought may contribute to violence

is through resource scarcity (Homer-Dixon, 1999). Scarcity of water resources, arable

land and grazing land may all contribute to disagreements between groups basing

their livelihood and income on these resources. When farmers lose crops as a result

of drought, they may expand their cultivation and end up in clashes over arable

land with other groups, such as Moorehead (1989, cited in Shettima & Tar, 2008)

found in the Niger River delta. Moreover, for pastoralists, droughts frequently drive

migration to well sites and rivers that members from other ethnic communities

use (Theisen, 2012). In Kenya, Detges (2014) found that communal violence is

more likely close to these well sites and Döring (2020) found that areas with lower

water capacity see more conflicts in general. Since pastoralists are nomadic herders

migrating with their livestock during the year, they usually follow the same routes

and cycles from year to year. However, if droughts deteriorate the grazing land on

these routes, they need to change routes. By moving to areas with richer water

resources and pasture, they may end up closer to other groups, making them more

likely to get involved in such disputes (Van Baalen & Mobjörk, 2016).

In the examples above, communal conflict is the most probable response to

drought in order to secure access to livelihood essentials such as grazing land, water

holes or agricultural land (Fjelde & von Uexkull, 2012; Hendrix & Salehyan, 2012).

While a state’s lack of response may spark grievances for both farmers and pastoral-
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ists towards the state, the most rewarding short-term response is often attacking

other societal groups and not the state (Fjelde & von Uexkull, 2012, p. 446).

Hence, another hypothesised pathway in which drought may cause conflict is

either through the loss of food production and higher food prices or through the lack

of responsiveness to the drought, which in turn may spark popular riots or driving

people to take up arms against the government. However, in line with Salehyan

(2014) and Seter (2016), I argue that researchers are not able to capture both these

causal pathways in one analysis as the outcome variable (the conflict type) and the

temporal and spatial scale of measurement will differ between these two pathways.

Whilst communal conflicts often take place close to the drought (Fjelde & Østby,

2014, p. 746), popular riots often take place in larger cities. Moreover, while a

communal conflict is assumed to take place in the same year as the drought is

occurring, popular riots should be measured with a temporal lag as it often takes

months or even a year for the drought to affect the food prices.

To sum up my explanatory argument, I systematise the argument according

to Seter’s (2016) four key elements when evaluating causal mechanisms on climate

variability and conflict. The first element refers to the most relevant actors. As I

have argued, since rainfall is a critical element for pastoralism and farming (Sulieman

& Young, 2019, p. 12) and more than two-thirds of the working force in Sub-Saharan

Africa are engaged in these activities (Stern, 2006, cited in Fjelde & von Uexkull,

2012, p. 445), farmers and pastoralists are the most likely actors. The second

element is determining the type of climate variability most likely to affect these

actors (Seter, 2016). First, droughts is by far the most common and harmful disaster

for both livestock and agriculture (FAO, 2017). Second, I argue that a problematic

aspect in the literature is how to measure drought. Hence, I choose to focus on

drought as the type of climate variability associated with communal conflicts. This

leads to the third key element which is the most likely conflict type (Seter, 2016).

As argued, communal conflicts between groups fighting over scarce resources are

assumed to be one of the most likely outcomes of drought (Fjelde & von Uexkull,

2012; Nordkvelle et al., 2017). The fourth, and last, element Seter (2016) outlines

is the temporal and spatial scale for measuring this causal claim. As I have briefly

touched upon, communal conflicts tend to be small-scaled conflicts in close proximity
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to the climate variability both in terms of temporal and spatial distance. Hence,

measuring how drought affects these conflicts should be done within a disaggregated

statistical analysis. I will get back to this in the next chapter.

3.2.2 Exploratory Argument

The second aim of this thesis is exploratory: Do different concepts of drought carry

different conflict potential? And do they represent different types of drought or

rather different sequences in the causal chain of a drought? As outlined in the lit-

erature review, almost all former quantitative studies have relied on precipitation

measures as a way of measuring drought, either through raw measurements of pre-

cipitation or through indices such as SPI or SPEI. As discussed in this chapter, these

measures mainly capture the concept of meteorological drought. However, meteo-

rological drought is not necessarily assumed to carry conflict potential — especially

if it does not deteriorate living conditions. The rainforest in DR Congo is not af-

fected to the same extent by the lack of rainfall as the grassland and cropland in the

Sahel. Yet researchers commonly assume that a meteorological drought carry the

same conflict potential in both places. Hence, the main aim of this thesis is to use

other operationalisations of drought to try to get closer to the actual mechanisms

— where droughts causing loss of livelihood are assumed to be associated with more

conflicts. There are some obvious methodological challenges with trying to measure

the actual impact of drought. I will discuss these challenges further in next chapter.

3.2.3 Hypotheses

By combining my explanatory and exploratory argument I construct two testable

hypotheses. First, I expect there to be a positive relationship between all three

drought indices and the likelihood of communal conflict. This is formulated in

Hypothesis 1 (H1):

Hypothesis 1 (H1): Droughts are associated with a higher likelihood of communal

conflict.

However, I do not expect the effects to be similar across the three drought indices.

More specifically, I assume that the larger physical impact of the drought, the higher
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Figure 3.2: Illustration of hypotheses

the likelihood of communal conflict. This is reflected in the explanatory argument

and formulated in Hypothesis 2 (H2):

Hypothesis 2 (H2): The higher physical impact of the drought, the higher the

likelihood of communal conflict.

In Figure 3.2 I illustrate both hypotheses. With no drought, the conflict potential

carried by either indicator is (of course) zero. When there is a drought, however, I

expect all indicators to be positive, but I expect SPEI to have a relatively low effect,

NDVI to have a medium effect and EM-DAT to have the strongest effect. This is

shown in the Figure 3.2 with SPEI as the blue line, NDVI as the green line and

EM-DAT as the red line.

To sum up my theoretical argument, I argue that the human consequences of a

drought is not adequately measured by precipitation-based measurements. Hence,

there is a compelling need for testing other measures of drought. This is what I

refer to as this thesis’ exploratory argument. I also argue that farmers and herders

are the most vulnerable groups to climate variability and hence focusing on these

groups and the conflicts within or between them is the most likely conflict affect by

29



3.2. THEORETICAL ARGUMENT

drought. Testing these claims is what I refer to as my explanatory argument.
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Chapter 4

Data

Simultaneously with a growing focus on the climatic-conflict relationship, the tech-

nical side of conflict data has been focusing on disaggregated data, with the use of

smaller entities. Traditionally, conflicts have been studied at the country level (Ce-

derman & Gleditsch, 2009). Yet most of the conflicts in the world today are local

conflicts rarely engulfing the whole country (Buhaug & Rød, 2006). Since these con-

flicts, and communal conflicts particularly, are local phenomena, the relevant local

characteristics cannot be captured by using country-level measures. As a result of

this, researchers have started using smaller entities such as sub-national levels (see

Fjelde & von Uexkull, 2012; Meier et al., 2007) or grid cells (see Theisen et al., 2011;

von Uexkull, 2014).

Not only do the use of disaggregated data capture the local characteristics better,

but it also leads the researcher closer to the actual causal mechanisms. The proposed

causal mechanism in this thesis, that droughts affect the likelihood of communal

conflict by driving confrontations between farmers and herders, is expected to be

local in nature. Failing to acknowledge this and hence using country-year data

to measure the relationship would impose large amounts of noise to the results.

For instance, a local drought in the southern part of DR Congo could falsely be

associated with a conflict in the northern part over 2,000km away. Hence, the use

of disaggregation seems appropriate in this study. Moreover, sub-national units

such as first order administrative units vary largely in size across different countries

in Sub-Saharan Africa and they may also be analytically interesting in explaining

violence themselves (Theisen, 2012, p. 87). As a result of this, I choose to use grid
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cells as units in my analysis.

There are clear benefits of using grid cells as units. All cells are similar in size

and they all have the same borders across the time series. This means that we

compare each cell to the exact same cell every year, contrary to using country or

sub-national units where borders may change throughout time (Tollefsen, Strand &

Buhaug, 2012). On the other hand, the use of grid cells imposes a new problem:

the modifiable areal unit problem (MAUP). MAUP is defined as the “sensitivity of

analytical results to the definition of units for which data are collected” (Fothering-

ham & Wong, 1991, p. 1025). This means that using cells being 0.5 × 0.5 degrees

may yield different results than cells being 1× 1 degrees or 2× 2 degrees. Even the

geometric shape of the cells, whether they are squares, circles or triangles, may lead

to different results.8 Furthermore, the borders of the grid cells are arbitrary, such

that they are irrespective of country borders or ethnic settlements. This can be ben-

eficial when using variables that are not correlated with its respective country, such

as rainfall, but unsuitable when using variables that correlates with the respective

country, such as democracy or economic development. This is because, as I will get

back to later, most regression estimators treat all observations as independent of

each other.

Another challenge with using grid cells is that it requires high spatial precision in

the data. There is no point in using grid cells if the data are not precise enough. As

I will discuss later, this is not a problem for remotely sensed data, but for variables

coded based on news reports, such as conflicts, the precision may vary.

In an attempt to create a unified spatial data structure, Tollefsen et al. (2012)

released the PRIO-GRID dataset in 2012. In this dataset the whole world is divided

into grid cells being 0.5 decimal degrees in longitude and latitude (Tollefsen et al.,

2012, p. 367). This corresponds to approximately 50× 50 km at the equator. Each

cell is further assigned to its belonging country. In cases where grid cells exceed

country borders the cell is assigned to the country containing the largest part of

the cell (Tollefsen et al., 2012, p. 368). For simplicity, I choose to use this spatial

resolution as both conflict data and various control variables are computed based

on these grid cells. However, I keep in mind the MAUP and I run robustness tests

8The size of the cells is often referred to as the scale effect, whereas the shape of the cells are
referred to as the zoning effect (Fotheringham & Wong, 1991).
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with other spatial resolutions in the analysis.

Using PRIO-GRID cells, Sub-Saharan Africa consists of 8,410 grid cells. By

focusing on the time-period between 1989-2014 my dataset contains 8, 410 × 26 =

218, 660 possible observations in total.

4.1 Dependent Variable: Communal Conflict

The dependent variable in this thesis is communal conflict. The Uppsala Conflict

Data Program (UCDP) is one of the world’s main providers of data on organised

violence and it is the oldest ongoing data collection project for civil war (European

Commission, 2018). UCDP has developed various datasets based on different actors,

conflict issues and spatial resolutions. The possibility to combine these datasets by

identifying relevant conflicts and retrieving the respective locations of the conflicts

makes the data well suited to use in this thesis.

To identify communal conflicts, I rely on the UCDP Non-State Conflict Dataset

v.19.1 (Sundberg, Eck & Kreutz, 2012; Pettersson, Högbladh & Öberg, 2019). This

dataset contains information on all non-state conflicts in the world between 1989

and 2018. A non-state conflict is here defined as “the use of armed force between

two organized armed groups, neither of which is the government of a state, which

results in at least 25 battle-related deaths in a year.” (Pettersson et al., 2019). In

this definition “armed force” means the use of arms, which can be both manufac-

tured weapons, but also non-technological weapons such as sticks and stones. To be

included in the dataset a conflict needs to exceed the threshold of 25 deaths directly

related to the use of armed force between the warring groups. For example, this

means a conflict causing 50 direct deaths in 2004 and 24 deaths in 2005, will only

be coded as a conflict in 2004.

The UCDP Non-State Conflict Dataset divides non-state conflicts into three sub-

categories depending on the level of organisation of the warring parties (Sundberg

et al., 2012, p. 353). The first level contains actors with a high level of organisation,

such as paramilitary groups, guerrilla groups or competing rebel groups. The second

level includes fighting between political actors that are not permanently organised for

combat. The third level captures fighting between identity groups, such as ethnic,
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clan, religious, national or tribal groups. This third level is what is commonly

referred to as communal conflicts and coincides with my definition outlined in part

3.1.2.

A shortcoming with the UCDP Non-State Conflict Dataset relates to its spatial

precision. The dataset only contains information on the country in which the conflict

occurred. Therefore, I combine this data with data from the UCDP Georeferenced

Event Dataset Global v.19.1 (UCDP-GED). UCDP-GED contains geo-coded and

fine-grained information on all conflicts (Sundberg & Melander, 2013). All geo-

coded conflicts are further attached to its corresponding PRIO-GRID cell. Since

both the UCDP Non-State Conflict Dataset and the UCDP-GED contains the same

unique conflict-id’s, I merge these datasets together to identify communal conflicts

and their respective grid cells.

While conflicts embedded in the UCDP Non-State Conflict Dataset need to ex-

ceed the threshold of 25 battle deaths each year, the threshold for inclusion in

UCDP-GED is that the conflict exceeded 25 battle deaths in at least one year. Thus,

the hypothetical example from above where a conflict causing 50 direct deaths in

2004 and 24 deaths in 2005, will be coded as a conflict in both 2004 and 2005 in the

UCDP-GED. Since communal conflicts are relatively rare and often small-scaled, I

proceed with the latter definition where all years with at least one battle death are

noted as conflict-years — as long as the conflict surpasses the threshold of 25 battle

deaths in at least one year.

Based on this data, I create a variable conflict incidence. This variable is bi-

nary, taking the value (1) if a cell experienced a communal conflict in a given year,

and (0) otherwise. Some scholars argue that if we are interested in knowing the

causes of war, we should only measure conflict onsets — as using conflict incidence

will tell us what prolongs a conflict, but not what starts it (van Weezel, 2015).

However, scholars disagree as to whether the onset of conflict has a different cau-

sation than continuation of conflict (Gleditsch, Wallensteen, Eriksson, Sollenberg &

Strand, 2002, p. 620). In contrast to state-based conflicts, communal conflicts tend

to be sporadic, short-lived with a few days of violent clashes (Pettersson, 2010).

Moreover, identifying the onset of these small-scaled conflicts may be a challenging

task and often the spatial precision of the earliest noted event in the UCDP-GED
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(a) By location (b) By year

Figure 4.1: Communal Conflicts in Sub-Saharan Africa (1989-2014)

dataset has a low spatial precision. As a result of this I find it suitable to carry out

the main analysis with conflict incidence as the dependent variable.

4.1.1 Descriptive Statistics

Between 1989 and 2014 there were 995 communal conflict incidences in Sub-Saharan

Africa. The geo-locations of the different conflict events are shown in Figure 4.1a.

From this map it is evident that most conflict events took place either in Nigeria or

in the border region between Kenya, Uganda, Ethiopia and South Sudan. Almost

no communal conflicts took place south of Tanzania. A likely reason for this is that

most communal conflicts are farmer-herders conflicts and these tend to erupt in the

semi-arid regions where most farmers and herders live.

As briefly touched upon in the previous section, the geo-precision in the data

may be a challenge when using grid cells. Of the 995 conflict observations in this

dataset, 422 (42.4%) are coded on the exact location. 187 (18.8%) observations are

coded within a 25km radius of the exact location. Since grid cells are approximately

50km × 50km these would mostly be coded in the right cell, but may be coded in

one of the neighbouring cells. For the remaining conflict observations (38.8%) only

the second order administrative unit or higher administrative levels were known.9

Since this may be problematic I run a robustness test only including the conflict

9For a detailed description of the spatial resolution of conflict observations see Table A.1 in
appendix.
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observations where the exact coordinates were known.

Figure 4.1b shows the time trend of communal conflicts. The bars show the

number of cells experiencing communal conflict each year, while the dashed line

shows the total number of unique conflicts per year. If there are large differences

between the bar and the dashed line, as for 2014, it means the conflicts are spatially

spread out. From the bar chart it may seem as there is a solid time trend for

communal conflicts with more conflicts taking place in recent years, when in fact

the main explanation is that most communal conflicts are spatially confined, while

some conflicts are more spread out and hence influence the bar chart severely.

Figure 4.2: Scatter plot of communal conflicts

To examine whether the use of disaggregated spatial units is beneficial, I scatter

all unique conflicts by their spatial and temporal length in Figure 4.2. From this

figure it is evident that most communal conflicts tend to be relatively confined both

in terms of spatial and temporal length. However, a few conflicts are spread out

and comprise large parts of the conflict observations. For instance, the conflict

between Christians and Muslims in Nigeria represents 71 cell-years, and hence 7.1%

of all conflict observations in the dataset. While there are 215 unique conflicts, the

ten largest conflicts make up over 30% of all conflict observations. This may be
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problematic as the results from the regression analysis may be driven by these few

conflicts. I discuss this problematic aspect more in detail in the next chapter and

in the analysis I run a robustness test excluding the conflict between Christians and

Muslims in Nigeria.

4.2 Explanatory Variable: Drought

The explanatory variable in this thesis is drought. As discussed in the previous

chapters, SPEI and its predecessor SPI, have been the most widely used drought

indices in the climate-conflict literature. However, both the validity and reliability

of SPEI as a drought measure have been questioned (Homdee, Pongput & Kanae,

2016). How certain are we that SPEI measures the physical impacts commonly

assumed to carry conflict potential?

As I will discuss in this section, there are clear technical benefits of using SPEI,

but the operational validity can be challenged. Does SPEI measure what we want it

to measure? In order to examine this further, I test whether using other operational-

isations of drought yields different results. As previously outlined, I rely on three

different indicators: SPEI, NDVI and EM-DAT. These are both assumed to capture

different definitions of drought (meteorological, agricultural and socio-economic), as

well as different stages in the the causal chain of a drought.

4.2.1 SPEI - Standardized Precipitation Evapotranspiration

Index

The most common way to measure drought in the climate-conflict literature has

been to use measurements of precipitation and temperature (see, e.g., Hendrix &

Salehyan, 2012; Miguel et al., 2004). Researchers are often interested in changes

and anomalies in climate variability and therefore often standardise the measure-

ment, meaning they subtract the mean and divide by the standard deviation. For

a long time, the Standardized Precipitation Index (SPI) was the most used way of

measuring drought on the climate-conflict nexus. SPI measures the standardised

precipitation for each month by using the historical mean of the time-series and its

standard deviation (McKee, Doesken & Kleist, 1993). Thus, SPI only measures pre-
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cipitation anomalies. Large negative precipitation anomalies can be characterised

as droughts, whereas large positive anomalies can be characterised as floods.

The last couple of years researchers have started to use the Standardized Pre-

cipitation Evapotranspiration Index (SPEI) instead of SPI (see e.g., Döring, 2020;

Harari & Ferrara, 2018; von Uexkull et al., 2016). While SPI only focuses on the

level of precipitation anomalies, SPEI includes temperature to the equation through

an estimate of potential evapotranspiration (PET) (Vicente-Serrano, Begueŕıa &

López-Moreno, 2010). By including potential evapotranspiration SPEI arguably

measures droughts better than the SPI, as it captures more than just the lack of

rainfall (Vestby, 2018, p. 13). Similarly to SPI, large negative SPEI values can be

interpreted as droughts, whereas large positive values can be perceived as floods. A

usual interpretation is that SPEI values between -1 and 1 can be characterised as

normal weather. SPEI values between -1 and -1.5 are dry, between -1.5 and -2 are

considered moderately dry and below -2 are considered extremely dry. Usually re-

searchers put a threshold at SPEI values < −1.5 to distinguish between droughts and

non-droughts (see e.g. Nordkvelle et al., 2017; Vestby, 2018). Both SPI and SPEI

can be used with different lengths of intervals. For instance, SPEI-1 is calculated

based on the average climate variability during one month, while SPEI-6 uses the

average over a given six-month interval, rather than only one month (Vestby, 2018,

p. 13). This makes the measurement flexible. It is often preferable to measure SPEI

during growing season or rainy season, as a drought arguably create more damage

on crops and supposedly carry a larger conflict potential during these seasons.

There are some obvious strengths and weaknesses with using SPEI. One benefit

is that SPEI is based on meteorological data. Thus, we can assume that SPEI

is exogenous to both the dependent variable, which is conflict, but also the other

independent variables such as poverty and population. Second, a technical benefit

of using SPEI is that it is a function of two independent variables (precipitation

and evapotranspiration) (Vestby, 2018, p. 124). As the central limit theorem states

that any sum of two or more independent variables will converge towards a normal

distribution, we can expect SPEI to be normally distributed. Using a normally

distributed variable is preferable as it reduces the changes of large outliers affecting

the results. Further in order to best identify a causal effect, the independent variable
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must be both exogenous and random (Vestby, 2019, p. 119).

A small caveat with using SPEI is outlined by Vestby (2018, p. 13). Since

temperature is increasing slowly over time, and SPEI uses the average over the

whole time-series, this may lead to higher values (wet and cold) being more likely

early in long time-series and low values (dry and hot) being more likely later in the

time-series. One way to solve this problem is to use a moving average instead of the

mean.

The largest problem with using SPEI is that we do not know how well it measures

actual droughts. Although each unit is compared to its own mean and thus the

standard deviation gives approximately same hypothesised effect of meteorological

drought to each unit, we do not know the actual effect on the ground. For instance, in

some areas 1.5 standard deviations less rainfall may not have any effect on agriculture

or water scarcity. While other places only a small deviation may have devastating

impacts. Similarly, neither SPI, nor SPEI, consider the intensity of precipitation

or the impacts on streamflow, runoff or water availability in the area of interest

(Keyantash et al., 2018).

Another limitation with SPEI is that the results are sensitive to the method of

calculating the potential evapotranspiration. The original SPEI was calculated with

the Thorntwaite method to calculate potential evapotranspiration. This method

only includes temperature as a proxy for potential evapotranspiration (Trenberth et

al., 2014). Newer versions of SPEI are calculated based on the Penman-Monteith

method which also incorporates effects of wind, humidity, and solar and longwave

radiation (Trenberth et al., 2014, p. 18). Thus, the Penman-Monteith method

is generally considered better than the Thorntwaite method. However, since the

Thorntwaite method only considers temperature to calculate PET, it requires less

data than the Penman-Monteith method and are therefore often used when studying

areas where data availability is limited to temperature (Shiru, Shahid, Alias &

Chung, 2018). Hence, the validity of SPEI as a drought measure is higher with

the Penman-Monteith method, but the reliability is higher using the Thorntwaite

method.
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Figure 4.3: Greenest month

Operationalisation and descriptive statistics

I retrieve raw SPEI data from the unpublished PRIO-GRID v.3.0 currently in devel-

opment (Tollefsen, Vestby, Landsverk, Larsen & Bahgat, 2020). This SPEI variable

is based on precipitation data from The Climate Research Unit (CRU) version 4.03

and is computed using the Penman-Monteith method. The SPEI variable contains

data for every month. However, using yearly averages are not beneficial as a year

may contain both droughts and floods and hence this may mask a drought. Instead

researchers often use SPEI data at the start of rainy season, end of rainy season or

during growing season. In this thesis I offer a new way to determine which month to

focus on. Since I use NDVI as a measurement (see more in section 4.2.2) I am able

to identify the typically greenest month within each cell.10 This is suitable as the

greenest month is arguably one of the most important months for agriculture and

grazing. Similarly, I focus on the greenest month when measuring NDVI. Hence,

the comparison between SPEI and NDVI will not only be of the same year, but

also based on the same month. The distribution of the greenest months is shown in

Figure 4.3. From this figure it is evident that most cells have either September or

April as their greenest months. Whereas fewest cells have October, July or January

10I define the greenest month as the month with the highest average NDVI value across the
time-series within each cell. I elaborate more on this in section 4.2.2.
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(a) By cell (b) By year

Figure 4.4: SPEI droughts

as their greenest months.

PRIO-GRID v.3.0 contains four different SPEI variables: SPEI-1, SPEI-3, SPEI-

6 and SPEI-12. I choose to focus on SPEI-6 for two different reasons. First, it is

the most commonly used SPEI variable used by researchers on the climate-conflict

nexus. Second, it is, together with SPEI-3, the SPEI variable with the highest

correlation with NDVI data.11 To make the variable binary, I impose a cutoff at

SPEI values < −1.5. This is considered a “severe drought” or “moderate drought”,

and gives approximately the same proportion of droughts as NDVI and EM-DAT.12

Figure 4.4a shows a map of the most frequent SPEI drought locations. From this

map it is evident that most SPEI droughts have appeared in the border region

between Niger and Chad, as well as in the western part of DR Congo. Figure 4.4b

shows the time trend. Interestingly, there seems to be a weak decline in the number

of SPEI droughts in recent years. This is counter intuitive. Since SPEI uses the

long-term mean from the whole time-series, and the mean temperature has risen

across this time period, we would expect to see more SPEI droughts in recent years.

Moreover, evidence from Afrobarometer (2018) also suggests that there would be

more droughts later years.

A limitation with this SPEI variable is that it is based on precipitation measures

11Correlation between SPEI and NDVI: SPEI-1 (11.9%), SPEI-3 (21.9%, SPEI-6 (20.3%) and
SPEI-12 (18.4%).

12SPEI (7.17%), NDVI (8.53%) and EM-DAT (8.23%).
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from weather stations on the ground. According to Trenberth et al. (2014) precipi-

tation data from CRU in the 2000’s are retrieved from approximately 2400 climate

stations across the world. When my dataset contains 8410 cells in Sub-Saharan

Africa, it means that precipitation is not physically measured in each cell. There-

fore, CRU uses interpolation methods to create data points. Thus, both the validity

and reliability of the precipitation data may be questionable. However, Trenberth

et al. (2014) argue that more stations do not necessarily mean improved coverage if

the extra stations are all in the same area. Additionally, the rationale behind creat-

ing the CRU dataset has been that fewer, more homogeneous, records may provide

more a reliable time series.

The main reason for using SPEI to measure drought is due to its exogenous

feature. Rainfall may affect conflict, but conflict does not affect rainfall. However,

when precipitation is measured on the ground by weather stations, the precipita-

tion estimates may not be exogenous to conflict. Schultz and Mankin (2019) find

that during conflict, climate stations were destroyed and other stopped reporting.

Moreover, they find that the density of weather stations in Sub-Saharan Africa are

negatively correlated with the conflict risk. Meaning that areas with higher conflict

risk have fewer weather stations. Another problematic aspect they highlight is that

one of CRU’s requirements is that weather stations have a record of coverage be-

tween 1961 and 1990, as this is used as a baseline comparison. The problem with

this criterion is that it makes it hard to establish new stations. As a result of this

there has been a notable decline in the number of CRU climate stations over the

last years (Schultz & Mankin, 2019).

Thus, the fact that precipitation and rainfall are exogenous to conflict does not

necessarily mean that the precipitation estimates are exogenous to conflict. One

way to avoid that the data are influenced by political and social conditions on the

ground, such as conflict, is by using satellite-based measures.

4.2.2 NDVI - Normalized Differences Vegetation Index

The second way I measure drought is by using satellite data on vegetation through

the Normalized Difference Vegetation Index (NDVI). Early tools of NDVI were de-

veloped and computed by Rouse, Haas and Deering (1973) to measure the quality
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and quantity of vegetation. Thus, measuring drought is not its original intent and

this should be clearly stated. NDVI is computed based on remote sensing, meaning

data is acquired without making physical contact with the object. Usually, as for

NDVI, this means that data are retrieved by using satellites (Lillesand, Kiefer &

Chipman, 2004).

NDVI is based on two indicators: Near infrared light (NIR) and infrared light

(Red) (Gamon et al., 1995). Put simply, during photosynthesis plants both absorb

and reflect different wavebands of light. Green and healthy vegetation absorbs most

of the infrared light and reflect more of the near infrared light. Conversely, if vege-

tation is less healthy and sparse there is a decrease in the near infrared reflectance

and an increase in the infrared reflectance as there is less chlorophyll to absorb the

red light (Dick, 2009). The NDVI is calculated based on the reflectance of these two

wavebands with the following formula:

NDV I =
NIR−Red
NIR +Red

If the reflectance of NIR is high and Red is low, the NDVI will tend towards 1.

For healthy vegetation the NDVI value will vary between 0.7 and 1. While stressed

vegetation will converge towards 0. Negative NDVI values indicates surfaces such

as water, ice or snow (Lillesand et al., 2004).

(a) NDVI data (b) PRIO-GRID cells (c) Merged data

Figure 4.5: Merging process

Operationalisation and descriptive statistics

I retrieve NDVI data from Terra Moderate Resolution Imaging Spectroradiome-

ter (MODIS) Vegetation Indices (MOD13A3) Version 6 (Didan, Munoz, Solano &
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Huete, 2015). The NDVI data are provided monthly at a 1-kilometre spatial res-

olution. I aggregate the data to PRIO-GRID cells using geographical information

systems (GIS). A graphical example of the merging process can be seen in Figure

4.5 with Uganda as an example.

Similar to SPEI, NDVI contains data for every month. I identify the greenest

month, the month within each cell containing the highest average NDVI value, and

use this month as a representation of the NDVI value for the given year. Thus,

I use the same month for SPEI and NDVI values, which should be a good way of

comparing the different measures. Based on the NDVI values for the greenest month

in each cell, I calculate an NDVI anomaly for each cell with the following formula:

NDV Ianomaly = NDV Iit − µNDV Ii

In this formula NDV Iit represents the NDVI value for the greenest month in

cell i in year t. While µNDV Ii is the average NDVI value for the greenest month

in cell i across the whole time series. Comparing the same month, for instance

September in 2009 against September in 2010, is beneficial as vegetation varies

greatly between seasons in Africa. Failing to take this into account could lead to

false inferences, which happened in December 2019 when newspapers reported that

the Victoria Falls were drying up, when in fact they compared pictures of different

months (Dube, 2019)

In contrast to SPEI, there are no universal cutoffs for determining whether there

has been a drought according to NDVI. A possible cutoff could be saying there is

a drought if vegetation quality is lower than one standard deviation of the mean,

meaning NDVI anomaly < µ − 1σ. However, the standard deviation of NDVI is

0.26. Using this cutoff would mean that areas with a higher mean value of NDVI

(say 0.8) have a higher likelihood of experiencing drought, whereas areas with a

lower mean value (say 0.2) are not able to experience a drought, since, practically,

the NDVI value cannot go from positive to negative.

A second possibility is to create the cutoff based on each cell’s own standard

deviation. This is not feasible either, since we do not have the long-term mean.

Applying this cutoff would result in all cells experience drought at some point, even

cells with limited vegetational variety.
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(a) By cell (b) By year

Figure 4.6: NDVI droughts

Instead, I choose to set the cutoff at 10% below the cell mean. This makes the

cutoff relative to each cell. Moreover, this means that cells with a mean NDVI value

of 0.8 would require an NDVI value lower than 0.72, whereas a cell with mean value

of 0.2 would require a much lower deviation (<0.18). Applying this cutoff results in

approximately the same proportion of droughts for all three indicators.

Figure 4.6a shows a map of areas experiencing the most NDVI droughts. It is

evident that the number of NDVI droughts are spatially clustered and not spread

out in the same way as SPEI droughts. The areas experiencing NDVI droughts

seem to be the Sahel region, Eastern Africa, and the South-Western parts of Africa

surrounding the Kalahari Desert. One reason for this is that the changes in the raw

NDVI values seem to be dependent on certain land types. This also makes sense

as there is little variation in the vegetation quality in the rainforest, whereas in

areas vulnerable to climatic hazards, such as cropland and grassland, there will be

a higher variation.13

In Figure 4.6b I show the distribution of the number of NDVI droughts per year.

Similar to the SPEI droughts there seems to be a negative trend with fewer droughts

in the recent years.

There are some clear benefits of using NDVI or other satellite data. One im-

portant aspect is that we know that there has been a change in vegetation on the

13For a map of the NDVI variation for each cell, see Figure A.2 in the appendix.
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ground in the respective cell-year. Additionally, remotely sensed data does not re-

quire physical climate stations, and both the spatial and temporal resolution can

be made much higher and better. Therefore, some researchers have argued that

satellite data should be an integral part of monitoring drought (Wan, Wang & Li,

2004, p. 62).

Although the benefits of using remotely sensed data are evident, there are clearly

some limitations with using NDVI to measure drought. The first potential problem is

endogeneity. When conducting quantitative analysis and drawing causal inferences

the assumption of exogeneity is pivotal (King, Keohane & Verba, 1994). In this

case, exogeneity means that the drought may affect the conflict, but the conflict

may not affect the drought. This assumption is assumed to be fulfilled when using

meteorological data such as SPEI, although, as discussed previously, this might not

always be the case. When using NDVI, this is assumption is not fulfilled as conflict

may affect the level and quality of vegetation.

A second caveat is that the causes of these NDVI anomalies are unknown and

hard to distinguish. As NDVI only measures the “level of greenness”, it does not

solely measure drought. Deforestation, for instance, imposes a severe limitation on

using NDVI as a measurement of drought.

There exists a lot more complicated and advanced indices based on vegetation

which arguably measures droughts better than NDVI. The reason for using NDVI

is its established robustness and that it is relatively easy to understand. Moreover,

the NDVI is used extensively in global, regional and local studies and is by far the

most commonly used vegetation index.

4.2.3 EM-DAT - Emergency Events Database

The third way I measure drought in this thesis is by measuring events in which

there have been explicitly reported an experienced drought. The Emergency Events

Database (EM-DAT) is a global database created by The Centre for Research on the

Epidemiology of Disasters (CRED) and contains data and information on natural

and technological disasters since 1900 (Guha-Sapir et al., 2016). For a disaster to be

included in the EM-DAT database, at least one of the following four criteria must

be fulfilled: 10 or more people dead; 100 or more people affected; the declaration of
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a state of emergency; or a call for international assistance (Guha-Sapir et al., 2016).

The database is compiled of information from various sources, including NGOs, UN

agencies, research institutes and press agencies.

The original database contains only information on the country-level. However,

a recent extension to the database has been created by Rosvold and Buhaug (2020)

where they have connected each disaster to the affected first level administrative

unit(s) within each respective country. This provides the database with a much

more precise geolocation and makes it more suitable to use in spatially disaggregated

studies.

There are certain benefits of using EM-DAT to measure droughts. First, the

database only includes droughts which have made a clear impact on the livelihood

of people, as opposed to using SPEI. Unlike NDVI, by using EM-DAT we know the

physical drought not only degraded the vegetation, but also affected the people in

the respective area. Ultimately, it is through the deterioration of living conditions

we expect drought to contain a conflict potential (Homer-Dixon, 1999), not through

the lack of precipitation or vegetation.

However, there are some clear limitations with using EM-DAT to measure droughts.

First is the potential problem of endogeneity. When using crisis data such as EM-

DAT the assumption of exogeneity is no longer upheld. Particularly, since one of the

thresholds to be included in the EM-DAT database is a minimum of 10 fatalities,

violent conflict may bias this. Often it is impossible to determine whether a death

was a direct consequence of a conflict or a drought. What if there was a drought cre-

ating water scarcity, but a violent conflict enhanced this scarcity or deteriorated the

only water left? The same problem applies to the threshold of ‘100 people affected’.

It is hard to determine whether the people were directly affected by a drought or if

they were affected by a nearby conflict or both.

Another potential problem is that there may be systematic reporting differences

between countries. For instance, some countries may declare a state of emergency or

call for international humanitarian assistance more frequent than other states. This

means that many drought events causing monetary losses without exceeding local

response capacities are not recorded in the database. Thus, this database is biased

toward economically catastrophic and deadly events (Gall, Borden & Cutter, 2009,
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(a) By cell (b) By year

Figure 4.7: EM-DAT droughts

p. 804).

Similarly, larger areas both in terms of area and population may experience a

higher frequency of droughts than smaller areas. This is important to remember

when using grid cells as units in the analysis, because EM-DAT droughts are not

measured on the grid cell level, but rather on the first order administrative level.

This means that all cells belonging to a region experiencing drought will be coded

as experiencing drought. Thus, the results may be biased such that some grid

cells which have not experienced drought will be coded as if they had. Hence, the

likelihood of experiencing a drought would not be the same for all cells.

Another challenge is the role of temporal bias. For instance, the growing wealth

in the recent years among countries means there are more money to be lost during

droughts. Hence, calls for international assistance may be more frequent in recent

years. On the other hand, more areas are no longer solely dependent on rainfed

agriculture and use irrigated agriculture instead. Thus, more areas are more drought

resilient now than before. However, this temporal aspect may create biases in both

directions, and it is impossible to determine the counterfactual: Would this drought

have been reported as a disaster if it happened ten years earlier or ten years later?
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Descriptive statistics

Between 1989 and 2014 there were a total of 167 unique droughts in Sub-Saharan

Africa. The worst drought in terms of causalities took place in Somalia in 2010,

where there was estimated more than 20.000 deaths as a direct result of the drought

(Guha-Sapir et al., 2016).

Contrary to SPEI and NDVI, EM-DAT droughts see a different time trend with

droughts being more frequent in later years. This is shown in Figure 4.7b. As

discussed above, the exact reason behind this trend is difficult to determine. It

might be the fact that there actually have been more droughts in recent years, but it

might also be due to reporting biases or economies being more vulnerable to drought

in later years. Another peculiar trend is evident from the map in Figure 4.7a. There

are reported several droughts in Kenya and Mozambique between 1989 and 2014,

but none in Tanzania. This may suggest that there are reporting biases among

countries and this should therefore be considered when conducting the statistical

analysis.

4.2.4 Relationship Between SPEI, NDVI and EM-DAT

The main interest in comparing different drought indices is the assumption that

SPEI does not measure the impact of the lack of precipitation and the potential

evapotranspiration. Thus, we know that there has been less precipitation than nor-

mal, but we cannot for certain tell whether the drought has impacted livelihood

or water availability on the ground. Further challenges with using SPEI relates to

whereas the validity of SPEI can be made relatively high (with using the Penman-

Monteith method of calculating PET, rather than the Thornthwaite method), it

comes at the expense of the reliability, as it requires more precise data (e.g. wind

speed) which in many places are of questionable quality or do not exist at all (Tren-

berth et al., 2014). Furthermore, the reliability of in situ climate stations may also

be questioned. Particularly, as there exist far more cells than climate stations on

the ground, how can we for certain tell that the interpolation techniques used by the

Climate Research Unit (CRU) are good enough to provide an accurate picture of

precipitation and drought in Sub-Saharan Africa? Moreover, these weather stations

may also be affected by conflicts themselves.
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Thus, the idea is to test whether the relationship between drought and conflict

varies depending in the way we measure drought. If there are large discrepancies

between the results constructed by SPEI, NDVI and EM-DAT it may suggest that

other measurements than SPEI would be beneficial in exploring the causal mecha-

nisms between drought and conflict in the future.

Correlation

Although the three drought indicators are assumed to grasp different drought-related

aspects, they are still assumed to be relatively correlated. Since I have dichotomised

SPEI and NDVI, I run two separate correlation analyses showing the correlation

between the indices with both the binary and the continuous values. This is done

as we often lose a lot of valuable information by dichotomising variables.

In Table 4.1 I show two correlation analyses using Pearson’s R. In Table 4.1a

both SPEI and NDVI are used as continuous variables. The table shows that the

correlation between SPEI and NDVI is 20%. This means that there seems to be a

moderate amount of NDVI droughts being captured by the SPEI variable.14 The

correlations between SPEI and EM-DAT (-2.8%), and NDVI and EM-DAT (-7.1%)

are both negative. This is quite counter intuitive. One reason for this may be that it

takes time for the meteorological and agricultural drought to cause socio-economic

impacts. To test this, I lag both the SPEI and the NDVI variables one year. Now

both correlation coefficients are positive, being 4.4% and 2.9% respectively. However,

the correlations are still relatively low. Another reason for the low correlation may

be that the administrative units are too large, and that we see a lot of local variations

within each cell, which is not reflected in the EM-DAT data.

In Table 4.1b I show the correlations where all three variables are made binary.

This is how I treat the variables in the analysis. Now the correlation between SPEI

and NDVI has diminished. Imposing new cutoffs (SPEI < −1 or NDVI < −15%)

does not yield substantial changes. This points to the fact that by dichotomising

variables we lose a lot of valuable information. The correlation between SPEI and

EM-DAT are still very low (1.9%), but the correlation between NDVI and EM-

DAT are now positive and higher than before (7.7%). Thus, although I run my

14For other operationalisations of SPEI, the correlation with NDVI is the following: SPEI-1
(11,9%), SPEI-3 (21,9%) and SPEI-12 (18,4%).
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Table 4.1: Correlations: Pearson’s R

(a) Continuous SPEI and NDVI

SPEI NDVI

SPEI - -
NDVI 0.2033*** -
EM-DAT -0.0282*** -0.0708***

(b) Binary SPEI and NDVI

SPEI NDVI

SPEI - -
NDVI -0.0049 -
EM-DAT 0.0194*** 0.0766***

main model with binary variables, this suggests I should run a robustness test with

continuous variables as this may yield different results.

The low correlation is also evident when making frequency plots of the different

drought indices based on countries as seen from Figure 4.8. In this figure I use the

binary indicators and divide the number of droughts by the number of observations

for each country. Otherwise large countries such as DR Congo and Sudan would

dominate the picture since they have more cells and more observations. Hence, they

have a greater likelihood of containing cells experiencing droughts.

From Figure 4.8 it is evident that the three indices do not correlate on a high level.

Chad, for instance, see the most SPEI droughts, whereas it experiences relatively

few NDVI and EM-DAT droughts. The same is true for Botswana and Namibia, the

countries experiencing the most NDVI droughts, and Ethiopia, the country seeing

most EM-DAT droughts. Kenya, for instance, see quite frequent EM-DAT and NDVI

droughts, but relatively few SPEI droughts. In countries with few observations,

such as Cape Verde, Seychelles, Togo and South-Sudan, there seems to be a high

correlation among the indices with all three reporting very few droughts.

Case testing: Somalia

One explanation why the correlations between the three indices are relatively low,

may be that NDVI droughts are caused by deforestation rather than actual droughts.

This is highly problematic and may lead to false inferences. To investigate this

possible effect, I use a case from Somalia.

During the regime of Al-Shabaab in the Kismayo district in Somalia, there was

a rapid expansion in wood charcoal production. As charcoal is produced by wood,

deforestation is a necessary condition in the production. Rembold, Oduori, Gadain

and Toselli (2013) find a large increase in the charcoal production between 2006

51



4.2. EXPLANATORY VARIABLE: DROUGHT
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Figure 4.8: Droughts by country

and 2012 when Al-Shabaab controlled the Southern Somalia. Additionally, burning

trees to produce charcoal also involves using biomass, such as dry grass, to start the

fire (Robinson, 1988, cited in Rembold et al., 2013).

To examine these potential problems, I run a quick check of the NDVI and SPEI

values in the Southern Somalia for all years between 2000 and 2014 and highlight the

years when Al-Shabaab controlled the region. Figure 4.9 shows a graph containing

the 15 cells of the Lower Juba region in Southern Somalia and their NDVI and SPEI

values between 2000 and 2014. The years in which Al-Shabaab controlled the region

and supposedly deforested large parts of the region are marked in purple. From the

graph it is evident that the years between 2008 and 2012 saw a rapid decline in

NDVI values, whereas the SPEI values have mostly been positive during the same

period.

However, to make the situation more complex, Somalia was part of one of the

worst droughts in recent years with between 20.000 and 200.000 casualties between
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Figure 4.9: Droughts in Southern Somalia

2010 and 2012 (Guha-Sapir et al., 2016). Therefore, I have also embedded EM-

DAT into the graph in Figure 4.9. The three years where all fifteen cells in the

Lower Juba region experienced a socio-economic drought (2005, 2010 and 2012) are

outlined with a bold frame. Thus, it might not be the deforestation causing the large

NDVI anomalies, but rather an actual drought. This points to a problematic aspect

with using NDVI as a drought measure, but also with large-N statistical studies in

general. Without qualitative in-depth studies it is impossible to determine the cause

of the vegetation loss for certain.

Figure 4.9 also shows some surprising trends when it comes to the SPEI data.

Surprisingly, during the 2010-2012 drought there have actually been more precipi-

tation than normal. This can imply several things. First, this may be a sign that

this SPEI variable does not measure actual droughts precisely. However, on the

other hand, this may be the result of a combination where the southernmost part

of Somalia did not experience a meteorological drought, but the lack of rainfall in

other parts of Somalia affected the Southern areas.

Another reason for this may be that the SPEI variable included in this thesis

only considers the greenest month and sixth months prior to this. In the Lower

Juba region 8
15

cells have November as their greenest month, 6
15

cells have June

and 1
15

cell has July. The 2010 drought has been argued to be a result of failed

rain during the 2010 Deyr period, which is the minor rainy season of Somalia and
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usually takes place between October and December (Maxwell & Fitzpatrick, 2012).

However, this is barely captured by the SPEI data. Digging deeper into the data, I

check the SPEI-6 values for all months in 2010 for these cells. Surprisingly, none of

the 15 cells had SPEI-6 values lower than -0.6 in 2010, which corresponds to normal

weather.

To further investigate this scenario, I test whether the other operationalisations

of SPEI (SPEI-1, SPEI-3 and SPEI-12) show other types of decline. Surprisingly,

none of the 15 cells have SPEI-1, SPEI-3, SPEI-6 or SPEI-12 values below -1 between

2009 and 2012.

4.2.5 Spatial Lag of Drought

Figure 4.10: Queen’s contiguity matrix

So far, I have only considered drought as

having a direct effect, meaning the effect

of drought in cellit may be associated

with conflict in cellit. However, drought

is a highly complex natural phenomenon

and its impacts may often extend out-

side its defined area (Wilhite & Glantz,

1985, p. 13). For example, the lack

of precipitation in one cell could lead

to reduced vegetation in neighbouring

cells if that cell contains important wa-

ter sources (e.g. headwaters for rivers)

for vegetation in neighbouring areas. To

account for this, I compute other oper-

ationalisations of drought to be used in my main model.

First, I create spatial weights of the different drought variables making use of a

queen’s contiguity weights matrix. This provides each cell with a maximum of eight

neighbouring cells. Cells bordering the sea or other outskirts of the Sub-Saharan

Africa will naturally have less than eight neighbours. An illustration of this weight

matrix is shown with Uganda as an example in Figure 4.10.

Based on these weights I create two new variables: (1) indirect effect and (2) total
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effect. The indirect effect denotes the proportion of neighbouring cells experiencing

droughts. This means if one of the eight neighbouring cells experience a drought in

year t, the cell in question will obtain a value of 1
8

= 0.125. If all eight neighbours

experience drought the cell will acquire the value 8
8

= 1.15

Since the indirect effect only takes into account the neighbouring cells and not

the cell in question, I combine this variable with the direct effect to create a variable

denoting the total effect. In order to make coefficients comparable in the analysis,

I compute this variable to range between 0 and 1 by adding the direct and indirect

effect together and dividing the sum by two. This is shown in equation 4.1 below:

Total effect =
Direct effect + indirect effect

2
(4.1)

If all neighbouring cells and the cell in question experience drought, the total

effect will be 1. If all neighbouring cells experience drought but not the main cell,

or the opposite, only the cell in question but none of the surrounding cells, the

variable will take the value of 0.5. In the dataset there are very few cases where all

neighbouring cells see drought, but not the cell in question.16

4.3 Control Variables

Although the use of grid cells makes the area of each unit similar, the cells may be

inherently different in terms of other contextual factors. In order to make these cells

as comparable as possible, and to try to isolate the effect of drought on conflict as

best as possible, I apply different control variables. This is particularly important

as failing to include variables correlated with both the explanatory variable and the

dependent variable, will bias the estimates (King et al., 1994, p. 190). For instance,

let us say I do not include population in the analysis. This would bias the estimates

as the conflict potential induced by drought is assumed to be higher where there are

more people (see e.g. Döring, 2020). Moreover, cells with zero or a low number of

inhabitants may experience droughts, but not conflict. Hence, the effect of drought

on conflict would likely be underestimated.

15Graphical examples can be found in Figure A.4 in the appendix.
16Graphical examples can be found in Figure A.5 in the appendix.
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On the other hand, however, researchers should not include every possible causal

influence in their analysis as this would reduce the efficiency of the estimates (King

et al., 1994, pp. 182-183). The more correlated the key causal variable is with

the irrelevant independent variable, the less efficient the estimates of the causal ef-

fect. Similarly, we should not include a variable that is in part a consequence of

the explanatory variable (King et al., 1994, p. 173). One example of this would

be to include vegetation levels (NDVI) when measuring the effect of precipitation

(SPI/SPEI) on conflict, as the level of vegetation is affected by the level of precipi-

tation. The easiest way to identify relevant control variables is by consulting theory

and former literature.

However, what is considered a mediating variable and what should be considered

a confounding variable has been subject for debate. This has been particularly

contested on the climate-conflict nexus. Whilst what Busby (2018, p. 340) denotes

as ‘Berkeley scholars’ have argued that the effect of climate variability on conflict

is mediated by socio-economic factors, i.e. droughts lead to lower development

which may contribute to conflict, and hence these should not be included as control

variables; ‘PRIO-scholars’ have argued that these socio-economic conditions make

areas less drought resilient in the first place, resulting in a higher baseline probability

of experiencing conflict. Thus, there is a question regarding whether drought may

affect conflict through the deterioration of socio-economic factors or whether drought

may contribute to conflict in areas with lower coping capacity. Since the baseline

risk of experiencing communal conflict, as well as the risk of experiencing NDVI

and EM-DAT droughts, are clustered within certain geographical areas, it seems

favourable to include control variables in this study. The control variables I apply

are first and foremost correlated with conflict in general. Some of the variables

are, however, particularly associated with communal conflict or the climate-conflict

relationship.

Population

First, I consider the potential impact of population and population density. Findings

suggest that higher population density makes conflict more likely (Homer-Dixon,

1999; Döring, 2020). To account for population pressure in a given cell during a given

56



CHAPTER 4. DATA

year I use the variable population retrieved from CISEIN & CIAT (2005) through

PRIO-GRID v.2.0 (Tollefsen et al., 2012). This cell-level variable is measured with

five-year intervals (1990, 1995, 2000 and 2005) between 1990 and 2005. To get

an approximate value of population, I use linear interpolation and extrapolation to

create data points for missing years. Furthermore, I log-transform the variable as the

social effects of receiving 1.000 immigrants would be different in an area consisting

of 1.000 inhabitants and an area consisting of 100.000 inhabitants. Finally, I exclude

grid cells highly unlikely to experience conflict. Tollefsen and Buhaug (2015) exclude

cells with a population density < 1 per km2 and cells with < 100km2 as there is

a low chance of seeing conflict in these cells. Applying a similar threshold in this

thesis, however, leads to the exclusion of eight conflict observations.17 Instead I

exclude cells with < 200 people and < 100km2. This returns a valid sample of 7,986

cells in Sub-Saharan Africa, as opposed to 8,410 without exclusion.

Subnational Human Development Index

Another frequent correlate with conflict is economic development. To control for

economic development, I make use of the newly developed Subnational Human De-

velopment Index (SHDI) Version 3.0 (Smits & Permanyer, 2019). The SHDI is based

on three dimensions: education, health and standard of living. The variable ranges

on a scale from 0 to 1.

Like EM-DAT, the SHDI data are not coded on the grid cell level, but rather on

the first order administrative unit. This is more precise than using HDI data on the

country level as it allows for variation within countries. Through GIS-tools I assign

each cell with the value of its respective administrative unit. For cells containing

borders, a weighted average is used. Some administrative units miss data for early

years. For instance, in Nigeria there are no data available before 2003. Using similar

linear extrapolation techniques used for population is not feasible in this regard, as

this provides some units with negative SHDI values — which is not possible. Instead

I use the “next observation carried backward”-technique by assigning the same value

17There are large discrepancies across population datasets. Some cells may fall below the thresh-
old of < 1 per km2 when using data from CISEIN and CIAT (2005), whereas they would not fall
below the threshold when using other datasets and vice versa (see e.g. data from the History
Database of the Global Environment (HYDE) version 3.1. (Klein Goldewijk, Beusen, de Vos &
van Drecht, 2011; Klein Goldewijk, Beusen & Janssen, 2010)).
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of the first observation to all preceding years. For example, with this technique the

Sokoto region in Nigeria holds the value 0.235 for all years between 1989 and 2003,

instead of having negative values between 1989 and 1994 as it would with linear

extrapolation.18

Democracy

It is well documented that both democracies and harsh autocracies experience few

civil conflicts (Hegre, Ellingsen, Gates & Gleditsch, 2001). Instead, anocracies,

states that are neither a strong democracy nor a strict autocracy, are found to be

most prone to experiencing conflicts. This is also found to be typical for communal

conflicts (Brosché & Elfversson, 2012).

To measure democracy, I use the liberal democracy index from the Varieties of

Democracy (V-Dem) dataset v9 (Coppedge et al., 2019). The liberal democracy

index combines both liberal and electoral principles of democracy. The liberal prin-

ciples emphasise core values like the protection of minority rights, constraints on

the executive power and equality before the law. The electoral principles consist

of the level of free and fair elections and extensive suffrage. The index ranges on

an interval scale from 0 to 1, where 0 denotes a closed autocracy and 1 denotes a

liberal democracy (Coppedge et al., 2019). This variable is measured on the country

level and in cases where cells contain borders I have applied the majority rule —

the country with the largest share of the cell is used.

Ethnic Exclusion

A fourth variable often assumed to carry conflict potential is ethnic exclusion (Ce-

derman, Gleditsch & Buhaug, 2013). Communal conflicts, in particular, are more

likely in areas with ethnic exclusion, as they are fought between groups organised

along a shared communal identity (Brosché & Elfversson, 2012). Some typical com-

munal conflicts have been over agricultural land, such as between the Dinka and the

Nuer in South Sudan, or the Hausa (farmers) and Fulani (pastoralists) in Nigeria

(Wig & Kromrey, 2018; Abbass, 2012).

18For a graphical example of the differences between these two extrapolation techniques see
Figure A.1 in appendix.
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To account for ethnic exclusion, I include whether there are discriminated or

powerless groups in each cell as defined in the Geo-referencing Ethnic Power Rela-

tions (GeoEPR) 2014 dataset (Vogt et al., 2015). Benjaminsen and Ba (2009, p.

78) argue that pastoral marginalisation, where land legislation is favouring farmers

on the expense of pastoralists, has been a driver for farmer-herder conflicts in West

Africa, and in Mali particularly, for many years. However, in Mali, Fulanis (pas-

toralists) are included in a larger category of “Blacks” in the GeoEPR 2014 dataset

(Vogt et al., 2015). Thus, the dataset only denotes whether a group is excluded from

central political processes, not whether there are other types of discrimination such

as pastoral marginalisation. Similarly, the Dinka and the Nuer are coded as senior

partner and junior partners in South Sudan, while Hausa and Fulani are included

in the same category and have been both senior and junior partner during the time

frame in Nigeria. This has been a source of criticism as “ethnic groups in the data

are often aggregated in ways that would be unrecognizable to country experts and

group members themselves.” (Peterson, 2016, p. 1).

Despite the criticism, I include the data as a control variable to control for ethnic

exclusion at the higher level. The variable takes the value 1 if there is one or more

ethnic group(s) coded as either powerless or discriminated; and 0 if there is no ethnic

exclusion. Cells are missing data if there are no politically relevant groups in their

area. To make the sample complete, I assign all these cells with the value 0 as there

is no ethnic exclusion in these cells.

Lagged Dependent Variable

One of the best predictors of conflict is whether there was a conflict in the same cell

the previous year. To control for this, I create a lagged version of the dependent

variable. A caveat with this is that it limits the valid sample to only containing data

between 1990 and 2014, as the variable will be missing for the year 1989. However,

25 years with 7,986 cells returns a valid sample of 199,650 observations.

Conflict spillovers are not only temporal, they can also be spatial. Areas with

close spatial proximity to conflicts are also more likely to see violent events. Rebels

in one area may find shelter in a neighbouring area, or a violent conflict in one area

may lead to refugee flows to other areas (Grieco, Ikenberry & Mastanduno, 2019,
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pp. 224-225). Similarly, when using disaggregated data, conflicts may cross the

borders of several cells. However, controlling for this may be problematic as these

communal conflicts tend to be small-scaled and droughts may have a diffusion effect

— lack of water in some cells may lead to a socio-economic drought in neighbouring

cells. Hence, controlling for conflicts in neighbouring cells may not be relevant and

may take away some the effect of drought. Similarly, since a drought often engulf

larger areas including several cells, small-scaled conflicts unrelated to each other

may erupt in neighbouring cells. Therefore, I choose not to include spatial lag of

the dependent variable.

Summary Statistics

Table 4.2 shows summary statistics of the variables included in the dataset. The

left columns show the original values, whereas the right columns show the recoded

values. It is evident that some sort of interpolation of the population variable had

to be done, otherwise the regression models would only contain 42,050 observations.
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Chapter 5

Research Design

This chapter presents the research design used to examine the relationship between

drought and communal conflict. As discussed in the previous chapter, conventional

models have employed country-level data, whereas more recent data and modelling

innovations have allowed researchers to examine the climate-conflict nexus at the

sub-national level using high resolution data of climate variability and conflict. I

start this chapter by discussing the role of causality in social science. Due to the

lack of randomisation, we seldom see experiments in social science.19 As a result

of this, researchers often do their best to mimic experiments (Gerring, 2004, p.

350). Mimicking experiments requires well-specified and robust statistical models.

In order to obtain such a model, I end this chapter by discussing different estimators

and carefully examining certain assumptions related to the specific estimator.

5.1 Causality in Social Science

The aim of all social sciences is to draw inferences by using observed data to obtain

knowledge of the unobserved (King et al., 1994, p. 46). According to King, Keohane

and Verba (1994) there are two types of inferences: descriptive and causal inferences.

A descriptive inference seeks to describe the existence of something. This could for

instance be the number of conflicts taking place after a drought. Researchers can

use this information to draw information from a sample to a population. However,

this does not say anything about causality. A causal inference, on the other hand,

19Particularly in political science. Experiments are to some extent more frequent in psychology
or economics.
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is a statement about why something happens. This could then be the causal effect

drought has on the probability of experiencing conflict.

The causal effect can be described as the difference between two descriptive

inferences. In this case, what happens to a unit after a drought versus what would

have happened without a drought (Epstein & King, 2002, p. 34; King, et al.,

1994, pp. 81-82). This means that a causal inference is impossible without good

descriptive inferences. However, a descriptive inference alone is often not satisfying

(King et al., 1994, p. 75).

Estimating the causal effect, however, imposes the ‘fundamental problem of

causal inference’: We can never determine the causality for certain, because we

cannot observe the counterfactual (Holland, 1986). For any observation, we can

only observe one possible outcome. It is impossible to say whether or not there

would have been a conflict between the Afar and the Kereyou in Ethiopia in 2002

without there being a drought. Although clashes have been argued to be sparked

by a drought, clashes over agricultural land could have happened regardless of the

drought (Sundberg et al., 2012; Pettersson et al., 2019).

The uncertainty imposed by this fundamental problem will always be present in

research in social sciences. Even though we can never avoid this uncertainty, we can

still do our best to minimise it. Two important components of minimising this are

unit homogeneity and conditional independence (King et al., 1994, p. 91).

Two units are said to be strictly homogeneous if the expected values of the

dependent variable are the same for all units when the explanatory variables take

on a particular value (King et al., 1994, p. 91). This would be true if we could say

that all grid cells experiencing drought would experience conflict. Due to contextual

variations this is obviously not the case, and this assumption is seldom upheld in

social science.

Therefore, a less strict version of the unit homogeneity assumption is the as-

sumption of constant effect. This assumption states that similar variation in values

of the explanatory variable leads to the same causal effect in different units (King

et al., 1994). This means that if two relatively equal cells experience a drought, we

would expect the same effect in both cells. This is an important reason for including

control variables and using grid cells, to account for the contextual variation and
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baseline risk induced by other factors than drought itself. Hence, we can make the

units as similar as possible.

The second important component to minimise the uncertainty is the assumption

of conditional independence. This assumption is upheld when values on the explana-

tory variable(s) are assigned independently of the values on the dependent variable

(King et al., 1994, p. 94). If the explanatory variables are caused, at least partly,

by the dependent variable, there exists a problem of endogeneity. As discussed in

the previous chapter, this might be a problem with both the NDVI values, as con-

flict may affect the level of vegetation, and the EM-DAT data, as a conflict may

aggravate an ongoing drought-related disaster. One way to account for this is to use

instrumental variables regression by using an exogenous proxy for drought. This is

what researchers have tried to account for when using precipitation-data. However,

as I also discussed in the previous chapter, the precipitation-data may not always be

exogenous to conflict. A second way to account for this is by temporally lagging the

drought variables with one year. However, since I look at communal conflicts, and

these often take place close to the drought occurring, I expect the conflict potential

to occur within the same year. Hence, lagging the variables is not feasible either.

Thus, there may be a problem of endogeneity in the data and therefore the results

from the regression should be carefully interpreted.

5.2 Regression Estimator

When testing causal claims in political science, the main tool used by researchers

is multiple regression (Kellstedt & Whitten, 2018, p. 236). In short, the idea of

regression is to fit the ‘best’ possible line through a scattered plot of data points

(Kellstedt & Whitten, 2018, p. 189). The fundamental question arising then is how

should this line be drawn? In other words, which regression estimator should be

used?

When the outcome variable is binary, logistic regression is often preferred (Christo-

phersen, 2018). This is often the case in conflict studies as the dependent variable

usually denotes whether or not there was an ongoing conflict in unit i in year t.

Although regular linear regression, such as the ordinary least squares estimator
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(OLS20) is perfectly possible to use when the dependent variable is binary, it faces

certain challenges. The most common problem is that it will often provide impos-

sible values, such as probabilities below 0 or above 1. However, the probability can

never be below 0 or above 1.

Hence, researchers often tend to use logistic regression as this takes into account

the binary nature of the dependent variable.21 Whereas coefficients produced by

OLS can be interpreted as one unit increase in X is associated with a β increase in

Y, the coefficients produced by logistic regression tend to be a bit more complex.

Coefficients produced by the logit model are often referred to as “logit” or “log-

odds” and can be hard to interpret. Instead researchers often interpret the odds

ratio instead. The odds ratio can be interpreted as a one unit increase in X is

associated with a β change in the odds of Y occurring. I elaborate more on the

interpretation of odds and odds ratios in the next chapter.

5.2.1 Multilevel Modelling

A pivotal assumption when using regular regression (be it OLS or regular logistic

regression) is that all observations are independent of each other. In this study data

are nested in a panel data structure, which means that the same units have repeated

observations over a certain time period. As noted in the previous chapter, after

excluding cells unlikely to see conflict, there are a total of 7,986 cells measured over

26 years in this study. Using regular OLS or regular logistic regression will assume

that each observation is independent of each other. This means that cell number

1000 in year 1991 is expected to be as uncorrelated with the observation of itself in

1992 as it is with cell number 7000 in year 2014. This is most likely not the case since

population, SHDI and the level of democracy are not randomly assigned to each cell

every year. For instance, the number of inhabitants in each cell will correlate highly

from one year to another within that cell. One way to treat this problem is by

including unit fixed effects to the regression equation. By doing this, researchers

only measure within-variation. This means they are no longer interested in the

20OLS is often referred to as the Linear Probability Model (LPM) when the dependent variable
is binary.

21The logit model is one of two commonly used binary regression models, the other being probit.
These models are similar apart from logit using the quantile function of the logistic distribution,
while the probit uses the quantile function of the normal distribution.
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difference between cells, but only in the variation within each cell. Thus, whereas

pooled regression (no fixed effects) requires independence of all observations, fixed

effects regression only measures within-variation (Kennedy, 2008, pp. 283-284).

A compromise between these two extremes is multilevel modelling (Gelman &

Hill, 2006, p. 251). This is a relatively new and popular way of handling clustered

observations and has previously been used to analyse the relationship between cli-

mate and conflict (see e.g. von Uexkull et al., 2016; or Döring, 2020). The general

aim of using a multilevel logistic model is to estimate the probability of an event

occurring, while taking the nested data structure into account. In contrast to a

fixed-effects model, multilevel modelling allows the researcher to consider both the

within and the between variation.

A typical example of a multilevel model design could be trying to predict different

students’ grades. Their grades would (most likely) not be random from time to time.

To illustrate this, suppose we have a dataset containing a large group of students

measured over three years. Each year the students have exams determining their

grades. The first, and lowest, level in this multilevel model would be the time-varying

predictors. These are variables that vary within each student (across years) but not

between students. This could for instance be variables such as time spent studying

or hours of sleep the night before the finals. These level-1 factors could influence

the test results within each student from one year to another. On the second level

we have predictors that are unique for each student, but constant across time. This

could for instance be gender or parents’ education level. These variables are time-

constant, but unit specific, meaning they vary between students but not within

students.

Similar to the hypothesised example above, we could imagine grid cells instead

of students, and conflicts instead of grades. Grid cells have certain time-varying

features such as population, SHDI and drought. These are unique values for each

cell and vary from one year to another. On the second level, the cells contain

time-invariant features such as the the mean value of these time-varying variables,

which country they belong to, or, in some cases, ethnic exclusion. These could be

considered level-2 variables — variables that are constant within the time-series.

Put simply, on the first level we measure within variation, whereas on the second
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level we measure between variation. This is the main benefit of the multilevel model.

It is possible to make the model more complex (a three-level model) by arguing

that students are nested within classes containing some common features for all stu-

dents within that class, such as characteristics of the teacher or the size of the class.

Similarly, we can argue that grid cells are nested within countries which contain

relevant features. However, the only country-level variable included in this analysis

is “democracy”. Since the democracy score is time-varying, it will be considered

a level-1 variable in the regression analysis. Since there are no other country-level

variables, I proceed with a two-level mixed effects model with observations nested

on the cell-level — taking into account the differences both within and between cells.

5.2.2 Fitting the Model

The main idea of using a multilevel model is to allow each group (cell) its own

intercept (Sommet & Morselli, 2017). In other terms, this allows each group to have

its own baseline probability of experiencing conflict. This is commonly referred to

as “random intercept”. However, the term “random intercept” has been criticised.

Gelman and Hill (2006) refuse to use the term as it is used inconsistently across

scholars and the word “random” may be misleading. The intercepts are computed

individually for each cell, which means they vary, but they are not random, they are

estimated. As a result of this, I use the terminology “varying intercepts” instead of

“random intercepts” throughout this thesis.

Recall from the conflict map in the previous chapter (Figure 4.1a) that conflict

observations tend to be spatially clustered. While some cells experience numerous

conflicts, a large number of cells does not experience conflict at all. Hence it makes

sense that the baseline risk of experiencing conflicts should vary between cells.

A statistical way of testing whether the data points are nested in groups is

through the calculation of the intraclass correlation coefficient (ICC) (Koch, 2014).

The ICC calculates the degree of homogeneity of the outcome within the groups.

This is calculated by dividing the between-group variance by a combination of the

between-group variance and the within-group variance. This formula is shown in
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equation 5.1:

ICC =
var(u0j)

var(u0j) + (π2/3)
(5.1)

In equation 5.1 var(u0j) denotes the between-group variance. This tells whether

some cells have a higher conflict-mean than others. Since the regression does not

include a within-group variance it uses the standard logistic distribution (π2/3) as

the assumed level-1 variance component (Sommet & Morselli, 2017).

The ICC ranges from 0 to 1, where 0 indicates perfect independence of residuals

— meaning there are no nested effects from the cells, and hence no reason to use

a multilevel model. The higher the ICC, the more the observations depend on the

cluster relationship (Sommet & Morselli, 2017). For instance, if the ICC = 1 it

means that either a cell experiences conflict all the time or never.

ICC =
6.96

6.96 + 3.29
=

6.96

10.25
= 0.68 (5.2)

The ICC for conflict in this study is 0.68, denoting a relatively high degree of

intraclass correlation. What this means is that 68% of variation in conflict observa-

tions is between cells. In turn, 100% - 68% = 32% of variation in conflict is within

cells. The high level of between-variation indicates that observations are in fact

clustered and that some cells experience several conflict incidences, whereas other

cells do not experience conflict at all. This is also evident from the map of conflict

locations in Figure 4.1a. Due to the high level of ICC, a multilevel model with

varying intercepts is appropriate in this case (Sommet & Morselli, 2017).

ICC for drought

It is also possible to calculate the ICC for the three drought indices. This is inter-

esting as it tells us whether droughts are spread across units or whether some areas

tend to see many droughts and other tend to see relatively few.

Table 5.1: ICC for drought

SPEI NDVI EM-DAT

Between cell variance 6.4% 54.0% 20.5%
Within cell variance 94.6% 46.0% 79.5%
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It is evident from Table 5.1 that between and within variances vary across the

three indicators. It is no surprise that SPEI contains a large within variance, since

all cells are measured against their own long-term mean. Conversely, the extent

to which vegetation vary is dependent on the type of vegetation. Since areas with

rainforests are not as easily affected by drought as cropland or grassland, we can

see that NDVI has a relatively large between-cell variance.22 This means that the

probability of experiencing NDVI drought is not random, but rather dependent on

the land type. EM-DAT is somewhere between SPEI and NDVI, with a moderate

level of within-cell variance.

Varying slope?

A benefit of the multilevel model is that it allows the researcher not only to impose

varying intercepts for the different groups, but also to allow varying slopes between

the groups (Gelman & Hill, 2006). This means the effect drought has on conflict

could be different between units. Often this will be closer to the true relationship

and will therefore make the model a better fit. However, there is an ongoing de-

bate in the literature as to whether researchers should use a maximal model with

both varying intercept and varying slope (Barr, Levy, Scheepers & Tilly, 2013),

or whether this imposes a risk of overparameterisation (Bates, Mächler, Bolker &

Walker, 2014). According to Sommet and Morselli (2017) this should first and fore-

most be a theoretical question: Do we expect the effect of drought to be inherently

different between cells? According Hypothesis 1, I expect drought to have a posi-

tive effect on the probability of conflict in all areas. Naturally, the strength of this

effect could vary between areas, but I do not expect the effect to be positive in

some areas and negative in others. Hence, it does not seem necessary to include

varying slopes. Moreover, it is possible to calculate the extent in which the effect

of drought varies between clusters. To test this, I run a constrained intermediate

model (CIM) and an augmented intermediate model (AIM), and compare both by

performing a likelihood-ratio test. The results from the tests are shown in Table 5.2

and the table shows diverging results across the three models. The SPEI model sug-

gests that slopes are in fact not different, whereas in both the NDVI and EM-DAT

22The cutoff value for NDVI is thoroughly discussed in part 4.2.2. Choosing a cutoff based on
each cell’s standard deviation would lead to 100% within variance.
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Table 5.2: Varying-slope test

Likelihood-ratio test SPEI NDVI EM-DAT

LR χ2(1) = 1.85 276.02 22.41
Prob > χ2 = 0.1733 0.0000 0.0000

model slopes are different between cells. This is not very surprising given that SPEI

has a low between-cell variance compared to the other indicators. Moreover, the

mathematical results may also be driven by a large number of cells not experiencing

drought or conflict.

Since my hypothesis states that a drought should be positively related with

communal conflict across all units, and this is supported by at least one of the three

models, I choose to run the original model with varying intercepts and fixed slopes.

5.2.3 Regression Assumptions and Diagnostics

In regular OLS or regular logistic regression assumptions and diagnostics are well-

defined and heavily discussed (see e.g. Christophersen, 2018; Kennedy, 2008; or

Stock & Watson, 2011). There exist numerous tests for controlling for omitted

variable bias, multicollinearity or outliers. In multilevel modelling, however, the

literature is rather scarce. Some of the same assumptions apply as for regular

logistic regression, but the mathematical tests are not straight forward. Based on

Christophersen (2018), Kennedy (2008) and Stock and Watson (2011) I identify four

assumptions vital to this research design and outline a thorough discussion on these

assumptions. These four assumptions are: (1) Linearity and model specification,

(2) omitted variable bias, (3) multicollinearity and (4) influential observations.

Linearity and model specification

The logistic model is often referred to as a non-linear model (Stock & Watson, 2011,

p. 387). Intuitively the model looks non-linear since the line it produces is S-shaped

and not a straight line. However, although the line it produces is not linear, the

model is still linear in parameters. This means that when one unit increase in X

is associated with a β increase in the log-odds of Y, β will have the same value

regardless of the value of X. Hence, although the model itself can be described as
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non-linear, the assumption of linearity (in parameters) is still pivotal.

Since the linearity assumption assumes that the causal effect is the same across

the sample, this assumption implies that the variables should be correctly specified.

For instance, I have log-transformed the population variable. The reason for log-

transforming the variable can be shown with a hypothetical example. Imagine a

grid cell (A) containing 200 inhabitants in the year 2000. Due to climatic hardship

in surrounding areas, the cell receives 200 new inhabitants the next year. Hence,

the population has doubled its size from 200 to 400. Now, imagine a much more

populous grid cell (B) with 200.000 inhabitants. Receiving 200 new inhabitants

in cell B would most likely not result in the same effects as in cell A. By log-

transforming we basically operate with the relative frequency, meaning that for

cell B to have the same estimated effect, it also needs to double its population by

receiving 200.000 new inhabitants. When a variable is either log-transformed or

squared, the regression equation can be described as “nonlinear in variables, but

linear in parameters” (Kennedy, 2008, p. 96).

Similar argumentation applies to why I have transformed the ethnic exclusion-

variable from originally ranging between 0 and 5, to only take on the binary values of

0 and 1. The theoretical justification is that having five discriminated ethnic groups

in an area, is not necessarily making a grid cell five times more likely to experience

conflict compared to a cell containing only one discriminated group.

Failing to take the linearity assumption into account and properly specify the

variables in the regression model may impose a second problem, namely omitted

variable bias.

Omitted variable bias

Omitted variable bias occurs when we fail to control for underlying variables corre-

lated with both the independent and the dependent variable. Since omitted variables

are included in the error term, it means that one of the independent variables are

correlated with the error term (Christophersen, 2018, p. 73). Failing to control for

omitted variable bias results in the estimated parameters being biased (Kennedy,

2008, p. 93).

The best way to prevent omitted variable bias is to include independent variables
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based on theory. What may affect both the level of drought and the level conflict?

It is easy to think that some sort of drought resilience should be included. Democ-

racy, SHDI and ethnic exclusion are all included to capture some of these effects.

However, recall the challenging question from the previous chapter: Does a drought

deteriorate the general coping capacity in areas and hence make them more likely to

see conflict? Or is it rather the case that a drought happening in areas with already

low coping capacity carries the conflict potential? As discussed in previous chapter,

according to Busby (2018) this has been source of conundrum in the climate-conflict

research. My argument for including these control variables is twofold. First, in-

cluding control variables prevents the chances of inducing omitted variable bias to

the model. Although including mediating variables may reduce the efficiency of the

estimator, it is generally considered worse to have omitted variable bias than an

inefficient model. Second, both NDVI and EM-DAT vary largely between areas,

meaning that different areas have a different chance of experiencing drought in the

first place, hence including these control variables seems feasible in this thesis.

Kim & Frees (2006) have developed a statistical test to test whether there exists

omitted variable bias in a multilevel model. This test is based on running a multi-

level model and a robust fixed effects model and comparing these with a Hausman

test. If there are significant differences between the models, then the robust model

should be preferred as this is less prone to omitted variables than the multilevel

model. However, since I use logistic regression containing large numbers of cells not

experiencing conflict, running a logistic model with fixed effects will omit all these

cells from the regression model. Hence, the test is not possible to run. To cope with

this limitation, I run an OLS model with cell-fixed effects as a robustness test in the

analysis.

Multicollinearity

Collinearity (X1 is linear with X2) and multicollinearity (X1 is linear with X2 + X3 +

. . . Xk) occur when there is a perfect or strong relationship between the independent

variables. This means that we can perfectly predict one independent variable based

on one or more independent variables (King et al., 1994, p. 112). This assumption

is often referred to as “perfect multicollinearity” (Stock & Watson, 2011, p. 200).
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Recall that with the Thorntwaite method SPEI can be computed solely based on

two measurements: precipitation and temperature. By including SPEI, temperature

and precipitation as three separate variables in a regression we would end up having

a problem of perfect multicollinearity — the SPEI variable is a linear function of

temperature and precipitation. However, a much more common problem is a strong

tendency of, but not perfect, multicollinearity (Kellstedt & Whitten, 2018 p. 264).

This is not as easily detectable as perfect multicollinearity.

The higher the correlation between two or more independent variables, the less

information the estimator can use to calculate the parameter estimates, and thus

the greater variances and lower efficiency (Kennedy, 2008, p. 194). The likelihood

of multicollinearity arises when adding more independent variables to the regression

model. Thus, when reducing the problem of omitted variable bias, we may induce

a problem of multicollinearity.

Table 5.3: Variance Inflation Factor (VIF)

VIF SPEI NDVI EM-DAT

Drought 1.01 1.02 1.01
Population 1.02 1.03 1.02
SHDI 1.28 1.31 1.29
Ethnic exclusion 1.07 1.07 1.07
Democracy 1.33 1.35 1.33
Conflict (temporal lag) 1.00 1.00 1.00

To test whether the models contain collinearity or multicollinearity I calculate the

Variance Inflation Factor (VIF). The VIF is calculated by running OLS regressions

several times with each independent variable as the dependent variable (Acock, 2014,

p. 288). The R2 from each regression denotes the proportion of the new dependent

variable which is explained by the other variables in the regression model. A VIF

above 10 is often assumed to be problematic and according to Christophersen (2018,

p. 76) it could inflate the standard errors by 129.4%. When standard errors get

inflated we could end up committing a “type II error”: failing to reject a false null

hypothesis, and stating that there is not a statistically significant relationship, when

there is. Table 5.3 shows that all variables are well below the threshold of 10 and

suggests that the models do not suffer from multicollinearity.
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Influential observations

The last assumption I will touch upon is that large outliers are unlikely (Stock &

Watson, 2011, p. 125). Outliers are one of two types of influential observations.23

Outliers are observations that the model predicts poorly. However, in a model

where less than 0.5% of all observations are conflict observations, all these conflict

observations would likely be considered outliers. Moreover, outliers are not generally

considered a large problem unless they either are a result of coding mistakes or they

are driving the results to a large degree. I have re-run the data processing with

conflict data, SPEI data and EM-DAT data and this has resulted in the same number

of observations.24 This makes it less likely that outliers have been constructed due

to my own coding mistakes, however there is always a possibility of coding mistakes

in the original datasets.

In contrast to country-level studies, a problematic aspect occurring in spatially

disaggregated studies is that one conflict may comprise large parts of the dataset.

As outlined in the previous chapter, the conflict between Christians and Muslims in

Nigeria represents 71 of the 995 conflict observations. Hence it might be that this

conflict influences the results from the regression model. In order to test this, I run

a robustness test excluding this particular conflict.

Summary

In sum, the models in this analysis does not fulfil all requirements of a regular OLS

model. Nor do most regression models. However, it is important to be aware of

which flaws the model contains in order to run robustness tests to cope with these

problematic aspects.

23The second being observations with high “leverage” — observations influencing the model the
most.

24I have not done this for NDVI data as the data processing took several days.
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Results and Analysis

In this chapter, I present the results from the various regression analyses. I start the

chapter with some descriptive statistics illustrating the trends between drought and

communal conflict. Second, I present the main regression analysis and discuss the

results. Moreover, I run robustness tests to examine whether the results are robust

across different models. I also discuss whether SPEI, NDVI and EM-DAT are three

different measures of drought or whether they are all measuring the same type of

drought but represents different parts of the causal chain. To conclude the chapter,

I look into whether or not “drought” has been explicitly mentioned as a contributing

factor in the conflicts that coincides with the various drought observations.

6.1 Descriptive Statistics

Descriptive statistics and correlations are interesting because they reveal what we

should expect from the regression analysis. If there are large discrepancies between

the raw correlations and the regression results, it may be a sign that confounding

factors play a large role.

In Figure 6.1 I present the frequency of drought events and communal conflicts

in Sub-Saharan Africa between 1989 and 2014. Since I exclude cells with limited

population and land area, the total number of valid observations is 207,636.25 Of

all these observations in the dataset, only 995 cell-years experienced conflict. This

means that if we were to pick a random observation in the dataset, the probability

25Unlike the number presented in Chapter 4 (199,650), this is with all 26 years included instead
of only the 25 when including the lagged dependent variable.

75



6.2. REGRESSION MODELS

that it would contain a conflict is 995
207,636

= 0.48%. This baseline probability is shown

with the horizontal dashed line in Figure 6.1.

If we only look at the observations not experiencing any type of drought, the

probability of choosing a conflict observation would be lower than the baseline prob-

ability with 736
170,170

= 0.43%.

Figure 6.1: Conflict observations

By limiting the sample to only those

observations who experienced a SPEI

drought, the probability of picking a

conflict observation would, surprisingly,

be lower than the baseline probability

with 66
14,603

= 0.45%. This suggests that

SPEI drought is not a good predictor

of communal conflicts. However, this is

only the raw correlation, not taking into

account other relevant variables. For in-

stance, it might be that SPEI droughts

in areas with low coping capacity see

more conflicts, whereas SPEI droughts

have no effect in drought resilient areas.

While the probability of picking a conflict observation from the SPEI sample is a

bit lower than the baseline probability in the whole dataset, this changes drastically

for NDVI and EM-DAT droughts. For both NDVI and EM-DAT droughts the prob-

abilities of experiencing communal conflict are over twice the size of SPEI droughts,

with 98
9,933

= 0.99% and 169
17,840

= 0.95%, respectively. Again, these probabilities

only reflect the raw correlations, not considering confounding factors. Therefore,

researchers need to make use of regression models to control for these underlying

factors.

6.2 Regression Models

In Table 6.1 I present the results from the multilevel logistic regressions. Table 6.1

contains nine models in total: three models for each drought indicator, containing
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Figure 6.2: Odds ratios

the direct, indirect and the total effect. I provide the coefficients as odds ratios as

these are easier to interpret than log-odds. The corresponding standard errors are

provided in parentheses.

For a more intuitive interpretation of the relationship between drought and con-

flict I plot the odds ratios for the different drought indicators in Figure 6.2. In this

figure I exclude odds ratios for the control variables as the main scientific interest is

to estimate the effect of the different drought indicators. In Figure 6.2 the orange

plot represents the direct model, the blue represents the indirect model and the

green represents the total model. The whiskers represent the corresponding 95%

confidence interval and the dashed vertical line denotes where the odds ratio is 1

(there is no effect).

The odds ratio for SPEI is positive in all three models, suggesting SPEI droughts

are associated with a higher likelihood of experiencing communal conflict. This sup-

ports Hypothesis 1 that droughts in general are associated with more conflicts.

However, the coefficient is only (and barely) significant in the indirect model. Ad-

ditionally, in very large-N studies even small coefficients may be significant. Hence,

significance does not necessarily reflect a true relationship in these very large-N

studies. Failing to acknowledge this is referred to as the “large sample size fallacy”

(Lantz, 2013). Thus, researchers should not only look at the significance, but also

consider the size of the coefficient in order to make sound conclusions. As seen from
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Table 6.1: Regression models

Models

(1-3) Direct (4-6) Indirect (7-9) Total

(1)
SPEI

(2)
NDVI

(3)
EM-
DAT

(4)
SPEI

(5)
NDVI

(6)
EM-
DAT

(7)
SPEI

(8)
NDVI

(9)
EM-
DAT

SPEI 1.22 1.47* 1.35
(0.18) (0.27) (0.23)

NDVI 1.39* 1.92** 1.70**
(0.20) (0.39) (0.31)

EM-DAT 1.88*** 1.99*** 1.98***
(0.20) (0.23) (0.22)

Populationlog 1.87*** 1.65*** 1.84*** 1.87*** 1.65*** 1.84*** 1.87*** 1.65*** 1.84***
(0.09) (0.08) (0.09) (0.09) (0.08) (0.09) (0.09) (0.08) (0.09)

SHDI 2.63 1.06 2.74 2.72 1.15 2.78 2.69 1.11 2.77
(1.64) (0.94) (1.70) (1.70) (0.87) (1.72) (1.68) (0.84) (1.72)

Democracy 0.17*** 0.05*** 0.15*** 0.17*** 0.05*** 0.15*** 0.17*** 0.05*** 0.15***
(0.07) (0.02) (0.06) (0.07) (0.02) (0.06) (0.07) (0.02) (0.06)

Ethnic exclusion 1.19 1.29 1.17 1.19 1.28 1.17 1.19 1.29 1.17
(0.14) (0.17) (0.13) (0.14) (0.17) (0.14) (0.14) (0.17) (0.13)

Conflict eventt−1 5.70*** 4.81*** 5.90*** 5.70*** 4.90*** 5.92*** 5.70*** 4.85*** 5.91***
(0.66) (0.22) (0.69) (0.66) (0.66) (0.69) (0.66) (0.66) (0.69)

Intercept 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Observations 185,865 112,099 186,190 186,140 112,380 186,140 185,840 112,084 186,140
No of groups 7,482 7,487 7,494 7,492 7,492 7,492 7,481 7,486 7,492
LL -4,114 -3,113 -4,099 -4,114 -3,112 -4,100 -4,114 -3,112 -4,099
AIC 8,246 6,244 8,213 8,244 6,240 8,216 8,245 6,241 8,214

*: p <0.05, **: p <0.01, ***: p <0.001. All models are estimated through multilevel mixed-effects logistic regression
with observations nested on cells. Coefficients are shown as odds ratios with standard errors in parentheses. Cells
with less than 200 inhabitants or 100 km2 are omitted.
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Figure 6.2, the lower bound of the 95% confidence interval of both the indirect and

the total model are pretty close to each other, but where the total model merely

crosses the dashed line, the indirect model does not. Consequently, it may be wrong

to state that there is a true relationship between indirect drought and conflict and

at the same time write off the other two drought models. Hence, there seems to be

a weak and inconsistent, albeit positive, relationship between SPEI droughts and

the risk of communal conflict.

NDVI, on the other hand, is positive and significant in all three models, with

odds ratios varying between 1.39 and 1.92. This is also in accordance with Hy-

pothesis 1: that there is a positive relationship between droughts in general and

communal conflict. Moreover, since the effect seems to be stronger than SPEI, this

also supports Hypothesis 2: the higher physical impact of the drought, the higher

conflict risk. However, since the NDVI data only are available after 2000, the sam-

ple size is considerably smaller in this regression model.26 In turn this results in

larger uncertainty. This is particularly prominent in both the indirect and the total

model. Moreover, in both the SPEI and NDVI models the indirect effects seem to

be strongest. This means that the highest likelihood of conflict, at least from what

the regression models are able to estimate, occurs when there are droughts in the

neighbouring cells. However, it is important to keep in mind that a one unit increase

in the indirect effect equals all neighbouring cells experiencing drought. In many

cases this also means that the cell in question experiences drought. Thus, on the one

hand this might be due to the coding of the variable. On the other hand, this may

be a sign that less precipitation in one area may lead to droughts and conflicts in

neighbouring areas. If a cell contains important water sources, such as headwaters

for rivers, lack of precipitation in one cell may lead to droughts in neighbouring cells.

Similarly, for NDVI, deterioration of vegetation in one area may lead to migration

to neighbouring cells, which in turn may spark communal conflicts.

Similarly to NDVI, EM-DAT is also positive and significant in all models. As

seen from Figure 6.2, EM-DAT’s coefficients are mostly the same in all three models.

Since EM-DAT is measured on the first order administrative level, it means that cells

and their neighbours often have the same value on the EM-DAT variable. Hence, it

26For NDVI N ≈ 112, 000, whereas for SPEI and EM-DAT N ≈ 186, 000.
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makes sense that the direct, indirect and total effect reflect the same relationship.

In all models the odds ratios are approximately 2 and the coefficients are highly

significant. Although this may be a result of the large sample size, the relationship

seems to be robust to several robustness checks, as I will elaborate more on in part

6.2.2. The results from the EM-DAT model also support both hypotheses.

When the odds ratio is 2, as in the EM-DAT models, it means that the odds

of experiencing a communal conflict incidence double when there is an EM-DAT

drought. This should not be interpreted as a doubling of the probability. The odds

are defined as the probability of an event occurring divided by the probability that

it does not occur, and can be written as p
1−p , where p is the probability. Thus, the

odds may range from 0 to∞. If the probability is 0.5, the odds are 0.5
1−0.5

= 1. If the

odds double from 1 to 2, the probability does not necessarily double. In fact, if the

probability is 0.5 (or 1
2
) and the odds double, the new probability is 0.67 (or 2

3
).27

Similarly for each n-doubling of the odds, when the baseline probability is 0.5, the

new probability can be written as n
n+1

. This illustrates the asymptotic features of

the logistic regression model, as the odds may range from 0 to∞, but the estimated

probability will never reach exactly 0 or 1.

In this thesis, however, the probability of experiencing conflict is far from 0.5.

In fact, the baseline probability of experiencing a conflict (not taking into account

control variables) is 0.0043 (or 0.43%). This means the odds are 0.0043
0.9957

= 0.0043.

A doubling of the odds in this case gives an new odds of 0.0086 and hence the

probability can be calculated with basic algebra:

x

1− x
= 0.0086

x = 0.0086− 0.0086x

1.0086x = 0.0086

1.0086x

1.0086
=

0.0086

1.0086

x ≈ 0.0085

(6.1)

As equation 6.1 shows, if the baseline probability of experiencing conflict is 0.43%

27As x
1−x = 2 results in x = 2

3 .
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and the odds ratio is 2, the new probability of experiencing conflict is 0.85% holding

all other variables constant. This illustrates three points. First, when the probability

is close to zero, the odds converge towards the probability since 0
1

= 0. Hence, in

this case a doubling of the odds actually resembles a doubling of the probability.

Second, since the baseline probability (intercept) varies from cell to cell and the

values of different control variables vary, changes in the probability are not constant

across areas, but need to be calculated for each cell individually. Since 0.43% is

the average baseline probability, some areas may have a much higher or much lower

baseline probability of experiencing conflict. Thus, while the odds double for all

cells, the probability does not double for all cells(!) Lastly, although a doubling of

the probability may sound overwhelming, 0.85% is still a relatively low probability

of experiencing conflict.

To sum up, the results from the main regression model show that SPEI only

weakly and inconsistently supports Hypothesis 1. Since both NDVI and EM-DAT

show support for this hypothesis and the effect of EM-DAT is stronger than that

of NDVI, the regression model also supports Hypothesis 2. This is interesting as

it points to the fact that the higher physical impact of the drought, or the closer

we get to measuring the social impacts of the drought, the higher risk of seeing

communal conflict. This is scientifically interesting as this shows that using NDVI

and EM-DAT to measure drought arguably reveals a larger picture of the relationship

between drought and conflict than portrayed by former research. I am not to say

that NDVI or EM-DAT measures drought better than SPEI, but they arguably

capture some aspects that SPEI is not able to capture. Moreover, this also has

politically interesting implications as this points to the fact that if we can prevent

meteorological droughts becoming socio-economic droughts, we can possibly reduce

the risk of experiencing communal conflict. I discuss these implications more in

detail in the next chapter.

6.2.1 Control Variables

It is a good sign that the effects of the control variables are consistent across all

nine models. The size of the population is significant and positively associated

with communal conflict in all models. Suggesting a one unit increase in the log of
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the population is associated with 84-87% increase in the odds of seeing communal

conflict in the SPEI and EM-DAT model. This effect is marginally weaker in the

NDVI model, which only contains data between 2000 and 2014, suggesting that the

effect of population on communal conflict has decreased in recent years. This is also

true when running regressions with SPEI and EM-DAT only including data between

2000-2014, as I show in the next section. Moreover, this is in line with previous

findings that higher population increase the likelihood of communal conflict.

Surprisingly, the coefficient of SHDI is positive, suggesting that increased devel-

opment is associated with a higher risk of conflict. This effect is stronger in the

models including the whole time-series, but the effect is not significant in any of the

models and should therefore not be given any explanatory power. Nonetheless, this

is interesting as it is contrary to former findings. Based on former findings we would

expect lower SHDI levels to be associated with conflicts. A possible explanation for

this relationship is that SHDI is not measured on the grid cell level, but on the first

order administrative level. Thus, if there are large variations in living conditions

between cells within these administrative regions, this would not be captured by

this variable.

The level of democracy, on the other hand, seems to be a strong predictor of

communal conflict. For all models the odds ratio ranges between 0.05 and 0.17.

This suggests a decrease in the odds of experiencing conflict with 83%-95% with

one unit increase on the democracy score. However, this effect may appear stronger

than it is. Since the democracy variable ranges between 0 and 1, where the lowest

observed value is 0.012 and the highest is 0.770, it is impossible to have a one unit

increase in democracy. Nevertheless, the effect is strong and significant. Previous

literature suggests that the relationship between democracy and conflict can be

portrayed as an inverted-U shape, with countries neither being strong democracies

nor strong autocracies experience more conflicts (Brosché & Elfversson, 2012; Hegre

et al., 2001). Since I am not primarily interested in the effect of democracy, but

rather include the variable to control for the level of democracy, I have not squared

and centred the term to account for this.

Ethnic exclusion is barely positive, but not significant, and hence it does not

seem to affect the likelihood of communal conflict to any notable extent. This is
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also contrary to previous research (see Brosché & Elfversson, 2012; Theisen et al.,

2011). As discussed in Chapter 4, this may be a result of the way the variable is

operationalised. Communal conflicts are often tied to pastoral and rural marginal-

isation (Benjaminsen et al., 2009). This is not captured by this variable as it only

accounts for political exclusion on the state level.

Lastly, experiencing a conflict the previous year has a very strong effect on the

likelihood of experiencing conflict the given year. This is not surprising as the

dependent variable is conflict incidence and not conflict onset. Across all models

the odds of experiencing a conflict in year t increase between four and six times if

the cell experienced a conflict in year t-1.

6.2.2 Robustness Tests

To test whether the results are prone to the choice of estimator or data availability,

I run several robustness tests.

Since the NDVI data only are available from 2000, using SPEI and EM-DAT

data from 1989 may not be feasible when comparing the effects to NDVI. To ex-

amine this, I re-run the regressions only using data between 2000 and 2014. The

coefficients are shown in Figure 6.3a.28 When using data between 2000 and 2014,

both SPEI’s and EM-DAT’s coefficients increase. Now SPEI’s coefficients are sig-

nificant in all models. Similarly, EM-DAT’s coefficients suggest an increase in the

odds by 135%. Interestingly, this is contrary to former findings, which find that the

relationship between drought and conflict has diminished in recent years (Ciccone,

2011). However, these results are most likely driven by the increase in the number of

communal conflicts in later years (recall the conflict trend graph from Figure 4.1b).

As a second robustness test, I use other operationalisations of the drought vari-

ables. Since the cutoff imposed on SPEI and NDVI may either be too strict or

too weak, I run models where SPEI and NDVI are measured as continuous devia-

tions from the cell mean. I have reversed the scale, meaning negative values suggest

more precipitation and higher vegetation, whereas positive values are associated

with droughts. This is done in order to get the same interpretation that positive

coefficients suggest that droughts are associated with more conflict incidences. Both

28Regression table can be found in Table A.2 in appendix.
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the SPEI and NDVI models are positive. SPEI is barely significant on the 0.05-level,

whereas NDVI is not. Additionally, I construct a cumulative model representing the

number of years in a row with drought. Coefficients are positive for all three indi-

cators, but only the EM-DAT coefficient is significant. Lastly, I run a model where

drought is lagged one year. Similar to the cumulative model, all coefficients are pos-

itive, but only EM-DAT obtain significance on the 95%-level. I plot the coefficients

in Figure 6.3b.29

Figure 6.3: Robustness checks

As discussed in Chapter 4, the geo-

precision in the conflict data varies.

To account for this, I run a regression

model excluding all conflict observations

not obtaining the highest level of geo-

precision. This means that we know

that all conflicts happened in the cell

they are coded in. In this model SPEI is

not significant, whereas NDVI and EM-

DAT are positive and significant. More-

over, since the conflict between Chris-

tians and Muslims in Nigeria make up

71 of the 995 conflict observations, I also

run a regression model excluding this

conflict. Similarly, in this model SPEI is

not significant, but NDVI and EM-DAT

are positive and significant. Addition-

ally, to account for the MAUP, where

the size of the cells may affect the re-

gression results, I run a model examin-

ing the direct effect of the drought mea-

sures with cells being 2◦ × 2◦. In this

model only EM-DAT is significant. On

the one hand, this may support the ar-

29Regression table can be found in Table A.3 in appendix.
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gument that there might be a diffusion

effect from other cells when using SPEI

and NDVI. On the other hand, this may also reflect the “large sample size fallacy”

as the number of observations is drastically reduced in this model.30

So far, all regressions have been estimated using multilevel logistic models. Al-

though there are strong theoretical justifications for using a multilevel model, the

estimator itself may be prone to various specifications. Hence, if the results are ro-

bust, other estimators should yield similar results. To test this, I run an OLS model

with cell-fixed effects. As discussed in the previous chapter, a caveat with the fixed

effects OLS is that it only utilises within-variation and not between-variation. How-

ever, in this case, this is an important addition as it shows in Figure 6.3c that the

NDVI effect is close to zero in the within-models.31 This suggest the effect of NDVI

on communal conflict is a result of the between-variation. In other words, the effect

is a result of NDVI droughts taking place in the same areas as communal conflicts.

This has several implications for the theoretical discussion. On the one hand,

it might be the case that some areas are more prone to experience NDVI droughts

and these same areas see a higher frequency of communal conflicts. This effect

would not be captured by SPEI as a SPEI drought may occur everywhere, whilst it

would to a large extent be captured by NDVI as this is dependent on the land type.

However, this may be problematic when running a statistical analysis of the whole

Sub-Saharan Africa. Thus, it might be that the NDVI results actually show that

conflicts between farmers and herders tend to take place in areas where vegetation

varies. Areas with variation in NDVI correlate strongly with areas containing crop-

land, grassland and shrubland, which is in fact where farmers and herders live. This

is especially problematic when large parts of the sample (Sub-Saharan Africa) never

experience NDVI droughts, nor communal conflicts. To further investigate this, I

identify the areas where both NDVI droughts and communal conflicts tend to take

place, namely in the Sudano-Sahelian Zone.

30I have not made graphs from these regression models, but regression tables can be found in
Table A.4, Table A.5 and Table A.6 in appendix.

31Regression table can be found in Table A.7 in appendix.
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(a) Map of the Sudano-Sahelian Zone (b) Odds ratios for the Sudano-Sahelian Zone

Figure 6.4: The Sudano-Sahelian Zone

6.3 The Sudano-Sahelian Zone

The Sahel region is located on the fringes of the Saharan desert (Benjaminsen, 2008).

In recent years the area has received a great amount of scientific focus, both due to

the high number of conflicts occurring and due to the assumed climatic vulnerability

in the area. The Sahel region is characterised as one of the poorest, least developed

regions of the world, and approximately 80%-90% of the workforce is active in the

agricultural sector (V̊agen & Gumbricht, 2012).

There is no exact definition of what constitutes the Sahel. The region is typically

defined as the area receiving between 200mm and 600mm mean annual rainfall. This

is marked with yellow in the map in Figure 6.4a. However, since both communal

conflicts and NDVI droughts also tend to take place in what is often referred to

as the Sudanian zone, the area receiving 600mm-1000mm mean annual rainfall, I

extend the notion of ‘Sahel’ to include both the isohyet32 containing the Sahelian

zone and the Sudanian zone.33 The Sudanian zone is with green cells in Figure 6.4a.

The new regression results are shown in Figure 6.4b. SPEI behaves more or

less similar to the main model, and EM-DAT is positive and significant, but the

coefficients are halved. NDVI, however, sees a drastic change. In both the direct

and the total model the coefficients of NDVI are negative, suggesting that more

32An isohyet is a line on a map connecting points with the same amount of rainfall in a given
period.

33This has previously done by Karlson and Ostwald (2016) and Bargués Tobella (2016).
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vegetation is associated with a higher likelihood of communal conflict. However,

none of the coefficients are significant.

These new results can be interpreted as support of previous findings that more

vegetation is associated with more communal conflicts, particularly cattle raiding

in Eastern Africa (Meier et al., 2007; Theisen, 2012; Witsenburg & Adano, 2009).

By further distinguishing between East and West Africa within the Sudano-Sahelian

zone, I find that NDVI has a positive effect on conflict in West Africa, but a negative

effect in East Africa. This could support these previous findings. However, none of

these models are significant as the number of observations is rather scarce.34

6.4 Sequential Effects

As discussed previously, SPEI, NDVI and EM-DAT do not necessarily reflect three

different theoretical concepts of drought, but may rather represent three different

components in the causal chain of a drought. Lack of rainfall (SPEI) leads to less

vegetation, loss of crops and pasture (NDVI), which in turn may lead to a socio-

economic disaster (EM-DAT). To test this possible causal mechanism, I regress SPEI

on NDVI and NDVI on EM-DAT. The results are shown in Figure 6.5.

Unsurprisingly, all coefficients are positive and highly significant. This means if

there is lack of precipitation, there is a higher chance of reduction in the quality of

vegetation. Similarly, if there is deterioration of vegetation, there is a higher chance

of having a drought emergency.

An interesting feature in Figure 6.5 is that the indirect effect seems to have the

strongest coefficient in both models. This may suggest that there is a spatial diffusion

effect between the different measures. Lack of precipitation may not necessarily

affect vegetation in the same cell, but it could lead to a reduction in stream flow water

in rivers or water reservoirs. This, in turn, could affect vegetation in neighbouring

cells. Similarly, vegetation deterioration in large areas seems to be a better predictor

of EM-DAT crisis. This may also be a result of the way “indirect” is measured where

the variable only equals 1 if all neighbouring cells experience drought.

This short analysis does not conclude whether SPEI, NDVI and EM-DAT should

3413,866 observations for East Africa and 8,201 for West Africa.
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Figure 6.5: Sequential effects of SPEI, NDVI and EM-DAT

be considered three different measures or three different components of the same

measure. This could be the basis for discussion in a completely different thesis.

Nonetheless, what these results show is that whether or not we consider these mea-

sures as similar or different droughts, EM-DAT is arguably a closer to measuring

the deterioration of living conditions (be it cropland, grazing land or water sources)

than SPEI.

6.5 Explicit Mention of “Drought”

Before summarising the thesis and discussing future implications, I examine whether

drought has been argued to be a possible contributing factor in the different conflicts.

First, I identify all conflict observations coinciding with a drought in the same

cell (the direct effect). This amounts to 32 SPEI conflicts, 46 NDVI conflicts and

64 EM-DAT conflicts. Moreover, I examine whether “drought” has been explicitly

mentioned as a plausible contributing factor to the conflict according to the UCDP

Non-State Conflict Dataset (Sundberg et al., 2012; Pettersson, et al., 2019). Accord-

ing to the dataset 5
32

of SPEI conflicts contained drought as a possible explanatory

factor, 21
46

of NDVI conflicts contained drought and 19
64

EM-DAT of conflicts con-

tained drought. This is shown as a pie chart in Figure 6.6 where the darker areas

represents explicit mentions of drought.

There are two main findings from this quick investigation. On the one hand,

this suggests that both NDVI and EM-DAT are better than SPEI at identifying

conflicts where drought has played a contributing factor. On the other hand, since
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27

5
SPEI

Drought

No drought
25

21
NDVI

Drought

No drought 45

19 EM−DAT

Drought

No drought

Figure 6.6: Drought explicitly mentioned in UCDP

NDVI has the largest share of “drought-related conflicts”, it might denote that these

conflicts tend to take part in areas with more cropland and grassland, such as the

Sudano-Sahelian Zone.

To sum up the analysis in general, results from the main regression model are

both in line with Hypothesis 1: Droughts are associated with a higher likelihood of

communal conflict, and Hypothesis 2: The higher physical impact of the drought, the

higher the likelihood of communal conflict.. As shown through robustness tests, this

relationship does not seem to be dependent on minor changes in the data. However,

when only considering the within-variation through the fixed effects OLS model,

it becomes apparent that the correlation between NDVI and communal conflict is

based on spatial correlation rather than temporal correlation. NDVI droughts and

communal conflicts tend to take place in the same areas, but not necessarily within

the same years.
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Chapter 7

Conclusion

7.1 Summary

The aim of this thesis has been to answer the research question: Do different concep-

tualisations of drought affect the likelihood of communal conflict? I have argued that

a problematic aspect with former literature has been the lack of discussion about

what constitutes a drought. The operational validity of SPEI as a drought measure

has mostly been taken for granted, although it contains several limitations. My

argument has been that the largest caveat with using SPEI as a drought measure

is that it primarily captures meteorological drought. Moreover, the low number of

in situ climate stations used to measure precipitation and temperature makes the

measurement less reliable, and recent research suggests that the estimates may not

be as exogenous to conflict as previously assumed. Hence, to get a more nuanced

answer to the research question on how drought affects communal conflict I have

tested three different drought measures: SPEI, NDVI and EM-DAT.

In line with Wilhite and Glantz’ (1985) distinctions between different drought

definitions, I have argued that SPEI can be perceived as a measure of meteorological

drought, NDVI as a measure of agricultural drought and EM-DAT as a measure of

socio-economic drought. Combining the implications of these different drought defi-

nitions with previous literature on how drought and scarcity may deprive livelihood

(see e.g. Homer-Dixon, 1999) I have formulated two hypotheses.

Hypothesis 1 (H1): Droughts are associated with a higher likelihood of communal

conflict.
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Hypothesis 2 (H2): The higher physical impact of the drought, the higher the

likelihood of communal conflict.

My main model shows conditional support for both hypotheses. SPEI is positive in

both the direct, indirect and total model, but only significant in the indirect model.

On the one hand, this may suggest that using 0.5◦ × 0.5◦ cells are too spatially dis-

aggregated to capture to true effect. However, the direct effect is neither significant

when using cells with 2◦ × 2◦. On the other hand, this may indicate that there is a

diffusion effect, where the lack of precipitation in one area may lead to a drought in

surrounding areas. This is also supported by the analysis examining the possibility

of sequential effects, where I regress SPEI on NDVI and NDVI on EM-DAT.

Contrary to SPEI, NDVI is positive and significant in all three models in the

main regression analysis. However, as I have discussed extensively in this thesis,

the estimated relationship between NDVI drought and communal conflict seems to

be a result of spatial correlation rather than temporal correlation. Put differently,

NDVI droughts and communal conflicts tend to take place in the same areas, but

not necessarily within the same years. This is evident both from the OLS regression

with fixed effects, and when limiting the sample to only those areas where both

NDVI droughts and communal conflicts tend to take place — the Sudano-Sahelian

Zone. In both these robustness tests the significance of NDVI disappears.

EM-DAT obtains by far the most robust relationship with conflict in this study.

EM-DAT’s coefficients are positive and significant in all models and robustness tests,

suggesting there is a robust relationship between EM-DAT droughts and communal

conflict incidences. Nevertheless, the high possibility of endogeneity in this study

makes it not suitable to draw a causal inference that there is a causal relationship

between EM-DAT and conflict as the estimated relationship may in part be caused

by reverse causality.

7.2 Strengths and Limitations

The main strength of this thesis is the questioning and investigation of a part largely

neglected in former studies on the climate-conflict nexus, namely how to measure

drought and how it is the implications of the drought we are interested in. The

91



7.2. STRENGTHS AND LIMITATIONS

application of widely different conceptualisations and operationalisations of drought

widens the scope regarding how researchers on the climate-conflict nexus should

understand the concept of drought.

Moreover, the use of spatially disaggregated data by using grid-cells as units

offers a much more precise understanding of the local relationship between drought

and conflict, than using country or sub-national units. Similarly, benefiting from

a multilevel logistic regression model reveals a more accurate picture as it utilises

more information than a regular pooled or fixed-effects model.

Another strength with this thesis is the thorough discussion of the limitations and

particularly the investigation of NDVI droughts in the Sudano-Sahelian Zone. This

provides nuances to the relationship estimated by the main multilevel regression

model, as it takes into consideration that vegetation levels may be dependent on

type of vegetation in each cell.

Nevertheless, there are some obvious limitations with this research design. The

main caveat in this thesis is the problem of endogenous regressors. This is also the

reason why researchers have relied on precipitation-based measures in the first place,

as SPEI and other precipitation measures are assumed to be exogenous to conflict:

Precipitation may affect conflict, but conflict does not affect precipitation.35 NDVI

and EM-DAT, however, may in part be caused by conflict and hence they may be

endogenous: Conflict may lead to loss of vegetation or increase the number of people

affected by an ongoing drought. One way to account for this is to use instrumental

variables regression by using proxies for the various drought variables. However,

this is exactly what the use of SPEI is assumed to capture as rainfall is assumed to

be an exogenous proxy for drought. A second possibility is to use lagged variables,

which I will touch upon in the next section.

A second short-coming relates to the spatial resolution of the EM-DAT data.

Contrary to SPEI and NDVI, EM-DAT is not measured on the grid cell level, but

rather on the first order administrative level. This may be problematic when con-

sidering the local effects as the variable is not distributed independently between

cells within the same unit. One way to account for this is using sub-national levels

as units in the analysis rather than grid cells.

35Unless the use of very advanced chemical and biological weapons, which (obviously) is not the
case in communal conflicts.
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The third short-coming relates to the interpretation of NDVI deviations. Since

these deviations are dependent on the land type, some areas are able to have much

larger deviations than other areas. On the one hand, this seems logical. It might be

the case that areas experiencing a loss of vegetation should be dependent on, and

not relative to, the type of vegetation. However, on the other hand, this leads to

only some areas being able to experience drought, which may be problematic.

Finally, the representativeness of the time-series in this study is an additional

limitation. Although I include 26 years, the findings in this study are neither rep-

resentative for years before 1989, nor for years after 2014. This is not a specific

caveat limited to this thesis, but rather a short-coming that applies to all studies

in social science. However, this is particularly important to acknowledge on the

climate-conflict nexus as we often are interested in the future, with the coming cli-

mate changes. On a similar note, examining climate variability and conflict on the

yearly level may not be ideal. Both droughts and conflict may be short-lived. Hence,

measuring these variables on the monthly level may provide a more accurate picture

than using years. However, using monthly data instead of yearly data has not been

possible within the scope of this thesis.

7.3 Implications and Further Research

The main interest of this thesis has been to investigate whether different opera-

tionalisations of drought yield different estimates on the conflict risk. My aim is

not to say that any of these measures are better measures of drought than SPEI.

My argument is that these other concepts arguably capture some of the aspects

we are interested in, which SPEI does not capture. As discussed above there are

certain problems with all these three measures. However, my aim and hope is to

shed light on this knowledge gap and provide valuable information on how we best

can operationalise the theoretical concept of drought we are interested in, in future

studies.

The main finding in this thesis is that the drought measure with highest social

impact is the best predictor of communal conflicts. The question then arising is how

can we prevent meteorological droughts becoming socio-economic droughts? Since
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my finding is that socio-economic droughts are more associated with conflict than

meteorological droughts, if we can prevent meteorological droughts becoming socio-

economic droughts in the future, then we can possibly reduce the risk of communal

conflict. However, the simple statement that if droughts are associated with more

conflicts, and we will see more droughts in the future, we will see more conflicts,

is not necessarily true. Vast improvements in living standards, increased drought

resilience and local adaptations to weather patterns make people more resilient to

the physical impacts of meteorological drought and may reduce the chances of lack

of precipitation becoming a socio-economic disaster. Paradoxically, the major driver

of climate change, economic development, is also one of the major drivers of reduced

conflict risk and climate vulnerability (Gartzke, 2012).

Even though this thesis finds a robust relationship between EM-DAT and com-

munal conflicts, this should not be interpreted as evidence of climate playing a large

role in conflicts. In many situations politics are still to blame. Blaming conflicts

on climate may be an easy way out instead of holding politicians accountable. For

example, in 1994 the Washington Post argued that a key underlying cause of the

Rwandan genocide was a struggle over land (Homer-Dixon, 1999, p. 17). However,

as Homer-Dixon (1999, p. 17) argues, this is taking the focus away from the main

cause — a struggle among ethnic groups for control over the Rwandan state. Sim-

ilarly, some researchers have argued that the ongoing civil war in Syria starting in

2011 was partly sparked by a drought (Gleick, 2014). Yet researchers should be

careful in disclaiming the liabilities of politicians.

These examples also point to a caveat with quantitative studies. A statisti-

cally significant relationship does not imply causation. Most likely would a statisti-

cal analysis including Syria show that a drought occurred right before the conflict

erupted. Hence, we are still in need of proper qualitative in-depth studies in order

to best reveal the causal mechanisms at play.

In further research it would be interesting to study the relationship between

these three drought measures and other types of conflict. Since I focus on communal

conflict, I expect the conflict potential of drought to occur within the same year.

This imposes the challenge of endogeneity. Hence, one way to reduce this problem is

to use lagged versions of the drought variables. Examining the relationship between
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drought and popular riots by using a lagged drought variable, would be interesting

and reduce some of these endogeneity problems.

Another point of departure for further research is to use the NDVI and EM-

DAT data to calibrate the SPEI variable. One way to do this is by testing different

cutoffs. Which SPEI cutoff provides the best predictions of socio-economic drought?

SPEI values < −1, < −1.5 or < −2? Moreover, this could also be used to calibrate

the temporal way of using SPEI in future research by testing which SPEI version

best predicts a socio-economic drought: SPEI-1, SPEI-3, SPEI-6 or SPEI-12? Or to

what extent should the SPEI variable be lagged in order to best capture the socio-

economic drought? By one year? Or rather by a few months? Additionally, do these

decisions vary depending on different land types? These are all highly interesting

questions this thesis has shed light on and made possible to further investigate.

Finally, although this thesis, along with former studies, has unveiled that there

seems to be a relationship between drought and conflict, there is now mounting

pressure to acquire knowledge on how climate change mitigation may affect conflict.

Contrary to drought, which is only assumed to carry conflict potential in rural and

less developed areas, we see evidence that climate change mitigation may spark ten-

sions all across the globe. In France, the Yellow vests movement has been rioting

since 2018, and leading up to the 2019 Norwegian local elections there was a mas-

sive uproar against road tolls. In Asia, Reducing Emissions from Deforestation and

Forest Degradation (REDD+) has sparked conflicts over management of forests and

natural resources (Patel et al., 2013), and in Sub-Saharan Africa climate mitigation

projects have been accused of “green grabbing” — expropriating agricultural areas

and grazing land in order to conserve nature or plant trees (Cavanagh & Benjamin-

sen, 2014). Hence, one may ask whether it is climate change or climate change

mitigation that carry the largest conflict potential.
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Appendix A

Appendix

Table A.1: Geo-precision from UCDP-GED

Precision level Number of conflicts Known point

1 422 (42.4%) Exact coordinates
2 187 (18.8%) Within 25km from exact location
3 216 (21.7%) Second order administrative unit
4 121 (12.2%) First order administrative unit
5 42 (4.2%) Section of country (e.g. Northern Uganda), or

linear feature (e.g. long river, border, longer road)
6 7 (0.7%) Country

Source: Högbladh (2020)
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Figure A.1: Different extrapolation techniques
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Figure A.2: NDVI variation
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Figure A.3: Cells included in the analysis

Cells with less than 200 inhabitants or 100km2 are omitted. In total 424 cells are omitted and the sample contains
8, 410− 424 = 7, 986cells.
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Figure A.4: Indirect effect of drought
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Table A.2: Multilevel regression 2000-2014

Models

(1-3) Direct (4-6) Indirect (7-9) Total

(1)
SPEI

(2)
NDVI

(3)
EM-
DAT

(4)
SPEI

(5)
NDVI

(6)
EM-
DAT

(7)
SPEI

(8)
NDVI

(9)
EM-
DAT

SPEI 1.53* 1.92** 1.76**
(0.27) (0.42) (0.36)

NDVI 1.39* 1.92** 1.70**
(0.20) (0.39) (0.31)

EM-DAT 2.18*** 2.33*** 2.31***
(0.26) (0.31) (0.30)

Populationlog 1.65*** 1.65*** 1.62*** 1.66*** 1.65*** 1.62*** 1.65*** 1.65*** 1.62***
(0.09) (0.08) (0.08) (0.09) (0.08) (0.08) (0.09) (0.08) (0.08)

SHDI 1.14 1.06 1.05 1.19 1.15 1.05 1.18 1.11 1.05
(0.87) (0.81) (0.80) (0.91) (0.87) (0.80) (0.90) (0.84) (0.80)

Democracy 0.05*** 0.05*** 0.04*** 0.04*** 0.05*** 0.04*** 0.05*** 0.05*** 0.04***
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Ethnic exclusion 1.28 1.29 1.29 1.27 1.28 1.29 1.28 1.28 1.29
(0.17) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17)

Conflict eventt−1 4.75*** 4.81*** 5.07*** 4.74*** 4.90*** 5.11*** 4.74*** 4.85*** 5.10***
(0.64) (0.65) (0.69) (0.64) (0.66) (0.70) (0.64) (0.66) (0.70)

Intercept 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Observations 112,207 112,099 112,410 112,380 112,380 112,380 112,192 1120,84 112,380
No of groups 7,482 7,487 7,494 7,492 7,492 7,492 7,481 7,486 7,492
LL -3,114 -3,114 -3,097 -3,113 -3,112 -3,098 -3,113 -3,112 -3,097
AIC 6,244 6,244 6,210 6,242 6,240 6,213 6,242 6,241 6,210

*: p <0.05, **: p <0.01, ***: p <0.001. All models are estimated through multilevel mixed-effects logistic regression
with observations nested on cells. Coefficients are shown as odds ratios with standard errors in parentheses. Cells
with less than 200 inhabitants or 100 km2 are omitted.
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Figure A.5: Total effect of drought
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Table A.3: Multilevel regression with continuous, cumulative and lagged drought

Continuous SPEI and NDVI values are inverted.

Models

(1-3) Continuous (4-6) Cumulative (7-9) Lagged t-1

(1)
SPEI

(2)
NDVI†

(3)
EM-

DAT‡

(4)
SPEI

(5)
NDVI

(6)
EM-
DAT

(7)
SPEI

(8)
NDVI

(9)
EM-
DAT

SPEI 1.09* 1.14 1.13
(0.05) (0.13) (0.17)

NDVI 1.11 1.18 1.17
(0.10) (0.12) (0.18)

EM-DAT 1.88*** 1.47*** 1.27*
(0.20) (0.11) (0.14)

Populationlog 1.87*** 1.64*** 1.84*** 1.87*** 1.65*** 1.84*** 1.86*** 1.62*** 1.85***
(0.09) (0.08) (0.09) (0.09) (0.08) (0.09) (0.09) (0.08) (0.09)

SHDI 2.74 1.07 2.74 2.62 1.04 2.78 2.59 1.80 2.49
(1.71) (0.82) (1.70) (1.64) (0.79) (1.72) (1.62) (1.41) (1.55)

Democracy 0.17*** 0.05*** 0.15*** 0.17*** 0.05*** 0.15*** 0.16*** 0.04*** 0.16***
(0.07) (0.02) (0.06) (0.07) (0.02) (0.06) (0.07) (0.02) (0.07)

Ethnic exclusion 1.19 1.29 1.17 1.19 1.29 1.17 1.19 1.23 1.18
(0.14) (0.17) (0.13) (0.14) (0.17) (0.13) (0.14) (0.17) (0.13)

Conflict eventt−1 5.69*** 4.79*** 5.90*** 5.70*** 4.77*** 5.87*** 5.70*** 5.21*** 5.67***
(0.66) (0.65) (0.69) (0.66) (0.64) (0.68) (0.66) (0.74) (0.66)

Intercept 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Observations 185,865 112,099 186,190 185,865 112,099 186,190 185,865 104,612 186,190
No of groups 7,482 7,487 7,494 7,482 7,487 7,494 7,482 7,487 7,494
LL -4,114 -3,116 -4,099 -4,115 -3,115 -4,105 -4,115 -2,920 -4,114
AIC

*: p <0.05, **: p <0.01, ***: p <0.001. All models are estimated through multilevel mixed-effects logistic regression
with observations nested on cells. Coefficients are shown as odds ratios with standard errors in parentheses. Cells
with less than 200 inhabitants or 100 km2 are omitted.
† Original NDVI values are multiplied by 10 in order to be similar to the SPEI values.
‡ EM-DAT values are not continuous, but similar to the ones used in the main model (binary).
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Table A.4: Multilevel regression with geo-precision level 1

Models

(1-3) Direct (4-6) Indirect (7-9) Total

(1)
SPEI

(2)
NDVI

(3)
EM-
DAT

(4)
SPEI

(5)
NDVI

(6)
EM-
DAT

(7)
SPEI

(8)
NDVI

(9)
EM-
DAT

SPEI 1.29 1.50 1.42
(0.28) (0.40) (0.36)

NDVI 1.72* 2.54** 2.23**
(0.36) (0.75) (0.59)

EM-DAT 2.34*** 2.45*** 2.46***
(0.36) (0.43) (0.41)

Populationlog 1.76*** 1.60*** 1.76*** 1.77*** 1.61*** 1.76*** 1.76*** 1.61*** 1.76***
(0.10) (0.09) (0.09) (0.10) (0.09) (0.09) (0.10) (0.09) (0.09)

SHDI 1.87 0.61 2.26 1.89 0.63 2.25 1.90 0.62 2.28
(1.48) (0.59) (1.79) (1.50) (0.60) (1.79) (1.50) (0.59) (1.81)

Democracy 0.12*** 0.08*** 0.11*** 0.12*** 0.08*** 0.11*** 0.12*** 0.08*** 0.11***
(0.06) (0.05) (0.06) (0.06) (0.05) (0.06) (0.06) (0.05) (0.06)

Ethnic exclusion 1.08 1.02 1.06 1.08 1.01 1.06 1.08 1.02 1.06
(0.17) (0.18) (0.16) (0.17) (0.18) (0.16) (0.17) (0.18) (0.16)

Conflict eventt−1 12.66***15.25***12.90***12.61***15.36***12.88***12.64***15.33***12.89***
(2.43) (3.72) (2.48) (2.43) (3.72) (2.47) (2.43) (3.73) (2.48)

Intercept 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Observations 193,815 117,660 195,689 195,639 118,003 195,639 193,790 117,645 195,639
No of groups 7,821 7,885 7,896 7,894 7,894 7,894 7,820 7,884 7,894
LL -2,014 -1,484 -2,002 -2,014 -1,482 -2,004 -2,014 -1,482 -2,003
AIC 4,044 2,983 4,020 4,045 2,981 4,024 4,044 2,981 4,021

*: p <0.05, **: p <0.01, ***: p <0.001. All models are estimated through multilevel mixed-effects logistic regression
with observations nested on cells. Coefficients are shown as odds ratios with standard errors in parentheses. Cells
with less than 200 inhabitants or 100 km2 are omitted.
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Table A.5: Multilevel regression without conflict id 4895

Models

(1-3) Direct (4-6) Indirect (7-9) Total

(1)
SPEI

(2)
NDVI

(3)
EM-
DAT

(4)
SPEI

(5)
NDVI

(6)
EM-
DAT

(7)
SPEI

(8)
NDVI

(9)
EM-
DAT

SPEI 1.09 1.28 1.18
(0.17) (0.25) (0.22)

NDVI 1.39* 1.99*** 1.72**
(0.20) (0.40) (0.31)

EM-DAT 1.93*** 2.05*** 2.04***
(0.20) (0.24) (0.23)

Populationlog 1.78*** 1.56*** 1.75*** 1.78*** 1.56*** 1.75*** 1.78*** 1.56*** 1.75***
(0.09) (0.08) (0.08) (0.09) (0.08) (0.08) (0.09) (0.08) (0.08)

SHDI 2.90 1.21 3.11 2.98 1.32 3.15 2.95 1.26 3.15
(1.82) (0.93) (1.94) (1.87) (1.01) (1.96) (1.85) (0.97) (1.96)

Democracy 0.12*** 0.04*** 0.11*** 0.12*** 0.04*** 0.11*** 0.12*** 0.04*** 0.11***
(0.05) (0.02) (0.05) (0.05) (0.02) (0.05) (0.05) (0.02) (0.05)

Ethnic exclusion 1.22 1.35* 1.19 1.21 1.35* 1.19 1.21 1.35* 1.19
(0.14) (0.18) (0.14) (0.14) (0.18) (0.14) (0.14) (0.18) (0.14)

Conflict eventt−1 6.24*** 5.36*** 6.48*** 6.24*** 5.48*** 6.51*** 6.24*** 5.42*** 6.50***
(0.74) (0.75) (0.77) (0.74) (0.77) (0.78) (0.74) (0.76) (0.78)

Intercept 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Observations 185,825 112,064 186,150 186,100 112,345 186,100 185,800 112,049 186,100
No of groups 7,482 7,487 7,494 7,492 7,492 7,492 7,481 7,486 7,492
LL -3,962 -2,979 -3,944 -3,961 -2,977 -3,945 -3,961 -2,977 -3,943
AIC 7,939 5,974 7,903 7,938 5,969 7,905 7,939 5,971 7,903

*: p <0.05, **: p <0.01, ***: p <0.001. All models are estimated through multilevel mixed-effects logistic regression
with observations nested on cells. Coefficients are shown as odds ratios with standard errors in parentheses. Cells
with less than 200 inhabitants or 100 km2 are omitted.
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Table A.6: Multilevel regression with 2◦ × 2◦ cells

Models

(1) SPEI (2) NDVI (3) EM-DAT

SPEI 1.40
(0.37)

NDVI 1.11
(0.14)

EM-DAT 1.42*
(0.20)

Populationlog 2.48*** 2.26*** 2.42***
(0.26) (0.26) (0.25)

SHDI 1.11 0.14 1.12
(1.19) (0.21) (1.19)

Democracy 0.11*** 0.01*** 0.10***
(0.08) (0.01) (0.07)

Ethnic exclusion 0.093 1.00 0.92
(0.15) (0.20) (0.15)

Conflict eventt−1 4.87*** 3.86*** 4.95***
(0.64) (0.62) (0.65)

Intercept 0.00*** 0.00*** 0.00***
(0.00) (0.00) (0.00)

Observations 15,200 8,734 15,200
No of groups 588 584 588
LL -1,597 -1,080 -1,594
AIC 3,210 2,176 3,205

*: p <0.05, **: p <0.01, ***: p <0.001. All models are estimated through multilevel mixed-effects logistic
regression with observations nested on cells. Coefficients are shown as odds ratios with standard errors in
parentheses. Cells with less than 200 inhabitants or 100 km2 are omitted.
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Table A.7: OLS regression with fixed effects

To make the table readable all coefficients and standard errors are multiplied by 100

Models

(1-3) Direct (4-6) Indirect (7-9) Total

(1)
SPEI

(2)
NDVI

(3)
EM-
DAT

(4)
SPEI

(5)
NDVI

(6)
EM-
DAT

(7)
SPEI

(8)
NDVI

(9)
EM-
DAT

SPEI 0.12* 0.21** 0.17**
(0.06) (0.07) (0.07)

NDVI -0.02 -0.00 -0.01
(0.11) (0.13) (0.13)

EM-DAT 0.26*** 0.24** 0.26***
(0.08) (0.08) (0.08)

Populationlog 0.75*** 0.44 0.75*** 0.75*** 0.44 0.75*** 0.76*** 0.44 0.75***
(0.11) (0.28) (0.11) (0.11) (0.28) (0.11) (0.11) (0.28) (0.11)

SHDI -0.58 -0.76 -0.60 -0.56 -0.76 -0.59 -0.57 -0.76 -0.60
(0.62) (0.10) (0.62) (0.61) (0.10) (0.0062) (0.62) (0.10) (0.62)

Democracy 0.31 1.02* 0.31 0.31 1.02* 0.31 0.31 1.02* 0.31
(0.24) (0.44) (0.24) (0.24) (0.43) (0.24) (0.24) (0.44) (0.24)

Ethnic exclusion -0.00 -0.03 -0.01 -0.01 -0.03 -0.01 -0.00 -0.03 -0.01
(0.08) (0.12) (0.08) (0.08) (0.12) (0.08) (0.08) (0.12) (0.08)

Conflict eventt−1 14.53*** 10.55*** 14.53*** 14.53*** 10.55*** 14.53*** 14.53*** 10.55*** 14.53***
(1.76) (1.93) (1.76) (1.76) (1.93) (1.76) (1.76) (1.93) (1.76)

Intercept -
6.96***

-3.85 -
6.9***

-
6.98***

-3.83 -
6.88***

-
6.98***

-3.85 -
6.88***

(0.97) (2.60) (0.97) (0.97) (2.59) (0.96) (0.97) (2.60) (0.96)

Observations 185,865 112,099 186,190 186,140 112,380 186,140 185,840 112,084 186,140
No of groups 7,482 7,487 7,494 7,492 7,492 7,492 7,481 7,486 7,492
R2 within 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02
R2 between 0.12 0.21 0.12 0.12 0.21 0.12 0.12 0.21 0.12
R2 overall 0.03 0.05 0.03 0.03 0.05 0.03 -0.03 0.05 0.03

*: p <0.05, **: p <0.01, ***: p <0.001. All models are estimated with OLS with fixed effects on the cell level.
Robust standard errors clustered on the cell level is provided in parentheses. Cells with less than 200 inhabitants
or 100 km2 are omitted.
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