
Forward-Edge and
Backward-Edge Control-Flow
Integrity Performance in the

Linux Kernel

Christian Resell

Thesis submitted for the degree of
Master in Informatics: Programming and

Networks
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2020





Forward-Edge and
Backward-Edge

Control-Flow Integrity
Performance in the Linux

Kernel

Christian Resell



© 2020 Christian Resell

Forward-Edge and Backward-Edge Control-Flow Integrity Performance in the
Linux Kernel

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo



Abstract

This thesis will provide an overview of modern software defenses applied to
the Linux kernel on the x86 64 and arm64 architectures. The main focus is
the performance of forward-edge and backward-edge control-flow integrity. A
requirement for control-flow integrity is to compile the Linux kernel with clang.
Forward-edge control-flow integrity has an addition requirement of compiling the
kernel with link-time optimization. Thus it is natural to also examine the effect
of compiling the Linux kernel with clang, and what the performance impact of
enabling link-time optimization is.

The results gathered from the benchmarks show that link-time optimization
provides a performance boost in almost every single macro benchmark. The re-
sults also show that control-flow integrity comes at a cost. Kernels with control-
flow integrity enabled perform worst in virtually all the benchmarks. Surpris-
ingly, gcc performed better in the micro benchmarks, but performs slightly worse
than clang on the macro benchmarks.

1





Acknowledgements

First of all I would like to thank my supervisor, Knut Omang, for letting me
choose my own topic for this thesis. His patience and great advice have been
crucial for completing the thesis.

Thanks to Aleksi Luukkonen for letting me use his hardware during the
early stages of writing. This was very helpful for getting started. Thank you to
Christoffer Buen for being a great rubber duck when I was stuck early in the
research process.

I would also like to thank my family for all the support they have given me
through the years. Finally, I would like to thank my girlfriend, Marit Iren Rognli
Tokle, for supporting me and putting up with me while I have been working on
this thesis.

June 15. 2020.
Christian Resell

3





Contents

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background and motivation . . . . . . . . . . . . . . . . . . . . . 1
1.3 Terms and definitions . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Vulnerability and exploit . . . . . . . . . . . . . . . . . . 2
1.3.2 Kernel space and user space . . . . . . . . . . . . . . . . . 2
1.3.3 System calls . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.4 Inlining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Linux kernel 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 History and distributions . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Android . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Android IPC — Binder . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Open source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6.1 Calling conventions . . . . . . . . . . . . . . . . . . . . . . 7
2.6.2 Prologues and epilogues . . . . . . . . . . . . . . . . . . . 12

3 Software vulnerabilities 14
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Memory layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Memory corruption bugs . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Code-reuse attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 return-to-libc . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Return-oriented programming . . . . . . . . . . . . . . . . 22
3.4.3 Jump-oriented programming . . . . . . . . . . . . . . . . 23
3.4.4 Other attacks . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Memory corruption defenses . . . . . . . . . . . . . . . . . . . . . 24
3.5.1 Address space layout randomization . . . . . . . . . . . . 24
3.5.2 Stack protection . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Other vulnerability classes . . . . . . . . . . . . . . . . . . . . . . 26
3.6.1 Format string vulnerabilities . . . . . . . . . . . . . . . . 26
3.6.2 Use-after-free vulnerabilities . . . . . . . . . . . . . . . . . 28
3.6.3 Type confusion . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6.4 Heap vulnerabilities in general . . . . . . . . . . . . . . . 28

5



3.6.5 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Compilers and linkers 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 General information . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 GNU Compiler Collection . . . . . . . . . . . . . . . . . . . . . . 30
4.4 LLVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4.1 Vulnerability mitigations . . . . . . . . . . . . . . . . . . 31
4.4.2 ASLR/PIE . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.3 RELRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.4 NX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.5 Fortify source . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.6 Compiler mitigation summary . . . . . . . . . . . . . . . . 34
4.4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Link-time optimization . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5.1 Link-time optimization in LLVM . . . . . . . . . . . . . . 35

4.6 Control-flow integrity . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6.1 Forward-edge control-flow integrity in clang . . . . . . . . 36
4.6.2 Cross-DSO CFI . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6.3 Backward-edge control-flow integrity in clang . . . . . . . 45

4.7 Hardware alternatives . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7.1 CET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7.2 PAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Linux kernel internals 49
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Linux kernel versions . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Build system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Linux kernel security . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.1 KASLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.2 SMEP/PXN . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.3 SMAP/PAN . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.4 STRICT KERNEL RWX . . . . . . . . . . . . . . . . . . . . . 51
5.4.5 STRICT DEVMEM . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.6 HARDENED USERCOPY . . . . . . . . . . . . . . . . . . . . . 52
5.4.7 Page Table Isolation . . . . . . . . . . . . . . . . . . . . . 52

6 Forward-edge and backward-edge control-flow integrity in the
Linux kernel 54
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Building the Linux kernel with clang . . . . . . . . . . . . . . . . 54

6.2.1 Variable-length arrays . . . . . . . . . . . . . . . . . . . . 54
6.2.2 Assembly goto . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 LTO, CFI, and SCS in Linux . . . . . . . . . . . . . . . . . . . . 55
6.3.1 Link-time optimization . . . . . . . . . . . . . . . . . . . . 55
6.3.2 Control-flow integrity . . . . . . . . . . . . . . . . . . . . 56
6.3.3 CFI failure . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4 ShadowCallStack . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6



7 Performance benchmarks 64
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2 Motivation and previous work . . . . . . . . . . . . . . . . . . . . 66
7.3 Binary size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.4 Compile time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.5 Kernel performance . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.6 WireGuard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8 Results 71
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.2 QEMU results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.3 Binary size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.4 Compilation time . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.5 Micro benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.5.1 LMBench . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.6 Macro benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.6.1 Redis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.6.2 ApacheBench . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.6.3 WireGuard . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.7 Android benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.9 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A Scripts 99
A.1 Linux kernel installation script . . . . . . . . . . . . . . . . . . . 99
A.2 Linux kernel build script . . . . . . . . . . . . . . . . . . . . . . . 100
A.3 Android Linux kernel build script . . . . . . . . . . . . . . . . . . 102
A.4 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.5 Benchmarking script . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.6 Python benchmarking scripts . . . . . . . . . . . . . . . . . . . . 104
A.7 WireGuard benchmarking . . . . . . . . . . . . . . . . . . . . . . 123

B Code 132
B.1 CFI failure fixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
B.2 Inline limit patch . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7



List of Tables

2.1 Android versions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 binder domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 x86 64 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 arm64 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 ELF sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 LLVM sub-projects . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Compiler mitigation summary . . . . . . . . . . . . . . . . . . . . 34
4.3 CFI schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Longterm release kernels . . . . . . . . . . . . . . . . . . . . . . . 50

7.1 x86 64 kernel configurations . . . . . . . . . . . . . . . . . . . . . 64
7.2 arm64 kernel configurations . . . . . . . . . . . . . . . . . . . . . 65
7.3 Micro and macro benchmarks . . . . . . . . . . . . . . . . . . . . 69
7.4 LMBench bandwidth benchmarks description . . . . . . . . . . . 69

8.1 Linux kernel binary sizes . . . . . . . . . . . . . . . . . . . . . . . 72
8.2 Android Linux kernel binary sizes . . . . . . . . . . . . . . . . . . 72
8.3 Android kernel compile times . . . . . . . . . . . . . . . . . . . . 73
8.4 Size of vfs statx() . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.5 Redis benchmark results . . . . . . . . . . . . . . . . . . . . . . . 86
8.6 ApacheBench nginx requests/s . . . . . . . . . . . . . . . . . . . 87
8.7 ApacheBench nginx time per request . . . . . . . . . . . . . . . . 87
8.8 ApacheBench apache2 requests/s . . . . . . . . . . . . . . . . . . 87
8.9 ApacheBench apache2 time per request . . . . . . . . . . . . . . 92
8.10 WireGuard UDP send bandwidth . . . . . . . . . . . . . . . . . . 92
8.11 WireGuard TCP send bandwidth . . . . . . . . . . . . . . . . . . 92
8.12 WireGuard TCP receive bandwidth . . . . . . . . . . . . . . . . 92

8



List of Figures

2.1 Sum code example . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Calling convention comparison . . . . . . . . . . . . . . . . . . . 10
2.3 C code example of a non-leaf function . . . . . . . . . . . . . . . 10
2.4 arm64 assembly code example of a non-leaf function . . . . . . . 11
2.5 stack frame example . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Buffer overflow source code example . . . . . . . . . . . . . . . . 18
3.2 Calling system() . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 x86 stack frame before call . . . . . . . . . . . . . . . . . . . . . 21
3.4 x86 stack frame after call . . . . . . . . . . . . . . . . . . . . . . 21
3.5 x86 stack frame for buffer overflow example . . . . . . . . . . . . 21
3.6 x86 return-to-libc stack frame . . . . . . . . . . . . . . . . . . . . 22
3.7 x86 64 ROP example . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.8 JOP dispatch table example . . . . . . . . . . . . . . . . . . . . . 23
3.9 Format string vulnerability example . . . . . . . . . . . . . . . . 27

4.1 Simple strcpy() example . . . . . . . . . . . . . . . . . . . . . . 32
4.2 FORTIFY SOURCE comparison. . . . . . . . . . . . . . . . . . . . . 33
4.3 strcpy chk() implementation . . . . . . . . . . . . . . . . . . . 34
4.4 CFI code example . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 LLVM IR excerpt . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6 CFI jump table disassembly . . . . . . . . . . . . . . . . . . . . . 41
4.7 LLVM IR excerpt . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.8 Comparison between CFI checks on arm64 and x86 64 . . . . . . 43
4.9 Comparison between calls with and without CFI on arm64 . . . 44
4.10 Comparison between calls with and without CFI on x86 64 . . . 44
4.11 ShadowCallStack support in bionic libc . . . . . . . . . . . . . . 46
4.12 ShadowCallStack code example . . . . . . . . . . . . . . . . . . . 46
4.13 Assembly code with ShadowCallStack disabled/enabled . . . . . 47

5.1 Implementation of check object size() . . . . . . . . . . . . 53

6.1 cfg80211 wext giwname() CFI patch . . . . . . . . . . . . . . . 61
6.2 stack chk fail() in the Linux kernel . . . . . . . . . . . . . . 62
6.3 Shadow stack overflow handling in the Linux kernel . . . . . . . . 62

8.1 Simple LMBench results . . . . . . . . . . . . . . . . . . . . . . . 74
8.2 LMBench select results . . . . . . . . . . . . . . . . . . . . . . . . 75
8.3 LMBench process results . . . . . . . . . . . . . . . . . . . . . . . 75

9



8.4 LMBench bandwidth read results . . . . . . . . . . . . . . . . . . 76
8.5 LMBench bandwidth read open2close results . . . . . . . . . . . 76
8.6 LMBench bandwidth mmap read results . . . . . . . . . . . . . . 77
8.7 LMBench bandwidth mmap read open2close results . . . . . . . 77
8.8 LMBench bandwidth bzero results . . . . . . . . . . . . . . . . . 78
8.9 LMBench bandwidth memory read results . . . . . . . . . . . . . 78
8.10 LMBench bandwidth memory partial read results . . . . . . . . . 79
8.11 LMBench bandwidth memory write results . . . . . . . . . . . . 79
8.12 LMBench bandwidth memory partial write results . . . . . . . . 80
8.13 LMBench bandwidth memory partial read/write results . . . . . 80
8.14 newstat() definition in the Linux kernel . . . . . . . . . . . . . . 81
8.15 newstat() from gcc kernel . . . . . . . . . . . . . . . . . . . . . 81
8.16 newstat() from clang kernels . . . . . . . . . . . . . . . . . . . . 82
8.17 user path at empty() assembly code from gcc kernel . . . . . . 85
8.18 redis-benchmark results . . . . . . . . . . . . . . . . . . . . . . . 86
8.19 ApacheBench nginx requests/s . . . . . . . . . . . . . . . . . . . 88
8.20 ApacheBench nginx time per request . . . . . . . . . . . . . . . . 89
8.21 ApacheBench apache2 requests/s . . . . . . . . . . . . . . . . . . 90
8.22 ApacheBench apache2 time per request . . . . . . . . . . . . . . 91
8.23 WireGuard UDP send bandwidth . . . . . . . . . . . . . . . . . . 93
8.24 WireGuard TCP send bandwidth . . . . . . . . . . . . . . . . . . 94
8.25 WireGuard TCP receive bandwidth . . . . . . . . . . . . . . . . 95

10



Chapter 1

Introduction

1.1 Introduction
Software security is a cat-and-mouse game between attackers and defenders. As
more and more sophisticated protections are put in place, attackers come up
with more creative and advanced techniques for circumventing them.

This thesis will look into modern software defenses employed today. First
going through standard mitigations supported by most modern compilers, then
finally looking at state-of-the-art protections applied to the Linux kernel. More
specifically, our focus will be so-called forward-edge and backward-edge control-
flow integrity implementations.

The modern defenses examined requires that the Linux kernel is compiled
using clang, which is not the default compiler usually used to build the kernel.
Thus it makes sense to examine whether switching to clang can provide a perfor-
mance boost, or if it will slow the kernel down. To support control-flow integrity,
clang uses something called link-time optimization, which is an interprocedural
optimization technique that enables the compiler to apply optimizations across
translation units. Since link-time optimization is a requirement for the chosen
defenses to work, we will examine the impact it has on the kernel.

1.2 Background and motivation
The motivation for this thesis is to first examine modern software defenses and
then looking at the performance impact of some of these. Whether or not a
defensive measure is worth enabling depends on the performance impact and
what sort of protection it provides. In some situations, it might be acceptable
with a 10 % performance hit for increased security, while other times this is not
acceptable at all. This thesis will not try to justify the choice of using a certain
protection mechanism or not, but will provide an overview of the performance
impact.

The reason for choosing the Linux kernel as the target system is because it
is a complex open-source software project that runs on billions of devices. The
recent development with support for clang and interesting software defenses
make it a relevant choice for this thesis.

1



The security features we will discuss can be quite complex, and the same
applies for the Linux kernel. We will spend some time introducing relevant
background material in the earlier chapters so that the reader is more familiar
with modern software security before delving into more complex topics.

1.3 Terms and definitions
This section will introduce some terms and definitions that do not fit in anywhere
else, and are important for understanding the content of this thesis. First, we
will look into the terms vulnerability and exploit in section 1.3.1. We will then
clarify the terms kernel space and user space in section 1.3.2. In section 1.3.3
we will describe system calls. Finally we will discuss inlining in section 1.3.4.

1.3.1 Vulnerability and exploit
The terminologies vulnerability and exploit will be used quite a bit in later chap-
ters when we discuss security mitigations. Thus, following is a short explanation
of the difference between a vulnerability and an exploit. The IETF RFC4949
[70] defines a vulnerability as “A flaw or weakness in a system’s design, imple-
mentation, or operation and management that could be exploited to violate the
system’s security policy.” An exploit is, for example, a piece of code that takes
advantage of a vulnerability to compromise a system. Vulnerabilities will be
discussed in chapter 3.

1.3.2 Kernel space and user space
Throughout this thesis we will discuss differences and similarities between ker-
nel space and user space. Modern operating systems often have a separation
between core components like drivers, process scheduling, and networking, and
utilities like web browsers, text editors, and media players. User space refers to
all software that runs outside of the operating system kernel, while kernel space
refers to all code that runs inside the heart of the operating system.

1.3.3 System calls
A system call, or syscall for short, is a way for user space code to request services
from the kernel. Examples include opening files, establishing a TCP connection,
or creating processes.

1.3.4 Inlining
Inlining is an optimization compilers can perfom by replacing a function call
site with the body of the function. This can eliminate some of the performance
overhead associated with calling a function. However, too much inlining can
have negative effects on performance because of increased code size. The pro-
grammer can also signal to the compiler that a function should be inlined by
using the inline keyword. In the following code snippet the foobar() function
is marked as inline.

2



inline int foobar(void)
{

return 0x41414141;
}

The compiler does not have to inline the function, however, this is simply a
hint to the compiler.

1.4 Conventions
For clarity, some conventions used throughout thesis are written down in this
section. When refering to certain programming terms like variable types, as-
sembly instructions, and so on, they are written using a monospace font like
this. Function names are written using a monospace font and parentheses at
the end like this: function(). File paths are also written using a monospace
font: /foo/bar/foobar.c.

1.5 Outline
The rest of the thesis is structured as follows:

Chapter 2 will present some background information on the Linux kernel.
First some brief history about Linux, Ubuntu, and Android, followed by an
introduction to the two CPU architectures that are relevant for this thesis,
namely x86 64 and arm64. Finally, Android IPC will be briefly discussed as
this is the target for benchmarks performed on Android.

Chapter 3 will describe software vulnerabilities, defenses, and attacks. The
chapters start with a general introduction and then moves on to memory cor-
ruption bugs and different techniques used by attackers. Then we will discuss
some general memory corruption defenses and finally other vulnerability classes.
A general understanding of these topics is required for the further chapters.

Chapter 4 will continue the general discuss about software vulnerabilities
with more specific implementation details related to defensive mechanisms. The
chapter will detail how certain defenses are implemented in the gcc and clang
compilers. This will be useful for understanding the later chapters where we
will delve into implementation details in the Linux kernel.

Chapter 5 describes some Linux kernel internals. First we describe the
different versions of the kernel that are available, and then briefly introduce the
build system. Finally we will discuss security features in the kernel.

Chapter 6 presents how forward-edge and backward-edge control-flow in-
tegrity is implemented in the Linux kernel. Since building the kernel with clang
is a requirement for this to work at the moment, we will first discuss how this
can be accomplished, and what work has been done to make it possible.

Chapter 7 describes the different performance benchmarks performed. We
start off with presenting motivation and previous work before delving into the
specific benchmarks chosen for this thesis.

Chapter 8 concludes the thesis with results from the benchmarks and
presents ideas for future work.

Appendix features source code, scripts, and other information.

3



Chapter 2

Linux kernel

2.1 Introduction
In this chapter we will discuss Linux [45], and more specifically, the Linux kernel.
In section 2.2 we will briefly look at the history of the Linux kernel. Then,
in section 2.3, we will look at Android, which is Google’s mobile operating
system based on Linux. In section 2.4 we will briefly introduce Android’s IPC
mechanism, called Binder. In section 2.5 we will briefly discuss open source and
how the Linux kernel is licensed. Finally, we will dive into details surrounding
the different CPU architectures supported by Linux in section 2.6.

2.2 History and distributions
Linux is a free and open source operating system that works on everything from
routers and tiny computers, to laptops, to large supercomputers. At the core
of Linux is the kernel, which is the heart of the operating system. The kernel
is responsible for scheduling processes, interfacing with hardware devices, and
providing features for users.

Linux was created by Linus Torvalds in 1991, and since then has attracted
many developers and companies to contribute to the project. According to the
2017 Linux Kernel Development Report [22] there were 1681 developers from
225 different companies contributing to the 4.13 version of the kernel. At that
time, the kernel had 24,766,703 lines of code.

Linux is usually packaged in a so-called distribution, or distro for short,
which is a fully-fledged operating system based on the Linux kernel. These
distributions often come with their own package management system, where
all sorts of software packages are distributed. Common components of a Linux
distribution are the Linux kernel, GNU [30] tools and libraries, documentation,
the X window system (or any other window system like Wayland), a window
manager, and a desktop environment. There are hundreds of different Linux
distributions in active development, so we will not look at all of these. The
choice of distributions is based on their popularity, and that they vary a bit in
their design, to showcase what type of Linux distros exist. First up is Ubuntu
[17] which is a very popular user-friendly distro with commercial backing from
Canonical Ltd. Ubuntu comes with a nice graphical user interface by default,

4



and has support for proprietary drivers which makes it easier to use when dealing
with hardware that has no or lacking support for open source drivers. Ubuntu
is actually based on another distro called Debian [24]. While Ubuntu is a com-
mercially backed distro, Debian is entirely driven by a community of volunteers.
We could also have used Debian, since it is a popular distro that is the foun-
dation for many other distros, like Ubuntu. In addition, it only consists of free
software. Debian has a very long history as a distro, with version 0.01 released
on September 15, 1993.

Debian Jessie and Stretch are two very stable distros that uses longterm
support kernels. We will describe the different types of Linux kernel releases in
section 5.2, and the different longterm kernels are listed in table 5.1. Debian
Jessie relies on 3.16, which is supported until 2020, while Debian Stretch relies
on 4.9, which is supported all the way until 2023. Ubuntu uses kernels that are
a bit newer, 4.15 and 5.0 for versions 18.04 and 19.04, respectively.

We could have focused on other distros like Redhat, Fedora, Arch Linux,
and Clear Linux as well, but Ubuntu is a very well tested and widespread distro
that should cover all benchmarking needs. Some distros that rely on a rolling-
release model might support more software that takes advantage of newer kernel
features out-of-the-box, but the benchmarking software used in later chapters
will not have any issues like this.

2.3 Android
The former section described different types of Linux operating systems pri-
marily for servers and desktop computers. Linux is very widespread in the
smartphone market because of Google’s mobile operating system, Android [31],
which is currently the most popular mobile operating system with 2 billion
montly active users in May 2017 according to Google. Android introduces sev-
eral modifications to the Linux kernel, and some of them eventually make it
back to the upstream kernel. Binder, which is the inter-process communication
(IPC) subsystem for Android, is an example of such a modification. It was
originally developed by Be Inc., later Palm, Inc. for beOS among others. This
code was later the based for Binder as we know it on Android today. Binder is
a central component of Android, as the IPC mechanism is used by apps. We
will describe Binder further in section 2.4.

Android updates are released on a yearly basis. All the major releases before
10 are named after different sweets, and as of June 15, 2020, Android 11.0 is
the newest version, although it is currently released as a preview build. Table
2.1 lists all the different versions.

Many different companies like Samsung, Huawei, and Nokia use Android as
the operating system for their smartphones. Google releases Android as the
Android Open Source Project (AOSP), which other manufacturers can then
modify to suit their needs. Many devices might need new drivers for device
specific hardware, or other modifications that are not a part of AOSP.

Google develops their own smartphones, named Pixel. Currently, four gen-
erations of Pixel phones are released. The source code for Pixel and Pixel 3 is
open source, and is part of AOSP. As we will discuss further in chapter 5, Google
has introduced several interesting performance and security enhancements for
their newer Pixel models.

5



Version Name Released
1.5 Cupcake 2009
1.6 Donut 2009
2.0 Eclair 2009
2.2 Froyo 2010
2.3 Gingerbread 2010
3.0 Honeycomb 2011
4.0 Ice Cream Sandwich 2011
4.1 Jelly Bean 2012
4.4 KitKat 2013
5.0 Lollipop 2014
6.0 Marshmallow 2015
7.0 Nougat 2016
8.0 Oreo 2017
9.0 Pie 2018
10.0 Android 10 2019
11.0 Android 11 2020

Table 2.1: Android versions

2.4 Android IPC — Binder
In this section we will briefly describe the binder IPC mechanism. Binder is
commonly used to provide an IPC mechanism between apps. There are several
binder domains (or contexts), however. The different domains were introduced
to separate device-independent and device-specific code. Each domain has its
own device driver and are isolated from each other. The domains available in
current Android versions can be found in table 2.2 [6].

IPC Domain Description
/dev/binder IPC between framework/app processes
/dev/hwbinder IPC between framework/vendor processes

IPC between vendor processes
/dev/vndbinder IPC between vendor/vendor processes

Table 2.2: binder domains

When we later discuss benchmarks on Android in section 7.1, binder and
hwbinder will be used since there are benchmarking utilities available for these
domains as part of the AOSP.

2.5 Open source
As stated earlier, the Linux kernel is an open-source project. This means that
the code is freely available on the Internet for anyone to download and use.
The Linux kernel is licensed under the GNU General Public License version 2
(GPLv2) [GPL]. The GPLv2 allows anyone to use the code, even in commercial

6



products, as long as the source code is made available. Changes have to be
tracked, and the modified source also has to be licensed under GPLv2.

The souce code for the Linux kernel can be found on kernel.org or on
GitHub under Linus Torvald’s account torvalds 1.

2.6 Architectures
Linux supports many different CPU architectures. The code for these are lo-
cated in the arch directory in the top-level Linux kernel directory. As of 4.14,
there are 31 architectures supported. For our purpose, however, we will only
focus on x86 64 and arm64. x86 64 is the most common architecture for desk-
tops and laptops, while arm64 are more common for smartphones and similar
devices. x86 64 is also known as amd64, and arm64 is sometimes referred to
as aarch64. These terms will be used interchangeably throughout the thesis.
The 32-bit version of x86 64 is known as x86 and the 32-bit version of arm64
is known as arm. Although the research is not focused on x86 and arm, these
architectures may be mentioned later, and x86 is used for some examples in
later chapters. Since clang has very good cross-compilation support, porting
this work to other architectures is definitely feasible. However, we will focus on
x86 64 and arm64 here to save time and improve the quality of the research.

x86 64 and arm64 differ a lot in some of the low-level details of the archi-
tectures. For example how the instruction set is encoded, how the assembly
code looks, the special CPU registers available, etc. The rest of this section
will describe the differences we should be aware of when reading the rest of the
chapters in this thesis.

One of the biggest differences is that arm64 is RISC-based, while x86 64
is CISC-based. The gist is that the arm64 instruction set architecture (ISA)
contains fewer, and simpler instructions. In contrast with x86 64 which contains
a lot of complex and specialized instructions. For RISC-based systems, each
instruction is usually of the same length. CISC, on the other hand, employs a
variable-length encoding.

Compared to x86 64, arm64 has a lot of registers. Table 2.3 summarizes
the different registers available on x86 64 that are interesting for this thesis
and their purpose. Note that the usage of certain registers may differ between
operating systems, kernel space and user space, and so on. Table 2.4 summarizes
the different registers on arm64 and their purpose. Note that these lists are not
complete. They contain only the registers that are important for understanding
the different code snippets, implementation details, etc. that follow in the next
chapters. Some of these 64-bit registers also have a 32-bit version that allow
you to access the lowest 32-bits of the register. For x86 64, these registers have
the same name as they do on x86. Simply replace the r in their names with e.
rax becomes eax, for example. For arm64, replace x with w. Thus, to access
the lower 32-bits of x0, you would use w0.

2.6.1 Calling conventions
We will start by by examining how functions are called from assembly code. How
arguments are passed to functions, and how the result is returned is known as

1https://github.com/torvalds/linux

7



name purpose
rax return value or system call number
rdi first argument to function
rsi second argument to function
rdx third argument to function
rcx fourth argument to function
r8 fifth argument to function
r9 sixth argument to function
rbp base pointer
rsp stack pointer
rip instruction pointer

Table 2.3: x86 64 registers

name purpose
x0 first argument to function or return value
x1 second argument to function
x2 third argument to function
x3 fourth argument to function
x4 fifth argument to function
x5 sixth argument to function
x8 system call number
sp stack pointer
x29/fp frame pointer
x30/lr link register
pc program counter / instruction pointer

Table 2.4: arm64 registers

8



static int sum(int a, int b)
{

return a + b;
}

int main(void)
{

int s = sum(13, 37);
printf("sum: %d\n", s);

return 0;
}

Figure 2.1: Sum code example

the calling convention. In this section, we will describe the calling convention
for x86 64 and arm64 on Linux systems. Calling conventions may differ between
different compilers and operating systems, but these descriptions are valid for
Linux with the gcc and clang compilers. We will start this section by describing
different calling conventions, and then move on to how they are implemented in
low-level assembly code.

On x86 64, the first six function arguments are placed in rdi, rsi, rdx, rcx,
r8, and r9. If the function needs more arguments, they are pushed on the stack.
The return value is placed in rax. When issuing a system call, the arguments
are placed in rdi, rsi, rdx, r10, r8, and r9. The system call number is placed
in rax, and the return value also ends up there after the syscall has completed.

The calling convention for arm64 is easier to remember, as the first six
arguments to a function are placed in x0 to x5. The same registers are used for
arguments to system calls. The return value from functions and system calls
are placed in x0, and the system call number is placed in x8.

Consider the simple piece of code in figure 2.1 that calls a function named
sum to add two numbers and then prints the result.

We now know that the function arguments will be placed in rdi and rsi for
x86 64, and x0 and x1 for arm64. Let us take a look at how the assembly code
looks like for these two architectures. The code can be found in figure 2.2, and
it has been cleaned up a bit for clarity.

We will focus on x86 64 first. The first argument, 13, is placed is edi. rdi is
not used here since sum() takes two int arguments. The size of an int on x86 64
is 32-bits, which means that it fits nicely in the lower part of rdi. The second
argument, 37, is placed in esi. call is used to call into the function. Every
call instruction (almost) is paired with a ret, the return instruction. When
call is issued, the CPU actually performs several steps. First, the address of
the next instruction, which is known as the return address, is pushed onto the
stack. Next, the CPU jumps to the target of the call. In this case it is the
sum function. Conversely, ret pops the return address off the stack and jumps
there.

For arm64, the first argument is placed in w0, the second in w1. Here, the
lower 32-bit part of x0 and x1 is used, just like for the x86 64 example. When
calling a function, we now see a different assembly instruction, namely bl. bl is

9



main:
mov w0, #13
mov w1, #37
bl sum

sum:
sub sp, sp, #16
str w0, [sp, #12]
str w1, [sp, #8]

ldr w0, [sp, #12]
ldr w1, [sp, #8]
add w0, w0, w1

add sp, sp, #16
ret

(a) arm64 sum example

main:
mov edi, 13
mov esi, 37
call sum

sum:
push rbp
mov rbp, rsp
mov dword ptr [rbp - 4], edi
mov dword ptr [rbp - 8], esi

mov esi, dword ptr [rbp - 4]
add esi, dword ptr [rbp - 8]
mov eax, esi

pop rbp
ret

(b) x86 64 sum example

Figure 2.2: Calling convention comparison

int do_stuff(int a, int b, int c)
{

return sum(a, b) * c;
}

Figure 2.3: C code example of a non-leaf function

short for branch with link. This is one point where the two architectures differ
a bit. On arm64, there is a special register called the link register. The x30
register works as the link register, but it is sometimes simply referred to as LR.
Instead of storing the return value on the stack, some arm64 functions will use
bl, which instead stores the return value in x30. The ret function will consult
this register to find the correct return address. Return addresses may also be
stored on the stack, but in that case they are moved into x30 before returning.

One thing to note here is that sum is a so-called leaf function. Leaf functions
do not call any other functions, they are the leaves of the program’s control flow
graph. This means that there is no need to store the return address on the stack
for this function, since it will not call any other functions, thus not touching x30.
The ret instruction can then freely return without the need to fetch the return
address from the stack. To demonstrate the difference between a leaf function
and a non-leaf function, consider the code example in figure 2.3. We have added
a new function to the program in figure 2.1 called do stuff() that calls sum(),
the leaf function. Calling leaf functions and non-leaf functions usually look the
same, unless the compiler has performed some kind of optimization. But the
prologues and epilogues will differ, which will be described in the next section.
In addition to the call and bl instructions, we also have what is known as
indirect calls. These calls go through a register or memory location.

10



do_stuff:
# make room on the stack
sub sp, sp, #32
# store the old frame pointer and link register
stp x29, x30, [sp, #16]
add x29, sp, #16

# store first argument on the stack
stur w0, [x29, #-4]
# store second argument on the stack
str w1, [sp, #8]
# store third argument on the stack
str w2, [sp, #4]

# load first argument to sum()
ldur w0, [x29, #-4]
# load second argument to sum()
ldr w1, [sp, #8]
# call sum()
bl sum
# load third argument into w1
ldr w1, [sp, #4]
# w0 = w0 * w1
mul w0, w0, w1

# restore frame pointer and link register
ldp x29, x30, [sp, #16]
# restore stack pointer
add sp, sp, #32
# return
ret

Figure 2.4: arm64 assembly code example of a non-leaf function

11



2.6.2 Prologues and epilogues
A prologue is the set of instructions executed at the start of a function. Con-
versely, the epilogue is the set of instructions that are executed at the end of a
function. In this section we will refer to frame pointers, which point to stack
frames. A stack frame corresponds to a function call, and contains the parame-
ters, local variables, return address, and so on for the call. The stack frames for
do stuff() and sum() for the code example in figure 2.3 can be seen in figure
2.5. The stack grows upwards in the figure, i.e. towards lower addresses.

Figure 2.5: stack frame example

If we return back to the assembly code example in figure 2.4, we see that
the first three instructions are there to prepare the stack. First, room is made
on the stack to store local variables and the frame pointer and link register of
the previous function. This function will make room for 32 bytes on the stack.
The frame pointer and link register are stored at offset 16 and 24 from the new
stack pointer, respectively. 16 is then added to x29 to make it point to the saved
x29 value on the stack. The ARMv8 Programmer’s Manual [7] states that “The
frame pointer (X29) should point to the previous frame pointer saved on stack,
with the saved LR (X30) stored after it. The final frame pointer in the chain

12



should be set to 0.” The stack pointer has to be aligned on a 16-byte boundary,
which explains why the compiler makes more room on the stack than is strictly
necessary.

13



Chapter 3

Software vulnerabilities

3.1 Introduction
In this chapter we will discuss software vulnerabilities. More specifically, we will
look at memory corruption bugs, which commonly lead to software vulnerabili-
ties in software written in low-level languages like C and C++. Memory safety
issues are still widespread today, even though the problem has been known for
a long time. A well documented case of a buffer overflow vulnerability being
exploited by an attacker was in 1988. The exploit was used by the Morris worm
[64], which spread on the Internet, infecting approximately 6000 computers [28].
Even though these issues have been known for a long time, memory safety is
still a difficult problem. The Chromium project reports that around 70 % of
their serious security bugs are memory safety problems [66].

We start off by looking at the memory layout of a process on Linux in
section 3.2. This section will introduce some important information about dif-
ferent memory regions and how executable files look like on Linux. Then we
will move on to section 3.3, where we will describe different types of memory
corruption bugs and techniques for exploiting them. To fully understand the
vulnerability mitigation techniques described in coming chapters, it is important
to understand why we need these mitigations, and what sort of benefits they
can provide. In section 3.4 we will look into common exploitation techniques
used by attackers. Then, in section 3.5 we will discuss some common memory
corruption defenses. Finally, we will look at other vulnerability classes that are
relevant in section 3.6. Having some familiarity with exploitation techniques
and vulnerabilities will allow us to better understand the value of mitigations,
and if they are worth applying.

3.2 Memory layout
Most of the concepts related to vulnerabilities and exploits are more or less
universal for all platforms like Linux, Windows, and macOS, but we will focus
on Linux since it is more relevant for this thesis. The executable file format on
Linux is called Executable and Linkable Format (ELF) [53]. ELF files can be
executable files, relocatable object files, core files, and shared libraries. An ELF
file starts with a header and is followed by a program header table or a section

14



header table, or both. The ELF header starts with the magic values 7f 45 4c
46, where the hex values 45 4c 46 spell out ELF.

The program header table is an array of structures describing a segment or
other information the system needs to load an ELF file. Examples of program
header entries include loadable segments, like the executable code of the pro-
gram and writable memory used to store global variables. Other entries include
dynamic linking information, auxiliary information, and the state of the stack.
The section header table is an array describing all the file’s sections. Some
section types include a symbol table which can be used for dynamic linking.
Another important type of section is the string table, which is used to store
strings used by the ELF file. For example names of functions imported from
shared libraries or names of the different sections, like .text for the executable
code, or .rodata for read-only data. Table 3.1 summarizes the different section
types. Some of the section types, like the GOT and PLT, are further described
in section 4.4.3.

section name summary
.bss Uninitialized data
.comment Version control information
.ctors Initialized pointers to the C++ constructor functions
.data Initialized data
.dtors Initialized pointers to the C++ destructor functions
.dynamic Dynamic linking information
.dynstr Strings needed for dynamic linking, like function names
.dynsym Dynamic linking symbol table
.fini Termination code (destructors)
.gnu.version Version table
.gnu.version d Version symbol definitions
.gnu.version r Version symbol needed elements
.got Global Offset Table (GOT)
.hash Symbol hash table
.init Initialization code (constructors)
.interp Name of a program interpreter (usually ld-linux)
.line Line number information for debugging
.note Note Section format
.note.GNU-stack Used to declare stack attributes
.plt Procedure Linkage Table
.relNAME Relocation information applying to section NAME
.relaNAME Relocation information applying to section NAME
.rodata Read-only data
.rodata1 Read-only data
.shstrtab Section names
.strtab Strings
.symtab Symbol table
.text Executable instructions

Table 3.1: ELF sections

For the rest of the thesis it helps to have a general idea of how an ELF

15



is mapped to memory when a program is running. Most ELF binaries rely
on a dynamic linker like ld-linux [54] to run. The job of a dynamic linker is
to map the ELF into memory, load any libraries it depends on, perform other
preparations, and finally run the program. The exception is for statically linked
executables, where the binary does not depend on any external libraries. The
.interp section contains the full pathname of the dynamic linker to use for the
program. For statically linked binaries, there is no .interp section.

Linux provides functionality to view memory mappings of running processes
through the /proc filesystem. For each process on a Linux system, a separate
directory exists in /proc named after the process ID (PID) of that process.
There is also a special symbolic link at /proc/self that always redirects to the
current process opening that link. The file /proc/<PID>/maps allows us to view
the memory mapping of a process. Let us look at how the memory mapping for
the cat program looks like:

[1] 00400000-0040c000 r-xp 00000000 103:06 3145872 /bin/cat
[2] 0060b000-0060c000 r--p 0000b000 103:06 3145872 /bin/cat
[3] 0060c000-0060d000 rw-p 0000c000 103:06 3145872 /bin/cat
[4] 01983000-019a4000 rw-p 00000000 00:00 0 [heap]
[5] 7fe73f4e0000-7fe73fab8000 r--p 00000000 103:06 14811734 /usr/lib/locale/locale-archive
[6] 7fe73fab8000-7fe73fc78000 r-xp 00000000 103:06 8138465 /lib/x86_64-linux-gnu/libc-2.23.so
[7] 7fe73fc78000-7fe73fe78000 ---p 001c0000 103:06 8138465 /lib/x86_64-linux-gnu/libc-2.23.so
[8] 7fe73fe78000-7fe73fe7c000 r--p 001c0000 103:06 8138465 /lib/x86_64-linux-gnu/libc-2.23.so
[9] 7fe73fe7c000-7fe73fe7e000 rw-p 001c4000 103:06 8138465 /lib/x86_64-linux-gnu/libc-2.23.so
[10] 7fe73fe7e000-7fe73fe82000 rw-p 00000000 00:00 0
[11] 7fe73fe82000-7fe73fea8000 r-xp 00000000 103:06 8126731 /lib/x86_64-linux-gnu/ld-2.23.so
[12] 7fe740076000-7fe740079000 rw-p 00000000 00:00 0
[13] 7fe740085000-7fe7400a7000 rw-p 00000000 00:00 0
[14] 7fe7400a7000-7fe7400a8000 r--p 00025000 103:06 8126731 /lib/x86_64-linux-gnu/ld-2.23.so
[15] 7fe7400a8000-7fe7400a9000 rw-p 00026000 103:06 8126731 /lib/x86_64-linux-gnu/ld-2.23.so
[16] 7fe7400a9000-7fe7400aa000 rw-p 00000000 00:00 0
[17] 7fffc1ca9000-7fffc1cca000 rw-p 00000000 00:00 0 [stack]
[18] 7fffc1d08000-7fffc1d0b000 r--p 00000000 00:00 0 [vvar]
[19] 7fffc1d0b000-7fffc1d0d000 r-xp 00000000 00:00 0 [vdso]
[20] ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

The numbers in front have been added to make it easier to describe the
different memory regions. 1-3 comprises the cat binary. 1 starts with the ELF
header, but most importantly includes the .text section of the binary, which
contains the executable instructions. Note that this region is marked as read-
able (r) and executable (x). 2 is read-only data, and 3 is data that can be read
and written, for example the .data and .bss sections. Read-only data includes
strings and other data that never changes throughout the lifetime of the pro-
gram. At 4 we have the heap, which is used for dynamic memory allocations,
for example memory returned from the malloc() function call.

The next section, 5, is not very important for our purposes, but for com-
pleteness we describe it here as well. The locale archive contains locales, which
are “collections of language and country specific conventions allowing to adapt
software to the user’s preferences.” [29]. It is loaded and used by the C library.

Sections 6-10 are related to the standard C library, or libc for short. 6
contains the executable code, and 7 is a section with no permissions. This
might be present when loading certain libraries or binaries. Usually the whole
ELF is loaded into memory with the memory protections being applied later by
parsing the program headers of the ELF. If certain sections are not meant to
be mapped, or if there is a gap between them, they end up being inaccessible.
Other times these sections may show up when a program deliberately creates

16



mappings with no permissions to protect adjacent data. These allocations are
often known as guard pages. Allocating a guard page before a region containing
important data can thwart some buffer overflows since the program will crash as
soon as it tries to read from or write to the guard page. Section 8 contains read-
only data, and 9 contains writable data. 10 is an anonymous memory mapping
allocated using mmap(). An anonymous mapping is not backed by a file.

11-16 pertain to the dynamic linker, and it is very similar to the binary and
libc, since this is also an ELF file. The next few sections, however, are different
from the previous ones. At 17 we have the stack, which is used to store local
variables, and other important information like return addresses.

The next three sections, 18-20, are related to virtual syscalls [16]. Simply
put, virtual syscalls are faster syscalls implemented in user-space for perfor-
mance reasons. The syscalls implemented here are read-only syscalls, mean-
ing that they do not change any structures in kernel space, they simply read
data. The vdso region contains an ELF file that the kernel maps into pro-
cesses, and if you dump this memory region to disk you can parse it like any
normal ELF file. Virtual syscalls include gettimeofday(), getcpu(), time(),
and clock gettime(). These were introduced as virtual syscalls since the over-
head of context switching between user space and kernel space was too high for
processes that frequently checked the current time.

3.3 Memory corruption bugs
Now that we have a little useful background information for understanding
memory corruption bugs, we will dive into common vulnerabilities and ways of
exploiting them. Memory corruption occurs when memory is changed in an un-
intended way, causing a program’s behavior to deviate from normal execution.
For an attacker, the goal is to change program behavior to carry out unintended
actions. The holy grail for at attacker is to gain arbitrary code execution, mean-
ing that full control over the original program has been achieved, and it is
now possible to execute any code. This is often accomplished by hijacking the
original control flow of the program to run other code than intended.

An example of a very common type of attack for a memory corruption bug
is a buffer overflow. This is any attack that results from a piece of code that
does not check the bounds for a buffer. Buffer overflows have been around for a
long time. Exploitation of buffer overflows used to be focused on buffers located
on the stack, which is what we will see in this section. Overflowing a buffer on
the stack and corrupting important data is also known as smashing the stack
[3]. The code snippet in figure 3.1 is vulnerable to a buffer overflow.

The gets() function does not check the size of buf, resulting in a stack
buffer overflow (or stack overflow for short) when the user inputs more than 32
bytes.

What will happen if we write past the 32 bytes assigned to the buffer? The
answer is dependant on the architecture the program is running on, but to
simplify the discussion we will focus on x86 64. Local variables, like the buffer
in the example above, are stored on the stack. In addition to local variables,
other interesting values are also stored on the stack which we will discuss later
in this section. Consider the following assembly code snippet:

17



void function(void)
{

char buf[32];

printf("Give me some data: ");
gets(buf);

printf("data: %s\n", buf);
}

Figure 3.1: Buffer overflow source code example

mov rdi, buf
call gets

The first line moves buf into rdi, which is the first and only argument to the
gets() function. On the next line, a call instruction is issued. When gets()
is done, we want our program to continue executing the code after the call
instruction. To accomplish this, the CPU automatically pushes the address of
the instruction after the call to the top of the stack. This means that the stack
contains return addresses. Other important data on the stack includes saved
base pointers, stack cookies (see section 3.5.2), local variables, and so on. In
short, there are many valuable targets on the stack for an attacker.

Before modern vulnerability mitigations came into play, it was possible to
execute code on the stack. A common attack scenario was to overflow a vulner-
able buffer on the stack, overwrite the saved return address to point into the
same stack buffer and finally execute code injected into the stack. Today, a pro-
tection known as non-executable stack (NX) [79] prevents this from happening.
More generally, this mitigation makes sure that no regions, like the stack and
heap, are writable and executable at the same time by default. Such regions of
memory still exist, particularly in programs that make heavy use of just-in-time
(JIT) [9] compilation like modern web browsers. NX will be discussed further
in section 4.4.4.

Shellcode

Code injected like this is often known as shellcode. Usually the goal is to spawn
a shell, which is where the name comes from. However, shellcode is simply a
sequence of instructions used to carry out any action desired, not just spawning
a shell. When using shellcode in an exploit, depending on the constraints of
the target program, several tricks may be necessary to make the shellcode work
in the target environment. We can imagine attempting to exploit a stack over-
flow where the program uses strcpy() to copy data into a vulnerable buffer.
strcpy() expects the data to be a valid C string, which means that it will stop
reading data once a null byte is encountered. To work around this, the shell-
code has to be null free, i.e. no null bytes can occur anywhere in the shellcode.
For certain input functions, like the scanf() family of functions, reading stops
when encountering any whitespace character. For example tabs, vertical tabs,
or spaces. There might also be size constraints or other illegal bytes that cannot
occur in the shellcode.

18



The shellcode presented later in this section corresponds to the following C
snippet:

char **args = { "/bin//sh", NULL};
execve("/bin//sh", args, NULL);

execve() is the system call used to start new processes on Linux, which means
that this program will spawn a shell. Note that the path /bin//sh is used
instead of /bin/sh. The extra forward slash is there to make the shellcode free
of null bytes. Following is the output of objdump for the shellcode, showing both
the bytes used to encode the instructions, and the human readable assembly
code.

$ objdump -D -b binary -m i386:x86-64:intel sc.bin

sc.bin: file format binary

Disassembly of section .data:

0000000000000000 <.data>:
0: 48 31 c0 xor rax,rax
3: 50 push rax
4: 48 b9 2f 62 69 6e 2f movabs rcx,0x68732f2f6e69622f
b: 2f 73 68
e: 51 push rcx
f: 48 89 e7 mov rdi,rsp
12: 50 push rax
13: 57 push rdi
14: 48 89 e6 mov rsi,rsp
17: 48 31 d2 xor rdx,rdx
1a: 6a 3b push 0x3b
1c: 58 pop rax
1d: 0f 05 syscall

As with most shellcode, it can be hard to understand what is going on. This
code starts by setting rax to zero by XORing with itself, and pushing it on
the stack. Next, a weird-looking number is pushed onto the stack. This is the
string /bin//sh encoded as a hexadecimal number. To make sure the string is
null-terminated, the zero was pushed onto the stack earlier. Recall that syscalls
on x86 64 require that the syscall number is stored in rax and the first three
arguments are stored in rdi, rsi, and rdx. At address f, the first argument is
set to point to the /bin//sh string, which means the first argument is now set
up correctly. The next argument to execve is a little bit trickier since we have
an array of pointers to C strings. The array has to end with a NULL pointer.
First, rax, which is still zero, is pushed onto the stack again. rdi is then pushed,
which points to /bin//sh. We now have two pointers stored next to each other
on the stack, the first one pointing to our string, the second a NULL pointer. We
can then set rsi to point to the stack. rdx is then set to zero, as we do not care
about this argument. Finally, rax is set to 0x3b, which is the syscall number
for execve, and the syscall is executed, starting a shell.

19



When faced with NX, attackers had to come up with new and inventive
solutions for bypassing it. The following section will describe code-reuse attacks,
which can be used to defeat the NX protection.

3.4 Code-reuse attacks
As the name implies, code-reuse attacks will reuse code that already exists within
a program to hijack the control flow. We will start by describing return-to-libc
in section 3.4.1 and then move on to return-oriented programming in section
3.4.2. In section 3.4.3 we will take a look at another code-reuse attack known
as jump-oriented programming. Finally, we will discuss other relevant attacks
in section 3.4.4.

3.4.1 return-to-libc
Return-to-libc [25] [80] [77], also known as ret2libc, is a code-reuse attack tech-
nique. In this technique, an attacker will use a memory corruption vulnerability
to return into functions in libc (or other loaded libraries). This allows an at-
tacker to reuse existing functionality in those libraries to carry out an attack.
In their paper [77] Tran et. al even show that return-to-libc attacks are Turing
complete. A lot of interesting functionality is available in libc which can be
leveraged by an attacker to get full control over an application under attack.
One common target for attackers is the system() function which will execute
any shell command passed to it. On x86 (32-bit), performing a return-to-libc
attack is a little simpler than on x86 64, so we will use that as an example.
Consider the previous example in figure 3.1, where the dangerous gets() func-
tion is used to read data from the user. The stack looks pretty similar on x86
and x86 64, but the big difference is that arguments are passed on the stack by
default on x86. There are, however, some calling conventions where a limited
amount of function arguments are placed in registers on x86, but this is not the
case when calling functions from libc. Now consider the following C/asm source
example for x86:

int main(void)
{

system("/bin/sh");
return 0;

}

(a) C: system(”/bin/sh”) example

main:
push ebp
mov esp, ebp

push 0xbadc0de ; "/bin/sh"
call system

out:
xor rax, rax
leave
ret

(b) x86 assembly: system(”/bin/sh”) ex-
ample

Figure 3.2: Calling system()

The out label has been added to the assembly code for clarity. In this

20



example, we assume that the string "/bin/sh" is located at address 0xbadc0de.
Right before executing the call instruction, the stack layout can be seen in
figure 3.3 1

Figure 3.3: x86 stack frame before call

After the call instruction, the address of the next instruction, which is the
xor instruction after the out label, will be pushed on the stack. The layout can
be seen in figure 3.4.

Figure 3.4: x86 stack frame after call

Now that we have an understanding of the stack layout when calling func-
tions on x86, we can revisit the example in figure 3.1. We can imagine that
the stack layout looks something like figure 3.5. When filling buf with 32 bytes

Figure 3.5: x86 stack frame for buffer overflow example

of data, any more written to the buffer will overwrite the saved base pointer
(ebp) and then the saved return address (eip). If the saved return address is
overwritten, control-flow will be hijacked when the function returns. From the
system() stack layout example in figure 3.4 we know how the stack should look
like when performing a function call. With the correct input, we can cause the
program to call system("/bin/sh") instead of returning back to the original
caller. See figure 3.6 for an example of how it may look like.

As mentioned in section 2.6.1, the first argument to functions in x86 64 is
stored in rdi. On arm64, x0 is used. This means that a simple return-to-

1the arguments to main(): argc, argv, and envp have been omitted for simplicity.

21



Figure 3.6: x86 return-to-libc stack frame

libc attack as shown here will not work on these architectures since parameters
are not passed on the stack. To work around this challenge, return-oriented
programming can be used. This technique is described in the next section.

3.4.2 Return-oriented programming
In return-oriented programming (ROP) [69] small sequences of code known as
gadgets are used to carry out the wanted effect, bit by bit. As van der Veen et.
al show in their paper [78], ROP is still a useful technique ten years after it was
first introduced.

We will start by introducing ROP on x86 64, and then look at differences on
arm64 at the end of this section. Gadgets usually end with a ret instruction,
and are placed after each other on the stack. The first gadget will overwrite
the saved return address. When the first gadget is done executing, the ret
instruction will run, effectively fetching the next gadget from the stack and
returning there. Following is an example of a gadget that sets the rax register
to zero.

xor rax, rax
ret

For the attack in figure 3.6 in the previous section to work, we would have to
place a pointer to /bin/sh in rdi/x0 before executing system(). To accomplish
this, we could use a gadget like this:

pop rdi
ret

The pop rdi instruction will fetch the next value on the stack and place it
into rdi. The following figure shows how the previous attack could look like
when using ROP to control the argument in rdi. The gadget placement is
highlighted in blue.

Figure 3.7: x86 64 ROP example

Within the target program and the set of loaded libraries, a lot of gadgets
exist, making it very likely that an attacker will succeed in running arbitrary

22



code as long as the memory address of the code containing the gadgets is known.
As we will see in section 3.5.1, however, knowing the memory layout of a program
might not be straightforward.

3.4.3 Jump-oriented programming
Jump-oriented programming [15] (JOP) is a class of code-reuse attack that does
not rely on the stack and ret instructions. Instead of using gadgets ending
with a ret instruction, JOP relies on gadgets ending with an indirect jmp. To
maintain control between JOP gadgets, a dispatcher gadget is used. The job of
the dispatcher gadget is to maintain a dispatch table containing the gadgets to
be executed, and fetching the next gadget after the previous one is done. The
following is an example dispatcher gadget from [15]:

add ebp, edi
jmp [ebp-0x39]

This dispatcher gadget uses ebp as its dispatcher table. First, edi is added to
ebp. The code then jumps to the address stored at ebp - 0x39. If an attacker
has control over the memory pointed to by ebp before executing this gadget,
and edi is a reasonable value, it is possible to use this dispatcher gadget to
chain together many gadgets. The gadgets will be stored in ebp with edi as
the distance between them. If edi was 8, a dispatch table could look something
like this:

Figure 3.8: JOP dispatch table example

Consider a situation where ebp-0x39 corresponds to the dispatch table
above. edi is 8, and rax is 0. First, control-flow is hijacked by overwriting

23



a function pointer stored in rbx to return to the dispatch gadget listed above. 8
is then added to ebp and the gadget jumps to gadget 1. Gadget 1 adds 8 to rax,
setting it to 8. The gadget returns by jumping back to the dispatcher gadget.
Next, 8 is added to the dispatch table again, effectively skipping the entry at
offset 12 and fetching the next gadget at offset 16. The dispatcher then jumps
to gadget 2 which sets rcx to 0x10 and then jumps back. Again, 8 is added to
the dispatch table to fetch the final gadget, gadget 3. This gadget multiplies
rax and rcx, storing the result in rax.

3.4.4 Other attacks
In addition to the previously mentioned attack techniques like ROP and JOP,
there are many other similar techniques that exist. We will not go into these in
detail, but some of them will be mentioned here briefly for completeness. Data-
oriented programming (DOP) is a “general method to build Turing-complete
non-control data attacks against vulnerable programs” [34]. DOP does not
target data that is directly used in control transfer instructions, like function
pointers used in indirect calls. Instead, other data is tampered with to make
existing data flows in the program carry out unintended actions which can lead
to a full compromise of the target program.

Counterfeit object-oriented programming (COOP) [68] is a code reuse attack
that targets C++ programs. COOP relies on conterfeit objects, which are C++
class objects that are created by the attacker, and not by the original program.
Since COOP targets programs written in C++ it is not very useful for this
thesis since the Linux kernel is written in C.

3.5 Memory corruption defenses
The following sections will describe some important memory corruption defenses
in more detail. In section 3.5.1 we will describe address space layout random-
ization, and in section 3.5.2 we will go into detail on stack protection.

3.5.1 Address space layout randomization
Modern operating systems have a security mechanism known as address space
layout randomization (ASLR) [72] [12]. As the name implies, ASLR relies on
randomization to make it harder for an attacker to know how the address space
layout for a program looks. It works by randomizing the base address of the sec-
tions loaded into memory for executables. Regions that are randomized include
the stack, the heap, and shared libraries. Other regions are also randomized,
but they are not relevant for this thesis. Although ASLR is on by default for
shared libraries, this is not always the case for binaries. For ASLR to work
with binaries, it has to be compiled as a position independent executable (PIE).
Libraries are position independent by default, which means that they do not
rely on hard-coded addresses for accessing variables inside the program, and
so on. ASLR is also enabled for the Linux kernel, where it is known as kernel
ASLR (KASLR). This works by loading the kernel at a random address during
boot. Because the kernel requires 16MB alignment, there are only around 512
different base addresses for KASLR which makes it weaker than ASLR in user

24



space. However, if an attacker takes a wrong guess the kernel will probably
crash, making it infeasible for an attacker to actually exploit a vulnerability
where they have a 1/512 chance of success.

3.5.2 Stack protection
To prevent attackers from exploiting stack overflows, stack canaries [23], or stack
cookies, were introduced. A stack canary is a random value placed on the stack
to act as a barrier between local variables and the saved return address. The
size of the stack canary matches the size of the CPU, e.g. 64-bit for x86 64 and
arm64, and 32-bit for x86 and arm. The stack canary is placed on the stack
during the function prologue, and then checked during the epilogue. If the stack
canary does not match the expected value during the epilogue, the program will
crash. This increases the difficulty for attackers in the presence of stack over-
flow vulnerabilities. Now, attackers would need an additional vulnerability that
allows them to leak stack contents outside of the local variables, or they would
have to somehow overwrite only the saved return address without corrupting
the stack canary. To thwart some types of information disclosure bugs, the
stack canary will include a null byte, to deter an attacker from leaking the stack
canary as a C string when controlling adjacent memory. If stack canary did not
include a null byte, one could fill stack memory up until the stack canary, and
then read it back to leak the whole canary.

Following is a simplified version of the gets() code example in figure 3.1.

#include <stdio.h>

void function(void)
{

char buf[32];

gets(buf);
}

int main(void)
{

function();

return 0;
}

Let’s take a look at the x86 64 assembly code when we compile without stack
canaries.

push rbp
mov rbp,rsp
sub rsp,0x20
lea rax,[rbp-0x20]
mov rdi,rax
mov eax,0x0
call gets

25



leave
ret

And now with stack canaries enabled (using the -fstack-protector flag
during compilation).

6aa: 55 push rbp
6ab: 48 89 e5 mov rbp,rsp
6ae: 48 83 ec 30 sub rsp,0x30
6b2: 64 48 8b 04 25 28 00 mov rax,QWORD PTR fs:0x28
6b9: 00 00
6bb: 48 89 45 f8 mov QWORD PTR [rbp-0x8],rax
6bf: 31 c0 xor eax,eax
6c1: 48 8d 45 d0 lea rax,[rbp-0x30]
6c5: 48 89 c7 mov rdi,rax
6c8: b8 00 00 00 00 mov eax,0x0
6cd: e8 ae fe ff ff call 580 <gets@plt>
6d2: 90 nop
6d3: 48 8b 45 f8 mov rax,QWORD PTR [rbp-0x8]
6d7: 64 48 33 04 25 28 00 xor rax,QWORD PTR fs:0x28
6de: 00 00
6e0: 74 05 je 6e7 <function+0x3d>
6e2: e8 89 fe ff ff call 570 <__stack_chk_fail@plt>
6e7: c9 leave
6e8: c3 ret

First of all, we can see that the code is a bit larger this time. At address 0x6b2,
a stack canary is fetched using the fs register. At 0x6bb, the canary is stored
as a local variable on the stack. This is a part of the function prologue. Then,
at 0x6d3, the canary is fetched from the stack and compared with the original
canary in fs. If the canary has changed, for example as the result of stack
overflow, the jump at 0x6e0 is not taken, and a call to stack chk fail() is
made. This function will abort the program and print an error message stating
that stack corruption has been detected:

$ ./gets
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
*** stack smashing detected ***: <unknown> terminated

3.6 Other vulnerability classes
This section will describe other vulnerability classes, and how they can be ex-
ploited by an attacker to compromise a system. In section 3.6.2 we will discuss
use-after-free vulnerabilities, and in section 3.6.3 we will discuss type confusion.
We will start off by discussing format-string bugs in section 3.6.1, which are not
so common today, but still an important part of the history of vulnerabilities.

3.6.1 Format string vulnerabilities
A format string vulnerability [59] arises when a user-controlled string is used as
a format string in printf-style functions. Consider the prototype for printf():

26



#include <stdio.h>

int main(int argc, char *argv[])
{

if (argc != 2)
return 1;

printf(argv[1]);

return 0;
}

Figure 3.9: Format string vulnerability example

int printf(const char *format, ...);. The dots mean that this function
takes a variable number of arguments. This is known as a variadic function.

When a function takes a variable amount of arguments, it is the caller’s
responsibility to set up registers and/or the stack properly so the function sees
all the arguments. The callee has to know how many arguments are passed to
it somehow. For printf-style functions, the amount of arguments correspond
to the amount of format specifiers in the argument. These specifiers control
how the argument is treated in the output. All format specifiers start with %,
followed by one or more characters describing the format. A %d specifies that
the next argument should be treated as an int, for example. Other specifiers
include %s that treats the next argument as a string, %lx that treats the next
argument as an unsigned long and displays it as a hexadecimal number, and so
on. A problem arises when an attacker can supply the format string, and treat
variables in registers or on the stack as arguments when they are not actually
passed to the function.

This very easily leads to an information disclosure if the attacker specifies
several %p arguments, for example. %p prints the next argument as a pointer,
e.g. 0xdeadbeef. For an information leak, the goal is to print an ”argument”
on the stack, or in a register, that contains a pointer to something that lets the
attacker defeat ASLR. Consider the case where there is a pointer to stdin on
the stack. If an attacker manages to print the address of stdin using a format
string attack, the attacker can defeat ASLR. The reason an attacker can defeat
ASLR in this case is because the stdin symbol is located at the same offset
from the base of libc every time it is loaded. It is only the base address that is
randomized with ASLR.

Let us take a look at an example. The program in figure 3.9 contains a
format string vulnerability. If you try to compile this example with modern
compilers, you will probably get a warning like this: warning: format not
a string literal and no format arguments. This type of bug is not as
common anymore, as compilers will complain if you attempt to pass something
else than string literals to printf-style functions, making them easier to spot.

In addition to posing a risk for information leakage, format string bugs are
actually very severe, as they also allow writing data to memory using the %n
format specifier. In short, %n writes the amount of characters outputted by the
function to the next parameter. An attacker can use this to corrupt memory

27



and gain code execution.

3.6.2 Use-after-free vulnerabilities
A common class of software vulnerabilities are so-called use-after-free (UAF)
vulnerabilities. As the name implies, this type of vulnerability occurs when we
attempt to use memory after it has been freed.

The goal when exploiting UAF vulnerabilities is often to replace an existing
object, which is then later used even though the object should have been freed.
Usually, this type of bug can be exploited when you free some type of object
that contains function pointers. If you can replace the object with one you
control, you can control the function pointers, which again might let you take
full control of the program flow.

As we will see in section 4.6, control-flow integrity is a security mitigation at-
tempting to fix these types of exploitation techniques by restricting the number
of valid call sites for a certain function pointer.

3.6.3 Type confusion
A type confusion vulnerability arises when an object of a type is unsafely treated
as another type. Type confusion bugs are emerging as one of the most impor-
tant attack vectors for C++ software [32]. Some examples of software written
in C++ include web browsers like Google Chrome and Firefox, and their un-
derlying JavaScript engines V8 and SpiderMonkey.

3.6.4 Heap vulnerabilities in general
UAF vulnerabilities and other heap-related vulnerabilities like heap buffer over-
flows are prevalent these days since the stack is often locked down with several
mitigations in place. In [13] Bialek et. al. shows that heap overruns/overreads
account for 13 % of all memory safety CVEs for Microsoft between 2015 and
2019. UAF vulnerabilities account for a significant 26 %, and non-adjacent
heap out-of-bounds read or write accounts for 27 %. In total, that is 66 % of all
memory corruption vulnerabilities for Microsoft in that period. Their research
highlights the fact that heap vulnerabilities are very much alive even though
there are many memory corruption mitigations in place to protect users.

3.6.5 Terminology
Now that we have a basic understanding of different vulnerabilities and how they
can be exploited by an attacker, some more terminology can be introduced.
These terms will be used in later chapters, and are particularly useful when
reading articles on exploitation.

An exploit is often built using primitives, basic building blocks for an at-
tacker. Commonly sought after primitives include arbitrary read and arbitrary
write primitives. These allow an attacker to read arbitrary memory addresses
and write to arbitrary memory addresses, respectively. An arbitrary write prim-
itive is often known as a write-what-where primitive, which allows an attacker
to write any value (what) to any address (where).

28



Chapter 4

Compilers and linkers

4.1 Introduction
In this chapter we will discuss compilers and linkers, and how the previously
mention software defenses are implemented by modern compilers. We start with
a general introduction in section 4.2. Then we briefly discuss gcc in section 4.3,
and then move on to the LLVM project in section 4.4. In section 4.4.1 we will
discuss in detail how different software defenses are implemented. We will then
describe link-time optimization in section 4.5. After that we will dive into one
of the central topics of this thesis, namely control-flow integrity. In section
4.6 we start by describing what control-flow integrity is, and then discuss how
it is implemented. Finally, we will discuss some software defenses that are
implemented in hardware in section 4.7.

4.2 General information
When compiling source code into an executable program, a lot of things happen
behind the scenes that programmers normally do not have to think about. First,
the code is passed to the preprocessor, which expands macros and replaces
include statements with the full contents of the header, for example.

After the preprocessor has done its magic, the code is passed to the com-
piler. The compiler performs most of the heavy lifting in the compilation chain.
The goal is to turn code into assembly, or another format that can easily be
turned into assembly code. Such formats are usually known as an intermediate
representation. The classical approach, however, is to turn C code into assem-
bly, but we will see in later sections that clang does it a bit differently. After
the compiler has produced assembly code, it is fed into an assembler, which
translates assembly code into machine code. The output from an assembler is
usually in the form of object files. An object file is not yet a full program, but it
contains all the code for the original source file, symbol information, references
to unresolved symbols, etc. The final step is to turn all our object files into an
executable file. This step is performed by the linker.

When discussing executable files, we are referring to any type of executable
file format. These formats differ a bit between the most popular operating
systems. Linux uses the Executable and Linkable Format (ELF), Windows

29



uses Portable Executables (PE), and macOS uses the Mach-O format. For our
purposes, ELF files are the most relevant as we are only working with Linux.

4.3 GNU Compiler Collection
The GNU Compiler Collection (GCC) is a compiler system created by the GNU
Project. The name gcc is often used to refer to the C compiler itself. Historically,
gcc has been the only compiler used to compile the Linux kernel. It is still the
compiler used to compile kernels for Ubuntu, Debian, Arch Linux, and virtually
every single Linux distribution. gcc had its first release in 1987, thus it has a
long history as a compiler.

We will use compiler features not available in gcc for later chapters, so there
is no need to dive further into gcc here.

4.4 LLVM
LLVM started as a research project at the University of Illinois [44] with the
“goal of providing a modern, SSA-based compilation strategy capable of sup-
porting both static and dynamic compilation of arbitrary programming lan-
guages” [51]. Originally, LLVM was short for Low Level Virtual Machine, but
the acronym is not used today. The LLVM project has grown into an umbrella
project consisting of many sub-projects. These include a C/C++ compiler, a
debugger, a C++ library, and others. See table 4.1 for a full list of projects.

name description
LLVM core core libraries, e.g. for code generation
clang C/C++/Objective-C compiler
lldb LLVM debugger
libc++ (ABI) implementation of the C++ Standard Library
compiler-rt code-generation
OpenMP OpenMP runtime
polly cache-locality optimizations
libclc aims to implement the OpenCL standard
klee symbolic virtual machine
lld drop-in replacement for system linkers

Table 4.1: LLVM sub-projects

The projects that are interesting for this thesis are the LLVM core libraries,
clang, and LLD. As written in table 4.1, LLD is a drop-in replacement for system
linkers. LLD accepts the same command line arguments and linkers scripts as
the standard GNU linkers on Linux. According to the LLVM documentation,
the expectation is that LLD runs more than twice as fast as the GNU gold linker
when linking a large program on a multicore machine. This is great for huge
projects like the Linux kernel, where LLD will hopefully be able to speed up the
linking process.

Clang is just one of many LLVM fontends, other languages that use LLVM
include Rust, Swift, and Haskell. Although gcc has been around for a very long

30



time, clang has attracted many users. Some examples of large projects that
use clang are the Chrome and Firefox web browsers. FreeBSD has switched
to clang/LLVM for some of its supported architectures. As of June 15, 2020,
amd64, arm64, i386, armv7, and powerpc64 uses LLD to link both packages
and the kernel. clang has replaced gcc as the standard compiler on the system
as well.

4.4.1 Vulnerability mitigations
In chapter 3 we discussed software vulnerabilities and briefly how compilers can
mitigate some of these vulnerabilities. In the following sections, we will look
more into the standard security mitigations available today and how they are
implemented.

4.4.2 ASLR/PIE
As we discussed in section 3.5.1, certain memory regions of programs are loaded
at random addresses to thwart certain attacks. Most exploits require that an
attacker know at least some of the program’s layout. The stack, heap, and
shared libraries will be loaded at different locations in memory. For the program
to be loaded at a random location as well, it has to be a position independent
executable (PIE). A PIE is constructed in such a way that it can be loaded
anywhere in memory without relying on hard-coded memory addresses. This is
easier on some architectures like x86 64 where we have what is known as RIP
relative addressing. This means that the program can access memory relative
to the current instruction pointer (rip). x86 (32-bit) does not have this feature
and has to rely on other tricks to make this work.

4.4.3 RELRO
When a program wants to call a function that is located in a library, say for
example printf(), the program has to get the address of this function somehow.
This is handled by the dynamic linker on the system. The job of the dynamic
linker is to load the executable into memory and resolve any dependencies on
other libraries. This includes loading the required libraries into memory and
resolving any function addresses that the program depends on in these libraries.
The process of connecting a function symbol, like printf(), to an address is
known as relocation. For ELF files we have two interesting sections pertaining
to relocations. First we have the global offset table (GOT) and the procedure
linkage table (PLT). There are other sections related to relocations as well, but
these are the most interesting for our purposes. The PLT contains code stubs
that jump to an address defined in the GOT.

For performance reasons, however, the symbols in the GOT table might
not be resolved right away. Instead, the entries will point to a function that
performs the actual resolving at runtime. To support this scheme, the GOT has
to be writable. An attacker that has an arbitrary write primitive will be able to
change GOT entries to point to anything else. Common ways to abuse this is
to change functions that deal with user-controlled data into system() or other
functions that can be used to execute arbitrary commands.

31



#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{

char buf[32] = { 0 };

if (argc == 2)
strcpy(buf, argv[1]);

printf("yay: %s\n", buf);

return 0;
}

Figure 4.1: Simple strcpy() example

To protect against attacks on the GOT table, compilers support something
known as relocations read-only (RELRO). When RELRO is enabled, the GOT
table is only writable while the dynamic linker is resolving all the required
functions. After relocation is finished, the section is marked as read-only, thus
preventing an attacker from modifying the GOT.

4.4.4 NX
The non-executable (NX) bit marks a memory region as non-executable. This
mitigation is usually known as data execution prevention (DEP) [57] on Win-
dows. Traditionally, many memory regions were marked as executable even
though they did not contain any code. For example the stack and the heap
used to be marked as executable. An attacker could abuse the fact that these
regions were both writable and executable at the same time to inject code into
the stack or the heap and then divert execution to this location. The memory
protections for different memory regions are controlled by the ELF headers.
Normal regions of memory like program code is controlled using section head-
ers. Today, the stack and heap are not executable by default, but can be made
executable using the PT GNU STACK program header.

4.4.5 Fortify source
FORTIFY SOURCE is a macro that provides basic protection from buffer overflows.
Setting the macro to 1 or 2 enables buffer overflow checking for the follow-
ing functions: memcpy, mempcpy, memmove, memset, strcpy, stpcpy, strncpy,
strcat, strncat, sprintf, vsprintf, snprintf, vsnprintf, and gets.

When enabled, it checks the amount of bytes copied to make sure that
buffers are not overflowed. If a buffer overflow is detected at runtime, an error
message is printed and the program is aborted. To show how fortify source
works, consider the source code example in figure 4.1.

What happens to the executable when we compile it with and without fortify
source? Attempting to send more than 32 bytes in the first argument causes

32



the program to crash if we do not have fortify source enabled. However, when
fortify source is enabled, we get the following error message:

*** buffer overflow detected ***: ./main terminated

So how does the program detect this at runtime? Let us look at the control-
flow graph of the program compiled with and without fortify source side by
side to see what is different. Consider the two CFGs in figure 4.2. We can see
that there is almost no difference between the two CFGs. However, if you look
closely you can see that strcpy() has been replaced by strcpy chk(), and
printf() has been replaced by printf chk().

(a) CFG of program without fortify source (b) CFG of program with fortify source

Figure 4.2: FORTIFY SOURCE comparison.

The implementation of strcpy chk() can be seen in figure 4.3 1.
Note that strcpy chk() actually takes one extra parameter compared to

strcpy(), which is the length of the destination buffer. If the length of the
source string exceeds the destination buffer length, the program prints out the
error message we saw earlier.

Fortify source attempts to thwart format string attacks by performing more
sanity checking of the format string. When positional arguments are used, the
runtime verifies that all preceeding arguments are used. Positional arguments
are constructed as follows: %N$s, where N is the position of the argument, and
s can be any format specifier. Consider the following C code snippet:

1see the glibc source code: debug/strcpy chk.c

33



/* Copy SRC to DEST with checking of destination buffer overflow. */
char *
__strcpy_chk (char *dest, const char *src, size_t destlen)
{

size_t len = strlen (src);
if (len >= destlen)

__chk_fail ();

return memcpy (dest, src, len + 1);
}

Figure 4.3: strcpy chk() implementation

#include <stdio.h>

int main(void)
{

printf("%2$d %1$s %4$x\n", "test", 123, 456, 0xbad);
return 0;

}

The program will print: 123 test bad.
Additionally, the %n format specifier can be used to write to memory. The

printf man page explains like this 2: “The number of characters written so far
is stored into the integer pointed to by the corresponding argument.” The man
page also explains that this can be a security hole: “Code such as printf(foo);
often indicates a bug, since foo may contain a % character. If foo comes from
untrusted user input, it may contain %n, causing the printf() call to write to
memory and creating a security hole.” With fortify source, %n specifiers can only
be used from read-only memory, thwarting attempts to inject these specifiers
into an attacker-controlled format string. There have been attacks bypassing
this protection, however [65].

4.4.6 Compiler mitigation summary
Table 4.2 summarizes the different compiler mitigations and what compiler flags
are used to enabled or disable them.

mitigation enabled by disabled by
Stack cookie -fstack-protector -fno-stack-protector
NX default -Wl,-z,execstack
Fortify source -D FORTIFY SOURCE=1,2 -U FORTIFY SOURCE
RELRO -Wl,-z,relro,-z,now -Wl,-z,norelro
PIE -fPIC -pie -no-pie

Table 4.2: Compiler mitigation summary

2man 3 printf

34



4.4.7 Summary
As the previous chapters show, there are many security mitigations available
in compilers today. These help mitigate the impact of security vulnerabilities
in software from increasingly advanced attacks. These mechanisms do not pre-
vent exploitation of all memory corruption vulnerabilities, but they make it
significantly harder for an attacker to succeed. In many cases an attacker needs
several vulnerabilities to exploit a system. With ASLR an attacker often needs
an information leak before exploitation of buffer overflows is possible, for exam-
ple. In section 4.6 and 4.6.3 we will look at some relatively new mechanisms
available in modern compilers.

4.5 Link-time optimization
In this section we will describe link-time optimization (LTO) and how it is
implemented in gcc and clang [47]. LTO is a form of interprocedural optimization
(IPO), where the goal is to optimize a program as a whole, instead of within
a single function or single block of code. Traditionally a compiler like gcc or
clang will compile every single C source file to object files. Then, the linker will
combine them to produce an executable file, e.g an ELF file on Linux. With
LTO, the linker will perform optimizations while looking at all of the object
files and will attempt to optimize across object file boundaries. This makes it
possible to perform optimizations such as removing functions that are exported
in one object file, but is not actually used by any other code, i.e. dead code
elimination. Other possibilities include inlining functions from one object file
in another which will remove function call overhead at the cost of increasing
function size. As we will see in section 4.6.1, LTO enables security features like
CFI that need to analyze the whole program across translation units.

4.5.1 Link-time optimization in LLVM
This section describes how LTO is designed in LLVM. To support LTO, LLVM
integrates tightly with the linker. The linker provides full transparency of sym-
bols to the LLVM optimizer, which enables it to perform actions such as remov-
ing unused functions across object file boundaries.

There are two types of LTO in LLVM, the first is simply known as LTO or
full LTO, and the second is known as ThinLTO [49]. ThinLTO was introduced
in 2015, and has seen a number of improvements since then. Before we dive
into the differences between ThinLTO, and what sort of advantages it brings,
we will look at full LTO.

When using LTO, clang will emit LLVM bitcode instead of object files.
LLVM will load and merge all bitcode files together to produce a single module.
Then, interprocedural analyses and interprocedural optimizations are performed
on this single, monolithic module. Since a monolithic module is created, LTO
often requires a large amount of memory. This may be an issue for large projects.
In addition, this process is quite slow. Every time a change is done to any
source file in the project, the whole LTO process has to be performed again,
significantly impacting incremental compilation performance.

The issues with memory requirements and incremental builds meant that a
new way of doing LTO was desired. ThinLTO was designed for this purpose.

35



ThinLTO does not load everything into a single monolithic module. C code is
processed as usual by clang and initial optimizations are performed. A summary
of each function is generated, and only this summary info is linked into a giant
index called thin-link. Optimizations and code generation is fully-parallel, unlike
with full LTO.

4.6 Control-flow integrity
In this section, we will describe control-flow integrity (CFI) [1]. CFI aims to limit
the control-flow graph (CFG) of a program to known destinations computed at
compile time. CFI considers edges in the CFG of a program, and enforces
control-flow to follow known edges in the CFG. CFI attemps to reduce the
impact of memory corruption bugs by limiting control-flow to a certain set of
valid locations, which means that attempting to overwrite function pointers to
point inside the body of a function does not work, for example. As there are
(usually) no situations where one would call an offset into a function, it is not
a valid destination for control-flow instructions.

There are two types of CFI: forward-edge and backward-edge. Forward-edge
CFI protects forward edges in the CFG, for example indirect function calls
through function pointers. Backward-edge CFI protects edges going backwards
in the CFG. For example returning from a function using the ret instruction
on x86 64 or arm64.

In their paper, Tice et. al [73] describes how CFI was implemented in gcc and
LLVM. The implementation for gcc is called Virtual-Table Verification (VTV).
It only protects virtual calls, thus only works for C++ programs. The CFI
implementation for LLVM is called Indirect Function-Call Checks (IFCC) and
protects all indirect function calls, including those not made through vtables.

4.6.1 Forward-edge control-flow integrity in clang
Next, we will discuss how forward-edge CFI is implemented in clang. Clang’s
CFI supports many schemes for protecting different types of function calls.
Many of these supported calls are only relevant for C++, so they are only
mentioned here for completeness. Table 4.3 lists all the supported schemes. One
can use the command line arguments -fsanitize=<NAME> to enable a scheme,
or -fno-sanitize=<NAME> to disable it when compiling.

Available CFI Schemes
compiler flag description
cfi-cast-strict Enables strict cast checks
cfi-derived-cast Base-to-derived cast to the wrong dynamic type
cfi-unrelated-cast Cast from void * or another unrelated type to the wrong dynamic type
cfi-nvcall Non-virtual call via an object whose vptr is of the wrong dynamic type
cfi-vcall Virtual call via an object whose vptr is of the wrong dynamic type
cfi-icall Indirect call of a function with wrong dynamic type
cfi-mfcall Indirect call via a member function pointer with wrong dynamic type

Table 4.3: CFI schemes

It is possible to enable all the schemes by passing the -fsanitize=cfi flag

36



to clang when compiling, or one could narrow down the set of schemes by using
-fsanitize or -fno-sanitize to enable or disable some of them, respectively.

Since the Linux kernel is written in C and assembly, the C++ implemen-
tation is not as relevant for this thesis. The only type of function call we are
interested in are indirect function calls, which are performed using function
pointers in C. At each call site, an extra check verifies that the function being
called is a valid function that matches the function pointer’s signature. Consider
the code example in figure 4.4.

In the code we have a struct named ops that contains a single function
pointer. The signature matches the foo() and baz() functions. Note that it
does not match the function signature of bar(), since this function takes an
int argument, while the others do not. When the program is started with no
arguments, the foo() function is run. If there is one argument, bar() is used
instead. Finally, if there are two arguments, baz() will be used. CFI should
be able to catch the function signature mismatch at runtime. The following
snippet shows what happens when the program is run with zero, one, and two
arguments:

$ ./cfi
op.func() = 1337
$ ./cfi a
cfi.c:35:29: runtime error: control flow integrity check for type

'int (void)' failed during indirect function call
(cfi+0x234540): note: bar defined here
$ ./cfi a b
op.func() = -559038737

The functions with correct prototypes succeeded, as expected, and the func-
tion signature mismatch was caught at runtime. We will now discuss how the
CFI checks are performed at runtime. When compiling, clang will turn C code
into something known as LLVM intermediate representation, or IR for short, be-
fore any assembly code is emitted. IR is an assembly-like representation of the
code used internally in the compiler. One advantage of using IR is that compil-
ers can generate code for many different languages as long as they are translated
to the same IR. Further analysis and transformation from IR to machine code
can be reused.

IR can be emitted for several phases of compilation, which we will discuss
further later in this section. In figure 4.5 we can see IR 3 for for the code in
figure 4.4 during the preoptimization phase. In this phase, no optimizations
have been done by the compiler yet. The code has been simplified slightly,
and all omitted code is replaced with [...]. In the IR, indirect function calls
are replaced with the LLVM instrinsic function llvm.type.test. As the name
implies, this intrinsic checks the type of the function.

Following is the type test extracted from the IR:

%25 = call i1 @llvm.type.test(i8* %24, metadata !"_ZTSFivE")

The most interesting part of the type test is the final argument, "ZTSFivE".
This is the mangled type name the code expects the function pointer signature

3produced using -Wl,-save-temps flag to store bitcode during compilation and then dis-
assembling using llvm-dis

37



#include <stdio.h>
#include <string.h>

int foo(void)
{

return 1337;
}

int bar(int a)
{

return a * 42;
}

int baz(void)
{

return 0xdeadbeef;
}

struct ops {
int (*func)(void);

};

int main(int argc, char *argv[])
{

struct ops op;

(void)argv;
memset(&op, 0, sizeof(op));
if (argc == 2)

op.func = (int (*)(void))bar;
else if (argc == 3)

op.func = baz;
else

op.func = foo;
printf("op.func() = %d\n", op.func());

return 0;
}

Figure 4.4: CFI code example

38



to match. The name can be decoded using the c++filt tool: 4 int (). That is,
a function that returns int and takes no arguments. This matches the function
pointer signature from the C code:

struct ops {
int (*func)(void);

};

During the IPO phase 5, LLVM will perform lowering of the llvm.type.test
function into its actual implementation. The implementation looks a bit strange
in assembly code, so it is worth to spend some time explaining it here. First
of all, the functions with matching prototypes are laid out after each other in
a jump table. For the previous C code example in figure 4.4, the jump-table in
pseudo-C would look something like this:

static void *jump_table_int_void[] = { foo, baz };
static void *jump_table_int_int[] = { bar };

The jump table corresponding to the int () function signature contains two
entries: foo() and baz(). The jump table for the type int (int) contains only
one entry: bar(). These jump tables make it easier to quickly verify whether a
function belongs to a particular set of function signatures. The compiler makes
sure that only functions with the same signature are laid out consecutively.

The first step when lowering the call is to calculate the offset into the jump
table. Then, two things need to be checked to verify that the call is valid. First,
the offset has to fall within range of the jump table entries for this function type.
Second, we need to check that the function is properly aligned. Recall that on
x86 64 instructions do not need to be aligned on any particular boundary, as
the instruction length is variable. On arm64, all instructions have to be aligned
on a 4-byte boundary since all instructions are 4 bytes long.

On x86 64, each jump table entry is aligned to 8 bytes, on arm64 they are
aligned to 4 bytes. The reason lies in the implementation of the table entries.
For x86 64 a jump table entry is constructed using a jmp instruction, which is
(usually) 5 bytes in size. The instruction opcode is e9, followed by a 4-byte
offset relative to the next instruction. To align the next entry in the jump table
to 8 bytes, int3 instructions are inserted as padding. In figure 4.6 we have the
jump table entries for foo() and baz() as outputed by objdump 6. The int3
instructions will cause a trap signal, effectively aborting the program if program
flow is intentionally or unintentionally redirected to the padding area.

4echo " ZTSFivE" | c++filt
5See LowerTypeTestsModule::lowerTypeTestCall() in lib/Transforms/IPO/LowerTypeTests.cpp
6objdump -D cfi

39



; Function Attrs: noinline nounwind optnone uwtable
define hidden i32 @main(i32, i8**) #0 !type !8 !type !9 {

%3 = alloca i32, align 4
%4 = alloca i32, align 4
%5 = alloca i8**, align 8
%6 = alloca %struct.ops, align 8
store i32 0, i32* %3, align 4
store i32 %0, i32* %4, align 4
store i8** %1, i8*** %5, align 8
%7 = load i8**, i8*** %5, align 8
%8 = bitcast %struct.ops* %6 to i8*
call void @llvm.memset.p0i8.i64(i8* align 8 %8, i8 0, i64 8, i1 false)
%9 = load i32, i32* %4, align 4
%10 = icmp eq i32 %9, 2
br i1 %10, label %11, label %13

11: ; preds = %2
%12 = getelementptr inbounds %struct.ops, %struct.ops* %6, i32 0, i32 0
store i32 ()* bitcast (i32 (i32)* @bar to i32 ()*), i32 ()** %12, align 8
br label %21

13: ; preds = %2
%14 = load i32, i32* %4, align 4
%15 = icmp eq i32 %14, 3
br i1 %15, label %16, label %18

16: ; preds = %13
%17 = getelementptr inbounds %struct.ops, %struct.ops* %6, i32 0, i32 0
store i32 ()* @baz, i32 ()** %17, align 8
br label %20

18: ; preds = %13
%19 = getelementptr inbounds %struct.ops, %struct.ops* %6, i32 0, i32 0
store i32 ()* @foo, i32 ()** %19, align 8
br label %20

20: ; preds = %18, %16
br label %21

21: ; preds = %20, %11
%22 = getelementptr inbounds %struct.ops, %struct.ops* %6, i32 0, i32 0
%23 = load i32 ()*, i32 ()** %22, align 8
%24 = bitcast i32 ()* %23 to i8*, !nosanitize !10
%25 = call i1 @llvm.type.test(i8* %24, metadata !"_ZTSFivE"), [...]
br i1 %25, label %28, label %26, !prof !11, !nosanitize !10

26: ; preds = %21
%27 = ptrtoint i8* %24 to i64, !nosanitize !10
call void @__ubsan_handle_cfi_check_fail_abort([...])
unreachable, !nosanitize !10

28: ; preds = %21
%29 = call i32 %23()
%30 = call i32 (i8*, ...) @printf([...])
ret i32 0

}

Figure 4.5: LLVM IR excerpt

40



0000000000234620 <foo>:
234620: e9 0b ff ff ff jmpq 234530 <foo.cfi>
234625: cc int3
234626: cc int3
234627: cc int3

0000000000234628 <baz>:
234628: e9 23 ff ff ff jmpq 234550 <baz.cfi>
23462d: cc int3
23462e: cc int3
23462f: cc int3

Figure 4.6: CFI jump table disassembly

On arm64, every instruction is 4 bytes, so only a b (branch) instruction is
used. A clever trick is used by LLVM to check that the jump table entry is in-
bounds and that the alignment is correct. First, the offset into the jump table
is calculated by subtracting the start of the jump table for the relevant type
signature from the actual jump table entry we want to call. This offset is then
rotated right by log2(alignment) bits, resulting in a valid index into the table.
Looking at the addresses in figure 4.6, we can perform the calculation as see that
it makes sense. Consider a situation where we want to call baz(). First we need
the address of the function, which is 0x234628. Then we need the alignment in
bytes, which we recall is 8 bytes on x86 64. Finally we need the address of the
jump table, which in this case starts at the same address as foo(), 0x234620.
We can then calculate the offset into the table: 0x234628 − 0x234620 = 8.
Then we rotate the result: 8 ror log2(8) = 8 ror 3 = 1. The result makes
sense since baz() is entry number one in the zero-indexed table. Now imagine
that we attempt to call an invalid address, for example 0x234629. Again we
calculate the offset: 0x234629−0x234620 = 9. The offset is now one more than
the previous one. Now what happens when we rotate 9 right by 3? Since we
are dealing with 64-bit integers, we get the huge number 0x2000000000000001.
The reason for this huge number is because 9 is not properly aligned on an
8-byte boundary, which means that some of its lower bits will propagate to the
upper bits of the result. All the code needs to do to verify the table index
is to compare it against the number of table entries. For unaligned function
addresses the index will be way out of bounds, and for aligned addresses it will
work just like a normal comparison operation.

The CFI checking can be a lot more complicated when we are dealing with
C++. In C++ classes, we have something known as virtual methods. These can
be inherited from parent classes, and can be overridden by classes that inherit
them. Calling a virtual function is known as a virtual call. An important piece
of every C++ class is its virtual method table, or vtable for short. The vtable
is basically a list of all the functions a class can use. When we are dealing with
C functions, the valid targets are laid out consecutively in a jump table with
a static offset between each function. Vtables are laid out differently, however,
which makes it more complicated to check for valid function calls. A bit vector
is created to represent the class layout. These bit vectors are stored as byte
arrays in the actual program. To verify that a call is correct, an index in the

41



byte array can be fetched and tested using a bit mask.
The need for bit vectors is usually eliminated for indirect function calls,

which makes the checks somewhat simpler compared to virtual calls. Loading
from and checking the values in the bit vector is thus not included in the code
examples we will be looking at.

The LLVM IR we saw in figure 4.5 corresponded to the preoptimization
phase of compilation. During the next phases, the llvm.type.test intrinsic is
lowered to IR more resembling the final assembly code output. In figure 4.7 we
can see the LLVM IR after lowering the type test.

21:
%22 = getelementptr inbounds %struct.ops, %struct.ops* %6, i32 0, i32 0
%23 = load i32 ()*, i32 ()** %22, align 8
%24 = bitcast i32 ()* %23 to i8*, !nosanitize !10
%25 = ptrtoint i8* %24 to i64
%26 = sub i64 %25, ptrtoint (void ()* @.cfi.jumptable to i64)
%27 = lshr i64 %26, 3
%28 = shl i64 %26, 61
%29 = or i64 %27, %28
%30 = icmp ule i64 %29, 1
br i1 %30, label %33, label %31, !prof !11, !nosanitize !10

31: ; preds = %21
%32 = ptrtoint i8* %24 to i64, !nosanitize !10
call void @__ubsan_handle_cfi_check_fail_abort([...])
unreachable, !nosanitize !10
33: ; preds = %21
%34 = call i32 %23()

Figure 4.7: LLVM IR excerpt

Note that the type test is now turned into a sequence of sub, lshr, shl, and
or instructions more resembling normal assembly code. The actual assembly
code does not look that different from LLVM IR actually. A comparison between
x86 64 and arm64 assembly code can be seen in figure 4.8. The code is almost ex-
actly the same size, only differing by one instruction. The assembly code was cre-
ated using IDA Pro [33] and cleaned up for clarity. Also note that abort() is not
actually called; the real code calls ubsan handle cfi check fail abort().
This function is part of the compiler-rt project, which contains several runtime
libraries. Looking at the function name we can see that it is part of the UBSan,
or UndefinedBehaviorSanitizer [50] runtime.

The @PAGE/@PAGEOFF syntax may seem a bit strange. This is the way IDA
Pro displays it, which is the tool used to produce these assembly listings. The
adrp instruction fetches the address of a 4KB page at a PC-relative offset. An
add instruction can then be used to add the offset of the wanted symbol to the
page address. This pattern is used since we cannot encode full addresses (4 or
8 byte) in instructions since all instructions are only 4 bytes in size on arm64.
The adr/add instructions are used to work around this limitation.

When LLVM generates the jump tables, their entries use the original symbol

42



adrp x8, foo@PAGE
add x8, x8, foo@PAGEOFF
adrp x9, bar
add x9, x9, bar
str x9, [sp,#8]
ldr x1, [sp,#8]
sub x8, x1, x8
lsr x9, x8, #2
orr x8, x9, x8,lsl#62
cmp x8, #1
b.ls loc_9D0
call abort
loc_9D0:
mov w0, #4
blr x1

(a) arm64 CFI check

mov rax, offset bar
mov [rbp-16], rax
mov rsi, [rbp-16]
mov rax, offset foo
mov rcx, rsi
sub rcx, rax
mov rax, rcx
shr rax, 3
shl rcx, 3Dh
or rax, rcx
cmp rax, 1
jbe short loc_2354AD
call abort
loc_2354AD:
mov edi, 4
call rsi

(b) x86 64 CFI check

Figure 4.8: Comparison between CFI checks on arm64 and x86 64

names from functions. Thus, the foo() symbol from the previous examples used
to point to the original function, but now points to the jump table instead. Every
function that is redirected through the jump table get a .cfi suffix. foo() turns
into foo.cfi(), for example.

Since CFI instruments every single indirect function call (unless told not to
do so explicitly 7), it is interesting to consider how much overhead is generated
for each instrumented call site. In figure 4.9 we see a comparison between a
normal call and a call protected with CFI for arm64.

We can see that there are a lot of instructions added to the CFI call. In-
cluding the two instructions not shown in the listing used to fetch the argument
to the abort() function, 9 instructions have been added. This results in an
increase of 4 × 9 = 36 bytes. In addition, a jump table entry is constructed,
adding another 4 bytes. In figure 4.10 we have the same comparison for x86 64.

There are a lot of instructions added here as well. For this example, 11
instructions are added in the CFI example. It is not as easy to calculate the
size overhead here, since instruction size varies on x86 64 and we cannot simply
count the number of instructions added. The example without CFI enabled
consists of 30 bytes, while the example with CFI consists of 76 bytes. This
results in a 153.33 % increase in size, compared to a 166.67 % increase for
arm64. These numbers may not be the same for every situation, depending on
compiler optimizations and other factors, but they highlight the fact that CFI
adds some extra size to the code.

4.6.2 Cross-DSO CFI
LLVM also supports something known as cross-DSO CFI. DSO is short for dy-
namic shared object, which is commonly known as a shared library. If cross-DSO

7using the no sanitize ("cfi") attribute.

43



adrp x8, bar@PAGE
add x8, x8, bar@PAGEOFF
str x8, [sp,#8]
ldr x8, [sp,#8]
mov w0, #4
blr x8

(a) Normal arm64 call

adrp x8, foo@PAGE
add x8, x8, foo@PAGEOFF
adrp x9, bar@PAGE
add x9, x9, bar@PAGEOFF
str x9, [sp,#8]
ldr x1, [sp,#8]
sub x8, x1, x8
lsr x9, x8, #2
orr x8, x9, x8,lsl#62
cmp x8, #1
b.ls loc_9D0
call abort
loc_9D0:
mov w0, #4
blr x1

(b) CFI arm64 call

Figure 4.9: Comparison between calls with and without CFI on arm64

mov rdi, offset bar
mov [rbp-24], rdi
mov edi 4
mov [rbp-28], eax
call qword ptr [rbp-24]

(a) Normal x86 64 call

mov rax, offset bar
mov [rbp-16], rax
mov rsi, [rbp-16]
mov rax, offset foo
mov rcx, rsi
sub rcx, rax
mov rax, rcx
shr rax, 3
shl rcx, 3Dh
or rax, rcx
cmp rax, 1
jbe short loc_2354AD
call abort
loc_2354AD:
mov edi, 4
call rsi

(b) x86 64 CFI check

Figure 4.10: Comparison between calls with and without CFI on x86 64

44



CFI is enabled, control flow checking will be enforced across DSO boundaries,
meaning that if you attempt to call functions in another library with the wrong
function signature the call will be blocked at runtime.

4.6.3 Backward-edge control-flow integrity in clang
A fairly new vulnerability mitigation implemented in LLVM is ShadowCallStack
(SCS) [48]. This mechanism attempts to mitigate backward-edge control flow
hijacking by protecting the return address on the stack. To accomplish this, the
return values are loaded from a separate stack known as the shadow stack. This
stack, however, does not mirror all the data on the normal stack. It contains an
array of return addresses. Although a powerful mitigation, the x86 64 imple-
mentation was thrown out of LLVM because of performance and security issues.
The current implementation is only supported on aarch64. Intel has planned
another security feature called Control-flow Enforcement Technology [36] [14]
[52] [21] which is implemented in hardware. Since Intel will add backward-edge
protection in hardware, and because the ShadowCallStack implementation for
x86 64 caused a lot of performance overhead it was removed in LLVM 9.0.

SCS requires runtime support, for example in the C standard library for
normal programs, or the Linux kernel for kernel drivers. Support for SCS is
included in Android’s libc, named bionic. The first implementation 8 allocated
a region for the shadow stack, and placed it inside this region at a known offset.
The current implementation 9, however, puts the shadow stack at a random
offset inside the shadow stack region. The shadow stack is both readable and
writable, but the rest of the region is mapped without any access rights. Thus,
any attempt to access memory before or after the shadow stack results in a
crash. This provides protection for both stack underflows and overflows. Ran-
domizing the location of the shadow stack further complicates attacks targeting
the shadow stack. See figure 4.11 for the SCS implementation in bionic.

The SCS code is part of the code for POSIX threads [55], or pthreads. When-
ever a thread is created, or during initialization of a program’s main thread, a
new shadow stack is created using init shadow call stack(). At the end of
the function we can see that the return value, scs, is placed in x18 using inline
assembly. Clang deliberately uses x18 to store the shadow stack, which means
that no other code should use this register. To ensure that no code uses x18,
the -ffixed-x18 compiler flag can be used.

Let us examine how SCS looks like in a compiled program. The C code
example can be found in figure 4.12. The assembly code output of main() can
be found in figure 4.13. Note that the foobar() function does not change when
compiled with SCS since it is a leaf function, and thus does not store the return
address on the stack in the prologue (see section 2.6.1 for more information on
leaf functions).

The assembly code output is very similar with and without SCS. The only
difference is that the code with SCS enabled stores the return address (x30)
into the shadow stack at the start of the function, and fetches in again at the
end. Enabling SCS adds two instructions, or 8 bytes of code, to every non-leaf
function in the program.

8see commit 808d176e7e0dd727c7f929622ec017f6e065c582
9commit c2a67121c747b5d1f43010b5a78032a95a722631

45



static void __init_shadow_call_stack(pthread_internal_t* thread __unused) {
#ifdef __aarch64__

// Allocate the stack and the guard region.
char* scs_guard_region = reinterpret_cast<char*>(

mmap(nullptr, SCS_GUARD_REGION_SIZE, 0, MAP_PRIVATE | MAP_ANON, -1, 0));
thread->shadow_call_stack_guard_region = scs_guard_region;

// The address is aligned to SCS_SIZE so that we only need to store the lower log2(SCS_SIZE) bits
// in jmp_buf.
char* scs_aligned_guard_region =

reinterpret_cast<char*>(align_up(reinterpret_cast<uintptr_t>(scs_guard_region), SCS_SIZE));

// We need to ensure that [scs_offset,scs_offset+SCS_SIZE) is in the guard region and that there
// is at least one unmapped page after the shadow call stack (to catch stack overflows). We can't
// use arc4random_uniform in init because /dev/urandom might not have been created yet.
size_t scs_offset =

(getpid() == 1) ? 0 : (arc4random_uniform(SCS_GUARD_REGION_SIZE / SCS_SIZE - 1) * SCS_SIZE);

// Make the stack readable and writable and store its address in register x18. This is
// deliberately the only place where the address is stored.
char *scs = scs_aligned_guard_region + scs_offset;
mprotect(scs, SCS_SIZE, PROT_READ | PROT_WRITE);
__asm__ __volatile__("mov x18, %0" ::"r"(scs));

#endif
}

Figure 4.11: ShadowCallStack support in bionic libc

#include <stdio.h>

int foobar(void)
{

return 0xbadc0de;
}

int main(void)
{

return foobar() + 0x1337;
}

Figure 4.12: ShadowCallStack code example

46



main:
sub sp, sp, #32
stp x29, x30, [sp, #16]
add x29, sp, #16
mov w8, #4919
stur wzr, [x29, #-4]
str w8, [sp, #8]
bl foobar
ldr w8, [sp, #8]
add w0, w0, w8
ldp x29, x30, [sp, #16]
add sp, sp, #32
ret

(a) ShadowCallStack disabled

main:
sub sp, sp, #32
str x30, [x18], #8
stp x29, x30, [sp, #16]
add x29, sp, #16
mov w8, #4919
stur wzr, [x29, #-4]
str w8, [sp, #8]
bl foobar
ldr w8, [sp, #8]
add w0, w0, w8
ldp x29, x30, [sp, #16]
ldr x30, [x18, #-8]!
add sp, sp, #32
ret

(b) ShadowCallStack enabled

Figure 4.13: Assembly code with ShadowCallStack disabled/enabled

4.7 Hardware alternatives
The implementations we have discussed so far are all implemented in software.
Similar technologies in hardware are currently being worked on, most notably
Intel’s Control-flow Enforcement Technology [36] (CET) for x86 64 and Qual-
comm’s Pointer Authentication [67] (PAC) for ARMv8.3. We will discuss CET
in section 4.7.1, and PAC in section 4.7.2.

4.7.1 CET
CET provides the following capabilities according to Intel: Shadow Stack, and
indirect branch tracking. A shadow stack is a second stack used exclusively
for control transfer operations. When enabled the call instruction pushes the
return address both to the normal stack and to the shadow stack. When the
function returns later, the ret instruction will pop the return address from both
stacks and compare them. In the event that they do not match, an exception
is raised. Shadow stacks should be properly protected so that they are not
easy targets for attackers with an arbitrary read/write primitive. For CET, the
shadow stack is separate from the normal stack and is only used to store control
transfer information. It is protected using page table protections. Thus, the
shadow stack is not directly writable by software. The stack is only accessed by
control transfer instructions (like call and ret) and shadow stack management
instructions. The other feature, indirect branch tracking, includes a new in-
struction called endbranch used to mark valid jump target addresses of indirect
calls and jumps in the program. While the ShadowCallStack on arm64 uses the
x18 register as a pointer to the shadow stack, CET introduces support for the
shadow stack pointer (SSP) register.

Indirect branch tracking changes the behavior of jmp and call instructions.
The CPU implements a state machine to track indirect branch instructions. If
the following instruction after an indirect jmp or call is not an endbranch in-

47



struction, the control-flow transfer was not valid. In other words, endbranch
is used to mark valid indirect call targets in the program. To provide back-
ward compatibility with older CPUs that do not support CET, the endbranch
instruction is encoded such that it is treated as a nop on these CPUs.

CET is not yet available in hardware, but support for it has been enabled
in GCC 8, binutils 2.31, and glibc 2.28, and added to LLVM in december 2019.
There is also a patchset available for adding support to the Linux kernel [81],
but it has not been upstreamed yet.

4.7.2 PAC
PAC raises the bar for attackers trying to modify protected pointers in memory.
In this section we will describe how PAC is designed and what protection it
provides.

PAC takes advantage of the fact that the address space in 64-bit architectures
is less than 64-bits. The actual number of bits depends on the platform, but
usually 55 or 48 bits are actually used. This means that 64-bit pointers have
unused bits in the upper part of the pointer. These unused bits can be used to
store a pointer authentication code. The PAC is inserted into each protected
pointer before writing it to memory, and verified before it is used. Several new
instructions are introduced to sign and authenticate pointers.

PAC uses a cryptographically strong algorithm to authenticate pointers
named QARMA [8]. QARMA is “a new family of lightweight tweakable block
ciphers” [67]. A 128-bit key is used together with a context value to sign point-
ers. The context is useful to separate different classes of pointers, for example
stack pointers and function pointers.

In section 3.5.2 we discussed how return addresses on the stack are protected
using a stack cookie. This mitigation adds some overhead to every function
prologue and epilogue since the cookie first have to be stored on the stack,
and then validated before returning from the function. With PAC, a single
instruction can be used to tag and verify the link register (LR), which is where
the return addresses are stored on arm64. The instruction PACIASP is used to
protect LR, and AUTIASP is used to verify it.

If pointers used for indirect function calls are signed using PAC, a form of
CFI can be implemented which makes sure that no invalid pointers are used for
function calls. Different contexts can be used to group function pointers together
and provide something similar to what clang does for its CFI implementation,
which we discussed in section 6.3.2.

Basic support for PAC exists in the Linux kernel, but there is no real usage
yet. Apple’s mobile operating system iOS has support for PAC, and it is enabled
on certain iPhones [10]. It will be interesting to see how support for PAC on
Linux develops over the next few years.

48



Chapter 5

Linux kernel internals

5.1 Introduction
This chapter will go into a bit more detail on the Linux kernel, before delving
into what sort of optimization we can do using standard compilers and linkers.
First, we will talk more about the different releases of the kernel in section 5.2,
then move on to the Linux kernel’s build system in section 5.3. Finally we
will discuss different security features commonly enabled in the Linux kernel in
section 5.4.

5.2 Linux kernel versions
Many versions of the Linux kernel is in active use. These can be divided into
the following categories:

Prepatch

These releases are often referred to as ”RC”, or release candidate, kernels. They
are not yet ready for use in stable releases, and must be compiled from source.
This is where new features can be tested before the end up in a normal stable
release and can be used by users that aren’t developers.

Mainline

Mainline is where all the new features from the rc releases are introduced. New
mainline releases come out every 2-3 months.

Stable

A mainline release is considered stable after it has been released. Bug fixes for
a stable release is backported from the mainline tree.

Longterm

Several ”longterm maintenance” kernel releases are provided for the purpose of
backporting bugfixes to older releases. Longterm releases usually only see im-

49



portant bugfixes backported to them. However, new minor releases are relatively
frequent, while new major releases are infrequent.

Following is a table, accurate as of January 30th 2020, of the current longterm
release kernels and their maintainers [2].

Longterm release kernels
Version Maintainer Released Projected EOL
5.4 Greg Kroah-Hartman & Sasha Levin 2019-11-24 Dec, 2021
4.19 Greg Kroah-Hartman & Sasha Levin 2018-10-22 Dec, 2020
4.14 Greg Kroah-Hartman & Sasha Levin 2017-11-12 Jan, 2020
4.9 Greg Kroah-Hartman & Sasha Levin 2016-12-11 Jan, 2023
4.4 Greg Kroah-Hartman & Sasha Levin 2016-01-10 Feb, 2022
3.16 Ben Hutchings 2014-08-03 Apr, 2020

Table 5.1: Longterm release kernels

5.3 Build system
This section will describe the build system employed by the Linux kernel. At
the core of the Linux kernel build system is the kbuild infrastructure. Kbuild
helps the kernel deal with the complex structure of the code base, in particular
with all the different configuration options and architectures available. The
kernel is configured using a top-level .config file. This file allows a user to turn
on and off different options when compiling. Some examples of options include
the page size, what hardware should be supported, and what architecture we
are compiling for. These configuration options are prefixed with CONFIG and
ends with an equals sign and then the value for this particular option. The two
most common values are y and m. y is used when you want to enable an option,
for example to enable kernel debugging through the CONFIG KGDB option. m is
used when you want to compile something as a loadable kernel module instead
of integrating it as a part of the monolithic kernel. To disable an options, n is
used. For example CONFIG OVERLAY FS=n to disable overlay fs support. When
discussing configuration options in future sections, the CONFIG prefix will be
omitted for brevity. KGDB will be used instead of CONFIG KGDB, for example.

In the top-level and arch specific directories you have normal Makefiles.
Most other folders, however, have kbuild makefiles. These makefiles carry out
commands passed down from above. The top-level Makefile is responsible for
building vmlinux, which is the kernel image, and all modules.

There are several default make targets that make it easier to customize the
kernel build process. To change configuration options using a GUI there is
the make menuconfig option which lets users turn on and off options using an
ncurses menu. There are several targets that help turn on and off large amounts
of configuration options. For example, we have the allmodconfig target that
sets as many configuration options to m as possible, which means that it will
attempt to compile in support for as many modules as possible. There is also
the similar allyesconfig which will build everything directly into the kernel
instead of having the code as loadable kernel modules.

50



5.4 Linux kernel security
In section 4.4.1 we discussed different security mitigations provided by compilers.
These protections are common for most software in user space as well as kernel
space. There are some interesting security mitigations that are special for the
Linux kernel, however. In the following subsections we will describe some of
these to highlight some of the steps taken to make the Linux kernel more secure.
These security features are controlled by configuration options and may not be
enabled for certain distros or Android devices. Although most of these are not
directly relevant for CFI, they highlight the need for a diverse set of different
security mechanisms in a modern operating system kernel.

5.4.1 KASLR
As mentioned in section 3.4 we have a protection known as kernel address space
layout randomization (KASLR). This is the kernel version of ASLR, which we
described in section 4.4.2.

5.4.2 SMEP/PXN
Supervisor Mode Execution Prevention (SMEP) and Privileged Execute Never
(PXN) are CPU features, for x86 64 and arm64 respectively, that prevents the
kernel from executing code located in user space. Without these protections,
an attacker can redirect execution from the kernel into user space, where the
attacker potentially has full control over the memory layout. This type of attack
is known as ret2usr [37]. On x86 64, SMEP is enabled by setting bit 20 in the
CR4 register. On arm64, PXN is controlled through translation table entries.

5.4.3 SMAP/PAN
Supervisor Mode Access Prevention (SMAP) and Privileged Access Never (PAN)
are CPU features for x86 64 and arm64 respectively that can prevent access to
unprivileged data. It is used to make sure that the kernel cannot directly access
memory in user space. To access memory in user space, the kernel has to use
functions designed for this purpose, like copy from user(). On x86 64, SMAP
is enabled by setting bit 21 of CR4. To access memory in user space on arm64,
one either has to clear the PAN bit or use the specialized instructions ldt* and
stt* for loading and storing memory.

On arm64, PAN is only supported on devices based on ARMv8.1 and newer.
For older devices there is a software emulated version.

5.4.4 STRICT KERNEL RWX
STRICT KERNEL RWX is a configuration option used to make sure that text and ro-
data sections are read-only. This option is useful to make it harder for attackers
to inject code or perform data-only attacks.

5.4.5 STRICT DEVMEM
Linux provides a special device named /dev/mem. This devices allows access to
all kernel and user space memory on the system. Switching on the config option

51



STRICT DEVMEM will put restrictions on what memory is available through this
device. If IO STRICT DEVMEM is not enabled, user space can access the PCI
space and BIOS code/data regions through /dev/mem. If IO STRICT DEVMEM is
enabled, only idle io-memory ranges are accessible.

5.4.6 HARDENED USERCOPY
This option attempts thwart certain types of vulnerabilities by hardening the
functions responsible for copying data to/from the kernel. Examples of mitiga-
tions include rejecting copy operations that attempt to copy more data to/from
a heap allocation than what was allocated. For stack allocations, the kernel
checks that the object copied is within the current stack frame.

Most of the hardened usercopy code is located in mm/usercopy.c, with some
parts located in heap implementation specific files. When using copy to user()
and copy from user() to copy to and from user space, check object size()
is called to verify the copy operation. This is a thin wrapper around

check object size(), which performs several checks on the object. Figure
5.1 contains the full code listing.

From the code we can see that several properties are checked. First, the code
verifies that the address is in fact a valid address and not somethig invalid like
a null pointer. It also detects if the object in question (ptr + n) wraps around
past the end of memory. If the address belongs to the stack, it is verified that
the object belongs to the current stack frame, if possible. If frame checking is
not available, the code will check that the address is fully within the process
stack. Objects that partially overlaps the stack will be marked as invalid.

5.4.7 Page Table Isolation
Page Table Isolation, or PTI for short, is a countermeasure against attacks like
Meltdown [46]. These attacks can leak sensitive kernel space memory from user
space on vulnerable CPUs. To mitigate this class of attacks, PTI uses two
sets of page tables. One contains a full copy of all memory, including kernel
space memory. The other set is meant for user space applications, and only
map user space memory and essential kernel memory needed for syscalls and
so on. When entering the kernel from user space, the system switches to the
page tables mapping all memory, and then switches back again when the kernel
returns to user space.

52



/*
* Validates that the given object is:
* - not bogus address
* - fully contained by stack (or stack frame, when available)
* - fully within SLAB object (or object whitelist area, when available)
* - not in kernel text
*/

void __check_object_size(const void *ptr, unsigned long n, bool to_user)
{

if (static_branch_unlikely(&bypass_usercopy_checks))
return;

/* Skip all tests if size is zero. */
if (!n)

return;

/* Check for invalid addresses. */
check_bogus_address((const unsigned long)ptr, n, to_user);

/* Check for bad stack object. */
switch (check_stack_object(ptr, n)) {
case NOT_STACK:

/* Object is not touching the current process stack. */
break;

case GOOD_FRAME:
case GOOD_STACK:

/*
* Object is either in the correct frame (when it
* is possible to check) or just generally on the
* process stack (when frame checking not available).
*/

return;
default:

usercopy_abort("process stack", NULL, to_user, 0, n);
}

/* Check for bad heap object. */
check_heap_object(ptr, n, to_user);

/* Check for object in kernel to avoid text exposure. */
check_kernel_text_object((const unsigned long)ptr, n, to_user);

}
EXPORT_SYMBOL(__check_object_size);

Figure 5.1: Implementation of check object size()

53



Chapter 6

Forward-edge and
backward-edge control-flow
integrity in the Linux kernel

6.1 Introduction
This chapter will describe how support for LTO, CFI, and SCS is implemented
in the Linux kernel. Before we can use these features, however, the kernel has
to be built with clang. In section 6.2, we describe the work that has gone
into making this possible. Then in section 6.3 we describe the actual patches
implementing LTO, CFI, and SCS in the kernel. In section 6.3.3 we describe
how a CFI failure looks like, and how we can fix false positives by patching the
kernel. In section 6.4 we describe the SCS implementation in further detail.

6.2 Building the Linux kernel with clang
On newer kernel versions, a lot of patches have been added to both clang and
the linux kernel that makes it possible to build a vanilla upstream kernel. The
ClangBuiltLinux [18] project has done a significant amount of work to make this
possible. They have a huge list of issues regarding compilation, linking, and so
on located on their GitHub kernel repository [19]. There is work being done to
make it possible to compile the kernel for several of the supported architectures
with clang. This could be an interesting topic for further research.

Following is a brief history of some of the different issues that have been
resolved to make it possible to compile the Linux kernel with clang.

6.2.1 Variable-length arrays
A variable-length array (VLA) is an array whose size is determined at runtime
instead of compile time. VLAs are supported by the C99 standard and is usually
implemented by allocating room on the stack at runtime for the array. Consider
the following C code example:

54



void func(size_t n)
{

/* VLA */
char array[n];

for (size_t i = 0; i < n; i++)
do_something(array[i]);

}

The code is totally useless, but shows how one could use VLAs in C code.
The array named array has a size determined at runtime by the n parameter
to func(). VLAs have not been very popular in the Linux kernel, and Linus
Torvalds has stated his dislike with VLAs on the public kernel mailing list.
With the 4.20 kernel, however, VLAs have been completely removed. The main
reasons may have been for performance and security, since compilers generated
slow code for VLAs and it may lead to security bugs if the array size is not
properly checked. Clang does not support VLAs, however, so it was necessary
to completely remove them from the kernel to build it with clang.

6.2.2 Assembly goto
The linux kernel uses asm goto statements in its jump label code. An asm goto
is a goto statement that allows jumping from assembly to a C label.

Clang versions before 9 did not support this syntax, however, so the kernel
had to be built with JUMP LABEL disabled. After version 9, however, asm goto
support is added and the kernel can be successfully built.

6.3 LTO, CFI, and SCS in Linux
Support for LTO, CFI, and SCS is merged into the upstream Android kernels
and can be used by any vendor by compiling the kernel with clang and enabling a
few configuration options. In addition, Sami Tolvanen has a patchset compatible
with the upstream kernel [75]. The patchsets for the upstream kernel supports
x86 64 as well as arm64. Kees Cook has documented how to boot an x86 64
kernel with CFI enabled on his blog [20].

As of June 6th, 2020, support for SCS on arm64 has been merged into the
upstream kernel 1.

The following subsections will describe in further detail how the different
features work in the Linux kernel.

6.3.1 Link-time optimization
In this section we will describe the changes that have been made to the Linux
kernel to support LTO. We will not describe every single patch, but the most
important and interesting changes will be covered here.

For LTO support, almost all of the patches are directed at the build system.
First of all some new configuration options are added: LTO CLANG enables LTO,
and THINLTO enables ThinLTO. The compiler flags used to enable LTO are

1commit 533b220f7be4e461a5222a223d169b42856741ef

55



-flto for full LTO, or -flto=thin for ThinLTO. If the clang version supports
the flag, -fsplit-lto-unit will be used to enable LTO unit splitting which will
split bitcode objects into into regular and thin LTO halves, which is enabled for
CFI for example. To speed up incremental builds with ThinLTO a cache can
be used. The cache directory can be specified with a linker flag 2.

When using loadable modules, it is important that the module is built for
the exact same kernel as it is loaded on. Many things can change between
kernel versions, and by changing configuration options two kernels with the same
version can vary greatly. Structure layouts may change, functions may become
deprecated, and new functionality could be added or removed. To make sure
that it is safe to load a module, the kernel has an option called MODVERSIONS.
modversions stores checksums in a special section of every module, and when
the kernel loads the module it can check if the module is compatible with the
running kernel.

LTO produces bitcode files instead of object files, so some tricks have to be
used to extract symbols from the bitcode files using the llvm-nm utility instead
of objdump which is normally used.

To reduce binary size, the flags -mllvm -import-instr-limit=5 are used
to limit inlining across translation unit boundaries. The authors report an 11
% decrease in size for a stripped arm64 defconfig vmlinux binary by switching
from the default value of 100 to 5.

6.3.2 Control-flow integrity
Like LTO, some additional compiler flags have to be enabled to support CFI.
The flag -fsanitize=cfi is used to enable CFI. In addition, the kernel is
compiled with -fno-sanitize-cfi-canonical-jump-tables, which makes the
jump tables used by CFI non-canonical. First of all, let us discuss what a canon-
ical jump table is. By default, clang will replace the address of each function
checked by CFI with the address of a jump table entry that will pass CFI checks.
This is how clang makes the jump table canonical. All the original function sym-
bols get .cfi appended to them, and the function symbol will point to the jump
table entry which will call the original function. With non-canonical jump ta-
bles, the symbol table entry points to the function body instead. A compiler
attribute can be used to tell the compiler to use a canonical jump table instead.

Having a canonical jump table can be useful since it allows code not in-
strumented with CFI checks to take a CFI-valid address of a function. There
is, however, increased performance and code size overhead since each exported
function has an associated jump table entry even though the function is never
used in an indirect call anywhere.

In some cases, however, it is necessary to use canonical jump tables. One
example is functions that take the address of a function in assembly code, and
later use it in C. When we take the address of a function in C, it will use the
jump table entry, thus passing any CFI checks. When the address is taken in
assembly, however, we get a reference to the original function body. If this
reference is later used to call the function in CFI-checked C code, we will get a
CFI violation.

Next, we will discuss the different configuration options added to the kernel
2--thinlto-cache-dir=

56



pertaining to CFI. First up, CFI CLANG enables CFI. This option depends on
LTO. By default, CFI violations result in a kernel panic. This might not be
desirable, especially during development. The option CFI PERMISSIVE can be
used to enable permissive CFI mode, where a warning is used instead of a kernel
panic when a violation is caught. CFI CLANG SHADOW speeds up cross-module
CFI checks, more on this option later in this section.

All modules now contain a CFI check function. This function is generated
by the compiler and is named cfi check(). The prototype for the function
looks like this:

extern void __cfi_check(uint64_t id, void *ptr, void *diag);

Some parts of the kernel is not instrumented with CFI, for example error
handlers, functions that jump to a physical address, and exception callbacks.

Finally we will discuss some of the minor changes that have been done to
different parts of the C code. The kernel has something called kallsyms, which
is used for symbol lookup within the kernel. From user space it can be accessed
through the /proc/kallsyms file. When both ThinLTO and CFI are enabled,
LLVM appends a hash to static function names, which might break tools relying
on information from kallsyms. To prevent potential issues, the following code
snippet is added to remove hashes from function names:

#if defined(CONFIG_CFI_CLANG) && defined(CONFIG_THINLTO)
/*
* LLVM appends a hash to static function names when ThinLTO and CFI are
* both enabled, which causes confusion and potentially breaks user space
* tools, so we will strip the postfix from expanded symbol names.
*/

static inline void cleanup_symbol_name(char *s)
{

char *res;

res = strrchr(s, '$');
if (res)

*res = '\0';
}
#else
static inline void cleanup_symbol_name(char *s) {}
#endif

6.3.3 CFI failure
The following subsection will describe how a CFI failure looks and how it can be
fixed in the Linux kernel source code. For the CFI code to be useful on x86 64,
it is important that all CFI failures caused by normal kernel code is removed.
A CFI kernel that panics because of a wrong function signature is useless in
production. When testing, it is fine to use permissive CFI, which simply prints
an error message to the kernel log about the failure. For CFI to actually protect
against function pointer overwrites, the kernel has to panic when it detects a
failure. This is the same behavior as when the kernel detects stack corruption.

57



When running a kernel with CFI enabled on an Intel NUC a CFI failure was
reported in a networking driver. Following is the CFI failure message with some
information removed to make it more readable.

------------[ cut here ]------------
CFI failure (target: cfg80211_wext_giwname.cfi_jt+0x0/0x10 [cfg80211]):
WARNING: CPU: 0 PID: 2536 at kernel/cfi.c:29

__ubsan_handle_cfi_check_fail+0x38/0x40
CPU: 0 PID: 2536 Comm: ThreadPoolForeg

Tainted: G W 5.5.0-rc7-cfi+ #3
Hardware name: /NUC6i7KYB, BIOS KYSKLi70.86A.0037.2016.0603.1032

06/03/2016
RIP: 0010:__ubsan_handle_cfi_check_fail+0x38/0x40
Call Trace:
__cfi_check_fail+0x1c/0x30 [cfg80211]
__cfi_check+0x27eb/0x2940 [cfg80211]
? 0xffffffffc08ee000
? __cfi_slowpath_diag+0x6e/0xe0
ioctl_standard_call$9fd5dafa701484d9e63973be756c9b3f+0x185/0x1b0
wext_handle_ioctl+0x15c/0x350
sock_ioctl$cb487607ef45d635e89da547c2034f0c+0x61/0x470
? alloc_empty_file+0x82/0xe0
? alloc_file+0x2b/0xf0
? stm_char_ioctl$17cda3d452c6c05ccbe20f2bfbcab4d2.cfi_jt+0x8/0x8
do_vfs_ioctl+0x7ac/0xa60
? sock_alloc_file+0xeb/0x140
__x64_sys_ioctl+0x73/0xa0
? __ia32_sys_io_setup.cfi_jt+0x8/0x8
do_syscall_64+0x7c/0x130
entry_SYSCALL_64_after_hwframe+0x44/0xa9

---[ end trace 7ef867b86cd5ed42 ]---

The kernel was compiled with permissive CFI, which means that it will
continue running even though a CFI failure is encountered. When permissive
mode is disabled, the kernel will panic instead. The code uses the standard
WARN macro which will log information like the ID of the current procesor, the
PID of the current process, and a stack trace. In addition, the CFI code will
print the indirect function call target that caused the failure.

The target that caused this CFI failure was cfg80211 wext giwname(). It
was called from ioctl standard call(). Looking at the prototype of the called
function we see that it looks like this:

int cfg80211_wext_giwname(struct net_device *dev,
struct iw_request_info *info,
char *name, char *extra);

The next step is to look at the call site to see where the error occurs. See
the following code snippet 3:

3defined in net/wireless/wext-core.c

58



1 /*
2 * Wrapper to call a standard Wireless Extension handler.
3 * We do various checks and also take care of moving data between
4 * user space and kernel space.
5 */
6 static int ioctl_standard_call(struct net_device * dev,
7 struct iwreq *iwr,
8 unsigned int cmd,
9 struct iw_request_info *info,

10 iw_handler handler)
11 {
12 const struct iw_ioctl_description * descr;
13 int ret = -EINVAL;
14

15 /* Get the description of the IOCTL */
16 if (IW_IOCTL_IDX(cmd) >= standard_ioctl_num)
17 return -EOPNOTSUPP;
18 descr = &(standard_ioctl[IW_IOCTL_IDX(cmd)]);
19

20 /* Check if we have a pointer to user space data or not */
21 if (descr->header_type != IW_HEADER_TYPE_POINT) {
22

23 /* No extra arguments. Trivial to handle */
24 ret = handler(dev, info, &(iwr->u), NULL);
25

26 /* Generate an event to notify listeners of the change */
27 if ((descr->flags & IW_DESCR_FLAG_EVENT) &&
28 ((ret == 0) || (ret == -EIWCOMMIT)))
29 wireless_send_event(dev, cmd, &(iwr->u), NULL);
30 } else {
31 ret = ioctl_standard_iw_point(&iwr->u.data, cmd, descr,
32 handler, dev, info);
33 }
34

35 /* Call commit handler if needed and defined */
36 if (ret == -EIWCOMMIT)
37 ret = call_commit_handler(dev);
38

39 /* Here, we will generate the appropriate event if needed */
40

41 return ret;
42 }

At line 24 we can see that the handler passed to ioctl standard call() is
called. The handler has the type iw handler which looks like this:

typedef int (*iw_handler)(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra);

59



Comparing iw handler to the declaration of cfg80211 wext giwname() we see
that the type of the third parameter does not match. The handler expects an
argument of type union iwreq data while the function actually takes a char
*. The fix here is to make sure that the two function signatures match. To
make these match we can change cfg80211 wext giwname() to use the expected
parameter type instead of char *. Following is an excerpt of the definition of
iwreq data with comments removed for brevity:

union iwreq_data {
char name[IFNAMSIZ];

struct iw_point essid;
struct iw_param nwid;
struct iw_freq freq;
/* [... ] */

};

Also see the following code snippet with the definition of cfg80211 wext giwname():

int cfg80211_wext_giwname(struct net_device *dev,
struct iw_request_info *info,
char *name, char *extra)

{
strcpy(name, "IEEE 802.11");
return 0;

}
EXPORT_WEXT_HANDLER(cfg80211_wext_giwname);

iwreq data is a union type, so simply casting it to a char * works fine here.
However, to make it compatible with the iw handler type we have to change
the char * parameter to a iwreq data and copy the name into the name field
of this union instead. A patch to fix this issue can be found in figure 6.1. Most
of the CFI failures can be, and have been, fixed this way. Fixing these simple
CFI failures should not make huge changes to the original code.

6.4 ShadowCallStack
In section 4.6.3 we briefly introduced ShadowCallStack, or SCS for short. In this
section we will dive deeper into how SCS is implemented in the Linux kernel.
As of early April, 2020, the SCS patchset 4 consists of 12 commits with 31
changed files. In total there is 440 additions and 7 deletions. Compared with
the patchsets for LTO and CFI this is a little simpler.

Let us start with the changes to the build system. A new configuration
option, ARCH SUPPORTS SHADOW CALL STACK is added so that architectures can
signal that they support SCS. To enable SCS, the SHADOW CALL STACK option
is used. The compiler also needs to support SCS, which is currently only clang
versions larger than or equal to 7.0. As the official documentation for SCS states
[48], the compiler flag -ffixed-x18 has to be enabled on arm64 since the SCS
implementation uses the x18 register to store the shadow stack pointer. To

4from https://github.com/samitolvanen/linux

60



---
include/net/cfg80211-wext.h | 2 +-
net/wireless/wext-compat.c | 4 ++--
2 files changed, 3 insertions(+), 3 deletions(-)

diff --git a/include/net/cfg80211-wext.h b/include/net/cfg80211-wext.h
index ad77caf2ffde..f634a6c8f6a9 100644
--- a/include/net/cfg80211-wext.h
+++ b/include/net/cfg80211-wext.h
@@ -19,7 +19,7 @@

*/
int cfg80211_wext_giwname(struct net_device *dev,

struct iw_request_info *info,
- char *name, char *extra);
+ union iwreq_data *wrqu, char *extra);
int cfg80211_wext_siwmode(struct net_device *dev, struct iw_request_info *info,

u32 *mode, char *extra);
int cfg80211_wext_giwmode(struct net_device *dev, struct iw_request_info *info,

diff --git a/net/wireless/wext-compat.c b/net/wireless/wext-compat.c
index cac9e28d852b..1b773ac87b09 100644
--- a/net/wireless/wext-compat.c
+++ b/net/wireless/wext-compat.c
@@ -25,9 +25,9 @@

int cfg80211_wext_giwname(struct net_device *dev,
struct iw_request_info *info,

- char *name, char *extra)
+ union iwreq_data *wrqu, char *extra)
{

- strcpy(name, "IEEE 802.11");
+ strcpy(wrqu->name, "IEEE 802.11");

return 0;
}
EXPORT_WEXT_HANDLER(cfg80211_wext_giwname);

--
2.17.1

Figure 6.1: cfg80211 wext giwname() CFI patch

61



/*
* Called when gcc's -fstack-protector feature is used, and
* gcc detects corruption of the on-stack canary value
*/

__visible void __stack_chk_fail(void)
{

panic("stack-protector: Kernel stack is corrupted in: %pB",
__builtin_return_address(0));

}
EXPORT_SYMBOL(__stack_chk_fail);

Figure 6.2: stack chk fail() in the Linux kernel

static inline void scs_overflow_check(struct task_struct *tsk)
{

if (unlikely(scs_corrupted(tsk)))
panic("corrupted shadow stack detected inside scheduler\n");

}

Figure 6.3: Shadow stack overflow handling in the Linux kernel

enable SCS, the flag -fsanitize=shadow-call-stack is used. SCS can be dis-
abled for certain functions by using the no sanitize("shadow-call-stack")
attribute 5. This is attribute is defined in the kernel sources as noscs and is
used to turn off SCS in EFI and hypervisor code, for example.

Most of the SCS magic is done by the compiler, but most of the in-kernel
implementation is done in kernel/scs.c. Shadow stacks are allocated on the
heap using a kmalloc cache named scs cache with a size of 1 KiB. The flags
used when allocating a new stack are (GFP KERNEL | GFP ZERO). GFP KERNEL
is typically used for allocations that do not have special requirements like not
being able to sleep. GFP ZERO is basically the kernel equivalent of allocating
memory with calloc(), which means that the memory is zeroed. This ensures
that there is no stale data in the shadow stack.

To check for stack corruption, a simple check resembling the stack canary
checks described in section 3.5.2 is used. Instead of a random value, an illegal
pointer value is used to mark the end of the shadow stack. If this value is over-
written, the stack has been corrupted and the kernel will panic. This behavior is
similar to what happens when the Linux kernel detects a stack overflow. When
the stack protector is enabled, function epilogues are instrumented with code
that checks the stack cookie (more details in section 3.5.2). If corruption is
detected stack chk fail() is called to handle the error. In figure 6.3 we can
see the implementation for handling shadow stack overflow, and in figure 6.2 we
see the implementation for handling normal stack corruption.

The shadow stack pointer, ssp, was first stored as a base/offset pair in the
thread info struct related to each task on the system. Recently this was
switched to storing the absolute value of the ssp for performance reasons. This is
how the modified thread info struct looks like after applying the SCS patches:

5 attribute ((no sanitize("shadow-call-stack"))) on a function declaration

62



struct thread_info {
unsigned long flags;
mm_segment_t addr_limit;

#ifdef CONFIG_ARM64_SW_TTBR0_PAN
u64 ttbr0;

#endif
union {

u64 preempt_count;
struct {

#ifdef CONFIG_CPU_BIG_ENDIAN
u32 need_resched;
u32 count;

#else
u32 count;
u32 need_resched;

#endif
} preempt;

};
#ifdef CONFIG_SHADOW_CALL_STACK

void *shadow_call_stack;
#endif
};

The only field added is the shadow call stack pointer at the end of the
struct. Some minor changes have been done to the core arm64 code to support
SCS. Upon entry to the kernel from user space, the shadow stack has to be
loaded from the task struct into x18. Conversely, when returning to user
space from the kernel the shadow stack pointer is saved. These operations are
perfomed with the scs load and scs save assembly code macros, displayed
below:

.macro scs_load tsk, tmp
ldr x18, [\tsk, #TSK_TI_SCS_SP]
.endm

.macro scs_save tsk, tmp
str x18, [\tsk, #TSK_TI_SCS_SP]
.endm

TSK TI SCS SP is the offset of the shadow call stack member in the thread info
struct.

63



Chapter 7

Performance benchmarks

7.1 Introduction
In this chapter we will discuss chosen performance benchmarks, including what
hardware and software was chosen, why the benchmark was chosen, and how to
perform the benchmark.

The goal is to measure the performance impact on the kernel with LTO,
CFI, and SCS. To have a baseline to compare against, kernels compiled with
gcc and clang without any special optimizations will be used. Since several
companies and projects are starting to adopt clang/LLVM as their toolchain
of choice, it would be interesting to see if there are any notable differences in
performance between gcc and clang. The kernel configurations in table 7.1 will
be benchmarked on x86 64. For arm64, the configurations in table 7.2 will be
benchmarked.

compiler LTO inline limit CFI
gcc no N/A no
clang no N/A no
clang yes 5 no
clang yes 100 no
clang yes 5 yes
clang yes 100 yes

Table 7.1: x86 64 kernel configurations

In the patchset for LTO support in the kernel, the inline limit is set to 5,
instead of the default of 100. This decreases the size of the resulting kernel bi-
nary at the cost of (potential) performance gains. As the patchset is meant for
Android phones, where size is of greater concern than on laptops and servers,
for example, it makes sense to limit inlining. Since binary size is less impor-
tant on x86 64, we will increase the limit to see how much impact it has on
performance and size. Although inlining should increase performance, the in-
creased size may also negatively impact performance if it leads to worse cache
locality or other similar issues. The patches implementing a configurable limit
can be found in section B.2. This limit is controlled with a linker flag called

64



compiler LTO inline limit CFI SCS
gcc no N/A no no
clang no N/A no no
clang yes 5 no no
clang yes 100 no no
clang yes 5 yes no
clang yes 100 yes no
clang yes 5 yes yes
clang yes 100 yes yes

Table 7.2: arm64 kernel configurations

-import-instr-limit=N. The number, N , used controls the maximum number
of instructions for inlined functions. The limit originally used, 5, means that
only functions with less than 5 instructions are inlined 1.

Since our benchmarks have to measure the performance of the whole kernel,
we employ similar benchmarks to other papers dealing with kernel performance
[58] [63]. More on previous work in section 7.2.

Performance benchmarks for x86 64 are performed on real hardware and
with QEMU/KVM [11]. The hardware used is a Dell XPS laptop with a
1.80GHz Intel Core i7-8550U CPU, 16 GB RAM, and 512 GB nvme drive.
The distro used is Ubuntu 18.04 LTS. To make the benchmarks more reliable,
Intel SpeedStep and Intel TurboBoost is disabled from the BIOS. This ensures
that the CPU cannot scale up and down as it pleases, which could affect the
results. The QEMU version used is the newest in the Ubuntu 18.04 package
repositories as of January 2020, which is version 2.11.1 2. The image used for
QEMU is the same as the one used in the syzkaller project [71]. syzkaller is a
an “unsupervised coverage-guided kernel fuzzer” that has found numerous bugs
in the Linux kernel and other kernels. The VM image used is based on Debian
and the project provides a script to create the image for convenience 3.

When running the x86 64 benchmarks on the Dell XPS, the computer was
booted and the desktop environment stopped to minimize the amount of noise
from other programs running simultaneously with our benchmark. See section
A.5 for the full benchmarking script. First, gdm (default login manager on
Ubuntu) is stopped. Then, ssh, redis, nginx, and apache2 is stopped. redis,
nginx, and apache2 is later started when they are needed. LMBench is the first
benchmark up, followed by redis. Then nginx and apache2 is benchmarked using
ApacheBench. Finally, throughput benchmarks using the WireGuard protocol
will be performed. More information on WireGuard can be found in section 7.6.
The Python scripts used for visualizing the results can be found in section A.6.

The HiKey 960 is considered a reference board for Android, which means
that it is supported by the Android Open Source Project (AOSP). The HiKey
has a 4 Cortex A73, 4 Cortex A53 Big.Little CPU, ARM Mali G71 Mp8 GPU,
4GB LPDDR4 DRAM, and 32GB UFS flash storage. This board will be used
to perform the arm64 benchmarks.

1See the LLVM sources: llvm/lib/Transforms/IPO/FunctionImport.cpp in the function
ImportInstrLimit().

2Debian 1:2.11+dfsg-1ubuntu7.21
3see tools/create-image.sh in the syzkaller sources

65



For Android, it does not really make sense to run benchmarks for web servers
like nginx and apache2. We could have performed the same benchmarks if we
targeted servers running arm64, for example. Redis is also more commonly used
on servers and desktop computers. WireGuard has not made it into the Android
common kernel, so we will skip that as well.

So what should we benchmark on Android? As discussed in section 2.3,
binder is a popular IPC mechanism on Android. Binder is implemented in the
kernel, making it a perfect component to benchmark since it is heavily used by
apps and it will be directly affected by LTO, CFI, and SCS. The benchmarks
chosen are based on the official Android documentation for performance testing
[5]. Throughput and latency tests for binder and hwbinder are included in the
AOSP. To make sure that CPU throttling does not affect the benchmarks it
has been turned off by setting the Linux CPU scaling governor to performance.
This mode makes sure that the CPU runs at maximum frequency. The script
used for running the benchmarks can be found in the appendix A.5.

For Android the hikey-linaro-android-4.19 kernel was chosen. Ker-
nel versions hikey-linaro-android-4.14, hikey-linaro-android-4.19, and
common-android-5.4 are supported on the HiKey 960. At the time of compi-
lation, the newest commit for the 4.19 kernel was 03a6248 4. For x86 64 kernel
version 5.7.0-rc2 was used.

7.2 Motivation and previous work
This section will present the motivation for documenting the performance im-
pact of LTO, CFI, and SCS. We will refer to previous work that is relevant
for this thesis. However, the only previous research found on LTO, CFI, and
SCS performance was done by Google [74] [76]. Since we did not find any re-
search pertaining to clang’s LTO, CFI, and SCS in the Linux kernel, previous
work that benchmarks the Linux kernel have been used. The chosen research
have provided several useful techniques and software to perform benchmarks on
Linux.

The reason for choosing both hardware and virtualized benchmarking plat-
forms for x86 64 is because of the widespread use of virtualization on x86 64.
Examples of such usage are cloud providers such as Amazon, Google, and Dig-
ital Ocean. It might be interesting for cloud providers to see if enabling LTO
can improve the performance of their virtual machines and if the performance
hit is negligible, if it is worth it to increase security by enabling CFI. The
arm64 benchmark is focused on real hardware, since most arm64 devices are
smartphones. Knowing the tradeoffs between security and performance by us-
ing LTO/CFI can be beneficial for smartphone vendors or other manufacturers
of arm64 devices.

When Google first wrote a blog post on CFI, they wrote the following about
the performance impact: “CFI checks naturally add some overhead to indirect
branches, but due to more aggressive optimizations, our tests show that the
impact is minimal, and overall system performance even improved 1-2% in many
cases.” [74] These are very interesting results indeed, but no further explanation
of how the benchmarks were performed was given. Thus it is interesting to
see if the performance impact actually is minimal and to provide additional

403a6248cae932550d4d45eb511eb25b87aef0c1c

66



benchmarks like binary size and compilation time. In the following sections we
will briefly discuss some of the benchmarks and why we perform them.

The following sections will look at some papers that have inspired the per-
formance benchmarking for this thesis. However, no previous research on the
performance impact of clang, LTO, and CFI on x86 64 was found.

kMVX: Detecting Kernel Information Leaks with Multi-variant Ex-
ecution

Österlund et al. [63] performed several benchmarks of their kernel security fea-
ture kMVX. The project runs multiple diversified kernel variants simultaneously
to protect against information leak vulnerabilities. They perform benchmarks
using both micro and macro benchmarks. The micro benchmarks used are LM-
Bench and stress-ng. For macro benchmarks they use ApacheBench to test web
server performance, redis-benchmark, and pbzip2.

Open-source virtualization. Functionality and performance of Qemu/KVM,
Xen, Libvirt and VirtualBox

In his Master’s Thesis, Jan Magnus Granberg Opsahl [62] compares the perfor-
mance of different virtualization software. Namely QEMU, Xen, Libvirt, and
VirtualBox. We will only be using QEMU for the performance benchmarks in
this thesis, but some of the software used for benchmarking is still interesting
for our purposes. He employs the following benchmarking suites:

• Cachebench

• LMBench

• Linpack

• IOZone

Just like the paper from Österlund et al. [63], he uses LMBench. The other
tools are not used in that research, however. Cachebench is a part of the LL-
Cbench benchmarking suite and is a tool used to determine some parameters
about an architectures memory subsystem. The goal of the benchmark is to
parameterize the performance of multiple levels of caches present in the proces-
sor. This benchmark is great for measuring cache performance, but is not very
relevant to this thesis since the CPU caches should not be too affected by the
running kernel while benchmarking.

Another benchmarking suite used is Linpack, which “measures the peak
value of floating point computational power, also known as GFLOPS” [62].
While this benchmark is great for testing the performance of virtual machines
or to test hardware directly, this is another benchmark where the running kernel
should not have any impact.

Lastly, IOZone is used. This is a file system benchmark that generates and
measures a variety of file operations. According to the manual, the bench-
mark tests file I/O performance using the following operations: read, write, re-
read, re-write, read backwards, read strided, fread, fwrite, random read/write,
pread/pwrite variants.

67



DROP THE ROP. Fine-grained Control-flow Integrity for the Linux
Kernel

In this paper, Moreira et. al [58] presents a kernel-level fine-grained CFI mech-
anisms and measures its performance called kCFI. They also present a novel
technique called Call Graph Detaching (CGD) which enables the construction
of more precise CFGs. When evaluating the performance of kCFI they use
LMbench for micro benchmarking just like a lot of the other previously men-
tioned papers do. For macro benchmarks they use the following tests from the
Phoronix Test Suite [56]: IOZone, Linux Kernel Unpacking, PostMark, Timed
Linux Kernel Compilation, GnuPG, Openssl, PyBench, Apache Benchmark,
PHPBench, Dbench, and PostgreSQL. They ran a lot more macro benchmarks
than done in this thesis, but the Apache Bencmark was the one where they saw
the biggest performance difference. They measured a 2% increase in code size
when applying kCFI and a 4% increase when they applied kCFI + CGD.

OpenMandriva

OpenMandriva Lx [60] is one Linux distribution where packages are built using
clang with LTO enabled [61]. They have switched to using clang as their default
compiler toolchain instead of gcc, which is the norm for most Linux distributions.
In addition they have started building their Linux kernels with clang as well.
LTO is not supported for the kernel yet.

7.3 Binary size
For servers, laptops, smartphones, etc. storage might not be an issue anymore.
But for certain devices with very limited resources, like some IoT devices, binary
size may have a huge impact. Thus we would like to see if enabling LTO and
CFI greatly increases the binary size, and if so, if there are ways we can alleviate
this issue for devices with strict resource requirements.

7.4 Compile time
LTO is a complex extra step that is taken in the compilation process. For huge
projects like the Linux kernel there are a lot of object files that have to be
analyzed. Adding CFI into the mix will probably increase the compilation time
as well. Thus we would like to see if the compiliation time is greatly impacted
by enabling these compiler optimizations. If the impact is huge it might be
desirable for kernel developers to disable them during development, and only
turning them back on when code is ready to ship. There are tools that can
improve compilation times like ccache which caches compilation of object files,
which can then be reused unless the source files for that object file have changed.
ccache does not alleviate the time spent during LTO, however.

The Dell XPS laptop has been used to perform most of the benchmarks,
but there were some issues when compiling the kernel with full LTO on this
hardware. Since full LTO requires a lot of RAM, it is not possible to compile
more than a very basic kernel configuration with full LTO. The linking step

68



requires more than the 16 GB of RAM available on the laptop. Because of
these issues, full LTO was not included.

7.5 Kernel performance
Based on previous work done with Linux kernel performance, the following
micro and macro benchmarks were chosen for this thesis. These are performed
in addition to binary size and compilation time.

name type
LMBench micro
redis-benchmark macro
ApacheBench macro
WireGuard bandwidth macro

Table 7.3: Micro and macro benchmarks

LMBench has a lot of different benchmarks which are mainly divided into
two categories: latency and bandwidth. See table 7.4 for a description of the
different benchmarks.
name lmbench tool description
read bandwidth bw file rd io only read a file in 64KB blocks
read open2close bandwidth bw file rd open2close read a file in 64KB blocks, with open/close
Mmap read bandwidth bw mmap rd mmap only map file in memory and read
Mmap read open2close bandwidth bw mmap rd open2close map file in memory and read with open/close
libc bcopy unaligned bw mem bcopy measures how fast the system can bcopy data
libc bcopy aligned bw mem bcopy conflict measures how fast the system can bcopy data
Memory bzero bandwidth bw mem bzero measures how fast the system can bzero memory
unrolled bcopy unaligned bw mem fcp measures the time to copy data from one location to another
unrolled partial bcopy unaligned bw mem cp measures the time to copy data from one location to another
Memory read bandwidth bw mem frd measures the time to read data into the processor
Memory partial read bandwidth bw mem rd measures the time to read data into the processor
Memory write bandwidth bw mem fwr measures the time to write data to memory
Memory partial write bandwidth bw mem wr measures the time to write data to memory
Memory partial read/write bandwidth bw mem rdwr measures time to read data into memory and then write data to the same memory location

Table 7.4: LMBench bandwidth benchmarks description

7.6 WireGuard
In addition to the previously mentioned benchmarks, another interesting bench-
mark was added to this thesis. In version 5.6 of the Linux kernel, support for
WireGuard was added. WireGuard [26] is a secure network tunnel which aims
to replace IPsec and other solutions like OpenVPN. WireGuard is much less
complex than IPsec and uses modern cryptographic primitivese All the core
functionality is implemented directly in the Linux kernel. Since WireGuard is
a part of the Linux kernel, it would be interesting to see if LTO and CFI have
any effect on its performance. The WireGuard source code contains a script
for running tests, but we will be using a slightly modified version of that script
used in Phoronix Test Suite 5.

The script used to test WireGuard is located at
tools/testing/selftests/wireguard/netns.sh in the Linux kernel sources.

5see A.7 for more information

69



Both of the scripts start by creating a network topology consisting of three
network namespaces. The following diagram shows the topology 6:

_____________________ _____________________________ ____________________
| $ns1 namespace | | $ns0 namespace | | $ns2 namespace |
| | | | | |
| ________ | | ________ | | _______ |
|| wg0 |__________|___|_________| lo |__________|___|___________| wg0 ||
||________|_________ | | _______|________|________ | | __________|_______||
||192.168.241.1/24 || | |(ns1) (ns2) | | ||192.168.241.2/24 ||
||fd00::1/24 || | |127.0.0.1:1 127.0.0.1:2| | ||fd00::2/24 ||
||__________________|| | |[::]:1 [::]:2 | | ||__________________||
|____________________| | |_________________________| | |____________________|

|_____________________________|

Namespaces [38] [39] [40] [41] [42] [43] [27] are heavily used in container tech-
nology like Docker [35]. They allow wrapping a global resource in an abstraction
that makes the processes within that namespace believe that they have their
own instance of that global resource. Linux provides many different namespaces,
including: cgroup, IPC, network, mount, and PID.

The WireGuard test script creates three network namespaces named $ns0,
$ns1, and $ns2 in the diagram above. $ns1 and $ns2 do not talk directly to each
other, but talk through $ns0. All the traffic goes through the loopback interface
in $ns0. This is a great benchmark for WireGuard, as it puts a lot of pressure
on the underlying cryptographic protocols used to protect the communication
between two WireGuard peers.

6taken from netns.sh

70



Chapter 8

Results

8.1 Introduction
In the following sections we will discuss the results from benchmarks performed.
First, we will summarize the configurations used. The first and most common
configuration is a kernel compiled using gcc version 9.3.0-10 with a fairly new
standard Linux kernel configuration from Ubuntu (5.3.0-26-generic). Then
we have a kernel compiled with clang 11 1. The configuration is the same for gcc
and clang. Next up we have two kernels compiled with clang and LTO enabled.
The first one has the inlining limit set to 5, while the other one (LTOv2) has
it set to 100. Finally, we have two kernels with CFI enabled. As with the
LTO kernels, one has an inline limit of 5, while the other (CFIv2) has it set to
100. Note that LTOv2 may be referred to as LTO100, and CFIv2 referred to as
CFI100 in the benchmark results.

In section 8.3 we will look at the binary sizes of the different compiled kernels.
Then in section 8.4 we will look at compilation time. We will then move on to
micro benchmarks with LMBench in section 8.5.1. Finally, we will look at
different macro benchmarks. In section 8.6.1 we will look at redis performance,
followed by nginx/apache2 performance measured using ApacheBench in section
8.6.2. The last macro benchmark is for WireGuard and can be found in section
8.6.3.

After looking at the benchmark results we will summarize our findings in
section 8.8 and finally discuss future work in section 8.9.

8.2 QEMU results
The x86 64 benchmarks were performed in a QEMU virtual machine in addi-
tion to running them on real hardware. Unfortunately these results were not
accurate enough to use, and it was not possible to get a good comparison. The
benchmarks were performed in the same way as on the Dell XPS. The VM was
booted and the benchmarking script was run after background processes had
been stopped.

The results varied too much between each run, and there was not enough
time to figure out why the results were so unstable.

111.0.0-++20200414100631+5c1d1a62e37-1 exp1 20200414201304.3176

71



8.3 Binary size
In table 8.1 we can see the resulting sizes of the different kernels. Note that all
sizes are displayed in bytes. gcc produces the smallest kernel, followed by clang,
then the two LTO kernels, and finally kernels with LTO and CFI. CFI produces
the largest kernel, which is expected because of all the extra validation code and
jump tables. The percentage increase in tabe 8.1 is measured from the smallest
size. The CFI kernel is 20.21 % larger in size than the kernel compiled with gcc.
We can see that the increased inlining greatly increases binary size. There is an
11.67 % increase in size from LTO to LTOv2, and a 10.66 % increase from CFI
to CFIv2.

kernel version compiler/feature size percent increase
5.7.0-rc2 gcc 8409920 N/A
5.7.0-rc2 clang 8737856 3.90 %
5.7.0-rc2 LTO 8810432 4.76 %
5.7.0-rc2 LTOv2 9791520 16.43 %
5.7.0-rc2 CFI 10109952 20.21 %
5.7.0-rc2 CFIv2 11005760 30.87 %

Table 8.1: Linux kernel binary sizes

In table 8.2 we can see the size of the Android kernel images. The size
increases are relatively similar to the x86 64 results. From LTO to LTOv2 there
is an 13.20 % increase in size. From CFI to CFIv2 there is a 10.12 % increase.
Enabling SCS increases the size slightly, but it is less than 1 %.

kernel version compiler/feature size percent increase
hikey-linaro-android-4.19 clang 9984787 N/A %
hikey-linaro-android-4.19 LTO 10038070 0.53 %
hikey-linaro-android-4.19 LTOv2 11355252 13.73 %
hikey-linaro-android-4.19 CFI 11398476 14.16 %
hikey-linaro-android-4.19 SCS 11433115 14.51 %
hikey-linaro-android-4.19 CFIv2 12409270 24.28 %
hikey-linaro-android-4.19 SCSv2 12446793 24.66 %

Table 8.2: Android Linux kernel binary sizes

8.4 Compilation time
To measure the compilation time for the different kernel configurations the
scripts in section A.2 was used. The script measures resource usage for the
compilation process using the time utility. time is commonly found on Linux
systems, and outputs the execution time for a program by default. On arm64,
a local build configuration (see section A.3) was used when building, and time
was used to track the elapsed time. On arm64, the full script is not included in
section A.2, but the time utility was used there as well. Due to time constraints,
the results for x86 64 are not included.

72



In the following snippet we run the find command to locate all files named
vmlinux in our home folder. To measure the time elapsed we simply put time
in front of the command.

$ time find ˜ -name vmlinux &> /dev/null
find ˜ -name vmlinux &> /dev/null
7,86s user 10,71s system 52% cpu 35,224 total

In the previous example, the find command spent a total of 35.224 seconds.

kernel version config compilation time ms increase
hikey-linaro-android-4.19 clang 14m 17s 44ms 857044 N/A %
hikey-linaro-android-4.19 LTO 17m 10s 84ms 1030084 20.19 %
hikey-linaro-android-4.19 SCS 18m 27s 03ms 1107003 29.17 %
hikey-linaro-android-4.19 CFI 18m 40s 87ms 1120087 30.69 %
hikey-linaro-android-4.19 LTOv2 21m 00s 82ms 1260082 47.03 %
hikey-linaro-android-4.19 SCSv2 21m 56s 60ms 1316060 53.56 %
hikey-linaro-android-4.19 CFIv2 22m 19s 60ms 1339060 56.24 %

Table 8.3: Android kernel compile times

ccache was not used for any of these benchmarks, and all of the kernels
were built using new output directories so that no old object files could be
reused. Everything was built from scratch. ccache can greatly speed up the
build process after the kernel has been built once, since it will cache object files
created during compilation that can be reused later. ccache will not help speed
up the LTO and linking steps, however. Clang does have support for a ThinLTO
cache which can help speed up incremental compilation.

8.5 Micro benchmarks
In the following section we will describe the results from the LMBench micro
benchmarks performed on x86 64.

8.5.1 LMBench
To make the results from LMBench more readable, they have been split into cat-
egories based on their execution time. Short benchmarks are grouped together,
and longer ones are grouped together. In figure 8.1, we see the results for the
simple syscall benchmarks, signal handlers, protection fault, pipe latency, and
AF UNIX socket stream latency. In figure 8.2, we see the results for the different
select syscall benchmarks. We can see process benchmarks in figure 8.3. The
bandwidth benchmarks can be found in figures 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10,
8.11, 8.12, and 8.13.

For the simple LMBench benchmarks the results are pretty even between the
different kernel configurations. The simple syscall benchmark was very unstable
between different runs of the benchmarks, and we can thus ignore it. The gcc
kernel was the fastest one in 7 out of 11 of the simple benchmarks. The CFI
kernels performed worst on average.

73



Si
m

pl
e 

sy
sc

al
l

Si
m

pl
e 

re
ad

Si
m

pl
e 

wr
ite

Si
m

pl
e 

st
at

Si
m

pl
e 

fs
ta

t

Si
m

pl
e 

op
en

/c
lo

se

Si
gn

al
 h

an
dl

er
 in

st
al

la
tio

n

Si
gn

al
 h

an
dl

er
 o

ve
rh

ea
d

Pr
ot

ec
tio

n 
fa

ul
t

Pi
pe

 la
te

nc
y

AF
\_U

NI
X 

so
ck

 st
re

am
 la

te
nc

y

0.0

2.5

5.0

7.5

10.0

12.5

15.0

m
icr

os
ec

on
ds

LMBench
gcc
clang
lto
cfi
lto_100
cfi_100

Figure 8.1: Simple LMBench results

For the select() syscall results in figure 8.2, gcc was the fastest kernel in
every single benchmark. The CFI kernels performed worst on average here as
well.

In the process benchmarks, where the timing of process creation is measured,
the LTOv2 kernel was the fastest in all of the benchmarks.

It is not very surprising that the CFI kernels performed worst, as CFI adds
a lot of overhead to every single indirect function call. There was not a very
big difference in the performance of the different kernels, however, which may
indicate that CFI does not slow down the kernel that much in these micro
benchmarks.

To get a better understanding of why the benchmarks might differ between
the kernel configurations, we will examine a syscall in the kernel images. We will
start by examining the stat syscall, which is implemented in fs/stat.c. The
size of the structure passed to the stat syscall has changed over time, leading
to several versions of the syscall being present. We will focus on the newest
version, which is newstat. In figure 8.14 we see the definition of newstat in the
kernel sources.

74



Se
le

ct
 o

n 
10

 fd
's

Se
le

ct
 o

n 
10

0 
fd

's

Se
le

ct
 o

n 
25

0 
fd

's

Se
le

ct
 o

n 
50

0 
fd

's

Se
le

ct
 o

n 
10

 tc
p 

fd
's

Se
le

ct
 o

n 
10

0 
tc

p 
fd

's

Se
le

ct
 o

n 
25

0 
tc

p 
fd

's

Se
le

ct
 o

n 
50

0 
tc

p 
fd

's

0

10

20

30

40

50

60

m
icr

os
ec

on
ds

LMBench
gcc
clang
lto
cfi
lto_100
cfi_100

Figure 8.2: LMBench select results

Pr
oc

es
s f

or
k+

ex
it

Pr
oc

es
s f

or
k+

ex
ec

ve

Pr
oc

es
s f

or
k+

/b
in

/s
h 

-c

0

200

400

600

800

m
icr

os
ec

on
ds

LMBench
gcc
clang
lto
cfi
lto_100
cfi_100

Figure 8.3: LMBench process results

75



0.
00

05
12

0.
00

10
24

0.
00

20
48

0.
00

40
96

0.
00

81
92

0.
01

63
84

0.
03

27
68

0.
06

55
36

0.
13

10
72

0.
26

21
44

0.
52

42
88

1.
05 2.
1

4.
19

8.
39

16
.7

8
33

.5
5

67
.1

1
13

4.
22

26
8.

44
53

6.
87

10
73

.7
4

21
47

.4
8

Size in MB

1000

2000

3000

4000

5000

6000

7000

M
B/

s
LMBench bandwidth: read

gcc
clang
lto
cfi
lto_100
cfi_100

Figure 8.4: LMBench bandwidth read results

0.
00

05
12

0.
00

10
24

0.
00

20
48

0.
00

40
96

0.
00

81
92

0.
01

63
84

0.
03

27
68

0.
06

55
36

0.
13

10
72

0.
26

21
44

0.
52

42
88

1.
05 2.
1

4.
19

8.
39

16
.7

8
33

.5
5

67
.1

1
13

4.
22

26
8.

44
53

6.
87

10
73

.7
4

21
47

.4
8

Size in MB

0

1000

2000

3000

4000

5000

6000

M
B/

s

LMBench bandwidth: read open2close
gcc
clang
lto
cfi
lto_100
cfi_100

Figure 8.5: LMBench bandwidth read open2close results

76



0.
00

05
12

0.
00

10
24

0.
00

20
48

0.
00

40
96

0.
00

81
92

0.
01

63
84

0.
03

27
68

0.
06

55
36

0.
13

10
72

0.
26

21
44

0.
52

42
88

1.
05 2.
1

4.
19

8.
39

16
.7

8
33

.5
5

67
.1

1
13

4.
22

26
8.

44
53

6.
87

10
73

.7
4

21
47

.4
8

Size in MB

8000

10000

12000

14000

16000

18000

20000

22000

24000

M
B/

s
LMBench bandwidth: Mmap read

gcc
clang
lto
cfi
lto_100
cfi_100

Figure 8.6: LMBench bandwidth mmap read results

0.
00

05
12

0.
00

10
24

0.
00

20
48

0.
00

40
96

0.
00

81
92

0.
01

63
84

0.
03

27
68

0.
06

55
36

0.
13

10
72

0.
26

21
44

0.
52

42
88

1.
05 2.
1

4.
19

8.
39

16
.7

8
33

.5
5

67
.1

1
13

4.
22

26
8.

44
53

6.
87

10
73

.7
4

21
47

.4
8

Size in MB

0

1000

2000

3000

4000

5000

6000

7000

M
B/

s

LMBench bandwidth: Mmap read open2close
gcc
clang
lto
cfi
lto_100
cfi_100

Figure 8.7: LMBench bandwidth mmap read open2close results

77



0.
00

05
12

0.
00

10
24

0.
00

20
48

0.
00

40
96

0.
00

81
92

0.
01

63
84

0.
03

27
68

0.
06

55
36

0.
13

10
72

0.
26

21
44

0.
52

42
88

1.
05 2.
1

4.
19

8.
39

16
.7

8
33

.5
5

67
.1

1
13

4.
22

26
8.

44
53

6.
87

10
73

.7
4

21
47

.4
8

Size in MB

20000

30000

40000

50000

M
B/

s
LMBench bandwidth: Memory bzero

gcc
clang
lto
cfi
lto_100
cfi_100

Figure 8.8: LMBench bandwidth bzero results

0.
00

05
12

0.
00

10
24

0.
00

20
48

0.
00

40
96

0.
00

81
92

0.
01

63
84

0.
03

27
68

0.
06

55
36

0.
13

10
72

0.
26

21
44

0.
52

42
88

1.
05 2.
1

4.
19

8.
39

16
.7

8
33

.5
5

67
.1

1
13

4.
22

26
8.

44
53

6.
87

10
73

.7
4

21
47

.4
8

Size in MB

6000

7000

8000

9000

10000

M
B/

s

LMBench bandwidth: Memory read
gcc
clang
lto
cfi
lto_100
cfi_100

Figure 8.9: LMBench bandwidth memory read results

78



0.
00

05
12

0.
00

10
24

0.
00

20
48

0.
00

40
96

0.
00

81
92

0.
01

63
84

0.
03

27
68

0.
06

55
36

0.
13

10
72

0.
26

21
44

0.
52

42
88

1.
05 2.
1

4.
19

8.
39

16
.7

8
33

.5
5

67
.1

1
13

4.
22

26
8.

44
53

6.
87

10
73

.7
4

21
47

.4
8

Size in MB

10000

20000

30000

40000

50000

M
B/

s
LMBench bandwidth: Memory partial read

gcc
clang
lto
cfi
lto_100
cfi_100

Figure 8.10: LMBench bandwidth memory partial read results

0.
00

05
12

0.
00

10
24

0.
00

20
48

0.
00

40
96

0.
00

81
92

0.
01

63
84

0.
03

27
68

0.
06

55
36

0.
13

10
72

0.
26

21
44

0.
52

42
88

1.
05 2.
1

4.
19

8.
39

16
.7

8
33

.5
5

67
.1

1
13

4.
22

26
8.

44
53

6.
87

10
73

.7
4

21
47

.4
8

Size in MB

6000

6200

6400

6600

6800

7000

7200

M
B/

s

LMBench bandwidth: Memory write
gcc
clang
lto
cfi
lto_100
cfi_100

Figure 8.11: LMBench bandwidth memory write results

79



0.
00

05
12

0.
00

10
24

0.
00

20
48

0.
00

40
96

0.
00

81
92

0.
01

63
84

0.
03

27
68

0.
06

55
36

0.
13

10
72

0.
26

21
44

0.
52

42
88

1.
05 2.
1

4.
19

8.
39

16
.7

8
33

.5
5

67
.1

1
13

4.
22

26
8.

44
53

6.
87

10
73

.7
4

21
47

.4
8

Size in MB

10000

12500

15000

17500

20000

22500

25000

27500

30000

M
B/

s
LMBench bandwidth: Memory partial write

gcc
clang
lto
cfi
lto_100
cfi_100

Figure 8.12: LMBench bandwidth memory partial write results

0.
00

05
12

0.
00

10
24

0.
00

20
48

0.
00

40
96

0.
00

81
92

0.
01

63
84

0.
03

27
68

0.
06

55
36

0.
13

10
72

0.
26

21
44

0.
52

42
88

1.
05 2.
1

4.
19

8.
39

16
.7

8
33

.5
5

67
.1

1
13

4.
22

26
8.

44
53

6.
87

10
73

.7
4

21
47

.4
8

Size in MB

10000

15000

20000

25000

30000

M
B/

s

LMBench bandwidth: Memory partial read/write
gcc
clang
lto
cfi
lto_100
cfi_100

Figure 8.13: LMBench bandwidth memory partial read/write results

80



SYSCALL_DEFINE2(newstat, const char __user *, filename,
struct stat __user *, statbuf)

{
struct kstat stat;
int error = vfs_stat(filename, &stat);

if (error)
return error;

return cp_new_stat(&stat, statbuf);
}

Figure 8.14: newstat() definition in the Linux kernel

The entry point in the kernel images is x64 sys newstat(). For 32-bit
syscalls, the entry point is ia32 sys newstat(). This function is just a thin
wrapper around the real implementation, which is named do sys newstat()
in the gcc kernel, and se sys newstat() in the kernels compiled with clang.
The implementation examples from the different kernels have been converted
from assembly to C for a more compact representation of the code. In addition,
we have attempted to use code from the kernel sources to make it look more
natural. The code for the gcc and clang kernels can be found in figure 8.15 and
figure 8.16 respectively.

int __do_sys_newstat(const char *filename, struct stat *statbuf)
{

int error;
struct kstat stat;

error = vfs_statx(AT_FDCWD, filename, AT_NO_AUTOMOUNT,
&stat, STATX_BASIC_STATS);

if (error)
return error;

return cp_new_stat(&stat, statbuf);
}

Figure 8.15: newstat() from gcc kernel

81



int __se_sys_newstat(const char *filename, struct stat *statbuf)
{

int error;
struct kstat stat;
struct stat tmp;

error = vfs_statx(AT_FDCWD, filename, AT_NO_AUTOMOUNT,
&stat, STATX_BASIC_STATS);

if (error)
return error;

if (!valid_dev(stat->dev) || !valid_dev(stat->rdev))
return -EOVERFLOW;

INIT_STRUCT_STAT_PADDING(tmp);
tmp.st_dev = encode_dev(stat->dev);
tmp.st_ino = stat->ino;
if (sizeof(tmp.st_ino) < sizeof(stat->ino) && tmp.st_ino != stat->ino)

return -EOVERFLOW;
tmp.st_mode = stat->mode;
tmp.st_nlink = stat->nlink;
if (tmp.st_nlink != stat->nlink)

return -EOVERFLOW;
SET_UID(tmp.st_uid, from_kuid_munged(current_user_ns(), stat->uid));
SET_GID(tmp.st_gid, from_kgid_munged(current_user_ns(), stat->gid));
tmp.st_rdev = encode_dev(stat->rdev);
tmp.st_size = stat->size;
tmp.st_atime = stat->atime.tv_sec;
tmp.st_mtime = stat->mtime.tv_sec;
tmp.st_ctime = stat->ctime.tv_sec;
tmp.st_blocks = stat->blocks;
tmp.st_blksize = stat->blksize;
return copy_to_user(statbuf, &tmp, sizeof(tmp)) ? -EFAULT : 0;

}

Figure 8.16: newstat() from clang kernels

The first thing to note is that the function is significantly smaller in the gcc
kernel. The reason for this is that the call to cp new stat() has been inlined
in the kernel compiled with clang. Other than this, the clang, LTO, and CFI
kernels look the same. However, if we look into vfs statx() we start to see
more differences.

We will not display full code listings here, but rather we will discuss impor-
tant differences between the different versions of the compiled function. The
original code definition of vfs statx() in the kernel looks like this:

82



1 int vfs_statx(int dfd, const char __user *filename, int flags,
2 struct kstat *stat, u32 request_mask)
3 {
4 struct path path;
5 int error = -EINVAL;
6 unsigned lookup_flags;
7

8 if (vfs_stat_set_lookup_flags(&lookup_flags, flags))
9 return -EINVAL;

10 retry:
11 error = user_path_at(dfd, filename, lookup_flags, &path);
12 if (error)
13 goto out;
14

15 error = vfs_getattr(&path, stat, request_mask, flags);
16 path_put(&path);
17 if (retry_estale(error, lookup_flags)) {
18 lookup_flags |= LOOKUP_REVAL;
19 goto retry;
20 }
21 out:
22 return error;
23 }

In the gcc kernel, no real differences between the binary and source code
were found. vfs stat set lookup flags() on line 8 and user path at() on
line 11 were both inlined, but these are marked as static inline in the kernel
sources, so this is not a huge surprise. Clang inlined the call to vfs getattr()
as well. This is a very small function that is not used many places in the kernel,
however, so it makes sense to inline it. The LTO kernel takes it one step further
and inlines user path at empty() as well. In the CFI kernel, however, the call
to user path at empty() is not inlined as it goes through a jump table.

user path at empty() is defined in fs/namei.c while vfs statx() is de-
fined in fs/stat.c, so it makes sense that the clang kernel is not able to inline
this call as it exists in another object file. The function is very small, so it makes
sense that the LTO kernel inlines it across object files.

Recall that the LTOv2 kernel can inline larger functions across object file
boundaries, so we expect to see more aggressive inlining in the LTOv2 kernel
compared to the others. This is exactly what we observe, as the LTOv2 kernel
inlines the call to path put() as well. The CFIv2 kernel also inlines the call to
path put(), but the call to user path at empty() still goes through a jump
table and thus is not inlined.

Both the LTOv2 and CFIv2 kernels further inlines vfs getattr(). This is
how the function looks in C code:

83



int vfs_getattr(const struct path *path, struct kstat *stat,
u32 request_mask, unsigned int query_flags)

{
int retval;

retval = security_inode_getattr(path);
if (retval)

return retval;
return vfs_getattr_nosec(path, stat, request_mask, query_flags);

}

The function security inode getattr() is actually small enough to be
inlined here. This function will use a function pointer to perform an indirect
function call, so the CFIv2 function is slightly larger since it has to validate
the function call. The following table compares the sizes of vfs statx() in the
different kernels.

kernel size percent increase
gcc 205 N/A
clang 264 28.78 %
CFI 264 28.78 %
LTO 293 42.93 %
LTOv2 381 85.85 %
CFIv2 398 94.15 %

Table 8.4: Size of vfs statx()

An increase in code size does not mean that the number of instructions ex-
ecuted when running the function increases, however. When inlining functions,
the function call overhead is removed, as there are no call instructions used,
no need to pass arguments in registers, and no need for function prologues and
epilogues. In addition, the compiler might be able to perform optimizations
that were not possible before inlining the call, like smarter register usage and
so on.

Consider the assembly code listing from the gcc kernel in figure 8.17. The
code is from the user path at empty() function, which was inlined on several
kernel configurations. When this function is inlined, there is no need for the
prologue, which contains roughly 10 instructions. The epilogue is also omitted,
saving around 5 instructions. Although modern CPUs can execute billions of
instructions per second, the number of instructions can have an impact if the
number is big enough. So when the whole kernel is affected by aggressive in-
lining, the overall number of instructions executed to perform an action may
decrease, leading to faster execution times. For these simple results, however, it
seems like the performance may be negatively impacted by the increased code
size, as the gcc kernel performed well for many of the benchmarks. The differ-
ence was miniscule, however, so maybe LMBench does not produce results that
are accurate enough to really see any difference.

84



1 push rbp
2 mov rbp, rsp
3 push r14
4 mov r14, rcx
5 push r13
6 mov r13d, edi
7 mov rdi, rsi
8 push r12
9 mov r12d, edx

10 mov rdx, r8
11 mov esi, r12d
12 call getname_flags
13 mov rcx, r14
14 mov edx, r12d
15 mov edi, r13d
16 mov rsi, rax
17 xor r8d, r8d
18 call filename_lookup_0
19 pop r12
20 pop r13
21 pop r14
22 pop rbp
23 retn

Figure 8.17: user path at empty() assembly code from gcc kernel

85



PI
NG

_IN
LI

NE

PI
NG

_B
UL

K

SE
T

GE
T

IN
CR

LP
US

H

RP
US

H

LP
OP

RP
OP

SA
DD

HS
ET

SP
OP

LP
US

H

LR
AN

GE
_1

00

LR
AN

GE
_3

00

LR
AN

GE
_5

00

LR
AN

GE
_6

00

M
SE

T

0

10000

20000

30000

40000

50000

60000

70000

80000

Re
qu

es
ts

/s
Redis

gcc
clang
LTO
CFI
LTO100
CFI100

Figure 8.18: redis-benchmark results

8.6 Macro benchmarks
The following sections will describe the results from the macro benchmarks
performed on x86 64.

8.6.1 Redis
In figure 8.18 we can see the results from running redis’ benchmarking suite on
the different kernels.

The Y axis on the graph measures requests per second, which means that
higher numbers mean better performance. For this benchmark we can clearly
see that CFI is the slowest for a majority of the benchmarks. gcc kernels perform
a little better than clang on average, but the LTO kernel performs very well,
beating the others in almost every single benchmark. One interesting thing to
note is that LTO usually beats LTOv2 in these benchmarks, which may indicate
that increased inlining may be slower for certain workloads.
kernel PING INLINE PING BULK SET GET INCR LPUSH RPUSH LPOP RPOP SADD HSET SPOP LPUSH LRANGE 100 LRANGE 300 LRANGE 500 LRANGE 600 MSET
gcc 3.56 3.23 4.89 2.74 0.0 0.15 0.61 1.90 3.52 5.76 0.99 1.78 0.0 0.0 0.07 0.86 2.71 2.94
clang 1.82 1.91 1.60 0.0 1.12 0.46 0.30 1.29 1.68 1.15 1.15 0.0 0.99 1.30 0.25 0.16 1.60 2.58
lto 0.0 0.0 0.0 0.67 0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.15 0.58 0.0 0.19 1.08 0.53
cfi 11.43 13.51 13.98 12.81 12.53 9.34 11.80 11.20 13.46 13.20 10.86 11.29 10.86 5.22 2.36 1.31 1.43 8.57
lto100 1.21 3.82 1.53 1.70 2.24 0.76 1.29 2.28 4.20 4.83 1.76 1.63 0.38 0.84 0.25 0.0 0.0 0.0
cfi100 9.24 13.80 11.76 11.41 11.04 8.88 10.06 12.72 12.31 13.12 11.85 11.00 11.02 4.24 1.99 1.22 1.79 6.41

Table 8.5: Redis benchmark results

To see the difference between the benchmarks more clearly, we have plotted
the difference in percent in table 8.5. The green cells represent the fastest
benchmarks, the yellow ones are 0.1 to 4.9 % slower, and the red cells are more
than 5 % slower. We can clearly see that the LTO kernel is the fastest overall.
For the benchmarks where the LTO kernel is not the fastest, it is within 1 % of
the fastest benchmark in all benchmarks except one.

86



8.6.2 ApacheBench
This section shows the results from running ApacheBench against nginx and
Apache on the different kernels. Figure 8.19 shows the number of requests per
second for nginx. Figure 8.20 shows the average request time for nginx. Figure
8.21 shows the number of requests per second for Apache, and figure 8.22 shows
the average request time for Apache. The benchmarks are run with 1, 10, 20,
and 30 concurrent connections, and each of these benchmarks are run 10 times.
An average is calculated over these results.

In addition to the figures we have some tables showing the performance
difference between the benchmarks. The best benchmarks are represented by
green cells. The yellow cells represent benchmarks with a decreased performance
of 0.1 to 4.9 %. The red cells represent benchmarks that have a slowdown of
5.0 % or more.

kernel 1 10 20 30
gcc 4.07 6.35 3.72 5.58
clang 1.52 8.19 3.37 3.09
lto 1.30 4.23 0.0 0.98
cfi 15.62 16.28 14.17 14.68
lto100 0.0 0.0 1.24 0.0
cfi100 14.70 17.11 17.12 17.36

Table 8.6: ApacheBench nginx requests/s

kernel 1 10 20 30
gcc 4.28 6.36 3.91 5.64
clang 1.52 8.90 3.68 3.06
lto 1.41 4.51 0.0 0.71
cfi 15.49 16.42 14.61 14.34
lto100 0.0 0.0 1.84 0.0
cfi100 14.54 17.46 17.49 17.27

Table 8.7: ApacheBench nginx time per request

kernel 1 10 20 30
gcc 6.50 4.10 5.06 3.67
clang 0.0 2.70 2.69 1.18
lto 2.19 0.0 3.73 1.16
cfi 17.75 13.08 13.93 12.23
lto100 13.80 0.26 0.0 0.0
cfi100 21.60 12.01 13.03 12.33

Table 8.8: ApacheBench apache2 requests/s

The redis benchmarks showed that the LTO kernel performed the best, while
these benchmarks show that LTOv2 has the best overall performance. The CFI
kernels see a significant performance drop here as well.

87



1 10 20 30
Concurrent connections

0

2000

4000

6000

8000

10000

12000

Re
qu

es
ts/

s
ApacheBench/nginx

gcc
clang
LTO
CFI
LTO100
CFI100

Figure 8.19: ApacheBench nginx requests/s

88



1 10 20 30
Concurrent connections

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Tim
e/r

eq
ue

st 
(m

s)
ApacheBench/nginx

gcc
clang
LTO
CFI
LTO100
CFI100

Figure 8.20: ApacheBench nginx time per request

89



1 10 20 30
Concurrent connections

0

2000

4000

6000

8000

10000

Re
qu

es
ts/

s
ApacheBench/apache2

gcc
clang
LTO
CFI
LTO100
CFI100

Figure 8.21: ApacheBench apache2 requests/s

90



1 10 20 30
Concurrent connections

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Tim
e/r

eq
ue

st 
(m

s)
ApacheBench/apache2

gcc
clang
LTO
CFI
LTO100
CFI100

Figure 8.22: ApacheBench apache2 time per request

91



kernel 1 10 20 30
gcc 7.24 4.16 5.03 3.57
clang 0.0 3.00 2.76 1.16
lto 2.10 0.0 3.75 1.06
cfi 18.26 13.07 13.82 12.26
lto100 14.19 0.39 0.0 0.0
cfi100 22.16 12.20 12.93 12.16

Table 8.9: ApacheBench apache2 time per request

8.6.3 WireGuard
In this section we will present the results of running the WireGuard benchmark
detailed in section 7.6. In figure 8.23 we have the UDP throughput results for
WireGuard. In figures 8.24 and 8.25 we have the results for TCP send and
receive, respectively.

kernel udp ipv4 jumbo ipv4 udp ipv4 jumbo ipv6 udp ipv4 normal ipv4 udp ipv4 normal ipv6 udp ipv6 jumbo ipv4 udp ipv6 jumbo ipv6 udp ipv6 normal ipv4 udp ipv6 normal ipv6
gcc 17.73 2.90 11.90 0.04 0.0 0.0 0.0 2.32
clang 9.46 0.0 5.13 2.78 13.85 11.38 2.80 4.19
lto 0.76 6.75 3.59 2.17 4.15 6.79 0.89 0.0
cfi 17.96 10.89 8.36 2.89 15.69 3.91 9.84 6.03
lto100 0.0 0.89 0.0 0.0 0.44 2.44 2.70 4.85
cfi100 14.29 20.66 9.67 5.82 10.42 25.68 8.55 10.16

Table 8.10: WireGuard UDP send bandwidth

kernel tcp ipv4 jumbo ipv4 tcp ipv4 jumbo ipv6 tcp ipv4 normal ipv4 tcp ipv4 normal ipv6 tcp ipv6 jumbo ipv4 tcp ipv6 jumbo ipv6 tcp ipv6 normal ipv4 tcp ipv6 normal ipv6
gcc 0.0 3.62 0.0 0.0 0.67 3.34 0.65 0.79
clang 0.95 3.45 3.01 0.54 3.75 3.40 2.04 1.82
lto 1.69 2.39 3.09 1.16 0.0 0.0 0.0 0.0
cfi 3.22 2.04 3.46 3.72 2.62 7.26 5.65 4.73
lto100 0.15 0.0 0.31 0.57 2.21 5.62 0.13 1.73
cfi100 13.66 16.15 7.68 4.71 13.12 15.56 7.65 6.31

Table 8.11: WireGuard TCP send bandwidth

kernel tcp ipv4 jumbo ipv4 tcp ipv4 jumbo ipv6 tcp ipv4 normal ipv4 tcp ipv4 normal ipv6 tcp ipv6 jumbo ipv4 tcp ipv6 jumbo ipv6 tcp ipv6 normal ipv4 tcp ipv6 normal ipv6
gcc 0.0 3.62 0.0 0.0 0.67 3.35 0.66 0.79
clang 0.95 3.45 3.02 0.54 3.75 3.40 2.04 1.83
lto 1.70 2.39 3.09 1.17 0.0 0.0 0.0 0.0
cfi 3.23 2.04 3.47 3.73 2.62 7.26 5.65 4.74
lto100 0.15 0.0 0.32 0.56 2.21 5.62 0.13 1.73
cfi100 13.66 16.15 7.68 4.71 13.12 15.57 7.65 6.32

Table 8.12: WireGuard TCP receive bandwidth

Some of the benchmarks are named jumbo, while others are named normal.
This refers to the maximum transmission unit (MTU) used when sending the
packets. MTU relates to the maximum size of packets sent on the network.
Thus, increasing the MTU means that more data can be sent with each network
packet. This explains why the jumbo benchmarks have a higher throughput than
the normal ones.

The same results are also plotted as tables like we have done with the other
macro benchmarks. The UDP send bandwidth benchmarks can be found in
table 8.10. The TCP send and receive bandwidth benchmarks can be found in
tables 8.11 and 8.12 respectively.

The results for the WireGuard benchmarks are less clear than the other
macro benchmarks we have performed. We could probably have run these

92



ud
p_

ip
v4

_ju
m

bo
_ip

v4

ud
p_

ip
v4

_ju
m

bo
_ip

v6

ud
p_

ip
v4

_n
or

m
al

_ip
v4

ud
p_

ip
v4

_n
or

m
al

_ip
v6

ud
p_

ip
v6

_ju
m

bo
_ip

v4

ud
p_

ip
v6

_ju
m

bo
_ip

v6

ud
p_

ip
v6

_n
or

m
al

_ip
v4

ud
p_

ip
v6

_n
or

m
al

_ip
v6

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
1e9 WireGuard

gcc
clang
lto
lto100
cfi
cfi100

Figure 8.23: WireGuard UDP send bandwidth

93



tc
p_

ip
v4

_ju
m

bo
_ip

v4

tc
p_

ip
v4

_ju
m

bo
_ip

v6

tc
p_

ip
v4

_n
or

m
al

_ip
v4

tc
p_

ip
v4

_n
or

m
al

_ip
v6

tc
p_

ip
v6

_ju
m

bo
_ip

v4

tc
p_

ip
v6

_ju
m

bo
_ip

v6

tc
p_

ip
v6

_n
or

m
al

_ip
v4

tc
p_

ip
v6

_n
or

m
al

_ip
v6

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
1e10 WireGuard TCP send

gcc
clang
lto
lto100
cfi
cfi100

Figure 8.24: WireGuard TCP send bandwidth

94



tc
p_

ip
v4

_ju
m

bo
_ip

v4

tc
p_

ip
v4

_ju
m

bo
_ip

v6

tc
p_

ip
v4

_n
or

m
al

_ip
v4

tc
p_

ip
v4

_n
or

m
al

_ip
v6

tc
p_

ip
v6

_ju
m

bo
_ip

v4

tc
p_

ip
v6

_ju
m

bo
_ip

v6

tc
p_

ip
v6

_n
or

m
al

_ip
v4

tc
p_

ip
v6

_n
or

m
al

_ip
v6

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
1e10 WireGuard TCP receive

gcc
clang
lto
lto100
cfi
cfi100

Figure 8.25: WireGuard TCP receive bandwidth

95



benchmarks several times and computed the average to get more accurate re-
sults. We still observe that the CFI kernels perform worse than the other kernels
by between 2.04 % and 25.68 %.

8.7 Android benchmarks
Unfortunately the results from the benchmarking tools used on the HiKey 960
were not reliable enough to provide any good insight into the performance im-
pact of LTO, CFI, and SCS. Every run using the same benchmarks on the same
kernel would provide very different results, even though the number of iterations
for the benchmarks were set to a high number. At most, 128 iterations were
used for the binder/hwbinder throughput benchmarks.

Running the benchmarks for a single kernel with 128 iterations for each
benchmark took around 2 hours, making it very cumbersome to try different
approaches for improving the results. It is not clear what causes the results
to vary so much, but one strategy could probably be to run the benchmarks
several times, rebooting the HiKey between every run and then calculating the
average over all the results. However, this would have taken a very long time if
all the kernels were to be benchmarked. In addition, Google only saw a 1-2 %
performance hit, so it might not be possible to notice any difference on certain
hardware.

8.8 Summary
It is hard to say if clang’s CFI implementation is worth using on x86 64 because
of the performance impact. Although some exploitation scenarios are made
more difficult for attackers, only the forward-edge of the control flow graph is
protected. Coupled with SCS it would probably be more attractive. When
CET-enabled processors from Intel arrive on the market it would be interesting
to compare the overhead of enabling that compared to clang’s CFI implemen-
tation. The security benefit is not the same, however, since CFI checks the
function signature, while CET still allows function pointer hijacking as long
as the destination is the start of a valid function. With CET we will also get
backward-edge CFI, which, coupled with forward-edge CFI provides a pretty
good defense.

Enabling LTO showed a significant increase in performance on x86 64, and
it would be interesting to see if more Linux distributions start picking up clang
and LTO. Although there were some issues with PTI and CFI, no issues were
encountered while using a kernel with LTO enabled. It would be interesting to
test the robustness of the kernel in a production environment to see if it still
holds up, or if there are any unknown issues.

Using LTO and CFI really increases compilation time, especially on weaker
hardware. Thus these features are not very well suited during rapid develop-
ment. LTO and CFI should probably only be enabled once the kernel is ready
for release, when extra compilation time is not detrimental for developer pro-
ductivity.

Binary size might be an issue in certain environments, like embedded devices.
Here, gcc might be the preferred option as it was able to produce a smaller

96



kernel. However, on x86 64 the size increase is probably negligible. When using
LTO/CFI with an inline limit of 100, the kernel increased 30.87 % in size. From 8
MB to 11 MB. 3 MB is definitely not a problem for a normal laptop or desktop
computer as they usually have several hundred GB of storage. However, the
increased kernel size will also affect memory usage of the system. For embedded
devices with limited amounts of RAM this may become an issue.

Overall the results show that LTO can provide a performance boost for
certain workloads. Some workloads saw an increased performance when using
LTO with an increased inlining limit, while others saw a performance drop
compared to less aggressive inlining. There are definitely potential for more
research in this area to find a good balance for the inlining limit.

8.9 Future work
One goal should be to get LTO support upstreamed. When that is done, support
for CFI can be added on top of it. Upstreaming the code means that more people
have the chance to review and provide feedback on the changes. The patchsets
available look more or less ready for upstreaming so this might happen very
soon. Support for LTO, CFI, and SCS is already merged into the Android
kernel sources, so all vendors relying on Android can enable it for their devices.
Many other features from Android has ended up in the upstream kernel before
so it is not unlikely that it eventually will land there. However, as of May
2020, it does not look like any vendors except Google have enabled any of these
features.

It would be beneficial to test more versions of clang, but a lot of bug fixes
are included in clang 11, which makes it possible to compile the upstream Linux
kernel without any workarounds. Using older versions of clang/LLVM does
not make that much sense at this time, since we have to go out of our way
to make everything work correctly. It would be more beneficial to wait for
newer versions to be released, and see if the LTO/CFI/SCS implementations
are improved. Although other projects have successfully used clang versions
earlier than 11 to build the kernel, LTO and CFI complicates the process.

The current state of CFI on x86 64 is probably not ready for production
systems yet. Mainly because the kernel will panic on CFI violations, and there
are still a lot of false positives due to function signature mismatches, like the
example in 6.3.3. Before CFI can be applied to production systems, work has to
be done to make sure that there are very few false positives left. An alternative
could be to enable permissive mode for a while to weed out false positives. How-
ever, with permissive mode none of the security properties of CFI are enforced,
and an attacker can hijack function pointers without having to bypass the func-
tion signature checking. While writing this thesis, a kernel with CFI enabled
was used for most of the time to see that it is suitable for normal workloads.
No instability or crashes were observed while using the CFI kernel.

The CFI kernel would not boot with PTI enabled, so making sure that
LTO/CFI is compatible with PTI would be beneficial, as PTI provides protec-
tion against certain side-channels vulnerabilities.

It would be interested to look further into the effects increased kernel and
code size has on the instruction cache. Increasing the code size might have a
negative impact on cache locality, leading to decreased performance in some

97



circumstances. There is almost no difference in performance when increasing
the LTO inlining limit, so it is probably not worth increasing the limit anyways.
Knowing the impact on the CPU cache is still interesting, and this might vary
a lot between different CPUs as well, making it an interesting research topic.

98



Appendix A

Scripts

A.1 Linux kernel installation script
1 #!/bin/bash
2

3 set -eux
4

5 KERNEL_VERSION=5.7.0-rc2
6

7 if [ "$1" == "gcc" ]; then
8 echo "[+] installing gcc kernel"
9 OUTPUT_DIR=gcc_out

10 sudo make INSTALL_MOD_STRIP=1 O=$OUTPUT_DIR modules_install
11 sudo make O=$OUTPUT_DIR install
12 sudo depmod
13 elif [ "$1" == "cfi" ]; then
14 echo "[+] installing LTO/CFI kernel"
15 OUTPUT_DIR=cfi_out
16 elif [ "$1" == "lto" ]; then
17 echo "[+] installing LTO kernel"
18 OUTPUT_DIR=lto_out
19 elif [ "$1" == "clang" ]; then
20 echo "[+] installing clang kernel"
21 OUTPUT_DIR=clang_out
22 else
23 echo "[-] specify a kernel type!"
24 exit
25 fi
26

27 # strip from binutils doesn't really like modules compiled with clang
28 # and especially not modules compiled with LTO, so we have to strip the
29 # modules manually before generating initrd
30 sudo make O=$OUTPUT_DIR modules_install
31 sudo find /lib/modules/$KERNEL_VERSION-$1+ -name \*.ko -exec \
32 llvm-strip-9 --strip-debug {} +

99



33 sudo make O=$OUTPUT_DIR install
34 sudo depmod

A.2 Linux kernel build script
1 #!/bin/bash
2

3 set -eux
4

5 if [ "$1" == "gcc" ]; then
6 echo "[+] vanilla kernel with gcc"
7 OUTPUT_DIR=gcc_out
8 mkdir -p $OUTPUT_DIR
9

10 make defconfig HOSTCC=gcc CC=gcc O=gcc_out
11

12 cat ubuntu_config > $OUTPUT_DIR/.config
13 scripts/config --file $OUTPUT_DIR/.config \
14 --set-str CONFIG_LOCALVERSION "-gcc" \
15

16 # to work around __memcat_p bug
17 #scripts/config --file $OUTPUT_DIR/.config -e CONFIG_STM
18

19 make HOSTCC="gcc" CC="gcc" O=$OUTPUT_DIR olddefconfig
20 time make -j8 HOSTCC="gcc" CC="gcc" O=$OUTPUT_DIR 2>&1 \
21 | tee build_results_$1.txt
22 exit 0
23 fi
24

25 if [ "$1" == "cfi" ]; then
26 echo "[+] LTO/CFI kernel"
27 OUTPUT_DIR=cfi_out
28 elif [ "$1" == "lto" ]; then
29 echo "[+] LTO kernel"
30 OUTPUT_DIR=lto_out
31 elif [ "$1" = "full_lto" ]; then
32 echo "[+] full LTO kernel"
33 OUTPUT_DIR=full_lto_out
34 elif [ "$1" == "clang" ]; then
35 echo "[+] clang kernel"
36 OUTPUT_DIR=clang_out
37 else
38 echo "[-] specify a kernel type!"
39 exit
40 fi
41

42 mkdir -p $OUTPUT_DIR
43

44 make defconfig HOSTCC=clang-11 HOSTLD=ld.lld-11 \

100



45 CC=clang-11 HOSTCC=clang-11 LD=ld.lld-11 O=$OUTPUT_DIR
46

47 cat ubuntu_config > $OUTPUT_DIR/.config
48 # to work around __memcat_p bug
49 #scripts/config --file $OUTPUT_DIR/.config -e CONFIG_STM
50 make HOSTCC="clang-11" CC="clang-11" O=$OUTPUT_DIR olddefconfig
51

52 if [ "$1" == "cfi" ]; then
53 echo "[+] LTO/CFI kernel"
54 OUTPUT_DIR=cfi_out
55 mkdir -p $OUTPUT_DIR
56 # Enable LTO and CFI.
57 scripts/config --file $OUTPUT_DIR/.config \
58 -e CONFIG_LTO \
59 -e CONFIG_THINLTO \
60 -d CONFIG_LTO_NONE \
61 -e CONFIG_LTO_CLANG \
62 -e CONFIG_CFI_CLANG \
63 -e CONFIG_CFI_PERMISSIVE \
64 -e CONFIG_CFI_CLANG_SHADOW \
65 --set-str CONFIG_LOCALVERSION "-cfi"
66 elif [ "$1" == "lto" ]; then
67 echo "[+] LTO kernel"
68 OUTPUT_DIR=lto_out
69 mkdir -p $OUTPUT_DIR
70 scripts/config --file $OUTPUT_DIR/.config \
71 -e CONFIG_LTO \
72 -e CONFIG_THINLTO \
73 -d CONFIG_LTO_NONE \
74 -e CONFIG_LTO_CLANG \
75 -d CONFIG_CFI_CLANG \
76 --set-str CONFIG_LOCALVERSION "-lto"
77 elif [ "$1" = "full_lto" ]; then
78 echo "[+] full LTO kernel"
79 scripts/config --file $OUTPUT_DIR/.config \
80 -e CONFIG_LTO \
81 -d CONFIG_LTO_NONE \
82 -d CONFIG_THINLTO \
83 -e CONFIG_LTO_CLANG \
84 -d CONFIG_CFI_CLANG \
85 --set-str CONFIG_LOCALVERSION "-full_lto"
86 elif [ "$1" == "clang" ]; then
87 echo "[+] clang kernel"
88 OUTPUT_DIR=clang_out
89 mkdir -p $OUTPUT_DIR
90 scripts/config --file $OUTPUT_DIR/.config \
91 -e CONFIG_LTO_NONE \
92 --set-str CONFIG_LOCALVERSION "-clang"
93 fi
94

101



95 time make -j8 HOSTCC=clang-11 HOSTLD=ld.lld-11 \
96 CC=clang-11 LD=ld.lld-11 O=$OUTPUT_DIR 2>&1 \
97 | tee build_results_$1.txt

A.3 Android Linux kernel build script
Kernel customizations were performed as described in the official Android doc-
umentation [4]. A local build.config was created with POST DEFCONFIG CMDS
defined to run a script that enables and disables configuration options. The
different versions of the customization function can be found below.

1 # clang
2 function update_debug_config_clang() {
3 ${KERNEL_DIR}/scripts/config --file ${OUT_DIR}/.config \
4 -d LTO \
5 -d LTO_CLANG \
6 -d CFI \
7 -d CFI_PERMISSIVE \
8 -d CFI_CLANG \
9 -d SHADOW_CALL_STACK \

10 --set-str CONFIG_LOCALVERSION "-clang"
11 (cd ${OUT_DIR} && \
12 make O=${OUT_DIR} $archsubarch CC=${CC} CROSS_COMPILE=${CROSS_COMPILE} olddefconfig)
13 }
14

15 # LTO
16 function update_debug_config_lto() {
17 ${KERNEL_DIR}/scripts/config --file ${OUT_DIR}/.config \
18 -e LTO \
19 -e LTO_CLANG \
20 -d CFI \
21 -d CFI_CLANG \
22 -d SHADOW_CALL_STACK \
23 --set-str CONFIG_LOCALVERSION "-lto"
24 (cd ${OUT_DIR} && \
25 make O=${OUT_DIR} $archsubarch CC=${CC} CROSS_COMPILE=${CROSS_COMPILE} olddefconfig)
26 }
27

28 # CFI
29 function update_debug_config_cfi() {
30 ${KERNEL_DIR}/scripts/config --file ${OUT_DIR}/.config \
31 -e LTO \
32 -e LTO_CLANG \
33 -e CFI \
34 -e CFI_PERMISSIVE \
35 -e CFI_CLANG \
36 -d SHADOW_CALL_STACK \
37 --set-str CONFIG_LOCALVERSION "-cfi"
38 (cd ${OUT_DIR} && \
39 make O=${OUT_DIR} $archsubarch CC=${CC} CROSS_COMPILE=${CROSS_COMPILE} olddefconfig)
40 }
41

42 # ShadowCallStack
43 function update_debug_config_scs() {
44 ${KERNEL_DIR}/scripts/config --file ${OUT_DIR}/.config \
45 -e LTO \
46 -e LTO_CLANG \
47 -e CFI \
48 -e CFI_PERMISSIVE \
49 -e CFI_CLANG \

102



50 -e SHADOW_CALL_STACK \
51 --set-str CONFIG_LOCALVERSION "-scs"
52 (cd ${OUT_DIR} && \
53 make O=${OUT_DIR} $archsubarch CC=${CC} CROSS_COMPILE=${CROSS_COMPILE} olddefconfig)
54 }

A.4 Docker
The following Dockerfile was used to build all the Linux kernel images.

1 FROM clangbuiltlinux/debian
2

3 RUN apt update && apt install -y gcc vim
4 COPY ccache.conf /root/.ccache/ccache.conf
5 RUN ln -s /usr/bin/llvm-ar-11 /usr/bin/llvm-ar && \
6 ln -s /usr/bin/llvm-nm-11 /usr/bin/llvm-nm && \
7 ln -s /usr/bin/clang-11 /usr/bin/clang && \
8 ln -s /usr/bin/llvm-dis-11 /usr/bin/llvm-dis
9 # for make menuconfig support

10 RUN apt install -y libncurses-dev
11 # needed by the packaging targets for the Linux kernel, like tarbz2-pkg
12 RUN apt install -y cpio
13 # install packages required by the bindeb-pkg target
14 #RUN apt install -y build-essential devscripts fakeroot kmod rsync
15

16 ENTRYPOINT [ "/bin/bash" ]

With the following ccache config file for better incremental compilation per-
formance.

cache_dir = /opt/ccache
max_size = 10.0G

ccache was not used when measuring compilation time.

A.5 Benchmarking script
The following scripts were used to run all the micro/macro benchmarks on
x86 64.

1 #!/bin/bash
2

3 # stop some services that might be running
4 sudo systemctl stop gdm
5 sudo systemctl stop ssh
6 sudo systemctl stop redis
7 sudo systemctl stop nginx
8 sudo systemctl stop apache2
9

10 sudo lmbench-run
11

103



12 sudo systemctl start redis-server
13 redis-benchmark > redis_results_$(uname -r).txt
14

15 # run ApacheBench with Apache and nginx
16 python3 ab_to_pdf.py bench

And the following script was used to run all benchmarks on arm64.

1 #!/system/bin/sh
2

3 NAME=$1
4

5 # make all CPUs run at maximum freqency
6 for i in `seq 0 7`; do
7 echo performance > /sys/devices/system/cpu/cpu$i/cpufreq/scaling_governor
8 done
9

10 # hwbinder throughput
11 ./libhwbinder_benchmark --benchmark_out_format=json \
12 --benchmark_repetitions=64 \
13 --benchmark_report_aggregates_only=true \
14 --benchmark_out=hwbinder_throughput_$NAME.txt
15

16 # binder throughput
17 ./libbinder_benchmark --benchmark_out_format=json \
18 --benchmark_repetitions=64 \
19 --benchmark_report_aggregates_only=true \
20 --benchmark_out=binder_throughput_$NAME.txt
21

22 # hwbinder latency
23 ./libhwbinder_latency -i 10000 -pair 3 > hwbinder_latency_$NAME.txt
24

25 # binder latency
26 ./schd-dbg -i 10000 -pair 3 > binder_latency_$NAME.txt

A.6 Python benchmarking scripts
The following script was used to convert the results from redis-benchmark to
graphs:

1 #!/usr/bin/env python3
2 import os
3 import sys
4 import re
5 import matplotlib.pyplot as plt
6 import numpy as np
7

8

9 def parse(filename):
10 with open(filename, "r") as f:

104



11 data = f.readlines()
12 names = []
13 values = []
14

15 for i in range(len(data)):
16 line = data[i]
17 if line == "\n":
18 continue
19

20 if not line.startswith("====== "):
21 continue
22

23 # we found a new benchmark!
24 name = line.split(" ")[1]
25 names.append(name)
26

27 for i in range(len(data)):
28 line = data[i]
29 if "requests per second" not in line:
30 continue
31 values.append(float(line.split(" ")[0]))
32

33 return (names, values)
34

35

36 def main():
37 results_path = "."
38 files = os.listdir(results_path)
39 results = {}
40

41 for f in files:
42 if not "redis_results_5.7.0-rc2" in f or f.startswith("."):
43 continue
44 print("parsing file {}...".format(f))
45 pattern = r"redis_results_5.7.0-rc2-([a-z0-9]+)\+.txt"
46 name = re.match(pattern, f).group(1)
47 results[name] = parse("./" + f)
48

49 gcc = results["gcc"][1]
50 clang = results["clang"][1]
51 lto = results["lto"][1]
52 cfi = results["cfi"][1]
53 lto100 = results["lto100"][1]
54 cfi100 = results["cfi100"][1]
55

56 labels = results["gcc"][0]
57

58 print(labels)
59 print(gcc)
60 out = """\\begin{table*}[!htbp]

105



61 \\begin{adjustbox}{width=1\\textwidth}
62 \\centering
63 \\begin{tabular}{@{}lllllllllllllllllll@{}}
64 kernel"""
65 for label in labels:
66 out += " & {}".format(label.replace("_", "\\_"))
67 out += " \\\\\n"
68 out += "\\midrule\n"
69

70 targets = [ "gcc", "clang", "lto", "cfi", "lto100", "cfi100" ]
71 fixed_results = {}
72

73 for target in targets:
74 fixed_results[target] = []
75

76 # calculate best result
77 # y axis is requests/s, so higher numbers are better
78 for i in range(len(labels)):
79 res = []
80 for target in targets:
81 res.append(results[target][1][i])
82

83 # calculate the best result
84 best = max(res)
85

86 for i in range(len(res)):
87 val = res[i]
88 if val == best:
89 res[i] = 0.0
90 else:
91 res[i] = (float(best - val) / val) * 100
92 print(res)
93

94 for i in range(len(targets)): #target in targets:
95 target = targets[i]
96 fixed_results[target].append(res[i])
97

98 for target in targets:
99 out += "\t\t{}".format(target)

100

101 for result in fixed_results[target]:
102 if result == 0.0:
103 out += " & \\cellcolor{{green!50}}0.0".format(result)
104 elif result > 5.0:
105 out += " & \\cellcolor{{red!50}}{:.2f}".format(result)
106 else:
107 out += " & \\cellcolor{{yellow!50}}{:.2f}".format(result)
108 out += " \\\\\n"
109 out += "\\bottomrule\n"
110 out += "\\end{tabular}\n"

106



111 out += "\\end{adjustbox}\n"
112 out += "\\caption{Redis benchmark results}\n"
113 out += "\\label{fig:redis_results_table}\n"
114 out += "\\end{table*}\n"
115 print(out)
116

117 x = np.arange(len(labels))
118 width = 0.12
119

120 fig, ax = plt.subplots()
121

122 rects1 = ax.bar(x - (width * 2.5), gcc, width, label="gcc")
123 rects2 = ax.bar(x - (width * 1.5), clang, width, label="clang")
124 rects3 = ax.bar(x - (width * 0.5), lto, width, label="LTO")
125 rects4 = ax.bar(x + (width * 0.5), cfi, width, label="CFI")
126 rects5 = ax.bar(x + (width * 1.5), lto100, width, label="LTO100")
127 rects6 = ax.bar(x + (width * 2.5), cfi100, width, label="CFI100")
128

129 ax.set_ylabel("Requests/s")
130 ax.set_title("Redis")
131 ax.set_xticks(x)
132 ax.set_xticklabels(labels)
133 ax.legend()
134 plt.xticks(rotation=90)
135

136 fig.savefig("redis_results.pdf", bbox_inches="tight")
137

138

139 if __name__ == "__main__":
140 main()

And the following script was used to both run benchmarks and graph results
from ApacheBench:

1 #!/usr/bin/env python3
2 import os
3 import re
4 import matplotlib.pyplot as plt
5 import numpy as np
6 import sys
7

8

9 def parse(filename):
10 with open(filename, "r") as f:
11 data = f.read()
12 res = {}
13

14 rps = float(re.search(r"Requests per second:[\s]+([0-9]+\.[0-9]+)",
15 data).group(1))
16

17 pattern = r"Time per request:[\s]+([0-9]+\.[0-9]+) \[ms\] \(mean, across"

107



18 pattern += r" all concurrent requests\)"
19 tpr = float(re.search(pattern, data).group(1))
20 concurrency = int(re.search(r"Concurrency Level:[\s]+([0-9]+)",
21 data).group(1))
22

23 print("Requests per second: {}".format(rps))
24 print("Time per request: {}".format(tpr))
25 print("Concurrency Level: {}".format(concurrency))
26

27 return (concurrency, rps, tpr)
28

29

30 def run_benchmark(name, concurrency, n):
31 cmd = "ab -n 1000 -c {0} http://127.0.0.1/ > ab/ab_results_{2}_$(uname "
32 cmd += "-r)_{0}_{1}.txt"
33 cmd = cmd.format(concurrency, n, name)
34 os.system(cmd)
35

36

37 def plot_reqs(name, values):
38 labels = [ "1", "10", "20", "30" ]
39 x = np.arange(len(labels))
40 width = 0.12
41 fig, ax = plt.subplots()
42

43 if len(values["gcc"]["request"]) != 0:
44 rects1 = ax.bar(x - (width * 2.5), values["gcc"]["request"],
45 width, label="gcc")
46 if len(values["clang"]["request"]) != 0:
47 rects2 = ax.bar(x - (width * 1.5), values["clang"]["request"],
48 width, label="clang")
49 if len(values["lto"]["request"]) != 0:
50 rects3 = ax.bar(x - (width * 0.5), values["lto"]["request"],
51 width, label="LTO")
52 if len(values["cfi"]["request"]) != 0:
53 rects4 = ax.bar(x + (width * 0.5), values["cfi"]["request"],
54 width, label="CFI")
55 if len(values["lto100"]["request"]) != 0:
56 rects5 = ax.bar(x + (width * 1.5), values["lto100"]["request"],
57 width, label="LTO100")
58 if len(values["cfi100"]["request"]) != 0:
59 rects6 = ax.bar(x + (width * 2.5), values["cfi100"]["request"],
60 width, label="CFI100")
61

62 ax.set_ylabel("Requests/s")
63 ax.set_xlabel("Concurrent connections")
64 ax.set_title("ApacheBench/{}".format(name))
65 ax.set_xticks(x)
66 ax.set_xticklabels(labels)
67 ax.legend()

108



68

69 fig.tight_layout()
70 fig.savefig("ab_results_requests_{}.pdf".format(name),
71 bbox_inches="tight")
72 generate_table(name, values, labels, "request")
73

74

75 def plot_time(name, values):
76 labels = [ "1", "10", "20", "30" ] #, "Time per request" ]
77 x = np.arange(len(labels))
78 width = 0.12
79 fig, ax = plt.subplots()
80

81 if len(values["gcc"]["request"]) != 0:
82 rects1 = ax.bar(x - (width * 2.5), values["gcc"]["time"],
83 width, label="gcc")
84 if len(values["clang"]["request"]) != 0:
85 rects2 = ax.bar(x - (width * 1.5), values["clang"]["time"],
86 width, label="clang")
87 if len(values["lto"]["request"]) != 0:
88 rects3 = ax.bar(x - (width * 0.5), values["lto"]["time"],
89 width, label="LTO")
90 if len(values["cfi"]["request"]) != 0:
91 rects4 = ax.bar(x + (width * 0.5), values["cfi"]["time"],
92 width, label="CFI")
93 if len(values["lto100"]["request"]) != 0:
94 rects5 = ax.bar(x + (width * 1.5), values["lto100"]["time"],
95 width, label="LTO100")
96 if len(values["cfi100"]["request"]) != 0:
97 rects6 = ax.bar(x + (width * 2.5), values["cfi100"]["time"],
98 width, label="CFI100")
99

100 ax.set_ylabel("Time/request (ms)")
101 ax.set_xlabel("Concurrent connections")
102 ax.set_title("ApacheBench/{}".format(name))
103 ax.set_xticks(x)
104 ax.set_xticklabels(labels)
105 ax.legend()
106

107 fig.tight_layout()
108 fig.savefig("ab_results_time_{}.pdf".format(name), bbox_inches="tight")
109 generate_table(name, values, labels, "time")
110

111

112 def generate_table(name, values, labels, bench_type):
113 targets = [ "gcc", "clang", "lto", "cfi", "lto100", "cfi100" ]
114 out = """\\begin{table*}[!htbp]
115 \\centering
116 \\begin{tabular}{@{}lllllllllllllllllll@{}}
117 kernel"""

109



118 for label in labels:
119 out += " & {}".format(label.replace("_", "\\_"))
120 out += " \\\\\n"
121 out += "\\midrule\n"
122

123 fixed_results = {}
124

125 for target in targets:
126 fixed_results[target] = []
127

128 for i in range(len(labels)):
129 res = []
130 for target in targets:
131 res.append(values[target][bench_type][i])
132

133 # calculate the best result
134 if bench_type == "time":
135 best = min(res)
136 else:
137 best = max(res)
138

139 for i in range(len(res)):
140 val = res[i]
141 if val == best:
142 res[i] = 0.0
143 else:
144 if bench_type == "time":
145 res[i] = (float(val - best) / best) * 100
146 else:
147 res[i] = (float(best - val) / val) * 100
148

149 for i in range(len(targets)): #target in targets:
150 target = targets[i]
151 fixed_results[target].append(res[i])
152

153 for target in targets:
154 out += "\t\t{}".format(target)
155

156 for result in fixed_results[target]:
157 if result == 0.0:
158 out += " & \\cellcolor{{green!50}}0.0".format(result)
159 elif result > 5.0:
160 out += " & \\cellcolor{{red!50}}{:.2f}".format(result)
161 else:
162 out += " & \\cellcolor{{yellow!50}}{:.2f}".format(result)
163 out += " \\\\\n"
164 out += "\\bottomrule\n"
165 out += "\\end{tabular}\n"
166 if bench_type == "time":
167 description = "time per request"

110



168 else:
169 description = "requests/s"
170 out += "\\caption{{ApacheBench {} {}}}\n".format(name, description)
171 if bench_type == "time":
172 suffix = "tps"
173 else:
174 suffix = "rps"
175 out += "\\label{{table:ab_{}_{}}}\n".format(name, suffix)
176 out += "\\end{table*}\n"
177

178 print(out)
179

180

181 def main():
182 results_path = "./ab"
183 files = os.listdir(results_path)
184 results = {}
185

186 if len(sys.argv) != 2:
187 print("Usage: {} [bench|pdf]".format(sys.argv[0]))
188 sys.exit()
189

190 if sys.argv[1] == "bench":
191 os.system("sudo systemctl stop nginx")
192 os.system("sudo systemctl stop apache2")
193

194 os.system("sudo systemctl start nginx")
195 # run the benchmark n times
196 for concurrency in [1, 10, 20, 30]:
197 for i in range(10):
198 run_benchmark("nginx", concurrency, i)
199 os.system("sudo systemctl stop nginx")
200

201 os.system("sudo systemctl start apache2")
202 # run the benchmark n times
203 for concurrency in [1, 10, 20, 30]:
204 for i in range(10):
205 run_benchmark("apache2", concurrency, i)
206 os.system("sudo systemctl stop apache2")
207

208 sys.exit()
209

210 if sys.argv[1] != "pdf":
211 print("invalid command!")
212 sys.exit()
213

214 for webserver in [ "apache2", "nginx" ]:
215 results[webserver] = {}
216 for name in ["gcc","clang","lto","cfi","lto100","cfi100"]:
217 results[webserver][name] = {}

111



218 for concurrency in [1,10,20,30]:
219 results[webserver][name][concurrency] = list()
220

221 for f in files:
222 if f.startswith("."):
223 continue
224 print("parsing file {}...".format(f))
225 pattern = r"ab_results_([a-z0-9]+)_([0-9]\.[0-9]+\.[0-9]-rc[0-9]-"
226 pattern += r"([a-z0-9]+))\+_[0-9]+_[0-9]+.txt"
227 m = re.match(pattern, f)
228 webserver = m.group(1)
229 version = m.group(2)
230 name = m.group(3)
231

232 concurrency, rps, tpr = parse("{}/{}".format(results_path, f))
233 results[webserver][name][concurrency].append((rps, tpr))
234

235 values = {}
236 # now calculate the mean of all the results for each concurrency level
237 for webserver in [ "apache2", "nginx" ]:
238 for name in ["gcc","clang","lto","cfi","lto100","cfi100"]:
239 values[name] = {}
240 values[name]["request"] = list()
241 values[name]["time"] = list()
242 if name not in results[webserver]:
243 continue
244 for concurrency in [1,10,20,30]:
245 res = results[webserver][name][concurrency]
246 if len(res) == 0:
247 break
248 avg_rps = sum(map(lambda x : x[0], res))/len(res)
249 avg_tpr = sum(map(lambda x : x[1], res))/len(res)
250 values[name]["request"].append(avg_rps)
251 values[name]["time"].append(avg_tpr)
252 # plot requests per second and time per request
253 plot_reqs(webserver, values)
254 plot_time(webserver, values)
255

256

257 if __name__ == "__main__":
258 main()

To plot the results from lmbench, the following script was used:

1 #!/usr/bin/env python3
2 import os
3 import sys
4 import re
5 import matplotlib.pyplot as plt
6 import numpy as np
7

112



8

9 def convert(filename):
10 with open(filename, encoding="utf8", errors="ignore") as f:
11 data = f.read()
12

13 m = re.search(r"\[RELEASE: (.*)\]", data)
14 release = m.group(1)
15

16 m = re.search("Simple syscall: ([0-9]+\.[0-9]+) microseconds", data)
17 simple_syscall = m.group(1)
18 m = re.search("Simple read: ([0-9]+\.[0-9]+) microseconds", data)
19 simple_read = m.group(1)
20 m = re.search("Simple write: ([0-9]+\.[0-9]+) microseconds", data)
21 simple_write = m.group(1)
22 m = re.search("Simple stat: ([0-9]+\.[0-9]+) microseconds", data)
23 simple_stat = m.group(1)
24 m = re.search("Simple fstat: ([0-9]+\.[0-9]+) microseconds", data)
25 simple_fstat = m.group(1)
26 m = re.search("Simple open/close: ([0-9]+\.[0-9]+) microseconds", data)
27 simple_open_close = m.group(1)
28

29 m = re.search("Select on 10 fd's: ([0-9]+\.[0-9]+) microseconds", data)
30 select_10 = m.group(1)
31 m = re.search("Select on 100 fd's: ([0-9]+\.[0-9]+) microseconds", data)
32 select_100 = m.group(1)
33 m = re.search("Select on 250 fd's: ([0-9]+\.[0-9]+) microseconds", data)
34 select_250 = m.group(1)
35 m = re.search("Select on 500 fd's: ([0-9]+\.[0-9]+) microseconds", data)
36 select_500 = m.group(1)
37

38 m = re.search("Select on 10 tcp fd's: ([0-9]+\.[0-9]+) microseconds",
39 data)
40 select_tcp_10 = m.group(1)
41 m = re.search("Select on 100 tcp fd's: ([0-9]+\.[0-9]+) microseconds",
42 data)
43 select_tcp_100 = m.group(1)
44 m = re.search("Select on 250 tcp fd's: ([0-9]+\.[0-9]+) microseconds",
45 data)
46 select_tcp_250 = m.group(1)
47 m = re.search("Select on 500 tcp fd's: ([0-9]+\.[0-9]+) microseconds",
48 data)
49 select_tcp_500 = m.group(1)
50

51

52 m = re.search("Signal handler installation: ([0-9]+\.[0-9]+) microseconds",
53 data)
54 signal_handler_install = m.group(1)
55 m = re.search("Signal handler overhead: ([0-9]+\.[0-9]+) microseconds",
56 data)
57 signal_handler_overhead = m.group(1)

113



58 m = re.search("Protection fault: ([0-9]+\.[0-9]+) microseconds", data)
59 protection_fault = m.group(1)
60 m = re.search("Pipe latency: ([0-9]+\.[0-9]+) microseconds", data)
61 pipe_latency = m.group(1)
62 m = re.search("AF_UNIX sock stream latency: ([0-9]+\.[0-9]+) microseconds",
63 data)
64 af_unix_stream_lat = m.group(1)
65 m = re.search("Process fork\+exit: ([0-9]+\.[0-9]+) microseconds",
66 data)
67 proc_fork_exit = m.group(1)
68 m = re.search("Process fork\+execve: ([0-9]+\.[0-9]+) microseconds", data)
69 proc_fork_execve = m.group(1)
70 m = re.search("Process fork\+/bin/sh -c: ([0-9]+\.[0-9]+) microseconds",
71 data)
72 proc_fork_bin_sh = m.group(1)
73

74 bw_names = [ "read", "read open2close", "Mmap read",
75 "Mmap read open2close", "Memory bzero", "Memory read",
76 "Memory partial read", "Memory write", "Memory partial write",
77 "Memory partial read/write" ]
78 # get bandwidth results
79 bw_res = {}
80 data = data.split("\n")
81 for i in range(len(data)):
82 line = data[i]
83 if line == "\n":
84 continue
85

86 if not "bandwidth" in line:
87 continue
88

89 # we found a new benchmark!
90 name = line.replace("\"", "").replace(" bandwidth", "")
91 if name not in bw_names:
92 continue
93

94 # there are 23 different values
95 bw_res[name] = {}
96 for j in range(i + 1, i + 1 + 23):
97 tmp = data[j].split(" ")
98 mb = float(tmp[0])
99 mbs = float(tmp[1])

100 bw_res[name][mb] = mbs
101

102 name = release.split("-")[-1][:-1]
103 res = { name: { "simple": {
104 "Simple syscall": float(simple_syscall),
105 "Simple read": float(simple_read),
106 "Simple write": float(simple_write),
107 "Simple stat": float(simple_stat),

114



108 "Simple fstat": float(simple_fstat),
109 "Simple open/close": float(simple_open_close),
110 "Signal handler installation": float(signal_handler_install),
111 "Signal handler overhead": float(signal_handler_overhead),
112 "Protection fault": float(protection_fault),
113 "Pipe latency": float(pipe_latency),
114 "AF\\_UNIX sock stream latency": float(af_unix_stream_lat),
115 }, "select": {
116 "Select on 10 fd's": float(select_10),
117 "Select on 100 fd's": float(select_100),
118 "Select on 250 fd's": float(select_250),
119 "Select on 500 fd's": float(select_500),
120 "Select on 10 tcp fd's": float(select_tcp_10),
121 "Select on 100 tcp fd's": float(select_tcp_100),
122 "Select on 250 tcp fd's": float(select_tcp_250),
123 "Select on 500 tcp fd's": float(select_tcp_500),
124 }, "process": {
125 "Process fork+exit": float(proc_fork_exit),
126 "Process fork+execve": float(proc_fork_execve),
127 "Process fork+/bin/sh -c": float(proc_fork_bin_sh),
128 }
129 }
130 }
131

132 return res, { name: bw_res }
133

134

135 def print_plot(results, bandwidth):
136 if "gcc" not in results:
137 print("Missing results for gcc!")
138 if "clang" not in results:
139 print("Missing results for clang!")
140 if "lto" not in results:
141 print("Missing results for lto!")
142 if "cfi" not in results:
143 print("Missing results for cfi!")
144 if "lto100" not in results:
145 print("Missing results for lto100!")
146 if "cfi100" not in results:
147 print("Missing results for cfi100!")
148

149 gcc = results["gcc"]
150 clang = results["clang"]
151 lto = results["lto"]
152 cfi = results["cfi"]
153 lto_100 = results["lto100"]
154 cfi_100 = results["cfi100"]
155

156 for bench_type in gcc.keys():
157 labels = gcc[bench_type].keys()

115



158

159 x = np.arange(len(labels))
160 width = 0.12
161

162 gcc_values = list(gcc[bench_type].values())
163 clang_values = list(clang[bench_type].values())
164 lto_values = list(lto[bench_type].values())
165 cfi_values = list(cfi[bench_type].values())
166 cfi100_values = list(cfi_100[bench_type].values())
167 lto100_values = list(lto_100[bench_type].values())
168

169 fig, ax = plt.subplots()
170 rects1 = ax.bar(x - (width * 2.5), gcc_values, width, label="gcc")
171 rects2 = ax.bar(x - (width * 1.5), clang_values, width, label="clang")
172 rects3 = ax.bar(x - (width * 0.5), lto_values, width, label="lto")
173 rects4 = ax.bar(x + (width * 0.5), cfi_values, width, label="cfi")
174 rects5 = ax.bar(x + (width * 1.5), lto100_values, width,
175 label="lto_100")
176 rects6 = ax.bar(x + (width * 2.5), cfi100_values, width,
177 label="cfi_100")
178

179 ax.set_ylabel("microseconds")
180 ax.set_title("LMBench")
181 ax.set_xticks(x)
182 ax.set_xticklabels(labels)
183 ax.legend()
184 plt.xticks(rotation=90)
185

186 fig.tight_layout()
187

188 fig.savefig("lmbench_results_{}.pdf".format(bench_type),
189 bbox_inches="tight")
190

191 gcc = bandwidth["gcc"]
192 clang = bandwidth["clang"]
193 lto = bandwidth["lto"]
194 cfi = bandwidth["cfi"]
195 lto_100 = bandwidth["lto100"]
196 cfi_100 = bandwidth["cfi100"]
197 for bench_type in gcc.keys():
198 labels = gcc[bench_type].keys()
199 labels = list(gcc[bench_type].keys())
200 x = np.arange(len(labels))
201

202 gcc_values = list(gcc[bench_type].values())
203 clang_values = list(clang[bench_type].values())
204 lto_values = list(lto[bench_type].values())
205 cfi_values = list(cfi[bench_type].values())
206 lto_100_values = list(lto_100[bench_type].values())
207 cfi_100_values = list(cfi_100[bench_type].values())

116



208

209 fig, ax = plt.subplots()
210 t = list(map(float, labels))
211 ax.plot(x, gcc_values, label="gcc")
212 ax.plot(x, clang_values, label="clang")
213 ax.plot(x, lto_values, label="lto")
214 ax.plot(x, cfi_values, label="cfi")
215 ax.plot(x, lto_100_values, label="lto_100")
216 ax.plot(x, cfi_100_values, label="cfi_100")
217

218 ax.set_ylabel("MB/s")
219 ax.set_xlabel("Size in MB")
220 ax.set_title("LMBench bandwidth: {}".format(bench_type))
221 ax.set_xticks(x)
222 ax.set_xticklabels(labels)
223 plt.xticks(rotation=90)
224 ax.legend()
225

226 fig.tight_layout()
227

228 filename = bench_type.lower().replace(" ", "_").replace("/", "_")
229 fig.savefig("lmbench_results_bandwidth_{}.pdf".format(filename),
230 bbox_inches="tight")
231

232

233 def main():
234 results_path = "/var/lib/lmbench/results/x86_64-linux-gnu/"
235 files = os.listdir(results_path)
236 results = {}
237 bandwidth = {}
238 for f in files:
239 res, bw_res = convert(results_path + "/" + f)
240 results.update(res)
241 bandwidth.update(bw_res)
242

243 print_plot(results, bandwidth)
244

245

246 if __name__ == "__main__":
247 main()

To plot the results from the Android benchmarks, the following Python
script was used:

1 #!/usr/bin/env python3
2 import json
3 import sys
4 import matplotlib.pyplot as plt
5 import numpy as np
6

7

117



8 targets = [ "clang", "lto", "lto100", "cfi", "cfi100", "scs", "scs100" ]
9

10

11 def plot_binder_throughput():
12 results = {}
13 for target in targets:
14 results[target] = {}
15 filename = "binder_throughput_{}.txt".format(target)
16 with open(filename, "r") as f:
17 data = json.load(f)
18 benchmarks = data["benchmarks"]
19

20 for bench in benchmarks:
21 name = bench["name"]
22 if "_mean" not in name:
23 continue
24 size = int(name.split("/")[1].split("_")[0])
25 iterations = bench["iterations"]
26 time = bench["real_time"]
27

28 # b/ns
29 # for an approximate result, multiply the data transfer
30 # rate value by 1.074
31 throughput = (size * iterations) / time
32 print(name)
33 print("({} * {}) / {}".format(size, iterations, time))
34 print("throughput: {:.2f} b/ns".format(throughput))
35 print("throughput: {:.2f} Gb/s".format(throughput * 1.074))
36 if not name in results[target]:
37 results[target][name] = []
38 results[target][name].append(throughput)
39

40 # calculate average
41 for key, value in results.items():
42 res = results[key]
43

44 for bench_name, bench_val in value.items():
45 avg = sum(bench_val) / len(bench_val)
46 value[bench_name] = avg
47

48 clang = results["clang"].values()
49 lto = results["lto"].values()
50 lto100 = results["lto100"].values()
51 cfi = results["cfi"].values()
52 cfi100 = results["cfi100"].values()
53 scs = results["scs"].values()
54 scs100 = results["scs100"].values()
55

56 labels = [ x.split("/")[1] for x in results["clang"].keys() ]
57

118



58 x = np.arange(len(labels))
59 width = 0.12
60

61 fig, ax = plt.subplots()
62

63 rects1 = ax.bar(x - (width * 3.0), clang, width, label="clang")
64 rects2 = ax.bar(x - (width * 2.0), lto, width, label="LTO")
65 rects2 = ax.bar(x - (width * 1.0), lto, width, label="LTO_100")
66

67 rects3 = ax.bar(x + (width * 0.0), cfi, width, label="CFI")
68

69 rects3 = ax.bar(x + (width * 1.0), cfi, width, label="CFI_100")
70 rects4 = ax.bar(x + (width * 2.0), scs, width, label="SCS")
71 rects4 = ax.bar(x + (width * 3.0), scs, width, label="SCS_100")
72

73 ax.set_ylabel("Bandwidth Gb/s")
74 ax.set_xlabel("BM_sendVec_binder payload size (bytes)")
75 ax.set_title("binder throughput")
76 ax.set_xticks(x)
77 ax.set_xticklabels(labels)
78 ax.set_yscale("log", basey=2)
79 ax.legend()
80 plt.xticks(rotation=90)
81

82 fig.savefig("binder_throughput_results.pdf", bbox_inches="tight")
83

84

85 def plot_binder_latency():
86 num_pairs = 3
87 results = {}
88 for target in targets:
89 filename = "binder_latency_{}.txt".format(target)
90 with open(filename, "r") as f:
91 data = json.load(f)
92

93 # gather all pairs
94 other_ms = 0.0
95 fifo_ms = 0.0
96 for i in range(num_pairs):
97 k = "P{}".format(i)
98 other_ms_avg = data[k]["other_ms"]["avg"]
99 fifo_ms_avg = data[k]["fifo_ms"]["avg"]

100 other_ms += other_ms_avg
101 fifo_ms += fifo_ms_avg
102

103 other_ms /= num_pairs
104 fifo_ms /= num_pairs
105

106 results[target] = (other_ms, fifo_ms)
107

119



108 labels = [ "other_ms", "fifo_ms" ]
109 clang = results["clang"]
110 lto = results["lto"]
111 lto100 = results["lto100"]
112 cfi = results["cfi"]
113 cfi100 = results["cfi100"]
114 scs = results["scs"]
115 scs100 = results["scs100"]
116

117 x = np.arange(len(labels))
118 width = 0.12
119

120 fig, ax = plt.subplots()
121 rects1 = ax.bar(x - (width * 3.0), clang, width, label="clang")
122 rects2 = ax.bar(x - (width * 2.0), lto, width, label="LTO")
123 rects3 = ax.bar(x - (width * 1.0), lto100, width, label="LTO_100")
124 rects4 = ax.bar(x + (width * 0.0), cfi, width, label="CFI")
125 rects5 = ax.bar(x + (width * 1.0), cfi100, width, label="CFI_100")
126 rects6 = ax.bar(x + (width * 2.0), scs, width, label="SCS")
127 rects7 = ax.bar(x + (width * 3.0), scs100, width, label="SCS_100")
128 ax.set_ylabel("ms")
129 ax.set_title("binder latency")
130 ax.set_xticks(x)
131 ax.set_xticklabels(labels)
132 ax.legend()
133 plt.xticks(rotation=90)
134

135 fig.savefig("binder_latency_results.pdf", bbox_inches="tight")
136

137

138 def plot_hwbinder_latency():
139 # hwbinder latency results have an ALL key that can be used to
140 # get the average for all runs
141 results = {}
142 for target in targets:
143 filename = "hwbinder_latency_{}.txt".format(target)
144 with open(filename, "r") as f:
145 data = json.load(f)
146

147 # gather all pairs
148 other_ms = data["ALL"]["other_ms"]["avg"]
149 fifo_ms = data["ALL"]["fifo_ms"]["avg"]
150

151 results[target] = (other_ms, fifo_ms)
152

153 labels = [ "other_ms", "fifo_ms" ]
154 clang = results["clang"][:2]
155 lto = results["lto"][:2]
156 lto100 = results["lto100"][:2]
157 cfi = results["cfi"][:2]

120



158 cfi100 = results["cfi100"][:2]
159 scs = results["scs"][:2]
160 scs100 = results["scs100"][:2]
161

162 x = np.arange(len(labels))
163 width = 0.12
164

165 fig, ax = plt.subplots()
166 rects1 = ax.bar(x - (width * 3.0), clang, width, label="clang")
167 rects2 = ax.bar(x - (width * 2.0), lto, width, label="LTO")
168 rects3 = ax.bar(x - (width * 1.0), lto100, width, label="LTO_100")
169 rects4 = ax.bar(x + (width * 0.0), cfi, width, label="CFI")
170 rects5 = ax.bar(x + (width * 1.0), cfi100, width, label="CFI_100")
171 rects6 = ax.bar(x + (width * 2.0), scs, width, label="SCS")
172 rects7 = ax.bar(x + (width * 3.0), scs100, width, label="SCS_100")
173 ax.set_ylabel("ms")
174 ax.set_title("hwbinder latency")
175 ax.set_xticks(x)
176 ax.set_xticklabels(labels)
177 ax.legend()
178 plt.xticks(rotation=90)
179

180 fig.savefig("hwbinder_latency_results.pdf", bbox_inches="tight")
181

182

183 def plot_hwbinder_througput():
184 results = {}
185 for target in targets:
186 results[target] = {}
187 filename = "hwbinder_throughput_{}.txt".format(target)
188 with open(filename, "r") as f:
189 data = json.load(f)
190 benchmarks = data["benchmarks"]
191 for bench in benchmarks:
192 name = bench["name"]
193 if "_mean" not in name:
194 continue
195 size = int(name.split("/")[1].split("_")[0])
196 iterations = bench["iterations"]
197 time = bench["real_time"]
198

199 # b/ns
200 # for an approximate result, multiply the data
201 # transfer rate value by 1.074
202 throughput = (size * iterations) / time
203 print(name)
204 print("({} * {}) / {}".format(size, iterations, time))
205 print("throughput: {:.2f} b/ns".format(throughput))
206 print("throughput: {:.2f} Gb/s".format(throughput * 1.074))
207 if not name in results[target]:

121



208 results[target][name] = []
209 results[target][name].append(throughput)
210

211 # calculate average of results
212 avg_results = {}
213 for target in targets:
214 avg_results[target] = {}
215

216 for key, value in results.items():
217 # calculate average
218 res = results[key]
219

220 for bench_name, bench_val in value.items():
221 avg = sum(bench_val) / len(bench_val)
222 value[bench_name] = avg
223

224 clang = results["clang"].values()
225 lto = results["lto"].values()
226 lto100 = results["lto100"].values()
227 cfi = results["cfi"].values()
228 cfi100 = results["cfi100"].values()
229 scs = results["scs"].values()
230 scs100 = results["scs100"].values()
231

232 labels = [ x.split("/")[1].split("_")[0] for x in results["clang"].keys() ]
233

234 x = np.arange(len(labels))
235 width = 0.12
236

237 fig, ax = plt.subplots()
238

239 rects1 = ax.bar(x - (width * 3.0), clang, width, label="clang")
240 rects2 = ax.bar(x - (width * 2.0), lto, width, label="LTO")
241 rects3 = ax.bar(x - (width * 1.0), lto100, width, label="LTO_100")
242 rects4 = ax.bar(x + (width * 0.0), cfi, width, label="CFI")
243 rects5 = ax.bar(x + (width * 1.0), cfi100, width, label="CFI_100")
244 rects6 = ax.bar(x + (width * 2.0), scs, width, label="SCS")
245 rects7 = ax.bar(x + (width * 3.0), scs100, width, label="SCS_100")
246

247 ax.set_ylabel("Bandwidth Gb/s")
248 ax.set_title("hwbinder throughput")
249 ax.set_xticks(x)
250 ax.set_xlabel("BM_sendVec_binderize")
251 ax.set_xticklabels(labels)
252 ax.set_yscale("log", basey=2)
253 ax.legend()
254 plt.xticks(rotation=90)
255

256 fig.savefig("hwbinder_throughput_results.pdf", bbox_inches="tight")
257

122



258

259 def main():
260 plot_binder_throughput()
261 plot_binder_latency()
262 plot_hwbinder_latency()
263 plot_hwbinder_througput()
264

265

266 if __name__ == "__main__":
267 main()

A.7 WireGuard benchmarking
The script used for benchmarking WireGuard bandwidth is based on the same
used in the Phoronix Test Suite. It is made by the WireGuard author, Jason
A. Donenfeld. The script was downloaded from openbenchmarking.org, where
many benchmarking suites for the Phoronix Test Suite are located. The url used
was http://www.phoronix-test-suite.com/benchmark-files/wireguard-for-pts-1.
tar.xz.

1 #!/bin/bash
2 # SPDX-License-Identifier: GPL-2.0
3 #
4 # Copyright (C) 2015-2020 Jason A. Donenfeld <Jason@zx2c4.com>.
5 # All Rights Reserved.
6 #
7 # NOTE: the original comment about topology is removed since LaTeX is crap at
8 # handling UTF-8
9 set -e

10

11 exec 3>&1
12 export LANG=C
13 netns0="wg-test-$$-0"
14 netns1="wg-test-$$-1"
15 netns2="wg-test-$$-2"
16 pretty() { echo -e "\x1b[32m\x1b[1m[+] ${1:+NS$1: }${2}\x1b[0m" >&3; }
17 pp() { pretty "" "$*"; "$@"; }
18 maybe_exec() { if [[ $BASHPID -eq $$ ]]; then "$@"; else exec "$@"; fi; }
19 n0() { pretty 0 "$*"; maybe_exec ip netns exec $netns0 "$@"; }
20 n1() { pretty 1 "$*"; maybe_exec ip netns exec $netns1 "$@"; }
21 n2() { pretty 2 "$*"; maybe_exec ip netns exec $netns2 "$@"; }
22 ip0() { pretty 0 "ip $*"; ip -n $netns0 "$@"; }
23 ip1() { pretty 1 "ip $*"; ip -n $netns1 "$@"; }
24 ip2() { pretty 2 "ip $*"; ip -n $netns2 "$@"; }
25 waitiperf() { pretty "${1//*-}" "wait for iperf:5201 pid $2";
26 while [[ $(ss -N "$1" -tlpH 'sport = 5201') != *\"iperf3\",pid=$2,fd=* ]];
27 do sleep 0.1; done;
28 }
29 ping6="ping6"

123



30 type $ping6 >/dev/null 2>&1 || ping6="ping -6"
31

32 cleanup() {
33 set +e
34 exec 2>/dev/null
35 ip0 link del dev wg0
36 ip1 link del dev wg0
37 ip2 link del dev wg0
38 local to_kill="$(ip netns pids $netns0) $(ip netns pids $netns1) \
39 $(ip netns pids $netns2)"
40 [[ -n $to_kill ]] && kill $to_kill
41 pp ip netns del $netns1
42 pp ip netns del $netns2
43 pp ip netns del $netns0
44 exit
45 }
46

47 trap cleanup EXIT
48

49 ip netns del $netns0 2>/dev/null || true
50 ip netns del $netns1 2>/dev/null || true
51 ip netns del $netns2 2>/dev/null || true
52 pp ip netns add $netns0
53 pp ip netns add $netns1
54 pp ip netns add $netns2
55 ip0 link set up dev lo
56

57 ip0 link add dev wg0 type wireguard
58 ip0 link set wg0 netns $netns1
59 ip0 link add dev wg0 type wireguard
60 ip0 link set wg0 netns $netns2
61 key1="$(pp wg genkey)"
62 key2="$(pp wg genkey)"
63 pub1="$(pp wg pubkey <<<"$key1")"
64 pub2="$(pp wg pubkey <<<"$key2")"
65

66 configure_peers() {
67 ip1 addr add 192.168.241.1/24 dev wg0
68 ip1 addr add fd00::1/24 dev wg0
69

70 ip2 addr add 192.168.241.2/24 dev wg0
71 ip2 addr add fd00::2/24 dev wg0
72

73 n1 wg set wg0 \
74 private-key <(echo "$key1") \
75 listen-port 1 \
76 peer "$pub2" \
77 allowed-ips 192.168.241.2/32,fd00::2/128
78 n2 wg set wg0 \
79 private-key <(echo "$key2") \

124



80 listen-port 2 \
81 peer "$pub1" \
82 allowed-ips 192.168.241.1/32,fd00::1/128
83

84 ip1 link set up dev wg0
85 ip2 link set up dev wg0
86 }
87 configure_peers
88

89 tests() {
90 # Ping over IPv4
91 n2 ping -c 10 -f -W 1 192.168.241.1
92 n1 ping -c 10 -f -W 1 192.168.241.2
93

94 # Ping over IPv6
95 n2 $ping6 -c 10 -f -W 1 fd00::1
96 n1 $ping6 -c 10 -f -W 1 fd00::2
97

98 # TCP over IPv4
99 n2 iperf3 -s -1 -B 192.168.241.2 &

100 waitiperf $netns2 $!
101 n1 iperf3 -J --logfile tcp_ipv4_$1_ipv$2_outer_$(uname -r).json -Z \
102 -n 10G -c 192.168.241.2
103

104 # TCP over IPv6
105 n1 iperf3 -s -1 -B fd00::1 &
106 waitiperf $netns1 $!
107 n2 iperf3 -J --logfile tcp_ipv6_$1_ipv$2_outer_$(uname -r).json -Z \
108 -n 10G -c fd00::1
109

110 # UDP over IPv4
111 n1 iperf3 -s -1 -B 192.168.241.1 &
112 waitiperf $netns1 $!
113 n2 iperf3 -J --logfile udp_ipv4_$1_ipv$2_outer_$(uname -r).json -Z \
114 -n 10G -b 0 -u -c 192.168.241.1
115

116 # UDP over IPv6
117 n2 iperf3 -s -1 -B fd00::2 &
118 waitiperf $netns2 $!
119 n1 iperf3 -J --logfile udp_ipv6_$1_ipv$2_outer_$(uname -r).json -Z \
120 -n 10G -b 0 -u -c fd00::2
121 }
122

123 [[ $(ip1 link show dev wg0) =˜ mtu\ ([0-9]+) ]] && \
124 orig_mtu="${BASH_REMATCH[1]}"
125 big_mtu=$(( 34816 - 1500 + $orig_mtu ))
126

127 # Test using IPv4 as outer transport
128 n1 wg set wg0 peer "$pub2" endpoint 127.0.0.1:2
129 n2 wg set wg0 peer "$pub1" endpoint 127.0.0.1:1

125



130 tests "normal" "4"
131 ip1 link set wg0 mtu $big_mtu
132 ip2 link set wg0 mtu $big_mtu
133 tests "jumbo" "4"
134

135 ip1 link set wg0 mtu $orig_mtu
136 ip2 link set wg0 mtu $orig_mtu
137

138 # Test using IPv6 as outer transport
139 n1 wg set wg0 peer "$pub2" endpoint [::1]:2
140 n2 wg set wg0 peer "$pub1" endpoint [::1]:1
141 tests "normal" "6"
142 ip1 link set wg0 mtu $big_mtu
143 ip2 link set wg0 mtu $big_mtu
144 tests "jumbo" "6"

The modifications changes the output format to JSON and writes every
benchmark to a separate file.

The following Python script was used to plot the WireGuard results:

1 #!/usr/bin/env python3
2 import json
3 import os
4 import re
5 import sys
6 import matplotlib.pyplot as plt
7 import numpy as np
8 from collections import OrderedDict
9

10

11 targets = [ "gcc", "clang", "lto", "lto100", "cfi", "cfi100" ]
12

13 # Several tests are run:
14 # - normal MTU: v4 over v4, tcp
15 # - normal MTU: v4 over v6, tcp
16 # - normal MTU: v6 over v4, tcp
17 # - normal MTU: v6 over v6, tcp
18 # - normal MTU: v4 over v4, udp
19 # - normal MTU: v4 over v6, udp
20 # - normal MTU: v6 over v4, udp
21 # - normal MTU: v6 over v6, udp
22 # - jumbo MTU: v4 over v4, tcp
23 # - jumbo MTU: v4 over v6, tcp
24 # - jumbo MTU: v6 over v4, tcp
25 # - jumbo MTU: v6 over v6, tcp
26 # - jumbo MTU: v4 over v4, udp
27 # - jumbo MTU: v4 over v6, udp
28 # - jumbo MTU: v6 over v4, udp
29 # - jumbo MTU: v6 over v6, udp
30

31 # format:

126



32 # {tcp,udp}_ipv{4,6}_{normal,jumbo},ipv{4,6}_outer_uname.json
33

34

35 def generate_table(values, labels, bench_type, proto):
36 targets = [ "gcc", "clang", "lto", "cfi", "lto100", "cfi100" ]
37 out = """\\begin{table*}[!htbp]
38 \\begin{adjustbox}{width=1\\textwidth}
39 \\centering
40 \\begin{tabular}{@{}lllllllllllllllllll@{}}
41 kernel"""
42 for label in labels:
43 out += " & {}".format(label.replace("_", "\\_"))
44 out += " \\\\\n"
45 out += "\\midrule\n"
46

47 fixed_results = {}
48

49 for target in targets:
50 fixed_results[target] = []
51

52 print(values)
53 for i in range(len(labels)):
54 res = []
55 for target in targets:
56 if proto == "udp":
57 res.append(values[target][i])
58 else:
59 res.append(values[target][i][bench_type])
60

61 # calculate the best result
62 best = max(res)
63

64 for i in range(len(res)):
65 val = res[i]
66 if val == best:
67 res[i] = 0.0
68 else:
69 res[i] = (float(best - val) / val) * 100
70

71 for i in range(len(targets)):
72 target = targets[i]
73 fixed_results[target].append(res[i])
74

75 for target in targets:
76 out += "\t\t{}".format(target)
77

78 for result in fixed_results[target]:
79 if result == 0.0:
80 out += " & \\cellcolor{{green!50}}0.0".format(result)
81 elif result > 5.0:

127



82 out += " & \\cellcolor{{red!50}}{:.2f}".format(result)
83 else:
84 out += " & \\cellcolor{{yellow!50}}{:.2f}".format(result)
85 out += " \\\\\n"
86 out += "\\bottomrule\n"
87 out += "\\end{tabular}\n"
88 out += "\\end{adjustbox}\n"
89 out += "\\caption{{WireGuard {} {} bandwidth}}\n".format(proto, bench_type)
90 out += "\\label{{table:wg_{}_{}_bandwidth_results}}\n".format(proto, bench_type)
91 out += "\\end{table*}\n"
92

93 print(out)
94

95 def main():
96 files = os.listdir("wg_results")
97 results = {}
98

99 for target in targets:
100 results[target] = {}
101

102 for f in files:
103 print("parsing file {}...".format(f))
104 pattern = r"(tcp|udp)_ipv(4|6)_(normal|jumbo)_ipv(4|6)_outer_5.7.0-"
105 pattern += r"rc2-([a-z0-9]+)\+.json"
106 m = re.match(pattern, f)
107

108 transport = m.group(1)
109 proto = m.group(2)
110 mtu = m.group(3)
111 outer = m.group(4)
112 name = m.group(5)
113

114 res_name = "{}_ipv{}_{}_ipv{}".format(transport, proto, mtu, outer)
115 if not results[name]:
116 results[name]["tcp"] = {}
117 results[name]["udp"] = {}
118

119 with open("wg_results/" + f, "r") as jf:
120 data = json.load(jf)
121

122 end = data["end"]
123

124 if "sum_sent" in end:
125 results[name]["tcp"][res_name] = {}
126 results[name]["tcp"][res_name]["received"] = \
127 end["sum_received"]["bits_per_second"]
128 results[name]["tcp"][res_name]["sent"] = \
129 end["sum_sent"]["bits_per_second"]
130 else:
131 results[name]["udp"][res_name] = {}

128



132 results[name]["udp"][res_name] = end["sum"]["bits_per_second"]
133

134 # start with udp results
135 gcc = results["gcc"]
136 clang = results["clang"]
137 lto = results["lto"]
138 cfi = results["cfi"]
139 lto100 = results["lto100"]
140 cfi100 = results["cfi100"]
141

142 width = 0.12
143

144 gcc["udp"] = dict(sorted(gcc["udp"].items()))
145 clang["udp"] = dict(sorted(clang["udp"].items()))
146 lto["udp"] = dict(sorted(lto["udp"].items()))
147 lto100["udp"] = dict(sorted(lto100["udp"].items()))
148 cfi["udp"] = dict(sorted(cfi["udp"].items()))
149 cfi100["udp"] = dict(sorted(cfi100["udp"].items()))
150

151 gcc["tcp"] = dict(sorted(gcc["tcp"].items()))
152 clang["tcp"] = dict(sorted(clang["tcp"].items()))
153 lto["tcp"] = dict(sorted(lto["tcp"].items()))
154 lto100["tcp"] = dict(sorted(lto100["tcp"].items()))
155 cfi["tcp"] = dict(sorted(cfi["tcp"].items()))
156 cfi100["tcp"] = dict(sorted(cfi100["tcp"].items()))
157

158 labels = cfi100["udp"].keys()
159 x = np.arange(len(labels))
160

161 fig, ax = plt.subplots()
162

163 rects1 = ax.bar(x - (width * 2.5), gcc["udp"].values(),
164 width, label="gcc")
165 rects2 = ax.bar(x - (width * 1.5), clang["udp"].values(),
166 width, label="clang")
167 rects3 = ax.bar(x - (width * 0.5), lto["udp"].values(),
168 width, label="lto")
169 rects4 = ax.bar(x + (width * 0.5), lto100["udp"].values(),
170 width, label="lto100")
171 rects5 = ax.bar(x + (width * 1.5), cfi["udp"].values(),
172 width, label="cfi")
173 rects6 = ax.bar(x + (width * 2.5), cfi100["udp"].values(),
174 width, label="cfi100")
175

176 ax.set_ylabel("Throughput")
177 ax.set_title("WireGuard")
178 ax.set_xticks(x)
179 ax.set_xticklabels(labels)
180 ax.legend()
181 plt.xticks(rotation=90)

129



182 fig.savefig("wireguard_results_udp.pdf", bbox_inches="tight")
183

184 udp_values = { "gcc": list(gcc["udp"].values()),
185 "clang": list(clang["udp"].values()),
186 "lto": list(lto["udp"].values()),
187 "lto100": list(lto100["udp"].values()),
188 "cfi": list(cfi["udp"].values()),
189 "cfi100": list(cfi100["udp"].values()) }
190

191 generate_table(udp_values, labels, "send", "udp")
192

193 # now tcp receive results
194 labels = results["cfi100"]["tcp"].keys()
195 x = np.arange(len(labels))
196

197 width = 0.12
198 fig, ax = plt.subplots()
199

200 rects1 = ax.bar(x - (width * 2.5), list(map(lambda x: x["received"],
201 gcc["tcp"].values())), width, label="gcc")
202 rects2 = ax.bar(x - (width * 1.5), list(map(lambda x: x["received"],
203 clang["tcp"].values())), width, label="clang")
204 rects3 = ax.bar(x - (width * 0.5), list(map(lambda x: x["received"],
205 lto["tcp"].values())), width, label="lto")
206 rects4 = ax.bar(x + (width * 0.5), list(map(lambda x: x["received"],
207 lto100["tcp"].values())), width, label="lto100")
208 rects5 = ax.bar(x + (width * 1.5), list(map(lambda x: x["received"],
209 cfi["tcp"].values())), width, label="cfi")
210 rects6 = ax.bar(x + (width * 2.5), list(map(lambda x: x["received"],
211 cfi100["tcp"].values())), width, label="cfi100")
212

213 ax.set_ylabel("Throughput")
214 ax.set_title("WireGuard TCP receive")
215 ax.set_xticks(x)
216 ax.set_xticklabels(labels)
217 ax.legend()
218 plt.xticks(rotation=90)
219 fig.savefig("wireguard_results_tcp_recv.pdf", bbox_inches="tight")
220 tcp_values = { "gcc": list(gcc["tcp"].values()),
221 "clang": list(clang["tcp"].values()),
222 "lto": list(lto["tcp"].values()),
223 "lto100": list(lto100["tcp"].values()),
224 "cfi": list(cfi["tcp"].values()),
225 "cfi100": list(cfi100["tcp"].values()) }
226

227 generate_table(tcp_values, labels, "received", "tcp")
228

229 # now tcp sent results
230 labels = results["cfi100"]["tcp"].keys()
231 x = np.arange(len(labels))

130



232

233 width = 0.12
234 fig, ax = plt.subplots()
235

236 rects1 = ax.bar(x - (width * 2.5), list(map(lambda x: x["sent"],
237 gcc["tcp"].values())), width, label="gcc")
238 rects2 = ax.bar(x - (width * 1.5), list(map(lambda x: x["sent"],
239 clang["tcp"].values())), width, label="clang")
240 rects3 = ax.bar(x - (width * 0.5), list(map(lambda x: x["sent"],
241 lto["tcp"].values())), width, label="lto")
242 rects4 = ax.bar(x + (width * 0.5), list(map(lambda x: x["sent"],
243 lto100["tcp"].values())), width, label="lto100")
244 rects5 = ax.bar(x + (width * 1.5), list(map(lambda x: x["sent"],
245 cfi["tcp"].values())), width, label="cfi")
246 rects6 = ax.bar(x + (width * 2.5), list(map(lambda x: x["sent"],
247 cfi100["tcp"].values())), width, label="cfi100")
248

249 ax.set_ylabel("Throughput")
250 ax.set_title("WireGuard TCP send")
251 ax.set_xticks(x)
252 ax.set_xticklabels(labels)
253 ax.legend()
254 plt.xticks(rotation=90)
255 fig.savefig("wireguard_results_tcp_send.pdf", bbox_inches="tight")
256 generate_table(tcp_values, labels, "sent", "tcp")
257

258

259 if __name__ == "__main__":
260 main()

131



Appendix B

Code

B.1 CFI failure fixes
The following patch fixes a CFI error because of a parameter mismatch in the
callback function passed to is mmconf reserved() in pci mmcfg check reserved().
To avoid the CFI error a new callback friendly variant of e820 mapped all()
is introduced which has the correct function signature.

1 diff --git a/arch/x86/include/asm/e820/api.h b/arch/x86/include/asm/e820/api.h
2 index e8f58ddd06d9..a3de25ee4f3d 100644
3 --- a/arch/x86/include/asm/e820/api.h
4 +++ b/arch/x86/include/asm/e820/api.h
5 @@ -13,6 +13,7 @@ extern unsigned long pci_mem_start;
6 extern bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type);
7 extern bool e820__mapped_any(u64 start, u64 end, enum e820_type type);
8 extern bool e820__mapped_all(u64 start, u64 end, enum e820_type type);
9 +extern bool e820__mapped_all_cb(u64 start, u64 end, unsigned type);

10

11 extern void e820__range_add (u64 start, u64 size, enum e820_type type);
12 extern u64 e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type);
13 diff --git a/arch/x86/kernel/e820.c b/arch/x86/kernel/e820.c
14 index c5399e80c59c..5f6ceb7d1e46 100644
15 --- a/arch/x86/kernel/e820.c
16 +++ b/arch/x86/kernel/e820.c
17 @@ -103,6 +103,7 @@ bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
18 }
19 EXPORT_SYMBOL_GPL(e820__mapped_any);
20

21 +
22 /*
23 * This function checks if the entire <start,end> range is mapped with 'type'.
24 *
25 @@ -150,6 +151,11 @@ bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
26 return __e820__mapped_all(start, end, type);
27 }
28

29 +bool __init e820__mapped_all_cb(u64 start, u64 end, unsigned type)
30 +{
31 + return e820__mapped_all(start, end, (enum e820_type)type);
32 +}
33 +
34 /*
35 * This function returns the type associated with the range <start,end>.
36 */

132



37 diff --git a/arch/x86/pci/mmconfig-shared.c b/arch/x86/pci/mmconfig-shared.c
38 index 6fa42e9c4e6f..441d91c888a0 100644
39 --- a/arch/x86/pci/mmconfig-shared.c
40 +++ b/arch/x86/pci/mmconfig-shared.c
41 @@ -527,7 +527,7 @@ pci_mmcfg_check_reserved(struct device *dev, struct pci_mmcfg_region *cfg, int e
42 /* Don't try to do this check unless configuration
43 type 1 is available. how about type 2 ?*/
44 if (raw_pci_ops)
45 - return is_mmconf_reserved(e820__mapped_all, cfg, dev, 1);
46 + return is_mmconf_reserved(e820__mapped_all_cb, cfg, dev, 1);
47

48 return 0;
49 }

B.2 Inline limit patch
For vanilla kernel.

1 diff --git a/Makefile b/Makefile
2 index 6444e5d024a6..a3da144939fc 100644
3 --- a/Makefile
4 +++ b/Makefile
5 @@ -882,7 +882,7 @@ endif
6 CC_FLAGS_LTO_CLANG += -fvisibility=default
7

8 # Limit inlining across translation units to reduce binary size
9 -LD_FLAGS_LTO_CLANG := -mllvm -import-instr-limit=5

10 +LD_FLAGS_LTO_CLANG := -mllvm -import-instr-limit=$(CONFIG_LTO_INLINE_LIMIT)
11 KBUILD_LDFLAGS += $(LD_FLAGS_LTO_CLANG)
12

13 KBUILD_LDS_MODULE += scripts/module-lto.lds
14 diff --git a/arch/Kconfig b/arch/Kconfig
15 index 98bc6e41821a..f3aafcc0836a 100644
16 --- a/arch/Kconfig
17 +++ b/arch/Kconfig
18 @@ -582,6 +582,17 @@ config THINLTO
19 help
20 Use ThinLTO to speed up Link Time Optimization.
21

22 +config LTO_INLINE_LIMIT
23 + int "LTO inline limit"
24 + depends on LTO_CLANG
25 + default 5
26 + help
27 + This option controls the function size limit when inlining functions.
28 + Increasing this number can lead to a high increase in binary size.
29 + The number is the maximum number of instructions allowed for a function
30 + to be inlined. So for the default value of 5, only functions with less
31 + than 5 instructions will be inlined.
32 +
33 choice
34 prompt "Link-Time Optimization (LTO) (EXPERIMENTAL)"
35 default LTO_NONE

For the Hikey 4.19 kernel:

1 diff --git a/Makefile b/Makefile
2 index 584aff800..787c2e345 100644
3 --- a/Makefile
4 +++ b/Makefile
5 @@ -822,7 +822,7 @@ endif

133



6 lto-clang-flags += -fvisibility=default $(call cc-option, -fsplit-lto-unit)
7

8 # Limit inlining across translation units to reduce binary size
9 -LD_FLAGS_LTO_CLANG := -mllvm -import-instr-limit=5

10 +LD_FLAGS_LTO_CLANG := -mllvm -import-instr-limit=$(CONFIG_LTO_INLINE_LIMIT)
11

12 KBUILD_LDFLAGS += $(LD_FLAGS_LTO_CLANG)
13 KBUILD_LDFLAGS_MODULE += $(LD_FLAGS_LTO_CLANG)
14 diff --git a/arch/Kconfig b/arch/Kconfig
15 index 6b6c82713..2c202e385 100644
16 --- a/arch/Kconfig
17 +++ b/arch/Kconfig
18 @@ -498,6 +498,17 @@ config THINLTO
19 help
20 Use ThinLTO to speed up Link Time Optimization.
21

22 +config LTO_INLINE_LIMIT
23 + int "LTO inline limit"
24 + depends on LTO_CLANG
25 + default 5
26 + help
27 + This option controls the function size limit when inlining functions.
28 + Increasing this number can lead to a high increase in binary size.
29 + The number is the maximum number of instructions allowed for a function
30 + to be inlined. So for the default value of 5, only functions with less
31 + than 5 instructions will be inlined.
32 +
33 choice
34 prompt "Link-Time Optimization (LTO) (EXPERIMENTAL)"
35 default LTO_NONE

134



Bibliography

[1] Mart́ın Abadi et al. “Control-flow integrity principles, implementations,
and applications.” In: ACM Transactions on Information and System
Security (TISSEC) 13.1 (2009), pp. 1–40.

[2] Active kernel releases. https://www.kernel.org/category/release
s.html. [Online; accessed 30-January-2020]. 2018.

[3] One Aleph. “Smashing the stack for fun and profit.” In: Phrack 49
(1996).

[4] Android. Building Kernels. https://source.android.com/setup/
build/building-kernels. [Online; accessed 06-May-2020].

[5] Android. Performance Testing. https://source.android.com/compa
tibility/vts/performance. [Online; accessed 02-May-2020].

[6] Android. Using Binder IPC. https://source.android.com/devices/
architecture/hidl/binder-ipc. [Online; accessed 06-May-2020].

[7] ARM. ARM® Cortex®-A Series - Programmer’s Guide for ARMv8-A.
English. Mar. 24, 2015.

[8] Roberto Avanzi. “The QARMA block cipher family. Almost MDS ma-
trices over rings with zero divisors, nearly symmetric even-mansour con-
structions with non-involutory central rounds, and search heuristics for
low-latency s-boxes.” In: IACR Transactions on Symmetric Cryptology
(2017), pp. 4–44.

[9] John Aycock. “A brief history of just-in-time.” In: ACM Computing
Surveys (CSUR) 35.2 (2003), pp. 97–113.

[10] Brandon Azad. Examining Pointer Authentication on the iPhone XS.
https://googleprojectzero.blogspot.com/2019/02/examining-
pointer-authentication-on.html. 2019.

[11] Fabrice Bellard. “QEMU, a fast and portable dynamic translator.” In:
USENIX Annual Technical Conference, FREENIX Track. 2005, pp. 41–
46.

[12] Sandeep Bhatkar, Daniel C DuVarney, and Ron Sekar. “Address Ob-
fuscation: An Efficient Approach to Combat a Broad Range of Memory
Error Exploits.” In: USENIX Security Symposium. Vol. 12. 2. 2003,
pp. 291–301.

[13] Joe Bialek et al. “Security analysis of memory tagging.” In: (2020).

135



[14] Chong Xu Bing Sun Jin Liu. How to Survive the Hardware-assisted
Controlflow Integrity Enforcement. https://i.blackhat.com/asia-
19/Thu-March-28/bh-asia-Sun-How-to-Survive-the-Hardware-
Assisted-Control-Flow-Integrity-Enforcement.pdf.

[15] Tyler Bletsch et al. “Jump-oriented programming: a new class of code-
reuse attack.” In: Proceedings of the 6th ACM Symposium on Informa-
tion, Computer and Communications Security. 2011, pp. 30–40.

[16] Daniel Pierre Bovet. Implementing virtual system calls. https://lwn.
net/Articles/615809/. [Online; accessed 05-February-2020].

[17] Canonical. Ubuntu. https://ubuntu.com/.
[18] ClangBuiltLinux. https://clangbuiltlinux.github.io/. [Online;

accessed 22-January-2020].
[19] ClangBuiltLinux GitHub. https://github.com/ClangBuiltLinux/

linux/. [Online; accessed 22-January-2020].
[20] Kees Cook. experimenting with Clang CFI on upstream Linux. https:

//outflux.net/blog/archives/2019/11/20/experimenting-with-
clang- cfi- on- upstream- linux/. [Online; accessed 23-April-2020].
2019.

[21] Jonathan Corbet. Kernel support for control-flow enforcement. https:
//lwn.net/Articles/758245/.

[22] Jonathan Corbet and Greg Kroah-Hartman. Linux Kernel Development
Report. https://www.linuxfoundation.org/2017-linux-kernel-
report-landing-page/. [Online; 28-April-2019]. 2017.

[23] Crispan Cowan et al. “Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks.” In: USENIX security symposium.
Vol. 98. San Antonio, TX. 1998, pp. 63–78.

[24] Debian. https://www.debian.org/.
[25] Solar Designer. “Getting around non-executable stack (and fix).” In:

Bugtraq (1997).
[26] Jason A. Donenfeld. “WireGuard: Next Generation Kernel Network

Tunnel.” In: Proceedings of the 2017 Network and Distributed System
Security Symposium. Document ID: 4846ada1492f5d92198df154f48c3d54205657bc.
San Diego, CA, 2017. isbn: 1-891562-46-0. url: https://www.wiregu
ard.com/papers/wireguard.pdf.

[27] Jake Edge. Namespaces in operation, part 7: Network namespaces. ht
tps://lwn.net/Articles/580893/. [Online; accessed 22-April-2020].
Jan. 22, 2014.

[28] Ted Eisenberg et al. “The Cornell commission: on Morris and the worm.”
In: Communications of the ACM 32.6 (1989), pp. 706–709.

[29] glibc. Locales in GLIBC. https://sourceware.org/glibc/wiki/
Locales. [Online; accessed 05-February-2020].

[30] GNU. https://www.gnu.org/.
[GPL] GNU General Public License. Version 2. Free Software Foundation,

June 1991. url: https://www.gnu.org/licenses/old-licenses/
gpl-2.0.en.html.

136



[31] Google. Android. https://www.android.com/.
[32] Istvan Haller et al. “Typesan: Practical type confusion detection.” In:

Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. 2016, pp. 517–528.

[33] Hex-Rays. IDA Pro. https://www.hex- rays.com/products/ida/
index.shtml.

[34] Hong Hu et al. “Data-oriented programming: On the expressiveness of
non-control data attacks.” In: 2016 IEEE Symposium on Security and
Privacy (SP). IEEE. 2016, pp. 969–986.

[35] Docker Inc. Docker. https://www.docker.com/.
[36] Intel. Control-flow Enforcement Technology Specification. https://sof

tware.intel.com/sites/default/files/managed/4d/2a/control-
flow-enforcement-technology-preview.pdf. [Online; accessed 31-
January-2020]. May 2019.

[37] Vasileios P Kemerlis, Georgios Portokalidis, and Angelos D Keromytis.
“kGuard: lightweight kernel protection against return-to-user attacks.”
In: 21st {USENIX} Security Symposium ({USENIX} Security 12). 2012,
pp. 459–474.

[38] Michael Kerrisk. Namespaces in operation, part 1: namespaces overview.
https://lwn.net/Articles/531114/. [Online; accessed 22-April-
2020]. Jan. 4, 2013.

[39] Michael Kerrisk. Namespaces in operation, part 2: the namespaces API.
https://lwn.net/Articles/531381/. [Online; accessed 22-April-
2020]. Jan. 8, 2013.

[40] Michael Kerrisk. Namespaces in operation, part 3: PID namespaces.
https://lwn.net/Articles/531419/. [Online; accessed 22-April-
2020]. Jan. 16, 2013.

[41] Michael Kerrisk. Namespaces in operation, part 4: more on PID names-
paces. https://lwn.net/Articles/532748/. [Online; accessed 22-
April-2020]. Jan. 23, 2013.

[42] Michael Kerrisk. Namespaces in operation, part 5: User namespaces.
https://lwn.net/Articles/532593/. [Online; accessed 22-April-
2020]. Feb. 27, 2013.

[43] Michael Kerrisk. Namespaces in operation, part 6: more on user names-
paces. https://lwn.net/Articles/540087/. [Online; accessed 22-
April-2020]. Mar. 6, 2013.

[44] Chris Lattner. “LLVM: An Infrastructure for Multi-Stage Optimiza-
tion.” See http://llvm.cs.uiuc.edu. MA thesis. Urbana, IL: Com-
puter Science Dept., University of Illinois at Urbana-Champaign, Dec.
2002.

[45] Linux. https://www.kernel.org.
[46] Moritz Lipp et al. “Meltdown.” In: arXiv preprint arXiv:1801.01207

(2018).

137



[47] LLVM. LLVM Link Time Optimization: Design and Implementation.
https : / / llvm . org / docs / LinkTimeOptimization . html. [Online;
accessed 25-May-2020].

[48] LLVM. ShadowCallStack. Clang 11 documentation. https://clang.l
lvm.org/docs/ShadowCallStack.html. [Online; accessed 31-January-
2020].

[49] LLVM. THINLTO. https://llvm.org/docs/LinkTimeOptimization
.html. [Online; accessed 25-May-2020].

[50] LLVM. UndefinedBehaviorSanitizer. https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html. [Online; accessed 25-May-2020].

[51] LLVM.org. https://llvm.org/. [Online; accessed 21-January-2020].
[52] H.J. Lu. Control-flow Enforcement Technology. https://www.linuxp

lumbersconf.org/event/2/contributions/147/attachments/72/
83/CET-LPC-2018.pdf. Nov. 2018.

[53] Linux Programmer’s Manual. elf - format of Executable and Linking
Format (ELF) files. http://man7.org/linux/man-pages/man5/elf.
5.html. [Online; accessed 05-February-2020].

[54] Linux Programmer’s Manual. ld.so, ld-linux.so - dynamic linker/loader.
http://man7.org/linux/man-pages/man8/ld-linux.so.8.html.
[Online; accessed 05-February-2020].

[55] Linux Programmer’s Manual. pthreads - POSIX threads. http://man7.
org/linux/man-pages/man7/pthreads.7.html. [Online; accessed 10-
April-2020].

[56] Matthew Tippett Michael Larabel. Phoronix Test Suite. http://phor
onix-test-suite.com/. [Online; accessed 31-January-2020].

[57] Microsoft. Data Execution Prevention. https : / / docs . microsoft .
com/en-us/windows/win32/memory/data-execution-prevention.
[Online; accessed 22-May-2020]. 2018.

[58] João Moreira et al. “DROP THE ROP fine-grained control-flow in-
tegrity for the Linux kernel.” In: Black Hat Asia (2017).

[59] Tim Newsham. Format string attacks. 2000.
[60] OpenMandriva. OpenMandriva. https://www.openmandriva.org/.
[61] OpenMandriva. The best, until OpenMandriva does better: released OMLx

4.0. https://www.openmandriva.org/en/news/article/the-best-
until-openmandriva-does-better-released-omlx-4-0. [Online;
accessed 06-June-2020].

[62] Jan Magnus Granberg Opsahl. “Open-source virtualization. Function-
ality and performance of Qemu/KVM, Xen, Libvirt and VirtualBox.”
MA thesis. University of Oslo, Department of Informatics, 2013.

[63] Sebastian Österlund et al. “kMVX: Detecting Kernel Information Leaks
with Multi-variant Execution.” In: ASPLOS. Apr. 2019. url: https:
//www.vusec.net/download/?t=papers/kmvx_asplos19.pdf.

[64] Bob Page. A REPORT ON THE INTERNET WORM. https://www.
ee.ryerson.ca/˜elf/hack/iworm.html. [Online; accessed 24-May-
2020]. 1988.

138



[65] Captain Planet. “A eulogy for format strings.” In: Phrack (Nov. 2010)
(2010).

[66] Chromium Project. Memory safety. https : / / www . chromium . org /
Home/chromium-security/memory-safety. [Online; accessed 24-May-
2020].

[67] Inc. Qualcomm Technologies. Pointer Authentication on ARMv8.3 -
Design and Analysis of the New Software Security Instructions. https:
//www.qualcomm.com/media/documents/files/whitepaper-pointe
r-authentication-on-armv8-3.pdf.

[68] Felix Schuster et al. “Counterfeit object-oriented programming: On the
difficulty of preventing code reuse attacks in C++ applications.” In:
2015 IEEE Symposium on Security and Privacy. IEEE. 2015, pp. 745–
762.

[69] Hovav Shacham et al. “The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86).” In: ACM con-
ference on Computer and communications security. New York, 2007,
pp. 552–561.

[70] R. Shirey. Internet Security Glossary, Version 2. RFC 4949. RFC Edi-
tor, Aug. 2007, pp. 1–365. url: https://www.rfc-editor.org/rfc/
rfc4949.txt.

[71] syzkaller. syzkaller - kernel fuzzer. https://github.com/google/
syzkaller. [Online; accessed 14-June-2020].

[72] PaX Team. Address space layout randomization (ASLR). https : / /
pax.grsecurity.net/docs/aslr.txt.

[73] Caroline Tice et al. “Enforcing Forward-Edge Control-Flow Integrity in
{GCC}& {LLVM}.” In: 23rd {USENIX} Security Symposium ({USENIX}
Security 14). 2014, pp. 941–955.

[74] Sami Tolvanen. Control Flow Integrity in the Android kernel. https:
//android-developers.googleblog.com/2018/10/control-flow-
integrity - in - android - kernel . html. [Online; accessed 24-April-
2020]. Oct. 10, 2018.

[75] Sami Tolvanen. Linux. https://github.com/samitolvanen/linux.
[Online; accessed 23-April-2020].

[76] Sami Tolvanen. Protecting against code reuse in the Linux kernel with
Shadow Call Stack. https://security.googleblog.com/2019/10/
protecting - against - code - reuse - in - linux _ 30 . html. [Online;
accessed 21-May-2020]. Oct. 30, 2019.

[77] Minh Tran et al. “On the expressiveness of return-into-libc attacks.”
In: International Workshop on Recent Advances in Intrusion Detection.
Springer. 2011, pp. 121–141.

[78] Victor van der Veen et al. “The Dynamics of Innocent Flesh on the
Bone: Code Reuse Ten Years Later.” In: CCS. Oct. 2017. url: http:
//vvdveen.com/publications/newton.pdf.

[79] Arjan van de Ven. “New Security Enhancements in Red Hat Enterprise
Linux v.3, update 3.” In: (2004).

139



[80] Rafal Wojtczuk. “The advanced return-into-lib (c) exploits: Pax case
study.” In: Phrack Magazine (2001).

[81] yyu168. linux cet. https://github.com/yyu168/linux_cet.

140


