USING MACHINE LEARNING TO RECREATE
SIGNALS FROM THE PRIMARY VISUAL
CORTEX OF MICE

by

Markus Leira Asprusten

THESIS

for the degree of

MASTER OF SCIENCE

Faculty of Mathematics and Natural Sciences
University of Oslo

June 2020

Abstract

Generative adversarial networks (GAN) have received much attention lately for
its use with images and has been shown to be able to create extremely realistic
images of different kinds of objects. Even though its use in images is popular,
there has not been much study into using this type of generative method for
other types of data. GANSs replicate the distribution of a data set to produce
realistic samples that are not in the data set. Being an adversarial method based
on game theory, training a GAN can be difficult. If not tweaked correctly, the
GAN can collapse and produce unrealistic results. A different kind of machine
learning method called an autoencoder is more stable as it is based on replicating
data instead of replicating the distribution of the data. Experimental biology
needs large amounts of data, which is sometimes difficult to procure in sufficient
amounts. Using generative methods in these instances have much potential.
Proposed here is using an autoencoder to stabilize training of a GAN for use
with biological signals. Autoencoders were shown to be stable, and replicated
input data almost exactly. The GAN model was shown to perform better when
pre-trained with an autoencoder. The samples produced by the GAN were not
realistic as the model requires more training.

Contents

I Theory

1 Introduction

1.1

Local Field Potential

2 Machine Learning

2.1 Convolutional Neural networks
2.1.1 Transposed convolutional layers
2.2 Batch normalization
2.3 Non-linearity and Activation functions
2.4 Dropout
2.5 Back-Propagation o
2.6 Autoencoder
2.6.1 Loss function,
2.7 Generative Adversarial Networks (GAN)
2.7.1 Loss function
2.8 Model evaluation metrics L.
2.8.1 Inception score
2.8.2 Fréchet inception distance
II Method

3 Experimental data

4 Code Implementation

4.1
4.2
4.3
4.4
4.5

Overview
Signal autoencoder oL
Image autoencoder L
GAN . .

Model evaluation metrics

Contents

IIT Results

5 Results
5.1 Pre-trainingo
5.2 GAN without pre-training L.
5.3 GAN with Auto-Encoder L.
5.4 Results for different images oL

IV Discussion, Conclusion and Future Work
6 Discussion

7 Conclusion
7.1 Future work

Appendices
A Correlation between channels of different models

B Distributions for different images

25

27
27
29
29
33

41
43

45
45

49
51

55

Part 1

Theory

Chapter 1

Introduction

In experimental science, there is always a need for more data. Traditionally, this
data could only come from one source: experiments. However, experimental data
can be both difficult and expensive to obtain. Experiments can be challenging
to set up, equipment can be expensive to procure, and it might also be difficult
to find an ethically satisfactory way to do experiments. These problems are
especially prevalent when working with live specimens in biology. Finding new
ways to reduce the number of experiments needed is a good way of addressing
these problems.

Using machine learning to generate new data based on already available data
has gained popularity in the recent years. Perhaps most prominent the use of
Generative Adversarial Networks (GANSs) to create realistic images by training
on real images|[13].

GANSs have not been subject to much research outside of its use with images.
Although it has been used with electroencephalographic (EEG) brain signals[9],
there have not been much use with other kinds of time series[9]. This thesis will
study using GANs to replicate local field potentials (LFPs) to a life-like degree.
To do this, the model needs to be very realistic and replicate as many important
features as possible.

GANSs are notoriously difficult to train. Autoencoders are more stable and easier
to train but lack the same generative capabilities as a GAN-model. This thesis
proposes using autoencoders to pre-train parts of the GAN-model. Doing so will
hopefully speed up the training process and produce more realistic results.

4 Introduction Chapter 1

1.1 Local Field Potential

The local field potential (LFP) is the lower frequency part of an extracellular
potential, i.e., below around 500 Hz. The LFP is measured by inserting a probe
into the extracellular space in the brain tissue [3]. The LFP is thought to con-
tain information from the immediate area in the extracellular space and varies
significantly based on location [3]. This is in contrast to electroencephalography
(EEG), which is measured on the scalp [3] and is thought to be created by the
combination of many sources after filtering through the various media between
the brain tissue and the scalp [3].

The interest in LFPs has increased lately after new methods make it easier both to
collect data and process it [6]. As the LFP-signal is created from a combination of
many sources, the signal itself is ambiguous and difficult to interpret [6]. Despite
this, the stability and ease of recording these signals [6] make them promising
in use with prosthetic devices [6]. They are also thought of as good candidates
for study into how the brain processes sensory information, motor planning, and
higher cognitive processes [6].

Chapter 2

Machine Learning

Machine learning, and especially neural networks, has many applications and is
finding its way into nearly all relevant fields. Machine learning is an extensive
term that encompasses linear regression, complex neural networks, as well as
many other methods. The common theme behind these is that the machine is
supposed to find the solution to a problem by learning some parameters that best
describe the problem, usually through an iterative process using gradients of a
loss function. This process can be a potent tool as a machine can find patterns in
large amounts of data. Deep neural networks have become particularly popular
in the later years, and this thesis will look mostly at the use of deep neural
networks with convolutional layers.

2.1 Convolutional Neural networks

Convolutional Neural Networks (CNN) has become a prevalent method in ma-
chine learning. It is based on many of the same principals as a densely connected
neural network (DNN) but uses fewer variables. CNNs are frequently used in im-
age analysis, as it can look for features in the input invariant of where in the input
a feature is located. This is done by moving a filter, or kernel, over the input.
The filter contains weights that are multiplied element-wise with a small portion
of the input the same size as the filter. The result of this is then added together
and becomes the first element in the output. The process is then repeated until
the filter has passed over all of the input. This operation is, in essence, a scalar
product between a part of the input and the filter. A 1-dimensional illustration
of this shown in Figure 2.1, but 2-dimensional convolutional layers are also pos-
sible and frequently used with images. Convolutional layers can be expanded to
n-dimensions and convolve over volumes or other higher dimensional data.

6 Machine Learning Chapter 2

A one-dimensional convolution operation can be defined as

S; = ZSiJijj, (21)

where s is the output for the convolution, S is the input, and K is the filter (or
kernel), and k is the size of the filter. Convolutional layers usually also apply
a bias after the convolution operation. All in all, a convolutional layer need
c1 X ¢o X k weights and ¢y biases, where ¢; is the number of channels in the input
and ¢y is the number of channels in the output. This is because there is one filter
going from each channel in the input to every channel in the output. Channels
can correspond to many different things here. When used with images, channels
often represent the different colours of the image, but it can also represent a
temporal or spatial dimension. It is, in essence, just another dimension to the
data. Strides, padding and dilation modify how the convolution is done. Padding
will add zeros to the beginning and end of the input, which makes the edge
elements affect more elements in the output. Stride affects how far the filter is
moved across the input and, by doing so, decreases the size of the output and
is useful for down-sampling. Dilation can also be used for down-sampling by
changing the distance between the elements in the input that are multiplied with
the filter.

If a DNN were to transform an input of size n into size m, it would need n x m
weights. This is because every element in the input needs to be multiplied by
different weights for each element in the output. It would also include m biases,
which are added to the output. I.e. a DNN needs (n+ 1) x m variables to connect
a layer with n elements to a layer with m elements. Because of this, larger inputs
such as images will require many variables. Dense layers also usually do not have
different weights for different channels. This means that the same weights are
used for all channels. Using a convolutional network has the benefit of taking the
relationship between different channels into account while reducing the number of
resources needed to train the network. It can also work well when the position of
a feature is not fixed between different samples of the input, as mentioned earlier.
A common example of why this is helpful is its use in classification models. E.g.
the layer can recognize a dog in an image regardless of where in the image the dog
is located. The layer will normally recognize lower-level features such as edges,
not high-level features such as an object being a dog.

More about convolutional layers can be read in the book by Goodfellow et al. on
Deep Learning [7, p. 326] and in the Guide [5] by Dumoulin et al.

Section 2.2 Batch normalization 7

[2[t]2f2[3[1] [2]a]2]2]3]1] [2]1]2]2[3[1] [2]1][2[2]8]1]

Figure 2.1: Illustration of a 1-dimensional convolutional layer.

2.1.1 Transposed convolutional layers

A transposed convolutional layer can be thought of as a combination of an up-
sampling method and a convolution. It is almost exactly the opposite of a con-
volutional layer. Where a convolutional layer combines several inputted values
with the help of the weights in the filter, the transposed convolutional layer ex-
pands a single value with the help of the weights in the filter [5]. This is done by
multiplying one element in the input separately with all the weights in the filter
and adding this number to different elements in the output. A one-dimensional
transposed convolutional operation can be defined as

min(i+1,k)

S; = Z Si—jKj (22)

j=max(0,i—m+k)

where n is the size of the input, k is the size of the filter, and m = n+k —1 is the
size out the output. An illustration of this operation can be seen in Figure 2.2.
Stride, padding and dilution are reversed from normal convolutions. E.g. strides
are done over the output, not the input. When comparing Figure 2.1 and 2.2, it
is easier to see why it can be thought of as the opposite of a convolutional layer.
The layer is sometimes incorrectly referred to as an inverse convolutional layer,
but this is not correct as it is not a proper inverse. It is impossible to create an
inverse convolutional layer because there is no way to create a general inverse
scalar product.

Transposed convolution may be beneficial to traditional up-sampling, such as
linear up-sampling because it combines two operations into one. It also has the
benefit of reverting the shape of a convolutional layer when using the same filter
size. This makes it easy to use in autoencoders, which are discussed more in
section 2.6. A more detailed explanation of transposed convolutional layers can
be found in the guide [5] by Dumoulin et al.

2.2 Batch normalization

One of the many problems faced when working with deep neural networks is
internal covariate shift [11]. As the parameters of a given layer change, the dis-

8 Machine Learning Chapter 2

pol4[8] [| | [ofofrof4] | | [10[9]20[8]8] | [10[9]20[18[12[8]

Figure 2.2: Illustration of a transposed convolutional layer.

tribution of the output from that layer change as well. This change in distribution
makes it more challenging to train the next layer [11]. Using batch normalization
(BN) reduces this problem by forcing the output from the layer into a certain
distribution. This, in turn, allows for larger learning rates without the gradient
exploding or vanishing [11]. The choice of initial weights is also not as critical
when using BN [7, p. 314]. It also acts as a regularization layer which helps cut
down on over-fitting [11].

A BN transformation includes two trainable parameters, v and 5. v is a scaling
factor, and [is a bias parameter that shifts the input. These parameters make BN
different from a normal normalization and ensure that the BN transformation can
represent an identity transform. Doing this ensures that the transformation does
not change what the layer can represent [11], e.g. to make sure that transform
does not disrupt a non-linearity.

The batch normalizing transform from an input x; for a mini-batch of size n can

be defined as

T; — UB

BN;(x;) = yv———= + 73, 2.3
(:) N (2.3)
where pp = 13" z; is the mean of the batch, 03 = 13" (2 —pup)® is

the variance of the batch, and € is a small constant added to avoid dividing by
zero if the variance were to become zero. Note that the transformation is done
separately for each channel in the input. This means that there are separate -
and [-parameters for each channel [11].

Because batch normalization includes § as a bias parameter, there is no need
to include bias parameters in the layer before the BN as this serves the same
function.

2.3 Non-linearity and Activation functions

Neural networks include a non-linearity between the layers in the form of activa-
tion functions so that the model can represent more than a linear transformation.
Without these functions, the model will never be able to represent anything other

Section 2.5 Dropout 9

than a linear transform no matter how many layers are added to the model. This
makes the activation function a crucial part of any deep learning network.

One such non-linear activation function is the Rectified linear unit (ReLU), which
can be defined as

otherwise.

1 ={ e 24

This activation breaks the linearity and lets the model predict non-linear func-
tions. Allowing for negative values to survive through the activation has been
shown to improve performance [17]. The Leaky-ReLU activation function allows
negatives values through by multiplying them with a scaling factor. The name
comes from the function “leaking” through a small part of the negative value.
The function can be defined as

fz) = {.CE if x>0 (2.5)

cx otherwise,

where ¢ is a scaling constant. ¢ is normally kept in the open interval between 0
and 1, as ¢ = 0 would be the same as a ReLU, and ¢ = 1 would correspond to an
identity transform and would no longer break the linearity.

2.4 Dropout

Regularization methods are important for many deep learning applications to
avoid over-fitting the model [7, p. 224]. Dropout is one such regularization
method that is easy to implement and does not require much computational
power [7, p. 255]. It can be thought of as an approximation of Bootstrap ag-
gregating (Bagging), in which multiple models are trained on the same data set.
With the ever-increasing complexity of deep neural networks, bagging becomes
impractical. Dropout emulates different models by randomly dropping different
parameters in the network so that each element in the batch drops different pa-
rameters. This way, each element in the batch trains a different subset of the
model. The probability of a specific parameter being dropped is independent of
the other parameters, and also from the input.

2.5 Back-Propagation

The most crucial part of any trainable model is the method used for training.
Back-propagation is the method used to determine how the model parameters

10 Machine Learning Chapter 2

should be updated in neural networks. It works by calculating the derivative of
all the trainable parameters with respect to some loss-function. The gradients are
calculated by first doing a forward pass through the model. The gradients are
then calculated by beginning at the back and differentiating the loss-function,
and the using the chain rule to calculate the gradients for the parameters in
previous layers.

A consequence of using back-propagation is that all operations used in the model
have to be differentiable. This dependence on gradients makes deep neural net-
works vulnerable to both vanishing and exploding gradients.

After calculating the gradients, the model parameters are updated with an opti-
mizer. The optimizer could be as easy as an Euler-method, but in practice, more
complex optimizers are used. A popular choice is Adam, which is widely seen as
a robust optimizer that is easy to implement and is computationally inexpensive
[15][7, p. 305]. It can be described as a stochastic gradient descent methods that
that takes ideas from both the AdaGrad and RMSProp methods by maintaining
a separate adaptable learning rate for each parameter it should update [15], and
calculating an average of previous gradients to use as weights for adapting these
learning rates using estimations of the first and second-order moments of the
gradients [15]. There are three initialization parameters of interest: the step size
a [15], and the exponential decay rates for the first and second-order moment
estimations 5, and [[15].

2.6 Autoencoder

An autoencoder is an example of an unsupervised machine learning method.
Because it is unsupervised, it does not need any ground truth data to train
on. This is because it trains on the input itself. The goal of the autoencoder
is to create two separate models that, when working together, will reconstruct
the original input. This is done in two parts. Firstly, an encoder reduces the
dimensionality of the input. This could be done with several methods, as long
as the method used is trainable in some way. After the input has been made
smaller, it is then sent through a decoder. The decider then, in turn, expands
the input into its original dimensionality. It is then compared to the original
input, and the model itself should be trained by using a loss function that brings
the output closer to the input. A basic diagram of an autoencoder can be seen
in Figure 2.3.

By forcing the input into a lower-dimensional space, the idea is that the model
will learn to extract only the features that are important to reconstructing the
input, which is similar to methods such as Principal Component Analysis (PCA)
(7, p. 45,145]. Tt is then possible to use the decoder and encoder independently

Section 2.7 Generative Adversarial Networks (GAN) 11

Input Latent space —> Output

Figure 2.3: A diagram of an autoencoder.

for different purposes, e.g. as pre-trained parameters for other networks. This
could make it possible to train a supervised model, even with a limited amount
of ground truth data to train on.

More details on autoencoders can be found in the Deep Learning book[7, p. 499]
by Goodfellow et al.

2.6.1 Loss function

Mean squared error is a loss function that calculates a distance between some
predicted values and some observed values. This is an ideal metric for an au-
toencoder because it is easy to calculate. It is defined as

fla) = %Z (Y;_Yi)Q (2.6)

where Y is the samples coming from the real data set, Y is the generated samples,
and n is the number of samples. This number should go towards zero while
optimizing the model.

2.7 Generative Adversarial Networks (GAN)

A Generative Adversarial Network (GAN) is another unsupervised machine learn-
ing method. It is similar to an autoencoder but has several key differences. The
goal of the method is to train two separate networks to compete with each other.
The two different parts are commonly called the generator and the discriminator.
The generator generates samples given some random input, and the discrimina-
tor should then attempt to differentiate between generated samples and samples
coming from the real data set [7, p. 696]. A basic diagram of this setup can be
seen in Figure 2.4. This adversarial model draws inspiration from game theory,
where two actors become better when they have to have to compete against each
other [7, p. 696]. When used correctly, GANs can then create a natural-looking
results [13][9].

The discriminator outputs a number comparable to a probability of how real it
thinks the inputted sample is. It should be trained by maximizing this probability
for the real input and minimizing it for the generated input. The generator should

12 Machine Learning Chapter 2

Discrimina,tor]

Generator

Figure 2.4: A simple diagram of a GAN-model.

then be trained on trying to fool the discriminator, i.e. move towards the weights
that give the highest probability of the generated signal being real when passed
through the discriminator.

One of the downsides of a GAN-model is that it is difficult to train properly. The
discriminator experiences mode collapse notoriously easily. Mode collapse is the
state when the discriminator only learn how to recognize a small subset of the
features that make up a real input [9]. This hinders the generator from learning
to recreate all the relevant features and gives an unrealistic result. A good way
to counteract this is to pick stable hyperparameters.

2.7.1 Loss function

Hartmann et al. proposed a loss function using the Wasserstein distance in their
2018 paper [9]. It attempts to avoid the problem of vanishing gradients and build
upon the method from Arjovsky et al. in their 2017 paper [1]. Using the Jensen-
Shannon divergence, as proposed in the original paper on GANs [8], might lead
to vanishing gradients when the model is trained to optimality [9][1]. Using the
Wasserstein distance as a loss function reduces this problem as the quality of
the gradients are proportional to the performance of the discriminator[1]. The
goal of the GAN-model becomes minimizing the Wasserstein distance between
the distribution of real data, P, and the distribution of the generated data, Py.
This can be defined as

W(PT7P9) = ExTNPR [D<x7“>] - waNPQ [D<xf)]) (27)

where D(x) is K-Lipschitz continuous, z is drawn from Py, and z, is drawn from
P,.. The Lipschitz continuity limits how fast a function can change [1]. To enforce
this continuity, Hartmann et al. introduces a one-sided penalty,

Pi(P;) = A+ Ezep, [max (0,]|V:D(2)]]2 — 1)%] (2.8)

where) is a scaling factor for the penalty term, and the distribution P; contains
all points on the straight line between the generated and the real samples, and &
is drawn from this distribution [9]. This penalty is based on a stricter two-sided

Section 2.8 Model evaluation metrics 13

penalty proposed by Arjovsky et al. [1]. After combining this, the loss function
for the discriminator then becomes

L. = —W(P,,P;) + max (o, VV(IP’T,IP’H)> - Py(Ps), (2.9)

which the discriminator should minimiz e[9]. This has been shown to keep the
gradients stable, even when the distance between the distributions is decreasing
[1]. The generator should maximize E, .p, [D(xy)] [9]. In other words, the
discriminator should maximize the distance between the distributions, while the
generator should maximize the output from the discriminator.

2.8 Model evaluation metrics

2.8.1 Inception score

A commonly used evaluation metric is the Inception score [2]. It seems highly
correlated with human evaluation [2], but it does not detect mode collapse and
it is sensitive to noise [9] and has several other problems [2]. One such problem
is that it does not compare the generated samples to the samples from the real
data set [2]. It is, nevertheless, a common metric used for generative methods

[2].

The inception score is calculated by passing the samples through a pre-trained
classifier network before calculation the entropy of the conditional label distri-
bution, p(y|z) [16]. This distribution is the output from the classifier network
and says something about the probability of a certain class matching with the
input. Images containing meaningful data should have a low entropy conditional
label distribution [16]. The marginal distribution, [p(ylz = G(z))dz [16], is a
combination of a batch of conditional label distributions, and should have a high
entropy. Salimans et al. combined these two entropies into one by defining the
Inception score as

IS(z) = oFe [KL(p(y\w)Hp(y))]’ (2.10)

where KL is the Kullback—Leibler divergence.

2.8.2 Fréchet inception distance

Heusel et al. proposed using the Fréchet inception distance (FID) [10], which
has a few advantages to the Inception score. Namely, that FID is reactive to

14 Machine Learning Chapter 2

mode collapse [9]. It does not, however, give any clues to whether the model
is over-fitted or not[9][10]. Much like the inception score, it is calculated by
passing all generated data and all the samples from the data set through a pre-
trained classifier network. The FID is then Fréchet distance between the two sets
after passing through the classifier. The Inception-v3 is used to extract features
relevant for images [10]. The Fréchet distance[4, eq. 4] is defined as

(P, Py) = |ptr — o] + Tt [2T+zx—2\/zrzz], (2.11)

where p, and X, is the mean and the covariance matrix of the real data set, and
i, and ¥, is the same for the generated samples. Tr denotes the trace [7, p. 44]
of a matrix. This distance is also known as the Wasserstein-2 distance[10].

Part 11

Method

15

Chapter 3

Experimental data

The data used in this thesis was collected from mice using a Neuropixel Probe
while exposing the mice to different visual stimuli by the Allen Institute [12]. All
the experimental data used is publicly available from the Allen Institute.! The
measurements themselves consist of several channels, which corresponds to the
physical location on the probe. This thesis looks exclusively at the measurements
from the primary visual cortex of a single mouse.

As seen in Table 3.1, there are 118 natural images shown to the specimen during
the experiment. The specimen is also shown other images and movies, but these
are not used in this thesis. Each image is shown 50 times for 313 frames (0.25
seconds). This means that there are a total of 5900 images showings. The
recording itself lasted for around 2 hours and 20 minutes, with a frequency of
1250 Hz. This makes a total of 12 081 284 data points per channel, which makes
it possible to sample 12 080 971 different samples with length 313 from the
experiment. Batches are drawn randomly from this data set when training the
autoencoder.

80 % of the images are randomly picked to be training samples, while the other
20 % become test samples. This means that the GANs will be trained on 4700
samples, while the test set contains 1200 samples.

All samples are normalized by subtracting the mean and dividing by the standard
deviation of each sample.

thttps://allensdk.readthedocs.io/en/latest /visual_coding_neuropixels.html

17

https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html

18 Experimental data Chapter 3

Table 3.1: Information about the experiment conducted by the Allen Insti-
tute. The Session ID and Probe ID can be used to find the specific samples
used in this thesis through their API.

Specimen name Sst-IRES-Cre; Ai32-387858

Specimen sex Male
Specimen age 122 days
Session ID 719161530
Probe ID 729445652

LFP sampling rate | 1250 Hz
Number of images | 118

Experiment date 8. January 2019
Experiment time 08:25:16 UTC

Chapter 4

Code Implementation

All code used in this thesis can be found on GitHub!. The code is made using
PyTorch and should be used with CUDA, although running on CPU is also
supported. All packages needed are listed in the Github repository.

4.1 Overview

To facilitate pre-training, the GAN will use the decoder from the autoencoder
in the generator, and the encoder in the discriminator. This will hopefully make
the GAN easier to train, as parts of the model should already have been trained
to extract the important features of the input. Two different autoencoders will
be used. One of them will train on the LFP-data, and the other will train on the
images. The GAN will only use the encoder in the autoencoder for the images,
as images generation is not a goal here.

All code is written in Python using Pytorch, which takes care of calculating
gradients and backpropagating them through the network automatically. Adam
will be used as an optimizer with o = 0.001, 81 = 0 and S5 = 0.999. These values
are the same as used by Hartmann et al. in their paper [9].

4.2 Signal autoencoder

The encoder consists of 9 layers of convolutional layers with varying kernel sizes
and strides. The signal input is 313 samples long, with 22 different channels. As
seen in Table 4.1, the encoder then reduces the signal down to an output of 115
samples with 10 channels. This is about 17 % of its original size.

Thttps://github.com/maraspr/LFPGAN

19

https://github.com/maraspr/LFPGAN

20 Code Implementation Chapter 4

Table 4.1: Architecture for autoencoder for signals.

Signal encoder Channels Filter Stride Padding Activation Output shape
Layer 1 - Conv 22 to 20 10 1 3 ReLU/BN 310
Layer 2 - Conv 20 to 18 40 1 3 ReLU/BN 277
Layer 3 - Conv 18 to 16 25 1 4 ReLU/BN 261
Layer 4 - Conv 16 to 15 70 1 0 ReLU/BN 192
Layer 5 - Conv 15 to 14 24 1 0 ReLU/BN 169
Layer 6 - Conv 14 to 13 5 1 0 ReLU/BN 165
Layer 7 - Conv 13 to 12 13 1 0 ReLU/BN 153
Layer 8 - Conv 12 to 11 20 1 0 ReLU/BN 134
Layer 9 - Conv 11 to 10 20 1 0 ReLU/BN 115
Signal decoder Channels Filter Stride Padding Activation Output shape
Layer 1 - Transposed Conv 10 to 11 20 1 0 ReLU/BN 134
Layer 2 - Transposed Conv 11 to 12 20 1 0 ReLU/BN 153
Layer 3 - Transposed Conv | 12 to 13 13 1 0 ReLU/BN 165
Layer 4 - Transposed Conv 13 to 14 5 1 0 ReLU/BN 169
Layer 5 - Transposed Conv 14 to 15 24 1 0 ReLU/BN 192
Layer 6 - Transposed Conv | 15 to 16 70 1 0 ReLU/BN 261
Layer 7 - Transposed Conv 16 to 18 25 1 4 ReLU/BN 277
Layer 8 - Transposed Conv | 18 to 20 40 1 3 ReLU/BN 310
Layer 9 - Transposed Conv | 20 to 22 10 1 3 Linear/Normalization 313

Because the decoder should reconstruct the signal that the encoder has reduced
down into a latent space, the decoder mirrors the encoder almost exactly. The
only difference is the output channel, as the decoder does not output a channel
with the standard deviation of the other channels. The decoder also uses trans-
posed convolutional layers in place of the convolutional layers, and all the kernel
sizes and channels are reversed. It outputs 22 channels of 313 samples, which are
normalized by subtracting the mean of the sample and dividing by the standard
deviation of the sample. The model is then back-propagated using the mean
square error loss function.

The model is trained for 7 epochs with samples independent of images from the
experiment. There are about 12 million samples in the data set, so this equates
to 84 million showings.

4.3 Image autoencoder

The autoencoder for the images is quite similar to the autoencoder for the sig-
nals. The main difference is that images contain two-dimensional data, so the
convolutional layers also need to be two-dimensional. The images are 1174 pix-
els wide and 918 pixels high, and they are black-and-white, so there is only one
channel. The output shape from the encoder is 3 x 23, which is about 0.02 % of
the original image size. After flattening, the output of the encoder is 2 channels
with 3 x 23 = 115 samples. This makes it easy to concatenate this output to the

Section 4.4

GAN

Table 4.2: Architecture of autoencoder for images.

21

Image encoder Channels Filter Stride Padding Activation Output shape
Layer 1 - Conv 1to4 30 x 30 2 30 ReLU/BN 475 x 603
Layer 2 - Conv 4to 2 20 x 20 2 0 ReLU/BN 228 x 292
Layer 3 - Conv 2to4 30 x 30 1 0 ReLU/BN 119 x 263
Layer 4 - Conv 4tob 70 x 70 1 0 ReLU/BN 130 x 194
Layer 5 - Conv 5to3 16 x 30 1 0 ReLU/BN 115 x 165
Layer 6 - Conv 3 to 2 30 x 30 1 0 ReLU/BN 86 x 136
Layer 7 - Conv 2to3 15 x 15 1 0 ReLU/BN 72 x 122
Layer 8 - Conv 3t06 5x5 2 0 ReLU/BN 34 x 59
Layer 9 - Conv 6to5 20 x 20 1 0 ReLU/BN 15 x 40
Layer 10 - Conv 5to 4 10 x 10 1 0 ReLU/BN 6 x 31
Layer 11 - Conv 4 to 2 2x9 1 0 ReLU/BN 5% 23
Image decoder Channels Filter Stride Padding Activation Output shape
Layer 1 - Transposed Conv 2to4 2x9 1 0 ReLU/BN 6 x 31
Layer 2 - Transposed Conv 4tob 10 x 10 1 0 ReLU/BN 15 x 40
Layer 3 - Transposed Conv 5 to 6 20 x 20 1 0 ReLU/BN 34 x 59
Layer 4 - Transposed Conv 6 to 3 5x5 2 0 ReLU/BN 72 x 122
Layer 5 - Transposed Conv 3to2 15 x 15 1 0 ReLU/BN 86 x 136
Layer 6 - Transposed Conv 2to3 30 x 30 1 0 ReLU/BN 115 x 165
Layer 7 - Transposed Conv 3toh 16 x 30 1 0 ReLU/BN 130 x 194
Layer 8 - Transposed Conv 5 to 4 70 x 70 1 0 ReLU/BN 119 x 263
Layer 9 - Transposed Conv 4 to 2 30 x 30 1 0 ReLU/BN 228 x 292
Layer 10 - Transposed Conv 2to4 20 x 20 2 0 ReLU/BN 475 x 603
Layer 11 - Transposed Conv 4to1 30 x 30 2 30 Sigmoid/BN/Upsample 918 x 1174

output of the signal encoder. The decoder then reconstructs the image to the
best of its ability. As with the signal autoencoder, the network is then trained
on the mean square error between the real image and the image reconstructed by
the network. The architecture of this network can be found in Table 4.2.

The model was then trained for 10 000 epochs. There are only 118 images in the
data set, so this equates to 1180000 showings.

4.4 GAN

The generator consists of two main parts: an image encoder and a signal decoder.
An image is fed into the image encoder, and the output from this is fed into the
signal decoder. In addition to this, there is a network injecting a random input
into the latent space between the image decoder and the signal decoder. This is
to increase the entropy in the generated samples so that the same image as input
can produce different samples as output. The architecture used can be seen on
the left side of Figure 4.1. The architecture of the random input-network can be
seen in Table 4.3.

The discriminator consists of a signal encoder and an image encoder which is

22 Code Implementation Chapter 4

Table 4.3: Architecture of network for random input in the generator.

Randnet Channels Filter Stride Padding Activation Output shape
Layer 1 - Conv 3to4 10 1 3 ReLU/BN 310
Layer 2 - Conv 4t05 30 1 3 ReLU/BN 277
Layer 3 - Conv 5 to 4 25 1 4 ReLU/BN 261
Layer 4 - Conv 4 to 3 70 1 0 ReLU/BN 192
Layer 5 - Conv 3tob 24 1 0 ReLU/BN 169
Layer 6 - Conv 5 to 6 5 1 0 ReLU/BN 165
Layer 7 - Conv 6 to5 13 1 0 ReLU/BN 153
Layer 8 - Conv 5to 7 20 1 0 ReLU/BN 134
Layer 9 - Conv 7 to 10 20 1 0 ReLU/BN 115

run in parallel. The output from each of these are concatenated and fed into 8
convolutional layers (see Table 4.4), and a single densely connected layer that
brings the output down to one sample in one channel. Finally, the discriminator
returns the mean of these values across the batches. The discriminator represents
the Lipschitz D(z)-function described in subsection 2.7.1, and the loss function
described there is implemented by back-propagating three times. D(z) represents
the expected value from the distribution. This value should be maximized for
samples from the real data set, and minimized for samples coming from the
generator. By back-propagating the output with respect to a tensor pointed in
the negative direction, the gradients will point towards where the output will be
maximized instead of minimized. This is useful when training the generator, as
the generator is trained to maximize the output from the discriminator. Similarly,
with the discriminator, the output from the generator should be minimized, while
the output from the real data set should be maximized.

To enforce the Lipschitz continuity, the discriminator is back-propagated once
again, but this time with respect to the penalty given in Equation 2.8, which
in this case equates to A(r + ¢g)? where r is the output from the discriminator
given a real input, and g is the output from the discriminator given a generated
input.

Due to hardware and time constraints, the model is trained for 200 epochs. There
are 4700 samples in the train set, so this equates to 940000 showings. The image
encoder adds a significant extra demand on resources. The model is therefore
also trained without the image encoder for 4000 epochs. All this is done both
with and without pre-trained weights from the autoencoder.

Section 4.5 GAN 23

Table 4.4: Architecture of network for combination layers in the discrimina-

tor.

Combnet Channels Filter Stride Padding Activation Output shape
Layer 1 - Conv | 10 to 10 15 1 0 ReLU/Dropout/BN 101
Layer 2 - Conv 10 to 8 26 1 0 ReLU/Dropout/BN 76
Layer 3 - Conv 8106 30 1 0 ReLU/Dropout/BN 47
Layer 4 - Conv 6tob 2 1 0 ReLU/Dropout/BN 46
Layer 5 - Conv 5to 6 5 1 0 ReLU/Dropout/BN 42
Layer 6 - Conv 6 to 4 4 1 0 ReLU/Dropout/BN 39
Layer 7 - Conv 4 to 2 2 1 0 ReLU/Dropout/BN 38
Layer 8 - Conv 2to1 15 1 0 ReLU/Dropout/BN 24
Layer 9 - Linear N/A N/A N/A N/A Linear 1

Image input
—

[Image encoder] —>[Signal encoder] [Image encoder]

[Random input]i | T |
[Signal decoder] [Combination layers]
Generated signal Discriminator probability

Figure 4.1: The Implementation of the GAN-model using the Signal encoder
and decoder from Table 4.1 and the image encoder from Table 4.2.

24 Code Implementation Chapter 4

4.5 Model evaluation metrics

The Fréchet inception distance is calculated by using a Pytorch port? of the
program from the original paper [10]. This library requires images as inputs, so
the signals need to be stored in images. This can be done by using the channel
dimension as image height and the signal dimension as image width (or vice
versa). The Inception-v3 model is trained on images and should extract vision-
related features. This is not optimal when dealing with time series, but it makes
the score somewhat comparable to other networks. The Fréchet distance without
the inception model is also provided.

The inception score is calculated using a Pytorch library® in a similar fashion to
the Fréchet inception distance.

Zhttps://github.com/mseitzer /pytorch-fid
3https://github.com /sbarratt /inception-score-pytorch

https://github.com/mseitzer/pytorch-fid
https://github.com/sbarratt/inception-score-pytorch

Part 111

Results

25

Chapter 5

Results

5.1 Pre-training

The signal Auto-Encoder (see Table 4.1) has been trained on all available LFP-
data for seven epochs. This also includes samples where the specimen is seeing a
blank screen, or there is something on the screen that is not natural images. The
signals are recreated with a high degree of accuracy, as seen in Figure 5.1. The
figure shows samples from the real data set on the right, and samples recreated
with the autoencoder on the left. There are some small differences, but these
seem to be minor.

This phenomenon is also seen in Figure 5.2 where there are some peaks in the
mean frequency spectrum of the real samples which are not present in the gen-
erated samples.’

Figure 5.3 shows that the distribution of the real and generated data are more
or less identical. Perhaps more interesting, is how the autoencoder replicates
signals from the data set with natural images. Figure 5.4 shows that the distri-
bution from the autoencoder follows the real data very accurately. Note also in
Figure 5.6 that the network seems to learn lower frequency features before the
higher frequency features of the data set.

Figure 5.7 shows images reconstructed by an autoencoder trained on images (see
Table 4.2). The generated images on the right are reconstructions of the images
on the left after passing through the image Auto-Encoder. As seen, the network
performs relatively well with high contrast images, but become more blurry when

!There is some clipping in the frequency distribution plots. This is caused by the lower
edge of the standard deviation area being below zero. Since the frequency spectrum is a non-
negative value, this does not make sense. As these are logarithmic plots, the lower edge of the
distribution is clipped to the lowest amplitude value for that channel for convenience.

27

28 Results Chapter 5

Generated samples Real samples

IO RN RINDDOS AINDDOS AINDDOR NI
[
[

5
5

Normalized amplitude

T
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.2
Time (s) Time (s)

Figure 5.1: Randomly picked samples passed through the Signal Auto-
Encoder. The samples on the left are recreations of the samples on the right.

Section 5.4 GAN without pre-training 29

o Channel 1 Channel 13
R (Vs p— - 10° 1%
= 10° S| 107
= 1072 1072
T T T T
i Channel 5 Channel 17
=102 e 102 e
= 0 | — 0 |
2 10 e
= 1077 10
< \ T I \
o Channel 9 Channel 21
< 10T 10° [
5 10°
2, o | H
< \ \ \ \ \ \ \ \
0 400 800 1,200 0 400 800 1,200
Frequency (Hz) — Real Frequency (Hz)
Generated

Figure 5.2: Distribution of frequency spectrum from generated signals from
an autoencoder trained on all samples from the data set for 7 epochs. The
lower limit of the standard deviation is clipped to the lowest amplitude value
in the data set.

there are more nuances in the image, although it is still usually possible to make
out the images, especially when compared to the real images.

5.2 GAN without pre-training

Figure 5.8 shows a generated distribution that does not represent the real data
set except perhaps at the very centre of the signal. After 200 epochs the model
has failed to learn any high-frequency features, as seen in Figure 5.9. None of
the metrics shown in Table 5.1 show any evidence of the model collapsing.

5.3 GAN with Auto-Encoder

The distribution of the GAN with parts pre-trained with an autoencoder is seen
in Figure 5.10. The central parts of the distribution seem to follow the real
distribution, but the edges have quite clear artefacts. The frequency distribution
in Figure 5.11 corroborate this story. It shows that the frequency spectrum of the
generated samples deviates from the distribution of the real samples, especially
in the highest frequencies. The FID and Fréchet distance in Table 5.1 is lowest
for the pre-trained GAN.

30

Normalized amplitude

Results Chapter 5

Channel 1

T
0.00 0.05 0.10 0.15 0.20 0.25

— Real Time (s)
—— Generated

Figure 5.3: Distribution of samples passed through an autoencoder that has
trained on all LFP-data for 7 epochs.

Section 5.4 GAN with Auto-Encoder 31

Channel 1

|
=D
[

" Channel 5

|
N—=O—
[

" Channel 9

I
N—=O =
[

| Chahnel 13

| Chaﬁnel 17

Normalized amplitude
[\ »l—\o —
I |

|
N—O—
[

| Chaﬁnel él

I
=D
[

T
0.00 0.05 0.10 0.15 0.20 0.25

— Real Time (s)
—— Generated

Figure 5.4: Distribution samples from autoencoder replicating LFP-signals
corresponding to different natural images.

32 Results Chapter 5

o Channel 1 Channel 13
= 10° 2N
= 1 | %=
= 10° m— gg : =
= 1072 10 1
f) Channel 5 Channel 17
T 107 [102 T
=10 | 100 —
= 102 1072
< \ T I \
O) Channel 9) Channel 21
= 100 1% 1§1 1
=10+ — 0] _
= 1072 %gié i
< \ \ \ \ \ \ \ \
0 400 800 1,200 0 400 800 1,200
Frequency (Hz) —— Real Frequency (Hz)
Generated

Figure 5.5: Frequency distribution from autoencoder replicating samples
from data set with of LFP-signals corresponding to different natural images.
The lower limit of the standard deviation is clipped to the lowest amplitude
value in the data set.

(]
< 2 2
= 1] 1]
£ E
= A0] 1441 7
5 1 i é%]
<C 1
ERR B Renhs T
= go J s Genptated
=, 1] 1]
—2] TA—2 |
g 1 -3 ‘ H-3
< T T \ 1 T T \ T
0 400 800 1,200 0 400 800 1,200
Frequency (Hz) Frequency (Hz)

Figure 5.6: Evolution of frequency spectrum during the training of autoen-
coder. Upper left is trained for 2 % of an epoch, upper right trained for 30
% of an epoch, lower left for 60 & of an epoch, and the lower right has been
trained for one epoch. The lower limit of the standard deviation is clipped to
the lowest amplitude value in the data set.

Section 5.4

Results for different images 33

Figure 5.7: Images recreated using image autoencoder

Table 5.1: Metrics for GANs with or without pre-training. Values for the
data set and Gaussian noise with same mean and variance as the data are also

added.
Train set Test set
Network IS FID Fréchet Distance | IS FID Fréchet Distance
GAN 1.98 315.54 5789.57 1.93 320.69 6250.28
Pre-trained GAN | 1.17 42.94 2548.33 1.19 37.59 2126.82
Noise 1.12 349.34 9343.42 1.12 351.49 10295.38
Data set 1.28 0 0 1.29 0 0

5.4 Results for different images

Figure 5.12 shows the distribution of samples generated with the pre-trained
GAN from a single image from the training set. As with the distribution over
the whole data set, it generally follows the mean and variance of the real samples,
but it deviates more locally. This is true to higher degree for Figure 5.13.

More figures for individual images can be found in appendix B.

34 Results Chapter 5

Channel 1

Normalized amplitude
Lo
I R |

T
0.00 0.05 0.10 0.15 0.20 0.25

— Real Time (s)
—— Generated

Figure 5.8: Distribution of samples generated by GAN-model with no parts
pre-trained with autoencoder.

Section 5.4 Results for different images 35

Channel 1 Channel 13
(D]
T 100 Tl 10° T\
£ g T i 10 | " -~
1075 10° =
21072 ‘ ‘ ‘ ‘
Channel 5 Channel 17
[eb)}
= 10?2 1 10° 1\
2100 s ; 100]
E 100 _| ——— 100 - B———
< \ \ \ \ \
Channel 9 Channel 21
(]
< 2 2
1 \ 10 \
= 181 T \'\\ﬁ T M S ——
2 10° 0 | —
2 107!+ 10
< \ \ \ \ \ \ \ \
0 400 800 1,200 0 400 800 1,200
Frequency (Hz) Real Frequency (Hz)
—Rea
Generated

Figure 5.9: Distribution of frequency spectrum of samples generated by
GAN-model with no parts pre-trained with autoencoder. The lower limit of
the standard deviation is clipped to the lowest amplitude value in the data set

36 Results Chapter 5

Channel 1

Normalized amplitude
@)
|

2 |
0 _
—9
2 _
O _
—2 T T T \\ T —
0.00 0.05 0.10 0.15 0.20 0.25
— Real Time (s)
—— Generated

Figure 5.10: Distribution of samples from GAN-model pre-trained with an
autoencoder.

Section 5.4 Results for different images 37

Channel 1 Channel 13
[«B)}
210 - igj»~\
= 100 n n —ama RN A SS VS
= 1005 - 10° pa
< 1077 - \ \ \ \ \
Channel 5 Channel 17
]
"g 102 _ .\\\\ 102 — \\
RN I R — 10" 1 R s e
< T T T
Channel 9 Channel 21
O
ERRGEE 102 T
2100 e I R —
= 10° - \ N |10 e
< \ \ \ \ \ \ \ \
0 400 800 1,200 0 400 800 1,200
Frequency (Hz) Frequency (Hz)
—— Real
Generated

Figure 5.11: Distribution of frequency spectrum of samples from GAN-model
pre-trained with an autoencoder. The lower limit of the standard deviation is
clipped to the lowest amplitude value in the data set.

38 Results Chapter 5

Channel 1

Normalized amplitude
(@]
|

— Real Time (s)
—— Generated

Figure 5.12: Distribution of samples from pre-trained GAN-model for single
image from training data set.

Section 5.4 Results for different images 39

Channel 1

Normalized amplitude
(@]
|

2 |
O |
—9 -
2 |
0 |
_2 L T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25
—Real Time (s)
—— Generated

Figure 5.13: Distribution of samples from pre-trained GAN-model for single
image from test data set.

Part 1V

Discussion, Conclusion and
Future Work

41

Chapter 6

Discussion

Figure 5.1 shows that an autoencoder is very good at feature extraction, and
manages to replicate the inputted signals almost exactly. This indicates that
the signals are compressible, and all of their features can be sensibly compressed
into the latent space of the autoencoder. This latent space seems to be able to
contain all possible samples from the distribution and indicates that the chosen
architecture is capable of producing the correct distribution.

Figure 5.10 shows a model that has learned some general features of the distri-
bution but still deviates from the real distribution. This seems especially true
at the edges. This could be an artefact of the transposed convolutional layer, as
fewer weights have more impact on each element near the edge. This is not nec-
essarily a problem, as the length of the time-series is arbitrary. I.e. the edges of
the generated signals can just be cut to remove these artefacts. More concerning,
however, is the deviations near the centre of the signal, although, more training
should remove these.

Figure 5.10 and Figure 5.8 seem to indicate that pre-training the model using
an autoencoder speeds up the training process, and helps the model produce
accurate high-frequency features. This is seen more clearly in Figure 5.9 and
Figure 5.11. The model without pre-training did not produce any high-frequency
features in the same amount of epochs as the pre-trained model did. It seems that
the high-frequency features take the most time to train. This is corroborated by
the evolution training the autoencoder, as seen in Figure 5.6. The FID (Table 5.1)
also indicate that the pre-trained network is a better approximation of the real
data. Comparing the FID with the random noise in the table indicates that the
model without pre-training performed little better than random noise.

Ultimately, the number of epochs trained was too low. A better result may have
been produced if the model could have been trained for a longer period, but
this was not possible due to time and hardware constraints. Using transposed

43

44 Discussion Chapter 6

convolutional layers instead of linear interpolation (such as in [9]) made the model
less flexible, and contributed to larger model sizes and longer training times. It
is also more difficult to get the model to expand to the desired size. Their use
should, therefore, be weighed up against their weaknesses.

Chapter 7

Conclusion

Pre-training parts of a GAN-model seem to stabilize the training process and help
the model converge faster. Autoencoders are much more stable than GANs and
are excellent candidates for doing such pre-training. GANs show much promise
in generating realistic LFP-signals, but require much training and tweaking to
perform well.

7.1 Future work

The stability of an autoencoder over a GAN model might make a Variational
autoencoder a better candidate for generative models such as this. Progressively
growing GANs have been found to improve the stability and quality of GAN
networks [14]. Adapting this architecture in a way to work with pre-training
with autoencoders might increase the quality and stability further.

It seems that the model is on the right track. Training for a longer period might
yield great results. It might be a good idea to attempt to reduce the model
more so that it is less computationally expensive to train. The images do not
necessarily need to be sent in with their original dimensionality. Downscaling
the images would reduce the size of the network and the number of operations
needed, hopefully reducing the time used for training.

A classifier model should be trained and made publicly available for time-series
LFP-data so that it can act as a standard metric for generative methods in this
area.

45

Acknowledgements

[want to thank my supervisors Alexander Johannes Stasik, Gaute Einevoll and
Morten Hjort-Jensen. This thesis would not have been possible without them. I
would also like to thank the High-Performance Computing (HPC) group at the
University of Oslo IT division for access to computational hardware.

Bibliography

1]

[7]

8]

[10]

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan.
arXiw preprint arXw:1701.07875, 2017.

Shane Barratt and Rishi Sharma. A note on the inception score. arXiv
preprint arXiv:1801.01973, 2018.

A. Destexhe and C. Bedard. Local field potential. Scholarpedia, 8(8):10713,
2013. revision #137113.

DC Dowson and BV Landau. The fréchet distance between multivariate
normal distributions. Journal of multivariate analysis, 12(3):450-455, 1982.

Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic
for deep learning. arXiv preprint arXiv:1603.07285, 2016.

Gaute T Einevoll, Christoph Kayser, Nikos K Logothetis, and Stefano Panz-
eri. Modelling and analysis of local field potentials for studying the function
of cortical circuits. Nature Reviews Neuroscience, 14(11):770-785, 2013.

[an Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016. http://www.deeplearningbook.org.

[an Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-

versarial nets. In Advances in neural information processing systems, pages
2672-2680, 2014.

Kay Gregor Hartmann, Robin Tibor Schirrmeister, and Tonio Ball. Eeg-
gan: Generative adversarial networks for electroencephalograhic (eeg) brain
signals. arXiw preprint arXiv:1806.01875, 2018.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
and Sepp Hochreiter. Gans trained by a two time-scale update rule converge

to a local nash equilibrium. In Advances in neural information processing
systems, pages 6626-6637, 2017.

47

http://www.deeplearningbook.org

48

[11]

[12]

[15]

[16]

Bibliography

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

James J Jun, Nicholas A Steinmetz, Joshua H Siegle, Daniel J Denman, Mar-
ius Bauza, Brian Barbarits, Albert K Lee, Costas A Anastassiou, Alexandru
Andrei, Cagatay Aydin, et al. Fully integrated silicon probes for high-density
recording of neural activity. Nature, 551(7679):232-236, 2017.

T. Karras, S. Laine, and T. Aila. A style-based generator architecture for
generative adversarial networks. In 2019 IEEE/CVFE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 4396-4405, June 2019.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive
growing of gans for improved quality, stability, and variation. arXiv preprint
arXi:1710.10196, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXww preprint arXiv:1412.6980, 2014.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-
ford, and Xi Chen. Improved techniques for training gans. In Advances in
neural information processing systems, pages 2234-2242, 2016.

Bing Xu, Naiyan Wang, Tiangi Chen, and Mu Li. Empirical evalu-
ation of rectified activations in convolutional network. arXiv preprint
arXiv:1505.00853, 2015.

Appendices

49

Appendix A

Correlation between channels of
different models

o1

52 Correlation between channels of different models Chapter A

Real correlation Fake correlation
(@] (@)
(@] (@]
<t <t
Nej Ne)
2o 0
(D]
g o o
- 5 ;
=
O o S
— —
Nej Ne)
— —
o0 o0
— —
o (@)
(@] (@]
rr1r 11 rrr 1T 1T T T T T T T T T T 1T rr1rrrr1rrr1r T T T T T T T T T T T
0 246 8101214161820 0246 8101214161820
Channels Channels

Figure A.1: Correlation between channels for samples passed through au-
toencoder

Real correlation Fake correlation
o o 1
(@ [aN]
<t <t
Nej Ne)
%3 00 e
g o o
z ~ ~
5 3 :
2 2
% %
(@) o])
(&N [aN]
11T 1T 11T 1T 1T 1T T 1T \\\\\\'\\\\\\\\
0 246 8101214161820 0246 8101214161820
Channels Channels

Figure A.2: Correlation between channels for generated samples from GAN
with no pre-training.

Channels
201816141210 8 6 4 2 0

53

Real correlation Fake correlation

2018161412108 6 4 2 0

4 6 8101214161820 0 246 8101214161820
Channels Channels

0 2

Figure A.3: Correlation between channels for generated samples from pre-
trained GAN.

Appendix B

Distributions for different
images

95

56 Distributions for different images Chapter 7

Channel 1
4 _
2 |
O |
_9]
4 T
2 _
0 _
_2 _|
4 .
2 _
O _
g -2
B
=4
g 9
T 0-
N 9.
=
g
3
z. 4
2 _
0 _
_2 _|
4 .
2 _
O _
_9 | | | ‘ | ¥
0.00 0.05 0.10 0.15 0.20 0.25
—— Real Time (s)
—— Generated

Figure B.1: Distribution of samples from pre-trained GAN-model for image
25 in training set.

Amplitude Amplitude

Amplitude

o7

Channel 1 Channel 13
102 . 107 N
101 S (101] Smm—
10_1 L T T T 107 T T
Channel 5 Channel 17
N 10%
%81 a7 P T 10} ™ R o g
10} Pty | 10,
21
10 [[[[0_2 [[[[
Channel 9 Channel 21
102 1 e
10! 1 O e [T B ey sa—
100 _ R ey 100 | Jreme
10_1 | I I I I 10_1 L I I I I
0 400 800 1,200 0 400 800 1,200
Frequency (Hz) — Real Frequency (Hz)
Generated

Figure B.2: Distribution of frequency spectrum for samples from pre-trained
GAN-model for image 25 in training set.

58 Distributions for different images Chapter 7

Channel 1

Normalized amplitude
(@)
|

2 _
0 _
_2 _|
2 _
O _

—2- I I 1 ’\\ T T
0.00 0.05 0.10 0.15 0.20 0.25
—Real Time (s)

—— Generated

Figure B.3: Distribution of samples from pre-trained GAN-model for image
43 in test set.

Amplitude Amplitude

Amplitude

59

Channel 1 Channel 13
107 T 107 TN
%80] S TP }AMW,,,,,:.\\W’V 18 o S s =
10_1 | [[[10_1 L [[
Channel 5 Channel 17
102 % 102 1\
10(1) i \--v..w.\‘.-w,w’w_,_“‘W\ 10(1) 1 e ——
10] ‘ \ 10] B
107" 107
I I I I I
Channel 9 Channel 21
2 4 108 T
%81 T N 1§(1) 1 e
100 _ W‘F_,_v][1_1 : oo
10_1 | [[[[8_2 ! [[[[
0 400 800 1,200 0 400 800 1,200
Frequency (Hz) — Real Frequency (Hz)
Generated

Figure B.4: Distribution of frequency spectrum for samples from pre-trained
GAN-model for image 43 in test set.

60 Distributions for different images Chapter 7

Channel 1
4 _
2 _
0 _
_2 _|
4 _
2 _
O _
—9]
4 _
2 _
0 _
g -2
2
=
g 9.
T 0-
5 2
=
g
3
AN
2 _
O |
—9]
4 _
2 _
0 7 -
_2 B T T T \‘ T T
0.00 0.05 0.10 0.15 0.20 0.25
— Real Time (s)
—— Generated

Figure B.5: Distribution of samples from pre-trained GAN-model for image
116 in test set.

Amplitude Amplitude

Amplitude

61

Channel 1 Channel 13

102 T 102 1\

101 1 ey T S —.

191 7 A v | 101 — el
10 | I I I]LO_ | I I

Channel 5 Channel 17

107 { '\ 10° {7\

10" | s G I i " TN
g =

- [
Channel 9 Channel 21

10% { e 10? 1\

e e ot S OSSS——
NLE -
1072 T T T 0 T T T T

0 400 800 1,200 0 400 800 1,200
Frequency (Hz) _ Real Frequency (Hz)
Generated

Figure B.6: Distribution of frequency spectrum for samples from pre-trained
GAN-model for image 116 in test set.

	I Theory
	Introduction
	Local Field Potential

	Machine Learning
	Convolutional Neural networks
	Transposed convolutional layers

	Batch normalization
	Non-linearity and Activation functions
	Dropout
	Back-Propagation
	Autoencoder
	Loss function

	Generative Adversarial Networks (GAN)
	Loss function

	Model evaluation metrics
	Inception score
	Fréchet inception distance

	II Method
	Experimental data
	Code Implementation
	Overview
	Signal autoencoder
	Image autoencoder
	GAN
	Model evaluation metrics

	III Results
	Results
	Pre-training
	GAN without pre-training
	GAN with Auto-Encoder
	Results for different images

	IV Discussion, Conclusion and Future Work
	Discussion
	Conclusion
	Future work

	Appendices
	Correlation between channels of different models
	Distributions for different images

