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Abstract

We show how both Poisson regression and recurrent events models can be used
to model the number of claims to expect on a car insurance policy. We also
show that the same is true when these models are extended to include a random
effect/frailty. We then look at the effect of different assumptions made regarding
the distribution of this random effect/frailty, through simulated data sets, one
where we do not know the true distribution and several where we controlled the
distribution and variance of the random effect/frailty. The results showed that
the choice of frailty did seem to have an impact on the estimation of expected
number of claims. They also indicated that the choice of distribution to use for
the frailty was more important for data with a higher degree of heterogeneity
than for data with a lower degree of heterogeneity.

i





Acknowledgements

First and foremost, a massive thanks goes out to my supervisor, Prof. Ørnulf
Borgan, for keeping me on track, and always having great suggestions for
improvements. This thesis would never have been what it is today without his
guidance and supervision.

I also have to thank Julie Heggelund and Cecilie Haugstvedt for proofreading
and making the probability of still finding mistakes a little smaller.

A special thank you also goes to Christian-Magnus Mohn for putting up
with me over the last few months, even when I mostly had my head glued to
the computer screen and was only physically present. Finishing this master’s
degree would not have been possible without your support.

And last, but not least, a special thanks to SARS-CoV-2 for making sure all
distractions were kept to a minimum for the past three months. Also, thanks
to everyone in study hall B802 and everyone in Realistforeningen for making
Blindern a great place to be, in the days when campus was still open.

Hanne Tresselt
Oslo, June 2020

iii





Contents

Abstract i

Acknowledgements iii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Main R packages used . . . . . . . . . . . . . . . . . . . . . . 2

2 The homogeneous models 3
2.1 Poisson regression . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The recurrent events model . . . . . . . . . . . . . . . . . . . 6
2.3 Summary of chapter . . . . . . . . . . . . . . . . . . . . . . . 7

3 The heterogeneous models 9
3.1 Generalized linear mixed model . . . . . . . . . . . . . . . . . 9
3.2 The frailty model for recurrent events . . . . . . . . . . . . . . 16
3.3 Summary of chapter . . . . . . . . . . . . . . . . . . . . . . . 22

4 Distributions of the frailty 23
4.1 Standardizing the lognormal frailty . . . . . . . . . . . . . . . 23
4.2 Gamma distributed frailty . . . . . . . . . . . . . . . . . . . . 24
4.3 Inverse Gaussian distributed frailty . . . . . . . . . . . . . . . 29
4.4 Summary of chapter . . . . . . . . . . . . . . . . . . . . . . . 32

5 Importance of the distribution of the frailty 37
5.1 Simulation of data . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Results using low variance on frailty . . . . . . . . . . . . . . . 39
5.3 Results using high variance on frailty . . . . . . . . . . . . . . 43
5.4 Summary of chapter . . . . . . . . . . . . . . . . . . . . . . . 44

v



Contents

6 Concluding remarks 49

References 51

Appendices 53

A Results for GLMMs A-1
A.1 Results using glmmML . . . . . . . . . . . . . . . . . . . . . . . A-1
A.2 Results using glmer . . . . . . . . . . . . . . . . . . . . . . . . A-1

B Code A-9

vi



List of Figures

3.1 Random effects per policyholder, lognormal, with Λ̂i and no. of
claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Random effects, lognormal, against Λ̂i with no. of claims . . . . . 17
3.3 Ratio of expected claims with and without random effects. . . . . . 17
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Introduction

One of the main contributing factors when setting a premium to be paid by
a holder of a car insurance policy is the number of claims the policyholder
is expected to make. This number of claims is most often modelled using
a Poisson regression model, with covariates describing the policyholder and
the car (de Jong and Heller 2008, ch. 6). An alternative approach is to use
a recurrent events model with piecewise constant baseline intensity, and the
covariates as proportional effects (Aalen et al. 2008, ch. 5).

In their standard form these models assume independence between
policyholders and between different claims from the same policyholder. This
implies that two policyholders with the same covariates, e.g., the ages of the
policyholder and of the car, will have the same number of expected claims.
Capturing all the information about the policyholders and their cars, that may
have an effect on their risk of reporting a claim, is not practically feasible. In
effect two policyholders with the same covariates may still have different risks.

To account for this heterogeneity the Poisson regression can be expanded to
a generalized linear mixed model (GLMM) by adding a random effect to the
model (Agresti 2015, ch. 9). Similarly, the recurrent events model accounts for
this by the use of a proportional frailty model (Aalen et al. 2008, ch. 6).

The subject of this thesis is to study the two different modelling approaches.
The main focus will be the effects of assumptions made regarding the distribution
of the random effect/frailty, and how they affect the estimation of the number
of claims to expect from a policyholder.

This is done by first presenting the two approaches of modelling in the
homogeneous case, i.e., without any random effect/frailty. We then present the
approaches including the random effect/frailty, i.e., the effect of heterogeneity,
and different distributions to use for these. The same example data set is used
throughout this part. In the end we study our own simulated data.

1.1 Outline

The rest of the text is organized as follows:

Chapter 2 introduces the Poisson regression model and the recurrent events
model, and shows that they have proportional likelihoods. An example on
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1. Introduction

vehicle insurance claims, to illustrate the results, is also introduced here.

Chapter 3 introduces the addition of a random effect/frailty to the models,
an unobserved random variable for each policyholder, i.e., where the
number of claims for a policyholder are no longer independent between
time periods. This chapter covers the case where this random effect/frailty
has a lognormal distribution. How to make the data compatible with a
clustered survival setting is also covered.

Chapter 4 looks at two more distributions, gamma and inverse Gaussian, to use
on the frailty(/random effect). It also covers the standardization of the
lognormally distributed frailty(/random effect), making the results for this
distribution comparable with the other two. The model in focus is now
only the recurrent events model, and the distribution of the accompanying
frailty.

Chapter 5 covers simulation of data and their use in exploring the importance
of the choice of distribution for the frailty(/random effect) when fitting a
model. The main focus is to see how this choice of distribution affects
the expected number of claims.

Chapter 6 contains some concluding remarks and a discussion of the results.

Appendices A and B contain some additional results, and computer code used
in the simulations.

1.2 Main R packages used

The fitting of generalized linear models was done using the packages glmmML
(Broström 2019) and lme4 (Bates et al. 2015), while the recurrent events models
were fitted using the parfm package (Munda et al. 2017).

All tables that were exported from R to LATEX were exported using the
package xtable (Dahl et al. 2019). All plots were made using ggplot2
(Wickham 2016), with the colour palette from viridis (Garnier 2018).
patchwork (Pedersen 2019) was used for collecting plots in a grid. A lot
of the transformation of data was done using functions from the dplyr package
(Wickham et al. 2020).
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2

The homogeneous models

In this chapter we will look at two different approaches to modelling counts, for
instance the number of claims on an insurance policy. In this setting we will
also assume independence between policyholders and between claims from the
same policyholder, i.e., for two policyholders with the same given covariates,
e.g., age and type of vehicle, the expected number of claims will be the same.

We will introduce the Poisson regression model and the recurrent events
model, and show that they have proportional likelihoods such that methods for
both generalized linear models and survival analysis can be used for modelling
claim counts. We will illustrate the results with an example on vehicle insurance
claims.

2.1 Poisson regression

We have a portfolio with n insurance policies and look at the number of claims
each one of them reports during each of K years. We assume that policyholder
i, where i = 1, . . . , n, is insured for a part Eik of the k-th year for k = 1, . . . ,K.
E.g., if the policyholder is insured for six months, then Eik = 0.5.

Then letting Yik be the observed number of claims for insurance policy i in
year k, Yik ∼ Pois(µik) is a reasonable assumption. Thus

µik = E(Yik)

and

f(yik) = P (Yik = yik) =
µyikik
yik! e

−µik .

Now µik will depend on Eik and covariates that describe the policyholder
and the car. We introduce the covariates xik1, xik2, . . . , xikp with coefficients βj ,
j = 1, . . . , p. If we include an intercept β0, we may on vector form write Xik =
(1, xik1, xik2, . . . , xikp)T and β = (β0, β1, . . . , βp)T , so βTXik =

p∑
j=0

βjxikj .

We have that

µik = Eikµ(Xik)

3



2. The homogeneous models

where µ(Xik) is the expected number of claims in one year for a policyholder
with covariates Xik. We now assume that

µ(Xik) = eβTXik = exp


p∑
j=0

βjxikj

 .

This then gives

µik = Ekiµ(Xik) = exp


p∑
j=0

βjxijk + logEik

 . (2.1)

In this section, we will assume that the number of claims Yik for policyholder i
for the years k = 1, . . . ,K are independent. We then get the following likelihood

L(β) =
n∏
i=1

K∏
k=1

µyikik
yik! e

−µik =
n∏
i=1

K∏
k=1

[Eikµ(Xik)]yik

yik! e−Eikµ(Xik),

which is proportional to

n∏
i=1

K∏
k=1

µ(Xik)yike−Eikµ(Xik). (2.2)

From the general theory on generalized linear models (GLM) (see, e.g.,
Agresti (2015)) we can now see that the model satisfies the three components of
a GLM; the Poisson distribution belongs to the exponential family, we have a
linear predictor ηik, and a link function g(µik). So when, as in this case, using
a logarithmic link function we get that the mean and the linear predictor are
linked by

ηik = log(µik) = βTXik + logEik =
p∑
j=0

βjxikj + logEik.

The term logEik in (2.1) is often called an offset, and is, in this case, used to
correct for differing time periods of observation (de Jong and Heller 2008, p.
67).

If we then look at a covariate, xik1, an increase of one unit will have a
multiplicative effect of eβ1 on the mean,

µik = elogEik+β0+β1(xik1+1) = elogEik+β0+β1xik1eβ1 .

So, when the covariate is at base level the expected number of claims will be
Eike

β0 . When comparing level j with the base level we also get the multiplicative
effect of eβj , giving an expectation of Eikeβ0eβj . (de Jong and Heller 2008, ch.
6)

2.1.1 Example: Vehicle insurance claims

Since actual insurance data are not readily available on the individual level,
we will use a data set simulated by de Jong and Heller (2008) to illustrate the
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2.1. Poisson regression

methods. The data set contains data on n = 40 000 different policies for K = 3
periods, each period being one year (i.e., Eik = 1). The driver’s age and the
value of the vehicle are categorical covariates, each divided into six categories
from youngest/cheapest to oldest/most expensive. The number of claims is
listed for each policy for each of the three different periods, giving a data set of
3× 40 000 = 120 000 observations.

Table 2.1: Estimate of coefficients for the vehicle insurance data, with standard
errors and claim rates.

β̂ se eβ̂ p-value
Intercept -1.5900 0.0154 0.2039 0

Age category
Group 1 0.2636 0.0214 1.3017 1.006e-34
Group 2 0.0842 0.0177 1.0879 1.996e-06
Group 3 0.0341 0.0172 1.0347 0.04741
Group 4 0.0000 1.0000
Group 5 -0.1682 0.0203 0.8452 1.199e-16
Group 6 -0.0883 0.0234 0.9155 0.0001639

Value category($ 000’s)
< 25 0.0000 1.0000

25− 50 0.1856 0.0148 1.2040 6.33e-36
50− 75 0.1547 0.0417 1.1673 0.0002067
75− 100 -0.6741 0.2183 0.5096 0.002018
100− 125 -0.1749 0.2674 0.8396 0.5131
> 125 -1.4381 0.5001 0.2374 0.004029
Period

1 0.0000 1.0000
2 0.1062 0.0149 1.1121 8.51e-13
3 0.2344 0.0144 1.2641 2.239e-59

The model was fitted assuming independence both between policyholders,
and between each time period for policyholder i. This was done using the glm
function in R (R Core Team 2019), with a Poisson family and a log-link. The
groups with the highest number of policies in them were used as a baseline, i.e.,
a policyholder in age category 4 with a vehicle worth less than 25 000$ in time
period 1.

It can be seen from Table 2.1 that the baseline claim rate is eβ0 = e−1.5900 =
0.2039. It can also be seen that a younger person will have a higher claim
rate than an older person. A person in age group 1 will for instance have
1.3017−0.8452

0.8452 = 54% higher claim rate than someone in age group 5. Similarly,
a policy holder with a vehicle valued between 25 - 50 000$ will have a 20.4%
higher claim rate than the ones with a vehicle with a value below 25 000$. The
ones with higher value vehicles on the other hand will have 49.04%, 16.04%
and 76.26% lower claim rates for vehicles valued between 75 - 100 000$, 100
- 125 000$ and above 125 000$ respectively, so the claim rate is not strictly
decreasing with increasing value of the vehicle. There also seem to be a slight
increase in the claim rates for each time period.
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2. The homogeneous models

2.2 The recurrent events model

We now consider counting processes Ni(t), i = 1, . . . , n, where Ni(t) counts the
number of claims for policyholder i in a time period [0, t]. The counting process
Ni(t) has a corresponding intensity process λi(t), i.e., the probability of a claim
occurring in a small time frame, [t, t+ dt], given all known information about
the past until this time frame equals λi(t)dt. Under the assumption that the
time frame is small enough such that it contains at most one claim, the number
of claims occurring in [t, t+ dt], dNi(t), will be either zero or one, and we have
λi(t)dt = P (dNi(t) = 1|past). (Aalen et al. 2008, p. 26)

A general likelihood valid for counting processes is given by

L =

 n∏
i=1

∏
0<t≤τ

λi(t)∆Ni(t)

 exp

−
τ∫

0

λ�(t)dt

 (2.3)

where λ�(t) =
∑n
i=1 λi(t) is the intensity process of the aggregated counting

process N�(t) =
∑n
i=1Ni(t), and τ is the maximum observation time (Aalen

et al. 2008, p. 212). Also ∆Ni(t) is the jump of Ni(t) at time t, i.e., ∆Ni(t) = 1
if policyholder i has a claim at time t, otherwise ∆Ni(t) = 0.

We now assume that the counting process has the intensity process

λi(t) = Yi(t)αi(t)

where Yi(t) is an at-risk indicator, i.e., Yi(t) = 1 if policyholder i is under
observation just before time t, and Yi(t) = 0 otherwise. Note that if Yi(t) = 1
for all t, then Ni(t) will be a Poisson process with intensity αi(t) (Aalen et
al. 2008, p. 33). We will assume that the intensity, αi(t), is given by

αi(t) = α0(t)eβTXi

where the baseline intensity, α0(t), is piecewise constant as a function of time.
We will now look at an interval of K years, and assume that the baseline

intensity is constant for each year, i.e.,

α0(t; θ) =
K∑
i=1

θkIk(t)

where Ik(t) is an indicator for subinterval k, i.e., k − 1 < t ≤ k.
We now have the intervals (k − 1, k], k = 1, . . . ,K, and look at

Oik =
K∫

0

Ik(t)dNi(t) = Ni(k)−Ni(k − 1),

i.e., the number of claims for policyholder i in year k. We also define

Eik =
K∫

0

Ik(t)Yi(t)dt =
k∫

k−1

Yi(t)dt,

6



2.3. Summary of chapter

which is the time under observation for policyholder i in year k. Then αi(t) is
equal to θkeβTXik for k − 1 < t ≤ k and

K∫
0

λ�(t)dt =
K∫

0

n∑
i=1

Yi(t)αi(t)dt

=
n∑
i=1

K∑
k=1

k∫
k−1

Yi(t)αi(t)dt =
n∑
i=1

K∑
k=1

θke
βTXikEik

Hence we can write (2.3) as

L(β) =
[
n∏
i=1

K∏
k=1

(
θke

βTXik

)Oik]
exp

{
−

n∑
i=1

K∑
k=1

θke
βTXikEik

}

=
n∏
i=1

K∏
k=1

[(
θke

βTXik

)Oik
exp

{
−θkeβTXikEik

}]
(2.4)

which we see is of the same form as the likelihood given in (2.2) for the Poisson
regression. We can therefore look at recurrent events models using tools for
Poisson regression, and vice versa.

2.3 Summary of chapter

In this chapter we have presented the two modelling approaches, Poisson
regression and the recurrent events model. We have also seen how they have
proportional likelihoods, and hence can both be used for modelling the number
of claims on an insurance policy. We have also introduced a set of data that is
used for examples also in chapters 3 and 4. In this first example we have looked
at the results of fitting a model for this data using a generalized linear model
with a Poisson distribution.
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The heterogeneous models

When we consider each insurance policy as a cluster, the claims within this
cluster will not be independent. In this chapter we will look at two ways of
accounting for these correlations. While the previous chapter only accounted
for the effects between the clusters, we will in this chapter also look at the
effects within each cluster.

3.1 Generalized linear mixed model

The generalized linear mixed model (GLMM) is an extension of the generalized
linear model (GLM) including an unobserved random variable for each cluster
in the linear predictor. A cluster will in our situation be a single policyholder i,
followed over several years, k = 1, . . . ,K. We will restrict ourselves to looking at
models with a random intercept, i.e., models where we have a random Zi = eUi .
Given Zi = zi (or Ui = ui) we have that, the number of claims Yi1, . . . , YiK for
policyholder i, are independent and Poisson distributed with

E(Yik|zi) = ziµik = ziEikµ(Xik)
= exp(log zi + βTXik + logEik)

= exp(ui + β0 +
p∑
j=1

βjxikj + logEik), (3.1)

with β being the fixed effects of the explanatory variables and ui are the
random intercepts with a particular probability distribution, often assumed to
be independent observations from a N(0, σ2

u)-distribution. Equivalently we may
assume that the random effects Zi are lognormally distributed. (Agresti 2015,
ch. 9)

As given in Günther et al. (2014) the likelihood is now given by

L =
n∏
i=1

 ∞∫
0

K∏
k=1

{
(ziEikµ(Xik))yik

yik!

}
exp{−ziEikµ(Xik)}g(zi)dzi

 ,
9



3. The heterogeneous models

where g(zi) is the distribution of the random effects Zi. We now introduce the
Laplace transform,

L(c) =
∫ ∞

0
e−czig(zi)dzi,

of the random effects. The q-th derivative of the Laplace transform is given by

L(q)(c) = (−1)q
∞∫

0

zqi e
−czig(zi)dzi. (3.2)

We can then write the likelihood as

L =
n∏
i=1

[(
K∏
k=1

{
(Eikµ(Xik))yik

yik!

})
(−1)yi�L(yi�)(Λi)

]
. (3.3)

where Λi =
∑K
k=1Eikµ(Xik) is the sum over all years of the fixed part of the

mean (3.1) for policyholder i and yi� =
∑K
k=1 yik is the total number of claims

during K insured years for policyholder i.
Focusing, for now, on the case where the random intercept has a normal

distribution, the integral in the likelihood does not have a closed form and we
have to use numerical approximation methods to find the maximum likelihood
estimates. Two such methods are:

Laplace approximation is a method that uses a second-order Taylor series
expansion of the exponent of a function. Now consider a one dimensional
integral

In =
∞∫
−∞

e−nh(u)du

where h(u) is a smooth convex function with minimum at u = ũ, i.e., the point
where the first derivative of h(ũ) is zero. A second-order Taylor series expansion
of h(u) around ũ is then

h(u) ≈ h(ũ) + 1
2
d2h(ũ)
du2 (u− ũ)2,

which leads to

In ≈ e−nh(ũ)
∞∫
−∞

e−nh2(u−ũ)2/2du =
(

2π
nh2

)1/2
e−nh(ũ)

where h2 is the second derivative of h(u) evaluated at the minimum ũ, and the
equality obtained by using that the normal density has unit integral and the
substitution v = (nh2)1/2(u− ũ). (Davison 2003, ch. 11.3.1)

In the case where Zi has a lognormal(0, σ2
u) distribution, (3.2) can be written

as

L(q)(c) = (−1)q 1√
2πσ2

u

∫ ∞
0

zqi exp(−zic)
1
zi

exp
(
− (log(zi))2

2σ2
u

)
dzi

10



3.1. Generalized linear mixed model

or, by a change of variable, ui = log(zi), as

L(q)(c) = (−1)q 1√
2πσ2

u

∫ ∞
−∞

exp
{
qui − exp(ui)c−

u2
i

2σ2
u

}
dui, (3.4)

which can be approximated using a Laplace approximation with

h(ui) = −qui + exp(ui)c+ u2
i

2σ2
u

,

giving

L(q)(c) = (−1)q 1√
σ2
uh2

e−h(ũ).

A more detailed description of this calculation can be found in Munda et
al. (2017).

Gauss–Hermite quadrature is a method that approximates the integral of a
function multiplied by a scaled normal density function. The quadratures are
defined by integrals of the form

∞∫
−∞

h(u)e−u
2
du,

which is then approximated by
m∑
r=1

wrh(ur),

were the quadrature points, ur are the roots of the m-th order Hermite
polynomials and wr are corresponding weights (Agresti 2015, ch. 9; Liu
and Pierce 1994). Because of the "curse of dimensionality" getting good
approximations using this method becomes more difficult as the dimension of
ur increases. In our case, it is one-dimensional. The adaptive version of Liu
and Pierce (1994) is more efficient and greatly reduces the number of necessary
quadrature points needed to approximate the integral. In this version the order
one Gauss–Hermite quadrature also becomes the Laplace approximation.

3.1.1 Example: Vehicle insurance claims continued

The model was now fitted assuming independence only between the policyholders,
and assuming correlation between time periods for policyholder i. As for the
GLM case a Poisson family with a log-link was used, but this time the model
was fitted using the glmmML package in R (Broström 2019) as well as the glmer
function in the lme4 package (Bates et al. 2015), which is the package most
commonly used for mixed models. Both Laplace approximation and Gauss–
Hermite quadrature methods were tried. In both of these packages the random
intercept, Ui has a N(0, σu)-distribution.

Table 3.1 on the next page shows the results from a run with glmmML and
Laplace approximation. The estimates of the fixed effects are fairly similar to
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3. The heterogeneous models

Table 3.1: Estimate of coefficients for the vehicle insurance data, with standard
errors and claim rates for the mixed model using Laplace approximation with glmmML
on the full data set.

β̂ se eβ̂ p-value
Intercept -3.1032 0.0353 0.0449 0

Age category
Group 1 0.2644 0.0506 1.3027 1.715e-07
Group 2 0.0419 0.0400 1.0427 0.295
Group 3 0.0457 0.0383 1.0467 0.2328
Group 4 0.0000 1.0000
Group 5 -0.1830 0.0434 0.8327 2.493e-05
Group 6 -0.1369 0.0508 0.8721 0.007037

Value category($ 000’s)
< 25 0.0000 1.0000

25− 50 0.1977 0.0345 1.2186 9.521e-09
50− 75 0.0749 0.0981 1.0778 0.4452
75− 100 -0.5947 0.3815 0.5517 0.119
100− 125 -0.4509 0.5871 0.6371 0.4425
> 125 -1.1965 0.7013 0.3022 0.088
Period

1 0.0000 1.0000
2 0.1062 0.0149 1.1121 8.512e-13
3 0.2344 0.0144 1.2641 0

Standard error of random intercept
σ̂u 1.7982 0.0206 0

the results from the fixed effects model in Section 2.1.1 except for the intercept
which is lower. This lower intercept can be explained by the fact that the
expected value of the lognormal random effect, Zi = eUi , is not equal to one
but exp

{
σ2
u

2

}
, which is estimated to be exp

{
1.79822

2

}
= 5.04. The standard

errors on the other hand are now higher, the p-values are also mostly higher.
A fairly high σu(= 1.7982) indicates there is a significant correlation between
the time periods for policyholder i. Using Gauss–Hermite with 8, 15 and 20
quadrature points was also tested (see Appendix A.1). These results were very
similar to the ones obtained using Laplace approximation, although using 15
quadrature points was a slight improvement to using 8 points there was no
further improvement by adding more quadrature points. As can be seen from
Table 3.2 on the facing page using more points also increases the computational
time from seconds to several minutes.

Using glmer the models took significantly longer to fit (see Table 3.2 on
the next page), using the default Nelder-Mead optimizer, with computational
times from 15 minutes to over half an hour and neither obtaining convergence.
We then tried changing the optimizer from the default Nelder-Mead to optimx
with method nlminb, and added start values, this significantly reduced the
computational times. All further model fits using glmer can, unless otherwise
stated, be assumed to have been done using this optimizer. This change in
optimizer also partly solved the problem with obtaining convergence, at least
when using 8 Gauss–Hermite quadrature points. The rest of the methods were

12



3.1. Generalized linear mixed model

Table 3.2: Approximate run times(in minutes), for one run of each,glmmML and
glmer (default optimizer and nlminb) with four different approximation methods,on
the full data set.

glmmML glmer(default) glmer(nlminb)
Laplace 0.5 14 10

Gauss–Hermite:
8 quadrature points 1.1 24 13
15 quadrature points 1.8 17 15
20 quadrature points 2.2 39 18

also now very close to being within the tolerance levels of achieving convergence.
Adding more than 8 quadrature points did not improve the model fit, and
all the results produced were very close to each other as well as to the result
obtained using glmmML with Laplace approximation (see Appendix A.2). All
these computations were done on a MacBook pro mid 2014 with operating
system 10.14.6, a 2.6 GHz Intel Core i5 processor and 8 GB 1600 MHz DDR3
memory.

Because of these long run times we decided to make a reduced version of
the data set, containing n = 5000 policies and 15 000 observations, for easier
computation. This was done by drawing 3000 and 1171 random policies from
the two lowest value categories respectively, while all the observations from the
other value categories were kept.

The computational times were still a bit long for quick testing (especially
when using the parfm command in section 3.2.2), so we made a further reduced
version of the data set by drawing 64 random policies from each of the three
lowest value categories and keeping the rest (from the already reduced data
set), i.e., now containing n = 300 policies and 900 observations. This smallest
data set will in the following be referred to as the reduced data set.

The result of fitting the model, on the reduced data set, using glmmML is
shown in Table 3.3 on the following page. Very similar results were also obtained
when fitting using glmer. Comparing these results with the ones obtained from
using the full data set the standard errors are now much higher for all variables,
except for the highest value categories which are only slightly higher. Since
all the data from these categories were kept in the reduced data set that is
to be expected. The estimate of the intercept is fairly similar to the estimate
on the full data set. The estimates for the three highest value categories are
only a bit (≈ 0.1) lower for the reduced data than for the full data set. The
two remaining value categories also have a bit lower estimates than for the full
data set, but only slightly for value category 2 (values between 25 and 50 000$).
The three lowest age categories all have estimates that are a bit (≈ 0.3) higher
than for the full data set while category 5 is about the same amount lower and
category 6 a bit higher. The effect, on the expected number of claims, of having
the insurance policy for three years is now a bit higher, and having it for two
years is a bit lower than for the full data set. The standard error of the random
intercept, σu, is also a little bit higher than for the model on the full data set.
Although, since we are mainly interested in the estimated random effects, ẑi,
the large difference in estimates for the reduced data set and the full data set is
not of great importance.
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3. The heterogeneous models

Table 3.3: Estimate of coefficients for the vehicle insurance data, with standard
errors and claim rates for the mixed model using Laplace approximation with glmmML
on the reduced data set.

β̂ se eβ̂ p-value
Intercept -3.0849 0.5111 0.0457 1.583e-09

Age category
Group 1 0.6367 0.5865 1.8902 0.2776
Group 2 0.3621 0.5256 1.4364 0.4908
Group 3 0.3336 0.4592 1.3960 0.4675
Group 4 0.0000 1.0000
Group 5 -0.5225 0.5636 0.5930 0.3539
Group 6 0.0033 0.7570 1.0033 0.9965

Value category($ 000’s)
< 25 0.0000 1.0000

25− 50 0.1278 0.4619 1.1364 0.782
50− 75 -0.6791 0.4944 0.5071 0.1696
75− 100 -0.7486 0.5134 0.4730 0.1448
100− 125 -0.6215 0.6946 0.5371 0.3709
> 125 -1.3484 0.7772 0.2597 0.08274
Period

1 0.0000 1.0000
2 0.0377 0.1943 1.0384 0.8461
3 0.3393 0.1815 1.4040 0.0615

Standard error of random intercept
σ̂u 1.8194 0.2711 7.513e-50

3.1.2 The random effect

As given in Günther et al.(2014) the conditional distribution of the random
effect Zi given the number of claims for policyholder i, is

f(zi|Yik = yik; k = 1, . . . ,K)

=

K∏
k=1
{(ziEikµ(Xik))yik/yik!)} exp{−ziEikµ(Xik)}g(zi)

∞∫
0

K∏
k=1
{(ziEikµ(Xik))yik/yik!)} exp{−ziEikµ(Xik)}g(zi)dzi

=

K∏
k=1
{(ziEikµ(Xik))yik/yik!)} exp{−ziEikµ(Xik)}g(zi)

K∏
k=1
{(Eikµ(Xik))yik/yik!)} (−1)yi�L(yi�)(Λi)

= zyi�i exp{−ziΛi}g(zi)
(−1)yi�L(yi�)(Λi)

.

By a similar argument we find that the conditional distribution of Ui, given the
number of claims for policyholder i, is given by

g(ui|Yik = yik; k = 1, . . . ,K)
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3.1. Generalized linear mixed model

= C0

K∏
k=1

[
(euiEikµ(Xik))yik

yik! exp {−euiEikµ(Xik)}
]

1√
2πσ2

u

exp
{
− u2

i

2σ2
u

}
,

where C0 is a constant. Many methods, like glmmML and glmer, for fitting
the models return the posterior mode, ũi, of ui. This is the value of ui where
g(ui|Yik = yik; k = 1, . . . ,K) is largest. We now have that

log g(ui|Yik = yik; k = 1, . . . ,K) = C1 + yi�ui − euiΛi −
u2
i

2σ2
u

,

where C1 is another constant. The posterior mode is then found at the point
where the derivative of this is equal to zero, i.e., by solving the equation

yi� − euiΛi −
ui
σ2
u

= 0,

which can be solved numerically.
Further we find that the conditional mean of the random effect, Zi, given

the number of claims for policyholder i, is

ẑi = E(Zi|Yik = yik; k = 1, . . . ,K)

=
∞∫

0

zif(zi|Yik = yik; k = 1, . . . ,K)dzi

=
∞∫

0

zi
zyi�i exp{−ziΛi}g(zi)

(−1)yi�L(yi�)(Λi)
dzi

= −L
(yi�+1)(Λi)
L(yi�)(Λi)

, (3.5)

where L(q)(Λi) is given by (3.4) and can be calculated by numerical integration.
We can then find the expected number of claims for policyholder i in a year k∗
later than K by combining this with (3.1)

E(Yik∗ |Yik = yik; k = 1, . . . ,K) = ẑiEik∗µ(Xik∗)

= −L
(yi�+1)(Λi)
L(yi�)(Λi)

exp(β0 +
p∑
j=1

βjxik∗j + logEik∗).

3.1.3 Example: Vehicle insurance claims continued

We now look further at the model for the reduced data set. Figure 3.1 on the
next page shows the estimated random effects, ẑi, for all n = 300 policyholders
from the reduced data set. It also includes the sum of the fixed part of the
mean, Λ̂i, with the average number of claims over the K = 3 years, for each
policyholder, i.

Note that for two policyholders with the same fixed effects, i.e., are in the
same age group and have a vehicle in the same value category, have the same
random effect if they also have the same number of claims in the period. If, on
the other hand, they have different number of claims, the policyholder with
the higher amount of claims will have a higher random effect, ẑi. We also see
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Figure 3.1: Random effects, ẑi with lognormal distribution, for the reduced data set.
The colour scale indicates the sum over all the years of the fixed part of the mean, Λ̂i,
and the size scale indicates the average number of claims reported for policyholder i.

that in general a higher number of claims will result in a larger random effect.
Although the variation in the random effects is quite substantial most of them
are small, with a few very large ones.

Grouping the random effects, ẑi, by the sum of the fixed part of the mean,
Λ̂i, and the average number of claims we see these patterns more clearly (figure
3.2). We also see that if a policyholder is in a group with lower probability of
having a claim, i.e., low Λ̂i, just having a claim will have a large impact on the
random effect. A policyholder with a high probability of a claim, on the other
hand, will need more claims to have the same impact on the random effect.

The influence of the random effect is illustrated in figure 3.3 by plotting
the ratio of the total expected number of claims from the model with random
effects and the model without random effects versus the average number of
claims observed. Including a random effect in the model, i.e., including the
policyholders claims history, will reduce the expectation of claims for those with
average number of claims close to zero and increase it for the policyholders with
increasing number of average claims.

When comparing the estimated random effects, ẑi, to taking the exponential
of the posterior modes, eûi , we see from figure 3.4 that the random effects
are slightly higher than what is obtained by just taking the exponential of
the posterior modes. The difference between them is more noticeable for the
policyholders with fewer reported claims on average, as illustrated more clearly
by figure 3.5.

3.2 The frailty model for recurrent events

A common term for the unobserved heterogeneity in survival analysis is frailty,
i.e., a term to describe the variation between individuals that is not described
by the covariates. When we now look at the situation with recurrent events
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Figure 3.2: Plot of the random effects, ẑi, of the K years against the sum of the
fixed part of the mean, Λ̂i. With size and colour scales as indications of the average
number of claims reported per year.
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Figure 3.3: Ratio in percentage of estimated expected number of claims from the
model with random effects divided by the estimated expected number of claims from
the model without random effects versus the mean number of observed claims.
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Figure 3.4: Random effects, ẑi, versus exponential of the posterior modes, exp{ûi},
for all the policyholders, i, with the colour scale indicating the average number of
claims observed.
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Figure 3.5: Percentage of difference between ẑi and exp{ûi}, with the colour scale
indicating the average number of claims observed.
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3.2. The frailty model for recurrent events

from section 2.2, we will assume that for each i = 1, . . . , n we have a frailty Zi,
and that given Zi = zi, we have a counting process Ni(t) with intensity process

λi(t|zi) = ziYi(t)αi(t)

Here, as in section 2.2, we have that

αi(t) = α0(t)eβTXik

where α0(t) = α0(t; θ) is piecewise constant, i.e.,

α0(t; θ) =
K∑
i=1

θkIk(t).

We then set Hi to be the information we have about the process Ni(t)
for the interval [0,K]. This could then be information, e.g., about when a
policyholder i reports a claim, and how many they have reported during the
time of observation, i.e., the period they are insured for. Similarly to (2.3) we
then have that

P (Hi|Zi = zi) =
∏

0<t≤K
λi(t|zi)∆Ni(t) exp

{
−
∫ K

0
λi(t|zi)dt

}
.

By rewriting this in a similar fashion to what was done in section 2.2 we now
have that

P (Hi|Zi = zi) =
K∏
k=1

[(
ziθke

βTXik

)Oik]
exp

{
−

K∑
k=1

ziθke
βTXikEik

}

=
K∏
k=1

[(
θke

βTXik

)Oik]
zOi�i exp

{
−zi

K∑
k=1

θke
βTXikEik

}
,

where Oik is the number of claims in period k for policyholder i, as before, and

Oi� =
K∑
k=1

Oik. We now let g(zi) be the density of the frailty Zi, assuming the

Zis are independent and identically distributed. Then, by taking the expectation
with respect to Zi, we get that

P (Hi) =
∞∫

0

P (Hi|Zi = zi)g(zi)dzi

=
K∏
k=1

[(
θke

βTXik

)Oik] ∞∫
0

zOi�i exp
{
−zi

K∑
k=1

θke
βTXikEik

}
g(zi)dzi

=
K∏
k=1

[(
θke

βTXik

)Oik]
(−1)Oi�L(Oi�)(Λi),

where Λi =
K∑
k=1

θke
βTXikEik. The likelihood then becomes

L =
n∏
i=1

P (Hi) =
n∏
i=1

{
K∏
k=1

[(
θke

βTXik

)Oik]
(−1)Oi�L(Oi�)(Λi)

}
, (3.6)
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3. The heterogeneous models

which is corresponding to the likelihood for the generalized linear mixed model
(3.3).

The estimation of Zi is also similar to what was done for the mixed model.
From Aalen et al. (2008, p. 278) we have that the conditional density of Zi
given Hi becomes

f(zi|Hi) = P (Hi|Zi = zi)g(zi)
P (Hi)

=

K∏
k=1

[(
θke

βTXik

)Oik]
zOi�i exp

{
−zi

K∑
k=1

θke
βTXikEik

}
K∏
k=1

[(
θkeβTXik

)Oik] (−1)Oi�L(Oi�)(Λi)
g(zi)

= zOi�i exp {−ziΛi}
(−1)Oi�L(Oi�)(Λi)

g(zi)

From this we find that

ẑi = E[Zi|Hi]

=
∞∫

0

zif(zi|Hi)dzi

=

∞∫
0
zOi�+1
i exp {−ziΛi} g(zi)dzi

(−1)Oi�L(Oi�)(Λi)

= −L
(Oi�+1)(Λi)
L(Oi�)(Λi)

, (3.7)

which corresponds to (3.5), for the mixed model.

3.2.1 Clustered survival data

The command parfm in the R package with the same name (Munda et al. 2012),
fits frailty models for clustered survival data, and it allows for a number of
distributions of the frailty. It is possible to use parfm to fit models for recurrent
events.

In order to do so, we have to adapt the data for the recurrent events to
a clustered survival data setting. To this end we do the following. For each
policyholder i and period k where there are two or more claims (i.e., Oik ≥ 2),
we replace the original observation with nik = Oik artificial "observations" where
Dikl = 1 and T̃ikl = Eik/Oik for l = 1, . . . , nik. For the policyholders i and
periods k where Oik ≤ 1 we just set nik = 1 and let Dikl = Oik and T̃ikl = Eik.
The code to achieve this may be found in listing B.1 in appendix B.

We may then consider the observations (T̃ikl, Dikl; l = 1, . . . , nik, k =
1, . . . ,K) as observations from cluster i, (i = 1, . . . , n). Further we assume
that given frailty Zi = zi, the intensity for the uncensored survival times, Tikl,
corresponding to the T̃ikl’s are given as

αik(t) = θke
βTXik (3.8)
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3.2. The frailty model for recurrent events

with cumulative intensity

Aik(t) = θke
βTXikt. (3.9)

The likelihood for such artificial clustered survival data now becomes (Aalen
et al. 2008, section 7.2.2)

L =
n∏
i=1

{
K∏
k=1

nik∏
l=1

[
αik(T̃ikl)

]Dikl (−1)Di��L(Di��)

(
K∑
k=1

nik∑
l=1

Aik(T̃ikl)
)}

,

where Di�� =
K∑
k=1

nik∑
l=1

Dikl. If we insert (3.8) and (3.9) into this expression,

and note that
nik∑
l=1

Dikl = Oik and Di�� =
K∑
k=1

Oik = Oi�, the likelihood may be

written

L =
n∏
i=1

{
K∏
k=1

[
θke

βTXik

]Oik
(−1)Oi�L(Oi�)

(
K∑
k=1

nik∑
l=1

θke
βTXik T̃ikl

)}
.

Now we have T̃ikl = Eik/nik, so that

K∑
k=1

nik∑
l=1

θke
βTXik T̃ikl =

K∑
k=1

θke
βTXikEik.

Thus we see that the likelihood for the (artificial) clustered survival data is the
same as (3.6). This shows that we may use parfm for clustered survival data to
fit frailty models for recurrent event data.

3.2.2 Example: Vehicle insurance claims continued

The model was now fitted using the parfm package (Munda et al. 2017) in
R, with an exponential distribution on the baseline intensity and lognormal
distribution on the frailty. The default optimizer nlminb was also used. As can
be seen from table 3.4 the results are very similar to those for the mixed model
(table 3.3). The resulting frailties were also very close to the random effects of
the mixed model.

This model does not have an intercept like the mixed model, but it does
have the baseline intensity parameter,θk which in this case corresponds to eβ0 ,
i.e., the intercept would be β0 = log(θk) = log(0.0457) = −3.08497, which is
very close to the intercept of the mixed model.

Running this with the full data set with n = 40 000 took around 2.5 hours
to run, while using the larger data set, with n = 5000 policies, took a little
under 17 minutes to run. When reducing the data set to n = 300 policies the
execution time was reduced to a little over 40 seconds. Comparing the run time
for the full data set with those of table 3.2 we see that parfm takes significantly
longer to run. Seeing as the clustered survival model includes the extra level
l = 1, . . . , nik, it is not unreasonable that the calculations take a bit longer.
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Table 3.4: Estimate of coefficients for the vehicle insurance data, with standard
errors and claim rates for the survival model with parfm on the reduced data set. With
lognormally disributed frailties

β̂ se eβ̂ p-value
Age category

Group 1 0.6365 0.5862 1.8898 0.2776
Group 2 0.3621 0.5258 1.4364 0.491
Group 3 0.3336 0.4591 1.3960 0.4674
Group 4 0.0000 1.0000
Group 5 -0.5226 0.5642 0.5930 0.3543
Group 6 0.0034 0.7571 1.0035 0.9964

Value category($ 000’s)
< 25 0.0000 1.0000

25− 50 0.1280 0.4619 1.1365 0.7817
50− 75 -0.6789 0.4943 0.5072 0.1695
75− 100 -0.7485 0.5140 0.4731 0.1453
100− 125 -0.6216 0.6933 0.5371 0.3699
> 125 -1.3481 0.7768 0.2597 0.08265
Period

1 0.0000 1.0000
2 0.0377 0.1944 1.0385 0.8461
3 0.3392 0.1816 1.4038 0.06175

Variance of frailty
σ̂2
u 3.3097 0.8070

Baseline intensity parameter
θ̂ 0.0457 0.0226

3.3 Summary of chapter

In this chapter we have seen that the generalized mixed model and the frailty
model for recurrent events have corresponding likelihoods, and so can both
be used for modelling the number of claims to expect on an insurance policy.
In this chapter we have focused on random effects/frailties with a lognormal
distribution. In the coming chapters we will take a closer look at other possible
distributions. We have also seen that fitting a frailty model to a clustered
survival data set takes a lot longer than fitting a mixed model, likely due to
the extra layer to do computations over.
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4

Distributions of the frailty

In the previous chapter we looked at both the random effect and frailty, with a
lognormal distribution. We will now look at a few more distributions, but now
only focus on the recurrent events model and the distribution of the frailty.

4.1 Standardizing the lognormal frailty

In order to make comparisons more fair we need to standardize the lognormally
distributed frailties to have expectation equal to one, like the distributions we
will compare it with in this chapter. With U ∼ N(0, σ2

u), the expectation of
the frailty, Zi, is

E[Zi] = exp
{
σ2
u

2

}
. (4.1)

To standardize the lognormal frailties to have expectation equal to one we
therefore have to divide them by (4.1), and also consequently we need to
multiply the sum of the fixed part of the expected number of claims, Λ̂, with
(4.1).

The variance of the frailty is then

Var(Zi) = σ2
z = eσ

2
u − 1,

so the variance of the frailty for the clustered survival model, fitted with
lognormal frailty, is then σ2

z = e3.3097 − 1 = 26.38.
The parameters of the lognormal distribution is the mean, µu, and standard

deviation, σu, of Ui, and not the mean, µz, and standard deviation, σz, of
Zi. It is well known that for the lognormal distribution we have E(Zi) =
exp{µu + σ2

u/2} and Var(Zi) = exp{2µu + σ2
u}[exp{σ2

u} − 1]. So in order to
produce a lognormally distributed frailty Zi, with mean 1 and variance σ2

z we
need to use the following parameters

µu = − log(σ2
z + 1)
2

and

σ2
u = log(σ2

z + 1).
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4. Distributions of the frailty

Figure 4.1 shows the probability densities for the lognormal distribution
with mean 1 and different variances.
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Figure 4.1: Densities, g(z), with mean = 1 and five different σzs, for the lognormal
distribution.

4.2 Gamma distributed frailty

With Zi ∼ Gamma(α, β), the probability density function is given by

g(zi) = βα

Γ(α)z
α−1
i e−βzi .

It is common to fix the mean equal to 1 giving α = β, and variance, σ2
z = 1/β.

This variance is used as a measure of the degree of heterogeneity (Aalen et
al. 2008, ch. 6.2.2). This gives the Laplace transformation

L(c) = (1 + σ2
zc)
− 1
σ2
z ,

and the q-th derivative is then

L(q)(c) = (σ2
z)q(−1)q(1 + σ2

zc)
− 1
σ2
z
−q

q∏
s=1

(
1
σ2
z

+ s− 1
)

= (−1)q(1 + σ2
zc)−q

[
q−1∏
s=0

1 + sσ2
z

]
L(c).

Using this with (3.7) we get the estimated frailty. (Aalen et al. 2008; Munda et
al. 2012)). Figure 4.2 shows the probability densities for the gamma distribution
with mean 1 and different variances.
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4.2. Gamma distributed frailty
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Figure 4.2: Densities, g(z), with mean = 1 and five different σz’s, for the gamma
distribution.

4.2.1 Example: Vehicle insurance claims continued

Fitting the model with a gamma distributed frailty using parfm gives the results
presented in table 4.1. From this we see that the estimates of the coefficients
are mostly higher than with a lognormal distribution on the frailty (see table
3.4), except for the estimates for the periods, which are the same. The standard
errors and p-values on the other hand are mostly lower or the same. The
variance of the frailty is much lower indicating a lower degree of heterogeneity.

From figure 4.3 we see that the frailties, ẑi,gamma, follow a similar pattern
to the frailties with a lognormal distribution (see figure 3.2).

We see from figure 4.4 that the sum of the fixed part of the expected number
of claims when the frailty follows a gamma distribution, Λ̂i,gamma, are mostly
a bit lower than the ones when the frailty follows the lognormal distribution,
Λ̂i,lognorm. From figure 4.5 there does not seem to be any clear pattern to the
differences.

We also see from figure 4.6 that the frailties with gamma distribution,
ẑi,gamma, are mostly slightly higher than the ones with lognormal distribution,
ẑi,lognorm. The difference between them seems to be larger for higher number of
average claims. Although from figure 4.7 we see that, in percentage of difference
from ẑi,lognorm, the frailties for policyholders with few average claims is also
quite large.

Then, looking at the expected number of claims in total, i.e., ẑiΛ̂i, for the
models with gamma and lognormaly distributed frailties, we see from figure
4.8 that they both seem to give fairly similar results. Taking a closer look at
the differences, in figure 4.9, we see that there is quite a large variation in
differences in the estimated expected total number of claims where the number
of observed claims are small, while it seems to decrease a bit with increasing
number of claims.
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4. Distributions of the frailty
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Figure 4.3: Frailties, ẑi,gamma, against the sum of the fixed part of the expected
number of claims, Λ̂i,gamma. With colour and size scales indicating the average number
of claims reported per year.

0.5

1.0

1.5

2.0

0.5 1.0 1.5

 Λ̂i,lognormal

 Λ̂
i,g

am
m

a 0

1

2

3

4

5

Average no. of claims

Average no. of claims

0

1

2

3

4

5

Figure 4.4: The sum of the fixed part of the expected number of claims, Λ̂i,gamma for
gamma distributed frailties, ẑi,gamma, versus the sum of the fixed part of the expected
number of claims, Λ̂i,lognorm for lognormally distributed frailties, ẑi,lognorm. With
colour and size scales indicating the average number of claims reported per year.
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4.2. Gamma distributed frailty
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Figure 4.5: Percentage of difference between Λ̂i,lognorm and Λ̂i,gamma, in proportion
to Λ̂i,lognorm. With colour and size scales indicating the average number of claims
reported per year.

0

3

6

9

12

0 3 6 9 12
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Figure 4.6: The gamma distributed frailties, ẑi,gamma versus the lognormally
distributed frailties, ẑi,lognorm. With colour and size scales indicating the average
number of claims reported per year.
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4. Distributions of the frailty
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Figure 4.7: Percentage of difference between ẑi,lognorm and ẑi,gamma, in proportion
to ẑi,lognorm. With colour and size scales indicating the average number of claims
reported per year.
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Figure 4.8: Estimated expected number of claims for the total of the K = 3 years
with lognormal and gamma distributed frailties. With colour and size scales indicating
the total number of claims reported.
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4.3. Inverse Gaussian distributed frailty

Table 4.1: Estimate of coefficients for the vehicle insurance data, with standard
errors and claim rates for the survival model with parfm on the reduced data set, with
gamma distributed frailty

β̂ se eβ̂ p-value
Age category

Group 1 1.0625 0.5254 2.8936 0.04315
Group 2 0.5174 0.4784 1.6776 0.2795
Group 3 0.6068 0.4163 1.8346 0.145
Group 4 0.0000 1.0000
Group 5 -0.3469 0.5045 0.7069 0.4918
Group 6 0.0198 0.6815 1.0200 0.9768

Value category($ 000’s)
< 25 0.0000 1.0000

25− 50 0.2617 0.4305 1.2992 0.5433
50− 75 -0.6440 0.4484 0.5252 0.151
75− 100 -0.7673 0.4619 0.4643 0.09673
100− 125 -0.2583 0.5836 0.7723 0.6581
> 125 -1.3180 0.7251 0.2677 0.0691
Period

1 0.0000 1.0000
2 0.0377 0.1943 1.0385 0.846
3 0.3392 0.1815 1.4038 0.06157

Variance of frailty
σ̂2
z 3.7916 0.7363

Baseline intensity parameter
θ̂ 0.1503 0.0613

4.3 Inverse Gaussian distributed frailty

The inverse Gaussian distribution is a special case of the generalized inverse
Gaussian distribution. With Zi ∼ GIG(p, a, b) the density is

g(zi) =
(ab )

p
2

2Kp(
√
ab)

zp−1e−
az+ b

z
2 , zi > 0,

where Kp(ω) is the Bessel function (Hougaard 2000, sec. A.4.2)

Kp(ω) = 1
2

∞∫
0

tp−1 exp
{
−ω2

(
t+ 1

t

)}
dt.

When p = − 1
2 , a = λ

µ2 and b = λ we get the inverse Gaussian distribution.
Fixing the mean, µ, to be 1, and setting the variance, 1

λ , to σ
2
z we get that

the density of Zi ∼ IG(σ2
z), by also using the fact that K1/2(ω) = K−1/2(ω) =√

π
2ω exp(−ω), is

g(zi) = 1√
2πσ2

z

z
− 3

2
i e

− (zi−1)2

2ziσ2
z .
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4. Distributions of the frailty
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Figure 4.9: Percentage of difference between expected total number of claims with
lognormal and gamma distributed frailties, in proportion to the expected total number
of claims with lognormal frailties. With colour and size scales indicating the total
number of claims reported.

The Laplace transform is then (Aalen et al. 2008, sec. 6.2.3; Munda et
al. 2012, sec. 2.3)

L(c) = exp
{

1
σ2
z

(
1−

√
1 + 2σ2

zc
)}

, c ≥ 0,

which has the q-th derivative (Munda et al. 2012, sec. 2.3)

L(q)(c) = (−1)q(2σ2
zc+ 1)−

q
2

Kq−(1/2)

(√
2(σ2

z)−1(c+ 1
2σ2
z
)
)

K1/2

(√
2(σ2

z)−1(c+ 1
2σ2
z
)
) L(c).

As before, using this with (3.7) will get us the estimated frailties. In figure 4.10
we see plots of the density for different variances, all with the same mean of 1.

4.3.1 Example: Vehicle insurance claims continued

When we fit the model with an inverse Gaussian distributed frailty, zi,ingau,
using parfm we get results presented in table 4.2. We see from this that
the effects of the periods do not seem to change with the distribution of the
frailty. The estimates of the coefficients are mostly pretty close to those of
the lognormally distributed frailties (see table 3.4), although where there are
differences the ones where the frailties are inverse Gaussian seem to be a bit
higher. The estimated standard errors are placed somewhere in between those
from the models with lognormal and gamma distributed frailties. The p-values
are close to those of the model with lognormal frailty, while the baseline intensity
is closer to that of the model with gamma distributed frailty. Also, the variance
of the frailty is slightly higher than for the gamma model, but still much lower
than for the lognormal model.
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4.3. Inverse Gaussian distributed frailty
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Figure 4.10: Densities, g(z), with mean = 1 and five different σzs, for the inverse
Gaussian distribution.

We see from figure 4.11 that frailties follow a similar pattern to those with
a gamma and lognormal distribution, i.e., higher impact of having a claim, on
the frailty for policyholders with few expected claims based on the fixed effects
than for those with more expected claims based on the fixed effects.
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Figure 4.11: Frailties, ẑi,ingau, against the sum of the fixed part of the expected
number of claims, Λ̂i,ingau. With colour and size scales indicating the average number
of claims reported per year.

From figure 4.12 we see that the sum of the fixed part of the expected
number of claims, Λ̂i,ingau, follow a relatively linear pattern not too different
from the lognormal, Λ̂i,lognorm, but it is slightly lower. The difference seems to
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4. Distributions of the frailty

Table 4.2: Estimate of coefficients for the vehicle insurance data, with standard
errors and claim rates for the survival model with parfm on the reduced data set, with
inverse Gaussian distributed frailty

β̂ se eβ̂ p-value
Age category

Group 1 0.6506 0.5418 1.9166 0.2298
Group 2 0.3710 0.5016 1.4492 0.4596
Group 3 0.3789 0.4379 1.4606 0.3869
Group 4 0.0000 1.0000
Group 5 -0.5283 0.5421 0.5896 0.3298
Group 6 0.0238 0.7374 1.0241 0.9742

Value category($ 000’s)
< 25 0.0000 1.0000

25− 50 0.1998 0.4315 1.2211 0.6434
50− 75 -0.6082 0.4659 0.5443 0.1917
75− 100 -0.7427 0.4927 0.4758 0.1317
100− 125 -0.5317 0.6229 0.5876 0.3933
> 125 -1.3398 0.7459 0.2619 0.07244
Period

1 0.0000 1.0000
2 0.0377 0.1943 1.0385 0.846
3 0.3392 0.1815 1.4038 0.06157

Variance of frailty
σ̂2
z 5.8505 1.8431

Baseline intensity parameter
θ̂ 0.1832 0.0835

increase with increasing Λ̂i. Although we see from figure 4.13 that in percent,
in proportion to Λ̂i,lognorm, the difference does not seem to follow any specific
pattern and ranges between twelve and twenty four percent.

We see from figure 4.14 that the frailties, ẑi,ingau follow a similar linear
pattern to the fixed effects, only these are slightly higher than the lognormally
distributed frailties, ẑi,lognorm, and the difference seems to increase with
increasing number of claims. Although in percent (figure 4.15), in proportion
to ẑi,lognorm, the difference is largest for claim numbers closer to zero with low
frailties and smaller for higher number of claims and larger frailties.

Also, looking at figure 4.16 we see that the expected number of claims, i.e.,
ẑiΛ̂i, with both inverse Gaussian and lognormally distributed frailties are very
close to each other and the observed number of claims. From figure 4.17 we see
that the largest differences in expected total number of claims, in proportion to
the expected total number of claims with lognormal frailties, occur when the
number of claims is close to zero and the difference passes twenty percent. The
other expectations have a difference below ten percent.

4.4 Summary of chapter

In this chapter we have first covered the standardization of the lognormal frailty,
to make the results comparable to those of the gamma and inverse Gaussian
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4.4. Summary of chapter
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Figure 4.12: The sum of the fixed part of the expected number of claims, Λ̂i,ingau for
inverse Gaussian distributed frailties, ẑi,ingau, versus the sum of the fixed part of the
expected number of claims, Λ̂i,lognorm for lognormally distributed frailties, ẑi,lognorm.
With colour and size scales indicating the average number of claims reported per year.
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Figure 4.13: Percentage of difference between Λ̂i,lognorm and Λ̂i,ingau, in proportion
to Λ̂i,lognorm. With colour and size scales indicating the average number of claims
reported per year.
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4. Distributions of the frailty
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 ẑi,lognorm

 ẑ
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Figure 4.14: The inverse Gaussian distributed frailties, ẑi,ingau versus the
lognormally distributed frailties, ẑi,lognorm. With colour and size scales indicating the
average number of claims reported per year.
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Figure 4.15: Percentage of difference between ẑi,lognorm and ẑi,ingau, in proportion
to ẑi,lognorm. With colour and size scales indicating the average number of claims
reported per year.
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Figure 4.16: Estimated expected number of claims for the total of the K = 3 years
with lognormal and inverse Gaussian distributed frailties. With colour and size scales
indicating the total number of claims reported.
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Figure 4.17: Percentage of difference between expected total number of claims with
lognormal and inverse Gaussian distributed frailties, in proportion to the expected total
number of claims with lognormal frailties. With colour and size scales indicating the
total number of claims reported.
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4. Distributions of the frailty

distributed frailties. We have then presented the gamma and inverse Gaussian
distributed frailties. The examples cover comparisons of the results, from
fitting the data using these distributions for the frailty, to those (a standardized
version) of the fit with lognormal frailty from the results presented in the
previous chapter.

From these results we have seen that the expected number of claims are fairly
similar for all the distributions of frailty, although the ones predicted by using
gamma distribution of frailty are mostly slightly lower than those resulting from
fitting with lognormal and inverse Gaussian frailties. The differences between
them seem to be increasing with higher numbers of observed claims, although
in percentage the differences turn out to be larger for policyholders with fewer
reported claims. This is because these numbers are so small that a small change
makes a bigger difference here than a slightly larger change does for an already
large number of claims. The differences are generally smaller between the results
from using a lognormal frailty and an inverse Gaussian frailty, than between
using a lognormal and a gamma distributed frailty.
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5

Importance of the distribution of
the frailty

In the examples used in the previous chapters we have used a data set where
we do not know the distribution of the frailty used to generate the number of
claims. In order to be able to say something more about the importance of the
choice of distribution of the frailty when fitting a model, we will in this chapter
simulate our own data where we control the distribution of the frailty.

5.1 Simulation of data

To simulate data for n policyholders for K periods, where each period is one
year(i.e., Eik = 1), we use as covariates the age of the policyholder, the age of
the car and the mileage of the car. The ages of the policyholder, x1, and the car,
x2, are numeric covariates while the mileage is categorical with 4 levels, giving 3
dummy variables, x3, x4 and x5. The age of the policyholder was sampled from
a discrete sequence of ages from 18 to 100. The probability of drawing each age
was set based on the proportion of the population for each age in Norway in
2020 (Statistisk sentralbyrå 2020a). Figure 5.1 shows the distribution of age of
policyholders.
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Figure 5.1: Distribution of age of policyholders.
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5. Importance of the distribution of the frailty

The ages of the cars were sampled in a similar manner, from a sequence of
ages from 0 (new car) to 21, where 21 includes any car aged >20 years old. The
data on ages of cars in Norway (for 2019) (Statistisk sentralbyrå 2020b) was
given for groups of ages, so to set the probabilities of drawing a single age, the
proportions for each group was divided equally among the ages in the group.
Figure 5.2 shows the distribution of age of cars.
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Figure 5.2: Distribution of age of cars.

All ages, for both cars and policyholders, were increased by one for each
period, from period 2 onwards. The mileage of each car was sampled from four
categories, with equal probabilities, where category 1 indicates low mileage
and category 4 indicates high mileage. We draw one set of covariates for
n = 250 policyholders and K = 4 periods, which is then used throughout all the
simulations. The accompanying code may be found in Appendix B Listing B.2

Some suitable values for the coefficients, β, are also chosen, including
a baseline intensity parameter, θ. They were set to θ = e−2.7 ≈ 0.067
and β = (β1, β2, β3, β4, β5) = (0.005, 0.009, log(1.2), log(1.4), log(1.6)). The
fixed effects are then θeβTXik , where Xik = (xik1, xik2, xik3, xik4, xik5)T for
i = 1, . . . , n and k = 1, . . . ,K. The first two, xik1 and xik2 increase by one for
each period, k, while the rest are kept the same for all periods, i.e., does not
change with k.

Then, based on the desired distribution, the frailty,Z, is drawn from either a
lognormal distribution, a gamma distribution or an inverse Gaussian distribution,
such that they have expectation one and the desired variance. Here we use two
different variances on the frailty, one low of σ2

z = 0.752 = 0.5625 and one high of
σ2
z = 22 = 4. The number of claims for each policyholder in each period is then

drawn from a Poisson distribution with expectation (and variance) given by the
frailty times the fixed effects, ZiθeβTXik . Together with the id for policyholder,
the periods and the covariates, the number of claims make up the data set. The
data is then converted to a clustered survival data format to be compatible for
use with parfm (see Listing B.1 in Appendix B).

The data, with the number of claims generated based on a given distribution
of the frailty, is then fitted using parfm for each of the three frailties we are
looking at. We then aggregate the data by summing up the total number of
claims "observed" over all the K = 4 periods, for each policyholder, i. To this
resulting set of data we also add the predicted frailties, ẑi, for the three model fits,
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5.2. Results using low variance on frailty

as well as the sums of fixed effects, Λ̂i =
∑K
k=1 θ̂e

β̂
TXik , and expected number

of total claims, ẑiΛ̂i. We also compute deviations of the fitted models from the
model fitted using the same distribution of the frailty as was used to generate
the data, e.g., ẑi,gamma − ẑi,lognorm when the model was fitted using gamma
distributed frailty and the data was generated using a lognormally distributed
frailty. These deviations were computed for all three types of resulting data,
i.e., frailties, sums of fixed effects and the number of expected claims. The
complete code for this function can be found in Appendix B Listing B.3.

For each of the 6 combinations of frailty distribution and frailty variance,
we performed 10 replications. We chose to use only 10 replications since one
replication took a bit less than a minute to run, and this amounts to almost an
hour to run all the 6× 10 = 60 replications. Because of the limited time frame
of this thesis, adding many more replications would take too long to run. Also,
for our purpose of looking at the effect of assumptions made on the distribution
of the frailty, 10 replications are enough. For each of the 10 replications we
get estimates of sums of fixed effects, Λ̂i, frailty, ẑi, and expected number of
claims, ẑiΛ̂i for 250 policyholders. So in total we get these estimates for 2 500
policyholders.

5.2 Results using low variance on frailty

Before we look at all the 10 replications, we will first take a look at the results
from one simulation with low variance (σz = 0.75). Table 5.1 shows how many
of the n = 250 policyholders reported different numbers of claims, in total over
the K = 4 periods, for the different frailty distributions used to generate the
data. From this we see that at most 5 total claims are reported, but only one
or two policyholders reported this many claims. The majority of policyholders
reported 0 claims, with quite a few reporting 1 or 2 claims.

Table 5.1: The number of policyholders, of the n = 250, with the number of total
claims over the K = 4 periods for the different distributions of frailty for one simulation,
with low variance.

No. of claims 0 1 2 3 4 5
Lognormal 158 68 17 6 1
Gamma 162 62 18 5 1 2
Inverse Gaussian 160 59 23 6 1 1

From figure 5.3 column 1 we see that the sums of fixed effects, Λ̂i are very
similar for all the fitted distributions, but covers a slightly larger range when
the data is generated with the gamma distributed frailty. For the predicted
frailties, ẑi, the values are all similar when the number of claims is low, with
mostly increasing deviation with increasing number of claims (figure 5.3 column
2). When the data is generated using a lognormal frailty (plot A.2 in figure
5.3) the predicted frailties when fitting with gamma and inverse Gaussian
distributions are fairly similar to each other, and lower than the fit lognormal
distribution, and starts deviating from the fit with lognormal distribution with
two or more reported claims. From plot B.2 (in figure 5.3) we see that the
predicted frailties when fitting the model with lognormal and inverse Gaussian
distributions, with gamma distribution used to make the data, are similar to
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Figure 5.3: Results of one simulation with low variance. Each row, A, B and C,
containing results using lognormal, gamma and inverse Gaussian frailty respectively
to generate the data. Columns 1, 2 and 3 contain sums of fixed effects, Λ̂i, frailties,
ẑi, and expected number of claims, ẑiΛ̂i. Colour and size gradients indicate the total
number of claims observed, and shape indicating the distribution used for the frailty
when fitting the model to the data. The grey line indicate the result when fitting with
the same distribution that was used to generate the data.

40



5.2. Results using low variance on frailty

the predicted frailties when fitting with gamma distribution when fewer than
three claims are reported. With more than three claims they are a bit higher,
with lognormal predictions a bit above the inverse Gaussian ones. In the case
where the data was generated using an inverse Gaussian distributed frailty (plot
C.2 in figure 5.3) the predicted frailties when fitting the model with gamma
distributed frailty is very similar to that predicted when fitting with inverse
Gaussian distributed frailty. Fitting with lognormally distributed frailty in this
case is larger and deviates more from the other two predicted frailties with
increasing number of claims.

Column 3 of figure 5.3 contains the expected number of total claims over
all K = 4 periods. For all cases we see that a low number of observed claims
give very similar results of expected number of claims, and deviating more with
increasing number of observed claims. Plot A.3 presents the results of fitting
the model with the different distributions of frailty to data generated using the
lognormal distribution on the frailty. Here both gamma and inverse Gaussian
fits expects fewer claims than the lognormal fit when the observed number
of claims are higher, and they all expect fewer claims than what is observed.
When the data is generated using a gamma distributed frailty (plot B.3) both
the lognormal and inverse Gaussian fits expect more claims than the gamma
fit for higher numbers of observed claims. Using inverse Gaussian distributed
frailty to produce the data set (plot C.3) yields very similar expected number
of claims for all three distributions of frailty when fitting the model, although
there is some deviation for the highest numbers of observed claims.

Regardless of the distribution used to generate the data we see a similar
pattern of expected number of claims, with very similar expectations for all
fitted distributions when the observed number of claims is low. When the
observed number of claims go higher there is some deviation between the fits,
with a general pattern of the gamma and inverse Gaussian being very similar
with gamma slightly lower, and the lognormal fit being a bit above the other
two. This increased deviation when the observed number of claims increase
may be due to the limited amount of data points for these numbers of claims.

We will now take a closer look at the deviations from all the replications.
Figure 5.4 shows the deviations of gamma and inverse Gaussian fits from the
lognormal fit, when the data is generated using a lognormal distribution on the
frailty. It shows that for the sums of fixed effects(column A), Λ̂i, the deviations
are spread over a bit larger area when fitted with gamma distributed frailty
than when fitted with inverse Gaussian frailty, but the tendency for both is
that they stay fairly close to zero. For the predicted frailties(column B), ẑi,
the tendency is that the deviations descend from zero at a slightly quicker
rate for the gamma fit than for the inverse Guassian fit. The deviations of the
expected number of claims(column C), ẑiΛ̂i, follow a similar pattern to that of
the frailties, but the deviations are lower.

We see from figure 5.5 that the deviations of lognormal and inverse Gaussian
fits from the gamma fit, when the data is generated with a gamma distributed
frailty, has a similar pattern to that of the lognormal data for the sums of fixed
effects(column A), Λ̂i, although they are stretched over a slightly wider area.
The deviations of the predicted frailties(column B) and the expected number
of claims(column C) follow a similar pattern for both fitted distributions of
increasing with increasing values (on the x-axis), although with a slightly steeper
ascent for the lognormal than for the inverse Gaussian. The deviations of the

41



5. Importance of the distribution of the frailty

gamma

−0.05

0.00

0.05

0.10

0.5 1.0 1.5

 Λ̂lognorm

D
ev

ia
tio

n
A.1

ingau

−0.05

0.00

0.05

0.10

0.5 1.0 1.5

 Λ̂lognorm

D
ev

ia
tio

n

A.2

gamma

−2

−1

0

1

2

0 2 4 6
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Figure 5.4: Deviations of ten simulations with low variance, for data generated using
lognormally distributed frailty. Rows, 1 and 2, containing results using gamma and
inverse Gaussian frailty respectively to fit the data. Columns A, B and C contain
sums of fixed effects, Λ̂i, frailties, ẑi, and expected number of claims, ẑiΛ̂i. Colour
and shape indicating the distribution used for the frailty when fitting the model to the
data. The line indicate the result of using a generalized additive smoothing function
on the deviances.
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D
ev

ia
tio

n

C.1

ingau

−1.0

−0.5

0.0

0.5

1.0

0 1 2 3 4 5

Expected number of claims with  ẑgamma
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Figure 5.5: Deviations of ten simulations with low variance, for data generated using
gamma distributed frailty. Rows, 1 and 2, containing results using lognormal and
inverse Gaussian frailty respectively to fit the data. Columns A, B and C contain
sums of fixed effects, Λ̂i, frailties, ẑi, and expected number of claims, ẑiΛ̂i. Colour
and shape indicating the distribution used for the frailty when fitting the model to the
data. The line indicate the result of using a generalized additive smoothing function
on the deviations.
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frailties are also higher than those of the expected claims.
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Figure 5.6: Deviations of ten simulations with low variance, for data generated using
inverse Gaussian distributed frailty. Rows, 1 and 2, containing results using lognormal
and gamma frailty respectively to fit the data. Columns A, B and C contain sums
of fixed effects, Λ̂i, frailties, ẑi, and expected number of claims, ẑiΛ̂i. Colour and
shape indicating the distribution used for the frailty when fitting the model to the data.
The line indicate the result of using a generalized additive smoothing function on the
deviations.

We then look at the case where the data was generated using an inverse
Gaussian distribution on the frailty (figure 5.6). The deviations of the sums of
fixed effects follow similar pattern to the previous two cases, although with a
bit less variation and staying within 0.05 of the fit when using inverse Gaussian
frailty. The predicted frailties deviate in opposite directions for the two fits,
with the one for the lognormal frailty having more of a gradual ascent the
gamma one just drops off towards the end. The expected number of claims
follow a similar pattern, but with smaller deviations. In general, the confidence
bands of the smoothing curves are larger at the end with higher values due to
fewer data points.

5.3 Results using high variance on frailty

We will now go back to looking at the results for only one simulation, this time
with high variance (σz = 2) on the frailty. Table 5.2 shows how many of the
n = 250 policyholders reported different numbers of claims in total over the
K = 4 periods, for the different distributions of frailty used in the simulation of
data. From this we see that the largest total number of claims observed now
increase to 13, and that we now observe more policyholders with zero claims
than we did with the low variance on the frailty. This can be explained by the
fact that the maximum of the density of the distributions used for the frailties
move to the left of the mean with increasing standard deviations, with longer
tails making it possible to draw higher values of frailties (see figures 4.1, 4.2
and 4.10).

From column 1 in figure 5.7 we now see that the sums of fixed effects, Λ̂i,
are spread out a bit more when the data are generated using gamma and inverse
Gaussian distributions than they were with the low frailty. The values are
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Table 5.2: The number of policyholders, of the n = 250, with the number of total
claims over the K = 4 periods for the different distributions of frailty, with high
variance.

No. of claims 0 1 2 3 4 5 6 7 9 10 11 13
Lognormal 182 46 14 1 3 1 1 1 1
Gamma 189 33 13 5 4 2 1 1 1 1
Inverse Gaussian 177 44 9 8 5 2 2 1 1 1

in a similar range as before. The predicted frailties (column 2), ẑi, and the
expected number of total claims (column 3), ẑiΛ̂i, both show similar patterns
to what they did when using a low variance when generating the data. When
the observed number of claims are lower the values are similar for all fitted
distributions of the frailty. The deviations are increasing with increasing number
of observed claims, but the values are now larger. There is also still a trend
that the expected number of claims are fewer than the number observed across
the board. The pattern of the lognormal fit producing higher values than the
inverse Gaussian fit, which in turn is producing higher values than the gamma
fit, is also still present.

We will now revert to looking at all the 10 simulations again, starting with
the deviations when the data are generated using a lognormally distributed
frailty (figure 5.8). The deviations of the sums of fixed effects now show trends
of descending from zero for larger values, for both fitted frailties. The deviations
for the frailties and expected number of claims mostly have similar trends to
the low variance case (figure 5.4), but with larger deviations. The exception
being for the predicted frailty when fitting with inverse Gaussian frailty, where
the trend is now more of a straight line at zero.

Then when the data is generated using gamma distribution of the frailty we
see from figure 5.9 that the trends are similar to those as for the low variance
case (figure 5.5), except the deviations are much higher. The same is true when
the data are generated using the inverse Gaussian distribution on the frailty
(figure 5.10).

5.4 Summary of chapter

In this chapter we have looked at the effects of the choice of distribution on
the frailty when fitting a model for the number of claims on car insurance. We
did so by simulating a set of covariates, that were kept the same throughout.
The number of claims, to combine with the covariates to make up the data set,
was generated from a Poisson distribution with ziΛi as the expectation (and
variance). The only variable changing here is the frailty, zi, which was drawn
from three different distributions, always with expectation 1 and a choice of
two different variances. All six combinations of frailty distribution and variance
was then used to make data sets, which in turn were fitted using all three
distributions of frailty as a modelling assumption.

From this we found that the choice of distribution of the frailty when fitting
a model for the number of claims on car insurance does matter. When the
variance of the frailty is high the deviations between the choice of frailty to use
when fitting the model is larger, deviating by as much as three claims for the
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Figure 5.7: Results of one simulation with high variance. Each row, A, B and C,
containing results using lognormal, gamma and inverse Gaussian frailty respectively
to generate the data. Columns 1, 2 and 3 contain sums of fixed effects, Λ̂i, frailties,
ẑi, and expected number of claims, ẑiΛ̂i. Colour and size gradients indicate the total
number of claims observed, and shape indicating the distribution used for the frailty
when fitting the model to the data. The grey line indicate the result when fitting with
the same distribution that was used to generate the data.
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Figure 5.8: Deviations of ten simulations with high variance, for data generated
using lognormally distributed frailty. Rows, 1 and 2, containing results using gamma
and inverse Gaussian frailty respectively to fit the data. Columns A, B and C contain
sums of fixed effects, Λ̂i, frailties, ẑi, and expected number of claims ,ẑiΛ̂i. Colour
and shape indicating the distribution used for the frailty when fitting the model to the
data. The line indicate the result of using a generalized additive smoothing function
on the deviations.
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D
ev

ia
tio

n

C.2

Figure 5.9: Deviations of ten simulations with high variance, for data generated
using gamma distributed frailty. Rows, 1 and 2, containing results using lognormal
and inverse Gaussian frailty respectively to fit the data. Columns A, B and C contain
sums of fixed effects, Λ̂i, frailties, ẑi, and expected number of claims, ẑiΛ̂i. Colour
and shape indicating the distribution used for the frailty when fitting the model to the
data. The line indicate the result of using a generalized additive smoothing function
on the deviations.
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Figure 5.10: Deviations of ten simulations with high variance, for data generated
using inverse Gaussian distributed frailty. Rows, 1 and 2, containing results using
lognormal and gamma frailty respectively to fit the data. Columns A, B and C contain
sums of fixed effects, Λ̂i, frailties, ẑi, and expected number of claims, ẑiΛ̂i. Colour
and shape indicating the distribution used for the frailty when fitting the model to the
data. The line indicate the result of using a generalized additive smoothing function
on the deviations.

expected number of claims. This makes it more important to choose the right
distribution for data with a high degree of heterogeneity than for those with
a low degree of heterogeneity. The differences are also more prominent when
the number of claims is higher. Seeing as the policyholders with many claims
are often also the customers that will cost an insurance company the most, it
is important to get the estimated number of claims for these policyholders as
close to the true value as possible.
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6

Concluding remarks

We have seen how both Poisson regression and recurrent events models can be
used to model the number of claims to expect on a car insurance policy. We
have also seen how the same is true of their extensions, i.e., including a random
effect or frailty.

As we have established this interchangeability between models, the focus is
now only on the recurrent events model and the distribution of the frailty. The
results of fitting a model to the example data set using lognormal, gamma and
inverse Gaussian frailties show that there are some differences in the predicted
frailties and the number of claims to expect between the three. The lognormal
distribution seems to be the one that predicts the most correct number of
claims. Although we do not know the distribution that was used to generate
this set of data, the fact that it was made for use in an example on generalized
linear mixed models with random intercept, it is highly likely that a lognormal
distribution was used for the random effect (i.e., a normal distribution on the
random intercept).

To alleviate the problem of not knowing the true distribution of the frailty
in the data, we simulate our own data. This way we are also able to look at
possible different effects the choice of frailty distribution, when fitting the data,
has for different "true" distributions of frailty. We chose to keep the covariates
the same through all the data sets we generated and only changed the number
of claims, by setting different distributions and variances on the "true" frailty.

Similarly to the results fitting models to the example data set, fitting models
using the different distributions of frailty on our simulated data indicates that
there is an effect of the choice of distribution to use on the frailty when fitting
a model. The deviations between choices of distribution to use when fitting
the model were larger when the "true" variation was higher, making the choice
of distribution to use on the frailty when fitting a model more important for
data with a higher degree of heterogeneity than for data with a lower degree of
heterogeneity.

The differences were also more notable when the number of "observed" claims
were higher. Since the policyholders with the most claims are also often the
most costly customers to an insurance company, it will be in their interest
to have a model that also does well for higher number of expected claims to
allocate enough for future compensations.
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6. Concluding remarks

Regarding possible further improvements the deviation of the fitted values
from the "true" ones could also be considered, to check if the distribution used
to generate the data also actually produces the best fitting model (like we have
assumed it did). Another aspect to consider is the number of replications used.
It could also be possible to improve the computational times by using other
optimization methods.

The results of the examples in chapter 4 and the simulations in chapter 5
do not give quite the same results, but due to the time limitations of this thesis
we have not had time to look at this further. One possible explanation for the
different results may be that the variance is higher in the examples than in the
simulations. Another possibility could be in the composition of the data set
used in the examples. The reduced data set used for the examples keeps all the
policyholders from the highest value categories from the full data set, possibly
making this data set somewhat less realistic.

We have also only looked at three different distributions on the frailty, but
there are of course many other feasible distributions that can be used, and that
may yield different results. Some potential distributions are the other possible
choices of distribution to use on the frailty in parfm, the positive stable and the
loglogistic. Another possibility could be to use any of the other distributions
in the family of power variance function distributions (Aalen et al. 2008, ch.
6.2.3).

For a real-world data set one does not know the true distribution of the
frailty, and as our results have shown the choice of distribution of the frailty
does have an effect on a prediction model. So it might be wise to try other
distributions than your standard go-to choice of distribution for the frailty, and
use some model selection criteria to choose the one that fits the data best.
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Appendices





A

Results for GLMMs

Results from running glmmML and glmer on the full data set of chapter 2, using
Laplace approximation and Gauss–Hermite with different number of quadrature
points.

A.1 Results using glmmML

Table A.1 shows the result when using Gauss–Hermite approximation with 8
quadrature points, while results in tables A.2 and A.3 was produced using 15
and 20 quadrature points respectively. All fitted using glmmML.

A.2 Results using glmer

Table A.4 shows the result when using Laplace approximation Gauss–Hermite
approximation with 8 quadrature points, while results in tables A.5, A.6 and
A.7 was produced using 8, 15 and 20 quadrature points respectively with a
Gauss–Hermite approximation. All fitted using glmer.
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A. Results for GLMMs

Table A.1: Estimate of coefficients for the vehicle insurance data, with standard
errors and claim rates for the mixed model using Gauss–Hermite approximation with
8 quadrature points with glmmML on the full data set.

β̂ se eβ̂ p-value
Intercept -2.9299 0.0309 0.0534 0

Age category
Group 1 0.2648 0.0482 1.3031 3.919e-08
Group 2 0.0417 0.0383 1.0426 0.2766
Group 3 0.0463 0.0367 1.0474 0.207
Group 4 0.0000 1.0000
Group 5 -0.1867 0.0418 0.8297 7.993e-06
Group 6 -0.1385 0.0489 0.8707 0.00462

Value category($ 000’s)
< 25 0.0000 1.0000

25− 50 0.1989 0.0329 1.2201 1.461e-09
50− 75 0.0768 0.0939 1.0799 0.4134
75− 100 -0.6207 0.3733 0.5376 0.09641
100− 125 -0.4435 0.5710 0.6418 0.4373
> 125 -1.2719 0.6963 0.2803 0.06775
Period

1 0.0000 1.0000
2 0.1062 0.0149 1.1121 8.514e-13
3 0.2344 0.0144 1.2641 0

Standard error of random intercept
σ̂u 1.6456 0.0140 0
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A.2. Results using glmer

Table A.2: Estimate of coefficients for the vehicle insurance data, with standard
errors and claim rates for the mixed model using Gauss–Hermite approximation with
15 quadrature points with glmmML on the full data set.

β̂ se eβ̂ p-value
Intercept -2.9453 0.0313 0.0526 0

Age category
Group 1 0.2652 0.0486 1.3037 4.744e-08
Group 2 0.0422 0.0386 1.0431 0.2744
Group 3 0.0464 0.0370 1.0475 0.2097
Group 4 0.0000 1.0000
Group 5 -0.1865 0.0422 0.8299 9.662e-06
Group 6 -0.1383 0.0493 0.8709 0.005025

Value category($ 000’s)
< 25 0.0000 1.0000

25− 50 0.1995 0.0331 1.2208 1.743e-09
50− 75 0.0770 0.0947 1.0800 0.4161
75− 100 -0.6268 0.3774 0.5343 0.09678
100− 125 -0.3842 0.5716 0.6810 0.5015
> 125 -1.1872 0.6919 0.3051 0.08618
Period

1 0.0000 1.0000
2 0.1061 0.0149 1.1119 9.073e-13
3 0.2343 0.0144 1.2640 0

Standard error of random intercept
σ̂u 1.6653 0.0147 0
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A. Results for GLMMs

Table A.3: Estimate of coefficients for the vehicle insurance data, with standard
errors and claim rates for the mixed model using Gauss–Hermite approximation with
20 quadrature points with glmmML on the full data set.

β̂ se eβ̂ p-value
Intercept -2.9447 0.0312 0.0526 0

Age category
Group 1 0.2640 0.0486 1.3022 5.442e-08
Group 2 0.0421 0.0386 1.0430 0.2751
Group 3 0.0467 0.0370 1.0479 0.206
Group 4 0.0000 1.0000
Group 5 -0.1867 0.0421 0.8297 9.467e-06
Group 6 -0.1380 0.0493 0.8711 0.005103

Value category($ 000’s)
< 25 0.0000 1.0000

25− 50 0.1995 0.0331 1.2208 1.748e-09
50− 75 0.0781 0.0946 1.0812 0.4093
75− 100 -0.6177 0.3769 0.5392 0.1012
100− 125 -0.4458 0.5766 0.6403 0.4394
> 125 -1.2616 0.7018 0.2832 0.07223
Period

1 0.0000 1.0000
2 0.1063 0.0149 1.1121 8.26e-13
3 0.2343 0.0144 1.2640 0

Standard error of random intercept
σ̂u 1.6646 0.0147 0
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A.2. Results using glmer

Table A.4: Estimate of coefficients for the vehicle insurance data, with standard
errors and claim rates for the mixed model using Laplace approximation with glmer
on the full data set.

β̂ se eβ̂ p-value
Intercept -3.0973 0.0333 0.0452 0

Age category
Group 1 0.2643 0.0504 1.3025 1.583e-07
Group 2 0.0418 0.0399 1.0427 0.2949
Group 3 0.0456 0.0382 1.0467 0.2322
Group 4 0.0000 1.0000
Group 5 -0.1830 0.0433 0.8327 2.393e-05
Group 6 -0.1369 0.0507 0.8721 0.006929

Value category($ 000’s)
< 25 0.0000 1.0000

25− 50 0.1977 0.0343 1.2185 8.613e-09
50− 75 0.0750 0.0978 1.0779 0.443
75− 100 -0.5950 0.3804 0.5516 0.1178
100− 125 -0.4487 0.5852 0.6385 0.4433
> 125 -1.1964 0.7000 0.3023 0.08742
Period

1 0.0000 1.0000
2 0.1062 0.0148 1.1121 8.266e-13
3 0.2344 0.0144 1.2641 1.946e-59

Standard error of random intercept
σ̂u 1.7934

A-5



A. Results for GLMMs

Table A.5: Estimate of coefficients for the vehicle insurance data, with standard
errors and claim rates for the mixed model using Gauss–Hermite approximation with
8 quadrature points with glmer on the full data set.

β̂ se eβ̂ p-value
Intercept -3.0973 0.0333 0.0452 0

Age category
Group 1 0.2642 0.0504 1.3024 1.582e-07
Group 2 0.0418 0.0399 1.0427 0.2944
Group 3 0.0456 0.0382 1.0467 0.2321
Group 4 0.0000 1.0000
Group 5 -0.1830 0.0433 0.8327 2.364e-05
Group 6 -0.1368 0.0506 0.8721 0.006859

Value category($ 000’s)
< 25 0.0000 1.0000

25− 50 0.1976 0.0343 1.2185 8.646e-09
50− 75 0.0749 0.0978 1.0778 0.4434
75− 100 -0.5948 0.3808 0.5517 0.1183
100− 125 -0.4487 0.5854 0.6385 0.4434
> 125 -1.1961 0.7004 0.3024 0.08767
Period

1 0.0000 1.0000
2 0.1062 0.0148 1.1121 8.24e-13
3 0.2344 0.0144 1.2641 1.962e-59

Standard error of random intercept
σ̂u 1.7934
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A.2. Results using glmer

Table A.6: Estimate of coefficients for the vehicle insurance data, with standard
errors and claim rates for the mixed model using Gauss–Hermite approximation with
15 quadrature points with glmer on the full data set.

β̂ se eβ̂ p-value
Intercept -3.0973 0.0333 0.0452 0

Age category
Group 1 0.2642 0.0504 1.3024 1.573e-07
Group 2 0.0418 0.0398 1.0427 0.2939
Group 3 0.0456 0.0381 1.0467 0.2314
Group 4 0.0000 1.0000
Group 5 -0.1830 0.0433 0.8327 2.354e-05
Group 6 -0.1368 0.0506 0.8722 0.006857

Value category($ 000’s)
< 25 0.0000 1.0000

25− 50 0.1976 0.0343 1.2185 8.601e-09
50− 75 0.0749 0.0978 1.0778 0.4436
75− 100 -0.5948 0.3807 0.5517 0.1182
100− 125 -0.4485 0.5852 0.6386 0.4434
> 125 -1.1963 0.7000 0.3023 0.08743
Period

1 0.0000 1.0000
2 0.1062 0.0148 1.1121 8.256e-13
3 0.2344 0.0144 1.2641 1.884e-59

Standard error of random intercept
σ̂u 1.7934
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A. Results for GLMMs

Table A.7: Estimate of coefficients for the vehicle insurance data, with standard
errors and claim rates for the mixed model using Gauss–Hermite approximation with
20 quadrature points with glmer on the full data set.

β̂ se eβ̂ p-value
Intercept -3.0973 0.0333 0.0452 0

Age category
Group 1 0.2643 0.0504 1.3025 1.59e-07
Group 2 0.0418 0.0399 1.0427 0.2944
Group 3 0.0456 0.0382 1.0467 0.2317
Group 4 0.0000 1.0000
Group 5 -0.1830 0.0433 0.8328 2.392e-05
Group 6 -0.1368 0.0506 0.8721 0.006883

Value category($ 000’s)
< 25 0.0000 1.0000

25− 50 0.1976 0.0343 1.2185 8.595e-09
50− 75 0.0749 0.0978 1.0778 0.4434
75− 100 -0.5948 0.3805 0.5517 0.118
100− 125 -0.4488 0.5853 0.6384 0.4432
> 125 -1.1961 0.7000 0.3024 0.08748
Period

1 0.0000 1.0000
2 0.1062 0.0148 1.1121 8.407e-13
3 0.2344 0.0144 1.2641 2.008e-59

Standard error of random intercept
σ̂u 1.7934
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B

Code

Some code used in the thesis. Listing B.1 covers the conversion of a dataset into
one that is compatible with a clustered survival setting as described in section
3.2.1, and is used in chapters 3, 4 and 5 to prepare the data for use with parfm.
Listing B.2 is a function to generate the covariates, while listing B.3 covers the
simulation of a dataset and the fitting of this with the different distributions
used for the frailty. The listings B.2 and B.3 are used for the simulations in
chapter 5.

Listing B.1: Function to make the data survival compatible

1 survivalData <- function(claims_data){
2 idx = seq_along(claims_data[,1])
3 claims_surv = data.frame()
4 for (i in idx){
5 if(claims_data$numclaims[i]>1){
6 numcl = claims_data$numclaims[i]
7 for (j in seq_len(numcl)){
8 numclaims.surv = 1
9 exposure = 1/numcl

10 claims_surv = rbind(claims_surv,cbind(claims_data[i,],numclaims.surv,
11 exposure))
12 }
13 }
14 else{
15 numclaims.surv = claims_data$numclaims[i]
16 exposure = 1
17 claims_surv = rbind(claims_surv,cbind(claims_data[i,],numclaims.surv,
18 exposure))
19 }
20 }
21 return(claims_surv)
22 }

Listing B.2: Function to generate the covariates

1 simCov <- function(n=100,K=3){
2 pid <- rep(1:n,each=K) # policy id
3 period <- rep(1:K,n)#no fixed effect from this
4
5 # Based on population numbers from table 07459 from SSB, for 2020
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B. Code

6 Age.p.seq <- seq(18,100,1)
7 Age.p.prob <- c(0.015,0.0157,0.0157,0.0156,0.016,0.0165,0.0165,0.0167,0.017,
8 0.0175,0.0179,0.0183,0.0182,0.018,0.0174,0.0174,0.0171,0.0169,
9 0.0168,0.0169,0.0165,0.0167,0.0165,0.0164,0.0159,0.0163,0.0167,

10 0.0174,0.0174,0.018,0.018,0.0177,0.0181,0.0179,0.0174,0.0173,
11 0.0169,0.0166,0.0159,0.0155,0.0152,0.015,0.0149,0.0147,0.0143,
12 0.0144,0.014,0.0136,0.0133,0.013,0.0124,0.0125,0.0124,0.0124,
13 0.0125,0.0127,0.0111,0.0105,0.0091,0.0082,0.0069,0.0069,0.0064,
14 0.0059,0.0053,0.0048,0.0043,0.004,0.0036,0.0035,0.0031,0.0028,
15 0.0023,0.0019,0.0016,0.0012,0.0009,0.0007,0.0005,0.0004,0.0003,
16 0.0002,0.0001)
17 Age.p <- as.vector(apply(data.frame(rep(sample(Age.p.seq,n,prob=Age.p.prob,
18 replace=T),each=K)),2,
19 function(x) x+period-1))
20
21 # Based on table 08581 on age of cars from SSB, numbers for 2019
22 # Grouped ages in table -> divided probabilities equally among ages in same group
23 Age.v.seq <- seq(0,21,1) # 21=20+ i.e. includes all cars above 20 years
24 Age.v.prob <- c(0.042,0.042,0.042,0.042,0.057,0.057,0.057,0.057,0.051,0.051,
25 0.051,0.051,0.046,0.046,0.046,0.046,0.025,0.025,0.025,0.025,
26 0.025,0.091)
27 Age.v <- as.vector(apply(data.frame(rep(sample(Age.v.seq,n,prob=Age.v.prob,
28 replace=T),each=K)),2,
29 function(x) x+period-1))
30
31 mileage.cat <- c("1","2","3","4") # 1: few kilometers 4: many kilometers
32 mileage.v <- rep(sample(mileage.cat, n, replace=T),each=K)
33
34 return(data.frame(pid=pid,period=period,Age.p=Age.p,Age.v=Age.v,
35 mileage.v=factor(mileage.v)))
36 }

Listing B.3: Functions to simulate and fit data with different frailties

1 library(statmod)
2 library(parfm)
3 library(tidyverse)
4
5 # Importing function to make the data survival compatible
6 source("codefiles/survivalData.R")
7
8 simModel <- function(covMat,frailty="lognorm",sigma2){
9 n = length(unique(covMat$pid))

10 K = length(unique(covMat$period))
11 #intercept,period,Age.p,Age.v,mileage.v2,mileage.v3,mileage.v4
12 beta = c(-2.7,0.005,0.009,log(1.2),log(1.4),log(1.6))
13 X <- model.matrix(~covMat$Age.p+covMat$Age.v+covMat$mileage.v)
14
15 fixed = exp(X%*%beta)
16
17 if(frailty=="lognorm"){
18 z <- rep(rlnorm(n,-(log(sigma2+1)/2),sqrt(log(sigma2+1))),each=K)
19 }
20 else if(frailty=="gamma"){
21 z <- rep(rgamma(n,1/sigma2,scale=sigma2),each=K)
22 }
23 else if(frailty=="ingau"){
24 z <- rep(rinvgauss(n,1,dispersion=sigma2),each=K)
25 }
26
27 numclaims = rpois(n*K,fixed*z)
28
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29 data = cbind(covMat,numclaims=numclaims)
30 data_surv = survivalData(data)
31
32 frailties=c("lognorm","gamma","ingau")
33 fit.parfm = list()
34 z = list()
35 Lambda = list()
36 for(f in frailties){
37 fit.parfm[[f]] = parfm(Surv(exposure,numclaims.surv) ~ Age.p + Age.v +
38 mileage.v, cluster = "pid",
39 dist= "exponential", frailty=f,
40 data=data_surv,
41 showtime=T, method="nlminb")
42 if(f=="lognorm"){
43 z.lognorm = predict(fit.parfm[[f]])
44 z[[f]] = z.lognorm/exp(fit.parfm[[f]][1,1]/2)
45 Lambda.lognorm = attr(fit.parfm[[f]],"cumhaz")
46 Lambda[[f]] = Lambda.lognorm*exp(fit.parfm[[f]][1,1]/2)
47 }
48 else{
49 z[[f]] = predict(fit.parfm[[f]])
50 Lambda[[f]] = attr(fit.parfm[[f]],"cumhaz")
51 }
52 }
53 results = getResults(data,z,Lambda,frailty)
54 return(list(results=results))
55 }
56
57 getResults <- function(data,z,Lambda,frailty){
58 res = data %>%
59 group_by(pid)%>%
60 summarise(tot_claims=sum(numclaims))%>%
61 bind_cols(z.lognorm=as.matrix(z$lognorm),
62 z.gamma=as.matrix(z$gamma),
63 z.ingau=as.matrix(z$ingau),
64 Lambda.lognorm=Lambda$lognorm,
65 Lambda.gamma=Lambda$gamma,
66 Lambda.ingau=Lambda$ingau)%>%
67 mutate(claims.lognorm = z.lognorm*Lambda.lognorm,
68 claims.gamma = z.gamma*Lambda.gamma,
69 claims.ingau = z.ingau*Lambda.ingau)
70 if(frailty=="lognorm"){
71 results = res %>%
72 mutate(dev.Lambda.gamma = Lambda.gamma-Lambda.lognorm,
73 dev.Lambda.ingau = Lambda.ingau-Lambda.lognorm,
74 dev.z.gamma = z.gamma-z.lognorm,
75 dev.z.ingau = z.ingau-z.lognorm,
76 dev.claims.gamma = claims.gamma-claims.lognorm,
77 dev.claims.ingau = claims.ingau-claims.lognorm)
78 }
79 else if(frailty=="gamma"){
80 results = res %>%
81 mutate(dev.Lambda.lognorm = Lambda.lognorm-Lambda.gamma,
82 dev.Lambda.ingau = Lambda.ingau-Lambda.gamma,
83 dev.z.lognorm = z.lognorm-z.gamma,
84 dev.z.ingau = z.ingau-z.gamma,
85 dev.claims.lognorm = claims.lognorm-claims.gamma,
86 dev.claims.ingau = claims.ingau-claims.gamma)
87 }
88 else if(frailty=="ingau"){
89 results = res %>%
90 mutate(dev.Lambda.lognorm = Lambda.lognorm-Lambda.ingau,
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91 dev.Lambda.gamma = Lambda.gamma-Lambda.ingau,
92 dev.z.lognorm = z.lognorm-z.ingau,
93 dev.z.gamma = z.gamma-z.ingau,
94 dev.claims.lognorm = claims.lognorm-claims.ingau,
95 dev.claims.gamma = claims.gamma-claims.ingau)
96 }
97 return(results)
98 })
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