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differential equations and today they play a central role in various parts of
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Abstract

Given a group action Z ~ (X,u) on a measure space one can associate a
numerical quantity to it, its entropy, which measures how chaotic that group
action is. In this thesis we will examine various generalizations of such a group
action and explore how a notion of entropy can then be defined. First we will
replace Z by a general amenable group, then a sofic group and finally replace
(X, p) by the automorphism group of a C*-algebra. To reassure ourselves that
the definitions of entropy are good we will verify various natural properties.

An important recurring example will be the Bernoulli Shift on
({1,...,n}% v®). Tt is well known that when G = Z its entropy is H,(1,...,n)
and this serves as a benchmark when generalizing entropy; we should expect
this result to also hold when G is amenable and even sofic. We should also
expect that the entropy of an operator algebraic analouge of the Bernoulli Shift,
a shift action on an infinite tensor product B®“, somehow only depends on B.
This will be proven and much of the theory will be developed for this purpose.
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sec:intro

CHAPTER 1

Introduction

1.1 Introduction

Very roughly speaking the entropy of a group action on a measure space is a
non-negative number which measures how chaotic that group action is. It is
not obvious how to define such a quantity and to get a reasonable definition we
will need to restrict ourselves to groups with certain properties; first we restrict
ourselves to amenable groups and later to sofic groups. Amenable groups are
quite common, for example any abelian group is amenable. Sofic groups are
even more common and though it isn’t proven that every group is sofic, not a
single example of a non-sofic group is known. The measure spaces on which our
group act are assumed to be standard Borel spaces.

It turns out however, that one can extend the notion of entropy to a non-
commutative setting, namely where certain groups act on the Automorphism
group of a C*-algebra. Here it is even trickier to come up with a reasonable
definition and prove useful properties. This is especially so when the group is
sofic.

1.2 Outline of the Thesis

In this master thesis we begin with an exploration of group actions on measure
spaces in chapter 2. Here we first develop a theory of amenable and sofic
groups and then define a notion of entropy for amenable and sofic group actions,
respectively, on measure spaces.

In chapter 3 we begin with some general theory about completely positive
entropy, then define a notion of entropy for states on a C*-algebras and
gradually turn to defining the entropy of a group action G - Aut(A) with
respect to some state ¢. This is under the assumption that G is amenable.

In chapter 4 we compute our operator algebraic notion of entropy on a few
examples. We also mention an alternative definition of entropy.



1. Introduction

1.3 Preliminary notions

There are a few notions that will be used throughout the thesis, so we find it
best to discuss them here. In this thesis, G, will always denote a countable,
discrete group, i.e. we do not endow G with any topology. A will denote a
C*-algebra and M a von Neumann algebra. S(A) will denote the state space
of A. Given a compact Hausdorff topological space X, C(X) will denote the
space of continuous functions on X, equipped with the supremum norm. When
X is just a set, (X,B) will denote a standard Borel space defined as follows:

Definition 1.3.1. A measurable space (X,B) is said to be a standard Borel
space if there is a metric d on X such that the metric space (X, d) is complete
and separable and its Borel sets coincides with B.

Moreover, (X,B,u) is said to be a standard probability space if (X,B)
is a standard Borel space and p is a probability measure thereon. An easy
argument shows that p is automatically regular. We will usually denote the
triple (X, B, 1) just by (X,u). When we speak of a partition of (X,u) we
always mean a finite measurable partition. L*(X/P) will then denote the
space of functions X — C that are constant on members of P. For another
partition C of (X, u), we write C > P if any member of C is contained in a
member of P.

Importantly, a standard probability space is unique up to a measure-
preserving Borel isomorphism. Hence the unit interval [0,1] with the usual
Borel structure and Borel measure is the archetypical example of an atomless
standard probability space. Another example is the Cantor space {0,1}
equipped with the infinite product o-algebra and infinite product probability
measure.

There is also a recurring real-valued function we will use,

—xlog(x), O<x <1

namely 7:[0,1] - R defined by n(z) =
0, =0

Another recurring and fundamental notion in the thesis is the tensor
product of two C*-algebras. If A and B are two unital C*-algebras we denote
by A® B the algebraic tensor product of A and B when these are considered
as vector spaces. By definition, A® B is the unique vector space with a
bilinear map i : A x B - A(® B with the property that for every bilinear map
f:AxB - C, with C' a vector space, there is a unique linear map g: A®@ B - C
such that f = goi. The image i((a,b)) € A® B is denoted a ® b and it is
evident that the linear span of such elements is all of A® B. Indeed, taking
C =AQ@B and f =i above we see that there couldn’t possibly be a unique
linear map g: A® B - AQ® B such that ¢ = goi, unless span(i(AxB)) = AQ® B.

Now, it turns out that there is a unique involution on A ® B, denoted *,
such that (e ®b)* = a* ® b* for a € A and b € B. Similarly there is a unique
multiplication on A® B such that (a1 ©® b1)(az © ba) = (a1az) © (b1b2). These
turn A® B into a *-algebra. Consider then a sub-multiplicative norm | - ||
satisfying the *-identity and [a ® 1|| = |al|la and |1 ©@ b| = |b| s for a € A and

2



1.3. Preliminary notions

be B. It turns out these always exist and we call them *-norms. We can then
complete (AQ® B, | -|) and define multiplication and involution by continuity.
This is a C*-algebra and it can depend wildly on the norm || - | we started with.
When A or B is finite dimensional A® B equipped with a *-norm already is
complete and the uniqueness of the *-norm is immediate from the fact that
it is a C*-norm on a C*-algebra. More generally, if A or B is nuclear, there
is a unique *-norm (|[BOO8|[pp. 104, Theorem 3.8.7]) and thus a unique such
C*-algebra completion. In this case we denote it by A® B and, in this space,
we denote the elements a ® b by a ® b. Nuclear C*-algebras are abound, for
example are abelian C*-algebras nuclear.

Since A® B lies inside A® B as a dense subspace it enjoys a universal
property similar to A® B. More precisely, the mapi: A B> AOBcAQB
has the property that for any normed space C and continuous linear map
f:A® B — C there is a unique linear map g: AQ B — C such that f =goi.
In the case where P: A - C and @ : B - C are linear continuous maps and
f=P®Q we denote the map g: AQ B - C we get by P® Q.

Given Hilbert spaces H and K, H ® K similarly denotes the Hilbert space
completion of H ® K equipped with the inner product

(a1 @ by, a2 © ba) := (a1, a2)a(b1,b2) k.

Then the map ® : B(H)® B(K) -~ B(H® K) given by ®(S®T)(h® k) =
S(h)®T(k), Se B(H), Te B(K) and h € H, k € K gives an isomorphism of
C*-algebras.

If a is a normal element of a C*-algebra A then there is a canonical
isomorphism of C*-algebras C'(spec(a)) - C*(a), where spec(a) denotes the
spectrum of a and C*(a) denotes the C*-subalgebra generated by a. Sim-
ilarly, if a is a normal element of a von Neumann algebra M, there is a
canonical homomorphism B(spec(a)) — W*(a) where B(spec(a)) denotes the
space of bounded Borel functions on spec(a) equipped with the supremum
norm, and W*(a) the sub-von Neumann algebra generated by a. For the both
of this maps, the images of a function f : spec(a) — C will be referred to as f(a).
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CHAPTER 2

Groups and Classical Entropy

We begin this chapter by defining and proving various results about amenable
and sofic groups. We then consider group actions G ~ (X, u) where (X, ) is a
standard probability space, first considering the case where G is amenable, then
the case where G is sofic. Under either of these assumptions we can develop a
rich theory of entropy to which we will devote the remainder of the chapter.

2.1 Amenable groups

Definition 2.1.1. A group G is said to be amenable if there exists a state, o,
on ¢~ (@), with the property that o(sf) = o(f) for all s € G and f € (~(G).
Here, sf denotes the function on G defined by (sf)(s") = f(s7's’), s’ € G. We
then call o a left-invariant mean on G.

This definition is convenient for proving things, but a bit opaque. To get a
better grasp on it we start with some basic observations about amenable group.
We remark that (except from (i)), these do not require that G be countable.

Proposition 2.1.2 (|[KL16|[pp. 74-75, Proposition 4.2]).
(i) Finite groups are amenable.

(ii) Quotients and subgroups of amenable groups are amenable. If N € G is a
normal amenable subgroup and the quotient group G/N is also amenable,
then G is amenable.

(i) If G and H are amenable, so is G x H.
(iv) If {F;}icr is a net of amenable subgroups of G, ordered under inclusion,
with G = U F;, then G is amenable.
iel
(v) If every finitely generated subgroup of G is amenable, then G is.
Proof.

i) o(f) =% ¥ sf defines a left invariant state on £*°(G).
e
seG

(ii) See |[KL16|[pp. 75, Proposition 4.2].



2. Groups and Classical Entropy

(iii) See [KL16|[pp. 75, Proposition 4.2].

(iv) For each i€ I, let 0; be an Fj-invariant state on £*°(F;) and define states
o; on £2°(G) by letting o; = 0;(fir,). These form a net {o;}ir in the
unit ball of £°(G)* which, by compactness, has a weak*-cluster point,
say o. For some subnet {i;} ey, we have o(1) = limo;,(1) = 1 and for

J
[20,0(f)=1limo;,(f)20so o is a state. Fixing s € G we have s € I,
e

for some g € I by assumption. For i; >ig we then have s € F;,, hence
0i,(sf) = 05,((sf)r,) = 0i,(sfir,,) = 0i,(fip,,) = 04;(f), taking limits
along J we see that o(sf) = o(f), showing left invariance.

(v) Let I be the net of finite subsets of G ordered under inclusion, put F; = (7)
and apply (iv).

To show that amenable groups indeed are common, and exhibit concrete
examples of them, we need to find other other descriptions that characterize
amenability. Consider the following definition.

Definition 2.1.3. We say that a sequence of finite subsets {F,}, of G is a left
Folner sequence if for each s € G we have % — 1. Here A A B denotes the
symmetric difference of sets A and B and |A| denotes the number of elements
in A.

def:paradoxical ‘ Definition 2.1.4 (|[KL16|[pp. 75, Definition 4.3]). We say that two sets C, D ¢

G are equidecomposable, and write C' ~ D if there exists subsets Cy,...,C, < C
and $1,...,8, € G such that C =Cyu...uCy and D = s;C1uU...us,C,. Clearly
~ is an equivalence relation. We now say that G is paradozical if there exists
disjoint sets C' and D such that C'~ D ~ G.

We now show that these notions capture the notion of amenability.

prop:P2 ‘ Proposition 2.1.5 (|[KL16|[pp. 75-76, Theorem 4.4]). For a group G, the fol-

lowing are equivalent:
(i) G is amenable,
(ii) G is not paradozical,
(iii) G has a left Folner sequence.

Proof. The implication (i)= (ii) is the easiest: if G were paradoxical take
subsets C' and D of G as in the definition of paradoxicality and Cy,...,C, € C
and si1,...,8, such that C =Cyu...u(C), and G = s;Cyu...us,C,. For a
left-invariant state o on £*°(G) we have

n

o(le) =o(leyu.uc,) = ZU(ICE) = 20(157:07:) =0(Ls,ciu..usn0,) = 0(le) = 1.
i=1 i=1

Similarly o(1p) = 1. This is a contradiction since then 2 = o(1¢ + 1p) <
U(lg) =1.



2.1. Amenable groups

To show (iii)= (i) equip G with the discrete topology and consider its
Stone-Cech compactification SG. By definition, the left translation action
G ~ G extends to a continuous action G ~ SG. Picking an arbitrary point
x € BG and letting {F,, },, be a left Folner sequence for G we consider, for each
n €N, the states f — ﬁ ZI; f(sz) on C(BG).

Selin

By Banach-Alaoglu the set of states on C'(SG) is weak™-compact, hence
this sequence has a weak*-cluster point, say o. As can be checked o is then
left G-invariant. Since C'(SG) is G- equivariantly isomorphic to £ (G) as a
C*-algebra this is what we need.

The final implication, (ii) - (i) takes longer to prove so we omit the proof
here. [ ]

One might wonder why we have phrased the notions of amenability, Folner
sequences and paradoxicality in terms of left multiplication and not right
multiplication. Luckliy, it turns out this does not matter: if a group has left
invariant mean it also has right invariant one, indeed, it even has a mean which
is simultaneously both left and right invariant (this is not to say that any given
left invariant mean will also be right invariant). Similarly, an amenable group
has a right Folner sequence and even a sequence that is both simultaneously
left and right Fglner.

A simple consequence of [Proposition 2.1.5is that Z is amenable; it is easily
checked that the sequence {[-n,n]}2; is a Folner sequence. From this it
follows that any abelian group is amenable; by [Proposition 2.1.2{(v) it suffices
to check that any finitely generated subgroup is amenable, but by the well
known classification of these ([Fra03|[pp. 108-109, Theorem 11.12]), these are
of the form Z" x (Z|rZ) x ... x (Z]r,Z) for some rq,...r, € N. Since these are
direct products of Z and finite groups, they are amenable.

There are plenty of groups that aren’t amenable, however. An important
example is the free group F» on 2 generators. To see this, let {a,b} be the
standard generating set and for s € {a,b,a™',b"'} let Vi denote the set of
reduced word beginning with s. Then we see that Fy = V-1 U (Fo\Vp-1) ~
Vot U a(Fo\Vy-1) = Ve u'V,, where ~ is as in Similarly
Fy ~ Vyu V. Now, the sets V, uV, -1 and Vj, u Vj-1 are disjoint and Fy is
~-equivalent to both. This shows that F5 is paradoxical, and thus not amenable.
More generally the free group on n generators is not amenable for any n > 2. If
we want to study group actions of such non-amenable groups we need a weaker
notion than amenability. This is why we later introduce the notion of sofic
groups. At first we give an important about Fglner sequences that we will later
use.
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2. Groups and Classical Entropy

Theorem 2.1.6 (|[KL16|[pp. 95, Theorem 4.38]). Suppose ¢ is a non-negative
real valued function on the set of finite subsets of G satisfying :

(i) o(As) = ¢(A) (right invariance).
(ii) ¢(AuB) < P(A) + ¢(B) (subadditivity).

for all finite subsets A,B< G and s€ G. Then ¢‘(FF’]) converges for any Folner

sequence {Fy, },, of G and to the same value independent of the choice of Fplner
sequence.

The proof of this is quite technical, but we will include it since this is such
a fundamental result for the theory of entropy. To begin we introduce the
following.

Definition 2.1.7 ([KL16][pp. 92, Definition 4.32]). If ' ¢ G is finite and € > 0
we say that a finite set A ¢ G is (F,¢)—invariant if [{s € A: F's € A}| > (1-¢)|A].

We see that this definition captures the notion of a Fglner sequence. Indeed,
if {F,}, is Folner, fix € >0 and a finite set F' c G. We see that

{seF,:FseF,}o (t 'FunF,o (N E\t'F, & F,).
tel" tel”

Applying the Fglner condition to the elements ¢! for ¢t € F' we can choose
sufficiently large n such that each of the sets in the last intersection have at least
(1- ‘—;l)|Fn| elements. Then the intersection itself has more than (1 - €)|F),|

elements and in particular [{s € F,, : F's € F,,}| > (1 — ¢)|F,,| showing that F,
eventually becomes (F, ¢)—invariant.

Conversely, if {F,}, is a sequence of finite sets in G that for any finite
set F'c G and € > 0 eventually become (F,¢)-invariant, then {F,},, is Folner.
Indeed, fixing t € G and letting F = {t} U {t "'} we obtain that F,, eventually
becomes (F,€/2)-invariant.

We have
tFonFS c{feF,:Fs¢F,}

and similarly
trE,nFS c{feF,:Fs¢F,}.

By (F,€/2)-invariance we get
|tF, 0 FC|, |t F, n FC) < §|Fn|
. But
[t E, n EC = t(t Fyn ES)| = |F ntFS| = |F 0 (tF,)€] < ;|Fn|

also, 50 |tF, & Fy| = [tF, n FC| +|F, n (tF,)¢| < €|F,|, showing that {F},}, is
Fglner.

Another way of describing approximate invariance is the following.



lem:L1 ‘

lem:L2 ‘

lem:quasitiling ‘

2.1. Amenable groups

Definition 2.1.8 ([KL16|[pp. 93, Definition 4.34]). For finite sets F, A € G we
define the F boundary of A, denoted drA, to be the set {se€ A: Fsn A #

@ and Fsn A® # g}. This coincides with the set N s7A\ U s7*A.
seF sel

The above definition also captures Fglnerness in the sense that a finite
sequence of sets {F,}, is Folner if and only if ‘ﬁ’;ﬂ"‘ — 0 for every finite set

F c G. We also need the following notions:

Definition 2.1.9 (|[KL16][pp. 91, Definition 4.29]). Let F' c G be finite and
A, e>0. We say that a collection {F;};e of subsets of G

(i) A—covers F if | U F;| > M| F],
iel

(ii) is a A—even covering of F if there exists a positive integer M such that
Y 1p < Mlp and Y |F;| 2 AM|F|. M is called the multiplicity of the
iel iel
covering.

(iii) is e-disjoint if there exists pairwise disjoint sets F; ¢ F; such that
|Fi| > (1 —¢€)|F| for all i € I.

It is intuitive that for a sufficiently even covering most of the sets are forced
to be e—disjoint for small e. More precisely, we have the following:

Lemma 2.1.10 ([KL16|[pp. 92, Lemma 4.31]). For 0 < e < 1/2 and 0 < A < 1
any A—even covering { F; }icr of F admits an e—disjoint subcovering {F;}ics that
ex—covers F.

There is also a connection between approximate invariance and coverings:

Lemma 2.1.11 ([KL16|[pp. 93, Lemma 4.33]). Let ¢ > 0 and let F,A c G be
nonempty finite sets such that A is (F,e)—invariant. Then the collection of
right translates {Fs : s € A, F's c A} is a (1 —€)—even covering of A with
multiplicity | F).

Proof. The set I of all s € A witnessing F's ¢ A has, by (F,¢)—invariance,
at least (1 —€)|A| many elements. Hence Y |F's| = |I||F| > (1 - ¢€)|F||A]. On
sel

the other hand, each element of G belongs to at most |F| translates of F' so
Z ]lFs < |F| | |

sel

We now have the appropriate terminology to prove|l'heorem 2.1.6] but shall
need one more technical lemma first.

Lemma 2.1.12 (|[KL16|[pp. 94, Theorem 4.36]). Let 0 < € < 1/2 and let n € N

be such that (1 -¢€/2)" <e. Suppose e Ty c Ty c ... c T, are finite subsets of

G satisfying |Or,_, Tk| < (¢/8)|Tk| for k =2,...,n. For any (Ty,€/4)—invariant

finite subset F' of G, there exists sets C1,Cs,...,Cy, c G such that G T,C;c F
i=1

and the family {T;c:1<i<n,ceC;} is e—disjoint and (1 —¢)—covers F.

Proof. We will construct sets C),,Cy_1,...,C1 such that for each k=1,...,n
n

we have U T;C; ¢ F such that the family of translates {T;c:1<i<n,ceC;}
i=k

is e-disjoint and 1 — (1 — ¢/2)" % covering F. By the assumption that

9



2. Groups and Classical Entropy

(1-¢€/2)™ < € we will then have found the appropriate sets C1,...,C,.

To construct C,,, the collection of right translates of T}, that lie in F' is a
1/2-even covering of F' since the set F is assumed to be (T),,€/4) invariant.
Appealing to we can the find an e-disjoint subcovering of these
translates, say {T,,c: ce€ C,} which (¢/2)-covers A.

Suppose now that for some k € {1,...,n — 1} we have constructed
Chn,Chno1...,Cle as desired. We shall construct Cy. Set Ay = A\ |J T;C; if
i=k+1

|Ax| < €|A| then we can finish the construction by letting Cf, Ck-1 down to C}
to be @. Thus we focus on the case where |A;| > €|A|. We will show that then

1
Ay is (Ty, = )—invariant. For all i =k+1,...,n and c € C; we have |01, (T;c)| <
|01, (T;¢)| =107, (T3)| < (¢/8)|T3| Since the family {Tic:k+1<i<n, ceCy,}

is 1/2-disjoint by assumption and | J T;C;| < |A| < € '|Ag| we then obtain
i=k+1

n € n

U Non@ols ¥ Tion@olsg 3 ImCl< ]

i=k+1 ceC; i=k+1 ceC; 8 i=k+

1=

n 1
k+1 4

Writing J for the set of s € A such that Tys c A, consider the set
n

J\ U (T:C; v U 9r,(Tic)). Clearly it consists of those s € A, for which
i=k+1 CECi
Tis c A and for each k +1 <i <n we have by definition of the boundary 9,

TisnTic = @ or Tsn (Tic)c = @. However, because e¢ € T, e-s = s is an
element in Tjs that does not lie in T;c so clearly we must have TysnT;c = @
for each k+1<i<nand ce C; so Tys c A,. Hence the set coincides with
{se Ay :Tys € Ay}. Hence, using that |J| < (1 -¢€/4)|F| (since F is a (T, €/4)
invariant set), we have:

{seAr:Tese A 21| U TCil-| U N 0n,(Tic)
i=k+1 i=k+1 ceC;

1 1
> (1-¢/DIF] = (|F] - |Ax]) - Z|Ak| 2 §|Ak|~

So we have shown that Ay is (T, 1/2) invariant. By [Lemma 2.1.11| the

collection of right translates of Ty that lie in Ax form a 1/2-even covering of Ay,
and so by there is an e-disjoint subcollection, say {Tjc: c € Ck},
of these translates that ¢/2 covers Ag. It follows that {T;c: k<i<n, ceC;} is
an e-disjoint collection and 1 (1-e¢/2)" **'-covers I, completing the inductive
step and the proof of the lemma. [

Proof of [Theorem 2.1.6 The only Folner sequence of a finite group is one for
which F}, = G eventually so in that case the result follows trivially. Hence we
can assume G is infinite. It suffices to show that if {F,}, and {F.}, are two
Fglner sequences of G we have,

F, F!
a = lim inf L) > lim sup L,”)
TR

10



2.1. Amenable groups

Note first that the LHS is finite because, using the properties of ¢,

S o)) % o(le))
O(Fn) _ (Uger, {9}) _ 9P _ 9P — o({e
R T A oY AR

Now fix n > 0 and 0 < € < 1/2 which is to be determined in relation to
n. Take N € N to be such that (1 -¢/2)" < € as in [Lemma 2.1.12 We can

F,
find a F;,, such that ¢|(Fl|) <a+ Z Then choose sufficently large ny such
ny
F,
that |0F, (#n,)| < (¢/16)|F,,| while still having ¢|(F 2|) <a+ Z Continue this
n
procedure to get nq,n9,n3,...,ny such that: ’
Fy,
¢, ) <a+T and |0F, | < (€/16)|F,, | for k=2,...n. (2.1)
| Pl 4 o
This is reminiscent of the hypothesis in except that we don’t

necessarily have e € F;,, and F),, |, need not be contained in F),,. However,
this is easily fixable since |F},| = oo. Namely we could put 77 = {e} U F,,,
Ty, =TV UF,,,....,Txn = Ty_1 U F,, and, if at the kth step F,, was chosen
sufficiently large in relation to the previous Fj,, s, we could arrange for the

following to hold:

¢(Fny)

IF, | < (€/8)|Fy,| for k=1,2,...n. (2.2)

n
<atg and |0F,

il

For sufficiently large n, all F sets will become (Ty,e€/4)—invariant and we
are exactly in the setup in choose C1,Cy,...,C, as given by
the lemma. Then there is an e—disjoint collection {T¢; ;} of translates of T;
that (1 - €)-covers F) with u; ;T;¢; j ¢ F). Then |F,| > (1-¢€) Y |T;] so by

2]

|[Equation (2.1)|and [Equation (2.2)]

(F),) < o(uijTiciz) + o(F,\ Vi j Tici )

< (ST (a+ ) + dFrle({e})

1 7
1_6(a+ 5) +ep({e})).

o(Fy)
[F

<|F7(

Clearly this shows that lim sup

n—o0o

We remark that if ¢ in was in fact strongly subadditive,
ie. p(AuB)<p(A)+¢(B)-¢(An B) for all finite A, B c G, then the limit

(IKL16|[pp. 102, Theorem 4.48]). To finish

< a, as desired. [

coincides with inf —
Fc@G, Ffinite |F|

off this section we describe a way to obtain a bi-Fglner sequence of G from a
bi-Fglner sequence of a finite index subgroup H, of G. Bi-Fglnerness simply
means that the sequence is simultaneously a left Fglner sequence and a right
Folner sequence. As we have remarked, an amenable group always has bi-Fglner
sequences.

11
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prop:biFolner

2. Groups and Classical Entropy

‘ Proposition 2.1.13. Let G be an amenable group and H a finite index subgroup.

If F is a set of representatives of right cosets of H, there is a bi-Folner sequence
{H,}n of H such that {H,F}, is a bi-Folner sequence of G.

Proof. Set m =[G : H] and let {G,,},, be a bi-Falner sequence of G. Then for
any g € G the sequence {G,, g}, is still bi-Felner. If we take g, inside some
fixed finite subset R of G then the sequence {G, g, } is still bi-Folner since it
is just subsequences of the sequences {G, g}, for g € R, "glued" together. For
n € N, choose the g, € F' that maximizes the quantity |Hgn G|, g € G. Then
|HNnGhgtl = |HgnnGp| > |HgnG,| = |Hgg,' nG,g,| for g € G also. Hence if
we replace G, by G,g,! we have

|Hﬂ Gn| > |HgnGn| fOI' all g € G
Since Ugep Hgn Gy, 2 Gy, this implies that

Gl

|HNG,| > —
m
We claim that H,, = H nG,, give the desired bi-Fglner sequence of H. For every
h e H we have hH,, & H, c hG,, A G,,, hence

|hH, & H,| |hG, 2 G,] |hG A Gl
< <m
|H,| |H ol |Gl

—

Hence {H,}, is a left Folner sequence. A similar argument shows that {H, },
is a right Fglner sequence of H. Now it remains to show that {H,F}, is a
bi-Fglner sequence of GG. For this it suffices to show that
|G & (Ha )|
—— 0. (2.3)
| Hn|

Indeed, for g € G we have
(GHWF) & (HoF) € g(Gy & (HoF)) U (9Gy & Gp) U (G & (o F)),
so if 77 holds we have

|(gH F) & (f{nl7)|< 2|Gy & (}{n17)|+>|g(;n AGn|<|9GnA (;n|_+
|Hy | - m|Hny| m|Hy| |Gl

Then {H,F}, is a right Fgolner sequence and a similar argument shows that it
is a left Folner sequence, thus bi-Fglner.

It remains to establish 7?7. We have

Gao(HuF)=UWGn & (HoF))nHg) = J(GnnHg) & Hyg)

geF geF
= U ((Gn A Gng) A Hg) c U (Gn A Gng)-
gel” geF
Hence
|Gn ZA (HnF)| Z ‘Gn A Gng| Z |Gn A Gng|
- 7« <m I AN
|H’n‘ geF |H | geF |Gn‘

This completes the proof.
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def:soficgroup ‘

2.2. Sofic groups

We remark that in the above proposition we don’t need to assume the
amenability of G, it would suffice to assume that the finite index subgroup H
was amenable. For then, the subgroup H = N g 'Hg would be normal and,

geF

being a subgroup of H, would also be amenable. H has finite index so G/f{ is
also amenable and then [Proposition 2.1.2ii) implies that G is also amenable.

2.2 Sofic groups

Definition 2.2.1 (|[KL16|[pp. 234, Definition 10.4]). A group G is sofic if there
exists an increasing sequence of integers {d;}2; with d; — co and corresponding
maps o; : G - Sym(d;) that are asymptotically multiplicative and free in the
sense that:

l[ved{l,...,d;}:0:(st)(v) =0;(s)(v)o; (t)(v)| R
d;

lve{l,....d;}:0:(s)(v) # oy (t)(v)] .
d;

(i) for s,t €@, 1.

(ii) for s #t e G, 1.

Sofic groups are more difficult to work with than amenable ones, but much
more general. We begin with the observation that any amenable group is
sofic. Indeed, if {F,}, is a Folner sequence for G we can define the maps
0; : G > Sym(Fy) as follows: on F;\s ' F; we let 0;(s) be an arbitrary bijection
onto F;\sF;, for t € F;ns ' F; we let o;(s)(t) = st.

For fixed s,s" € G we see that on the set F; nsEF; ns'F; nss’F the equality
oi(ss") = 0;(s)o;(s") holds and by the Fglner criterion the size of this set tends
to |F}| in ratio. Hence the condition (i) in [Definition 2.2.1]is satisfied. Similarly,
if s s', 0;(s) and o;(s") will disagree on the set F'nsF ns'F so condition (ii)
is also met.

Another class of groups that are sofic are the so called residually finite ones.
These are groups, G with the property that for any non-trivial element s € G
there is a homomorphism ¢ of G into a finite group, such that ¢(s) # e. When
G is countable and {s1, s2,...} is an enumeration of its non-trivial elements we
for each n € N consider the homomorphism product

Py, 1= II/wsk G > II F, .
k=1 k=1

Consider then the maps o, : G - Sym(G/ker1),,) given by

on(s)(tker,) = (st) ker 1,. These maps are genuine homomorphisms so condi-
tion (i) inis met. For distinct s, s’ € G we have ss'~! ¢ ker,, for
sufficiently large n. Then the maps o, (s) and o, (s") cannot agree anywhere; if
they did then there is a t € G such that (st)ker, = (s't) kert),, = ss’ L ker,,
which is a contradiction. Hence condition (ii) is met.

The above discussion allows us to exhibit some sofic, non-amenable group,

namely the free groups. If {ai,...,a,} are the generators for our group,
consider a non-trivial element a = a;"---ai?a;! where ¢; € {~1,1} and there are

13



2. Groups and Classical Entropy

no cancellations, i.e. eg = epyq if i = igr1. We will find a homomorphism of Fi.
into Sym(n + 1) that doesn’t map a to the trivial permutation, showing that
the free group is residually finite.

It suffices to map each generator a,, to a permutation f, such that
fir oo fizo fit #1d. Simply require that for k=1,2,...,n, fi, (k) =k +1if
er =1 and that f;, (k+1) = k if e;, = —1. The condition that ey = ep1 if 75 = ig41
ensures that this gives well-defined injective maps f1, fo,..., fm defined on
subsets of {1,...,n+1}. Extend them arbitrarily to bijections on {1,...,n+1}.
Then (fi" oo fi2o fi1)(1) =n+1 showing that fi" oo fi*o f! isn’t trivial.

14



2.3. Classical amenable entropy

2.3 Classical amenable entropy

We are now ready to define group actions.

Definition 2.3.1. By a group action of a group G on a measure space (X, p), we
mean a map G x X — X, where the image of (s,2) is denoted by sz, satisfying
the following;:

(i) For s1,82 € G and x € X: s1(s2x) = (s182) and ex = x where e denotes
the identity element of G.

(ii) For s € G and a measurable set A ¢ X, the set sA := {sz:z € A} is
measurable and pu(A) = u(sA).

We want to assign a numerical quantity, the entropy, that measures how
chaotic the group action is. In defining this quantity we will first assume the
underlying group, G, to be amenable, later we will lift this assumption to being
sofic. For technical reasons we also need to assume that (X, p) is a standard
probability space, as stated in the introduction.

In order to define entropy we will first define a so-called information content
(IMW99| [pp. 622-623]) of a finite, measurable partition P = {A;, As,..., A, } of
(X, ). This will measure the expected information of learning which member
of the partition a random x € X belongs to. Fixing an x € X, we will first
define the amount of information of gained from learning which element of P
that = belongs to. We call this amount I, p. If P(x) denotes the member of P
that = actually lies in, I, » should obviously be greater the smaller p(P(z)) is.
Furthermore, if another partition C = { By, Ba, ..., By, } is independent of P we
should have I, prc = I p + Iy p. Here PNnC={AnB:AeP, BeC}.

Hence, a reasonable definition for I, » could be
Iy p = ~log(u(P(2)))-
Then I, p is decreasing in pu(P(x)) and we also have
Iy prc = =log(u(P(x)) nC(x))) = ~log(n(P(x))p(C(2))) == ~log(u(P(2)))

=-log(pu(C(x))) =Ipp + I c.

The expected information gained from learning which element of P = belongs
to is then, naturally,

/X Lpp dp = _iﬂ(Ai) log(11(4:)).

We denote this quantity by H(P).
Dropping the condition that P and C be independent we can also consider

I, p|c, the expected information gained from knowing which member of P which
x lies in, given the knowledge of what member in C that x lies in. Then defining

15



prop:P3

2. Groups and Classical Entropy

I, pic(x) to be — log(%) is a natural choice. The expected information

gain from P given knowledge of C is then
e 1(Ai 0 B;)
w(A; n B;)log(—————).
2 Doe( By
We denote this quantity by H(P | C).

In both the definition of H(-) and H(- | -)we see that the function 7 is being
used. Recall that
mlog(x) 0<x<1
n(x) = 0

7 is strictly concave, that is,

ikm(%‘) < n(i&xi) (2.4)

for all 21,...,2, € [0,1] and A;,..., A, >0 with ¥ \; = 1, with equality if and
i=1

only if &y =29 =...=x,.

Here are some properties of H(-) and H(- | ).

Proposition 2.3.2 ([KL16|[pp. 196, Proposition 9.1]). For partitions P, C and
D we have:

(i) 0<H(P) <log|P|,
(ii) H(P) =1log|P| if and only if all members of P have measure \79\
(iii) H(- | -) is increasing in the first variable and decreasing in the second,
(iv) 0<H(P | C) < H(P),
(v) H(P | C)=H(P) if and only if P and C are independent,
(vi) H(PvC | D)=H(P|C)+H(P|CvD),
(vii) H(PvC)=H(P)+H(P |C).
Proof. Writing P = {A;,...,A,}, (i) and (ii) follows from applying

ion (2.4)to x; = u(A;) and \; = % We omit proving the rest.

Given a group element s € G and a partition P = {A;,..., A, } we define a
new partition sP := {sAy,...,sA,}, i.e. a translation of P by s.

It turns out we have the following.

16
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classicalpartition

2.3. Classical amenable entropy

Proposition 2.3.3 ([NS06|[pp. 13, Proposition 1.3.2]). For measurable parti-
ofypdh¥% Py, Pa,...,Pn of X we have

H(k\j/1 Pr)=sup{ > 0(u(fiigin)) = D, Z”(”(Epk(f;kk)))}

11,82,y k=1 i

where the supremum is taken over all partitions of unity,
{firsin,sin Yirels isels, .icl,, » €. positive functions in L (X, p) summing to 1.
Here Ep, denotes the conditional expectation L*(X) — L*(X/Py) and fi(,k)
k

denotes the sum of all functions fi, ;, . .. for which iy =1,

Definition 2.3.4. For a partition P of X and a finite subset F ¢ G let

PF = v s7'P. Concretely PF consists of all possible sets one obtains by
seF”

intersecting members of the partitions s~ 'P, s € F, with each other.

Now, combining (vii) and (iv) in [Proposition 2.3.2| yields H(P v C) =
H(P)+H(P|C)< H(P)+ H(C) and (v) tells us that equality holds if and
only if P and C are independent. With a little more work we then see that
H(PF) < |F|H(P) with equality if and only if the partitions s™'P for s € F
are pairwise independent. That the s™'P for s € I’ are pairwise independent
can further be interpreted as F' "mixing" P around in X. Conversely, if F
doesn’t "mix" P at all, so that s~'P = P for s € F, then the quantity H(P)
is minimized. This gives some justification as to why the quantity H(P*") for
various finite sets F' € G can be used to define entropy. However, the fact that
H(PT) can reach values as high as |F|H(P) indicates that we need to consider

H(P™)
[F]

instead.

the quantities

Let us fix the partition 7 and consider the mapping F + H(PT). Trivially,
H(PFs) = H(PF) for s € G and using [Proposition 2.3.2| (vii) and (iv) we have

H(PPF) = H(PT vPF) < H(PF) + H(PP|PT) < H(PT) + H(PF),

showing that the map is subadditive. By we see that the

L. H('PF")
quantities T

define the quantity

converge for any choice of Fglner sequence, {F},},. We thus

H(PR)
h(P):= lim ——~=.
n—»00 |Fn|

By the same theorem this quantity does not depend on the choice of Fglner
sequence.

We can now define the entropy of an amenable group action G ~ (X, u):

Definition 2.3.5 ([KL16][pp. 198-199, Definition 9.3]). Given an amenable
group action G ~ (X, 1) we define its entropy as

sup h(P).

P: P is a finite partition of X

We denote this quantity by h(X,G).
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2. Groups and Classical Entropy

The fact that we can choose which Fglner sequence {F),}, we use to
compute h(P) suggests that it is not too difficult to compute the entropy
h(X,G). We also have an important "generator theorem". It says that if a
finite partition P generates all measurable subsets of (X, ) modulo null sets,
then h(X,G) = h(P) so in that case there is no need to take a supremum.
More precisely, that P is generating means that the o-algebra generated by

U sP coincides with all measurable subsets modulo null sets, i.e. for any
seG

measurable A c X, there is a A’ € o( U sP) such that u(A & A") =0. To prove
the generator theorem we need three lemmas The first is a technical continuity
result.

Lemma 2.3.6 (|[KL16|[pp. 199, Proposition 9.5]). Let P be a partition of X and
€ > 0. Then there exists 6 >0 such that, for every partition C of X with the
property that for each A € P there is a B in the algebra generated by C such
that (A & B) <4, one has

H(P|C)<e.

Proof. Write P = {A1,...,A,}. Letting § > 0 to be determined, suppose we
have a partition D such that for each i = 1,...,n we can find a B; € D such
that u(A; & B;) <. We construct a partition D’ = {B], BS, ..., B}, } by letting
Bj{ = By, recursively set B] = B;\(Bju...uBj_;) fori=1,...n—1 and finally
set B, = X\(BjU...B]_;). Assuming ¢ > 0 was small enough we will then

“(A(iigﬁ;;) >1-no for all ¢ such that p(A4;) >0 and % <1-nd for

all j # 4 such that u(A;) > 0. From definition of H(P|D’) it is clear that,
if & > 0 was sufficiently small then we would have H(P | D’) < e. Flnally

D refines D’ so since H(- | -) is decreasing in the second variable we obtain
H(P|D)<H(P|D)<e as desired. |

have

Below is the final lemma we need to prove the generator theorem.

Lemma 2.3.7 (|JKL16|[pp. 200, Lemma 9.6]). For any partition P of X and a
finite set E c G we have h(PE) = h(P).

This lemma makes intuitive sense because the definition of A(P¥) only takes
into account the collection translates s™! f~*P, for s € F,, and f € E, which will,
by the Folner property, asymptotically equal the collection of translates s™'P,
s € F,,, which is what matters in the definition of h(P). We thus omit a formal
proof.

Lemma 2.3.8 (|[KL16|[pp. 199, Proposition 9.4]). Let P and C be finite parti-
tions of X. Then
h(P)<h(C)+H(P | C).

Proof. Since H(- | -) is subadditive in the first variable and decreasing in the
second variable we have for any finite set F' c G,

HPF | cMYy< S HE'P|Ch) < S HE'P|t7'C) = |F|H(P | C).

teF teF
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2.3. Classical amenable entropy

Along a Folner sequence {F}, }, we then obtain

1 1 1 1
— H(P"™)< —H(C"™)+ — HP™ | )< —H(C"™)+ H(P | C).
12 |[Enl |5l |l
Taking limits yields the result. [ ]

We are now ready to prove the generator theorem.

Theorem 2.3.9 (|[KL16|[pp. 200, Theorem 9.8]). Suppose G ~ (X,pu) is
an amenable group action and P is a generating partition of X. Then

h(X,G) = h(P).

Proof. We have to show that for another finite partition D of X, we have

h(D) < h(P). For any finite subset F c¢ G we apply [Lemma 2.3.8| to the

partitions C and P¥ to get
n(C) <h(P)+H(C | PF).

By [Lemma 2.3.7 h(P¥) = h(P) so
n(C) < h(PEY+H(C | PE).

Finally, since P is generating, we can, for each § > 0 find a finite F c¢ G with
the property that for each A € C there is a B in the algebra generated by P¥

such that u(A A B) < 4. By|Lemma 2.3.6, this implies that we can make the
quantity H(C | PF) arbitrarily small so that h(C) < h(P) as desired. ]

There is an important example of a group action on a measure space
that has a generating partition. Namely, suppose n € N and let v be some
probability measure on the discrete set {1,...,n} and consider the measure space
X ={1,...,n}% where the measure y is the infinite product measure v®“. Then
there is a canonical action a: G ~ X given by (ay(x))s = £4-1,. This action is
called the Bernoulli shift. It was the first classical group action studied and
it has an obvious generating partition, namely if we put A; = {x € X : x, =i}
for i =1,...,n, then P ={A;,...,A,} is clearly a generating partition. The
above theorem implies that the entropy of the group action is A(P) which of

course is just i -v({i})log(v({i})). We summarize this in the theorem below.
i=1

Theorem 2.3.10 (|KL16|[pp. 201, Theorem 9.9]). Consider the discrete measure
space {1,...,n} equipped with some probability measure v. Let G be amenable
group. Then the action G ~{1,...,n}% defined by (ay(x))s = x415, s € G has

entropy Hy,({{1},12},... . {n}}) = il “u(i) log(v(i)).

We note that the entropy in the theorem above is completely independent
of the amenable group G in question. The theorem above is also important
because when we want to generalize entropy to sofic group actions on measure
spaces, it tells us what the entropy of the canonical action on {1, ... ,n}G should
be: if the sofic entropy of the canonical action on {1,...,n}%, for sofic G, also
is H,({{1},{2},...,{n}) then that suggests our definition is good. Something
similar is true when we generalize entropy to operator algebras. Namely, we
will see that for a finite dimensional C*-algebra B, then the entropy of the shift
action on the infinite tensor product B®“, with respect to some product state
¥®% only depends on B and 1.
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2. Groups and Classical Entropy

2.4 Classical sofic entropy

We will now define the entropy of a sofic group action on a measure space. Here
we do not have Fglner sequences so we have to resort to something different.
We will instead take a sofic approximation sequence {o; : G - Sym(d;)}; and
model G’s action on (X, ) by the actions the o;’s induce on {1,2,...,d;}, and
count the number of approximate models we can possibly obtain this way. More,
precisely, the models will be the following:

Definition 2.4.1. [[KL16|[pp. 236, Definition 10.8]] For a finite partition C
of (X,u), F a finite subset of G containing e, 6 > 0 and ¢ : G — Sym(d)
for some d € N, let Hom,(C, F,d,0) be the set of algebra homomorphisms
W :alg(Pr) — {1,...,d} such that:

(i) X m(o(s)(¥(A)) & ¢(sA)) <.
AeC

(i) % [m(¢(A)) - u(A)| <d.

AeCp

Here m denotes the normalized counting measure on {1,...,d}, Pp = V sP
sel

and alg(Pr) is simply all possible unions of sets in Pg.

Also, given a coarser partition C > P we define |[Hom, (C, F,d,0)|p to be the
number of maps P — {1,...d} we can get by restricting maps in Hom,,(C, F, 6, 0)
to P.

The above definitions are a bit complicated, but for intuition one should
think of it as requiring that for A € C and B € Cr we are requiring
(a(s) o)(A) »p(sA) and m(p(A)) ~ u(A) "up to §" accuracy.

Note that in the above definition Pr denotes the partition \ sP and not
seF’

the partition \ s !P which we worked with in the amenable context.
seF
Now, for a sofic group G we now fix a sofic approximation sequence
{07 : G - Sym(d;)}2, and denote by X, and define the quantity

hs(P)= _inf limsuplog(|Hom,(C,F,d,0;)|p).

li
C2P.F,050 oo

For the expression above we define log(0) to be —oco. We can now define sofic
entropy.

Definition 2.4.2. Let G be a sofic group with a sofic approximation sequence
3. For a group action G ~ (X, ) we define the sofic entropy of this action,
relative to X as,
hs(X,G) :=sup hs(P).
P

We will also denote the quantity limsuplog(|Hom,(C,F,d,a;)lp) by
hs(P,C,F,0) and FirélfolimsuplogﬂHom#(C,F,d,Ji)h:) by hx(P,C). Note
050 4

71— 00

that the quantity |Hom,,(C, F,d,0)|p is decreasing in C. Indeed suppose that
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2.4. Classical sofic entropy

C<Cs.
If ¢ e Hom(Cq, F, 0, 0) then by the triangle inequality,

> im(w(A) - p(A)| < Y Im(p(A)) - p(A)| < 6.

AeCi g AeCa g

Furthermore, for sets Aq,..., A, we have
(Aju...uA,) A (sAju...UsA,)c (A1 AsA)u...U (A, A& sAy)

so we see that

>, m(o(s)((A)) 2 1(sA)) < 3, m(a(s)(¥(A)) & ¢p(sA)) <

AeCy AeCy

as well. Hence we have a map Hom(Co, F,d,0) — Hom(Cy, F,d,0),
¥ = Y aig(c,) Which clearly becomes an injection when we identify algebra homo-
morphisms that agree on P. Hence |Hom,,(Cs, F,6,0)|p < |Hom, (C1, F,d,0)|p.
Similarly, |Hom, (C, F,d,0)|p is also decreasing in F' and ¢ and increasing in P
so in the definitions of hy(P) and hx (X, G) we could equally well have taken
limits instead of suprema and infima.

It is important to note that the definition of sofic entropy depends on
the choice of sofic approximation sequence Y, and in choosing a different
approximation sequence we could well change the entropy.

To establish properties of sofic entropy we need couple of results, some of
which we prove.

Lemma 2.4.3 ([KL16|[pp. 233, Lemma 10.1]). For n € N one has

n n
n n
el =] <nl<en|—| .
e e

Proposition 2.4.4 (|[KL16|[pp. 233, Proposition 10.2)). Let € > 0 and P =

{A1,As, ..., Ay} be an ordered partition of a probability space (X,u). Then

there is a 0 >0, such that for all sufficiently large d € N, the set of all ordered

partitions with n members {V1,...,V,} satisfying 3 |% - u(Ay)| < 6, has
i=1

e(H(P)—e)d e(H(P)+e)d.

cardinality between and

Proof. By the continuity properties of H(-) we can find a § > 0 such that for
all ordered partitions C = {By, ..., B,} of a probability space (Y, v) satisfying

> |[v(B;i) = u(A;)| < 6 we have |H(C) - H(P)| < /4.
i=1
To get the lower bound in the proposition statement, note that for sufficiently
n
large d € N there exists A = (A1,...,\,) €{0,1/d,2/d,...,1}" satisfying ¥ \; =1
i=1
n
and Y |A\;—p(A;)]. Write Wy, for the set of all ordered n—partitions {V;,...,V,}
i=1

of {1: ..,d} such that |V;|/d = \;. Applying|Lemma 2.4.3|we have, for sufficiently
large d,

d! ot g eqya los(TTATNY)
>€1 nd nHAi)\leeed/4e =1

W= DD o)l Li
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Z -Aidlog\;

_ e—ed/4el_

— €[4 dH(P) 5 ~ed/4 H(P)-cd/4 _ H(P)-cd/2

This establishes the lower bound. To get the upper bound denote by A
the set of all tuples X € {1,...n}" satisfying Z A =1 and z |Ai = u(A4;)] < 0.

Taking just the last criteria into account we see that |A| < (1+26d)". If
we, for A € A define W) as before, a similar argument to the one above

shows that [Wy| < e (P+</29)  Hence the set |J W) has cardinality at most
AeA

(1 + 26d)"e ' (P+</2d)  For sufficiently large d this quantity is bounded by

H(P)“d. Since the set of all n—partitions {V1,...,V;,} of {1,...,d} satisfying

|M - p(A;)] < § is just U W, this establishes the upper bound in the
AeA

=1

proposition. [ |

Lemma 2.4.5 (|JKL16|[pp. 240, Lemma 10.13]). Let P be a finite partition, F'
a finite subset of G containing the identity e, and let § > 0. Suppose D is an
algebra of measurable subsets of X, such that the o-algebra generated by D
coincides with all measurable subsets, modulo null sets. Suppose also P is a

partition in D and C is any finite partition refining P. Then there is a partition
P’ in D that refines P and satisfies:

hg(P,PI,F, 5/4) < hg(P,C,F,5).

In the theorem below we make repeated use of the basic facts that for sets

A; and B; we have (U A;) & (U Bi) ¢ U(A; & By) and () A;) & () B:) <
i=1 i=1 i=1 i=1 i=1

L”J(AZ-ABZ-).

Theorem 2.4.6 ([KL16|[pp. 241, Theorem 10.14]). Let P be a generating
partition of X. Then
hZ(XvG) = hz(,P,C)

for any partition C > P. In particular hs(X,G) = hg(P).

Proof. Fix a partition C that refines P. We will first show that H(X,G) <
hZ (P,C)

For that, let D be an arbitrary partition, fix x > 0 and let € > 0 to be
determined in relation to k. Now, the translates sP, s € GG, generate a o—algebra
that agrees with the measurable subsets of X modulo null sets, hence any
measurable subset can be approximated arbitrarily well by sets in the algebra
generated by {sP:s e G}. Hence there is a finite set K ¢ G such that for every
A €D there is an A’ € alg(Pk ) satisfying

(A DAY <efs. (2.5)

Write A= U N sY; for the appropriate collection € 4 of maps K — P. By
YeQa seK

definition of hx(P,C) we can find a finite set F' c G containing K U {e} and a
0 > 0 such that

hs(P,C,F,5) < hs(P,C) + (2.6) |
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2.4. Classical sofic entropy

We claim that for arbitrary o : G — Sym(d) with d large enough, and small
enough d > 0, we will have

|Hom(C v D, F,8,0)|p < e"¥|Hom(C, F,8,0)|p. (2.7)

Letting o; range over a sofic approximation, taking logarithms, then dividing
by d; and taking limit suprema on both sides of [Equation (2.7)] we will have
hs(D,Cv D, F,d) <hg(P,C,F,d) + k. Combining this with [Equation (2.6)] we
then have hx(D,Cv D, F,§) < hs(P,C) + 2k yielding H(X,G) < hx(P,C) since
D was arbitrary.

It remains to establish For this consider the obvious map
Hom(CvD, F,d,0) - Hom(C, F,0,0), ¥ = Y|aig(cy)- It need not be an injection
when we mod out by the relations of agreement on D and P, respectively.
However we will show that, modding out, it is sufficiently injective in a certain
sense.

Note that if § < €/8 we will have

m(p(A A A)) <u(Aa A')+e/8<eld

for v e Hom(C v D, F,0,0). Here we have used that A A A" e alg((CvD)p) and

?7?. Now, on Hom(C v D, F,§,0) define the pseudometric

p(, @) = max Llp(A) & ¢(A)|. Now, if ¢,¢ € Hom(C v D, F,6,0) agree on P,
€

and ¢ < €/8, we have for A € D:

S0(4) 2 G(A) < S(W(A S A+ (A 5 (A + [’ & A))

Sefir T SfU(sY) 8 6(sYa)]+ /4

YEQA se K

<e/2+ ) Zé(lw(sYs)AU(S)(?&(E))HIU(S)W(K))A¢(812)|)+6/8+6/8

YeQp seK
<e/2+2Pk||K|6 <

Hence, p(v,¢) < e. It follows that the image of any e separated set
in Hom(C v D, F,d,0) under the restriction map Hom(C v D,F,d,0) —
Hom(C, F\,6,0) consists of homomorphisms that are all distinct when re-
stricted to P. Now for a set V c {1,...,d} there are at most (1 + ed) (ijj) sets
W satisfying m(V A W). For large enough d, (1 + ed) ([iij) is less than e"? for
some number 7 with n = 0 as € = 0. So for sufficiently small € then every e-ball
in the p-pseudometric contains at most e®? distinct restrictions to P. From this

is evident.

Now we show the reverse inequality, that hx(P,C) < H(X,G). Let k>0
and find a partition D refining P, a finite set I’ c G containing e and a § > 0 such
that hs(P,D, F,d) < hx(P) + k. Since P is generating, we may, by replacing &
with §/4 and appealing to assume that there is a finite set £ c G
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2. Groups and Classical Entropy

such that D < Pg.

Let 0 : G — Sym(d) and 0 < ¢’ < 4. If we are given a ¢ € Hom(C, F'E, ¢, 0)
we can restrict it to alg(Dp) since Dp < (Pg)r = Pre < Crp. We now argue
that this restriction lies in Hom(D, F,d,0). For every A € D we can write

A= U Nseg sYs for some collection 24 of maps £ — P. Then, for every
YGQA

tel,

> W) 2oo(A)l< ¥ YT l(tsYs) 8 o(sY)

AeD d AeDYeQy seE

1
cy vyl
AeDYeQq seE
+Howsh(Ye) & oo p(Yo)l + |on(os9(Ys) & 9(sY5))I)

All of the first terms occuring in the triple sum, 1[¢(tsYs) A ot (Ys)],
are of the form 1|¢(rB) A o,4p(B)| with r € FE and B € alg(Cpg), so since
v € Hom(C, FE,¥,0) their sum is dominated by ¢’. For the same reason
all of the third terms |o:(os10(Ys) & ¥(sYs))| = |osth(Ys) & 1 (sY5)| < & since
se Ec FE. When o is a sufficiently good sofic approximation sequence we can
also ensure that sum of all the middle terms is less than say §/2. Then

(|’(/)(t8YS) A Utsw(YVSN

]. 4 !
2, —lv(tA) Ay (A)| <[DIPEIE +6/2+ DIPel|El <6
AeD

provided we just chose 6’ > 0 small enough. Now, the triangle inequality implies
that Y |m(¥(A)) —p(A)|<d <é.
AeDr
This is all to say that when o is a sufficiently good approximation and 4’ > 0
is small enough, we have a map Hom,,(C,FE,¢',0) - Hom,(D, F,6,0) given
by restriction to alg(Dp). When we identify algebra homomorphisms that agree
on P the map becomes injective. Hence,

1
hx(P,C) <limsup 7 log|Hom,,(C, FE, 4", 0;)|p

i—>00 )
. 1
< limsup 7 log |Hom,, (D, F,0,0;)|p
<hes(P)+k<hs(X,G)+k

Since k was arbitrary, this proves the other inequality. [

Just like in the amenable case, this generator theorem can be used to prove
that for a sofic group G, the Bernoulli shift on ({1,...,n},v®%) has sofic entropy
ho({{1},...,{n}}). This time however, the proof is not straightforward and
requires some meticulous probabilistic arguments. We summarize the result in
the theorem below.

Theorem 2.4.7 (|[KL16|[pp. 244, Theorem 10.15]). Consider the discrete
measure space {1,...,n} equipped with some probability measure v. Let G
be a sofic group. Then the action G ~{1,...,n}% defined by (ay(z))s = 2415

has entropy b, ({1}, (2., {n}) = £ (i) log(v({7})).
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2.4. Classical sofic entropy

Note that any group action « : G ~ (X,u) induces a natural action
o G - L*(X,u) by o.(f) = sf. Here the function sf is defined by
(sf)(z) = f(s'x). Since a is assumed to be measure preserving, each operator
al on L*(X,p) is an isometry. Recalling that the entropy should measure how
much the group "mixes" the measure space around we would expect that if
each orbit of o’ was precompact then the sofic entropy is 0 or —oco. Indeed, this
would give is reassurance that our definition of sofic entropy is good.
To prove this we will first need a combinatorial argument that is typical of sofic
group theory:

Lemma 2.4.8 (|[KL16|[pp. 247, Lemma 10.17]). Let € > 0. Then there are a
6 >0 and an n € N such that, for all sufficiently large d € N, if o1,...,0, are
permutations of {1,...d} such that

Hve{l,....d}:0;(v) # ox(v) for j+k}|>(1-6)d,

then the number of sets Ac {1,...,d} with |oj(A) & A|<dd forall j=1,...,n
ed

is less than e .

Proof. Suppose § >0, and d € N and that the permutations o1, ..., o, satisfy the
hypothesis in the lemma. Let I' denote the set of functions v : {1,...,n} - {0,1}
such that |o;(y7*(1)) A v }(1)| < dd for j = 1,...,n. To prove the lemma it
will suffice to find appropriate numbers § > 0 and d,n € N for which |T'| can
be bounded by e. Denote by H the subgroup of Sym(d) generated by the
o;’s and partition {1,...,d} into minimal G-invariant sets. Let V;,V5,...,V,,
be among the sets in the partition with cardinality at least n. Then the set

n
W ={1,...,d}\ U V; has no more than dd elements, by assumption on the o;’s.
i=1

Now, given a y €T, let B, = U?zl(oj’y’l(l) A~7H(1)). Then B, is just the
set of v € {1,...,n} such that v(o5"(v)) # y(v) for some j € {1,...,n}, and
clearly |B,| < ndd. Now let B:={B, :~v eI'}. Since |B,| < ndd for each ~ it is
clear that, if nd < 1/2, then |B| < (1 +n5d)(n§d). Now, for a B € B note that
any v € I' for which B, = B will be constant on each V; interval that does not
intersect B. Indeed, B not intersecting V; means that 7(0}1(1;)) =~ (v) for all
v e V;. But fixing v € V; we see that since V; is a minimal H-invariant subset,

Vi=H(v) ={w(v) :w is a word in the o;’s} (2.8)

so clearly « will be constant on all of V;. Let Rp be a set containing exactly
one element from each V; that does not intersect B.

Now note that any 7 € I' such that B, = B is determined on the set
W uBuURpg. Indeed, all of the V; sets on which v is constant all contain
an element that lies in Rp, so 7’s values on these V;’s can be deduced from
v’s values on Rp. Finally, take a v belonging to a V; set on which v is

not constant. Then V; contains elements of w € B and by

there is a word w in the 0;1’s such that w = w(v). Pick a shortest word
w = U}id}i_l ...a;-ll such that w(v) € B. Now consider the largest number

k, 1 <k <m, such that v((o}}...05)(v)) = v(v). If k < m then of course

fy((ajfklﬂajfkl . 0511)(11)) # ’y((O’;kl . 0;11)(1))) showing that (U;k,l o 0511)(’0) eB
which contradicts that w was the shortest word such that w(v) € B. Hence
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k=m,ie. y(v)=v(w(v)). In particular v(v) can be deduced from what values
~ attains on Wu BuU Rp.

Having shown that any « € I' such that B, = B is determined on the set
W u BuU Rpg, it follows that for all B € B:

|{yel: B, = B}| < 2WvBuEzl ¢ ogdd+ndd+ s

Then,

INE v el': B, = BY| < |B20%94+ 5 = (1 4 ndd d odd+ndd+d
v
BeB nod

By [Cemma 2.4.3] we can choose n sufficiently large and then ¢ sufficiently
small to ensure that this RHS is at most e for all large enough d. This

completes the proof. [

Theorem 2.4.9 ([KL16|[pp. 247, Theorem 10.81]). Suppose G is an infinite
sofic group. For any compact action G ~ (X, ) we have hx,(X,G) =0 or —oco.

Proof. Fix a partition P = {Ay,..., Ay} of (X, ). Let € > 0 and choose a
corresponding § > 0 and n € N so that the statement in holds. Set

f= % kla,. Then the orbit Gf is totally bounded in L?*(X, ) so there exists
k=1

1)
an infinite subset of G, say I, such that |sf —tf|3 < 3 for all s,t € I. Picking a

5
t € I and replacing I by ¢t~ we may assume that e € I so that |sf - f||3 < 3 for
all s € I. This implies that

)
max p(Ap A sAy) <||sf - fl[3 < = for all sel.
k=1,....m 3
Letting n be as above, choose a subset F' c I with cardinality n. Letting
{o;: G —» Sym(d;)}; be a sofic approximation sequence for G we will, since such
a sequence is asymptotically free, have

Kve{l,...,di}:0:(s)(v) # oy (t)(v) for s,t € F}| > (1-4)d.

for sufficiently large 7. Note that, again by asymptotic freeness, since G is infinite
we must have d; — oo. In particular, for sufficiently large i, we have d; large
enough so that the hypothesis of is satisfied. Then there can be at
most efY subsets with |o,(B) & B| < dd;. But given a ¢ € Hom(P, F,§/3,0;),
seF and A e P we have

T Ioab(4) & G(A)| < = oa6(4) & G(sA)] + 7 [6(sA4 & )

<3+ pu(AAsA)+6/3<6.

Thus Hom(P,F,§/3,0;) has at most e% restrictions to P, ie.
|Hom (P, F,6/3,0;)|p < e for all sufficiently large i. In particular h(P,P) <e.
Since € and P were arbitrary, clearly h(X,G) =0 or —oco as desired. |
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2.4. Classical sofic entropy

In this chapter we have defined amenable- and sofic group entropy. A natural
question is whether the sofic entropy of a group action G ~ (X, 1) coincides
with the amenable entropy when G is amenable. After all, these entropies are
defined in completely different ways so a priori their is no reason for them
to agree. It turns out that the answer is yes, however, the entropies are the
same, but this isn’t so simple to prove. A proof can be found in [pp. 34,
Theorem 6.7]. In particular then above theorem holds for amenable Bernoulli
shifts as well. It also suggests the definition of sofic entropy, which appears as
if from nowhere, is good.
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CHAPTER 3

Dynamical Entropy

| 3.1 Completely positive maps and conditional

expectations

When defining entropy in the non-commutative setting, we need to find
an analogue of partitions. A natural idea would be finite dimensional C*-
subalgebras of a C*-algebra. It turns out there are two few of these to base the
theory on them and instead we will work with images of finite dimensional C*
algebras under completely positive maps. We begin by defining them and then
proving a few properties.

Definition 3.1.1. A map 0 : A - B of C*-algebras is said to be completely
positive if, for all n € N, the tensor map 6 ® idyy, ¢y : A® M,(C) - B ® M, (C)
is positive.

Completely positive maps, being positive, are bounded. Indeed, if P: A - B
is positive then the collection of positive linear functionals {¢po P: ¢ € S(B)}
is a pointwise bounded family of bounded linear operators, so by the Uniform
Boundedness principle, it is uniformly bounded in norm, say by K > 0. For
a € A" with ||a]| £ 1 we have,

IP(a)l|= sup |[(¢oP)(a)]<K.
¢eS(B)

Hence P is bounded with ||P|| < 4K. Furthermore, if A is unital ||P|| = |P(1)].
We now list some immediate properties of completely positive maps.

| Proposition 3.1.2.

(i) The restriction of a c.p. map to a C*-subalgebra is also c.p.
(ii) If 01 : Ay —» By and 05 : Ay — By are c.p. maps then,

0L 005: A1 ® Ay - By @ By is c.p.

0L ®05: A1 ® Ay > B® By is c.p.

(iii) Suppose {A;}icr is an increasing net of C*-subalgebras of A and 0; : A; - B
is a completely positive map for each i € I such that Hle_ = 6; whenever

i < j. Then there is a completely positive map 6 : A - B extending all the
07; ’s.
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n
All elements in A ® M,,(C) can be written in the form Y a;; ® e;; so a
ij=1
generic positive element looks like

( i aij ® )" ( i ap ® exr) = ( i aj; ®eij)( i ap ® exr)

i,5=1 k,l=1 i,7=1 k,l=1

n n
= Z Z a;l-ajl ® €.
i=1i,=1

7=1
The take away from this is that an element in A ® M,,(C) is positive if and

n
only if it can be written as the sum of n elements of the form a;ai ® e;; for
ij=1
some a1, as, ... ,a, € A.

n
We now claim that the element Y b;; ® e;; € B® M, (C) is positive if and
ig=1

n
only if 3 bb;;b; € B is positive for any by,bs,...,b, € B. Now, an element
i,j=1
a of a C*-algebra is positive if and only if ¢(b) > 0 for each pure state ¢.
Recalling the connection between pure states and irreducible Gelfand-Naimark-

n
Segal (GNS) representations we then see that the positivity of Y b;; ® €;5 is
ij=1

n
equivalent to having p( ¥ b;; ® e;;) > 0 for each irreducible representation p
,j=

on B ® M,(C). But these are all of the form 7 ® idy;, (¢) for an irreducible
representation 7 : B - B(H). Such 7's are cyclic so this is equivalent to

((mr®iday, )( i bij ®eij)(i W(bk)h@’ek)yiﬂ'(bl)h@el) 20
k=1 =1

4,5=1

for any by,...,b, € Band he H

< (m( Y. b;b;jbj)h,h) >0 for any by,...,b, € B and he H.

ig=1
This is equivalent to 7( Y, b/b;;b;) >0 for any bq,...,b, € B and irreducible
ig=1

m,ie. Y bfb;;b; >0 for any b1,...,b, € B.
i,j=1

Combining these two characterizations of positivity gives that 6 is a
completely positive exactly when

Z b;0(a;a;)b; >0 for any aq,...,a, € A and by,...,b, € B.
irj=1

There is another useful result for completely positive maps.
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|

3.1. Completely positive maps and conditional expectations

Theorem 3.1.3 (|[NSO06|[pp. 265, A.2]). If 0: A - B is completely positive and
B c B(H), then there exists a Hilbert space K, a representation 7 : A - B(K)
and a bounded operator V : H —» K such that 0 = V*x(-)V and 7(A)VH = K.

The triple (K,m, V) is called the Stinespring dilation of 6. Conversely,
any map which is of the form a — V*r(a)V for a bounded operator V is
easily checked to be c.p. In particular, using the GNS-representation, all
positive linear functional are of this form so they are completely positive. Upon
further inspection we see that the above theorem actually generalizes the
GNS-construction.

So far we have only proven characterizations of completely positive maps,
nothing which indicates their existence. The below result tells us that they are
common.

Theorem 3.1.4 ([NSO06|[pp. 266, A.3]). If 0 : A - B is a positive linear map,
and either A or B is abelian, then 6 is completely positive.

Proof. Suppose B is abelian. By the Gelfand correspondence there is a compact
Hausdorff space X such that B ~ C(X) as C*-algebras. For n € N note
that B ® M,(C) ~ C(X) ® M,(C) ~ C(X;M,(C)). Here C(X;M,(C))
denotes the C*-algebra of continuous functions X — M, (C) where M, (C)
is equipped with the norm topology. The last isomorphism is obtained by the
map f®@Ar (x® A~ f(x)A). Under this identification of B ® M,,(C) we have

k k k
(9®id)(; a; ® A;)(z) = ;a(ai)(x)Ai = ;((Xa: of) ®id)(a; ® A;)

k
= ((Xz00) ®id)(} a; ® A;).
i=1
Here y, denotes evaluation at x. The above equation shows that to verify that
0 is completely positive, it suffices to check that x, o 8 is completely positive
for z € X. These are all positive linear functionals so by the above remark they
are C.p.

Now suppose A is abelian. Any positive linear map C — B is a positive
functional hence completely positive. By [Proposition 3.1.2{(ii) we then see that
any positive, linear map C" — B is c.p. Appealing to [Proposition 3.1.2(iii) we
get that any abelian AF-algebra is completely positive. In the general case,
consider the second transpose map 0** : A** — B**. Viewing A** as 7(A)"
where 7 denotes the universal representations of A, we see that A is a weakly
dense subalgebra of A**, hence 8** is also positive.

Since abelianness passes to the weak closure, we see that A** is an abelian
von Neumann algebra. Then it is AF: we can order the collection of finite sets
of mutually orthogonal projections, denoted I, by declaring that for P,C € I,
P < C if for all projections q € C there is a p € P with ¢ < p. For P we let Ap
denote the C*-subalgebra generated by P. Then {Ap}pes is a net of finite
dimensional subalgebras ordered under inclusion. By Borel functional calculus,

we have A** = U Ap. Thus A** is an abelian AF-algebra so by the previous
Pel

31



prop:p7

prop:p8

3. Dynamical Entropy

case 0** is completely positive. By [Proposition 3.1.2| (i) the restricted map
Gl*g =6 is c.p.. [

When either the domain or the target space of a completely positive map is
a full matrix algebra, M, (C), completely positive maps are related to states on
tensor algebras of the domain and target space. More precisely, we have the
following.

Proposition 3.1.5 ([NS06|[pp. 267, A.6]). Let 6 : A — M,,C be a linear map
and write 0(a) = ¥ 0;;(a)e;;. Then the linear functional ¢pg on A® M, (C)
i j=1

i,j=
n n
defined by ¢o( ¥ a;j®e;5) = ¥ 0:5(ai;) is positive if and only if 8 is completely
ij=1 ij=1
positive. Thus we have a one to one correspondence between positive functionals

on A® M, (C) and c.p. maps A — M, (C).

Proof. Assume ¢y is positive. Any non-degenerate representation of M, (C) is
a direct sum of the identity representation, hence the GNS-representation of ¢y
is of the form = ® a — m(z) ® a for some representation 7 : A - B(H). Suppose

h =3 h; ®e; is the cyclic vector in the GNS-rep. of ¢y. Then we obtain
i=1

6:5(a) = dp(a®esy) = (((a) ®eij>(k§1 h @ek),l_ilm ® 1) = (m(a)hy, hi).

Define V : £2(n) - H by Ve; = h;. Then V*c = f:(c7 h;)e;. Hence,
i=1

Vin(a)Ve; = ;(ﬂ(a)hj7hi)ei =0(a)e;.

Thus 0(-) = V*r(-)V so 6 is completely positive.

Conversely, if 6 is completely positive, it has a Stinespring dilation (H,m, V')

where V : (?(n) - H. 1If we put h = ¥ Ve; ® ¢; we can check that
i=1

po(a®x) = ((m(a) ® x)h,h) showing that ¢y is positive. ]

A similar result, but this time about c¢.p. maps M,,(C) — A, is the following.

Proposition 3.1.6 ([NS06|[pp. 268, A.9]). A linear map v : M,(C) - A is

completely positive if and only the element T, = Y. v(ei;) ® ;5 € A® M, (C) is
i,j=1
positive. !

The above two propositions have some interesting consequences. For exam-
ple, suppose A is a C*-subalgebra of a unital C*-algebra B and that A contains
the unit of B. Then any completely positive map 6 : A - B(H) can be extended
to a completely positive map 6 : B - B(H). Indeed, for finite dimensional H,
[Proposition 3.1.5| gives us a state ¢y € A® B(H) corresponding to 6. Extend
it, using Hahn-Banach, to a state ¢ € B® B(H) and use [Proposition 3.1.5|
backwards to identify this with a completely positive map 6 : B — B(H). Since
¢ extends ¢g, 0 will extend 6.
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3.1. Completely positive maps and conditional expectations

For general H, choose a net of finite rank projections, {p; }icr such that p; 11
strongly. Consider the c.p. maps A — p; B(H)p;, a — p;6(a)p;. Use the finite
dimensional case to find completely positive extensions B — p; B(H)p;. Since
A is unital the norm of these extensions are bounded by ||f]. Now the unit
ball in B(H), By, is compact when equipped with the weak operator topology.
By Tychonoff’s theorem, the set of functions from B — Bj is compact in the
pointwise weak operator topology. This means that the net of extensions has a
pointwise weak operator cluster point. This cluster point is the desired extension.

When A is a von Neumann algebra, say M, [Proposition 3.1.6] allows us to
approximate completely positive maps by completely positive, normal maps.
We recall that these are ultraweakly continuous maps where the ultraweak
topology on M is induced by the norm closure of Span{{-h,k):h,ke H} c M*.

Then the map 6 : M — M,,(C) in [Proposition 3.1.6|is normal if and only
if ¢ 0 6 for each normal functional ¢ € M,,(C)*. This is the same as the map
(0(-)e;, €;) being normal for each ¢ and j, which is to say that 6;; (as defined in
[Proposition 3.1.5) is normal. Similarly, a state ¢ € (M ® M,,(C))* is normal
if and only if ¢(- ® e;;) is normal for each ¢ and j. We conclude that, in
|Proposition 3.1.5] 6 is a normal map if and only if ¢y is a normal state.

Now, when M* is considered a real vector space, the set of normal states
is convex. We claim its weak™-closure in M* contains all states. If not, Hahn-
Banach gives us a A € R and an element a € M such that

Re(y(a)) < A <Re(g(a))
for all normal states 1 (see | [pp. 65, 2.4.7]). Letting b = % yields
P(b) <A< @(b) <|[b].

But if we just let ¢ range over states of the form (-h,h), ¥)(b) can approximate
||b]| so this is absurd. Again using the correspondence in [Proposition 3.1.5|
this means that c.p. maps may be approximated by normal c.p. maps pointwise.

Here are two consequences of [Proposition 3.1.6]

Proposition 3.1.7 ([NS06|[pp. 268, A.10]). If B is a finite dimensional C*-
algebra, {A;}ier is an increasing net of unital C*-subalgebras with U; A; norm
dense in A, then any completely positive map B — A can be approximated in
norm by c.p. maps B - U;A;. If A is a strongly operator dense subalgebra of
a von Neumann algebra M, any c.p. map B — M can be approximated in the
pointwise strong operator topology by c.p. maps B — U;A; foriel. If v is
unital the approximations can be chosen to be unital.

Corollary 3.1.8 ([NSO6|[pp. 269, A.11)). If A is a C*-algebra, I a closed ideal
in A, and v: M, (C) - A/I is a c.p. map, then there exists a lifting of v to a
c.p. v: M, (C) - A. If A is unital and vy is unital, the lifting 7 can be chosen
unital.

Proof. We only prove the first part. Let p: A — A/I denotes the quotient map
and write the positive operator T, € A/I ® M,,(C), given by [Proposition 3.1.6|
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in the form Z Zp(akj)p(a”) ®e;j. Setting T' = Z Z ay, ;i ®eij € A® My (C)

we have T, = (p ®id) o T. Hence, if we choose the c.p. map v : M,(C) -
correspondlng to T, 4 will be a lifting of . [

We finish this section with a particularly nice class of completely positive
maps, namely conditional expectations. These are much used in von Neumann
algebra theory.

Definition 3.1.9. Let B a unital C*-subalgebra of a unital C*-algebra A.
A unital, linear positive map F : A — B is a conditional expectation if
E(bab") =bE(a)lt’ for all a € A and b,b" € B.

Evidently one has Y b; E(aja;)b; = E((X;a:ibi))*(X;aibi)) > 0 for any

i,j
a; € A and b; € B so conditional expectations are completely positive. This
operator algebraic definition of conditional expectations that we have given
here generalizes the classical conditional expectation E(- | C) : L*(X, A, u) —
L*(X,C,pu) where C c A is a sub-c-algebra of A. For L™ algebras, we also
have the following:

Proposition 3.1.10. Let N be a sub-von Neumann algebra of L=(X, A, u).
Logtyas there exists a sub-o-algebra of A, say C, such that N = L= (X,C, pc) when
the RHS is viewed as subspace of L= (X, A, 11).

Proof. Put C := {C € A:[lg] € N}. Since 1 € N, C is closed under com-
plements and if {A4,}, c C, then by the Dominated Convergence Theorem
[Tur_ a,] = [Tu= 4, ] weakly. Hence [Lye 4,] € N showing that C is a o-
algebra.

By construction the span of the projections in N coincides with the simple
functions in L*(X,C, ). But by Borel function calculus the former is norm-
dense in N and by measure theory the latter is norm dense in L*(X,C, yc).
Hence N = L*=*(X,C, yc).

]

The above proposition can be used to produce conditional expectations
from abelian von Neumann algebras M onto a sub von Neumann-algebra N:
identify M with some L*(X, A, u) space and N with L=(X,C,u) for some
CcAanduse E(-|C): M - N.

If B(K) c B(H) is a finite dimensional matrix algebra we may think of H as
K &K' for some Hilbert space K’. Under this identification B(K) ~ B(K)®1g:
where 1 is the identity on K’. Picking a state ¢ on B(K') the map
ide¢: B(K)® B(K') ~ B(H) - B(K) gives a conditional expectation. We
conclude that for any finite dimensional C*-algebra B of a C*-algebra A there
will be a conditional expectation A - B.

Von Neumann algebras are closed in the weak operator topology and are
therefore closed under least upper bounds. That is, if M ¢ B(H) is a von
Neumann algebra and {a;e;} ¢ M an increasing sequence of self adjoints with a
least upper bound, denoted l.u.b., then the l.u.b. lies in M. Thus the class of
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maps that preserve l.u.b’s are of interest. It turns out these are exactly the
normal maps. In other words, a linear map 6 : M — N von Neumann algebras
is normal if and only if for any monotone net {a;};cr of self adjoint elements
in M with a least upper bound, a, the net {6(a;)}; has a least upper bound 6(a).

It turns out that whenever two (concrete) von Neumann algebras, M ¢ B(H)
and N c B(K) are isomorphic as C*-algebras, the isomorphism will be normal.
To finish of the section, we give a discussion of normal conditional expectations
E : M — N between von Neumann algebras. We claim that then there is a
smallest projection p € M with the property that E(p) = 1. Indeed, consider
the set Q@ ={qge M : ¢ is a projection: E(q) =0}. Since F is normal and M is
closed in the strong operator topology, any chain C c @ has an upper bound.
By Zorn’s lemma it follows that Q has a maximal element g € M. p:=1-g¢q
will then have the desired property. p is called the support of 6. In a similar
vein we define the support of a positive element a € M, denoted s(a), to be the
smallest projection s(a) € M for which a < ||al|s(a).

Note that F(a) = E(pa) for any a € M because, for any state ¢ on N the
CS-inequality applied to the sesquilinear form (a,b) — ¢(b*a) yields,

(@0 E)(L-p)a)l < (o E)((1-p)* (1-p)*(¢0E)(a*a)'l

= §(E(1-p)) (¢ B)(a*a)"? = 0.

Similarly E(a) = E(ap). Suppose now a € M is such that s(a) < p. We claim
that s(a) < s(E(a)) and use the argument in [NSO6][pp. 269]

We start by showing that p commutes with N. By Borel-functional calculus
the span of unitaries is norm dense in N, so it suffices to show that a unitary
u € N commutes with p. We have F(upu*) = uE(p)u* = 1 so by the defining
property of p, p <upu*. Replacing u by u* we have also p < v*pu. Combining
the two yields

p <upu® < uu’puu’ < p.

Hence p = upu™, as desired.

Now put ¢ =1-s(E(a)). Then s(a) < s(E(a)) will follow if we can show
that gag = 0. Since ¢ commutes with p, and s(a) < p, we have gaq = gpagp, so
that s(gaq) < p. By p’s property, E is faithful on pMp so it suffices to check
that E(gag) = 0. This is obvious since E(qaq) = ¢E(a)q = 0.

3.2 State entropy

Let ¢ and v be two positive linear functionals on a finite dimensional C*-algebra
A. To begin the study of entropy on operator algebras we want to define the
mutual entropy with respect to these states, denoted S(¢,). In order to do
this we need a one to one correspondence between positive linear functionals
on A and positive elements of A. Namely, we claim that any positive linear
functional ¢ on A is of the form Tr(- Q) = Tr(Qy -) for a unique positive
element Q4 € A (Here Tr denotes the canonical trace on A which is the direct
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sum of the usual matrix traces when A is identified with a direct sum of matrix
algebras). By linearity it suffices to verify this in the case A ~ Mat,, C.

If the equation ¢(-) = Tr(- Q) (1) is to hold we can recover Q4 by applying

both sides to matrix units e; ;. Writing Q4 = Z aj;je;; for simplicity, we then
ij=1
have

¢(eirjr) = Tr(ei ( _Zl aijei)) = Tr(Y aa,, eir5) = ajev.
ij= J

Hence Q4 = (¢(eji)i;) and (1) then holds. Since ¢ is *-preserving we have

a;j = ¢(eji) = ¢(ei;) = @j; showing that Qg is symmetric. Let U*DU be

its diagonalization. Applying (1) to elements of the form U%e;U yields,

0<o(UreuU) = Tr(U*ey;UU*DU) = Tr(Ueyy; DU*) = Tr(ey; D), which shows

that D has positive entries on its diagonal, showing that Q4 = U* DU is positive.

In summary, the map (A*)* —» A", ¢ —» Q4 is an injective, order-
preserving isomorphism. Any map of the form Tr(-Q) with @ > 0 is positive
since Tr(B*BQY?Q'?) = Tr(Q?B*BQ'Y?) = Tr((BQY?)*BQ'?) > 0 for
B e M, (C). Hence the map is surjective.

We remark that the centralizer of ¢, i.e. the set
Zy = {a e A: ¢(ab) = ¢(ba) Vb € A} consists precisely of those elements
commuting with Q4. Indeed,

a€Zy <= Tr(abQy —baQy) =0 for all be A
< Tr(bQga—baQy) =0 for all be A
< Tr((Qsa - aQs)" (Qpa - aQy)) = 0
= Q¢a - aQ¢ =0

@aEQ;}.

Here we have used the Cauchy-Schwarz inequality applied to the sesquilinear
form (z,y) » Tr(y*x) to get the the third equivalence, and the faithfulness of
Tr(-) to get the fourth.

We furthermore note that a state ¢ is pure if and only if @4 is a one rank
projection. Indeed, all pure states on a K (H) algebra are of the form (-h, h)
for a unit vector h € H. If p is the orthogonal projection onto Span{h}, then
(-h,h) = Tr(-p) since we can compute the trace along an orthonormal basis
containing h. Hence Q. 5) = p-

We are now ready to define relative entropy of two states.

Definition 3.2.1 (|NSO6|[pp. 15, Definition 2.11}). For positive linear function-
als ¢ and 1, the relative entropy of ¢ and v is

Tr(Qy(log Qg —log Qy)), if ¢ < A for some A >0

+00 otherwise

5((;5711)):{
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The condition that ¢ < A for some X\ > 0 is equivalent to supp ¢ < supp .

Here supp ¢ denotes the smallest projection, p for which ¢(p) = ¢(1).

The quantity Tr(Qg(log Q4 —log Q,)) looks scary, but there are cases where
it is easier to deal with. For example, suppose the two density matrices
are simultaneously diagonalizable, i.e. there exists a unitary U € A and
diagonal matrices D and D’ such that Qg = U*DU and Q, = U*D'U. For
any f € C(spec(Qy)) and automorphism o on A we have f(a(a)) = a(f(a))
(this is true when f is a polynomial and then by continuity for all f). Hence
log(U*DU) = U*(log D)U so,

5(¢,9) = Tr(Qy(log Qp ~log Qy))
=Tr(U*DU (log(U*DU)-1og(U*DU))) = Tr(U* DU (U log DU-U* log D'U))
=Tr(D(log D ~log D")) = 37 Ai(log A; - log 11;),

where the A\;’s and p;’s are the eigenvalues of Q) and @y, respectively.

We now list some basic properties of relative entropy. Recall that a linear

map « : B — A of C*-algebras is a Schwarz map if a(b*d) > a(b)*«(b) for b € B.

Theorem 3.2.2 ([NS06|[pp. 16, Theorem 2.1.2]). We have:
(i) S(p,v) >0 for states ¢ and ¢ with equality if and only if ¢ = ).
(ii) S(¢,v) is decreasing in 1.

(iii) (¢,¢) = S(¢, %) is lower semicontinuous and continuous on the closed

sets of the form {(¢,0) : p < X} for A > 0.
(iv) (¢,v) ~ S(¢,) is a convex function.
(v) if a: B - A is a unital Schwarz map, then

S(poa,ipoa)<S(e,y).

(vi) if ¢ and ¥ are states on A, B is a C*-subalgebra of A, and E: A - B is
a a P-preserving conditional expectation, i.e. ¥ =1 o E, then

S(Qs,w) :S(¢\va|B)+S(¢7¢OE)‘

(vii) For any decomposition ¢ = i @i we have Y, S(pi, ) = s(,0)+3 S(hi, @).
i=1 i i

Proof.

(i) Elementary calculus tells us that logt <t -1 with equality if and only if
t = 1. Replacing ¢ by % we obtain that, for x,y > 0,

z(logx —logy) >x -y (3.1)

with equality if and only if x = y. Now, Q4 and @ are diagonalizable
so we can decompose them as Qg = 3> \ip; and Qy = X pjq; for mutually
i i
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(i)

(iii)
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orthogonal projections pq,...,p,, and mutually orthogonal projections

Q1s---5¢n. Using [Equation (3.1)l and assuming that S(¢,¢) # oo, we

obtain,
S(o,v0) = Z Ai(log A; = log 15) Tr(pig;) > Z(Al = p5) Tr(pig;) =0
7,7 2,

Here, equality occurs if and only if A; = j1; for each 7 and j. In this case,
Qo =2 (X Aipi)gj = 2. (D2 13 a;)pi = Qus
J 7 7 i

ie. ¢ =1.

log is an operator monotone function, so for 11 <12 we have Qy, < Qy,
and then log Q4 < Qy. Hence S(¢, 1) > S(¢,12). Since n isn’t operator
monotone S(+,-) is not increasing in the first argument.

We only prove semicontinuity so assume ¢,, - ¢ and v,, - ¥. Whenever

® is faithful, we have, by the remark preceding [Definition 3.2.1}
S(¢,¢) = Tr(Qu(log Qy ~log Qy))) = = Tr(n(Qs)) - ¢(log Qy).-
Similarly ,, will be faithful for sufficiently large n and
S(fn,hn) = =Tr(n(Qy,)) - pn(log Qy,, )

so we obtain S(¢n,¥n) = S(¢, ).
Even if we drop the assumption that ¢ is faithful, S(-,) is decreasing in
the second argument so for € > 0,

S(¢n,¥bn) 2 S(¢n, ¥n +€Tr)

Taking lim inf on both sides and using what we proved in the faithful case
we get,

lim inf S(dn, ¥n) 2 S(¢, ¢ + €Tr) = = Tr(n(Qp)) - ¢(log(Qy + €1)) (3.2)

We claim that —Tr(n(Qe)) — ¢(log(Qy + €1)) converges to S(,1) as
€ > 0. If supp ¢ < supp ) this is obvious. If supp ¢ £ supp ¥ note that the
spectral projection Xy (Qy + €l) is the projection onto ker Q4. Hence
X1 (Qy +€l) =1 -suppty. We then have

-Tr(n(Qs)) — ¢(log(Qy +€1)) > —p(loge X( (Qy +€l))
= ~loge ¢(1 —suppy) — oo.
This shows that also in this case we have

~Tr(n(Qg)) — ¢(log(Qy + 1)) — S(¢,1).

Combining this with we get liminf Sy, ¥n) > S(¢,v),

establishing that the relative entropy is lower semicontinuous.

{eql00}




3.2. State entropy

(iv) We omit the proof.

(v) We omit the proof.

(vi) We omit the proof.

(vii) We omit the proof.
]

One might wonder why we have restricted ourselves to finite dimensional
C*-algebras. After all there are infinite dimensional C*-algebras having a

unique trace, for instance the hyperfinite type I1; factor, which we denote by N.

Denote this trace on N by tr. It is ultraweakly continuous. Note that, unlike
the standard trace of B(H), this is just a functional and does not attain the
value oo. In fact, if we have states ¢ and 1 on N which are of the form,

¢ =tr(- Q) and ¢(a) = tr(- Qy)

for operators Qg,Qy € N, we could proceed as before and define the

the relative entropy of ¢ and ¢ to be the quantity tr(Qe(log@ys —log Qy)).

Evidently states that are of this form are ultraweakly continuous, i.e. they are
in the predual of N, denoted N,. A problem is that not all states on N lie in
N, so defining entropy in this way cannot possibly be done for any pair of states.

Indeed, since N is a von Neumann alegebra it contains a non-trivial projection
pa. Since N is infinite dimensional either paNps or (1 — pa)N(1 - p2) has
dimension greater than 1. Suppose without loss of generality that
dim((1-p2)N(1-p2)) > 2. Then it contains a non-trivial projection ps satisfying
p3 <1 —po. Containing this procedure we get mutually orthogonal projections
DPn, 1> 2. Setting p; =1 -3 p, we then have a unital embedding

n

KW(N) 3 (xn)n = anpn eN.

But there are non-normal states on £°°, for example
(an +iby)y = limsupa, + ilimsupb,,, and under the embedding above these

n n
extend to non-normal states on IV also. This argument of course applies to any
infinite dimensional von Neumann algebra.

Definition 3.2.3 ([NS06][pp. 21, Definition 2.2.1]). The von Neumann entropy
of a positive linear functional ¢ on a finite dimensional C*-algebra is

5(¢) = Tr(n(Qs)) = =S(¢, Tr)

Note that S(¢) can be computed in terms of Q4’s eigenvalues; letting
Qe =U*DU be its diagonalization we have,

5(¢) = Tr(n(U"DU)) = Te(U n(D)U) = Tr(n(D)) = in(/\i) (3-3)

Here the A;’s are the eigenvalues of () counted with multiplicity. Von
Neumann entropy is then a natural generalization of classical entropy; in the
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case where A ~ C" ~C({1,...,n}) and u is a measure on {1,...,n} the classical
entropy of the partition consisting of singletons coincides with S(p) in the

k
definition above. If a finite dimensional C*-algebra is isomorphic to @ M, (C)
i=1

k

we define rank A := Y n;. One can show that rank A is the dimension of any
i=1

maximal abelian subalgebra of A. We have the following basic properties of

von Neumann entropy.

thm: vnent ropy ‘ Theorem 3.2.4 ([NSO06|[pp. 21, Theorem 2.2.2)).

(i) 0< S(¢) <log(rank A) for any state b and S(¢) =0 if and only if ¢ is
pure, whereas S(¢) =log(rank A) if and only if ¢ is the normalized trace.

(ii) ¢~ S(@) is continuous, concave and we have
S(p+1) <5() +S(W).

(iii) For any conver combination ¢ = Y.; \;¢; of states, with A\; # 0 for all i, we
have,

with equality if and only if all the ¢;’s are pure.

(iv) For states ¢ on A, and ¢ on B, we have,
S(¢®v) =S5() +S(¥).
(v) if ¢ is a positive linear functional on A® B® C, then
S(¢) +S(d5) < S(daen) + S(d|Bec)-
(vi) if ¢ is a state on A® B, then
1S(¢) = S(d1B) < S(P1a)-

(vii) if B is a maximal abelian subalgebra of A, then S(¢p) > S(¢), with
equality if and only if B is in the centralizer, Zy, of ¢.

To prove this theorem we require the following lemma. Recall that for
integers n and m we have M,,(C) ® M,,(C) ~ M,,,,(C) where the isomorphism
is given by

allB alZB N alnB
M, (C)® M,,(C)> A® B “2}3 onB ... “Z?B € Mym(C).
aniB ansB ... apnB

We note that under this isomorphism one has Trjys, (c) ® Trjas,, ¢y = Trjas,.,.. (0)-
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| Lemma 3.2.5 ([NS06][pp. 22, Lemma 2.2.3]).

(i) if ¢ is a pure state on the algebra M, (C) ® M,,(C) ~ My, (C), then
S(Par,(c)) = S(Dp,(c))-

(ii) Every state on M,(C)® 1 c M, (C) ® M, (C) extends to a pure state on
M, (C) ® M,(C).

Proof. We will denote Tr|yy, . (c) as Trpm and Trjay, ¢y and Trjag, ¢y as Try,
and Tr, respectively. Since ¢ is pure it is of the form (-h,h) for some unit
vector h e C" @ C™. Write h = }; ;A je; ® e; . Then it is easy to verify that,

Qo= Y. XijAueir ®c¢ji.
1,5,k,1

We now claim that the density matrices of ¢, (c)y and ¢, (c) are
(id®Tr,, )(Qg) and (Tr, ®id)(Qg). To verify the former, write Q4 = Y., A, ®B,
and note that for A € M, (C) we have

Tr, (i T, ) (Q4) A) = Tro (i@ Tr, ) (Y A, © B,)A)
= Tr, (X T (B)A)A) = Y T (A, A) Tr,o (B,) = i(m ©Tr,)((AA,)0B)
= Trn(Qu(A®1)) = p(Ae ).
If we define the n x m matrix T'= ¥; - Ajje;; we can check that
(id® Tt ) (Qy) = TT*

and similarly (Tr, ®id)(Qy) = (T*T)" where (T*T)" is the transpose of
T*T. Now, the nonzero eigenvalues of TT* and (T*T)" are the same so by

we have S(¢|Mn((c)) = S(¢|Mm((c))- Hence (1) is proved.

We first show (ii) in the case where Q4 € M,,(C) is a diagonal matrix. The
trace of @y is 1 since it is a rank one projection so if we write Qg = X Nieii,
then >; A\; = 1. Consider then the operator

P =Y 2"\ e; @ ey € M, (C) @ M, (C).

,J
We have P*P = P and,

Tenm (P) = Y A2 Ty, (e4) Tra (e4) = Y A = 1.
i,] 7

P is therefore a rank one projection and the state associated to P, say
¢ € (M,(C) ® M,(C))*, is pure. Furthermore Q4 = (id® Tr,,)(P) so writing
P=%,A, ®B, with A, € M,,(C) and B, € M,,(C) reveals that for A € M,,(C),

a(A(X; 1) = (Trn®Trn)(P(A® 1)) = (Trn®Trn)((ZAr ®Br)(A® 1))
= (e ®Trn) (A, A ® By) = 3 Tr (A, A) Te (B) = Trn (3 Tro(B,) A, A)
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= Tr, (i@ Tr, )(Y A, ® By)A) = Tr,, (i ® Tr,, ) (P) ® A)) = 6(A)

Hence ¢ is a pure state extending ¢.

In the general case, let Qy = U*DU be Q4’s diagonalization. Let ¢ be the
state corresponding to D. By the above ¢ has an extension ¢ which is pure.
Define the state ¢ := (U* ® U*)y(-)(U ® U). It is pure since pure states are
stable under unitary conjugation and it extends ¢.

Proof of [Theorem 323

(i)

(i)

(iii)

42

By [Equation (3.1)|and [Proposition 2.3.2(i) we see that

0 < S(¢) < log(rank A) with S(¢) = 0 if and only if n()\;) = 0 for each
eigenvalue \; of Q,. This is to say that for each eigenvalue \; of Q4
we have either \; = 0 or \; = 1. ¢ is a state so on the other hand
DX =Tr(Qg) = ¢(1) = 1. So we are forced to conclude that \; = 1 for

one particular ¢ and that the other eigenvalues are 0. Then ¢ = (-h, h) for
a unit vector h, i.e. ¢ is pure.

By and [Proposition 2.3.2(ii) we have S(¢) =log(rank A) if and only
if \; = 1/(rank A) for each i. The diagonalizing, we have Qg = U*——-U
for some unitary U. Then Q4 = ﬁ] , i.e. ¢ is the canonical normalized
trace.

Since S(¢) = -S(¢,Tr) von Neumann entropy is concave by
rem 3.2.2(iv). By |Theorem 3.2.2(iii), —S(¢,Tr) is also known to be

continuous on the sets {¢ : ¢ < ATr}, but the union of these sets over
all A >0 is the set of all positive linear functionals so S(¢) is continuous
everywhere. The inequality in (ii) follows from the operator monotonicity
of log:

S(¢+v) <=¢(log(Qp + Qy)) — ¥ (log(Qy + Qy))

<-¢(log Qp) —P(log Qy) = S(¢) + S(¥).
Note that,
2 AiS(¢id) = 35 Xidi(log Q, —log Q)
=- Z/\is(@) - (Z Ai¢i)(logQg) = — ZMS(%) - ¢(logQy)
=S5(¢) - Z)\is(¢i) <S(9)

This is an equality if and only if S(¢;) = 0 for all ¢, which, by (i), is to
say that each ¢; is pure.

For a € A and b € B we have

Tr((Qp ® Qy)(a®b)) = Tra(Qpa) Trp(Qub) = (¢ @) (a ®b).

This simple computation reveals that Qgey = Q¢ ® Q. Let Qg = U*D U
and Qy = V*DyV be diagonalizations. For diagonal matrices functional
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(vi)

calculus reduces to applying functions to the diagonal entries. Hence, for
diagonal D and D’ we have log(DD') =log(D) + log(D’"). Therefore,

S(¢®¢) = TI‘((D1®D2) IOg(D1®D2)) = TI'((D1®D2) lOg((D1®1)(1®D2)))

=Tr((D1 ® D2)(log(D1 ® 1) +log(1® D2)))
= (Tra®Trp)((D1 ® D2)(log(D1) ® 1+ 1@log(D2))) = S(¢) + S().

To prove the inequality, note that
S(d1ae8) = 5(9B) = ~AlaeB(10g Q4 1s) + OB (log Qp s )

= 145108 Qg 1es) + Plaen(log(1a ® Qg ;)
= ~Plaep(10g Qp e, —108(14® Qg ;) = =S(Plagn; Tra®P|5).

Similarly,

S(¢) - S(¢Bec) = —S(¢, Tra ®PBec)-

Now S(¢,Tra®dpec) 2 S(daen, Tra®pp) so applying
v) to the inclusion mapping A® B— A® B® C gives (v).

Viewing ¢ as state on A® C® B (v) yields S(¢) + S(¢c) < S(dasc) +
S(¢con), ie.
5(¢) <5(¢a) +S(dyB)-

To establish (iv), we have then to show
S(¢B) <5(¢) +5(d1a) (3-4)
We first prove [Equation (3.4)| this in the case A ~ M,,(C) and B ~ M,,(C).

Let C'= A® B. By |[Lemma 3.2.5(ii) we may extend ¢ to a pure state, say
pon A B®C. i) then implies that S(¢pec = 5(¢j4)) s0
if we apply (v) to ¢ we get:

S(@) +S(¢5) < S(Paep) +5(da)

But ¢ is pure so S(¢) = 0 and the other terms can be rewritten in terms
of ¢. We get,
S(¢1p) < S(¢) +5(da).

So [Equation (3.4)|holds. To verify for general A and B,
k

consider the decomposition of A into matrix algebras, say @ M,,(C).
i=1

Put n =rank A and m = rank B. Then the embedding,

A0 ... 0

0 A :
AsAiedre.. . 0AL~]| . o |€Mn(C) (3.5)

0 ... 0 A

is a trace preserving embedding Similarly we have trace preserving
embeddings B - M,,(C) and A® B - M,(C) ® M,,(C). Extend ¢
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to a state ¢ on M, (C) ® M,,(C). If we write Qps=Q10Q20...0Qk,

then Q(Z;\M”(C) will be of the form

Q 7 ... 7
7 Qo :
: : ?
v O

It follows that S(Pjar, (c)) = S(Pja). Similarly S(p,,(c)) = S(d5) and
S(¢) = S(¢) so follows from the full matrix algebra case.

(vii) Since B is maximal abelian we have Tra g = Trp. Since Tr, is faithful,
tracial state, a general result that holds even for von Neumann algebras
tells us there exists a Tr 4 preserving conditional expectation Fg: A - B.
We have Qpop, = Qg 5, because for a € A:

TI"A(G,Q@B )= TrA(EB(aQ¢|B )

=Tra(Ep(a)Qq¢ ;) = Trp(Ep(a)Qy )
= ¢p(Ep(a)) = (po Ep)(a).

Hence,
S(d1p) = 5(¢) = ¢(log Qp —log Qg ,) = S(¢, ¢ 0 Ep) > 0. (3.6)
The last inequality holds by i) since ¢ and ¢ o Ep are both

states, since Ep is unital. Hence S(¢g) > S(¢). Suppose now B c Zy.
Since Zy = Q;ﬁ we see then that all elements in B commute with Qg, but
B is maximal abelian so then Q4 € B. It then follows that Qg , = Qg, so

patently S(Qg ) = S(¢). Conversely, if S(Qg,) = S(#) [Equation (3.6
reveals that S(¢,¢ o Eg) =0. Since Ep is unital both ¢ and ¢ o Ep are
states so [Theorem 3.2.2(i) we get ¢ = ¢ o Ep 50 Qp = Qgpory = Qg € B.

Since B is abelian we then have B c be =Zg.

3.3 Mutual entropy of channels

We will now make use of relative entropy S(:,-) to define entropy in a non-
commutative setting. More precisely given a C*-algebra, A, we want to define
the entropy of a group action G - Aut(A) with respect to a state, ¢ € A*.

Note that this subsumes the classical case:

Given a classical group action o : G - X we can define a corresponding
action on B: G — Aut(C(X)) by By4(f) = foa™t. Conversely, given a group ac-
tion 8 : G - C(X) each automorphism f, is necessarily of the form f~ fo a;l
for some homomorphism a, on X. Hence there is a one to one correspondence
between group actions on X and C'(X). We remark that every automorphism
on L= (X, 1) too is induced by a group action on (X, 1), but this is not so easy
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to show.

Before defining entropy in a non-commutative we want to define a quantity

that generalizes the quantity H,,(Pi,Ps, ..., Pn) where Py, ..., P, are partitions.

It is reasonable that the state ¢ will replace the role of u. One might conjecture
that finite dimensional C*-subalgebras should play the role of partitions in
the new setting. After all, any partition P of a probability space (X, u) is in
natural correspondence to the subalgebra of L=(X,u) of functions that are
constant on members of P. Since any von Neumann subalgebra of L= (X, 1) is
generated by its projections, any finite dimensional subalgebra will be of this
form for some partition P. However, it turns out that in a non-commutative
C*-algebras we can have too few finite dimensional subalgebras so the theory
will have to be based on something else. We will instead use unital completely
positive maps « from finite dimensional C*-algebras into A. We give them the
following name:

Definition 3.3.1 ([NS06|[pp. 34]). A channel of a C*-algebra A is a completely
positive unital map B - A where B is some finite dimensional C*-algebra.

We are now ready to give an analogue of H,(P1,Pa,...,Py):

Definition 3.3.2 ([NS06|[pp. 34, Definition 3.1.1]). Let A be a unital C*-algebra,

¢ a state on A, and v : Ap > A, 1 <k < n, a collection of channels. Given finite

index sets I3, Is, ..., I, and a decomposition ¢ = > Dirsizonnrin)
(11,82, 0yin )€l XX Ty,

we define the quantity

Hi oo {binin = Y 0(di,in (1)) 43 3 S0 o dom).
Q1yeenyin E igely
(3.7)

Here ¢§f) is the sum of all the ¢;, .. ;, where the £’th index equals 7;,. The
supremum of the quantities H (71, ..., Yn; {¢i,.....i, }) of all state decompositions
i1,...,1, corresponding to so some finite index sets Iy,...,I,, n € N, is the
mutual entropy of the channels 7, ...,7v, with respect to ¢. We denote it by

Hy(v1s- -5 7%)-

Note that in the above definition we work with ordered decompositions of
the form ¢ = Z G(in is,...in)- In [Equation (3.7)| we see that the
(i1,02,.. 0 )el1x . x Ty

k’th index set, I, is associated to the k’th channel, v;. Using that

S, 0) = AS(, @) = (1)n(N)
we can rewriteas

Hy,eosmi{ @i, i }) = (3.8)

PICEROIED WD I CRICOIED VDI RICOE TR TRLE
DY yeeey in k ipely k ipely

(3.9)
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Here 1[) denotes 1(1)7'¢.  We can also rewrite the double sum in

to get

H('Yla--~7”)/n§{¢i1,...,in}) = (3.10)
P CIRREIENIDILCRINEI DN ACEICAIICED

In the case where channels 7y, : Ay = A, 1 <k <n are just inclusions of finite
dimensional subalgebras of A we will denote Hy(7V1,...,7n) by Hgp(A1,. .., Ay).

Observe that the first sum in [Equation (3.7)| bears resemblance to the

classical case. We will thus call this the classical term. Consider now the case of
just one channel v: B — A. Then Hy(7) is just the supremum of the quantities

(1) + X 5(d 07, 607) (3.12)

for all possible state decompositions ¢ = 3, ¢;. One can show that the second
sum in [Equation (3.12)|is 0 if and only if the Q,o4, matrices are orthogonal.
Thus we can think of the second sum as compensating for a lack of orthogonality.

There is a natural way in which the decomposition of a state ¢ arises. Namely,
suppose C' is a finite dimensional C*-algebra and C4,...C,, c C are unital
subalgebras. If u is a state on C' and P a unital positive map A — C such that
¢ = po P, we call the quadruple (C, {C%}}_;, i, P) an abelian model for (4, ¢).

Now, each C, being finite dimensional and abelian, has a unique collection
of mutually orthogonal, minimal projections, say {pff) 24 € I} for some index

set I. This gives a natural decomposition ¢ = _ iy is... in, Where

11,

Birin.sin = (P ()Pir Diy - - Di,) (3.13)

One can check that then

Hts o0 {bir i 1) = S(pnc) + 25 0 S((P o) Opd?), 6 07m),

k ipely

7ZTL

(3.14)

for any channels v : Ay - A, 1 < k < n. We denote this quantity by
H(C,,LL, {Ck}2=1vp)

Conversely, note that any decomposition ¢ = 3 ¢;, arises from an

1,1,,..'L-n
abelian model for (A, ¢). Indeed, let C = C(I; x Is x ... x I,,) and Cy be the
algebra of functions only depending on the kth variable. Explicitly,

11111 in

Cr ={f €C: fis constant on the sets I1x... Iy x{i}xTpp1x... I, for iy € It }.

Products of the form p;, pi, ...p;, then span C and we define
1(Piy Pis - - Pin) = Bir,i (1)
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Similarly define P: A - C' by

Giy, ... in (a) B Pir,.in (a)

P(a)(it, i) =3 Giy,in (1) w(piy i - - i)
0 otherwise.

if ¢4y, (1) 20,

Then P is unital and positive and |[Equation (3.13)|is satisfied so the abelian
model gives rise to the decomposition we started with.

The following is an elementary result about abelian models.

lem: Lemma 3.3.3 ([NS06|[pp. 36, Lemma 3.1.2]). Given channels vy, : A — A,
abelianmodels 1 < k <n the mutual entropy Hy (1,72, ---,7n) is the supremum of the entropies

H,(Pov,Po~s,...,Pony,) where P ranges over all unital completely positive
maps P : A - C where C is abelian, and over all states p on C satisfying

pwoP=a.

Our main reason for introducing abelian models is that they make some
proofs significantly easier. For example in the proposition below.

prop: Proposition 3.3.4 ([NS06|[pp. 37, Proposition 3.1.3]). For a collection of chan-
mutualentropy nels v, : Ap = A, 1 <k <n, we have the following:

(i) If By are finite dimensional C*-algebras and 0y : By, — Ay, are unital c.p.
maps, 1 <k <n, then

Hy(yi061,.-7m) < Hp(y1,---,7m),
(ii) if 0: A — B is a unital c.p. map and ¢ a state on B, then
Hy(0o1,..,009m) < Hyoo (71, 7n),
Equality holds if 6 is an isomorphism of C*-algebras.
(iii) if k<n, then Hy(7v1,-- -, 7) < Hp(14- -+ Yn)

H(;S(’Yl’ s 7'777,) < H¢(ryl’ tee 7’W€) +H¢(7k+17 tee 7'771)7

(iv) Hy(m,---,vn) depends only on the set {y1,...,Yn}-
Proof.

(i) This amounts to showing that fpr a decomposition ¢ = ¥ ¢y, ., we
ilvnwin

have
S(Q¢ovk09k ) quil‘...‘ino’)’k,oek) < S(Q¢ ° Yk, Q¢i1‘...‘7‘,no’yk, )

But this follows from applying [Theorem 3.2.2{(v) to the Schwarz map 6.

(ii) Any decomposition ¢ = ¥ ;. gives rise to the decomposition
U1,eensln

Yo=Y .., o0. By definition
Lomin

7

Hy(@oyi,....0 09 {bir,..in}) = Hypoo (Y1, - -, Wi {0ir,...in 0 0}),
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lem:
subalgentropy

lem:
commutingsubalgs

so the inequality follows. If # is an isomorphism then #~! is unital and
completely positive so applying what we just proved yields

H¢°9(’71a <o Inj {d)ll ----- in 00}) = H¢°9(071 090713 .- '7071 ogo’yn)
SHwogog—l(eo’yl,...,oo’yn)
which is what we need.

(iii) The equality Hg(v1,...,7k) < Hg(y,...,7vn) follows from the fact

that any decomposition ¢ = Y ¢, .. can be considered as a
U1seenslk

decomposition ¢ = ¥ @44, With Ip.q,..., I, singletons. Then

n

01 yeenrin
Hy(00vi,...,0 0 v {dir,.in}) = Hyoo (V13- Yni {®ir,....i }), sO the
inequality follows.

To show the the other inequality, let (C,u,{C;}}_;, P) be an abelian
model for (A, ¢, {;}1-y).

Then patently (C,pu, {C’k}?:l,P) and (C,u,{Ck}} 4,1, P) are abelian
models for (A, ¢, {7;}%,) and (A, ¢, {3} 41)- Let {p) : iy € I}

be the atoms of C. By we have then only to show that
S(,u|\,;z:1) <S () +S(M\v;=k+1) but this is just |Pr0position 2.3.2| applied

to the probability space {1,...,n}.

(iv) To show this we need only show that Hy(v1,...,7n) = Hy(o(71),...,0(7))
for any permutation ¢ on {1,...,n}, and show that Hy(v1,...,7s) =
Hy(v1,...,7n). The first part is obvious and we omit the proof of the
second part.

Lemma 3.3.5 (|[NSO6][pp. 39, Lemma 3.1.5]). If the images of channels v :
Ap = A, 1 <k <n, are contained in a unital C*-subalgebra B c A, and there
exists a ¢-preserving conditional expectation E: A — B, then

H¢|B('Yl, cee a’YTL) = Hd)(')/]_, .. a,YTL)

Proof. Given a decomposition ¢ = > Giy,..4, we clearly have
i1, in

Q¢°"/k7Q¢i1,...in°’Yk € B 50 H¢(717 <oy s {(bil,.uin}) = H¢(’yl7 <o Yns {¢i1,...in|B})'

Given a decomposition ¢ = _ Z' Vi, .4, We can compose both sides with E to

114...lm

get a state decomposition of ¢. E is the identity on B so restricting this state
decomposition to B we get Y. @;,.. i, . This completes the proof. [

11 n

Lemma 3.3.6 ([NS06][pp. 39, Proposition 3.1.6]). Let Ay,...,4, ¢ B c A.
Suppose there exists mutually commuting abelian subalgebras Cy, c Ay, 1 <k < n,
such that vi.Cy is mazimal abelian in the centralizer of ¢\p. If there also exists
a ¢-preserving conditional expectation E: A — B, then

H¢(A11 .- 7An) = H¢(B) = S(¢|B)
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prop:
channelproperties

Proof. There exists a ¢-preserving conditional expectation F': B - C := v Cl.
Then (C, ¢c, {Ci }r, F o E) is an abelian model for (A, ¢, {C}y}). But F o E is
the identity on C c C' so the entropy of this model is the same as the entropy of

the model (C, ¢c, {Ci }x,id|c) for (C, ¢, {Cr}x) and this is of course S(¢jc).
By [Theorem 8.2.1{vil) this again equals S(65). So

On the other hand, [Proposition 3.3.4(i) applies to the inclusion maps yields

H¢(Cl, R Cn) < H¢(A1, RN An) < H¢(®kAk, RN ®kAk) < H¢(®kAk)
<Hy(B) <5(¢p)-
Then the above inequalities are in fact equalities. [ |

For a state ¢ on a C*-algebra A, let 7y : A > B(Hy) be its corresponding
GNS-representation with cyclic unit vector hg € Hy. It is natural to consider
the vector state (- hy, he) on ms(A)". It extends ¢ in the sense that ¢(a) =
(mp(a)hg, he) for a € A and we will denote it by ¢. It is natural to expect that
mutual entropy of ¢ and ¢ to be related. The proposition below tells us that
this, and that a plethora of other results hold. They will all be useful when
defining the entropy of an amenable group action «: G — Aut(A).

Proposition 3.3.7 ([NS06|[pp. 40, Proposition 3.1.7]).
(i)

Hy(y15- ) = Hg(mg 0 v1,..., Mg 0 1),
(ii) 4f ¢ is another state on A and 0 < A< 1, then
Hyge(1-xyp (Y15 -+ +57n)
2 AHg(15-50m) + (1= ) Hy (1, 59m) = (R =1 (n(A) + (1= A)),

(iii) if ¥ is a state on another C*-algebra B, 0 < A <1 and 0y : By — B,
1 <k <n are channels, then on A® B

Hygo1-2)¢(71 @ 01,..., 7, ®0,)
2 )\H¢(71a 7,)/11) + (1 _)‘)Hw(’YL a’yn) +77()\) +77(1 _A)7
(iv) under the assumptions of (iii),

H¢®di(71 ®017 <o T ®0TL) 2 H¢(71, .. af}/n) +H’¢1(017 c. 'aon)v

and equality holds if B is abelian and the 0y s are injective homomorphisms.

(v) For channels v : Ay ® By - A, 1<k <n,

H¢(717a7n) SH¢(’YI|A177P)/TL|A”) +2ZS(¢07]€‘B;¢)
k

Proof.
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(i)

50

For 1<k <n, let [vx] denote the channel v, composed with the quotient
map A - A/ker ¢. Similarly let [¢] denotes the state ¢ induces on A/ ker ¢.
It is obvious that Hg(v1,...,7) = Hg)([11],- .., [7a]). Letting [74] be
the map 74 induces on A/ker ¢, we see that [74]: A/ker¢ - B(Hy) is
an isomorphism onto its image. By [Proposition 3.3.4| (ii),

Hig (D)oo Pnd) = i potmpt ()5 [))

=Hg melelnl....Imelolm]l) = Hy (7 071,....mg 0 7m)

Now, from general theory any postive linear functional ¢ < d_)‘,r 5(A) I8

actually of the form (- ahg, ) for some a € my(A)". Thus any state

decomposition ¢|W¢(A) = X .4, extends to a state decomposition
U1 yeenyln

of ¢. Hence the above is just H$(7T¢ OVl ..y Tp O Yn)-

We omit the proof.

We omit the proof.

Decompositions ¢ = > Gir,...in, and P = > Vi, jn glve
i1€ly,..., in€l, Jied,..., In€Jn
rives to the decomposition
Py = > Piseryin @ Vi, jn

(i1,51)el1xJ1,eees(in s Jin Yeln x In

Properties of 1 and techniques we used in proving [Theorem 3.2.4] (iv)
show that

H¢®1/1(’71 ®91;~~~7’Yn®9n;{¢i1 ..... in ®wj1 ----- jn}(il,j1),-~7(imjn))

= H¢(’Yl7 s s {¢i1,...,in}i1,...,in) + Hw(elv ceey Qn; {Q/leguwjn}jly“wjn)
which completes the proof of the inequality.

Assume now that B is abelian and the ;s are injective homomorphisms.
Clearly we can assume By c B and that the 6;’s are inclusion maps.
Finite dimensional C*-algebras are of course v.n. algebras so by
tion 3.1.10| we have a conditional expectation B — v By.

By |Lemma 3.3.5| we may then assume that viBj = B. Let {p;}74
be the atoms of B, {X;}}_, the corresponding characters. For some
m € N we have A® B ~ A® C™ which can be identified with &7, A4
under the map a® (b1,...,b,) = (b1ra,...,bpa). Under this identification

p® 1 =@;1(p;)¢ and
Ye(a) ® 0k (b) = (X1 (b)vk(a), ..., Xm(b)vk(a))

Thus the channels v ® 0 factorize through the channel

EB;-":lvk : @jAk g @?zlA
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Hence, by part (iii) of this proposition, and [Proposition 3.3.4] (i) we have

Hygp(71®01,. ;79 ®0n) < He g ()0 (85715 -+, ®57n)

2V He(v1, -, 7m) + 2o 0(W(p5)

:H¢(fyl,...,’yn) +5(1/))

Now S(¢) = Hy(Bj, ..., B,) by [Lemma 3.3.6|so we are done.

(v) We omit the proof.
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prop:
uniformchannels

3. Dynamical Entropy

Since the definition of Hg(y1,...,7s) involves taking the suprema over all
possible state decompositions it is not obvious that it is continuous in the
n variables v1,...,7,. We will show that even more is true, namely a form
of uniform continuity. Before stating it we give a definition. Given channels
v,v" : B > A we define

v =7lls = sup
beB, ||b

R =) ((r =)

[I<

On the space of channels B — A, || - || is a seminorm.

Proposition 3.3.8 ([NS06][pp. 46, Proposition 3.1.11]). For every ¢ > 0 and
d > 1 there exists & > 0 such that for any C*-algebra A with a state ¢, n € N,
and channels i, vy, : A, = A such that dim Ay, <d and ||y — Y lle <0, 1<k <n,
we have

|Hy (Y1) = HOYL, 70| < ne.

Partly, what makes the above result nice are the universal quantifiers in
its conclusion: we get a d > 0 that works for all n € N and states ¢ on A. To
prove [Proposition 3.3.8| we have to take a detour and examine another way
in which decompositions of states arise. Namely, suppose that A is a state on
A® L*®(X,p) with the property that A4 = ¢ and Az (x ) = #. We will then
say that A is a coupling of (A4, ¢) with (X, u). Given n partitions of (X, u),
say P1, Pa,..., Pn, we then get a decomposition of ¢

¢: Z )\('® ]]-Zlﬂ...ﬁZn) (3.15)
Z1€P1,...Zn€Py

We shall call this the decomposition induced by the (A, P). Let us compute
the entropy of some channels 1, ..., with respect to this decomposition. We
obtain

H1s oY {Binin Yinsensin) (3.16)
=H,(ViPn)+ ), >, SOA(nw() @ 1z),¢0). (3.17)
k ZePy

Naturally, we denote this quantity by Hx(71,...,7n;P1,---,Pn). Using

we furthermore get

HA(fyl’,,_,’yn;Pl,,_,’Pn) :Hﬂ(vkpk)_ZHu(Pk) (318)
%
+;ZZP m(Z2)S((Z) AN () @ 12), 60 k) (3.19) |

Putting ¢z = u(Z) ' A\(- ® 17) we can rewrite this as

Hu<vk7>k>—;Hmw;(sww)— 5 u(zwwzovk)) (3.20) |

ZePy,

Equation (3.11)| now becomes
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Hx(v1,-- i Pro- - Pr) = Hy(ViePr) = Y Hy(Pr) + Y. Ha(vi; Pr) - (3.21)
% %

At this point we should remark that any decomposition of ¢ induced by
a decomposition of the coupling. Indeed, if ¢ = Gir,....in, SIMply let
-7in

11,

Xzflx...XIn ande:{IlX...Ik,lx{ik}XIkJrl...inZikEIk}.

There is a special class of couplings that warrant extra attention. These are
those where X = S(A), the state space of A, u is a regular probability measure
on X, and \: A® L*(X, 1) — C satisfies

Ma®g)= [ w(@g®) du() acAdgel™(Xp)  (3:22)

Note here that the integral is well defined because the for fixed a € A, the
mapping 1 — ¥(a) is continuous and bounded, and g¢(-) is measurable and

essentially bounded on X by definition. If a coupling A satisfies |[Equation (3.22)
we say that it is canonical.

We have already seen that couplings are enough to estimate the quantity
Hy(71,..-,7n)- It turns out that even canonical couplings are sufficient for this
and that this estimation is "nice" in a precise sense:

Given a coupling A of (A, ¢) with (Y,u) and a partition P of Y, put
X =5(A) and consider a map f:Y — X that maps the set Z € P to the state
¢z =p(Z)'A(-,1z). Define the pushback measure i/ on X by p/(-) = u(f7(-)).
Note that this is supported on a finite set. Define A’ = Ao (idy ® f*) where
freLe(X, 1) - L®(Y, 1) is the map induced by f. We shall check that \ is
a canonical coupling of (A, ¢). That )\"A = ¢ and )‘|,L°°(X,u’) = is obvious. '

is a finitely supported measure so it suffices to verify [Equation (3.22)|on its
atoms, i.e. for g =1y, for Z e P. Then the LHS of [Equation (3.22)|is

X (@® 62) = Ma® (Lo, 0 1) = Ma® 17)
On the other hand, the RHS is

[ @y A (@) = 62()i'(62) = m(Z) Ma® 12)u(2) = Na® 12)

So indeed X is a canonical. Moreover, it is easy to see that for a Borel
partition C of X = S(A), the decompositions of ¢ induced by (), f~1(C)) and
(\',C) are the same. In particular, when f~1(C) = P, i.e. when each member
of C contains at most one element of the image of f, then

Hx(v;P) = Hx(7;C)

However, we need not have f~1(C) = P in order for Hy/(7;C) to be close to
Hy(v;P). It turns out that they are close as long as C is sufficiently fine, even
if members of C contain multiple elements of f(Y):
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Lemma 3.3.9 (|NSO06|[pp. 44, Lemma 3.1.9]). Let all notation and variables be

elas above. For § > 0 be such that for states 1,12 on B, |1 — ol < § —

|S(¢1) = S(2)| < e. If C is a partition of S(A) such that ||[¢p1 0y —pao~| <6
whenever ¢1 and ¢o are in the same member of C, then |Hx(v; P)-Hx (v;C)| < e.

Proof. By construction of f it is clear that f~*(C) < P. Now, for W € C set
Vi = (W) (- ® 1y). We have

Y=gV Y ACelw) - w2)

T P2
ZeP:Zc f~1 (W) ZeP:Zcf-1(W) p(f~H W)

Now, fixing a Z’ € P with Z’ ¢ f71(W) then for any other Z € P with
Z c f~Y(W) the definition of f implies that ¢z, ¢z € W. Then, by assumption,
(67 — ¢dz) 09|l < 6. By the above equation, 1y, is a convex combination of
such ¢z’s so it follows that for any Z" e f~1(W), ||(¥}y — ¢z) ov|| < 5. Hence

1S 07) = S(dz o)l <e.
is simple in the case of one channel and reveals that

S(¢oy) ~HA(7:C) = 35 W (W)S(Wiy o) = 37 u(f~ (W))S (% o).

WeC WeC

Similarly
S(qﬁov)—HA(v;P)=;M(Z)S(</>zo'y)= > > 1(Z2)S(¢z 7).

WeC ZeP:Zcf-1(W)
Convexity then yields |[Hx(v;P) - Hx(7;C)| <e. |

This lemma shows that to estimate Hy(v;C) up to e-accuracy we only need
to consider decompositions up to a certain size. More precisely, since the unit
ball of the state space of B is totally bounded it can be covered say by n. §
balls. So in could have chosen a partition C of cardinality n.
which of course corresponds to a decomposition of cardinality n.. So far, we
have only dealt with the case of one channel, but we need only modify the
techniques slightly to deal with the case of n channels:

Suppose A again is a coupling of (A,¢) with (Y,u) and Py,...,P, are
partitions of (Y,u). Set X = S(A) and let fr : Y - X map a set Z € Py to
the state u(Z)*A(-® 1z) € X. Then the map f = (f1,f2,..., fn): Y = X" is
measurable and we can define a measure, p'(+), on X" by p'(:) = u(f71()).
Then define a coupling A’ of (A, @) with (X™,u') by X' = A(ida ®f*). Then we
have an analogue of [Cemma 3.3.9] for n channels v, : Ay, > A. We omit the proof
because it is really just a more technical version of the proof of

Proposition 3.3.10 ([NSO06|[pp. 45, Lemma 3.1.10]). Let the notation and
variables be as in the paragraph above and let § > 0 be such that for states

1,109 on Ay, |1 —ba|| < 6 = |S(¢1) = S(Y2)| < €. If Cy,...,Cp are partitions
of X = S(A) such that ||¢1 o vk — ¢ 0 V|| < & whenever ¥y and s lie in the
same member of Cj., for 1 <k <n, then

Hy(v1,.y7;C1,y...Ch) SHA(WL...,’yn;pril(Cl),...,pr{l(Cn)) + ne.
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This enables us to prove [Proposition 3.3.8|

We are now ready to define the entropy of an non-commutative dynamical
systems.

3.4 Entropy of dynamical systems

Definition 3.4.1. Let G be a group and A a C*-algebra. We call a map
a: G - Aut(A) a group action if a4, o ay, = o4, for all g1, g2 € G. Given
a state ¢ on A satisfying ¢ oay = ¢, g € G, we call the triple (4,¢,a) a
C*-dynamical system. If in addition A is a von Neumann algebra and ¢ is
normal, we say that (4, ¢, «) is a W*-dynamical system.

From here on out we will assume that G is an amenable group and {F,}o
is a Fglner sequence of G. We will now combine our work on channels and

Theorem 2.1.6|to define the entropy of C*-dynamical systems.

Definition 3.4.2 ([NS06|[pp. 48, Definition 3.2.1]). Given a C*-dynamical sys-

tem (A, ¢, «) and a channel v: B - A we define

he(v;a) = lim !

o) = lim ——
NS n-o |F,

|5

Hy({agoy:geFp}).

The entropy of the system (A,¢,«) is now defined as the supremum of
he(7v; @) for all possible channels v and we denote it hg(a).

Note that the limit in [Definition 3.4.2] exists because the mapping
F Hy(ogoy:geF) defined on finite subsets of G is, by [Proposition 3.3.4] (ii)
and (iii) invariant under left multiplication by elements of G, and subadditive.

then implies that the above limit exists and is the same regardless
of the choice of Folner sequence {F},}2 ;.

Given a C*-dynamical system (A4, ¢, «) we get an induced W*-dynamical
system using the GNS representation 7y : A - B(H) associated to ¢. Namely,
let hg be the cyclic unit vector in the GNS- representation and for g € G define

Uy :ms(A)hg = 15(A)hg, Uy(mp(a)hy) = mg(ag(a))he.
The computation
7o (a)holl? = (7o (a)he, To(a)he) = (To(a*a)hy, hy = p(a*a) = p(ag(a*a))

= [Jmg (g (a))holl®)
reveals that the U, ; are well-defined surjecive isometries. Extend each U; to a

unitary U, on Hy. Put M = 714(A)” and let ¢ be the vector state extension
(- he,hg) of ¢ to M. g AdU, gives a group action on M which we will denote
by a@. We assert that

mgoag=AdUjomy, geG (3.23)
This follows from the simple computation
(mp(ag(a))ms(b)hg, mp(c)he) = d(cag(a)b)) = d(ag-1 (c)aay-1 (D))
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= (mp(a)mp(ag-1(b))he, Tg(ag-1(c))hg) = (my(a)Uyme(b)hg, Uymy(c)hy).

Similar computations yield that AdU, is ¢ invariant so (M, ¢, @) is a W*-
dynamical system.

If the system (A, ¢, ) we started with was a W*-dynamical system then
the image 7, (A) is already a von Neumann algebra (|BR12|[pp. 79, Theorem
2.4.24)).If ¢ is also faithful 7y is injective and by the system is
then G-equivariantly isomorphic to the W*-dynamical system where the state
is a vector state. So if the state is faithful, then in the W*-dynamical case, we
can assume the state is a vector state and the group action is given by unitary

conjugation. This point of view remains valid in the non-faithful case if we mod
out A by ker mg.

We now give some basic properties of dynamical entropy. Given an a-
invariant subalgebra B ¢ A we denote by «op the restricted group action
G — Aut(B),g+— g p-

Proposition 3.4.3 ([NS06|[pp. 48, Theorem 3.2.2]). Let (A,d,«) be a C*

oprelfi&mical system. Then

(i) If B: A - B is an isomorphism of C*-algebras, hgog-1(Boao™) = hy(a).
(i) With the notation as above, we have h(@) = hy(a).
(iii) for another C*-dynamical system (B,,3) and 0 <A <1,
haso(1-xyu(a ® B) = Ahg(a) + (1= A)he(B) and
hooy(a® ) < hg(a) + hy ().
1

iv) If the underlying group is abelian, define the action o' by ;' = a1,
g g
then hy(a™') = hy(a).

(v) if B is an a-invariant subalgebra of A and there exists a ¢-preserving
conditional expectation A — B, then hy,, () < hg(a).

(vi) If H c G is a subgroup of G of finite index [G : H], then the group action
o given by restriction to H, satisfies hy (o) < [G 2 H]hg(oyp).

Proof.

(i) This is easy.

(ii) [Proposition 3.3.7(i) implies that for a channel v: B - A we have

(7 07 @) = he(v; ). (3.24)

so we obtain hz(@) > he(a) immediately. To see why < holds, take a

channel v : B — 14 (A)" [Corollary 3.1.8|says that it can be approximated

by a channel 7' : B — m4(A4) in the pointwise strong operator topology.
But the equality

1(v=") (D) glIP = (=7 ) (B)* (=7 ) (B)hs, hg) = B((v= (b)) * (7= (b))
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(vi)

then tells us that 4" is close to 7 in the || - ||7-seminorm which by
|Pr0position 3.3.8| means that hg('y’;a) ~ hg('y;a). By |Corollary 3.1.8

~" can be written as my o 4" for some channel 4" into A. Applying

[Equation (3.24)|again finishes the proof.

This follows from |Proposition 3.3.7]

Let {F,,}n be a bi-Fglner sequence of G which we recall is a sequence that
is simultaneously left- and right-Folner. Then {F,'},, is also bi-Fglner:
the equality

SEYAFY=(Fos D) aF = (Fst o Fy)™?

shows that it is left-Folner and similarly it is right-Fglner. Finally, the
sequence {F,, u F;1},, is Fglner since

s(FoUEYY A (FyuF Y = (sF,usEY) o (F,uF;Y)
= (sF, A F,)u(sF,' a FY).

Hence, given a channel v: B — A, we can compute hg(a;y) along the
Folner sequence {F,, U F,;*}. But hy(agov:ge F, UF,') =hg(ag107:
g € F,, u F;}) which establishes the equality.

This follows from |Lemma 3.3.5

Use [Proposition 2.1.13[ to get a bi-Fglner sequence {H, }, of H such
that {H,F}, is a bi-Felner sequence for G, where F' denotes a set of
representatives of right cosets of H, that contains the identity e. Then
H, c H,F so for each channel 7 into A,

1 1
h¢(Oé|H;’Y) = chb(ag ov:geHy,)< mfﬂb(% oy:geHyF)

1
:[G:H]WH¢(agoyzgeHnF)

so we obtain the desired inequality.

[Proposition 3.3.8| enables us to show that our non-commutative definition of

entropy generalizes the classical definition. More precisely, we will show that
the classical entropy of an amenable group action «: G — (X, 1) coincides with
the operator-algebraic entropy of the induced group action §: G - L (X, u)
given by B4(f) =fo a;l with respect to the state p.

We begin by showing h,,(a) < h,(3), i.e. that the operator algebraic entropy
dominates the classical one. To that end, fix a partition P of (X, ) and a
positive integer n. By [Proposition 2.3.3| we have

HV sP) =supl 3 0(ulfon, i) - 3 S (0B p (FP)))}

seF), i1 in k=1 ip,
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n(f P 112)
=sup{ >, (u(fi,..i.)) - ZZM(??(Z”*

i1reyin k=1 ix ZeP (2)

s*lz))}

—spl Y a(u(fir i)+ S S u(fP 10 2) Qog u(fV112) ~log u(2))}
(3.25) |

1,0 yin k=1 i, ZeP

Here the supremum is taken over all ordered partitions of unity { firoersin }““

But note that each such ordered partition of unity gives rise to a state decompo-

sition p= Y w( fiy,...i,) on L=(X,pn). Letting v : L= (X/P) - L*(X, )
1 yeensin

be the natural inclusion we recognize [Equation (3.25) as H(v; F,). Di-

Viding both sides of [Equation (3.25)| by |F,| and taking limits yields

lim —H ( V s'P) < h,(B). Taking supremum over all partitions P we get

u(o‘) < hu(ﬁ)

The reverse inequality relies on some machinery that, thankfully, we have
already proven. Namely, let v : B - L*(X,u) be a channel and fix € > 0.
Since (X, 1), is a standard probability space there exists an increasing sequence
of finite partitions {P, }, such that their union generate the measurable sets
of X modulo null sets (for example, if (X, ) were the Cantor space {0, 1},
then P, ={{zr e X :ap =y, for k=1,...,n}:y €{0,1}"} would work). Then
Un L= (X/Py,) is strongly operator dense in L*(X, ). By [Proposition 3.1.7|
we can then approximate v by channels 4" : B — L= (X /P,,) in the pointwise
s.0.t. topology. In particular we can, for any b e B, get [y |[y(b) —+'(b)[* du as
small as desired. Use [Proposition 3.3.8to get a 6 > 0 such that for all n e N
and channels 7,7, : B — A satisfying [|yx — .||, < 0 for 1 <k <n, we have

|HM(71?7,YTL)_H(’Y:,[77’Y’:1)| <ne.

Since B is finite dimensional, we can now find a 7' : B - L*(X/P,,) such
that ||y —~'||, <d. B is p-preserving so clearly ||Bg0v—fB407'||, <0 forall g€ G.
For n € N we then get

H(Bg°77Fft)<H(/6g°7a )+ [Fule

In particular we have,

lim ——H,(v;F,) < hm

neo IF I n=o | nl

— H(Y;F,) +e (3.26)

Note that 404" is a channel B - L* (X /(gPy)) so trivially it factorizes through
the inclusion map 44 : L°(X/(gPy)) > L=(X, u), i.e. Bgoy =igz0B,07. By
[Proposition 3.3.4] (i),

Hu(ﬂgo'y';Fn)SHH(ig;gan) (3.27)

Computing the quantity H,(iy;g € F;,) is easy because any state decomposition
W= Y i, i, is of the form {u(- f;,,.. i)} for some partition of unity

11, in

{fir,..., 'Ln}zl . Hence

{eq13}

{eql4}
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Hu(ﬁg 07';9 € Fn) < Hu(ig;g € Fn)

NN T R 1535303 u(f 1 2) Qog (£ 141 2) -log u(2)) }

i1yemrin =1ty ZeP
By [Equation (3.25)| this is the same as H( \/ s *P). Hence we obtain
sel,

1
—H(\ s'P).
et |Fn| se\éz
Combining this with [Equation (3.26), this completes the proof that
h,(B) = h,(a). Using [Proposition 3.4.3(ii) "backwards" we see that the
action (80)g(f) = f oo, on C(X) satisfies hg, (1) = ho (i) also.

n—00

1
lim WHu(ﬁg 0759 €Fy,) < Jim
n

More precisely, treat p as a state on C'(X) and consider the Hilbert space
H,, and representation 7, in the u’s GNS-construction. H,, can be identified
with L?(X, u) and 7, as multiplication, i.e. m,(f)(g) = fg, g € L*(X, u). Then
7,(C(X))" ~ L*=(X, ). Under this identification the action By on m,(C(X))"
as in [Proposition 3.4.3(ii) corresponds to 8. Then [Proposition 3.4.3(ii) tells us
that sy (1) = b () = ha(p):

Let us return to general entropy. Intuitively, the entropy should be small
when the action doesn’t "move" A much around. The next result tells us that if
the action is compact in the ||- ||, topology, its entropy is 0.

Proposition 3.4.4. Let (A, ¢, «) be a C*-dynamical system. Suppose that for
each a € A the orbit Ga = {agy(a) : g € G} is precompact when A is given the
topology induced by the seminorm ||-||s. Then hy(a) = 0.

Proof. The result is essentially a corollary of [Proposition 3.3.8] Fix a channel
v:B > Aand € > 0 and find § > 0 such that for any n € N and channels
Viye s Vs Y1y -5V o0 C*-algebras of dimension no greater than dim B we
have that

vk = Yelle <8, 1<k <n, > |Hp(1,.. ) — Hp(V1, -, 7m)| < ne.

B is finite dimensional and precompactness just means total boundedness so
surely we can find a finite set F' c G such that for all g € G there is an s € F
satisfying ||ag oy — a5 0 ]|¢ < 6. We then obtain

1 1 1
—Hy(agovy;geF,) < ——Hg(asoy:seF)+e< —I|F|Hy(v).
[ 7 |Enl |l

tells us that
Hy(7) = sup{ Y 6 (1)S(d 07,6 07)} = sup{S(607) — ¥ 6:(1)S(s 0 )}
<S(pov) <logdim B
Hence,
1 \Fl
wH(z,(ag ov;geFp)< ﬂlogdlmB -0
Hence hy (o) = 0. ]
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thm:
approximatingnet

Note the similarity between the above proposition and
Indeed, if the C*-dynamical system in the above proposition is just
(L*=(X, ), ) where « is induced by some action 8 : G ~ (X, u), then
the | - |, norm is just the L?-norm and the compactness assumption in the
above proposition boils down to the compactness assumption in
Since the latter is about classical sofic entropy in its full generality, and the
former is about amenable dynamical entropy neither result generalizes the other.

At this point we need to add an assumption on our C*-dynamical systems
to get interesting results. Our assumption will, as in the proposition above,
make use of the ||-||4 seminorm. More precisely, for points a € A we define

llally == ¢(a*a)'’?.
For channels v,7": B - A we define

Iy =~lle = sup d(((v=7")®)* (v =7 )
beB,||b]|<1

as before.

The assumption we will have on our C*-dynamical systems is that there
is a net of channels {v; : A; > A};e; and a net of unital completely positive
maps {6; : A - A; }ier such that for each z € A we have [|(v; 0 6;)(x) — x|/ = 0.
The net {7, : A; > A}y will be called ¢-approximating ([NSO06|[pp. 49]). By
finite dimensionality it follows at once that for any channel v: B — A we have
|i © 6; oy —~||l¢ = 0. [Proposition 3.3.8| then implies that

lim hg (i © 05 075 ) = he(7; )

By |Proposition 3.3.4(i) we have hg(7y; 0 0; 0v; ) < hg(vi;a) < hy(a). Hence
we get the following.

Theorem 3.4.5 ([NS06][pp. 49, Theorem 3.2.3)). If {v; : A; = A}icr s a ¢-
approzimating net for (A, ¢, ), then hy(a) = limhy(vi; o).

Having a ¢-approximating net might seem like an awkward condition and
clearly it is designed ad-hoc; it is a condition that is just strong enough so
that many of our proofs will work. Note that if A is a nuclear C*-algebra, any
system (A, ¢, «) has a ¢-approximating net. Indeed, by definition of nuclearity
we have nets {v; : A; > A}ier and {6; : A > A, };cr such that for any a € A
(i 0 6;)(a) - al| = 0. Hence there is a net which is ¢-approximating for any ¢.
Another result related to the || - ||4-seminorm is the following.
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Proposition 3.4.6 ([NS06|[pp. 49, Proposition 3.2.4]). Let (A, ¢,a) be a C*-
dynamical system, {A;}ier an increasing net of a-invariant C*-subalgebras of A
such that U my(A;) is strongly dense in my(A). Then

iel

he(a) <liminf by, (oya,).

Proof. By |Proposition 3.1.7| we can approximate any channel v: B — my(A)"”
by a channel 7" : B - 74(A4;) in the pointwise strong operator topology, for
sufficiently large ¢. In particular we can approximate v : B — mg(A)"” by
a channel 7' : B - my(4;) in the [|-[[5-seminorm, for sufficiently large .
|Proposition 3.3.8| then implies that to compute hg(a) it suffices to take suprema
over hz(7; @) for channels v: B — m(A;) for j € I. For such a y we have for
127

hg(v;@) < ham,mi) (V3 Oy (A))-
Taking lim inf on both sides yields,
h(7; @) < lim inf eSO (V3 QA1)
Taking suprema over v’s that map into a m4(A4;) algebra yields
hg(a) < hHliinf ha\mp(/*i) (am(Ai) ).

The LHS equals hy () and by [Corollary 3.1.8] hg‘ 9 )(alw(Ai)) =hg . (oa,)-
7'r¢ i 7

Hence
hg () <liminf hg , (aya,)-

We will now see why the ¢-approximating net assumption is useful.

Theorem 3.4.7 ([NS06][pp. 50, Theorem 3.2.5]). Let (A,¢p,«) be a C*-
Peglieamical system having a ¢-approzimating net. Then
(i) If H c G is a subgroup of G with finite indezx, then
he(aym) =[G H] hg(a).
(ii) if (B,,B) is another C*-dynamical system with B abelian, then

h¢®w(04 ® ﬂ) = h¢(a) + hd,(ﬁ)

(iii) if ¢ is a state on a C*-algebra B, and there exists a y-approximating net,
then hagia, (@ ® ) = hg(a).

(iv) if G contains subgroups of arbitrarily large finite index then hy(a) is
concave in ¢; if ¢ = )+ (1 - N)w, where ¢ and w are a-invariant states,
then

hg (@) > Ay () + (1 = X)hy, ().

Proof.
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(i)

(iii)
(iv)
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By [Proposition 3.4.3| (vi) we have hy(ay) < [G': H]hg (). To prove the
opposite inequality, let {v; : A; > A}ier be a ¢-approximating net and
0; : A — A; be as in the definition of such a net. Fix a channel v: B - A
and € >0. Set k=[G : H], let F be a set of representatives of right cosets
of H and use [Proposition 2.1.13[to obtain a Folner sequence {H,,},, of H
such that {H,F}, is a Felner sequence of G. Let § > 0 and choose i € I
such that

IlYiobioagoy—agoy|s<dforgeF

We then also obtain ||y 07 06; 0 g0y —apgo7||s <6 for any h e H and
g € F. If we choose ¢ small enough to match € and the dimension of B as
in [Proposition 3.3.8] we obtain, for all n € N:

H¢(ahgo'7’§hEHna geF)<

Hy(apoy;obioagovy;he Hy, geF)+|Hy|Fle<
Hy(apovy;he Hy)+ |H||Fle.

and take limits to obtain

Divide both sides by
h(via) <[G: F1 he(vsoqm) +€, ie. hy(oqm) > [G: Flhg(a).

We first claim that the dynamical systems (Tygy(A® B), ¢ @1, a ® 3)
and (74 (A) @ 7y (B)', ¢ ® Y@ ® () are isomorphic. Note that

((mp ®my)(a®b)(he ® hy), (hy ® hy)) = (mp(a)hg, hg )Ty (a)he, hy)
=(¢p®Y)(a®b)

so by the uniqueness of the GNS-representation there is a unitary
U Hygy — Hy®Hy mapping Toey (a®b)hyey t0 (1o @4 ) (a®D) (hg®hy).
It is then checked that ¢®1 = (¢ ® 1)) o AdU and a®f o AdU =
AdU o (a@ ® B) showing that the systems are equivariant and so
higp(a®B) = hgep(@® B). Hence, in proving (iv) we may assume
that (B,1,3) (and (A.¢,«)) are W*-dynamical systems.

Then B is an abelian inductive limit of finite dimensional C*-algebras
{Bi}r. Let 7, : By — B denote their inclusions into B and choose
arbitrary conditional expectations Ej : B — Bji. Then ’y,; o B, — idp
pointwise so {7, }r is a ¢-approximating net. Letting {v;}; be a ¢-
approximating net we see that {; ® v}, } () is a ¢ ® ¥-approximating net.
heey(a® B) = hy(a) + hy(5) now follows from [Proposition 3.3.7|(iv) and

We omit the proof.

By [Proposition 3.3.7|ii) we have
he(a) 2 Ahy () + (1= A)he (@) =n(A) =n(1-A)

This isn’t exactly what we want, but if we apply this inequality to a|g
for any finite index subgroup H of G and applying (i) yields

[G: H]hg(a) 2 A[G : H]hy(@) + (1= A)he(a) =n(A) =n(1 - X)



prop:
extendingautoone

3.4. Entropy of dynamical systems

Dividing by [G : H] and choosing H so that [G : H] - oo yields the
desired inequality.

The assumption on G we made in (iv) in the above proposition is be
satisfied when G is an infinite residually finite group. For in this case have an
increasing sequence of finite indexed normal subgroups { N, },, such that any
non-trivial element of G is contained in at most finitely many N,,. Clearly then
[G: N,,] — oo. We finish this chapter on extending states of subalgebras in an
entropy increasing way.

Proposition 3.4.8 (|NS06|[pp. 53, Theorem 3.2.7]). Let a be an automorphism
of a unital C*-algebra A, B c A an a-invariant C*-subalgebra and ¢ an o|p-
invariant state on B. Assume (B,(b‘B,oz‘B) has a ¢|p-approzimating net. Then
there exists an extension of 1 to A, say ¢, such that hy(a) > hy(op).

Proof. Let {~;: B; » B} be a 1g-approximating net and ; be the correspond-
ing maps 6; : B - B;. We can assume that the B;’s are full matrix algebras;
if they weren’t just realize them as subalgebras of Mrank(lBi)(C) and replace
i with E; o; where E; : Myank(1,)(C) - B; is a conditional expectation.
Then Arveson’s extension theorem ([BOO8|[pp. 17, Theorem 1.6.1]) gives us
completely positive unital extensions 6; : A - B; of the maps ;. Let ¢ and
denote the usual extensions of ¢ and oy to 7y, (B)"”. Consider the net of unital
c.p. maps {my07;00; : A — my(B)"};. For each a € A the net {(my07;00;)(a)};
is bounded so Tychonoft’s theorem and the weak operator compactness of the

unit ball of 7y (B)"” imply that the net has a pointwise weak operator cluster
point ¥ : A - m,(B)".

Now let ® be a pointwise weak operator cluster point of the net

{|Fol™ ¥ BygoVoag1},. Foreach s € G, B,0® - P oay is a pointwise
geFy
weak cluster point of

IF ™ S (BegoWoarg 1 —ByoWoag).

geF;59¢Fy,

Now, since {ge F,, :sg ¢ F,} c F,n(s71F,)¢ c F, A s71F, it is clear that
the maps on the right tend to 0 even in norm. In particular S5 o ® = ® o g for
s € G. We now claim that ®(b)h,, = m(b)hy for b e B. Fixing b’ € B and € >0 it
will suffice to show that

(@ = 7)(b)hy, m(b")hy)| < €. (3.28) ‘

Begin by picking an m € N and i € I such that

(@~ |Ewl™ 3 Byomoniobioag1)(b)hy,m(b)hy)| <e/2.
geF,,

Using that /3 is 1/-invariant we have

([Fnl™ 3 Bgomorioboag1(b) —m(b)hy, (b )hy)l
geFm,
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= [l 3 w0 ((rioBicag-1) (0)=b))| < [Fl ™ 30 16 llull(viobioag-1) (b)=blly

geFy, geFm
<IEal™ 20 11w (103 0 07 0 g1 (b) = g1 (D) |y + lleg-1 (b) = blly)
geFm
= |Enl™ 3 I llull(yi 0 62) (g1 (D)) = g () [
geF,,

The last quantity can clearly be dominated by ¢/2 if we chose i sufficiently
large. [Equation (3.28)| then holds, as desired. It now follows that the state
¢:=1 oW defined on A is a-invariant and extends 1. For the former note that
poas=1poWoa,=1)0P,0W =10V using that ® o as = ;0 ® and that 1 is
B-invariant. That ® extends ¢ follows from the fact ®(b)hy = w(b)hy, for b e B.

Finally, hg(a) > hy(ajp), because any positive linear functional w on B
such that w < ¢ extends to the functional @ = (xhy, hy) for some z € 7(B)’
and then wo ¥ extends w. Since wo ¥ < ¢ we see that any decomposition of 1
extends to a decomposition of ¢, hence hy(a) > hy(oyp). |
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CHAPTER 4

Examples and an Alternative
Definition of Entropy

In this final chapter we will apply the theory we have developed so far to compute
the entropy of some C*-dynamical systems. First for two non-commutative
analogues of the Bernoulli shift and then for type 1 W*-dynamical systems. We
finish this chapter by giving an alternative definition of entropy.

4.1 Non-commutative Bernoulli Shifts

Before dealing with non-commutative Bernoulli shifts we need a lemma.

Lemma 4.1.1. Suppose A and C are algebras and 7w : A - C is a surjective

Lizehresentation and v and ¢ are linear functionals on A and C respectively, such
that pom =1p. Then for any mazimal abelian subalgebra D of Z, the centralizer
of ¥, m(D) will be a mazimal abelian subalgebra of Zy.

Proof. Clearly w(D) is abelian. It also lies in Zy for if a € A and d € D we
have ¢(w(a)w(d)) = ¥(ad) = ¥(da) = ¢(n(d)w(a)). To show that w(D) is
maximal abelian suppose F' is an abelian subalgebra with (D) c F' c Z,,. We
immediately see that D c 77'(F) and if a € A and f € F then

d(an () = d(n(ar™'(f))) = ¢(m(a)f) = (fr(a)) = (7" (f)a).
This shows that 7~*(F) ¢ Z, so since D is maximal abelian in Z; we obtain
7 1(F) = D. Then by the surjectivity of m, F' = (D). Hence m(D) is maximal
abelian in Zg. ™

Now recall that the first action we considered in the classical case was the
action B on {1,...,n}% given by B((7y)gec) = (Ts-14)gec for x € {1,...,n}%
and s € G. The operator algebraic analogue is taking a finite dimensional
C*-algebra B, a state 1) on B, and consider the shift action ag on B®“ with re-
spect to the state /¢ . This is called the non-commutative Bernoulli shift:

Bernoulli shift 1

Recall that B®“ is simply the inductive limit of the net of C*-algebras { B®f'} i
where F' ranges over finite subsets of G ordered under inclusion. The morphisms
here are just inclusions.
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The left shift action aq is formally defined by letting

(a0)5(®gerg) = ®gesF’bs*1g~

for finite subsets F' c G. To make this as clear as possible, we are mapping
an elementary tensor ®gerby in B®F to an elementary tensor in B®*f" whose
g’th "tensor factor" will be bs-1,, g € sF. We let I range over all finite subsets
of G and then extend o to an action on B®.

For technical reasons it will be convenient to pass to the GNS-representation
of Y®%. We put M = myea (B®Y)", ¢ = ®C, a =ap and 7 = Tyec. We claim
that hy(a) = S(¢), just as for the classical Bernoulli shift. We prove this in
three steps.

Step 1: We begin by constructing ¢-preserving conditional expectations
Ep : M - n(B®F) for finite sets F' c G. For finite sets I’ ¢ G that contain
F define Efp( @ by) = (® by) @7\ (@ b,) on B2, Letting F’ range

geF" geF gEF’\F
over all finite subsets of G containing F' this gives a well-defined conditional

’
expectation on E7 : U B®F"  1(B®F) that preserves 1/®“. Now
F’cG, F’ is finite

define Ep : 7( U B®F) - 7(B®F) by Epom = mo E.. It is ¢-
F'cG, F' is finite
preserving and weakly continuous on bounded sets. Hence it can be extended to

a ¢-preserving conditional expectation on M which we continue to denote by Ep.

These maps show that the inclusions {ir : 7(B®) - M}p are ¢-
approximating. Indeed, for x € 7 ( U B®F ’) it is obvious that
F’cG, F’ is finite
¢(((ir e Ep)(z) =) ((ir o Ep)(z) —2)) = |(Ep () = 2)hyec|| - 0

simply because for sufficiently large F' we have Er(x) = x. However, since Fp

is strongly continuous, and 7 ( U B®F) is strongly dense in M, the
F’cG, F’ is finite
convergence will hold for all z € M.

Step 2: We now claim that if F' c G is a finite subset and D is a maximal
abelian subalgebra of Z, then 7(D®F) is maximal abelian in the centralizer of
the restriction of ¢ to 7(B®F).

By [Lemma 4.1.1}it suffices to show that D® is maximal abelian in Zyor.
By induction it further suffices to verify that D ® D is maximal abelian in Zyg..
We have Zygy = Quey = (Qp ® Qu)' = @), ® Q = Zy ® Zy where the third
equality follows from von Neumann’s commutation theorem for tensor products.
D ® D is easily seen to be a an abelian subalgebra of Zy, ® Z,;,. We have

dim(D®D) = dim(D)dim(D) = Trp(Iz,) Trp(Iz,) = Trpep(12,®1z,) = Trpep(Iz,®2Zy)

which is the dimension of a maximal abelian subalgebra of Z, ® Z,,. Hence
D ® D is maximal abelian in Zy ® Zy, = Zygy as desired.

Step 3: Fixing a finite subset F' c G and n € N, step 2 implies that for each
s € F,, m(D®") is maximal abelian in 7(B®") = 7(as(B®F)). Moreover, as
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4.1. Non-commutative Bernoulli Shifts

s ranges over I, the algebras 7(D®*") are mutually commuting, and step 1

gave us ¢-preserving conditional expectations M — 7(B® ). [Lemma 3.3.6

then implies that
Hy(ay(m(B®")) s € F) = S(dr(perary) = ST = |[F, FIS ().

Here the second equality holds since we can identify mper,r with the
GNS-representation of ¢®f",

‘We obtain

Po(r(BF ;) = lim o H(a,(B) 5 F) = lim T2 ls(0) = (4,

|Fn| o |Fn|

As noted, the inclusions {ip : 7(B®F) - M} form a ¢-approximating net

so [Theorem 3.4.5(implies that hy(a) = S(¢).

Bernoulli shift 2

Consider now the specific case where B ~ M, (C) for some n > 2 and the
state 1 on B is faithful. Define ¢, « and M as before and again let D be a
maximal abelian subalgebra in Z,. From the above we have ho(¢) = S(¢).
But we claim that even if we restrict to the centralizer N := Zy, put 7 = ¢|x
and B = a;y we have h.(3) = S(¢). From modular theory there exists a
¢-preserving conditional expectation M — N (|Tak13|[pp. 211, Theorem 4.2]),
hence h,(8) < hy(a) = S(¥) by [Proposition 3.4.3 (v).

To show the reverse inequality let C' denote the von Neumann subalgebra
of N that is generated by the sets 7(D®!) for finite F' ¢ G. We claim that
there exists a ¢-preserving conditional expectation N — C'. Clearly 7 is tracial
so the existence of such a conditional expectation follows if we can show
that ¢ is faithful. To see this, we need an alternate way of describing the
GNS-representation myec : B®¢ - M.

Let my : B — Hy be the GNS-representation of i) and h, the cyclic
vector. Analogous to how we constructed B®, let ch denote the in-
ductive limit of Hilbert spaces {HS’F }r where F ranges over finite subsets
of G and for F} c F, the morphism ip g, : HSF‘ - HSFZ is given by

®gerhg = ®gerhg ® ®qu2\F1(hw)g. We treat U H(‘fF as a dense sub-
) FcG, F finite
space of H®“. Note that because of how we defined our morphisms, hy again

is a unit vector of H®C,

Define the representation 7’ : U B®F - B(H®Y) by
Fcd, F finite
T (@ b)(Q) hg) = Q my(bg)(hg) ® @ (hy)
geF  geFr geF geF\F

whenever F’ 5 F'. One checks that this representation is isometric, hence it
extends to a representation B®¢ — B(H®%) we will continue to denote by 7’
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It is easy to verify that ¥y®F(-) = (7/(-)hy, hy) s0 we recognize (7', H®C hy,)
as a GNS-triple for ¢/®“. By the uniqueness of the GNS-representation, if
we want to show that ¢ from above is faithful on M, it suffices to show that
( - hy,hy) is faithful on 7/(B®Y)”. This is equivalent to h, being cyclic
for the commutant 7'(B®“)" which is immediate: fix an elementary vector

h= @ hge U HﬁF. Since v is faithful hy is cyclic for 7y (B)" so for
geF’ Fc@, F finite

each g € F' there exists T, € my,(B)" such that Tyhy = hy. Defining T € B(HSZ?G)

by putting
7( ® hg) = ® Tghg ® ® (hy)
geF" geF’ geF"\F’
for finite £ 5> F’. Then T e 7/(B®“) and T'(hy) = h so hy, is cyclic for the
commutant.

Since ¢ is faithful there exists a ¢-preserving conditional expectation
N — C. It follows that h,(8) > hr.(Bic). But since D =~ C™ for some
m >2 we can identify each 7(B®F) algebra with C({1,...,m}). The latter
algebras can naturally be embedded into C({1,... ,m}G), and the union of
these embeddings are norm-dense as F' ranges over all finite subsets of G.
So C({1,...,m}%) can be viewed as a weakly dense C*-subalgebra of C.
Hence, C ~ L=({1,...,m}%, u®%) where p denotes the normalized counting
measure on {1,...,m}. Under this identification § simply corresponds to the
Bernoulli shift on L*®({1,...,m}%, u®%) and 7 corresponds to x®“. From the
classical result we then have h.(3) > hr(8jc) = S(1). This establishes that

he(B) = 5(¢).

T\C

4.2 Type 1 W*-dynamical systems

There is an interesting special case where the study of non-commutative entropy
completely reduces to the classical setting, i.e. abelian systems. Namely, suppose
we have a W*-dynamical system (M, ¢, «) where M is a type 1 von Neumann
algebra and « : G - Aut(G). That M is type 1 means that every nonzero
central projection in M dominates a nonzero abelian projection in M (recall
that a projection p € M is abelian if the algebra pMp is abelian)([Tak79][pp.
296, Definition 1.17]). If we also assume that G contains subgroups of arbitrarily
large finite index we can actually prove that hy(a) = he, ()z) where Z denotes
the center of M. Before the proof we recall that type 1 von Neumann Algebras
are simply direct sum of algebras A® B(H ), where the A’s are abelian v.n. alge-
bras ([Tak79|[pp. 299, Theorem 1.27]). Before proving that hs(a) = hg, (a|2)
we shall need two lemmas.

Lemma 4.2.1. Suppose A and B are unital C*-algebras with A abelian. If
7:A® B — B(H) is an irreducible representation there exists a character ¢ on
A and an irreducible representation p: B — B(H) such that m = ¢ ® p.

Proof. Since A is abelian 1(A® 1) c 71(A® B)' = CI so ¢(-) = n(-® 1p)
defines a character on A. We claim that 7(1® B)' = 7(A® B)’. Indeed, take a
Ten(l®B) andae A, be B. Then Tn(a®b) =Trn(a®1)m(1®b), but since
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m(a® 1) € CI this equals 7(a® 1)Tm(1®b) =m(a® 1)7(1®b)T =7w(a®b)T as
desired. By linearity and continuity 7' € 7(A ® B)’. Hence n(1® B)" = CI so
the representation p:=7(1®-) on B is irreducible. Clearly = ¢ ® p. ]

Lemma 4.2.2 ([NS06|[pp. 54, Theorem 3.3.1]). Suppose (M,¢,a) is a W*

ioglynamical system and let p € M be an a-invariant projection. Setting
N = pMp + C(1 - p) we then have hiz(n)(z(n)) < Mg, (zar)) where
Z(M) and Z(N) denotes the center of M and N, respectively.

Proof. If p = 1 there is nothing to prove so suppose p # 1. Let ¢ denote the
central support of p, i.e. the smallest projection in Z(M) that dominates p.
Then

Z(N)=ZpaC(1-p) is isomorphic to Z(M)q®C. Under this isomorphism the
state ¢jz(n) becomes ¢(p)y @ ¢(1 - p) where ¢ = o(p) ol q)|z(Mm)q- Hence
Rz (z(n)) = By (1 z(ar)q)-

On the other hand, consider the state ¢y = ¢>(q)_1¢|Z(M)q. Since Z(M)q +
C(1 - q) is an a-invariant subalgebra of Z(M), we have hy, ., (@zxn) 2
(@) gy ()z(ar)q)- Hence we have just to prove that

ho(zanya) < ;’zﬁghwuammq»

Since 1 < ¢(p)to(q)én and the function 7 is monotone for small ¢ this
follows from the classical defintion of entropy. [ |

Theorem 4.2.3 (|NSO06|[pp. 54, Theorem 3.3.1]). Suppose (M, p, ) is a W*-
dynamical system with M a type 1 von Neumann algebra and that the group G
acting on A wvia « has subgroups of arbitrarily large finite index. Let Z = Z (M)
be the center of M. If (B,v,[) is a W*-dynamical system where the group
acting on B is also G has a ¥-approximating net, then

hyes(B® a) = hy(B) + he, ().

In particular, taking B = C, we see that

hg (@) = hey, (z).

Proof. Since the modular group acts trivially on the center, there exists a
¢-preserving conditional expectation M — Z (|Takl3|[pp. 211, Theorem 4.2]).
Hence the inequality > follows from [Proposition 3.4.3| (iii) and (v). To prove
the opposite inequality, we will first prove it in the case where M = Z ® M,,(C).
Let {vi}: be a ¢-approximating net and {v; }» a ¢z-approximating net (the
latter exists because Z is an abelian von Neumann algebra, hence nuclear). It
is then easy to see that {v; ® v, ® idjns, () }(i.k) 1 ¢ ® ¢p-approximating. By
[Proposition 3.3.7|(v) we have

h¢,®¢(%— @)’y,’g ® id|Mn((C)§ﬂ (%9 a) < hw®¢‘z ('yi ® 7,’6 (%9 id\M,L(Cﬁﬁ ® Oé‘Z) + 210gn.

Applying this inequality to g and 8y for some finite index subgroup H

of G, using [Theorem 3.4.7(1), and letting [G : H] — oo reveals that

hyes (Vi ® Vi, ® idjar, () B ® @) < hyeg, (Vi ® Vi ® idjar, () B ® 2)

69



4. Examples and an Alternative Definition of Entropy

= hdl(ﬂ) + h¢|z (Oé\Z),
where the last equality follows from [Theorem 3.4.7|(iii).

We will now prove < in the case where M is a direct sum of algebras of the
form A ® M,,(C) where A is abelian. By using that @ distributes over ® we
group together the Z’s corresponding to the same M, (C) algebra and get that

M =~ @ Zn, ® M, (C) with the Z,,’s abelian. For each n, let 1,, € M denote the
n=1
unit of the n’th summand 7, ® M,,(C).

We claim that o fixes 1,, for each s € G. For each k € N, as(1,,)g is a central
projection in Zy ® My (C). Identifying Z; with C(X) for a compact Haus-
dorff space X we have Zx ® M (C) ~ C(X; My(C)), the space of continuous
M (C)-valued functions on X. The only projections here are functions Y 14, p;
where the A; € X are pairwise disjoint and the p; € My (C) are projections.
This is to say that there are mutually orthogonal projections ¢; such that
as(1,)k =X, ;i ® pi- Since as(1,)g is central the p;s are central so we actually
obtain a,(1,)r = ¢ ® idpy, (¢ for a projection g € Zj.

The same argument reveals that o' (a(1,,)) too is of the form p®idy, (o)
for some projection p € Z,,. Then «; gives an isomorphism of Z,,p® M,,(C) and
Zrq® My (C). For k + n implies that this is impossible unless p
and ¢ are zero: any irreducible representation on Z,p ® M, (C) is the tensor
product of a character on Z,p and an irreducible representation on M, (C),
but these are respectively 1- and n-dimensional so their tensor product is
n-dimensional. Similarly, if ¢ # 0 any irr. rep. on Zp® M,,(C) is k-dimensional
so they cannot possibly be isomorphic for k # n.

We conclude that a(1,)x =0 for n # k implying that «y fixes 1,,.

We will now see that, in general, if (N, ¢,v) is a W*-dynamical system,
with {z,} ¢ N a sequence of v-invariant central projections summing to 1, then

he () = 22 Anhg, (W=, (4.1)

where A\, = ¢(z,) and ¢,, = )\glqﬁ‘Nzn. Set
Ny=N(zi+...+2)+C(1—2z1— ... — z).

Since {z1+. . .+2y },, converges to 1 strongly and multiplication is SOT-continuous
when a factor is fixed we see that U, IV, is SOT-dense in N. There exists
¢-preserving conditional expectations N — M,, so by [Proposition 3.4.3|v) we
have hg,,, (Yar,) < he(7) for each n. On the other hand, by [Proposition 3.4.6|
we have hg(y) < liminfhg, (ya,). Hence he,, (Var,) = he(7) so noting

that

n
hd)\M” (’yan) = Z Akh(f’k ('YNzk)
k=1

by [Proposition 3.4.3|iv), we have established Applying
[Equation (4.1)| to the a-invariant central projections 1,, n € N, summing
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to 1 and noting that the formula hygs(8 ® ) = hy(8) + hy,, (a|z) holds on
each summand Z,, ® M, (C)) we obtain

hpes(B®a) = 3" An(hy(B) + he, (@1z,)) = hg(B) + D Mg, (z,)
= hy(B) +hg(azr)

Hence the desired formula is established in the case where M is a direct sum of
algebras of the form A ® M, (C) with A abelian.
We have now to establish the inequality

h¢®¢([3®a) Shw(ﬁ)+h¢|z(alz) (42)
in the general case. We first argue note that if ¢ denotes the support of ¢, then
hyes(B® ) = hypep,u, (B ® algnrg) (4.3)

. To see this it suffices to verify that if (C,¢,v) is a C*-dynamical such that
¢ has a support projection p, i.e. a smallest projection p such that ¢(p) =1,

then hy(7) = hy, ., (Vpap). Indeed, d(74(p)) = 1 so v4(p) 2 p. Similarly
Yg-1(p) 2 p so in fact v(p) = p so the subalgebras pAp, pA(1-p), (1-p)Ap and
(1-p)A(1 -p) are all invariant under v. Since ¢ vanishes on the subalgebras
pA(1-p), (1-p)Ap and (1 -p)A(1 - p) [Proposition 3.4.3(iii) now implies that

ho () = hg, . (Vpap)- Then [Equation (4.3)|is established so if we manage to
prove with M replaced by ¢Mgq, we will get
hyes (B ® @) = hyesy,a, (B ® Agrrg) <R (B) + 1y, garg) (@12 (aMa))

=0y (B) + Mgy gargrca-ay (QUZ(aMarc1-9)))) < P (B) + gy, (12),
as desired. Here the last inequality is due to

Hence, in proving we can replace M by pMp so we may

suppose ¢ is faithful. In particular M can have at most countably many
mutually orthogonal projections. Then there is a sequence of a-invariant finite
projections {p, }, ¢ My such that ||1 - p,|| - 0. We do not prove this, see
INSO6][pp. 54, Theorem 3.3.1].

Now set M, = p,Mp, + C(1 - p,). Then E, : M - M, defined by

E, () = prapn + d(a(l-p,))(1-py,) is a ¢-preserving conditional expectation.
Since ||1 - pylls = 0 it then follows that ||z — E,(x)|l4 — 0 for all z € M.

[Proposition 3.3.8| then implies that given a channel v:C - B® M, hg(v; 8@ @)
can be approximated by hs((idg ®E,,) ov; 8 ® a) for n e N so in fact

h¢®¢(ﬁ ® a) = hrILn hw®¢‘Mn (5 ® CY|Mn)

Note that M, is again a type 1 algebra so it is a direct sum of A ® B(H)
algebras with A abelian, but since the unit of M, is finite, due to p, being
finite, any H occuring in such a decomposition is finite dimensional. Letting
Z,, denote the center of M, we can then apply the previous case to get

h¢®¢|Mn (ﬂ ® OZIM") < h”//(ﬂ) + h¢\zn (alZn)'

This finishes the proof since by [Lemma 4.2.2 hy , (az,) < he, (2z) ]
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4.3 An alternative definition of entropy via stationary
couplings

In this final section we will discuss a generalized version of abelian models.
tells us that given a C*-dynamical system (A4, ¢, «) and a channel
v into A and a finite subset F' ¢ G, the quantity Hy(agovy: g € F) can be
estimated by H,(Poagoy:ge F) where P is a unital completely positive map
from A into a finite dimensional abelian C*-algebra C' and pu satisfies po P = ¢.
If in addition §: G - Aut(C) was a group action equivariant to « in the sense
that By 0 P = Poqg for all g€ G we have

Hylagoyige F) = Hy(Byo Poy:geF).
Thus there is the hope that letting F' range over a Fglner sequence and

1
dividing by |F,,|, the quantity hg(y;a) = lim WHA@Q ov:ge€F,) can be
n n
approximated by quantities
1
WHu(ﬁgoPowgan) ~ hy (P oy; B)

for G-equivariant systems (C, 3, ) with C finite dimensional and abelian. Of
course, this is a far cry from a proof; it is not clear that the S-action exists for
a given pair (P, 1) and even if it does the above argument requires an exchange
of limits and suprema. However, we will see that if we consider all abelian
G-equivariant systems (C, 8, u), for also infinite dimensional abelian C, then
these can be used to compute the entropy hg(a).

First and foremost, it will be useful to deal with states instead of unital
completely positive (u.c.p.) maps. More precisely, suppose (L=(X, ), 1, 3)
is a W*-dynamical system where 3 is induced by an action 3" : G ~ (X, ),
ie. By(f)=fopy If P:A— L*(X,u)is a unital completely positive map
satisfying p o P = ¢, consider the state A on A ® L= (X, ) defined by

A(a@f):fXP(a)fdu,aeA.

It satisfies A4 = ¢ and Ap~(x,,) = p. In fact, any state on A ® L*(X,u)
that restricts to ¢ on A and p on L™ (X, ) arises in this way: for such X in
S(A® L=(X,u)), take a € A* and consider the positive functional A(a ® -)
on L=(X,u). It is dominated by |al|u so by general theory it is of the form
[« g dp for some g € L®(X,p). Define P(a) = g. This furnishes a positive

unital map P: A — L=(X, u) which is completely positive by [Theorem 3.1.4

The above establishes a bijection between u.c.p. maps P: A - L= (X, u)
such that po P = ¢ and states on A ® L™ (X, u1) restricting to ¢ on A and p on
L (X, ). These states are of course couplings which we already discussed in
the previous chapter. If in addition, Poay = 840 P for g € G the corresponding
A will be a ® f-invariant and vice versa. We call such \ a stationary cou-
pling of (A, ¢,«) with (X, u,3). Since we know more about states then c.p.
maps we phrase the below definition in terms of stationary couplings and not
G-equivariant maps.
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Definition 4.3.1 (|NSO6|[pp. 77, Definition 5.1.1]). Suppose (A, ¢, «) is a C*-

EnleR¥mical system (A, ¢, ) with a ¢-approximating net {v; : A; > A}ser. The

Sauvageot-Thouvenot entropy is then

h5" (o) = sup{hy (P5) +lim 32 SON(i() @14),0)}

where the supremum is taken over all stationary couplings A of (A4, ¢, ) with
(X, u, 8) and over all finite measurable partitions P of X.

We have phrased the above definition in terms of stationary couplings, but
as discussed above we could equivalently express it in terms of G-equivariant
maps between (A, ¢, «) and a classical system (L*(X,pu),u,3). From that
point of view the term h,(P;3) in the definition of hiT(a) estimates the
entropy of (L*°(X,p),u,3). The remaining term lilm AZPS()\(%() ®14),0)

€

can be considered an error term. Technically we have not showed that this
limit exists. This requires defining relative entropy S(:,-) for states on infinite
dimensional C*-algebras. This is done in [NSO6|[pp. 26].

There is an alternative way of viewing Namely, recall that
given a coupling X of (A, ¢, ), a partition P of (X, u) and a finite subset F' c G,
the partition P induces a decomposition of ¢ as in [Equation (3.15)l Using
the notation proceeding that equation we have, by [Equation (3.21)}

Hy({agony:geFy}:P™) = Hy(P™) = |[Fal Hu(P) + |Fal HA(v:P)  (4.4)

Dividing the RHS by ﬁ,
weget
hy (P B) - Hu(P) + (Hu(P)+ 3 S(A(() ®14), )

AeP

= hu(PiB) + Y SA(H() 8 14), )

AeP

which is similar to [Definition 4.3.11

taking the limit as n — oo and using

As mentioned, it is possible to define relative entropy, S(,-), for states
defined for arbitrary C*-algebras. Had we taken this route we could have
defined the Sauvageot-Thouvenot entropy for arbitrary C*-dynamical systems

by replacing the quantity lim > S(A(7;(-)® 14),¢) with > S(A(-® 14), ).
i Aep AeP

To see why stationary couplings can be useful in the first place we show how
the existence of a coupling that is not the tensor product state ¢ ® p implies
that the system has positive entropy. We call such couplings nontrivial.

Proposition 4.3.2 ([NS06|[pp. 54, Theorem 3.3.1]). Suppose (A, ¢,a) is a
C*-dynamical system where « is the action of a residually finite group G. If
(A, ¢, ) has a nontrivial stationary coupling \ with a classical Bernoulli shift,
(X, 1, B), then hy(a) > 0.
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prop:
extendingautotwo

4. Examples and an Alternative Definition of Entropy

Proof. Let P be the standard generating partition for (X,u,s). If for

all self-adjoint elements a € A and all sets C € U PF we had
Fc@G, F finite

AMa ® 1¢) = ¢(a)u(C) then by linearity and continuity A = ¢ ® u. We
have assumed that this is not the case so pick a self-adjoint element a € A
and C e P, for some finite F' c G, such that A(a ® 1¢) # ¢(a)u(C). Since
G is residually finite there is an increasing sequence of finite index subgroups
{N,}n c G, such that any non-trivial element lies in only finitely many of them.
Hence we can find an N,, that does not contain any of the elements £~ f’ for dis-
tinct f, f’ € F. This ensures that all members of F lie in distinct left cosets of NV,,.

Now let H be a set of representatives of left cosets of N,, containing F'.
Since P > PF and C € PF with Aa ® 1¢) # ¢(a)u(B), there must be a
B e P such that AM(a® 1) # ¢(a)u(B) Clearly X is again a stationary
coupling of (A, ¢, ay,) with (X,u, B, ). The latter system is again the
Bernoulli shift and P¥ is a generating partition. Furthermore, we know that
hg(a) =[G : Nplhg(ajn, ) so to prove that that hg(a) > 0 it suffices to prove
that he, (aqn,) > 0. Choose an « > 0 such that 1-ra is positive and define the

channel y : C? - A by setting y(e1) = ka and y(ez) = 1 - ka. By
and [Equation (3.19)| we get,

ho(viaqn,) > Hx(viP™) = 3 w(2)S((Z) ' A(v(-) ® 1), ¢ 07).
ZePH

Since a € Im(y) and M(a ® 15) # ¢(a)u(B) we have u(B)A(v(-) @ 15) #
¢ o «y, which means that at least one of the terms in the above sum is non-zero.
Hence hg (o, ) >0 as desired. m

The above result gives some idea why the Sauvageot-Thouvenot entropy,
hiT(a), relates to the standard entropy he (). In fact one can show that the
two coincide, see [pp. 82, Theorem 5.1.5]. This is nice result because the
Sauvageot-Thouvenot entropy is often easier to work with. For example, that
hgT(a) = hg(a) can be used to show the following two results:

Proposition 4.3.3 ([NS06][pp. 86, Proposition 5.1.7]). Let a be an automor-
phism of a nuclear C*-algebra A, B c A an a-invariant C*-subalgebra, 1 an
a-invariant state on B. Then for every h < hy(a p) there exists an a-invariant
state ¢ on A such that ¢ = and hg(a) > h.

Proposition 4.3.4 ([NS06|[pp. 86, Proposition 5.1.8]). Let (M, ¢, «) be a W*-
dynamical system having a ¢-approrimating net, N ¢ M an a-invariant von
Neumann subalgebra, E : M — N a ¢-preserving faithful normal conditional
expectation commuting with «. Assume there exists a constant ¢ >0 such that
E(a) > ca for any a>0. Then hy(a) = he (oqn)-

We remark that [Proposition 4.3.3| is very similar to [3.4.8| except for the
nuclearity of A being an assumption in the former and the existence of a
P-approximating net on B an assumption in the latter. The conclusion
[Proposition 4.3.3|is of course, slightly weaker.
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4.3. An alternative definition of entropy via stationary couplings

Final remarks

In this thesis we have essentially explored two generalizations of amenable
classical entropy: sofic classical entropy and amenable operator algebraic
entropy. Indeed, we actually proved that the latter is a generalization and that
the former is a generalization is proven in —this proof is quite involved.
A natural question then is if it is possible to develop a theory of sofic operator
algebraic entropy. To this day, this is an open research problem.

Even proving that sofic classical entropy generalizes amenable classical
entropy is difficult and naturally we would expect a proof that some notion of
sofic operator algebraic entropy generalizes amenable operator algebraic entropy
to be at least as difficult. We could expect the notion of sofic operator algebraic
entropy to combine channels and a sofic approximation sequence in some clever
way, though this may be too naive. However, a good way of checking that a
notion of sofic operator algebraic entropy is good, once we have one, is to see
whether the entropy of a non-Commutative Bernoulli shift on B®“ with respect
to 1)®¢ is again determined by B and . This thesis also contains a number of
operator algebraic results and properties we might be able to check in the sofic
case.
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