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Abstract

This thesis presents results from plasma charging simulations of the Mercury
Magnetospheric Orbiter (MMO) spacecraft orbiting Mercury in direct sunlight.
These simulations were carried out using the Particle-In-Cell program PINC.
The object-plasma interaction module of the PINC framework was extended by
including a photoemission current algorithm based on the work by Cartwright
et al. (Cartwright et al. 2000) and Deca et al. (Deca et al. 2013). The new
photoemission current model was tested rigorously by comparing the results
of test cases run in other Particle-In-Cell codes, proving the models validity.
The charging behaviour of the MMO spacecraft was then simulated for varying
plasma conditions, and with the spacecraft booms extended and retracted. The
results of these simulations are shown to agree with the spacecraft charging
theories developed by Langmuir (Mott-Smith et al. 1926), Whipple (Whipple
1981) and (Garrett 1981). The MMO charging simulations are also compared
with similar Particle-In-Cell simulations, and their differences and similarities
are discussed.
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CHAPTER 1

Introduction

On January 20th 1994 Canadians experienced an unexpected interruption to
their television program: The Canadian Telsat spacecrafts Anik E1 and Anik
E2 had experienced sudden failures of their gyroscopic guidance systems and
had begun to tumble out of control. The out of control Anik spacecraft had
experienced electrostatic discharge in the circuitry, causing permanent damage
to critical systems. Later, this critical systems failure was attributed to the
phenomenom of spacecraft charging. Although engineers were able to restore
the gyroscopes of Anik E1, the Anik E2 would never recover, representing a
loss of several hundred million dollars (Leach et al. 1995).

Spacecraft charging has been studied as a disparate field of space physics
since the mid twentieth century, with fundamental theories describing the
phenomena developed by Irving Langmuir in in the early 1920’s. Langmuir and
his colleagues worked extensively with electrode probes of different geometries.
They studied how sheaths of charged particles formed around the probe at its
so called "floating potential", i.e, when there is no net current flowing between
the probe and its surroundings (Mott-Smith et al. 1926), (Garrett 1981).

The theory developed by Langmuir and others helped to develop the plasma
instrument called the Langmuir probe that is still in use on modern spacecraft
today. In addition, the theory gave scientists and engineers the necessary
theoretical framework to analyze the charging of spacecraft with the key insight
of the spacecraft as a floating probe.

With the advent of the development of spaceflight in the middle of the
twentieth century, these theories were no longer only used in analyzing the
charging properties of interstellar dust. Engineers and scientists applied these
theories for the practical purpose of protecting sensitive electronics onboard
spacecraft and rockets. The investigation of these practical concerns cumulated
in the launch of the "Spacecraft Charging At High Altitudes" (SCATHA)
spacecraft in 1979 with the mission of gaining a better understanding of the
development of the charging process due to the formation of a plasma sheet,
and in testing strategies for controlling the potential of a spacecraft (NASA
2020).

The SCATHA mission measured spacecraft potential in the day and night
side of the orbit and found that the difference between these points in orbit
was several hundred volts(Mullen et al. 1986). This difference is due to the
photoelectric effect; when the conducting surfaces of the spacecraft are exposed
to sunlight, electrons gain enough energy from the photons to escape the surface,
thereby causing an outgoing negative current. The photoemission current on a
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1. Introduction

spacecraft is often much larger than the charging caused by electrons in the
ambient plasma impinging on the spacecraft, in the case of the SCATHA, the
photoelectric current was greater by a factor of 20 at some points in the orbit
(Lai 2019).

Modern spacecraft are designed with spacecraft charging in mind; both
passive and active methods for controlling the potential of a spacecraft exist
and a good overview of such methods can be found in the work by Lai (Lai
2003). Nevertheless, spacecraft that carry scientific instruments as part of their
payload must still account for the effects that spacecraft charging has on the
measurements of these instruments.

One such spacecraft, and the focus of this thesis, is the joint Japan Aerospace
Exploration Agency (JAXA) and European Space Agency (ESA) mission
BepiColombo. Launched in 2018, the BepiColombo consists of two orbiters that
will begin to explore Mercury and its surrounding plasma environment at its
arrival in 2025 (Benkhoff et al. 2009). This thesis will focus on one of the orbiters
exclusively, the Mercury Magnetospheric Orbiter (MMO). The MMO carries as
part of its payload, charged particle detectors, and magnetometers to measure
the solar wind plasma around Mercury and its magnetic field respectively (Saito
et al. 2010), (Benkhoff et al. 2009).

The main aim of this thesis is to simulate the charging of the MMO spacecraft
in its polar orbit around Mercury when the spacecraft is exposed to direct
sunlight. By simulating the charging of the spacecraft we hope to gain a better
understanding how the the formation of a plasma sheet would influence the
data collection of the scientific payload onboard. We further wish to investigate
what effect the two diametrically opposed booms attached to the spacecraft
have on the charging behaviour of the MMO.

In order to accomplish this, a series of simulations will be carried out using
numerical methods. At the University of Oslo (UIO) for the past years, the
4DSpace Strategic Research Initiative has developed a new Particle-In-Cell
(PIC) called PINC, with the capability of simulating the charging of objects in
an ambient plasma. PINC will be used as a framework in this thesis to simulate
the charging of the MMO.

Due to Mercury’s close proximity to the sun, the MMO will experience a
large outgoing photoelectron current. We therefore chose to integrate methods
for including a photoemission current from the spacecraft surface into the
PINC framework. We will later in this thesis see that selecting an appropriate
method for injecting the photoelectrons into the computational domain plays a
significant role in the charging characteristics of the spacecraft. The methods
developed for photoemission must also be rigorously tested for accuracy and
precision, as such, we compare the results obtained by PINC for a testcase
previously simulated with other PIC codes. This testcase is outlined in full in
the paper by Deca et al. (Deca et al. 2013).

When the new photoemission code has been thoroughly tested, we can
apply the code to simulate the charging characteristics of the MMO. We do
this by setting up a range of numerical experiments, comparing configurations
of the MMO with and without deployed booms, for varying conditions of the
ambient plasma and external magnetic field. These results will be presented
and compared to theory with an emphasis on where our results align with
established theory, and where they deviate from expected results.
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CHAPTER 2

Theoretical background

2.1 Plasma modelling

In this section, we present a short overview of the basic mathematical framework
used in the study of plasma dynamics. In section Section 2.2.1, we briefly present
the equations of motion for single particle motion in electrical and magnetic
fields. Then in Section 2.3 we give an overview of essential plasma parameters.
Plasma is a collection of ionized gas, commonly referred to as the fourth state
of matter. The solar wind, the polar aurorae, and lighting are some examples
of plasmas that occur in nature (Chen 2018). Plasma shares many of the
same properties that describe gases, but differ in being affected by magnetic
and electrical fields: since plasma consists of charged particles, ions and free
electrons, they are subject to the Lorentz force. The Lorentz force acting on a
charged plasma particle, causes curvilinear motion further complicated by the
influence of other nearby charged particles.

2.2 Basic equations

2.2.1 Single particle description

The single particle description of a plasma describes the motion of individual
charged particles moving in imposed magnetic and electrical fields. Assuming
the force of gravity is sufficiently small, and assuming constant electrical and
magnetic fields, the single particle motion of a charge q moving at velocity v in
the electrical field E and magnetic field B (where bolded letters denote vector
fields) is described by the Lorentz force law

F = qE + qv×B, (2.1)

where the term qE is called the Electric force, and the term qv×B is called the
magnetic force. When a particle moves in a static magnetic field, and no electric
field is present, the particle will gyrate around magnetic field lines. Setting E
to zero, we have

F = qv×B. (2.2)

The cross product of the velocity and magnetic field vector means that the
magnetic force always acts perpendicularly to the direction of motion of the
particle, thereby causing the particle to gyrate. Setting the centripetal force
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equal to the magnitude of the Lorentz force, we can derive an expression for
the gyroradius rg of the motion

msv
2
⊥

rg
= |q|v⊥‖B‖, (2.3)

where the subscript on ms denotes the specie of the particle, and v⊥ denotes
the perpendicular component of velocity to the plane of B. We have also used
the notation ‖B‖ to denote the magnitude of the vector. Upon rearranging, the
expression for the gyroradius rg becomes

rg = msv⊥
|q|‖B‖ . (2.4)

The particle gyrates with an angular frequency, called the cyclotron frequency
Ωc, expressed as

Ωc = v⊥
rg

= |q| ‖B‖
ms

. (2.5)

The motion of a particle qs is in practical cases often modelled as the drift
of the centre of gyration of the particle. When also subjected to an isotropic
electrical field, this motion is called E cross B drift, or Hall drift, and can be
derived from the Lorentz force equation and Newtons’ second law and solving
for the acceleration of the particle: If we assume the drift velocity to be constant
in time, the expression for the drift VD becomes

VD = E×B
B2 . (2.6)

2.2.2 Kinetic description

In the previous section, we studied the individual motion of charged plasma
particles. Although the single particle description of plasma is useful in gaining
an understanding in how individual particles behave in isotropic magnetic and
electrical fields; it is an impractical model for analyzing macroscopic phenomena
of the plasma. The introductory text "Plasma Physics: An Introduction to
Laboratory, Space, and Fusion Plasmas" (Piel 2017) contains a good discussion
of when each plasma model should be used. The kinetic description of plasma
begins with the assumption of a density distribution of charges in the six
dimensional phase space varying over time. Let fs(x,v, t) be the continuous
probability distribution, representing the probability of finding a charged particle
of species s at time t in phase space. Multiplying the distribution of charges by
the charge of the species qs, and integrating over the velocity space, the charge
density ρs can be found. Summing over all the species of charge in the plasma
gives us the following expression for the total charge density ρc

ρc =
∑
s

qs

∫
f(x,v, t)d3v. (2.7)

Similarly, an expression for the current density is obtained by multiplying the
charge distribution by the velocity vector v and integrating the result in a
similar fashion to (2.7)

j =
∑
s

qs

∫
vf(x,v, t)d3v, (2.8)
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2.2. Basic equations

equipped with a continuous distribution function of particles in phase-space,
equations of motion that describe the flow of the charged particles can be
derived from solving the Boltzmann equation. Or alternatively, when assuming
a non-collisional plasma, the set of vector equations called the Vlasov equation
can be used

∂f

∂t
+ v · ∇fs + qs

ms
(E + v×B) · ∇vf = 0. (2.9)

Equation (2.9) is coordinate system independent, in PINC the Cartesian
coordinate system is used for all computations. The operator notation
∇v = ( ∂

∂vx
, ∂
∂vy

, ∂
∂vz

) and ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z ) has therefore been used. For a

comprehensive derivation of the Vlasov equation see (Birdsall et al. 2004) or
(Piel 2017).

2.2.3 Fluid description

In previous sections, the equations of motion for characterising plasma has been
modelled by analyzing the forces acting on individual particles. While this
approach can be helpful in gaining insight into the physics governing the plasma
behaviour, it is difficult to apply these frameworks to practical computation
models.

Another method, that reduces the complexity of computing individual
particle motions, is treating plasma as two continuous fluids. In this approach
we are able to extract macroscopic properties of the plasma, such as the density,
the velocity and the mean energy. The fluid equations are derived by taking the
velocity moments of the Vlasov equation (2.9), where the generalized velocity
moment is described as

Mn ≡
∫

vv . . .vfs(x,v, t)d3v. (2.10)

Where Mn is a tensor of rank n. The zeroth velocity moment, also called the
continuity equation, can be found by multiplying equation (2.9) by the zeroth
velocity moment

ns(x, t) =
∫
fs(x,v, t)d3v, (2.11)

the zeroth velocity moment for species s is simply the number density for the
species. Multiplying equation (2.11) by the Vlasov equation we have∫

∂fs
∂t

dv
∫

v · ∇fsv + q

m

∫
E + v×B · ∇vfsv dv = 0. (2.12)

With a considerable amount of manipulation (Chen 2018, ch 7), equation (2.12)
reduces to

∂ns
∂t

+∇ · (nsvs) = 0. (2.13)

In a similar fashion, the momentum equation can be derived from multiplying
equation (2.9) by the first velocity moment

M1 =
∫
msvfsd3v. (2.14)
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This multiplication yields

∂msnsvs

∂t
+∇ ·Ps − esns(E + vs ×B) = Fs. (2.15)

Where Ps denotes the pressure tensor field. The energy equation is derived
from the second velocity moment

M2 =
∫ 1

2msvvfsd3v. (2.16)

The second order moment described the flow of momentum, and is also
called the stress tensor (Fitzpatrick 2015, Ch. 3). Applying the second velocity
moment to equation (2.9) equation gives the partial differential equation

∂

∂t

(
3
2ps + 1

2msnsv
2
s

)
+∇ ·Qs − esnsE · vs = Ws + vs · Fs. (2.17)

Where vs is the thermal velocity of species s. The terms Qs and Ws denote
the energy flux density and total change of energy of species s respectively, and
the notation ps = Tr(P)s has been used for the scalar pressure, where Tr is
the trace function. Equations (2.13), (2.15), and (2.17), are collectively known
as the fluid equations, and written in their convective time-derivative form, can
be reduced to

Dns
Dt

+ ns∇ · vs = 0 (2.18a)

msns
Dvs

Dt
+∇ · ps − esns(E + vs ×B) = Fs (2.18b)

3
2
Dps
Dt

+ 3
2ps∇ · vs + ps : ∇vs +∇ · qs = Ws. (2.18c)

Formal derivations of the fluid equations, with some differences in notation,
can be found in the fundamental works of Chen (Chen 2018), and Fitzpatrick
(Fitzpatrick 2015).

2.2.4 Magnetohydrodynamics

Solving the equations of motion discussed in 2.2.1 coupled with Maxwell’s
equations is extremely computationally demanding. As such, two common
approximations to these equations are used, the electrostatic model, and
magnetohydrodynamics. In the electrostatic approximation of plasma,
the plasma currents are presumed small, thereby simplifying maxwell’s
equations to solving poission’s equation for the electrostatic potential.In the
magnetohydrodynamics, plasma is treated as a neutral yet conducting fluid.
Assuming a quasi-neutral, plasma at thermodynamic equilibrium Maxwell’s
equations (Hockney et al. 1988, Ch. 9-9-1) reduce to

∇×B = µ0j (2.19a)

∇×E = −∂B
∂t

(2.19b)

∇ ·B = ∇ ·E = 0. (2.19c)
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The force equation can then be rewritten in terms of current density j and the
conductivity σ as

j = σ(E + v×B). (2.20)

From the assumption of a perfectly conducting fluid, and finite current density
j, then

E + v×B = 0. (2.21)

From equation (2.21), equation (2.19b) reduces to

∂B
∂t

= ∇× (v×B). (2.22)

The equations must then be closed using the fluid continuity equations and
the momentum balance equations

∂ρ

∂t
= ∇ · (ρv) (2.23a)

ρ
dv
dt =∇p+ j×B. (2.23b)

Where ρ is the fluid density, p is the fluid pressure, and dv
dt is the material

derivative, i.e the rate of change of with respect to the moving fluid particle.

2.3 Plasma parameters

In this section, the basic parameters used in the analysis and simulation
will be introduced. We discuss the notion of a plasma temperature, present
the characteristic length and frequency scales the Debye length, and plasma
frequency. Additionally, we discuss the principle of quasineutrality in relation
to plasma.

2.3.1 Temperature

The temperature of a plasma is a measure of the average kinetic energy of the
individual species that make up the plasma. For a mono-atomic gas, with a
probability distribution f(u), Chen (Chen 2018, Section 1.3) gives the following
equation for the average kinetic energy

Eav =
∫∞
−∞

1
2mu

2f(u)du∫∞
−∞ f(u)du

. (2.24)

By defining the variables

vth ≡ (2KT/m) 1
2 and y ≡ vth

u
,

and integrating the numerator by parts, equation (2.24) reduces to

Eav = 1
2KT. (2.25)

Where K denotes the Boltzmann constant. Chen extends this argument for
particles with three degrees of freedom. Integrating Maxwell’s distribution in
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three dimensions in a similar fashion to (2.24) and cancelling the integrals, the
average kinetic energy is

Eav = 3
2KT. (2.26)

In plasma physics, it is common to use average energy rather than
temperature as they are so closely linked. Calculations are often reduced
in complexity by using the electron volt as the basic units of energy. It is
defined as the amount of energy required to move a single electron across an
electrical potential difference of 1 volt. One eV is therefore approximately equal
1.6x10−19 J, with a conversion factor to temperature, in Kelvin

1eV ≈ 11600K.

2.3.2 Debye length

The Debye length is a parameter that measures the net persistence of the
electrostatic effect of a charged particle. This effect is also known as Debye
shielding, (Hutchinson 2002, Section 3.1.2) presents a definition for the Debye
length by analyzing the potential profile of a test charge placed in a cold plasma.
In a non isothermal plasma ions can be assumed to be stationary in relation
the more energetic electrons. The electrons density is then determined from
the Boltzman factor

ne = n∞ exp
(
eφ

Te

)
. (2.27)

Where Te denotes the electron temperature, n∞ is the density of electrons far
away from the perturbing test charge, and where φ is the electrical potential
as a function of the radial distance from the test function. Inserting equation
(2.27) into Poisson’s equation;

∇2φ = − ρ

ε0
= −e

ε0
(ni − ne) = −e

ε0
n∞

[
1− exp

(
eφ

Te

)]
. (2.28)

Assuming eφ≪ Te, then it is reasonable to only keep the linear terms of
the Taylor expansion of the exp

(
eφ
Te

)
term on the right hand side of equation

(2.28). Poisson’s equation then takes the form of Helmholtz equation

∇2φ− 1
λ2
D

φ = 0, (2.29)

where the Debye length λD has been defined as follows:

λd ≡
√
ε0kTe
nee2 . (2.30)

The solution of equation (2.29) takes the form

V ∝ exp
(
±x
λD

)
.

The Debye length is then a measure of the shielding distance or thickness of
the sheath that forms around a charged object embedded in a plasma (Chen
2018, Section 1.4).
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2.4. The solar wind plasma environment

2.3.3 quasineutrality

Now that we have presented an expression for the Debye length, the
approximation of quasineutral plasma can be defined: When the length scale
of interest is much smaller than the Debye length, i.e λD ≪ L, the density of
ions is approximately equal to the density of electrons (Chen 2018, Section 1.4).
Or in other terms

ni ≈ ne ≈ n. (2.31)

Where n is a common density called the plasma density. When this
approximation holds, the plasma is said to be quasineutral. Note that this
approximation still allows for variations in charge at smaller length scales than
λD.

2.3.4 Electron plasma frequency

In plasma simulations of the solar wind an important physical phenomena
is plasma oscillation, otherwise called Langmuir waves. In a neutral plasma,
disturbances in the density of electrons (and ions) cause oscillations due to
the restorative Coulomb force. For solar wind, and other cold plasmas, the
frequency of the oscillations of electrons are expressed as

ωpe =

√
nee2

ε0me
. (2.32)

ωpe is called the electron plasma frequency. A similar expression exists for the
oscillations of ions, but due to their higher mass they oscillate much slower
rate than the electrons. Equation (2.32) is formally derived from Maxwell’s
equations (Fitzpatrick 2015), (Hutchinson 2002) by assuming an infinite plasma
not affected by an external magnetic field, no thermal motion i.e KT = 0, and
ion fixed in space in a uniform distribution (Chen 2018, Section 4.3).

2.4 The solar wind plasma environment

In this section, a brief overview of the physics and basic plasma parameter
values of the solar wind are presented. These data will be necessary in building
the computational parameters required for the charging simulations of space
probes moving in the interplanetary medium presented later in this thesis.

The solar wind is a non-isothermal plasma with a temperature averaging
around 10 eV , that is primarily composed of free electrons, ions and alpha
particles. The density of the solar wind plasma is relatively low as compared to
other naturally occurring plasmas with a mean value of around 5 cm−3. It flows
with a drift velocity ranging from 400 km/s up to 900 km/s during periods of
high solar activity (Lai 2019). In close proximity to the sun, the solar wind
density increases significantly, potentially charging space probes to values as
low as hundreds of volts (Lai 2019), (Deca et al. 2013), (Garrett 1981).

Interactions with solar system objects

The properties of the solar wind can change significantly in regions in close
proximity to solar system objects. Planets with internal magnetic fields, will
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cause magnetohydrodynamic (MHD) shock formation (Luhmann et al. 2004),
(Benna et al. 2009), and bodies without an intrinsic magnetic field may still
affect the flow of the solar wind plasma due to induced magnetic fields from
solar wind charge collection or interaction with the ionosphere of the body.

This thesis is concerned with simulating the charging characteristics of the
BepiColombo satellite, the MMO (Mercury Magnetospheric Orbiter). Mercury
has an intrinsic, yet relatively weak, magnetic field. A bow-shock forms due to
the compression of the solar wind from the obstruction of the magnetosphere of
the body in question, the shocks location and properties changes dynamically
depending on the pressure exerted by the solar wind. Immediately behind the
bow-shock is the region called the magnetosheath. In this region the charged
particles have a lower density yet higher average temperature than that of the
solar wind (Benna et al. 2009).

Separating the magnetosphere of the earth, or Mercury, is the magnetopause.
The magnetopause is defined as the region around an object where the dynamic
pressure of the solar wind balances with the pressure from the intrinsic magnetic
field of the object. Beyond the magnetopause, the intrinsic magnetic field of
the planet dominates. In this region charged plasma particles move in spirals
following magnetic field lines of the planet, the magnetosphere of Earth also
contains a region of high density cold plasma called the plasmasphere. The
composition of the plasma, its temperature and density in these regions vary
significantly. The charging of a spacecraft will then vary significantly as a
spacecraft orbits a planet, and it is therefore important to determine the
location of these regions with respect to the planet.

The location of the magnetopause of a planet with an intrinsic field can
be approximated by substituting the distance of the magnetopause rM into
the balance expression for the planets magnetic field strength. Balancing the
dynamic pressure of the sun with the magnetic pressure (Meyer-Vernet 2007),
we have

ρwv
2
w ∼ B2

µ/2µ0. (2.33)
Where ρw and vw is the solar wind density and velocity respectively, Bµ is
the dipole magnetic field strength, and µ0 is the vacuum permeability. The
magnetic field strength is expressed as

Bµ = (µ0/4π)µ/r3
M , (2.34)

where µ is the permeability of the planet. However, the magnetopause must
carry a current to confine the planets dipole magnetic field. This current
produces a magnetic field on the order of magnitude to Bν . Therefore, just
inside the magnetopause, the magnetic field strength is approximately twice
Bν . The balance equation (2.33) then becomes

ρwv
2
w ≈

(2Bµ)2

2µ0
. (2.35)

Substituting in the magnetic field strength from equation (2.34) the distance
of the magnetopause on the sun-ward side to the planet is approximately

rM ≈

(
µ

4π

√
2µ0

ρwv2
w

) 1
3

. (2.36)
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This can be expressed as a relative distance by introducing the radius of the
planet R and the magnetic field strength at the equator B0 = (ν0/4π)ν/R3

rm
R
≈
(

2B2
0

ν0ρwv2
w

)1/6

. (2.37)

In her book (Meyer-Vernet 2007), Meyer-Vernet also gives an approximation
for the distance from the planet to the bow-shock by assuming a conical function
describing the radius r from the foci (the planet) to the bow shock. The radius
r on the line extending from the planet to the sun is approximately

r ' (1 + ε) rM . (2.38)
Where ε is the eccentricity of the conic section. Typically this value is around
ε ' 0.5.

2.5 Spacecraft charging in plasma

A spacecraft collects charged particles when moving relatively to ambient plasma,
this change in net charge on the spacecraft causes an electrical field according
to Gauss’s Law (Lai 2019, Ch. 1). When the charging of the spacecraft reaches
a non-oscillatory steady state, the sum of currents from all the species in the
plasma is zero, and the net charging is constant. This is expressed as

dQ
dt =

∑
s

Is(V ) = 0. (2.39)

The solution of equation (2.39) for V is called the floating potential of the
spacecraft, and is relative to the neutral plasma. The floating potential of a
spacecraft in a drifting plasma is usually negative, since the electrons move at
a higher speed than the ions.

For complex geometries it is non-trivial to find analytical expressions for
the currents Is charging the spacecraft; in this section, Langmuir probe theory
and orbital motion-limited theory is discussed as the basic tools for analyzing
spacecraft charging with simple geometries. The primary charging mechanisms
that effect the overall potential of a spacecraft are then presented. Special
attention is given to the photoelectric effect and the spacecraft photoelectric
current, as the implementation of this current in a computational model is one
of the main objectives of this thesis.

2.5.1 Langmuir probe theory

A Langmuir probe is a simple device used in the laboratory to measure the
temperature, the density, and the electrical potential of a plasma. A Langmuir
probe consists of one or more, often spherical, electrodes inserted into the
ambient plasma. Either a time varying or constant potential is induced between
the electrodes, or between the electrodes and some electrical ground, causing the
probe to collect charged particles. By analysing the current I(V ) for different
potentials, the properties of the surrounding plasma can be extracted (Garrett
1981), (Lai 2019), (Miloch et al. 2012). When immersed in a plasma, a spacecraft
behaves in a similar fashion to a Langmuir probe. The difference is that in
the case of a spacecraft a potential is not applied, but can be measured as a
response to incoming and outgoing currents (Lai 2019, Ch. 2).
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Orbital motion-limited theory

In orbital motion limited theory, or OML theory for short, the charge flux
impinging on a spacecraft is determined from the conservation of energy and
angular momentum of species travelling in proximity to a spacecraft (Lai 2019),
(Garrett 1981). From conservation of energy, an expression for the impact
velocity on a spherical spacecraft can be obtained, and from conservation of
momentum an expression for the distance from the centre of the spacecraft to
the straight line of travel can be found. In (Lai 2019, Ch. 2.1) these expressions
are given as

va = vth

(
1− qφ

kT

)
(2.40a)

h = a

(
1− qφ

kT

)
. (2.40b)

Integrating the particle distribution fs(x,v, t) using equation (2.40a) and (2.40b)
as limits of integration, we can find the flux of particles that impact the
spacecraft. It is often convenient work with a normalized potential variable in
the formulas for current, define

ηs ≡ −
qsφ

kTs
. (2.41)

Using the normalized potential, particles with ηs < 0 will be repelled, and
particles with ηs > 0 will be attracted to the spacecraft (Marholm 2019).
Expressions for the integration of the particle distribution has been found for
some simple geometries, for species with ns > 0 with the assumption of a plasma
with no internal magnetic field and zero drift, by Mott-Smith and Langmuir
(Mott-Smith et al. 1926)

Is(ηs) = Ith,s (2.42a)

Is(ηs) = Ith,s

(
2√
π

√
ηs + exp(ηs) erfc(

√
ηs)
)

(2.42b)

≈ Ith,s
2√
π

√
1 + ηs (2.42c)

Is(ηs) = Ith,s(1 + ηs). (2.42d)
Where equations (2.42a), (2.42b) and (2.42d) are the functions of current for a
plane, a cylinder, and a sphere respectively. These functions are derived based
on the assumption that the cylinder is long compared to λD, the radius of the
sphere and the cylinder to be small compared to λD, and the plane to be wider
than λD. The notation Ith is used to denote the current collected when the
object is neutrally charged, i.e ηs = 0, and erfc(√ηs) is the complementary
error function defined as

erfc(z) ≡ 1− erf(z)

= 2√
π

∫ ∞
z

e−t
2
dt.

Finally, for any repelled species, i.e. ηs < 0, the current is given by
Is(ηs) = Ith,s exp{ηs}. (2.44)

Where equation (2.44) holds for any geometric shape.
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The photoemission current

In 1921, Albert Einstein was awarded the Nobel price in physics for his discovery
of the mathematical law governing the photoelectric effect (Nobel Media AB
2020). Qualitatively, the photoelectric effect occurs when a quantum of light,
a photon, is absorbed by an electron in some material causing its energy to
exceed the binding energy of that material and being ejected from the surface
of the material. This binding energy of the material is called the work function
of the material. Mathematically, with differences in notation (Einstein 1905),
Einstein’s law is expressed as

E = hν −W. (2.45)

Where E denotes the maximum kinetic energy of the ejected electron, h is
Planck’s constant, ν is the wavelength of the light quanta, and Wf denotes
the work function of the material. It is often useful in engineering to express
equation (2.45) in terms of the threshold frequency ν0 at which the photons
have enough energy to cause photoemission. Using the relation E = Wf = hν0,
equation (2.45) becomes

Ek = h(ν − ν0). (2.46)
From equation (2.45), it is evident that the photoelectron yield is dependent on
the material composition of the spacecraft. Table 2.1 shows the work functions
for some of the materials commonly used in space applications, these data have
been reproduced from (Feuerbacher et al. 1972) and (Taylor and Francis Group
2019).

Material Work function (eV)
Aluminium 4.0

Gold 4.2
Silver 4.62

Stainless steel 4.4
Graphite 4.7

Table 2.1: Work function for common materials used in space applications

With an expression for the minimum frequency below which photoemission
occurs it possible to compute the photoelectron current; defining a photoelectron
yield Y (ω) (photoelectrons per photon at some energy ω) as

Y (w) =
{

1 if ω > hν0

0 if ω 6 hν0.
(2.47)

Then, the photoelectron current flux Jph can be found by integrating over the
energy of the incoming photons (Chen 2018, Ch. 7)

Jph =
∫ ∞

0
Y (ω)fs(ω) dω. (2.48)

Strictly speaking, equation (2.47) is only an approximation for the yield of
photoelectrons. A more accurate description has to account for the amount
of photons reflected from the surface, thereby not contributing to the total
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photoelectron current flux. Defining the reflectance of the surface exposed to
sunlight as R(ω), equation (2.48) becomes

Jph(R) =
∫ ∞

0
Y (ω,R)fs(ω) dω. (2.49)

Both the photoelectron yield, and the reflectance of the spacecraft material is
additionally dependent on the incident angle θ of the surface to the direction of
travel of the photons. Lai gives the following equation for current flux Jph(θ)
when incidence angle is accounted for

Jph(θ) =
∫ ∞

0
fs(ω)Y ∗[ω,R(ω, θ)][1−R(ω, θ)] cos θ dω. (2.50)

Where Y ∗(ω,R(ω, θ)) is the photoelectron yield per absorbed photon. Using
estimates for terms Y ∗ and 1 − R(ω, θ) and cancelling cosine terms in the
product, equation (2.50) becomes

Jph(θ) =
∫ ∞

0
fs(ω)Y (ω)(1−R(ω)) cos θ dω (2.51a)

Jph(θ) = Jph(0) cos θ. (2.51b)

Finally, the photoelectron current Iph(θ) can be expressed as

Iph(θ) = Jph(0)A cos θ, (2.52)

where A is the surface area of the spacecraft exposed to sunlight. Inserting
equation (2.52) into equation (2.39), and with a known photon flux from
blackbody radiation theory, the floating potential for a spacecraft subject to
photoelectric and ambient plasma charging can be computed.

The sun as a blackbody radiation source

In the previous section, an expression for the photoelectron current was shown.
If we are to compute the floating potential of a spacecraft, it is necessary to
either know the value of the photoelectron current a priori or to compute its
value based on the amount of photon flux through the spacecraft surface. In this
section we discuss the theory of blackbody radiation as a method of computing
solar photon flux.
A blackbody is an object in thermodynamic equilibrium that absorbs all
frequencies of radiation, without reflecting any of the incoming radiation (Planck
2020). In Planck’s seminal paper on the theory of heat radiation, Planck gives
the following three conditions that a blackbody must satisfy (Planck 2020)

First, the body must have a black surface in order to allow the
incident rays to enter without reflection. [...] Second, the black
body must have a certain minimum thickness depending on its
absorbing power, in order to insure that the rays after passing into
the body shall not leave it again at a different point of the surface.
[...] Third, the black body must have a vanishingly small coefficient
of scattering. Otherwise the rays received by it would be partly
scattered in the interior and might leave again through the surface
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The sun does not perfectly absorb all frequencies of electromagnetic radiation,
and neither is it in perfect thermodynamic equilibrium; sunspots have a
measurably lower temperature than the surrounding photosphere (Solanki
2003). However, energy absorbed and emitted by the sun is in steady state and
can therefore be approximated as a black body radiator.

In "The theory of heat radiation" Planck derives the following expression
for the energy density of the electromagnetic radiation emitted by a blackbody

B(ν, T ) = 2hν3

c2
1

exp
(
hν
kBT

)
− 1

. (2.53)

Where ν is the frequency of the electromagnetic radiation emitted, T is the
temperature of the blackbody measured in Kelvin, c is the speed of light, h is
the planck’s constant, and kb is the Boltzmann constant. Equation (2.53) is
called Planck’s law, and can be similarly expressed in terms of the wavelength
of the radiation λ.

B(λ, T ) = 2hc2
λ5

1
exp
(

hc
λkBT

)
− 1

. (2.54)

The spectral energy computed from the equations above can be expressed
in many units depending on the problem at hand. Of particular interest in
this thesis is expressing the spectral energy as the number of photons emitted
at a particular wavelength. In the derivation of Planck’s law; Planck is often
credited as the father of modern quantum mechanics by historians for his idea
that the radiation emitted by a blackbody at certain frequencies as packets of
energy

Figure 2.1 plots the irradiance given by equation (2.54) for some values of
T , the suns radiative output can be approximated by assuming a blackbody
temperature T ≈ 5800K, shown in the figure as a blue line.

The radiation calculated from equation (2.53) is commonly given in the units
Wm−2Sr−1nm−1, called spectral radiance, it is the radiance of a surface per
unit wavelength. In figure 2.1, the radiance is multiplied by the ratio R�

a⊕
(where

R� is the radius of the Earth, and a⊕ is the solar radius) to give the spectral
irradiance as measured on earth, the units then are given as W−2m−2nm−1 .
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2. Theoretical background

Figure 2.1: Irradiance of blackbody radiation for different temperatures

Figure 2.2: Solar irradiance as measured onboard the International Space
Station, reused from ESA webpages (ESA 2020a)

Comparing figure 2.1 to figure 2.2, it can be seen that aside from smaller
fluctuations in electromagnetic radiation, due to absorption of energy at certain
frequencies in the solar atmosphere, our approximation of the sun as a blackbody
emitter is a good one.

Given the work function (or more accurately, the cut-off wavelength or
frequency) of the material of a spacecraft, and assuming a photoelectron yield
of one photoelectron to one photon under the cut-off wavelength, integrating
equation (2.54) gives the photoelectron flux emitted by the surface of a spacecraft
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2.5. Spacecraft charging in plasma

exposed to sunlight. Integrating planck’s law for a given frequency band is non-
trivial, in 3, the method for integrating Planck’s law by Widger and Woodall
(Widger et al. 1976) is presented in detail.

Secondary and backscattered electrons

Secondary and backscattered electrons can, depending on the ambient plasma
environment and the material properties of the spacecraft in question, contribute
significantly to the overall charge of a spacecraft. Both secondary and
backscattered electrons provide a source of outgoing electrons from surfaces
(Lai 2019), (Lai 2005), (Miloch 2015). At higher electron temperatures, the
electrons impinging on a spacecraft may have high enough energy to interact
with the electrons embedded in the surface material thereby releasing one or
more electrons from the surface. The yield of secondary electron emission, or
probability of emission, is a function of energy and is denoted as δ(E).

In a finite range ambient electron temperature, certain materials δ(E) can
exceed one; gold, aluminum oxide, and Kapton are some common materials
used in spacecraft for which δ(E) exceeds one (Lai and Tautz 2006), (Lai 2019).
When δ(E) > 1 there is a net total flux of outgoing electrons thereby causing
the spacecraft to charge positively. Since the outgoing flux of electrons are
dependent on the incoming electrons, one can calculate the secondary electron
flux based on the incoming electron distribution f(E). The current flux equation
for secondary electrons is then

js =
∫ ∞

0
δ(E)f(E)dE. (2.55)

Backscattered electron emission is similar to secondary electron emission in
that the mechanisms are dependent on incoming electrons from the ambient
plasma. An electron is backscattered due to an inelastic collision with some
surface material. The outgoing electron is the same electron that collided with
the surface material, backscattering of electrons can then be thought of as a
form of reflection. Since the outgoing and incoming electron is the same particle,
the probability of backscattering, η(E), cannot exceed 1.

Similarly to the secondary electron emission mechanism, the backscattering
effect is dependent on the distribution of the electrons in the ambient plasma,
so a similar integral to equation (2.55) can be formed for the backscattered
electron current flux

jb =
∫ ∞

0
η(E)f(E)dE. (2.56)

Artificial sources of spacecraft charging

Artificial sources of charging can occur both as a method for charge mitigation
on spacecraft, as well as an adverse side effect of charged particle emitting
equipment onboard. The SCATHA spacecraft launched by NASA was one of the
first flown mission that successfully proved that spacecraft could be discharged
safely without damaging scientific instruments (Wade 2020).

Charge mitigation methods can be subdivided into active and passive
methods, the difference being passive methods require no control mechanisms
and are automatic, whereas active mitigation requires some form of control
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2. Theoretical background

system. These systems can be further subdivided into where the discharging
occurs, whether it is on the spacecraft frame or dielectric surfaces.

One of the simplest methods for discharging a spacecraft is by using a
simple sharp spike protruding from the spacecraft surface. Since the radius of
curvature is small at the tip of the spike, a large electrical field is generated
causing electron emission from the tip. The flux of outgoing electrons reduces
the negative potential the spike is connected to. Lai (Lai 2003) gives the
following equation, with differences in notation, for the current flux of a sharp
spike

jspike = AE2 exp
(
−BW

3
2

E

)
. (2.57)

Where A and B are some constant, E is electric field strength and W is the
surface material work function.

Not all sources of artificial charging are beneficial however, ion engines expel
high density plasma that may return to the already charged surfaces of the
spacecraft. Differential charging between conducting and dielectric surfaces can
occur in this case, causing damage to onboard electrical equipment. Deriving
analytical expressions for charging due to electrical thrusters is impractical,
and is typically simulated; (ESA Science & Technology - BepiColombo plasma
simulation 2020) shows one such simulation of the mercury transfer module
thruster on the BepiColombo spacecraft.
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CHAPTER 3

Numerical Method

In the previous chapter, the basics of plasma physics and the mathematical tools
required to analyze plasma dynamics were introduced. Solving the equations
of motion for the millions of plasma particles analytically is impractical, this
section will outline the Particle-in-Cell (PiC) algorithm as a framework for
computer simulation of plasma. A method for implementing photoelectron
emission from conducting surfaces is emphasized. First, a general description of
the PiC algorithm is introduced as well as the stability criteria of the algorithm.
Then the implementation of the PiC algorithm in the PINC framework is
discussed with emphasis on the implementation of object charging in plasma.
Finally, a method for implementing photoelectron emission into the PINC object
module is presented.

3.1 Particle In Cell algorithm

The particle in cell algorithm is a method used in computational plasma physics
to analyze large systems of many particles in a computationally efficient manner.
This is achieved by the introduction of super particles, computational particles,
that represent many real particles, then interpolating the forces acting on these
super particles to a spatial grid.
There are three main ways of simulating the forces acting on a system particles.
The particle-particle method (PP) where forces are computed between individual
particles. The particle-mesh method (PM) where the forces between the particles
are computed as field quantities on the spatial mesh. And the particle-particle-
mesh method (PPPM or P 3M), which is a combination of the two earlier
methods (Birdsall et al. 2004).
By far the simplest method computationally is the PP method. However, since
all forces between each individual pair of particles are computed, the method is
also the most computationally expensive. If the system of interest contains Np
particles, then the number of operations scale as O(N2

p ) (Hockney et al. 1988,
p.20). It is therefore impractical to use the PP method for all but the simplest
systems, even on highly parallel High Performance Computers (HPC) available
today.
The PM method computes the forces of a system as field quantities, first by
assigning the charges in the system to the mesh by some method, then solving
Poisson’s equation on the mesh, then computing the forces on the mesh points
and interpolating to the individual particles. This method is therefore faster,
but usually not as accurate as computing the forces on all particle pairs directly.
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3. Numerical Method

With Ng grid points, the complexity of this method scales as O(Ng logNg)
(Hockney et al. 1988) thus making this method much more applicable to larger
systems than the PP method.

Figure 3.1: Particle in cell compute cycle

The PiC algorithm is an example of the PM method, figure 3.1 shows an
overview of a computational cycle for each timestep in the PiC algorithm.
Beginning at the box on the right in the figure, a distribution of Np particles
with position xp is interpolated to get the charge ρg and current density jg at the
surrounding grid points. The two most common methods for this interpolation
is the Nearest Grid Point (NGP) scheme, and Cloud in Cell (CIC) scheme.
Once the charge and current densities are known on the grid, the next step
is to solve for the E and B fields. This is accomplished by solving Maxwell’s
equations at the grid points

Gauss′s Law : ∇ ·E = ρ

ε0
(3.1a)

Gauss′s Law for magnetism : ∇ ·B = 0 (3.1b)

Maxwell − Faraday′s equation : ∇×E = −∂B
∂t

(3.1c)

Ampere′s Law : ∇×B = µ0

(
J + ε0

∂E
∂t

)
(3.1d)

Where ρ is the charge density, ε0 is the vacuum permittivity, µ0 is the vacuum
permeability, and E and B are the electric and magnetic fields respectively.
With the electric and magnetic field computed at the grid nodes, the force on
each super particle is computed from Lorentz’s force equation and interpolating
back to the position of the super particles. Using some numerical integrator the
new position and velocity of the super particle is updated from the computed
forces, and the cycle can then be repeated for the next timestep.
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3.2. Particle in Cell implementation in PINC

3.2 Particle in Cell implementation in PINC

In this section, we discuss the methods implemented in PINC that are required
for the main PiC compute cycle described in figure 3.1 with focus on the
particular schemes used in this thesis. The scheme used in PINC for integrating
the equations of motion are presented, followed by the multigrid field solver, and
finally the particle weighting scheme is discussed. PINC is the work of many
researchers, but have been mainly implemented by Sigvald Marholm, Gullik
Killie (Killie 2016), Vigdis Holta (Holta 2018), and Steffen Brask (Brask 2018).
Significant contributions have also been made by Jan Deca, who implemented
the module for object charging in PINC. This module will be discussed in more
detail later in this chapter.

3.2.1 Integration of the equations of motion

Planet Mercury possesses and internal magnetic field, as such the plasma
surrounding the planet is magnetized. To solve for the motion of magnetized
plasma, the Boris algorithm is used to integrate the equations of motion. The
Boris algorithm is a variant of the well known leapfrog method, in which the
position and velocity of a particle is updated at half timesteps in staggered
fashion. Like the leapfrog method, the Boris algorithm is an energy conserving
integrator; the merits of the Boris algorithm as the de facto particle mover is
further expanded upon in the publication (Qin et al. 2013).
Using the same notation as defined in (Birdsall et al. 2004) the Lorentz force is
discretized as

xt+∆t
p − xtp

∆t = vt+ ∆t
2 (3.2a)

vt+∆t
p − vt−∆t

p

∆t = qs
ms

(
Ep +

vt+∆t
p − vt−∆t

p

2 ×Bp

)
(3.2b)

In the Boris algorithm equation (3.2b) is decomposed into a series of updating
steps. First, half the acceleration is added, then the intermediary velocity vector
is rotated due to the external magnetic field B, and finally the second half of
the acceleration is added.

v− = vt−∆t
p + qs

ms
Ep

∆t
2 (3.3a)

v
′

p = v−p + v−p ×T (3.3b)

v+
p = v−p + v

′

p × S (3.3c)

xt+∆t
p = v+

p + qs
ms

Ep
∆t
2 (3.3d)

Where the rotational parameters T and S are expressed as
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T = B̂p · tan
(
qs∆t
2m Bp

)
(3.4a)

S = 2T
1 + ‖T‖2

. (3.4b)

Where B̂p is the magnetic unit vector acting on particle p. Equations
(3.3) are equally suited for plasmas with time varying magnetic fields as for
electrostatic plasma with a constant external magnetic field. Since PINC is an
electrostatic model, equations (3.4) is solved once before the main time loop,
then applied to each call to the mover method.

3.2.2 Field Solver

Several field solvers exists in PINC, in this thesis the multigrid solver developed
by Killie (Killie 2016) has been used. The multigrid solver is an iterative
method; the basic principle of the method in a PiC context is to solve Poisson’s
equation first on a coarse grid, then using the solution on the course grid as a
guess, solve the equation again for a finer grid. The solution for the coarse grid
speeds up the solution for the finer grid, reducing the total computational time
required to converge to an accurate solution.

There are three main types of multigrid solver, divided into the so called
V-cycle, W-cycle and F-cycle, defined by when the algorithm should use a
coarser or finer mesh than used in the previous iteration. Multigrid solvers
are highly flexible, and many researchers have spent considerable effort in
order to optimize the number of iterations (Trottenberg et al. 2000). Highly
optimized multigrid solvers have a local complexity given by O(Ng), with a
global complexity of O(Nglog(Ng)) when using domain decomposition like in
the case of PINC (Trottenberg et al. 2000).

As described earlier, the multigrid method solves Poisson’s equation in
PINC. Strictly speaking, the solution to Gauss’s law, equation (3.1a) is solved.
In PINC however, electrostatic plasma is assumed, in this case the electric field
is irrotational, i.e. ∇×E = 0 and the electric field can then be represented as
the gradient of a scalar potential field E = ∇φ. Substituting the potential field
back into Gauss’s law, equation (3.1a) we have Poisson’s equation

∇2φ = ρ

ε
. (3.5)

In PINC this equation is solved iteratively using the Gauss-seidel method.
Gauss-Seidel discretizes (3.5) using the Forward-Time Central-Space (FTCS)
finite difference scheme. In one spatial dimension, the electric field in terms of
the potential becomes

Eg =
φn+1
g − φn−1

g

2∆x . (3.6)

Poisson’s equation, equation (3.5), becomes

φn+1
g − 2φng + φn−1

g

∆x2 = −ρg
ε
. (3.7)
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Where the subscript g implies the evaluation of φ at grid points, and the
superscript p denotes the grid node index. Analogous expressions can be formed
in two and three spatial dimensions.

3.2.3 Particle weighting

In the particle in cell method particles can exist anywhere in the continuous
spatial computational domain, but forces and charge densities are calculated at
discrete grid points (Birdsall et al. 2004, chapter 2.6). Historically, the NGP
method and CIC method are used to weight computational particles to the grid.
Higher order schemes exists, such as Quadratic Splines (QS) and Cubic Splines
(CS), see (Okuda et al. 1979) for an overview on the usage of higher order
weighting schemes in plasma simulation. In PINC the CIC method is used to
weight particle parameters to the grid. Using similar notation as Verboncoeur
(Verboncoeur 2005) the weighting function is defined as

wi,j,k = xp −Xi,j,k. (3.8)

Where xp is the position of particle p, and Xi,j,k is the position of the nearest
grid point closest to the origin. Using equation (3.8), the charge distribution of
particle p to a two dimensional grid can be found as

Qi,j = qp (1− wi) (1− wj)
Qi+1,j = qp wi (1− wj)
Qi,j+1 = qp (1− wi)wj

Qi+1,j+1 = qp wi wj .

With similar equations for the three dimensional case can be found from equation
(3.8). From the charge distribution found above, the charge density can be found
directly by dividing the charge distribution by the volume of a computational
cell, i.e

ρi,j,k = Qi,j,k
Vi,j,k

.

From the charge density and current density, PINC computes the electric and
magnetic field using the multigrid field solver module.

3.3 Simulation stability and constraints

3.3.1 Spatial resolution

In PINC, and in other particle in cell codes, particles move in continuous space,
but their macroscopic properties are projected to a discrete grid. Representing
continuous variables on a discrete grid leads to numerical instability called
finite grid instability (Lapenta 2011, section 5.1.). The analysis of finite grid
instability is beyond the scope of this thesis, a rigorous mathematical description
of finite grid instability can be found in for example Plasma physics via computer
simulation (Birdsall et al. 2004). The most important result of these analyses
is that the grid spacing ∆x must satisfy the condition

∆x
λD

< C. (3.10)
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Where C is some constant dependent on the discretization scheme used. In the
case of the CIC scheme, the constant C is approximately equal to π. Failure
to meet this condition in a PIC simulation leads to unphysical heating of the
plasma. Equation (3.10) must therefore be satisfied in all directions of the full
computational domain to ensure conservation of energy.

3.3.2 Temporal resolution

In PINC, the boris algorithm is used for particle pushing. The boris algorithm
is an explicit forward time integration scheme, and as such simulations run with
PINC must satisfy temporal stability constraints associated with such schemes.
A Von Neumann stability analysis of a harmonic oscillator without an external
magnetic field given by the following equation (Hockney et al. 1988), (Birdsall
et al. 2004), (Lapenta 2011)

qs
ms

Ep(xp) = −Ω2xp, (3.11)

leads to the equation (
Ω∆t

2

)2
= sin2

(
ωN∆t

2

)
. (3.12)

Where ωN is the numerical oscillation frequency. For values outside the range
[-1,1] the sine function has only complex solutions, thus for timesteps ∆t where
Ω∆t > 2 is true, the numerical oscillation frequency will be complex. Any
practical simulation of the harmonic oscillator will therefore become unstable
due to unbounded numerical heating. Thus, the finite time stability criteria
can be expressed as

Ω∆t < 2. (3.13)

In this thesis, for solar wind simulations, the frequency Ω that needs to be
resolved is typically the electron oscillation frequency of the cold solar wind
plasma.

3.3.3 The CFL condition

The Courant–Friedrichs–Lewy condition, or CFL condition, is a stability criteria
linking the finite timestep and grid step, ∆t and ∆x respectively. The condition
must be met everywhere in the computational domain if the explicit integrator
in PINC is to converge to a solution.A common formulation of the condition is
given as (Marholm 2019)

∆x
∆t > C. (3.14)

Where C is some characteristic speed. The constant C is solver scheme
dependent, and is often set as C = 1 for explicit schemes; in PINC this
qualitatively means that a particle is restricted to move by maximum one
computational cell per timestep as the length scale is normalized to the grid
step size.
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3.4 The PINC Object module

The object module in PINC contains a set of functions and data structures
necessary for simulating objects immersed in plasma. It was developed primarily
by Jan Deca and Sigvald Marholm as a part of a collaboration between the
University of Oslo and University of Colorado Boulder. In the object module,
spacecraft-plasma interations are simulated using the same Capacitance Matrix
method outlined by Miyake and Usui in developing the PIC code EMSES (the
ElectroMagnetic Spacecraft Environment Simulator) (Miyake and Usui 2009).

In this section the method used in PINC for defining objects on a structured
Cartesian grid is discussed in brief; a description of the Grid data structure
and associated functions in PINC is also introduced as all scalar and vector
fields are represented in PINC using this data structure, including conducting
objects which are defined as scalar fields. The capacitance matrix method is
then outlined, with an emphasis on the equations that have been implemented
in PINC.

3.4.1 Representing objects on a grid

In the PINC object module, conducting objects are represented as points on
the Cartesian computational grid, and stored in an input HDF5 (Hierarchical
Data Format) file. Internally in PINC, this file is converted to a PINC Grid
structure instance and is stored as a subset of the Object data structure which
additionally contains data on which nodes are internal to the object, which
nodes are on the surface, and data required in photoemission computations.
Required data for photoemission in the Object structure will be described in
the later section on implementation of photoemission in PINC. The PINC Grid
structure is a generalized data structure that stores N-dimensional data in a
flat manner. The values on the grid is stored in a lexicographical manner.

3.4.2 The capacitance matrix method

The general idea of the capacitance matrix method is to pre-calculate a
capacitance matrix for each object immersed in the plasma in question. Applying
the computed capacitance matrix, the charges due to super-particles impinging
the object can be redistributed to the surface of the object, after redistribution
of charges a charge density and electric potential correction is computed and
spacecraft potential can be updated. super-particles located within the object
are then removed from the computational domain after their charges have been
redistributed. This modifies the PIC computational cycle in figure Figure 3.1
slightly, adding steps for redistributing charges that impinge on the spacecraft
and another iteration of the Multigrid solver to update the fields.

The capacitance matrix relates the potential φ and charge distribution ρ as
follows (Miyake and Usui 2009)

ρi =
NG∑
j=1

Aijφj . (3.15)

Where the matrix A represents the capacitance matrix, where i and j are the
indices of the grid, and NG is the total number of grid points. Inverting matrix
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A, and defining B ≡ A−1, the potential φ can be calculated as

φi =
NG∑
j=1

Bijρj . (3.16)

After redistribution of charges, the charge density on the conducting body
surface ρs changes. The correction in potential on the spacecraft surface δφs
can then be found from the charge density correction δρs as

δφs,i =
NB∑
j=1

Bijδρ, (3.17)

where NB is the total number of surface nodes, and NB < NG. By forming a
subset of matrix B with the values associated with the surface nodes, with NB
rows and columns, and inverting this matrix the charge density correction on
the surface can be found

δρs,i =
NB∑
j=1

Cijδφs,j . (3.18)

Where the matrix C is the inverted sub matrix of B. Qualitatively C is the
capacitance matrix of the conducting surface. In the PINC object module,
matrix C is constructed and stored before the main simulation loop begins by
placing a unit charge on each grid point defining the conducting object surface,
setting all other grid points to zero charge, and then solving for the potential:
This forms the sub matrix of matrix B which can then be inverted to find
the surface capacitance matrix C, details of this implementation are found in
appendix ??.

In the simulation time-loop of PINC, after the potential has been updated,
but before charges have been distributed to the surface, the surface potential
of the conducting body φs,j is not the same value for all values of j and is
therefore not at an equipotential. The correction in potential in terms of the
equipotential φc of the surface is given by

δφs,j = φc − φs,j , (3.19)

substituting equation (3.19) into equation (3.18), the charge density correction
equation becomes

δρs,i =
NB∑
j=1

Cij(φc − φs,j). (3.20)

The equipotential φc is unknown in equation (3.20); by using the fact that
charges must be conserved when impinged charges are redistributed to the
object surface, the equipotential can be calculated. Conservation of charge
takes the form

NB∑
i=1

δρs,i = 0, (3.21)

substituting equation (3.20) into equation (3.21), φc can be computed as

φc =
∑
i

∑
j Cijφs,j∑

i

∑
j Cij

. (3.22)
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In the conducting object run mode of PINC, after a first pass of the multigrid
Poisson solver, equations (3.20) and equation (3.22) are solved to redistribute
absorbed charged particles, a new pass with the Poisson solver then solves the
new potential field using the correction to the charge density field. Details on
the implementation of these equations in PINC can be referenced by contacting
the 4DSpace group at the University of Oslo for access to the PINC code
repository.
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3.5 Implementing photoemission in PINC

Photoelectric emission by sunlit spacecraft surfaces contribute significantly to
the overall charge of a spacecraft. In fact, in normal conditions in geosynchronous
orbits, the photoelectron flux exceeds that of the ambient electrons (Lai and
Tautz 2006). When there is a net outgoing current flux, spacecraft charge to
to a positive voltage. In order to simulate spacecraft charging using PINC,
it is then necessary to implement photoelectric emission. In this section the
photoemission method implemented as part of this thesis is presented.

Figure 3.2: Flowchart describing the photoemission algorithm

The flowchart shown in figure 3.2 describes the general flow of PIC method
as implemented in PINC when the photoemission modules developed for this
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thesis are included. Processes shown in the diagram are on a function level in
the code, with processes colored grey describing functionality that needed to
be implemented in PINC. The details of the implementation of these processes
are shown later in this section. The functions placed within the stippled box
are carried out for each iteration of the PIC time loop; since these functions
are called with a greater frequency, it is vital that they are computationally
efficient.

In addition to the functions described in the figure 3.2, the initialization
function of the object structure in PINC was expanded to read input parameters
required for the new photoemission functions. To facilitate ease of use, and to
make the code more easily readable, function pointers were added such that the
functions for computing photoelectron flux and photoelectron injection could
be specified as part of an input file.

3.5.1 Identifying sunlit surfaces

To be able to simulate photoemission, our code needs to know which surfaces the
photoelectrons are supposed to be emitted from. As discussed in the previous
section on the PINC object module, PINC has no "knowledge" on what faces
make up the surface of an object embedded in the computational domain. Thus,
it is necessary to locate the object nodes that are exposed to direct sunlight.

Two different functions were developed to find these surface nodes, which
function to run is dependent on which algorithm selected for injecting
photoelectrons into the computational domain.

The method for finding the surface nodes directly exposed to sunlight has
been programmed with the assumption that photons travel in the same direction
as the x axis of the domain to reduce the complexity of the code.

Beginning at the node with index 0 of the domain, the code steps along
the x direction checking whether each node index is an element of the array
containing all object surface nodes. When the node index matches the index
of a surface node, that index is stored in the object structure, and the loop
stepping along the x axis is exited. The loop of stepping down the x axis is then
repeated for each node along the y and z axis until the function has iterated
through each "column" normal to the YZ plane. If a surface node is not located
in a column parallel to the x axis, the function simply continues to the next
column.

This function can be visualized as analogous to mapping the topology of the
bottom of a lake by sinking a weight attached to a rope from the surface of the
lake, and measuring the wetted length of the rope when the weight reaches the
bottom. Listing A.1 in Appendix A shows the basic structure of the function
described above, and details how the code loops through the structured grid.
The surface node array is initialized by a function that computes the object
capacitance matrix, which is called before the sunlit surface nodes are found. In
the photoelectron injection function, the indices of the sunlit nodes can then be
converted into Cartesian coordinates with a helper function using the "sizeProd"
array.

A similar function to listing A.1 finds the subset of object surface nodes
that are used for photoelectron injection by filling cells adjacent to the emitting
surfaces. Since PINC does not store data defining cells, and each node is
surrounded by 8 computational cells, it is necessary to consistently pick which
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cell to fill with photoelectrons. For a surface node with linear index p located at
grid points [i, j, k] we choose the cell to be filled by the nodes [i−1, j, k], [i−1, j+
1, k], [i−1, j, k+1], [i−1, j+1, k+1], [i, j, k], [i, j+1, k], [i, j, k+1], [i, j+1, k+1].
In PINC we have defined the sunlit surface of the object by the projection of the
object onto the YZ plane, therefore for a cell to be "on" the surface of the object
we also require that the vertices [i, j, k], [i, j + 1, k], [i, j, k+ 1], [i, j + 1, k+ 1] of
the cell are also surface nodes.

Figure 3.3: Surface nodes on a box exposed to sunlight

Figure 3.3 is a visual representation of why this condition must be met for
nodes used for the cell filling injection algorithm. It shows the surface nodes
of a 2 unit by 2 unit box inside a computational box of 10 x 10 x 10 nodes
where the sunward direction is along the negative X axis. Nodes marked in blue
are nodes used for photoelectron injection by cell filling, the surface injection
algorithm uses the nodes colored both red and blue. Cells defined by nodes
colored red are not adjacent to the sunlit surface in the XY plane.

Another condition is necessary to avoid selecting cells that are part of the
interior of the object; we further stipulate that for nodes [i− 1, j, k], [i− 1, j +
1, k], [i− 1, j, k + 1], [i− 1, j + 1, k + 1] a maximum of three are either surface
nodes or interior nodes of the object. A C style pseudocode implementation
of these conditions are given in listing A.2 in Appendix A; the "surfaceOffset"
stores the number of surface nodes for object "a", then the defined cell vertices
are stored. The linear index of these vertices are then compared against the
"surface" array and "interior" array. We then check whether the cell has a face
on the surface of the object, and that the cell is not an interior cell.
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3.5. Implementing photoemission in PINC

3.5.2 Photoemission current and photoelectron energy

Two methods have been developed in PINC for finding the temperature, and
flux of photoelectrons from sunlit object surfaces. The first method has been
previously discussed in chapter Chapter 2; integrating Planck’s law over a
frequency band, allows both the photoelectron flux and temperature to be
calculated. For some objects, especially spacecraft, the photoelectric current,
and the temperature of the emitted electrons are known a priori to our simulation.
These values can then be specified as a input parameters to PINC. The number
of super particles to inject per timestep into each cell adjacent to the sunlit
surface is directly computed from the photoelectron current flux (Deca et al.
2013)

Ninject = jph
dA · dt
qpart

. (3.23)

Where Ninject is the number of super particles to inject into each photoemitting
cell, dA is the area of a computational cell, dt is the simulation timestep, and
qpart is the charge of one computational particle. The charge on one particle is
calculated as

qpart = ρ e Vcell
Np,cell

, (3.24)

where ρ is the electron density, Vcell is the volume of the cell, and Np,cell is
an input parameter specifying the number of particles per computational cell.
Equation (3.23) can be rewritten to calculate the total number of photoelectrons
ejected per timestep. Since several photoelectron injection methods have been
analyzed for this thesis, the total photoelectron flux per timestep is the form
that has been implemented into PINC

Ntotal = jph ·A · dt
qpart

. (3.25)

Where the total area of the sunlit object surface A has been used instead of
the cell surface area. These particles are then injected into the computational
domain with velocity sampled from a Maxwellian plasma with an average
temperature given by the input parameters. Which method PINC uses for
finding photoelectron flux is specified as a flag in the simulation input file.

3.5.3 Integrating Planck’s law

The photoelectron flux of a sunlit object is dependent on the material
composition of the sunlit surface. Surfaces with a lower work function tend to
eject more photoelectrons. Similarly, the photoelectron flux of a sunlit surface
is proportional to the distance from the surface to the sun. Since the power
output of the sun follows an inverse square law with the square of the distance
from the sun. The closer the spacecraft is to the sun in its orbit the higher
the number of photons with energy greater than the work function strike the
surface of the spacecraft. Both these factors need to be accounted for in order
to make simulating spacecraft charging in sunlight as general as possible.

The number of photoelectrons emitted is however not equal to the number of
impinging photons with energy higher than the surface work function. Both the
reflectance of the surface, and the photoelectron yield of the surface material
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significantly reduce the photoelectron flux. Reflectance and photoelectron yield
are both dependent on the energy of incoming photons, but are assumed to be
constant in this thesis. Thus, to compute the photoelectron flux for a particular
spacecraft, Planck’s law must be integrated in the frequency band from the
work function frequency, to infinity before the main particle-in-cell loop is
started. The photoelectron flux can then be directly computed from the power
received by the spacecraft, as long as the surface area exposed to the sun and
work function of the spacecraft material surface is known. These variables, in
addition to the material photoelectron yield and reflectance, can be given as
inputs to our simulation.

Integrating Planck’s additionally allows the average kinetic energy of the
emitted photoelectron to be calculated, dividing the total radiation energy
absorbed per timestep by the total photoelectron flux. Several methods for
numerically integrating Planck’s law efficiently exists. In this thesis, the method
settled on is based on the paper by Widger and Woodall (Widger et al. 1976).
A overview of the method presented in that paper, and the implementation in
PINC as C pseudocode will now be given.

First, to simplify the integrals, Planck’s law is recast in terms of the
wavenumber (cm−1) ν rather than the frequency of radiation. Planck’s law
then takes the form

B(T ) = C1

∫ ∞
ν

ν3
(

exp
{
C2ν

T

}
− 1
)
dν. (3.26)

Where B(T) is the radiance, given in units of Wcm−2Sr−1, T is the absolute
temperature in Kelvins, and C1 and C2 are the first and second radiation
constants respectively. Letting x = C2T

−1ν, equation (3.26) can be rewritten
as

B(T ) = C1C
−4
2 T 4

∫ ∞
x

x3

exp{x} − 1dx. (3.27)

The integrand in equation (3.27) can be expanded in a series form,
substituting that series into equation (3.27) and integrating by parts, equation
(??) becomes∫ ∞

x

x3

exp{x} − 1dx =
∞∑
n=1

exp{−nx}
(
x2n−1 + 3x2n−2 + 6xn−3 + 6n−4) .

(3.28)
C1, C2 and T are known constants in equation (3.27), and the infinite sum in
equation (3.28) is straight forward to compute to some finite tolerance using a
C function. The integral in (3.28) is computed in units of radiance Wm2Sr−1,
the solid angle Ω of the photoemitting object with respect to the sun can be
calculated as

Ω = As
r2 .

Where As is the area of the sunlit surface, and r is the radial distance from the
center of the sun to the object. Multiplying the result of (3.28) by the solid
angle of the object with respect to the sun, and the surface area of the sun,
the power output in the frequency band above the work function of interest
can be found. A similar integral to the one found in equation (3.28) can be
constructed in terms of photons per second instead of Watts.
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3.5. Implementing photoemission in PINC

Computing the photons impinging on the surface per timestep does not
however correspond to the amount of photoelectrons emitted by the sunlit
surface. To compute the total photoelectron flux, the photon impinging rate
must be multiplied by the surface material reflectance, and the photoelectron
yield (number of electrons emitted per incoming photon above the work function
of the material) as described in chapter 2.

Listing A.3 in Appendix A shows a numeric implementation of equation
(3.27) and equation (3.28). The original algorithm (Calculating Balckbody
Radiance 2020) has been converted from C++ code to C for compatibility with
the PINC framework.

3.5.4 Injection of photoelectrons

The method selected for injecting a Maxwellian velocity distribution of electrons
affect the accuracy of the results from a particle in cell simulation. Once the
average kinetic energy of the photoelectrons has been calculated as seen in
previous sections, a Maxwellian velocity distribution can be constructed from
the average velocity.

The position of the particles must also be distributed into the computational
domain in such a way that the particles remain Maxwellian in their velocity
distribution. Describing an accurate particle distribution function f(x,v, t) is
especially important for simulations with timescales longer than that that of
the ion transit time, and for simulations that include Monte Carlo collision
modules (Cartwright et al. 2000).

In the code developed for this thesis, three methods for injecting photo-
electrons were analyzed; two methods based on injecting electrons directly
from the surface nodes exposed to sunlight, and one method in which electrons
were uniformly distributed in the computational cells adjacent to the emitting
surfaces.

Later in this chapter, these injection algorithms are tested against the
charging simulations of the Solar Probe plus presented in (Deca et al. 2013).

Surface node injection

The simplest method for injecting the photoelectrons from a surface, is by
defining all object surface nodes exposed to sunlight as particle sources. The
position of each emitted particle is computed as an "push" based on the
Maxwellian velocity distribution from the position of each node:

xi = xnode,i +Rvi (3.29)

Where xi,j denotes the position component in the i direction of the injected
particle, xnode,i denotes the position of some node in the i direction, R is some
random number on the interval [0, 1], and vi is the sampled velocity component
in the i direction of the injected particle.

Two methods for sampling the Maximilian velocity distribution were
analyzed; the first was based on the Box-Mueller algorithm (Deca et al. 2013).

In the Box-Mueller algorithm, the tangential velocities are sampled from
the bivariate Maxwell distribution:
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f(vt1, vt2) =
( m

2πkT

)
exp

(
−m(v2

t1 + v2
t1)

2kT

)
(3.30)

Whereas the normal component of the velocity is sampled from a half-
Maxwellian distribution, described by the distribution function

f(vn) =
( m

2πkT

)1/2
exp

(
−mv

2
n

2kT

)
(3.31)

The bivariate distribution is implemented in PINC by sampling a bivariate
Gaussian distribution with a variation equal to the average thermal velocity
of the photoelectrons. The normal component of the photoelectron velocity is
sampled from a univariate Gaussian distribution, also with a variation equal
to the average thermal velocity, and rejecting the negative velocities (pointing
into the object).

The second node injection method implemented similarly distributed emitted
particles as a partial push using equation (3.29). The method differs in how
the velocity distribution of the particles were sampled. First, the speed of the
electron is sampled from a univariate Gaussian distribution and the velocity
of the particle is initialized as parallel and opposite to the direction of the
sun. Then, a rotation matrix is formed from subsequent rotations about each
axis perpendicular to the sunward direction. Each rotation angle is randomly
sampled from the range [−90°, 90°] to reduce the probability of the particle
being injected into the object.

In PINC, the sunward unit vector is always defined as being in the negative
x direction. Thus, the rotation matrix in PINC is implemented as two elemental
rotations about the y and z axis in either order. The rotation tensor RRR is then
expressed as

RRR = YYY β ZZZγ (3.32)

and in the matrix form

RRR =

 cosβ 0 sin β
0 1 0

− sin β 0 cosβ

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 (3.33)

Where β, γ are the rotation angles about the y and z axis, and YYY β , ZZZγ are
the elemental rotation tensors about the Y and Z axis respectively. The initial
velocity vector is then multiplied by the rotation matrix, and the particles are
placed according to equation (3.29).

The disadvantage of using this method is that it requires calling the function
that generates the rotation matrix every time a photoelectron is emitted. This
makes this method more computationally expensive than taking samples from
the univariate and bivariate Gaussian distributions. However, the photoelectrons
produced by the first method could potentially have higher average kinetic
energy than what is physically correct, since the two Gaussian distributions are
sampled independently in the first method.
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3.5. Implementing photoemission in PINC

Filling cells adjacent to sunlit surfaces

This method is based on the same method utilized in the particle-in-cell code
iPic3D by Deca et al. (Deca et al. 2013); photoelectrons are distributed in a
uniform random location in each computational cell adjacent to the emitting
surface of the object. Based on the results from verification simulations, this cell
filling algorithm was the method ultimately selected when simulating charging of
the BepiColombo spacecraft MMO. In PINC, unlike iPic3D, objects are defined
by the nodes on the computational grid rather than the computational cells.
The first step in PINC is then to identify the corner nodes of the cells adjacent
to the emitting surface, the pseudocode found in listing A.2 in Appendix A
shows how these corner nodes are identified. Each photoelectron is placed in a
cell by adding a random value in the range [0, 1] to each position component of
the corner node.

xp = xn −R (3.34a)

yp = yn +R (3.34b)

zp = zn +R. (3.34c)

Where the subscript p denotes the p’th photoelectron and the subscript n is used
for node positions. The random number R is sampled independently for each
position component, and the range [0, 1] is used since distance is normalized by
stepsize in PINC. The negative sign in subequation (3.34a) stems from the fact
that in PINC the sunward direction is always along the negative x axis.

The total flux of photoelectrons is divided by the number of cells adjacent
to the sunlit surfaces of the object, each cell is then filled iteratively with this
amount. Listing A.4 in Appendix A shows how this method was implemented
in C style pseudocode. The velocity of a particle is sampled in the surface
normal direction and the tangential direction. Then a random position within
the cell is computed as an offset of the position of the corner node that defines
the cell, the electron is then stored in the particle "population" structure with
its new velocity and position. The next cell corner is then selected and the
process repeats until the total amount of photoelectrons in the timestep has
been created.
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3.6 Photoemission verification simulation

Before we can run any analysis on the charging behavior of MMO in its orbit
around mercury, it is necessary to verify the accuracy of our implementation
of photoemission. The simulations described in the paper (Deca et al. 2013)
provides an excellent test case for our model. In their paper Deca et al. analyze
different charging mechanisms, including photoemission, affecting a cubesat.
The charging of the cubesat is simulated using the PIC codes iPic3D and
PTetra.

Using a computational setup similar to Deca et al. I ran the experiments
that included ambient plasma charging and photoemission, and used the floating
potential of the cubesat found using iPic3D and PTetra as benchmarks for the
accuracy of the code I had developed. The formation of wakes downstream from
the cubesat, as well as the formation of a photoelectron cloud in front of the
sunlit surface of the cubesat affects the floating potential of spacecraft (Miloch
2015) (Sjögren et al. 2012). The presence of both of these phenomena are
therefore quantitatively compared with results found in the iPic3D and PTetra
simulations to further verify my photoemission implementation in PINC.

The simulations were carried out for all three of the photoelectron injection
methods described in section 3.5.4, the total photoelectron flux was computed
using the current density method described in section 3.5.2 as the current
density is a known variable in (Deca et al. 2013).

3.6.1 simulation setup

The simulation parameters described in (Deca et al. 2013) were used mostly as
presented. However, the verification test case was also used in the development
stage for testing smaller parts of the new photoemission code: In the PINC
verification simulations then, slightly larger computational cells were used, and
the number of computational super-particles were reduced. This greatly reduced
the total time required for each simulation to complete, and allowed for rapid
iteration on the development of the new code.

All verification tests were run on the supercomputer "Saga" using domain
decomposition to run PINC in parallel on 16 cores. 16 cores were used since at
the time of writing, PINC suffered from segmentation errors when running the
code with 64 or more cores.

The cubesat was modeled as a cube measuring 1 m x 1 m x 1 m placed in
the center of a 10 m x 10 m x 10 m computational box. The resolution of the
grid was 0.15625 m in each direction of the computational box.

∆t 5e-9 s
timesteps 10,000
Computational box 10 m x 10 m x 10 m
Resolution 10

64 m x 10
64 m x 10

64 m
Particles per cell 10 per species
Cubesat size 1 m x 1 m x 1 m

Table 3.1: Numerical parameters used in verification simulations
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3.6. Photoemission verification simulation

mi
me

1836
Te(eV ) 85
Ti(eV ) 82
vth,e(m/s) 3.86 x 106

vth,i(m/s) 8.87 x 104

ne(m−3) 7 x 109

ni(m−3) 7 x 109

vsw(m/s) 3 x 105

jph(A/m2) 1.6 x 10−2

Table 3.2: Plasma parameters used in verification simulations

The complete list of numerical parameters and plasma parameters used in
the verification simulations are found in table 3.1 and table 3.2 respectively.
The plasma parameters found in table 3.2 are the exact same as used in (Deca
et al. 2013), and are reproduced here for ease of reference.

The numerical parameters were changed to make simulation run in PINC
numerically stable. The timestep ∆t used in our verification simulation is
smaller, this allowed for better convergence at small tolerances for the multigrid
solver used in PINC. The number of timesteps used in the PINC simulations
was selected to allow enough time for the cubesat to reach a steady-state
potential. Furthermore, iPic3D uses an implicit solver (Deca et al. 2013) which
is numerically stable over larger timesteps as compared to the explicit Boris
solver used in PINC.

The direction of plasma drift and the direction of the sun is also different in
our case; in PINC the sunward direction is always pointed along the negative X
axis. The solar wind drift was then picked to flow in the positive Y direction to
maintain the 90° angle between the drift direction and the sun as selected by
Deca et al.

3.6.2 Floating potential of the cubesat

In PINC the potential of the cubesat is computed each timestep using equation
Equation (3.22) and output to a log file, plotting this potential versus time
allows us to see the development of the floating potential of the cubesat
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Figure 3.4: Plot of the cubesat potential over time, in this case no photoelectrons
are included and the cubesat is only charged by the ambient flowing plasma.
The stippled horizontal lines show the floating potentials obtained by iPic3D
and PTetra for the same simulation setup

Figure 3.4 shows a time series plot of the cubesat potential relative to the
upstream plasma defined as ground. As the object charges over time, and the
potential becomes more and more negative, more electrons are diverted away
from the cubesat thereby slowing the rate of charging. The two horizontal lines
in the figure show the computed floating potential found by iPic3D and PTetra;
the floating potential found using PINC is more negative, and accurate to both
results found by iPic3D and PTetra within a 4% margin. Increasing the number
of computational particles would reduce this inaccuracy, additionally due to
the dimensions of the computational cells, the cubesat simulated in PINC has
a smaller volume than the 1m3 cubesat simulated by Deca et al. leading to
further inaccuracies.
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Figure 3.5: Plot of the cubesat potential over time, in this case photoelectrons
are injected into the domain using the adjacent cell filling method. The stippled
horizontal lines show the floating potentials obtained by iPic3D and PTetra for
the same simulation setup

Figure 3.5 shows the timeseries of the cubesat potential when photoemission
using the cell filling algorithm is included. The potential stabilizes after
approximately 5,000 timesteps before it begins to oscillate steadily with an
amplitude of approximately 1 Volt around a steady state value. The first hundred
timesteps are cut from the plot, to better show this oscillation. Comparisons of
the cubesat potentials for the different injection algorithms are averaged over
time after 5,000 timesteps to remove these fluctuations and give a better sense
of the accuracy of each algorithm relative to the floating potentials found with
iPic3D and PTetra.
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Figure 3.6: Plot of the cubesat potential over time, in this case photoelectrons
are injected into the domain using equation (3.29) with velocity sampled from
the univariate Maxwellian distribution and rotated using equation (3.33). The
stippled horizontal lines show the floating potentials obtained by iPic3D and
PTetra for the same simulation setup

The timeseries plot of the cubesat potential in Figure 3.6 includes ambient
plasma charging, and photoelectron charging where photoelectrons are emitted
using the rotation matrix method. The oscillations around a steady state value
are of the same amplitude as in figure 3.5, but a less negative floating potential
is predicted. Since the rotation matrix injection algorithm is based on a particle
push of the sampled particle velocity distribution, this might be explained due
to a higher concentration of photoelectrons near the cubesat surface as opposed
to in the cell filling case. With a higher local density of electrons, the forces
between the photoelectrons will be higher, thus imparting enough acceleration
on a large enough mass of photoelectrons such that they pass the potential
barrier formed by the photoelectron cloud. The higher number of "escaped"
photoelectrons that are not reabsorbed by the cubesat then cause a less negative
floating potential.
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Figure 3.7: Plot of the cubesat potential over time, in this case photoelectrons
are injected into the domain using equation (3.29) and sampling the surface
normal and tangential velocities separately. The stippled horizontal lines show
the floating potentials obtained by iPic3D and PTetra for the same simulation
setup

Figure 3.7 shows the timeseries plot of the cubesat potential where
photoelectrons are injected into the computational domain by a particle push
based on sampling a univariate and bivariate Maxwellian velocity distribution.
This injection algorithm diverges by far by the largest amount from the floating
potentials found using the iPic3D and PTetra codes. The large difference in
floating potential, and the floating potential being the least negative, suggests
photoelectrons injected with this algorithm have higher kinetic energy than
photoelectrons injected using the two other algorithms. It could also be the
case that higher densities of photoelectrons resulting from the particle push
tangentially away from the surface, force more electrons away from the cubesat
that are then not reabsorbed.
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Photoelectron injection
method

Floating potential Percentage differ-
ence from iPic3D

Percentage differ-
ence from PTetra

No photoelectrons -233.242 2.21 % 3.20%
Cell filling -35.31 7.33 % 5.09 %
Rotation matrix -30.61 6.96 % 8.90 %
Double gaussian sample -24.03 26.96 % 28.48 %

Table 3.3: Comparison of floating potentials found with iPic3D and PTetra,
with the average potential of the cubesat from timestep 5,000 to timestep 10,000

Table 3.3 is a summary of the floating potentials computed using the injection
algorithms I developed for this thesis. The "No photoelectrons" case give a
baseline for differences in object charging when comparing PINC to iPic3D and
PTetra. There is overall good agreement with the three codes in this simplest
case, with only a 2.21 % absolute difference in the floating potentials found
between PINC and iPic3D.

These errors can be reduced by decreasing the tolerance of the solver used
to compute the capacitance matrix in PINC, and reducing particle noise by
increasing the number of computational particles introduced in the domain, at
the cost of longer simulation times.

Both the cell filling and rotation matrix injection algorithms are fairly close
to values found by deca et al. when ambient plasma charging and photoemission
are both included. The difference in computed floating potentials could again
be reduced by setting a stricter tolerance for the multigrid solver in PINC, and
increasing the number of computational particles used in the simulations.
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3.6.3 Photoelectron cloud and wake formation

(a) Potential along x axis (b) Potential along y axis

Figure 3.8: Potential profile along direction of flow (+Y axis), and along
direction of light travelling from the sun (+X axis) when photoemission is
omitted from the simulation, each line passes through the centre of the cubesat

In figures 3.8a, and 3.8b we have plotted the potential in Volts along the axis of
drift, and along the axis of the sun through the centre of the cubesat at timestep
10,000. The spatial X-axis of each plot is multiples of the computational cell
step size, in this case 0.15625 meters.

The only charging mechanism included is the charging due to the ambient
flowing plasma and is included as a baseline test to check the implementation
of the capacitance matrix method in PINC and so that differences due to the
photoemission implemented in this thesis may be singled out from the rest of
the implementation of PINC.

No potential barrier can be seen in figure 3.8a, and the plot is symmetric
about the centre of the cubesat. In figure 3.8b the potential relative to the
upstream plasma rises above 0 behind the cubesat as expected due to the
formation of an ion wake.
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(a) Potential along X axis (b) Potential along Y axis

Figure 3.9: Potential profile along direction of flow (+Y axis), and along
direction of light travelling from the sun (+X axis) where photoelectrons are
injected into the domain by randomly distributing the electrons uniformly into
the cells adjacent to the emitting object surfaces, each line passes through the
centre of the cubesat

Figure 3.9a and 3.9b include photoemission as a charging mechanism,
where the cell filling algorithm in section Section 3.5.4 has been used to inject
photoelectrons. Figure 3.9a clearly shows a potential barrier forming in front of
the object where the photoelectron cloud has formed. Figure 3.9b, unlike figure
3.8b, shows no ion wake forming behind the cubesat along the drift axis, likely
due to photoelectrons reflecting off the potential barrier and drifting behind
the cubesat.

(a) Potential along X axis (b) Potential along Y axis

Figure 3.10: Potential profile along direction of flow (+Y axis), and along
direction of light travelling from the sun (+X axis) where photoelectrons are
emitted using the rotation matrix algorithm and a partial particle push from
object surface, each line passes through the centre of the cubesat
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In figures 3.10a and figure 3.10b photoelectrons are injected by a partial
particle push. The surface normal velocity is sampled from a univariate
Maxwellian velocity distribution, then rotated by a random rotation tensor
before the particle is pushed from the surface based on the computed velocity
vector. The potential barrier in figure 3.10a is smaller than found in figure
3.9a, possibly due to more photoelectrons managing to escape the forming
photoelectron cloud based on the random particle push, or due to the size of the
computational cell: Refining the computational grid, and reducing the volume
of the computational cells would likely decrease the difference in the potential
barrier formed for the two cases.

(a) Potential along X axis (b) Potential along Y axis

Figure 3.11: Potential profile along direction of flow (+Y axis), and along
direction of light travelling from the sun (+X axis) where photoelectrons are
injected into the domain by a partial, random, particle push. Surface normal
velocity and tangential surface velocity is sampled separately. Each line passes
through the centre of the cubesat

Figures 3.11a and 3.11b plot potential profiles where photoelectrons are
emitted similarly to the rotation matrix algorithm, but where the three
dimensional particle velocity vectors are sampled in both the surface normal
and tangential directions separately. Figure 3.11a shows the deepest potential
well out of all the injection algorithms, but the least negative floating potential.

A potential reason for this, is that the double sampling method increases the
average kinetic energy of the emitted photoelectrons to a point where not all
the photoelectrons return to the surface of the object and become reabsorbed.
Figure 3.11b also shows another small barrier directly behind the cubesat along
the direction of drift.

This suggest that particles pushed based on the two samplings of velocity
have higher tangential velocities in the photoelectrons than when injected using
the other two algorithms, causing electrons to accumulate downstream of the
object. Based on the relative accuracy as shown in table 3.2 when compared
to the two other PIC codes, an accurate reproduction of the expected physics,
and the lower computational complexity as compared to the rotation matrix
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algorithm, I selected the cell filling algorithm as the injection algorithm to use
when simulating MMO in its orbit around Mercury.

3.7 Mercury Magnetospheric Orbiter simulation setup

The MMO is one of the two spacecraft making up the joint European Space
Agency (ESA) and Japan Aerospace Exploration Agency (JAXA) BepiColombo
mission. The principal scientific goals of the MMO spacecraft is to investigate
the plasma environment around Mercury as well as the interaction between the
planets intrinsic magnetic field and the solar wind (Benkhoff et al. 2009) (Saito
et al. 2010).

Among the scientific instruments carried onboard the MMO, of special
relevance to this thesis is the Mercury Plasma Particle Experiment (MPPE):
The MPPE instrument package carries sensors for measuring plasma electrons
and ions, as well as high energy particle sensors (Saito et al. 2010). These
sensors are highly sensitive to variations in the plasma density around the
device, thus simulating how charging effects of the MMO spacecraft affects
density measurements of these sensors is an important aspect of analyzing the
data MMO will send back to Earth.

In this section, I outline aspects of the design of MMO relevant to an accurate
simulation of charging phenomena, the plasma and numerical parameters used
in the simulation, as well as outline the different numerical experiments that
were run as part of this thesis to investigate the charging behaviour of the
spacecraft while in orbit around Mercury.

3.7.1 MMO design

The basic geometric shape of the MMO spacecraft is that of an octagon that
can be surrounded by a 1.8 meter circle. The height of the octagon is 0.9
meters, with an upper section covered in both solar cells and second surface
mirror (SSM), and the lower section only covered by SSM. The plasma particle
instruments are situated inside this octagon, with their sensors placed on the
surface panels of the octagon. Two 5 meter long booms extend from opposite
sides of the spacecraft on which flux gate magnetometers are placed (Yamakawa
et al. 2008).

With these dimensions in mind, the MMO can be approximated by stacking
voxels. A trade off must be made between the number of voxels used. A high
number of voxels increases the accuracy of the object model, but requires longer
compute times as the computational cell size decreases. For plasmas with
relatively low densities, like the plasma found within Mercury’s magnetosphere,
coarser approximations with lower number of voxels is possible since the debye
length is often significantly longer than the characteristic length of the spacecraft.
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Figure 3.12: Voxelized approximation of MMO without booms in a 10 meter
cubical computational domain with 64 grid points along each dimension. The
plot ranges have been reduced to better display individual voxels

Figure 3.13: Voxelized approximation of MMO with booms in a 10 meter cubical
computational domain with 128 grid points along each dimension. The plot
ranges have been reduced to better display individual voxels
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Figures 3.12 and figure 3.13 show two voxelized approximations of the MMO
spacecraft, with and without the booms carrying the flux gate magnetometers.
The high gain antenna and the wire antenna used to measure the electrical
field have been discarded. These features are very thin, and would therefore
increase the number of computational cells in the global domain to an untenable
size. Both voxelizations were created by first constructing the objects in the
CAD software suite Fusion 360, meshing the resulting object, and finding the
voxels of the resulting mesh using a flood filling algorithm. The final voxelized
version of both versions of the MMO used 8 cells over the diameter of the
octagon shape of the MMO body. This allowed the shape of the spacecraft
and the thickness of the booms to be resolved adequately, and allowed for a
computational domain of several Debye lengths while keeping the total number
of computational cells low enough for a full simulation to complete within a
few days with parallelization.

3.7.2 Magnetospheric and numerical parameters

Two spacecraft have visited Mercury at the time of writing. The first spacecraft
to do so was the Mariner 10 spacecraft, performing three fly-bys of the planet,
equipped both with plasma detectors and magnetometers to study the properties
of Mercury’s magnetic field and its interaction with the solar wind plasma (Slavin
et al. 2012). A longer observation mission, the MESSENGER spacecraft, entered
into orbit around Mercury as the first spacecraft to do so. It orbited the planet
from 2011 to 2015 in a highly eccentric orbit, collecting data all the while on the
plasma conditions of the planets magnetosphere, magnetotail and the intrinsic
magnetic field of the planet.

In this thesis, I have used a combination of data gathered from the
MESSENGER mission, as well as MHD simulations of solar wind interaction
with the magnetosphere of Mercury, to simulate the charging of the MMO
spacecraft. Several assumptions were made in carrying out this analysis; first
of all, the MMO spacecraft is spin-stabilized (Yamakawa et al. 2008) to reduce
thermal load with its spin axis aligned along the magnetic dipole axis of Mercury.
Because of the small timescales of charging relative to the rotational rate of the
spacecraft, I have assumed an irrotational body fixed reference frame for the
PINC simulations. Furthermore, MMO will orbit Mercury in a polar orbit with
a period of 9.3 hours (ESA 2020b). As such, I chose to simulate the charging
of the spacecraft close to the periapsis of MMO’s orbit. Specifically, when the
spacecraft is over Mercury’s magnetic south pole where the plasma density is
relatively high and exposed to direct sunlight. The distance of Mercury to the
sun was also assumed to be the same as used in (Benna et al. 2009) such that
the photon flux experienced by the MMO can be computed accurately.
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3.7. Mercury Magnetospheric Orbiter simulation setup

Parameter Value
Timesteps 10,000

dt 5× 10−9(10−8)
dx, dy, dz 0.225 m
nx, ny, nz 128

n0 1× 108m−3

me 9.10938356× 10−31 kg
mi 1.67262192× 10−27 kg
B0 [-8.8, 0, -99.6] nT
vdrift 1× 105 m/s
vth,e 4193011.62 m/s
vth,i 87538.91 m/s
np,com 50 pc
rsc 5.6847× 1010m
Y ph 1× 10−3

Aph 1.62 (3.87)
W 4.2 eV

Table 3.4: Magnetospheric plasma parameters, MMO specific parameters, and
numerical parameters used in MMO simulations

Table 3.4 summarizes all relevant parameters used in the charging simulation
of the MMO spacecraft. The computational box measures 28.125m along
each axis. With the plasma parameters given above, applying equation (2.30)
gives a debye length of λD = 7.43m. This means the computational box is
approximately 3.79 Debye lengths in each direction. Ideally, we would use a
larger computational domain, around λD, to avoid disruptive effects in the
electric field along the boundaries. The size of the computational domain used
was a tradeoff between the ability to resolve the MMO to sufficient accuracy,
the total computational time available to us on the Saga supercomputer, and
reduction of undesirable boundary effects.

The plasma density and thermal velocity values were extracted from the
MHD simulation plots given in the paper by Benna et al. modelling the
magnetosphere of Mercury at the first MESSENGER flyby. The intrinsic
magnetic field of Mercury is dominantly dipolar, with a dipole tilt to the
rotational axis constrained to being less than 5° (Anderson et al. 2010).
Mercury’s rotational axis is tilted 2 minutes of arc with respect to its orbital
plane (Rothery 2015), and has a external field strength of about 100nT at the
north cusp (Anderson et al. 2010). Using the maximum dipole axis tilt angle,
the value for the magnetic field B0 in table 3.4 is then given in the Mercury
solar orbital (MSO) coordinates.

The distance from the MMO to the sun rsc was computed using the Jet
Propulsion Lab (JPL) ephemeris system HORIZONS and setting the time of
the ephemeris to the day of the first MESSENGER Mercury fly-by.

The parameter Y is the photoelectron yield per incoming photon and
averaged over the range of photon energies that cause photoemission for MMO.
Here we have assumed the MMO to be covered by Multi Layer Insulation (MLI),
a thermal insulation covering consisting of several layers of plastic coated with an
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3. Numerical Method

outer layer of Aluminium. The average photoelectron yield of Aluminium and its
work function were found in (Feuerbacher et al. 1972), the yield parameter used
is dependent on the reflectance of the Aluminium, and as such the reflectance
is not included as a separate parameter.

The SSM panels that cover the MMO are composed of silver films which
have a slightly higher, but similar, work function to that of Aluminium. The
parameter Aph denotes the sunlit area of the MMO with and without the
magnetometer booms. Since the booms account for a significant part of the
sunlit surface area of the spacecraft the properties of Aluminium was used for
simulations both with and without the booms.

3.8 Data analysis tools

The PINC framework already includes several Python scripts for analyzing 2D
profiles of plasma density, potential, and the electric field. Tools also exist for
analyzing the probability distribution of simulation particles. These tools use
the numerical computation libraries Numpy, Scipy and Matplotlib to convert
values and create readable plots. These tools were built by Jan Deca, Sigvald
Marholm, Vigdis Holta, Steffen Brask og Gullik Killie. I modified several of
these tools to be specific for my MMO simulations, nevertheless, all credit goes
to the original developers. Tools written entirely by myself are mentioned, and
some of the more comprehensive ones are expanded upon in Appendix A and
Appendix C.
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CHAPTER 4

Results

The charging behaviour of a spacecraft is dependent on several factors; the
material composition of the craft, its dimensions, its location in space, the local
time, and the space weather (Lai 2019). In this thesis, I wished to investigate
what effects the presence of MMO’s booms have on its charging behaviour,
additionally I wished to investigate whether the direction of the ambient plasma
drift or the photoelectron temperature would significantly change how the
spacecraft charges.

The booms on the MMO extend the characteristic length of the spacecraft
to be longer than that of the Debye length of the plasma found in table 3.4, as
such I expect there to be a difference in the thickness of the plasma sheaths
formed.

Varying the direction of drift may impact the convection of photoelectron
away from the surface of the sunlit surface of the spacecraft, which could
potentially lead to a difference in the floating potential. Varying the average
energy of the emitted photoelectrons will change the charging behaviour of the
MMO, as seen in the Rosetta charging simulation paper (Sjögren et al. 2012).
To observe to what extent the floating potential and the thickness of the plasma
sheath changes is the goal of varying the photoelectron temperature.

No photo-
electrons

drift
along +X
axis

drift
along −Z
axis

Inclusion
of booms

Mercury
magnetic
field

Photoelectron
temp.
3 eV

Case 1 X X
Case 2 X
Case 3 X
Case 4 X X
Case 5 X X
Case 6 X X X
Case 7 X X
Case 8 X X
Case 9 X X X
Case 10 X X X

Table 4.1: Summary of the numerical experiments of the MMO in orbit around
Mercury, carried out with PINC
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4. Results

Table 4.1 gives an overview of the numerical simulations of the MMO
spacecraft carried out for this thesis, case 1 and case 5 give a baseline of the
charging behaviour where no photoemission is included and serves as a point of
comparison between the photoelectron current and the ambient electron plasma
current the MMO is subjected to.

Cases 1 to 5, and cases 5 to 10 are equivalent but for the inclusion of
the booms, with case 9 being the closest to the true conditions the MMO
will experience when its orbit passes over the north cusp (ecliptic north) of
Mercury. As such, case 8 is used as the baseline for the simulation in which the
photoelectron temperature is varied from the value computed by PINC.

Save for cases 1 and 6, the simulations without photoemission, the
computational domain was decomposed into 64 sub-domains for parallel
processing. Cases 1 and 6 were decomposed into 128 sub-domains, the reason
being that in the cases containing photoemission, the domain was not divided
along the x-axis thus splitting the spacecraft in the YZ plane. This would
account for another surface interior to the spacecraft that would have to be
discarded as a source for photoemissive nodes.

For the sake of brevity, we will refer to the case number as shown in
table 4.1 when presenting analyses for these five experiments. Results will be
presented in order such that the plasma conditions closest to those the MMO will
actually experience when orbiting Mercury is presented as the last simulation
where photoemission parameters are computed directly. Photoemission with a
different electron temperature is also presented, since an assumption of constant
photoelectron yield was made, the impact of a higher photoelectron temperature
will be compared to the other experiments in which the average photoelectron
temperature was computed using Planck’s law. We have also chosen to group
simulations with and without booms together to make comparison across the
two configurations simpler.

Except for a computational charging analysis of the combined BepiColombo
spacecraft under thrust (using the MTM, the Mercury Transfer Module) (ESA
Science & Technology - BepiColombo plasma simulation 2020), we were unable
to find similar numerical experiments of the charging of the MMO spacecraft.
We will therefore compare our results to theory through current balance analysis
as presented in 2. We will also compare our results qualitatively to numerical
charging experiments for different plasma parameters and different objects.
Such as in the paper by Deca et al. (Deca et al. 2013) that was used for our
verification simulations.

From current balance, with photoemission included, we expect the variation
of drift direction (comparing cases 2 and 3 to cases 7 and 8) to have minimal
impact on the floating potential PINC will converge to. Similarly we expect
the sheath thickness and sheath plasma densities to be comparable for different
drift directions. Across all five simulation types run, we expect the floating
potential and sheath thickness to be larger in magnitude when the booms on
the MMO are fully extended. Since the booms are modeled as photoemissive,
the greater surface area will lead to an overall higher electron current flowing
from the spacecraft leading to a higher floating potential.

The inclusion of the external magnetic field of Mercury could potentially
impact the fraction of photoelectrons with a greater than average temperature
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4.1. Charging without photoemission

being able to leave the surface of the spacecraft, if the particles’ velocity vector
does not align with the magnetic field the force exerted by the magnetic field
could trap electrons more efficiently, leading to a lower floating potential.

4.1 Charging without photoemission

(a) Booms

(b) Without booms

Figure 4.1: Timeseries plot of potential of the MMO with and without booms.
The potential has been converted from PINC dimensionless units to Volts.
The inset plots shows the potential of the two configurations for last 10,000
timesteps.
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4. Results

The timeseries in fig 4.1 plots the potential of the MMO for each timestep
simulated. From each inset plot, both for the MMO with booms and without, it is
apparent from the slope that the system has not converged to a floating potential.
Since the ambient plasma density around the MMO were approximately 100
times less dense than the value used in the verification simulation and no other
current than ambient particle charging was present, a larger timestep was used
in addition to a longer total simulation time.

In order to compare our results with theory, we can estimate the floating
potential the simulation would have converged to by fitting a function to our
data and propagating the function forward in time until a steady state has been
reached. Using Hill’s function of the form

φ(t) = φf
t

h+ t
,

where φf is the MMO floating potential without a photoemission current present,
we estimate a floating potential of φf ≈ −283V . A full analysis of the curve
fitting and the Python script used to fit the curves is given in Appendix C.

From chapter Chapter 2, we know that we can estimate the floating potential
from OML theory and a current balance equation. However, one of the
assumptions of OML theory is that the plasma must be non-drifting and
Maxwellian (Whipple 1981). For non drifting plasmas, the thermal speed of the
charged particles is significantly larger than the relative velocity of a spacecraft
to the plasma (Jacobsen et al. 2010). For our simulations, we assume a drift
speed of 100kms−1. From table 3.4 the magnetospheric plasma has an electron
temperature of Te = 1.16×106 which amounts to a thermal speed of 4193kms−1.
Since the electron thermal speed is so high compared to our plasma drift, we can
safely make the approximation that electrons in the plasma are non-drifting.

For cases 1 and 6, the only currents affecting the spacecraft potential are
the currents due to impinging ions and electron. The current balance equation
is therefore

Ii(φf )− Ie(φf ) = 0, (4.1)

where Ii is the current due to impinging ions (proton), and Ie is the current due
to impinging electrons. The main body of the MMO can be approximated as a
cylinder of height 0.9 m and with a diameter of 1.8 m. We can then substitute
in equation (2.42b), and (2.44) to get

Ii(0)
(

2√
π

√
1− eφf

kTi

)
− Ie(0) exp

(
eφf
kTe

)
= 0. (4.2)

The current when the spacecraft is at zero potential for a cylinder is given by
(Lai 2019)

Is(0) = 2πansqsvL, (4.3)

where a is the cylinder radius, and L is the cylinder length and v is the speed
of the charged particle an infinite distance from the cylinder. Substituting
equation (4.3) into equation (4.2), we have

2√
π

√
1− eφf

kTi
= − exp

(
eφf
kTe

)
. (4.4)
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4.1. Charging without photoemission

Here we have assumed that the floating potential of the MMO will be negative,
and that ηs = exp

(
− qsφfkTs

)
> 2. We solve the transcendental equation (4.4)

by plugging in the known values for Ti and Te to get a floating potential
φf = −298.3V .

(a) Booms (b) Without booms

Figure 4.2: 4.2a and 4.2b show a potential profile along the X axis for
the MMO with and without booms respectively. The line is plotted at
(x, y) = (13.95m, 13.95m), or node points (x, y) = (62, 62), and passes through
the main octagonal body of the spacecraft. The X axis units are in number of
nodes from the origin.

Even without PINC converging to a floating potential, we can still make
comparisons of the plasma sheath formed around the spacecraft by plotting
the potential profile of the domain. Figure 4.2, shows the potential relative
to the ambient plasma plotted on a center line passing through the spacecraft
octagonal body. comparing figure 4.2a with figure 4.2b, we see a difference in
sheath thickness. For a negatively charged probe, we can estimate the thickness
of the sheath using Bohm’s sheath criterion (Chen 2018):

u0 ≈
(
KTe
mi

)1/2
, (4.5)

where u0 is the velocity required by ions at the sheath boundary. For ions to be
accelerated to this velocity we can estimate the required sheath edge potential
as

φs = −1
2
KTe
e

. (4.6)

Where φs is the potential relative to the ambient plasma. Setting the
electron temperature, Te, to 1.16×106 we find the sheath boundary potential to
be approximately −50V relative to the main plasma body. The sheath thickness
is then the distance from the potential along the x axis to where the potential
is the same as the sheath boundary potential. From the plots we then estimate
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4. Results

a sheath thickness of 2.5 meters for the MMO configuration without booms,
and 3.2 meters for the configuration with booms.

The sheath thickness, d, can also be computed directly by re-arranging the
Child-Langmuir law (Chen 2018):

d2 = 4
9

(
2e
mi

)1/2 |φw|3/2

4πji,s
. (4.7)

where φw is the "wall", or spacecraft potential, and ji,s is the ion saturation
current density. The ion saturation current density is given by

ji,s = qenecs. (4.8)

Where cs is the ion speed of sound, and is computed as (Paulsson et al. 2019)

cs =

√(
KbTe
mi

)
, (4.9)

Plugging in the known spacecraft potential, the electron density, and electron
temperature from table 3.4 the plasma thickness comes out to be 3.63 meters,
which is comparable to our estimates.

(a) Booms (b) Without booms

Figure 4.3: 4.3a and 4.3b are 2D slices through Z = 14.4m showing the potential
profile of the entire computational domain for simulation cases 1 and 6.

Figure 4.3 shows 2D cut in the plane Z = 14.4, dividing the spacecraft
in half, and is plotted at the last simulated timestep (timestep 40,000). The
contours are plotted using the matplotlib Python package, with contour lines
subdivided into 500 levels to better distinguish the plasma sheath. Values are
converted from normalized PINC internal values to Volts. The color boundary
between orange and red approximately marks the plasma sheath edge. We
can see this boundary is equidistant from the MMO body in the boomless
configuration, whereas the sheath boundary is relatively closer to the boom tips
than to the main octagonal body of the spacecraft.
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4.1. Charging without photoemission

(a) Booms (b) Without booms

Figure 4.4: Ion density profile plotted at Z = 14.4m with and without deployed
booms. The color gradient is normalized against the ion plasma density from
table 3.4.

(a) Booms (b) Without booms

Figure 4.5: Electron density profile plotted at Z = 14.4m with and without
deployed booms. The color gradient is normalized against the electron plasma
density from table 3.4.

Figures 4.4 and 4.5 show the density of ions (protons) and electrons
respectively plotted at timestep 400, 1% through the total simulation time.
Similarly to figure 4.3, the 2D slice is placed at Z = 14.4m, dividing the
spacecraft in halves. The density values have been normalized against the
ambient plasma density, and as before, 500 levels were used for the contour
lines drawn. For cases 1 and 6, we set the plasma drift along the positive X
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axis, 4.4 clearly shows an ion wake forming "behind" the spacecraft for both
boom configurations. We also note the slightly higher density of ions directly
in "front" of the spacecraft, denoting the plasma sheath that has formed even
this early in the simulation. Figure 4.5 gives the clearest picture of the shape
of the plasma sheath formed around the spacecraft, in the MMO configuration
with booms, the sheath forms an ellipsoid around the spacecraft where, relative
to the ambient plasma, almost no electrons reside. The sheath in the boomless
MMO configuration is circular in shape, which gives a good indication that
computing the theoretical floating potential of the boomless MMO configuration
can be done by assuming the MMO to be a cylinder with the same radius as
the circle circumscribing the MMO octagonal body.
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4.2. Charging with photoemission

4.2 Charging with photoemission

4.2.1 Drift parallel to X axis

(a) Booms

(b) Without booms

Figure 4.6: Time series plot of the potential of the two MMO configurations
for drift along X axis. The insets plots the same timeseries starting at 1000
timesteps, where the potential of the spacecraft has begun to oscillate about
the floating potential.

Figure 4.6 shows the convergence to the floating potential of both MMO
configurations. Unlike the numerical simulations without photoemission, the
potential of both configurations of the MMO converge rapidly to a its floating
potential. The slope of the increase in potential early on in the simulation
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points to the high ratio between the photoemission current and the charging
from the impinging electrons from the ambient plasma. The absolute value of
the current density jph can be calculated from the equation

jph = NpY phqe
Aphdt

. (4.10)

Where Np is the number of impinging photons per timestep with energy
higher than the material work function, and Y ph is the averaged photoelectron
yield. Plugging in Np output by the simulation, and Y ph from Table 3.4,
gives the photoemission current density. We have jph = 0.237Am−2 for both
configurations of the booms.

The floating potential for MMO with booms, as seen in figure 4.6a overshoots
the floating potential by several volts, before converging to 105.4 V. In the
boomless configuration, figure 4.6b, the overshoot is much smaller, and the
potential shows oscillatory behaviour around a floating potential of 100.7 V. The
overshoot in the floating potential could result from the thin booms extending
far from the main body of the MMO developing a potential barrier slower, and
smaller in height, than the central body leading to a gradual rather than sudden
decrease in the effective photoemission current.

(a) Booms (b) Without booms

Figure 4.7: Potential profile along the X axis for the two MMO configurations
with drift along the X axis and photoemission included. The line is plotted at
(x, y) = (13.95m, 13.95m), or node points (x, y) = (62, 62), and passes through
the main octagonal body of the spacecraft. The X axis units are in number
of nodes from the origin. The two values in each plot show the height of the
potential barrier formed relative to the ambient plasma.
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4.2. Charging with photoemission

(a) Booms (b) Without booms

Figure 4.8: 2D slices through Z = 14.4m showing the time averaged potential
profile of the entire computational domain with drift along X axis, and
photoemission included. The potential is time averaged after a floating potential
has been reached after 1,000 timesteps.

We next plot the potential along the X axis as seen in figures 4.7a and
4.7b. The profile is plotted at timestep 10,000, when the floating potential has
stabilized. Note that the profile line does not pass through the centre of the
octagonal body of the MMO, rather passing through one of the panels at an
angle to the YZ plane, as will become apparent when the 2D potential profile
is shown. Directly in front of the MMO, both configurations of the spacecraft
show a distinct potential barrier forming on the photoemissive side. In 4.7a
the potential difference 6.4 V floating potential of the spacecraft is 93.17V ,
and in 4.7b the height of the barrier relative to the plasma is 92.58V . The
configurations of MMO with booms then has a barrier that is 0.59V deeper
than the configuration without booms. Both plots also show a small distinct
drop in potential directly behind the spacecraft, likely caused by photoelectrons
orbiting the craft before being reabsorbed.

Figure 4.8 plots contour lines for the potential in 2D slices of the
computational domain. Contrasting figures 4.8a and 4.8b with figures 4.3a
and 4.3b, we can see a thinner sheath form around both configurations around
the MMO when photoemission is included. For both figures 4.8a and 4.8a
we can also see that there are regions within the sheath on the sunlit side
of the spacecraft where the potential differ varies along the booms. On both
booms half way along the length, a small region of slightly higher potential, this
suggests a gradient in the local electrical field. This variation in the potential
could be the result of the angled geometry of the main body of the MMO, or
potentially as a result of the voxelization of the spacecraft. Similarly, the sunlit
panel of the octagonal main body closest to the sun shows a lower potential
than the sunlit slanted panels. Appendix D contains an analysis and discussion
of these potential variations within the photoelectron sheath.
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(a) Booms (b) Without booms

Figure 4.9: Ion density profile plotted at Z = 14.4m, the color gradient is
normalized against the ion plasma density from table 3.4. Plasma drift is along
the X axis, and photoemission is included

(a) Booms (b) Without booms

Figure 4.10: Electron density profile plotted at Z = 14.4m, the color gradient
is normalized against the electron plasma density from table 3.4. Drift is along
the X axis, and photoemission is included, the sun is located in the negative X
direction.

Plasma particle densities are plotted for both ions (protons) and electrons
in figures 4.9 and 4.10 respectively. Due to a high photoemission current, the
positively charged spacecraft does not form an ion wake, as can be seen in
both 4.9a and 4.9a. Downstream of the spacecraft, there is a relative low ion
density relative to the ambient plasma which is more prominent in the case of
the boomless configuration of the MMO.

Variations in the ion density in the wake of a spacecraft is also realted to
the plasma Mach number, as seen in the paper by Miloch et al. (Paulsson et al.
2019). We can compute the Mach number of the plasma using equation (4.9),
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4.2. Charging with photoemission

and the Mach number equation

M = vd/cs, (4.11)

where vd is the velocity of the plasma relative to the spacecraft. Thus far in
our simulation we have assumed the relative velocity of the orbital speed of the
MMO to be negligible as compared to the drift velocity of the plasma. However,
to accurately compute the Mach number, we must compute the relative speed
of the plasma to the MMO. Due to its eccentric orbit, the orbital speed of the
MMO is computed using the equation

v =

√
µ

(
2
r
− 1
a

)
. (4.12)

In equation (4.12), r denotes the distance from the MMO to the center of
Mass of Mercury, µ is the standard gravitational parameter, and a is the major
axis of the elliptical orbit. The distance r is approximately half the radius of
Mercury at the location in the orbit selected for our simulations (Benna et al.
2009), and the major axis can be found from the perihelion distance of 400
km, and aphelion distance of 11824 km of the MMO in orbit. For mercury,
the gravitational parameter is µ = GMMercury = 2.2032× 1013. Substituting
into equation (4.12), the orbital speed of the MMO is 5.7 km/s. The highest
possible speed of the plasma relative to the MMO is then 105.7 km/s. With
the ion speed of sound cs we computed in the the previous section for charging
without photoemission, the maximum Mach number possible in our simulation
is M ≈ 1.08. Since the Mach number is weakly supersonic, the ion enhanced
wake is narrow and does not extend far from the spacecraft in the direction
of the drift, which is in good agreement with results found by Paulsson et al.
(Paulsson et al. 2019).

Figures 4.10a and 4.10b show high concentration of electrons adjacent to
the sunlit surfaces of the MMO, with electron densities as high as 1175 times
the density of electrons in the ambient plasma.

At such high densities, the local Debye length is significantly shorter than
that of the ambient plasma. We can compute the local Debye length from
equation (2.30) and from the photoelectron temperature. The photoelectron
temperature is computed in PINC internally by numerical integration of equation
(3.28) in terms of energy and photons per second, subtracting the work function
of the surface material gives the photoelectron temperature of Tph = 0.62 eV .
Substituting the photoelectron density and temperature into equation (2.30)
we have a local Debye length of only 0.017 meters. Since our grid resolution
is 0.225 meters, we are unable to resolve the local small scale variations in
electrical potential due to Debye shielding.

We can estimate the thickness of the photoelectron sheath using the equation
(Zhao et al. 1996)

nph(xph) = ne0 (4.13)
Where nph(xph) is the density of photoelectrons at a distance xph from the
spacecraft, and ne0 is the electron density in the ambient plasma. The distance
xph is the radial distance from the spacecraft, and is normalized by the spacecraft
radius R. Note that the implementation of photoelectron injection in this thesis
does not separate photoelectrons as a separate species from the ambient plasma,
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and the distance between density measurements is relatively high (one cell
width being 0.225 meters). By plotting the electron density as a line through
the spacecraft parallel to the X axis, we estimate the photoelectron sheath to
be 6.75 meters thick.

4.2.2 Drift parallel to Z axis

Drift along the negative Z axis, with photoemission, and no external electric
field (cases 3 and 8) is a more accurate plasma flow conditions that the MMO
will experience in its orbit over the ecliptic north pole as opposed to drift along
the X axis (cases2 and 7). Results for cases 3 and 8 will be compared to previous
results shown for cases 2 and 7 to discern what effect, if any, drift direction has
on the photoelectron barrier, the floating potential, and the plasma sheath.
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4.2. Charging with photoemission

(a) Booms

(b) Without booms

Figure 4.11: Time series plot of the potential of the MMO with and without
booms, where the drift is along the negative Z axis and photoemission is included.
The inset plots the same timeseries after 1000 timesteps, where the potential of
the spacecraft has begun to oscillate about the floating potential.

Figures 4.11a and 4.11b show the potential convergence to the floating
potential for both MMO configurations. Comparing these figures to 4.6a and
4.6a, we can see that the final floating potential, and total charging time to
the floating potential, seem to be independent of the drift direction. In the
configuration of MMO with booms 4.6a, the potential converges to 105.42 V,
and in the boomless configuration 4.11b converges to 100.71 V. The difference in
floating potential for the two directions of drift are so small as to be negligible.
Since the photoemission current, and the emissive surfaces remain the same,
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only the ambient electron charging could be the cause of a difference in floating
potential.

The MMO without booms can be approximated as a cylinder, equation
(2.42b) then gives the approximate current due to impining electrons. The
current collected when the spacecraft is neutrally charged, Ith,e is dependent
on the cylinder geometry, from equation (4.3), it is apparent then that the
current from the ambient electrons is dependent on the total surface area of
the spacecraft and the magnitude of the drift velocity, but not on its direction.

(a) Booms (b) Without booms

Figure 4.12: Potential profile along the X axis for the two MMO configurations
with drift along the negative Z axis and photoemission included. The line
is plotted at (x, y) = (13.95m, 13.95m), or node points (x, y) = (62, 62), and
passes through the main octagonal body of the spacecraft. The X axis units
are in number of nodes from the origin. The two values in each plot show the
height of the potential barrier formed relative to the ambient plasma.
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4.2. Charging with photoemission

(a) Booms (b) Without booms

Figure 4.13: 2D slices through Z = 14.4m showing the time averaged potential
profile of the entire computational domain with drift along the negative Z axis,
and photoemission included. The potential is time averaged after a floating
potential has been reached after 1,000 timesteps.

Figures 4.12b and 4.12a show the potential profile along the X axis for cases
3 and 8. The minimum potential in the potential barrier is slightly lower than
for cases 2 and 6, the potential barrier height from figure 4.12a is 93.33V , and
for the MMO without booms figure 4.12b gives a barrier height of 92.81V .

Figure 4.13 the 2D potential profile for simulation cases 3 and 8; no significant
difference can be seen in the shape and thickness of the sheath formed around
the MMO. Both figures 4.13a and 4.13b again show the distinct variation in
potential within the sheath along the booms, and on the sunlit octagonal panel
perpendicular to the Sun/MMO vector.

(a) Booms (b) Without booms

Figure 4.14: Ion density profile plotted at X = 14.4m, the color gradient is
normalized against the ion plasma density from table 3.4. Drift is along the
negative Z axis. and photoemission is included.
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4. Results

(a) Booms (b) Without booms

Figure 4.15: Electron density profile plotted at Z = 14.4m, the color gradient is
normalized against the electron plasma density from table 3.4. Drift is directed
into the page, and photoemission is included. The sun is located in the negative
X direction.

The ion density and electron density profile plots for simulation cases 3
and 8 are given by figure 4.14 and figure 4.15 respectively, since drift is along
the negative Z axis the ion densities are plotted in the YZ plane. Similarly
to the ion densities for cases 2 and 7 both MMO configurations show a thin
ion enhanced wake downstream of the spacecraft. The profile plots of electron
density are illustrative in showing the formation of the photoelectron cloud,
yet gives no information on the average temperature or velocity distribution of
the particles within the photoelectron sheath. Section Appendix B contains an
analysis comparing the particle distributions found within the photoelectron
sheath, and for the whole computational domain.
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4.2. Charging with photoemission

4.2.3 Charging in an external magnetic field

(a) Booms

(b) Without booms

Figure 4.16: Timeseries plot of the potential of the two configurations of the
MMO, drift is along the negative Z axis, photoemission and an external magnetic
field are included. The potential has been converted from PINC dimensionless
units to Volts. The inset plots shows the potential of the two configurations for
last 9,000 timesteps.

The convergence of the potential of the two MMO configurations to a floating
potential for simulate case 4 and 9 are given in figure 4.16. Similarly to case
3 and case 9, the plasma drift is along the minus Z axis of the domain. It is
apparent from both figures 4.16a and 4.16b, that the potential of the two MMO
configurations converge to almost exactly the same floating potential as for the
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4. Results

two simulations without an external field: 105.4V for the MMO with booms,
and 100.7V in the boomless configuration. The same overshoot behaviour of
the potential before convergence as seen in figure 4.16a, is also seen in figure
4.11a. Figure 4.16b also displays the same behaviour of convergence to the
floating potential as in figure 4.11b without overshooting the floating potential.

Particles that enter the computational domain experience a force given by
equation (2.1), in the absence of an external electric field, this equation becomes

F = q (v×B) = −q|v||B| sin θ j. (4.14)

Here, we have used θ to denote the angle between the velocity vector and the
magnetic field vector in the XZ plane, and j as the unit vector along the Y axis.
Plugging in the drift velocity, the magnetic field strength, and θ = 5.03° a force
of 1.404 × 10−22N will act on the proton and electron in the negative j and
positive j direction respectively. This force will cause the ions and electron to
spiral in opposite direction along guiding centers aligned with the magnetic
field lines. We have already seen that drift direction does not affect the floating
potential obtained from previous results, thus the floating potential remains the
same. So called E cross B drift found close to the MMO where the electrical
field is non-zero, is discussed briefly in appendix D.

(a) Booms (b) Without booms

Figure 4.17: Potential profile along the X axis for the two MMO configurations
with drift along the negative Z axis, photoemission and an external magnetic
field are included. The line is plotted at (x, y) = (13.95m, 13.95m), or node
points (x, y) = (62, 62), and passes through the main octagonal body of the
spacecraft. The X axis units are in number of nodes from the origin. The two
values in each plot show the height of the potential barrier formed relative to
the ambient plasma.
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4.2. Charging with photoemission

(a) Booms (b) Without booms

Figure 4.18: 2D slices through Z = 14.4m showing the time averaged potential
profile of the entire computational domain with drift along the negative Z axis,
photoemission and an external magnetic field are included. The potential is
time averaged after a floating potential has been reached after 1,000 timesteps.

Figures 4.17a and 4.17b show the potential profile for simulation cases 4
and 9 respectively. The potential barrier height with boom configuration of
the MMO is 93.33 V , and the barrier height for the configuration without
booms is 92.81 V . These potential barrier heights are the exact same as in
simulation cases 3 and 8, with very small differences in floating potential and
the minimum potential of the barrier: the difference in potential between the
minimum potential in the barrier between case 8 and case 9 is only 0.02 V .

Figure 4.18 shows the 2D potential profile for cases 4 and 9. The overall
structure of the potential sheath in both configurations of the MMO are similar
to those found in cases 3 and 8. From figure 4.18a, the thickness in the sheath
on the sunward side is however slightly larger than the sheath thickness seen in
figure 4.13a.
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(a) Booms (b) Without booms

Figure 4.19: Ion density profile plotted at X = 14.4m, the color gradient is
normalized against the ion plasma density from table 3.4. Drift is along the
negative Z axis, photoemission and an external magnetic field are included.

(a) Booms (b) Without booms

Figure 4.20: Electron density profile plotted at Z = 14.4m, the color gradient
is normalized against the electron plasma density from table 3.4.Drift is along
the negative Z axis, photoemission and an external magnetic field are included.
The direction of the sun is along the negative X axis.

Figures 4.19 and 4.20 show the ion and electron density profile for both
cases 4 and 9 respectively. The enhanced wakes formed downstream in both
figure 4.20a and 4.20b show no discernible difference than the wakes formed in
simulation cases 3 and 8, with similar shape and characteristic length. Likewise,
there is no difference density of electrons on the photoemissive surfaces of the
MMO, with the maximum density from 4.20a and 4.15a being 1164.73 times
the density of the electrons in the ambient plasma.
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4.2. Charging with photoemission

4.2.4 Charging at different photoelectron temperatures

(a) Booms

(b) Without booms

Figure 4.21: Timeseries plot of the potential of the two configurations of the
MMO, drift is along the negative Z axis and the photoelectron temperature has
been set to 3 eV . The potential has been converted from PINC dimensionless
units to Volts. The inset plots the same timeseries after 1000 timesteps, where
the potential of the spacecraft has begun to oscillate about the floating potential.

Internally in PINC, we have made the assumption of constant yield of
photoelectrons by averaging the yield over the energy of incoming photoelectrons.
Since our computation of the temperature is based on this averaging, another
simulation was carried out where the photoelectron temperature was set to a
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4. Results

constant, Tph = 3 eV . The photoemission current was kept constant and no
external magnetic field was included. Since drift was along the negative Z axis,
these simulation cases (cases 5 and 10) are compared against simulation cases 3
and 8.

Figures 4.21a and 4.21b show the converge of the potential convergence
of two boom configurations for case 5 and 10. A significantly lower floating
potential is reached for both boom configurations as compared to cases 3 and
8. The floating potential of the MMO with deployed booms was 78.15 V ,
and 75.75V for the MMO without deployed booms. The difference in floating
potential between the two configurations is smaller than for the cases with a
lower photoelectron temperature. Unlike case 3, figure 4.21b shows an overshoot
of the spacecraft potential before converging to the final floating potential,
which could be due to a greater fraction of the photoelectrons having high
enough kinetic energy to escape the potential barrier formed, thereby reducing
the effective photoemission current.

(a) Booms (b) Without booms

Figure 4.22: Potential profile along the X axis for the two MMO configurations
with drift along the negative Z axis, photoemission is included with a
photoelectron temperature of 3 eV . The line is plotted at (x, y) =
(13.95m, 13.95m), or node points (x, y) = (62, 62), and passes through the
main octagonal body of the spacecraft. The X axis units are in number of nodes
from the origin. The two values in each plot show the height of the potential
barrier formed relative to the ambient plasma.
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4.2. Charging with photoemission

(a) Booms (b) Without booms

Figure 4.23: 2D cut through Z = 14.4m showing the time averaged potential
profile of the entire computational domain with drift along the negative Z axis,
photoemission is included with a photoelectron temperature of 3 eV . The
potential is time averaged after a floating potential has been reached after 1,000
timesteps.

Figure 4.22 shows the potential profile of the MMO along the X axis for both
boom configurations. In both cases, the minimum potential of the potential
barrier is significantly lower than the minimum potential for other cases where
the photoemission current is included: The barrier height is 85.58 V when booms
are deployed and 85.23 V without booms. The absolute value of the potential
barrier height for the simulation cases Tph = 3 eV is therefore substantially
larger than for cases with Tph = 0.62 eV .

The 2D potential profile for case 10 and case 5 is shown by figure 4.23a and
figure 4.23b respectively. The potential at the saddle point located adjacent
to the sunlit surface perpendicular to the vector pointing towards the sun is
noticeably more negative for both boom configurations as compared to cases
3 and 8. Additionally, the potential of the two symmetrical spikes along the
booms in figure 4.23a is lower than the spikes seen in figure 4.13a for case 8.
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(a) Booms (b) Without booms

Figure 4.24: Ion density profile plotted at Z = 14.4m, the color gradient is
normalized against the ion plasma density from table 3.4. Drift is along the
negative Z axis, and photoemission is included with a photoelectron temperature
of 3 eV .

(a) Booms (b) Without booms

Figure 4.25: Electron density profile plotted at Z = 14.4m, the color gradient is
normalized against the electron plasma density from table 3.4. Drift is along the
negative Z axis, and photoemission is included with a photoelectron temperature
of 3 eV .

Figure 4.24 show a 2D profile of ion density for case 10 and case 5. Comparing
figure 4.24a with 4.24a, we can see that the length of the wake formed behind
the MMO in the direction of drift is shorter than in figure 4.14a for case 3. If
we extract the ion density for each cell in the Z axis at X = 64 and Y = 64, we
can estimate the length of the wake formed applying the following equation

ni(zw) = ni0. (4.15)

Where zw denotes the length of the wake measured from the bottom panel of
the MMO to the edge of the wake, and ni0 denotes the density of the ambient
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4.3. Summary of results

ions in the plasma upstream from the MMO. Using this method, the length of
the wake for case 10 is 4.73 m, and 5.53m for case 3.

The 2D electron density profile for case 10 and case 5 are given in figure
4.25a. Although not immediately obvious from the color contours, the maximum
electron density adjacent to sunlit surfaces is slightly higher in case 5 and 10
as compared to the maximum electron density in case 3 and 8. The maximum
density of electrons for case 10 is 1180.45 times the ambient electron density, and
1164.74 times the ambient electron density for case 8. The following equation
gives the density of photoelectrons able to escape the potential barrier (Zhao
et al. 1996)

nph(x) = Jph(x)
evph

. (4.16)

Where Jph has been used to denote the absolute value of the effective
photoelectron current density, and vph denotes the mean velocity of emitted
photoelectrons. The effective photoelectron current density is however
proportional to the height of the potential barrier (Zhao et al. 1996)

Jph ∝ exp
{
− eφb
kTph

}
. (4.17)

Where φb denotes the potential barrier height. Since the barrier height is much
larger in case 8, the effective current density flux compensates for the higher
average velocity of photoelectrons in case 10, leading to a higher maximum
density of photoelectrons in case 10.

4.3 Summary of results

We can now summarize the results for all the simulation cases completed. For
all the simulation cases, the floating potential of the MMO was computed, and
an estimate for the plasma sheath thickness was found. In the simulation cases
where the photoemission current was included, we also computed the potential
barrier height due to the photoelectron cloud formed adjacent to the sunlit
surfaces of the spacecraft. Table 4.2 shows these values for all simulation cases
run for this thesis.
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4. Results

Simulation
case

Floating
potential
(V)

Barrier
height
(V)

sheath thickness(m)

Case 1 −283∗ N/A 2.5
Case 2 100.70 92.58 6.75
Case 3 100.71 92.81 6.75
Case 4 100.70 92.81 6.3
Case 5 75.75 85.23 4.95
Case 6 −281∗ N/A 3.2
Case 7 105.40 93.17 6.525
Case 8 105.42 93.33 6.75
Case 9 105.40 93.33 6.3
Case 10 78.15 85.58 6.75

Table 4.2: Summary of computed floating potentials, barrier height for
photoemissive simulation cases, and the plasma sheath thickness. The asterisk
over the floating potential values for cases 1 and 6 indicate the values as
estimations from the curve fitting given in Appendix C
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CHAPTER 5

Summary and Discussion

5.1 Photoemission implementation

The main objective of this thesis was to analyze the charging of the MMO
spacecraft in direct sunlight while in orbit around Mercury using three
dimensional Particle-In-Cell simulations. Achieving this goal necessitated
further developing the object charging module of the PIC framework PINC
with functionality for including a photoemission current.

In order to inject photoelectrons in a physically realistic way, the new code
had to meet the following requirements: The code had to be able to identify
what surfaces of the simulated spacecraft were exposed to sunlight, the average
temperature and the amount of photoelectrons to inject, and crucially, how to
inject the photoelectrons from the identified photoemissive surfaces.

Two methods were implemented for determining the average photoelectron
temperature and what amount to inject per timestep. The simplest method
implemented took the photoelectron temperature and current density as input
variables, this method then converted the current density to the correct
number of photoelectrons and gave these photoelectrons a Maxwellian velocity
distribution using the average temperature given by the user. The second
method, and the one used to simulate the MMO in Chapter 4, computed the
amount of photoelectrons and average temperature directly by numerically
integrating Planck’s law for Blackbody radiation using the photoelectron yield
and work function of the spacecraft surface, as well as the spacecrafts distance
from the sun as input parameters.

Three methods for injecting photoelectrons were implemented and compared
to other PIC codes for verification purposes: The method selected sampled the
tangential and normal velocity of the photoelectrons with respect to the sunlit
surface, and filling the computational cells adjacent to the sunlit spacecraft
uniformly. This method was found to be the injection method that was best
able to reproduce the floating potential other PIC codes converged to. We were
also able to show that the algorithm selected for photoelectron injection has
a significant impact on the charging behaviour and the floating potential the
simulated spacecraft will converge to.
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5. Summary and Discussion

5.2 Comparison of results with theory and other charging
simulations

For any spacecraft with plasma instruments as a payload, the floating potential
is a critical value that must be considered. Spacecraft charged to a non-zero
potential will attract particles with charge of opposite sign to the potential, and
reflect particles with charge of the same sign as the potential. This causes a
sheath to form around the spacecraft where the density of the attracted particles
is greater than the ambient plasma. To accurately measure the ambient plasma
temperature and density, the plasma instruments must therefore be able to
account for this difference in density.

In section Chapter 4, we have demonstrated that the MMO spacecraft will
charge to a positive floating potential in low density plasma due to a high ratio
between the photoelectron current and current due to impinging electrons from
the ambient plasma, this is in accordance with data from (Garrett 1981), for
spacecraft charging in solar wind plasmas. We have also demonstrated that
the floating potential of a spacecraft will increase when booms are deployed
and not electrically isolated. Furthermore, 4.2 show that the floating potential
of a spacecraft is unaffected even in the presence of weak magnetic fields, or
slow relative plasma drift relative to the spacecraft: Assuming a non-drifting
and un-magnetized plasma, OML theory and the current balance equation
show that the floating potential is dependent on the density, temperature of
ambient electron and photoelectrons, as well as the shape of the spacecraft.
In our simulations these parameters are kept constant when the relative drift
velocity is changed, or when an external magnetic field is included, and the
floating potential remains constant. This can also be seen when photoemission
is not included, for simulation cases 3 and 4, where the floating potential is
described by equation (4.4). Similarly for cases 9 and 10 in table 4.1, there is a
large decrease in the floating potential of the MMO when the photoelectron
temperature is increased. When the photoelectron temperature increases, more
electrons This is again in accordance with OML theory, and can be seen in PIC
simulations of other spacecraft as well (Sjögren et al. 2012).

For all the simulations cases in Chapter 4, we have demonstrated the presence
of a photoelectron cloud. When a potential profile is plotted as a line passing
through the spacecraft and parallel to the sun-spacecraft axis, a significant
decrease in the potential relative to the ambient plasma is seen. This evidence
of a potential barrier forming due to the photoelectron cloud present in from
of spacecraft surfaces adjacent to the sunlit spacecraft surfaces. Such barriers
are also demonstrated in other PIC spacecraft charging simulations (Deca et al.
2013; Meyer-Vernet 2007; Sjögren et al. 2012). We also see a dependence
of the potential barrier height on the photoelectron temperature, which is
demonstrated mathematically in the paper by Zhao et al. (Zhao et al. 1996).
However, the panel perpendicular to the sun-spacecraft vector shows signification
variations in the potential barrier. None of the simulations we have compared
our simulations to show this phenomena. Appendix D contains discussion on
these relative increases in the plasma potential. We believe these location
variations to be unphysical errors resulting from the coarse voxelization of the
spacecraft or due to a subtle flaw in the implementation of the photoelectron
injection scheme.
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The formation of a photoelectron sheath are seen in our results from electron
density profile plots. Close to the spacecraft, the electron density reaches
maximums of approximately a thousand times that of the ambient plasma,
with a similar decrease in the density of ions close to the spacecraft. Using
equation (4.13), we were able to estimate the thickness of the photoelectron
sheath. However, there is no evidence from our results that show a relationship
between the photoelectron temperature and the photoelectron sheath thickness,
which is not correct (Zhao et al. 1996). Furthermore, within the photoelectron
sheath, our results show spikes in potential along the booms. Literature shows
these spikes can occur for booms that are electrically isolated from the main
body of the spacecraft (Lai 2019; Miyake, Cully, et al. 2013; Paulsson et al.
2019). The MMO was simulated as perfectly conducting however, and we were
unable to show if these spikes are physical or due to a numerical error.
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CHAPTER 6

Future work

6.1 Improving the object module

In order to simulate the charging of objects in ambient plasma, PINC uses
the capacitance matrix method as described in (Miyake and Usui 2009). The
implementation of this method in the PINC framework when the capacitance
matrix is applied and charges are redistributed to the object surface assumes
the object is composed of a homogeneous, and perfectly conducting, material:
Charges due to impinging particles, and photoelectrons, are redistributed evenly
in such a way as to achieve an equipotential. Since dielectric surfaces are poor
electrical conductors, charged particles tend to remain where they strike on the
surface.

In physical systems, this assumption of a perfectly conducting body does not
necessarily hold, spacecraft that are composed of both dielectric and conducting
surfaces can charge to different levels in sunlight (Lai 2019). For spacecraft with
different surface material composition, this difference in surface potential leads
to differential charging. For spacecraft exposed to sunlight, like the MMO, the
shadowed dielectric surfaces emit secondary electrons when high temperature
electrons impinge of the surface. These secondary electrons are re-absorbed by
conducting surfaces grounded to the less negatively charged sunlit side, thereby
charging the spacecraft more (in the negative sense) as compared to a perfectly
conducting spacecraft.

Dielectric surfaces could be implemented by splitting the arrays containing
surface nodes into separate arrays for conducting surfaces and dielectric surface
nodes. Alternatively, since the object module in PINC is able to simulate several
objects at the same time, the spacecraft could be divided into separate objects
with an additional label marking the object as either dielectric or conducting.

6.2 Implementation of additional charging currents

The photoelectron current is only one of several currents that have a significant
impact on the floating potential, and plasma sheath formed around a spacecraft
in a drifting plasma. Secondary electrons, discussed in Chapter 2, are especially
important for spacecraft situated close to the sun where the plasma tends to
be hotter. They affect both the floating potential, and depth of the potential
barriers (Deca et al. 2013). The current due to backscattered electrons is another
such important current that can in some cases exceed the current due incoming
fluxes (Garrett 1981). These currents, in addition to the photoemission current,
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could be included as a separate "extra current" module where the user of PINC
could specify which current they want to be active as part of the input file.

6.3 Improving the photoemission current implementation

Several assumptions were made in how the photoemission current was
implemented for this thesis. These assumptions can be addressed to improve
the accuracy of the model. First, we assumed in chapter Chapter 3 that the
incident angle of the sun to be perpendicular to sunlit surfaces. Reflectance, and
thus photoelectric yield, are dependent on the incident angle of photons. As a
first approximation the reduction in radiance can be modeled, using Lambert’s
cosine law, as proportional to the cosine of the incident angle.

Furthermore, the photoelectron cell injection algorithm is effective but
inefficient: By necessity during implementation and debugging, several
computations in the function are calculated each time the function is called.
Extracting these computations into a structure variable could significantly
reduce overall computation times for longer simulations.

Domain decomposition with the photoemission functionality can also be
improved, it was mentioned briefly in section Chapter 3 that splitting the
computational domain perpendicularly to the sun-spacecraft axis is not currently
possible. If the split of the domain passes through the object to be simulated,
another "sunlit" surface is exposed to the function that finds the nodes exposed
to sunlight. If this function is rewritten to discard these cut surfaces, then
domain decomposition becomes much more streamlined and the code can be
more effectively run on a higher number of CPU’s.

finally, the photoelectron emission code could be improved for the end user
experience by separating the photoelectrons as a separate specie of the same
charge and mass as the ambient electrons. PINC supports multi-species plasma,
but as for now, the photoelectron injection code does not distinguish between
ambient electron and photoelectron.
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APPENDIX A

Pseudocode of photoemission
functions

Identification of sunlit surface nodes

Listing A.1: Pseudo code for finding sunlit object surface nodes
void oFindAllSunlitNodes(...){

... define and initialize variables ...

for(int k = 0; k<size[z]; k++){

for(int j = 0; j<size[y]; j++){

int flag = 0;
for(int i = 0; i<size[x]; i++){

index = i*sizeProd[1] + j*sizeProd[2] + k*sizeProd[3];
for(int n = 0; n < nSurfaceNodes; n++){

surfNode = surface[n];
if(surfNode == index){

... append index to exposed node array ...
flag = 1;
break;

}

if(flag) break;

}
}

}
}

}
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Identification of cells adjacent to sunlit spacecraft surfaces

Listing A.2: C pseudocode for finding cells adjacent to sunlit object surfaces

void oCellFillingNodes(...){

... variable definitions and initialization ...

for(long int i = surfaceOffset[a]; i<surfaceOffset[a+1]; i++){

int nObjNode = 0;
int yzPlane = 0;

//cell nodes
long int p = surface[i];
long int pu = p + sizeProd[3];
long int plu = p + sizeProd[2] + sizeProd[3];
long int pl = p + sizeProd[2];
long int po = p - sizeProd[1];
long int pou = p - sizeProd[1] + sizeProd[3];
long int poul = p - sizeProd[1] + sizeProd[3] + sizeProd[2];
long int pol = p - sizeProd[1] + sizeProd[2];

for(int j = interiorOffset[a]; j < interiorOffset[a+1]; j++){
long int intNode = interior[j];
if(po == intNode || pou == intNode ||

poul == intNode || pol == intNode){
nObjNode++;

}
}

for(int j = surfaceOffset[a]; j < surfaceOffset[a+1]; j++){
long int surfNode = surface[j];
if(po == surfNode || pou == surfNode ||

poul == surfNode || pol == surfNode){
nObjNode++;

}

if(p == surfNode || pu == surfNode ||
plu == surfNode || pl == surfNode){
yzPlane++;

}
}

if(yzPlane == 4 && nObjNode < 8){
... store index p as an emitting node for cell filling ...

}
}

}

88



Numerical integration of Planck’s blackbody radiation law

Listing A.3: Numerical integration of Planck’s law in terms of photon flux
void oPlanckPhotonIntegral(...){

... Variable and constant definitions and initialization ...

for(int a=0; a<nObj; a++){
//sigma[a] = ((double)sigma[a]) / (Planck * speedOfLight * 100.);
double c1 = Planck * speedOfLight / Boltzmann;
double x = c1 * 100. * (double)sigma[a]/temperature;
double x2 = x * x;

// decide how many terms of sum are needed
double iterations = 2.0 + 20.0/x;
iterations = (iterations < 512.) ? iterations : 512;
int iter = (int)(iterations);
// add up terms of sum
double sum = 0.;
for (int n=1; n<iter; n++) {
double dn = 1.0 / n;
sum += exp(-n*x) * (x2 + 2.0*(x + dn)*dn) * dn;

}
//result, in units of photons/s/m2/sr, convert to photons/timestep
double kTohc = (Boltzmann * (double)temperature) / (Planck * speedOfLight);
double solidAngle = (double)area[a] / pow(distFromSun,2.);
radiance[a] = 2.0 * pow(kTohc,3.) * speedOfLight;
radiance[a] = radiance[a] * sum;
radiance[a] *= solidAngle * sunSurfaceArea;
radiance[a] *= (1.0 - reflectance) * phYield;
radiance[a] *= time;

}

... Store radiance to object structure here ...

}

Listing A.3 shows a numeric implementation of equation (3.27) and equation
(3.28). The original algorithm (Calculating Balckbody Radiance 2020) has been
converted from C++ code to C for compatibility with the PINC framework.
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A. Pseudocode of photoemission functions

Particle injection into cells adjacent to sunlit spacecraft
surfaces

Listing A.4: C style pseudocode of cell filling algorithm
void pPhotoelectrons(...){

... initialize variables ...

... divide photoelectron flux by total number of cells to be filled ...

for(int a=0; a < nObjects; a++){
for(long int j=0; j<(long)flux[a]; j++){
for(int i = 0; i < nEmittingNodes; i++){

long int node = emittingNodes[emittingOffset[a] + i];
gNodeToGrid3D(... node, pos ... ); //computes node location in grid
memcpy(newPos, pos, pop->nDims * sizeof(*newPos));
while(vel[0] >= 0.0){
vel[0] = univariate_gaussian(... avgVel[a] ...); //normal velocity component

}
bivariate_gaussian( ...avgVel[a], &vel[1], &vel[2] ...); //tangential velocity components
newPos[0] -= random(...); //subtract a random value in range [0,1]
newPos[1] += random(...);
newPos[2] += random(...);
pNewParticle(...); //create the new particle
... reset "vel" array to zeroes ...

}
}

}
}
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APPENDIX B

Electrons temperature distribution
for MMO with

In this appendix, we plot the normalized velocity component distribution and
normalized speed distribution for Case 8. The plots show the distribution at
timestep 1,000 when the charging of the MMO has begun to stabilize and
converge to the floating potential. The filled in orange sections show the binned
particle distribution, while the blue lines show the normalized theoretical
Gaussian distribution curves. Figure B.1 shows the distribution for the whole
domain. Due to the large amount of particles in the whole domain, every
hundredth electron was included for a total of 1.47 × 106 particles. From
B.1a, it is apparent that the distribution contains a mixture of two electron
distributions; the ambient photoelectrons with a higher average temperature,
and the photoelectrons. Figure B.2 shows the normalized distributions only for
particles close to the sunlit spacecraft surface. Note in figure B.2a the lower
average temperature of of electrons close to the spacecraft surfaces.
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B. Electrons temperature distribution for MMO with

(a) Normalized distribution of speed of electrons

(b) Normalized distribution of velocity components of electrons

Figure B.1: Normalized distributions for both speed and velocity components
in the whole computational domain
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(a) Normalized distribution of velocity components for electrons
close to the sunlit spacecraft surfaces

(b) Normalized distribution of speed for electrons close to the
sunlit spacecraft surfaces

Figure B.2: Normalized distributions for both speed and velocity components
for particles close to the spacecraft sunlit surfaces
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APPENDIX C

Curve fitting of potential for MMO
without photoemission

From Chapter 4 it became apparent from the timeseries plot of the potential of
the MMO spacecraft in the cases where photoemission was not included that a
convergence to a floating potential had not been achieved. In this appendix we
present a Python script for fitting curves to these timeseries plots of potential
in order to estimate the floating potential that PINC would eventually converge
to.

Three functions were optimized to fit against the absolute value of the
potential and compared for accuracy.

Hill function: y(t) = a
x

h+ t
(C.1a)

Exponential function: y(t) = a exp{−bt} − c (C.1b)

Generalized logistic function y(t) = A+ K −A
(C +Qe−Bt)

1
ν

.. (C.1c)

The three functions described all converge to a finite value, and the rate of growth
can be easily controlled. The function parameters, except the independent
variable t denoting time, are constants and can be adjusted for optimum fit.
The Python package Scipy contains a curve fitting function. This curve fitting
function uses a non-linear least squares algorithm to fit some function to a data
set. This was combined with a trial and error checking of parameters since
the optimization function did not converge for the exponential and generalized
logistic function when all the controllable parameters were included.

The python script below also outputs the root mean square error, such that
the fit of our trial functions could be checked numerically during trial and error
testing. The root mean square error is described as:

RMSE =

√∑n
i=1 (ypred,i − yi)2

n
. (C.2)

The absolute value of the potential found with PINC simulation was used to
simplify fitting the trial functions to the data, the independent time variable t
was also normalized by 10,000 timesteps to reduce errors from small floating
point operations when computing the e−bt term found in two of the trial
functions. The Hill function was found to be the function that best fit the
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C. Curve fitting of potential for MMO without photoemission

curves of the absolute value of potential. The lowest RMSE values for the
Hill fitting found that the potential converged to −283 V for the MMO with
deployed booms, and −281 V for the MMO without deployed booms.

(a) 14,000 timesteps (b) 4,000 timesteps

Figure C.1: Curve fitting using a generalized logistic function, Hall function,
and exponential function of the potential of the MMO spacecraft without booms.
The Y axis is the absolute potential in Volts, and the X axis is units of 1,000
timesteps

(a) 14,000 timesteps (b) 4,000 timesteps

Figure C.2: Curve fitting using a generalized logistic function, Hall function,
and exponential function of the potential of the MMO spacecraft with booms.
The Y axis is the absolute potential in Volts, and the X axis is units of 1,000
timesteps
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import numpy as np
import matplotlib.pyplot as plt
import scipy
import scipy.optimize as opt

def genLog(x, A, K, nu):
y = A + ((K - A) / ((1 + 0.0001 * np.exp(-0.55*x))**(1/nu)))
return y

def expFun(x,a,c):
return a*np.exp(-0.6*x)-c

def hill(x,h):
return 285 * x/(x+h)

def main():
x_fit = np.linspace(0,4,num=40000)
x = np.linspace(0,14,num=140000)
pot = np.loadtxt('./potentials/noPH_NB_pot.txt', delimiter='\n')
pot = np.absolute(pot)
print(pot[0])

popt, pcov = opt.curve_fit(genLog, x_fit, pot)
print(popt)
y_logistic = genLog(x, *popt)
y_log_res = pot - genLog(x_fit, *popt)
y_log_rmse = (scipy.sum(y_log_res**2)/(y_log_res.size-2))**0.5
print(f"RMSE of general logarithmic fitting function = {y_log_rmse}")

popt, pcov = opt.curve_fit(expFun, x_fit, pot)
print(popt)
y_exp = expFun(x, *popt)
y_exp_res = pot - expFun(x_fit, *popt)
y_exp_rmse = (scipy.sum(y_log_res**2)/(y_log_res.size-2))**0.5
print(f"RMSE of exponential fitting function = {y_exp_rmse}")

popt, pcov = opt.curve_fit(hill, x_fit, pot)
print(popt)
y_hill = hill(x, *popt)
y_hill_res = pot - hill(x_fit, *popt)
y_hill_rmse = (scipy.sum(y_hill_res**2)/(y_hill_res.size-2))**0.5
print(f"RMSE of Hill fitting function = {y_hill_rmse}")
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C. Curve fitting of potential for MMO without photoemission

fig, ax = plt.subplots()
ax.set_xlim(0,14)
ax.set_ylim(0,300)
ax.grid(b=True, linestyle='--', linewidth=0.5, color='gray')
ax.plot(x_fit,pot, label="Original potential")
ax.plot(x,y_logistic, label="fitted logistics curve", lw=1, linestyle='--')
ax.plot(x,y_exp, label="Fitted exponential curve", lw=1, linestyle='-.')
ax.plot(x,y_hill, label="Fitted Hill curve", lw=1, linestyle=':')

ax.legend(frameon=False, loc='lower right')
plt.show()

if __name__ == "__main__":
main()

Listing 1: Python script for optimizing curves fit to the timeseries plot of electric
potential. The optimized curves are plotted forward in time past the total
number of timesteps simulated using PINC in order to estimate the floating
potential of the MMO when no photoemission is included.
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APPENDIX D

Analysis on variations in
photoelectric potential barrier

In this appendix, we investigate the uneven potential barrier on the sunlit panel
perpendicular to the Sun-MMO vector where two distinct regions of relatively
lower potential are found. We also investigate the prominent spikes in the
plasma potential half way down the deployed booms where a region of relative
low electron density can be found. Finally we comment on the presence of an
small electric field gradient within the interior of the simulated spacecraft.

Figure D.1: Electron density profile ne plotted in the XY axis. The X and Y
axes have been restricted to the vicinity of the MMO octagonal main body, and
the color gradients have been changed to better illustrate the spikes in electron
density on the slanted panels
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D. Analysis on variations in photoelectric potential barrier

Figure D.1 shows a zoomed in 2D electron density profile in the vicinity
of main body of the MMO spacecraft. Four symmetrical regions of very high
electron density can be found on the sunlit side of the spacecraft. From section
Chapter 3 we know from figure 3.13 that when we perform a voxelization of
the spacecraft we are unable to produce diagonal straight edges in any plane.
Instead, a zig-zag pattern approximates this diagonal line. This seems to be
the cause of the issue illustrated in D.1; these four spikes in density correspond
to empty "corner" cell along the diagonal spacecraft panel. The high density
electrons cause a relatively high electric field in the local region after charge
densities are interpolated to computational nodes. The panel perpendicular to
the Sun-MMO vector shows a corresponding "hole" in the electron density. In
the presence of a large radially outward electric field, photoelectrons injected
into this region are quickly reabsorbed by the spacecraft surface.

Figure D.2: Electron density profile ne plotted in the XY axis. The X and Y
axes have been restricted to the vicinity of the lower boom (in the Y direction),
this density profile is symmetric about the XZ plane diving the MMO in half

Figure D.2 shows a zoomed in view of the electron density profile along
the boom closest to the XZ. A small region of relatively low electron density
(roughly 60% of the average electron density in the electron cloud). At least two
possible reasons exist for this region of low density. First, the region could mark
the point along the boom where the influence of the ambient plasma matches the
influence of the boom and main body. This would cause the electron trajectories
to diverge away from the region, causing a lower local density. Second, the
location of these "holes" almost perfectly match the deliniation of the points
along the Y axis where the computational domain has been decomposed. When

100



particles travel from one sub-domain to another, they are temporarly stored
in a buffer in so called ghost cells. It is possible that some information loss
happens over this boundary, especially if not enough memory has been allocated
for these buffer array. This would also cause a decrease in the local electron
density.

Figure D.3: Electrical field E drawn in the XY plane, with vector lines stretched
to better illustrate the relative size of the field. The plot has been zoomed in to
capture the field lines close to the spacecraft body, and the field lines along the
boom where the electron density is low.

Figure D.3 illustrates the electric field lines close to the surface of the main
body of the MMO. We see relatively long field lines extending from the region
of high relative electron density, electron move in the opposite direction to the
electric field lines, and so this plot suggests that electron will quickly reabsorbed
by the spacecraft surface due to the force exterted by the local electrical field.
Towards the bottoms of the plot, we also see diverging electrical field lines in
the "hole" region of lower electron density along the lower boom. The opposing
electrical field lines in this region forces electrons to scatter away from the
region, which would explain the decrease in electron density, and the increase
in relative potential in the region.
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D. Analysis on variations in photoelectric potential barrier

Figure D.4: Electrical field E drawn in the XZ plane, with vector lines stretched
to better illustrate the relative size of the field.

Figure D.4 show the electrical field cut through the central body of the MMO
in the XZ plane. A very large (relatively speaking) electrical field points radially
out of the spacecraft. As mention previously, electrons will be pushed in the
opposite direction to these field lines, directly into the spacecraft. The region
therefore becomes a sink, electron quickly reabsorbing before new photoelectrons
are emitted, causing a density "hole" to form.
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Figure D.5: Potential φ plotted at timestep 10,000. The maximum and minimum
values of potential have been restricted to better display the potential gradient
in the spacecraft interior

Figure D.5 shows a potential profile of the MMO cut in the XY plane,
where Voltages have been restricted to values close to the spacecraft floating
potential φf . From the plot we see that a small potential gradient has formed
in the interior of the spacecraft. The capacitance matrix method attempts
to redistribute charges to the spacecraft surface in such a way that there is
an equipotential throughout the object. The gradient can not be explained
by particles interior to the object that have yet to be removed from the
computational domain, this is because the object-plasma module removes
particles from the domain before the potential data is stored to file. Rather, this
is most likely caused by numerical inaccuracies in the capacitance matrix: PINC
takes the multigrid solver tolerance as an input matrix, and the capacitance
matrix is formed by solving Poisson’s equation for a single charge located at
each surface node. It is likely if that adding a lower tolerance to the multigrid
solver would smooth out the presence of this internal gradient at the cost of a
higher total compute time.
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