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Abstract
The present thesis makes a specific focus on the experimental study of the pygmy dipole reso-

nance (PDR) in 124Sn and its evolution with increasing number of neutrons for the 116−119,121,122Sn
and 124Sn isotopes studied at the Oslo Cyclotron Laboratory. Proton-γ coincidences data were
measured in the (p,p′γ) reaction exploiting the primary beam of 16 MeV protons. The Oslo
method was applied in order to extract the average characteristics of 124Sn, such as the γ-ray
strength function and the level density. The external data from neutron resonance experiments
were utilized for collecting the systematics on the level density and the average radiative width
at the neutron separation energy. These systematics were subsequently used to constrain the
slope and normalization of both extracted characteristics.

Several approaches to the normalization procedure were tested, and all the γ-ray strengths
extracted were found to be in good agreement within the estimated systematic and statistical
uncertainties with the external data, obtained with different experimental techniques. A peak-
like structure was observed in the strength at ≈ 6.5 MeV, and this was found to be in agreement
with other experimental data. The total dipole response of a nucleus was reconstructed from
Eγ ≈ 1.6 MeV up to ≈ 18 MeV in order to extract the bulk characteristics of the PDR mode,
such as the energy centroid and integrated strength. Moreover, the present work contributes
with the fraction of the Thomas-Reiche-Kuhn sum rule (TRK) exhausted by the PDR in the
124Sn isotope to the systematics, previously obtained at the Oslo Cyclotron Laboratory for
the lighter tin isotopes. The fraction of the TRK sum rule, extracted for the γ-ray strength
function obtained with the approach similar to that used for the lighter Sn isotopes, points at
an almost constant fraction of the total dipole strength, attributed to the PDR. Furthermore,
the alternative normalization of the γ-ray strength function, proposed in the present work,
results in the largest fraction (≈ 2%) for 124Sn among all Sn isotopes studied. In addition,
the distinguished components of the PDR were found to be shifted towards lower γ-energies as
compared to the lighter Sn isotopes.

In addition, the qualitative test of the generalized Brink-Axel hypothesis was carried out
by studying the extracted strengths as functions of various initial and final excitation energies.
The strength was found to be independent of the initial excitation energy with the correction
for observed Porter-Thomas fluctuations. The γ-ray strength functions feeding the ground and
the first excited states were found to deviate strongly from an average strength, especially for
the low γ-energies. Such deviation was assumed to stem from numerous reasons, and one of the
reasons implies that the Brink-Axel hypothesis does not hold for these states.
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Chapter 1
Introduction: resonances in atomic nuclei

An atomic nucleus is a complex composite system of bound constituents, namely protons and
neutrons, and its properties and behavior are still an infinite source of theoretical and experimen-
tal questions and problems to be solved. Despite a rapid development of experimental techniques
and elaborate theories, more and more questions on how nuclear constituents interact with each
other and which forces underlie this interaction emerge as new facts are revealed. Luckily, this
process makes up the stable Perpetuum Mobile for the further development of nuclear physics
in upcoming years.

One natural way to study such a microscopic system is to subject it to various external
perturbations and test how the system would respond. Different perturbation mechanisms
tested with advanced experimental techniques enable a thorough study of different properties
of an atomic nucleus, e.g. its charge and mass distribution, compression modulus, saturation
density [1] and neutron skin thickness [2]. Experimentally, such a perturbation can be introduced
by means of photon absorption and reemission, particle scattering (proton, neutron, α-particle,
electron, etc.) or numerous transfer reactions, where a nucleon is being stripped or added to a
target nucleus. The corresponding cross-sections, or probabilities, of these processes, observed
as a function of energy and momentum transfer, might serve as a bulk representation of all the
processes involved at different energies. One could split the whole observed energy range into
several regions: a region below particle threshold (or particle separation energy), an intermediate
region, and the region above the meson production threshold (≈ 135 MeV). The former would be
the core range of study in the present work; it will be studied alongside the intermediate region
in order to demonstrate how the reaction channel changes around the binding energy limit.
The first region is characterized by an excitation energy insufficient for individual nucleons or
nucleonic systems to be knocked out, and, thus, reflects excitations of separate, relatively low-
lying nuclear levels, followed by deexcitations via γ-emission. This diapason is also referred to as
the region of Nuclear Resonance Fluorescence (NRF). Further increase of the excitation energy
would result in so-called photodissociation processes, namely emission of separate nucleons, light
systems of bound nucleons (deuteron, α-particle), or even photofission. An appearance of broad
maxima in the observed cross-sections makes this region particularly interesting for numerous
theoretical and experimental approaches; these maxima, or giant resonances, stem directly from
the collective nuclear properties. Their properties could be inferred from systematic studies
and theoretical attempts to predict how these resonances are formed. The majority of data
concerns the absorption of electric dipole photons, resulting in the appearance of the giant
dipole resonance in the observed cross-section. This feature has served as the major touchstone
for various theories and the starting point for studies on other resonances. Further up to higher
energies, above the meson threshold, it becomes possible to interact with individual nucleons
rather than the nucleus as a whole, and nucleon resonances, e.g. ∆33 around 300 MeV, might

11



12 Introduction: resonances in atomic nuclei Chapter 1

be observed in the nuclear response [1]. The latter was found to be quite complex and requiring
dedicated, thorough studies in separate energy regions.

The long history of resonances begins in 1937 with the first observation of an enhanced
photo-dissociation cross-section, measured for some nuclei by W. Bothe and W. Gentner [3]. An
electrostatic 600 keV van de Graaf generator was used to produce photons with energies of 14 and
17 MeV in the 7Li(p,γ) reaction, directed subsequently at a target. The measured cross-section of
the photodissociation reaction on a 65Cu target for 17 MeV photons was found to be sufficiently
large (≈50 mb), and the following discussion led to the assumption on a resonance origin of
the enhancement observed. A year after this experiment, the further discussion and study of
resonance structures was noticeably encouraged by N. Bohr, who predicted that the experiments
with variable radiation frequency would cast light upon a collective nature of resonance effects
[4].

This observation required a further theoretical interpretation, proposed later by A. Migdal
in his seminal work in 1944 [5]. In fact, it was the first theoretical prediction of the giant dipole
resonance (GDR, or from now on the IVGDR for isovector giant dipole resonance), which was
identified as a broad (5-10 MeV) maximum in the γ-absorption cross-section, centered at 14-16
MeV for heavy nuclei and shifted to 20-25 MeV for lighter nuclei. It was also deduced that the
energy of this maximum is tightly related to the symmetry energy term in the Bethe-Weizsäcker
formula as well as the average kinetic energy of nucleons. Migdal’s interpretation of the IVGDR
was performed in terms of quantum collective modes of excitations, and this conceptual ap-
proach was subsequently shown to be quite successful. It underwent further development and
modifications in order to provide the deeper understanding of this resonance phenomenon (see
e.g. [6]).

Right after the theoretical prediction by Migdal, the IVGDR was directly observed by G.
C. Baldwin and G. S. Klaiber in 1946 in photofission cross-sections for several heavy nuclei
[7]. This experiment broke new ground in nuclear experiments due to the exploitation of a
betatron, recently put into operation and able to produce beams of electrons with energies high
enough to perform photofission experiments. In Baldwin’s experiment, a beam of bremsstrahlung
photons was incident on uranium, thorium, and other heavy element targets, and the subsequent
analysis of the photofission reaction yields revealed a prominent maximuma at ≈ 16 MeV with
≈ 3 MeV full width at half maximum for the photofission cross-sections studied as functions of
photon energy. Only one year later, Baldwin and Klaiber confirmed the appearance of resonance
structures for lighter nuclei such as 12C and 63Cu (with maxima at≈ 30 and 22 MeV respectively)
in (γ,n) reactions with photons of energies up to 100 MeV [8].

The following years were marked by extensive theoretical and experimental attempts to
investigate the IVGDR. The contemporary level of understanding of resonances was formed
after the appearance of two essentially different approaches. The first approach was elaborated
by M. Goldhaber and E. Teller [6], who considered the IVGDR as engendered by the oscillations
of incompressible, interpenetrative proton and neutron liquids within a nucleus. On the other
hand, it was attempted to apply the shell model for the description of the resonance structures, as
it was shown to be successful for the treatment of other nuclear phenomena. This was performed
by D. H. Wilkinson, who approached the IVGDR in the mean field framework as a group of dipole
excitations from a filled shell to an empty one [9]. Several attempts were carried out in order
to combine both the macroscopic and microscopic approaches, but numerous contradictions are
still to be considered and resolved. Certain success was achieved after considering the role of the
residual interaction, which resulted in various Random Phase Approximation-based calculations
for resonances in atomic nuclei across the whole nuclear chart [10].

The resonance phenomenon, discussed above, could be treated as a nuclear response to a
time dependent external field, able to affect spacial, spin, and isospin coordinates of nucleons
within a nucleus. This field could transfer a certain angular momentum L, spin S, and isospin
T to a nucleus it interacts with. In case of the mentioned experiments, the resonance could
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be interpreted as a response to an electric field with L = 1, or electric dipole field; the spin
of a nucleus remains unaffected, while the isospin changes by a unit (if the initial isospin is
Ti = 0). The different coordinates, or such fundamental properties as the spin S, isospin T , and
multipolarity L, affected during the interaction imply that the isovector giant dipole resonance
(∆L = 1, ∆S = 0, ∆T = 1) is not the only resonance to be observed experimentally. All
the giant resonances can be classified with respect to the angular momentum, spin, and isospin
change.

Initially, the classification was related to multipolarity and parity of an absorbed photon,
where parity is defined for electric (EL) and magnetic (ML) types of radiation as following:

P (EL) = (−1)L,

P (ML) = (−1)L+1.
(1.1)

Absorption or emission of radiation is, therefore, directly related to the type (defined by L:
dipole, octupole, etc) of the system of charges or currents excited within a nucleus.

According to the quantum numbers of spin, isospin, and multipolarity, and their change in
the excitation process, one can distinguish two categories of resonances with the fundamental
difference hidden in the magnetization of a nucleus, related directly to the spins of nucleons [1]:

1. Electric resonances: ∆S = 0. This type of resonance implies no spin change. In other
words, the corresponding excitation operator, which acts on the ground state of a target
nucleus, does not contain spin-dependent terms.

2. Magnetic resonances: ∆S = 1. In the microscopic picture, these resonances are repre-
sented by coherent transitions of particles from one shell to another, accompanied by an
additional spin-flip.

For the electric resonances one might consider the case of ∆S = 0, ∆T = 0, ∆L = 0, 2, ... etc,
which corresponds to the electric isoscalar resonances. Here, it is convenient to introduce
such macroscopic terms as proton and neutron components, which are simply the bulk “clouds”of
protons and neutrons, considered separately. Therefore, the isoscalar resonances are engendered
by a synchronized, or in-phase, motion of the proton and neutron components of a nucleus,
governed by a certain multipolarity. ∆L = 1 would correspond to a translational motion of a
nucleus and can not be considered as a nuclear excitation. One can also emphasize an electric
isoscalar monopole mode, which is realized as periodic expansions and contractions of a nucleus
while the nuclear shape remains unchanged. This mode can be also called the breathing mode,
and it serves as the main source of information on the compressibility of a nucleus. The ∆S = 0,
∆T = 1, collective excitations (∆L = 0, 1, 2, ... etc.) are known as the electric isovector
resonances. In this case the proton and neutron components are oscillating out of phase, and
the IVGDR is observed.

Introduction of the spin-flip (or spin change) ∆S = 1 provides us with a new degree of
freedom. Such resonances might be easier to represent if four different components (which might
be also referred as “nuclear liquids”) are distinguished within a nucleus: protons with spin ↑
and ↓, and neutrons with spin ↑ and ↓. The case of ∆S = 1, ∆T = 0 (the magnetic isoscalar
resonances with ∆L = 0, 1, 2, 3, etc.) could be described by the oscillation of the proton-
neutron component with spin ↑ against the ↓ component. On the other hand, the magnetic
isovector resonances with ∆S = 1, ∆T = 1, are characterized by the proton components with
spin ↑(↓), oscillating against the neutron ↓(↑) components correspondingly (see Figure 1.1).

This descriptive macroscopic interpretation of various resonances could complement our un-
derstanding of resonances if considered alongside the microscopic framework. A giant resonance
can be interpreted as a coherent superposition of particle-hole excitations. An interaction of an
EL or ML photon with a nucleus results in a transition of a nucleon in a certain subshell to an
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Figure 1.1: a) Macroscopic interpretation of different resonance modes; L stands for the
multipolarity, S for spin, and T for isospin of the nucleus. b) Microscopic interpretation of
several transitions for the simplest shell-model with a harmonic oscillator potential.

energetically higher-lying empty subshell. This results in a particle-hole state of a given spin
and parity, defined by the multipolarity L and parity of the photon (1.1), the spin and parity
of the nuclear ground state.

However, the single-particle approach with independent nucleons tends to underestimate the
observed energies of transitions and forms a very simplified picture of the giant resonances. In-
troducing the residual interactions of nucleons affects the energies of induced transitions and,
thus, the energy and the width of the resonance itself. In addition to the energy attributed to a
1p-1h excitation, certain amount of the energy can be distributed over more complicated 2p-2h,
3p-3h, etc. states, and this fact must also be taken into account. Involving of numerous inter-
acting nucleons in the excitation process reflects directly its collective nature. The superposition
of excitations forming a resonance can be described by an action of a corresponding one-body
operator on the ground state wave function [1]:∣∣∣ΨL,S,T

GR

〉
= OL,S,T |Ψg.s.〉 . (1.2)

Since the IVGDR was the resonance predominantly observed with photon probes, it soon
became evident that probes of different nature should be used to reveal other resonances. A large
variety of probes, such as (e,e′),(p,p′),(p,n),(α,α′),(π+,π0), and (µ,νµ), were proposed and used
to observe new resonance responses [11]. For example, inelastic electron scattering experiments
revealed the isoscalar giant quadrupole (ISGQR) resonance [12], whilst the α-probes allowed
to observe the isoscalar giant monopole (ISGMR) resonance [13]. The complementary probes
allowed to distinguish resonances of different origin in the excitation energy ranges where they
are overlapping. Alongside the later observations of spin-flip resonances, the experiments dis-
cussed form an experimental base for the deeper insight into the nuclear response under different
conditions and, thus, the underlying nuclear structure.

A rapidly growing interest in the new resonance phenomena expanded not only on the
observation of electric and magnetic resonances of different multipolarities, but on how a given
strength (E1, E2, M1, etc.) is distributed and fragmented over a wide excitation energy range
for different isotopes. Particularly, the study of progressively heavier isotopes, further away from
the valley of stability could potentially reveal new excitation modes and resonances. The energy
range in the vicinity of the IVGDR resonance was rather well studied in numerous experiments
starting from 1960s, but the lower-lying region still needed to be addressed to. Indeed, thermal
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Figure 1.2: Pygmy dipole strength for unstable isotopes 129−132Sn, 133,134Sb, and several
stable isotopes as a function of the squared asymmetry parameter (N − Z)2/A2. Figure is
taken from Ref.[14].

neutron capture experiments performed by G. A. Bartholomew and collaborators in the early
1960s revealed a new feature in the electric dipole response: an additional enhancement in the
strength distribution in the vicinity of Eγ ≈ 5-6 MeV was observed for several nuclei [15]. This
resonance structure was subsequently called the pygmy dipole resonance (PDR) in the work of J.
S. Brzosko [16], who compared the experimental (n,γ) cross-sections with the predictions of the
compound nucleus model in the presence of the PDR. It was found that an agreement with the
experimental data was significantly harder to achieve if the PDR was disregarded. Therefore,
more realistic calculations require the PDR to be treated together with the IVGDR.

The definition of the PDR and the question of whether a fragmented low-lyingE1 strength
could be considered a resonance structure are less evident than for the neighboring IVGDR mode.
The earliest experiments related the appearance of the PDR with the presence of excess neutrons
forming a diffuse neutron distribution with respect to the nuclear radius. These neutrons were
found to form either a neutron skin [17] or a halo structure [18]. Moreover, there are also
some theoretical indications of the PDR in proton rich nuclei [19]. While the giant resonances
are identified as arising from a coherent superposition of excitations to certain states, it is
still debated whether these neutrons are involved in collective oscillations with respect to the
remaining proton-neutron core or result in a non-collective strength distribution.

Another important branch of the PDR studies touches upon the evolution of the low-lying
strength along different isotopic lines (number of protons Z is fixed) and aims at revealing
particular trends for a varying number of neutrons N . For example, Figure 1.2 demonstrates
the electric dipole strength attributed to the PDR for several even-even and odd isotopes of
Sn, Sb, Pb, Ba, Ce, Sm, and Nd. The strength reveals a certain trend with respect to the
squared asymmetry parameter α2 = (N − Z)2/A2. As the neutron excess increases, in general,
the strength increases as well. At a certain value of α, the strength might be expected to
stabilize locally due to partial counteraction between the Coulomb force and the force due to
the asymmetry energy, favoring formation of a neutron skin. Another important remark concerns
the way these strengths were extracted: different experimental techniques might cover different
energy regions, and part of the strength might be missing in some experiments.

In this relation, a consistent comparison of experimental findings on, for example, the same
isotopic line is of particular importance. This master thesis is chiefly inspired with the series
of studies on several Sn isotopes performed at the Oslo Cyclotron Laboratory. This complex



16 Introduction: resonances in atomic nuclei Chapter 1

research involved 116−119,121,122Sn studied in (3He,αγ) and (3He,3He′γ) reactions. The nuclear
response was treated in terms of the γ-ray strength functions, describing the average decay
properties of a nucleus. This quantity will be discussed in detail in Chapter 3. In all cases,
the nuclear response reflected an enhancement in the vicinity of the neutron separation ener-
gies, which could be interpreted as the pygmy dipole resonance. An interesting observation was
derived from the obtained systematics: the PDR strength does not change significantly with neu-
tron number, although the centroid of the resonance shifts towards higher energies. Moreover,
the presence of the PDR in the nuclear response was shown to affect radiative neutron capture
(n,γ) cross-sections. Good agreement with experimental cross-sections was achieved, while the
standard models with no PDR included underestimate the experimental cross-sections. This
finding provides inspiration for the further discussions of the role the PDR might play in astro-
physical neutron capture processes and, thus, the formation of the elements heavier than iron
(see Section 2.3.3).

The present thesis is focused on a (p,p′γ) experiment performed on 124Sn. This isotope is the
heaviest even-even isotope studied at the Oslo Cyclotron Laboratory, and the extraction of the
nuclear response for this isotope enables study of average nuclear properties, such as the nuclear
level density and γ-ray strength function. Together with the known experimental γ-ray strength
functions for the lighter Sn isotopes and external data, extracted with different experimental
techniques, a more complete picture of the PDR evolution could obtained. As 124Sn is the
heaviest Sn isotope, it might give a clue on how the parameters characterizing the PDR change
as one approaches the edge of the valley of stability. The present thesis will hopefully serve as
a tiny step towards the better and more complete understanding of the PDR, its relation to the
underlying nuclear structure, and its implication for astrophysical phenomena. Particularly, the
lighter 123Sn isotope could potentially be classified as a branching point in the slow neutron-
capture process [20]. The estimation of neutron capture rate involves knowledge on statistical
decay properties of the compound nucleus, in this case 123Sn+n→ 124Sn. As the presence of
the PDR in the nuclear response was shown to enhance the neutron absorption cross-sections of
lighter Sn isotopes [21], this might be also expected for the 123Sn neutron capture cross-section,
calculated on the base of the level density and γ-ray strength function for 124Sn.

The thesis is organized in the following way: the next chapter covers the most relevant
questions, theoretical and experimental findings on the PDR, its nature, structure and its relation
to the neutron skin thickness, equation of state, and neutron capture rates. It also contains
a section devoted particularly to the Oslo Cyclotron Laboratory experiments on Sn isotopes
and the major experimental information on the low-lying dipole strength distribution in 124Sn.
Chapter 3 contains a discussion of the γ-ray strength function and level density exploited for the
description of the PDR in the present work. Chapter 4 contains all relevant experimental details,
particularly, an overview of all detecting systems, experimental conditions, and the primary data
selection and analysis. The so-called Oslo method used to extract the nuclear level density and
γ-ray strength function for 124Sn is described in detail in Chapter 5. The obtained experimental
results are presented and discussed in Chapters 6 and 7. Finally, the summary and outlook will
be provided in Chapter 8.



Chapter 2
The pygmy dipole resonance

2.1 The PDR in terms of the energy weighted sum rule

Historically, the resonance features appearing in the nuclear response were initially studied from
the perspective of giant resonances, especially the IVGDRs: broad pronounced maxima observed
in the cross-sections due to collective excitiations of protons and neutrons. It was found that
these collective phenomena are present for nuclei throughout the whole nuclear chart, from
the lightest 4He [22], to the heaviest Th and U isotopes [23], and the bulk properties of these
resonances are smoothly varying functions of the mass number A for the majority of nuclei.
However, both the criterion for being a giant resonance and the degree of collectivity had to be
quantified.

The microscopic picture of resonance structures provides an opportunity to approach their
collective nature in terms of underlying transitions and the corresponding transition operators.
The giant resonances could then be defined as exhausting the large fractions of the so-called
energy weighted sum rules (EWSR), defined by the corresponding multipole electromagnetic
transition operators. In order to introduce the EWSR, one should first introduce the reduced
transition rate, or the transition strength, B(σλ, Ii → Jf ) in its general form [1]:

B(σL, Ji → Jf ) =
∑
µ,Mf

|〈Ψf |M (σL, µ)|Ψi〉|2 =
∑
µ,Mf

(JiMiLµ|JfMf )2|〈Ψf ||M (σL)||Ψi〉|2 =

=
2Jf + 1

2Ji + 1
B(σL, Jf → Ji),

(2.1)

where Ji and Jf are the angular momenta of the initial and final states with the corresponding
projections Mi and Mf , 〈Ψf ||M (σL)||Ψi〉 denotes the reduced matrix element of the transi-
tion operator for a transition of type σ and multipolarity L with the corresponding projection
µ, (JiMiLµ|JfMf ) is the Clebsh-Gordan coefficient. In case of the electric dipole transitions
σ = E and L = 1 correspondingly. In the literature, the M (σL) operator refers often to
the electromagnetic radiative transitions due to absorption or emission of real photons (see e.g
[24]). However, an excitation due to either inelastic hadron or electron interaction might also
take place. In this case, transitions could be described by quite similar transition operators,
taking spins and isospins of interacting particles into account alongside the interaction between
incident particles and the nucleons. The energy weighted sum rule could then be introduced as
the sum over all possible strengths for the excitations from the ground state to a certain final

17
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state n, weighted with the corresponding excitation energies [1]:

SσL =
∑
n

(En − E0)B(σL, g.s→ n). (2.2)

In the case of electric dipole transitions, it can be shown, that the energy weighted sum rule
could be written in the following form [1]:

SE1 =
∑
n

(En − E0)B(E1, g.s→ n) = 14.8
NZ

A
(1 + κ) e2fm2MeV, (2.3)

with an additional charge-exchange correction κ, which might be estimated experimentally. The
classical description of the IVGDR form is usually performed in a slightly modified form of
the classical Thomas-Reiche-Kuhn sum (TRK), expressed in terms of the integrated photon
absorption cross-section [26, 27]:

∫ ∞
0

σ(E)dE =
2π2e2~
mc

NZ

A
MeV ·mb, (2.4)

here, m is the electron mass, Z and A are the charge and mass number of a considered nucleus,
N = A−Z is the number of neutrons. This more practical (in the experimental sense) relation
takes into account direct proportionality between SE1 and

∫∞
0 σ(E)dE = const · SE1. As a

general rule, the resonance structure falls into the giant resonance category if the transition
strengths, forming this resonance, exhaust at least 50% of the EWSR for the corresponding
multipolarity of these transitions. That is the particular case of the IVGDR: it exhausts up
to ≈ 100% of the TRK sum rule, implying that the electric dipole response is predominantly
concentrated in the IVGDR energy region. However, the experimental cross-section integrated
over the IVGDR region might still be underestimating the sum by several percents, even if

Figure 2.1: The fraction of the E1 EWSR for numerous nuclei, attributed to the PDR. Figure
is taken from Ref. [25].
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the additional corrections to the TRK sum are included. This “missing strength”was revealed
before the observation of the PDR and served as an additional stimulus for further studies on
the electric dipole strength distribution.

The PDR was shown to exhaust from a few percent of the TRK sum rule up to a considerable
fraction of 9-10%, observed experimentally [28]. One of the open questions here is how the
fraction of the TRK sum attributed to the PDR evolves for different isotopes, e.g. with the
mass number over the nuclear chart, or for nuclei within the same isotopic line. Unfortunately,
there is still no clear consistency between the ways the TRK sum fraction was extracted in
different experimental methods or theory. Figure 2.1 demonstrates the fractions extracted from
data sets for different isotopes as a function of the mass number A (here, the previous data on Sn
isotopes from the Oslo group are listed as well). Neither a general trend nor a local trend for the
same Z or A could be extracted, if one takes into account that different methods have different
sensitivity to the strength observed, or could simply be limited by the neutron separation energy.
In addition, the question on how the PDR should be separated from the IVGDR, in the area
where they are partially overlapping, is still present. Besides, as a general rule, the extraction
of the TRK sum rule fraction is model dependent. Among the data presented, the fraction
of the TRK sum is either calculated for the PDR-attributed resonance peak with the IVGDR
tail subtracted, or simply for a certain energy range, assumed to be dominated by the PDR
response. This problem was explicitly demonstrated by D. Savran et al, who compared the
NRF with bremsstrahlung and tagged photons with the data from the Coulomb excitation in
the (p,p′) reaction on 90Zr in forward angles (see [25] and references therein). The fraction of
the TRK sum rule tends to vary from 0.55(2)% obtained with the tagged-photon method to
2.2(4)% in the (p,p′) reaction for the same nucleus.

2.2 A brief overview of the PDR

The low-lying electric dipole response observed in 1960s (see introduction in Chapter 1) imme-
diately posed new questions on its macroscopic and microscopic nature. Since it is a part of the
total electric dipole response, contributing to the total EWSR, it was quite natural to approach
it with a similar macroscopic framework as the one applied to the IVGDR before. In order to
describe both the PDR and the IVGDR, R. Mohan introduced the three-fluid hydrodynamical
model of nuclei in 1970 [29]. This model is essentially based on the improved Steinwedel and
Jensen (Danos) two-fluid model, treating protons and neutrons as two compressible fluids, os-
cillating with respect to each other with a restoring force dependent on the symmetry energy in
an incompressible nucleus [30, 31]. While treating protons and neutrons in the same orbitals,
Mohan distinguished a separate fluid of remaining neutrons, thus, splitting neutrons into the
“blocked”and excessive neutrons. Assuming all three fluids to be compressible and contained
in a spherical nucleus of a constant volume, he made an attempt to describe the strength dis-
tribution in 208Pb. The IVGDR could be interpreted in both the two- and three-fluid model
stemming from the oscillations of all protons with respect to all neutrons (mode centered at
≈ 13 MeV), however, the three-fluid model yields also the oscillation of excess neutrons with
respect to a core of protons plus blocked neutrons (low-lying mode at ≈ 4.3 − 4.8 MeV). The
integrated cross-section of the latter mode was estimated to be ≈400-600 smaller than the one
for the IVGDR.

The connection of the PDR to oscillations of excess neutrons presents a purely macroscopic
picture of the low-lying strength, and further experiments were crucial for either verifying or
rejecting this picture. Radiative neutron capture experiments performed by G. A. Bartholomew
et al., which led to the first observations of the PDR, were continued in the years after the
collective interpretation was introduced. Resonance-like structures in the γ-ray strength func-
tions were confirmed to be situated around 5-7 MeV for Pb, Bi, Tl, and Hg isotopes (see e.g.
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[32]). These experiments inspired subsequently R. M. Laszewski and P. Axel to perform tagged
bremsstrahlung photon experiments on the same targets in the energy range from 4.5 MeV up
to the neutron threshold [33]. The superconducting MUSL-1 microtron was used to produce an
electron beam, hitting an aluminum foil to produce bremsstrahlung photons interacting with a
target of interest. Photons with a certain energy were tagged by collecting and detecting elec-
trons, producing these photons, with a magnetic spectrometer and a counting detector array.
These experiments confirmed the appearance of some well-localized dipole strength, exhausting
≈ 0.64% of the EWSR in 208Pb and other isotopes; the strength was found to become more
evenly distributed while moving from 208Pb to Hg and Tl, having proton and neutron holes
below the closed shells Z=82 and N=126. These observations were followed by experiments on
the lighter Sn, Ce, and Ba isotopes revealing similar results.

The next breakthrough in our understanding of the low-lying dipole strength was marked
by exploiting high-energy heavy-ion beams on various targets, performed first by I. Tanihata et
al. [34]. Nuclear radii were measured for various He isotopes, produced by fragmentation of a
primary 11B beam with energy of 800 MeV/nucleon incident on Al, C, and Be targets. A similar
experiment performed by T. Kobayashi et al [35] with a beam of 11Li incident on a 208Pb target
revealed a strongly enhanced E1 strength distribution in a low-energy region.

a) b)

Figure 2.2: a) The isovector dipole strength distribution in 16,18,20,22O, calculated with
the RHB + RQRPA model using the DD-ME2 effective interaction. b) The dipole strength
distribution in 132Sn, calculated with the DD-ME2 effective interaction. Upper and left panel:
proton and neutron transition densities for the peaks at 7.8 and 15.3 MeV excitation energies.
Bottom panel: the ground-state proton and neutron densities. All figures are taken from Ref.
[10].

The experimental findings on the low-lying strengths in very light nuclei and relatively heavy
nuclei were attempted to be reconciled within different theoretical approaches. Numerous meth-
ods, such as the Hartree-Fock-Bogoliubov approach with effective nuclear forces, the relativistic
Hartree-Bogoliubov, the quasi-particle phonon model (QPM), the Landau-Vlasov equations,
relativistic implementations of RPA and QRPA, and many other approaches (see [10] and [36]
for more details) were successfully applied to reproduce the the low-lying dipole strength. It
was soon realized, that the strength observed for 11Li and 11Be could be rather attributed to
a halo-like neutron structure. The tails of the wave function of one loosely bound neutron in
11Be and two neutrons in 11Li expand far beyond the rest of the nucleons. For the one-neutron
halo systems, the low-lying E1 strength is tightly related to the single-particle structure of the
halo neutron and is of non-resonant character; it could not be classified as the PDR within its
macroscopic interpretation. Similar phenomena were observed for other light nuclei, which do
not reveal a clear halo-structure. For example, a series of electromagnetic excitation experi-
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ments were carried out for several oxygen isotopes, particularly, for neutron rich 18−22O [37, 38],
revealing a distributed low-lying E1 strength for each isotope. Subsequently, a more detailed
analysis with the QRPA plus Relativistic Hartree-Bogolubov (RHB) models [39] suggested a
non-resonant nature of the observed response, which could rather be interpreted as a group of
independent single-particle excitations (see Figure 2.2 a)). All these findings cast serious doubts
on the degree of collectivity of the PDR.

Nevertheless, as the mass number increases and one moves towards medium- and heavy mass
nuclei, the structure of the low-lying E1 response changes; relativistic RPA calculations suggest
it to be driven by bulk oscillations of excess neutrons with respect to the core [41]. For example,
the RRPA calculations on the 132Sn suggest a resonant nature of the low-lying E1 strength
driven by the in-phase oscillations of protons and neutrons in the core and major contributions
from excess neutrons on the surface (see [10] and Figure 2.2 b)). This picture differs from the
statistical E1 excitations in the low-energy region for 16,18,20,22O isotopes.

The discussion on the degree of collectivity of the PDR is still ongoing. While numerous RPA-
based calculations (e.g. RQRPA for 132Sn discussed above) confirm the picture of the PDR as a
collective excitation mode, other self-consistent approaches do not provide such a solid evidence
for the PDR being collective. This discussion is especially relevant for the light-mass nuclei.
The majority of works on middle- and heavy-mass nuclei are quite consistent in providing a
collective picture of the PDR, driven by the neutron skin, but the impact of the neutron skin
in light nuclei on the collectivity itself is highly debated [42]. Moreover, light exotic nuclei pose
an additional question: even if the low-lying strength of non-resonant nature is explained by
the single-particle nature of loosely bound neutrons, are these neutrons attributed to the skin
structure or the neutron halo? The vague borderline between halo and skin contributions to
the resonant vs. non-resonant groups of low-lying states is one of the burning questions and
problems to be solved.

The first observations of the PDR with neutron absorption experiments formed the base
for general study on how the PDR evolves in various isotopic lines with increasing number of
neutrons. Such systematic studies were largely boosted with the development of high-resolution
Nuclear Resonance Fluorescence experiments (NRF). The first studies of the PDR using this
technique were performed by K. Govaert et al. [43] on 116Sn and 124Sn for energies up to the

a) b) c)

Figure 2.3: a) Peak and centroid energires of the PDRs for Sn isotopes, calculated with
RHB + RQRPA, and neutron separation energies (experimental values, RHB calculations and
extrapolated values). Figure is taken from Ref. [10]. b-c) Integrated dipole strength for the
PDR region calculated within the RQTBA as a function of neutron number for Sn and squared
asymmetry parameter α2 = (N − Z)2/A2 for Sn, Ni, and Pb. Figure is taken from Ref. [40].
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neutron separation energy around ≈ 9 MeV. This experiment was complementary to the previ-
ous tagged photon bremsstrahlung studies on NatSn [44]. Due to superior resolution, individual
states were identified and both the fragmentation and fine structure of the E1 strength distribu-
tion were determined in a model-independent way. Both isotopes revealed a clear concentration
of E1 strength around 6.5 MeV, and the integrated B(E1) value was found to be larger for
124Sn. Followed by other NRF experiments for the Sn isotopic chain and other elements, both
the experimental findings and theoretical predictions pointed to an increase of the low-lying
strength with increasing mass number. For example, thorough studies of the Sn line within
the quasiparticle time blocking approximation RQTBA and RQRPA [10, 40] demonstrate a
smooth shift of the PDR centroid towards lower energies. In addition, both the centroid and
the peak energy were found to exceed the neutron separation energy for heavier isotopes (see
Figure 2.3 a)). Similarly, the integrated dipole strength for the PDR was found to be an almost
monotonous function of N , with a fast increase after the N = 82 shell closure, and the squared
asymmetry parameter α = (N − Z)/A for Sn isotopes. For Ni isotopes the latter feature is
less prominent, implying that the asymmetry dependence of the PDR strength is less apparent
(see Figure 2.3 b)). On the other hand, the RHB + RQRPA calculations [10] demonstrate a
pronounced maximum of the total low-lying dipole strength with a local minimum for the magic
132Sn isotope, followed by a fast increase as shown in Figure 2.4 a). This feature of the strength
evolution might be due to the impact of the shell effects and reduced pairing correlations in the
vicinity of the N = 82 shell closure.

Theoretical studies of the PDR evolution were accompanied by pioneering experiments on
the unstable nuclei 130Sn and magic 132Sn performed at GSI [45]. A secondary beam, containing
both isotopes, was formed after in-flight fission of the primary 238U beam incident on a Be
target. Beams of interest were selected with the magnetic separator and directed to a 208Pb
target. Momenta and energies of neutrons, photons and recoil fragments were measured. This
experiment provided a certain evidence for both the PDR and the GDR in both isotopes and
confirmed to a large extent the theoretical predictions (see Figure 2.4 b)). However, there was
a limitation present: the strength was measured only for energies above the neutron threshold.
Even though the centroid of the PDR is shifted above this value in 130,132Sn, there is no available

a) b)

Figure 2.4: a) The RHB + RQRPA energy-weighted dipole strength in percent of the TRK
sum rule, calculated for the different energy ranges up to EC and experimental results. Figure
is taken from Ref. [10]. b) Left panel: differential electromagnetic dissociation cross-sections
measured in 130Sn and 132Sn. Right panel: deduced photoneutron cross-sections; blue dashed
line denotes the fitted Gaussian distribution, green dash-dotted line denotes the Lorentzian
distribution, red solid line marks the total fit . Upper panel: photoneutron cross-section in the
stable 124Sn from a real-photon absorption experiment. Figure is taken from Ref. [45].
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Figure 2.5: Left panel: experimental differential cross-section values for 140Ce, a) results
for the (p,p′) experiment, b) for the (α, α′) experiment, c) for the NRF study, d) measured
averaged branching ratio to the first excited state from (γ, γ′γ′′) data. Right panel: QPM
prediction for the same probes. Figure is taken from Ref. [46].

information on the low-energy PDR tail. On the other hand, the NRF studies are limited by the
neutron separation energy from the low-energy side, and the information on the upper tail of the
PDR is absent. Therefore, any studies with complementary experimental techniques, covering
the whole PDR range, are crucial for deducing the full E1 strength for both stable and exotic
nuclei.

Another interesting aspect to be studied is the underlying nature of the PDR, namely the
origin of oscillations forming the PDR in its macroscopic interpretation. The isovector structure
(out of phase oscillations of protons and neutrons) of the neighboring IVGDR is well studied,
while the region of the PDR and its connection to the IVGDR are still highly debated. From an
experimental point of view, a study of the same phenomenon performed by means of complemen-
tary probes inducing the interaction of different nature could hopefully provide good clues to the
nature of the phenomenon itself. As already mentioned, the large database on the PDR obtained
from NRF studies is available. Photoabsorption is governed by the well known electromagnetic
mechanism of interaction with a nucleus as a whole. The electric dipole transitions, induced
by this mechanism, are known to be of isovector nature. On the other hand, the isoscalar (in
phase) component of a response could be studied with the isoscalar hadron probes. The best ex-
perimental tool to induce isoscalar resonances (or the corresponding component of a resonance)
is the inelastic (α, α′) scattering due to the zero isospin and ability to induce predominantly
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Figure 2.6: RQTBA transition densities for the low-lying dipole states in 68Ni. The dashed
curves denote the proton, and the solid curves denote the neutron transition densities. The
figures are taken from Ref. [40].

surface excitations [1]. A comparison of these two probes has been performed for the semi-
magic 140Ce nucleus. Recently, this study was completed with an additional (p,p′γ) experiment
with 80 MeV protons at the KVI facility in Groningen [46]. It provided a unique comparison
of the total experimental cross-sections for three complementary probes with theoretical QPM
predictions (see Figure 2.5). Both hadron probes interact with the nucleus via both the elec-
tromagnetic and the strong nucleon-nucleon (N-N) interaction of predominantly isovector and
isoscalar nature respectively. The decomposition of the experimental cross-sections into these
components revealed a major isoscalar (strong N-N) nature of the PDR transitions with a small
isovector (Coulomb) admixture, excited with both hadron probes. This decomposition implies
that the comparatively large cross-sections observed for the low-lying 1− states below 6 MeV
for the (α, α′) reaction are mostly due to an oscillation of excess surface neutrons with respect
to the core. This mode corresponds to in-phase oscillation of protons and neutrons forming the
core, in contrast to the out-of-phase mode of the IVGDR. The (p,p′γ) reaction was found to be
less sensitive to the isoscalar component of the response. Moreover, the cross-sections for the
observed transitions were significantly smaller than that for the α-probe. Both probes, however,
reveal almost no response above 6 MeV. Therefore, one might assume a predominantly isovector
nature of transitions above this energy. Indeed, a large amount of transitions could be observed
in the NRF study. This part of the nuclear response is naturally attributed to the low-energy
tail of the IVGDR, while isoscalar transitions are often considered to be the true PDR.

It is sometimes convenient to interpret the underlying nature of low-lying states in terms
of transition densities. In the RPA approach, they are written in terms energy-dependent
amplitudes Xph(ω) and Yph(ω), describing the wave function of a selected excited state in terms
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of particle-hole and hole-particle excitations [47]:

ρ(EL,ω, r) ∼
∑
ph

[Xph(ω) + Yph(ω)]Rp(r)Rh(r), (2.5)

where L is the transition multipolarity, Rp,h(r) are the radial parts of the single-particle and
hole wave functions. Transition densities could be used for the descriptive interpretation of
how protons and neutrons are distributed for a certain excited state of a nucleus. For example,
transition densities for protons and neutrons were estimated in the framework of the RQTBA
for several low-lying dipole states in the calculated spectrum for 68Ni (see [40] and Figure 2.6).
The lower-lying peaks at 7.65 and 9.14 MeV demonstrate rather in-phase oscillations of protons
and neutrons in the range up to 5 fm in the nucleus. Further, towards the nuclear surface,
the neutron transition density dominates over the fast dropping proton density. Three higher-
lying states are of essentially mixed isoscalar-isovector nature, as proton densities become more
dissynchronized with the neutron densities. Finally, the highest peak at ≈ 14 MeV is almost
purely off the isovector structure, as one should expect for the energy range of the IVGDR.

2.3 Implications of the PDR: experimental findings and theo-
retical predictions

2.3.1 Neutron skin thickness

Even though the degree of collectivity, attributed to the PDR, is still highly questioned, nu-
merous phenomenological, microscopic nonrelativistic and transport models interpret the PDR
as arising from the collective motion of excess neutrons, or neutron skin, with respect to the
proton-neutron saturated core. Given this relation, the following question could be posed: how
is the pygmy dipole strength related to the neutron skin thickness and what are the consequences
of this relation?

The neutron skin thickness could be simply defined by the difference of neutron and pro-
ton root-mean-square radii in a nucleus. While the proton radius could be extracted from
electromagnetic-interaction experiments (e.g elastic electron scattering), the experimental data
on neutron radii are quite scarce: they require strongly interacting probes implying a convo-
luted model-dependent interaction mechanism. These experiments involve antiprotonic atoms
and elastic proton scattering (see [2] and references therein). On the other hand, the electro-
weak interaction could also be exploited. For example, an elaborate parity-violating electron
scattering technique was applied in The Lead Radius Experiment (PREX) in order to determine
the neutron root-mean-square radius of 208Pb [48]. It was shown that the parity-violating asym-
metry 1 is linearly correlated with the neutron skin thickness [49], and the value rskin = 0.33+0.16

−0.18

fm was obtained. The values extracted in these experiments still need to be compared with other
benchmarks, and the PDR strength could possibly be a good candidate for it.

The relation between the pygmy dipole strength and the neutron skin thickness has induced
long standing debates. Firstly, a linear trend was traced by J. Piekarewicz between the fraction
of EWSR for the PDR region (5-10 MeV) with respect to the GDR region (10-25 MeV) and
the neutron skin thickness in a series of Sn isotopes [50]. These calculations were performed
with the mean-field relativistic RPA model. Despite the strong linear increase (similar could be
seen in Figure 2.7), a certain downward trend was revealed for the heaviest Sn isotopes, starting
from 120Sn. This feature was explained by the presence of the large angular momentum neutron
orbital 1h11/2, which participates weakly in low-momentum and low-energy transitions, but still

1The difference of the elastic electron-nucleus differential cross-sections for incident electrons with positive and
negative helicities divided by their sum
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Figure 2.7: The EWSR exhausted by the PDR as a function of neutron skin for 108Sn (empty
up-triangles), 106Sn (down-triangles), 124Sn (stars), 132Sn (left triangles), 140Sn (right trian-
gles), 48Ca (circles), 68Ni (squares), 86Kr (diamonds), 208Pb (full up-triangles). Calculations
are performed with the Landau-Vlasov kinetic equations in the mean-field approach. Figure is
taken from Ref. [53].

contributes to the neutron skin. Later, a large study was carried out by P.-G. Reinhard and W.
Nazarewicz, who proposed several observables and studied their correlation with the neutron
skin in a correlation analysis. It was found a rather weak correlation between the low-energy
E1 strength and the neutron skin. On the contrary, another strongly correlating parameter was
found: the dipole polarizability [51], which could be obtained from the inverse EWSR as [52]:

αD =
~c

2π2

∫ ∞
0

σabs(E)

E2
dE =

8π

9
e2

∫ ∞
0

RE1(E)

E
dE, (2.6)

where σabs(E) is the photoabsorption cross-section, and RE1(E) is the E1 response. The dipole
polarization, due to its proportionality to the inverse EWSR, tends to weigh the PDR contri-
bution more that the higher lying IVGDR. Thus, even if the contribution to the dipole EWSR
from the PDR could be quite modest (5-8%), the corresponding contribution to αD would be
significantly larger (20-25%). However, the electric dipole response in the energy range including
both the PDR and IVGDR is still required.

These contradicting results have been recently revised again by J. Piekarewicz et al. in [2, 54],
who studied 56,68,78Ni isotopes in the mean field RPA approach and came to the conclusion that
both the low-lying strength and dipole polarizability are strongly correlated with the neutron
skin thickness in 208Pb. Therefore, both values could serve as constraints for Rn − Rp. Even
though the correlation between αD and Rn −Rp was found to be weaker than for the low-lying
E1 strength, extracting the neutron skin thickness in this case does not require the challenging
separation of the PDR and the lower tail of the IVGDR.

The burning discussion of the 208Pb case and the estimate of its neutron skin thickness was
primarily inspired by the relation between its neutron radius and several properties of neutron
stars, emphasized in numerous works, e.g. [48, 55]. Heavy nuclei have a neutron skin of a certain
thickness. Depending on what pressure of neutron-rich mater is established, one could judge
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on a value of this thickness: the higher the pressure, the thicker this neutron skin would be.
This pressure could be naturally linked to the neutron-rich matter pressure in neutrons stars,
which counteracts gravitational collapse. The models, describing such matter, often rely on the
information on neutron skin thickness in heavy nuclei, and the thicker the skins used, the larger
neutron star radii will be obtained. On the other hand, this pressure also defines the transition
between the uniform liquid mantle in a neutron star and the non-uniform solid crust above it.
As mentioned, a high pressure would yield thick neutron skins in heavy nuclei, but in the case
of neutron stars, a high pressure would indicate a low transition density from the crust to the
mantle, meaning a thinner crust in the star. This exciting and far-reaching application of the
neutron skin thickness allows us to extent the range of studies exploiting the data on the PDR
from understanding of the nuclear structure and nuclear properties to description of features of
astrophysical objects, such as neutron stars. However, the latter discussion should also involve
the so-called equation of state, described in the following subsection.

2.3.2 The equation of state and the symmetry energy

The potentially strong correlation between the PDR and the neutron skin radius links the neu-
tron skin thickness to the symmetry energy of the equation of state (EoS). The latter represents
the energy per nucleon in asymmetric matter. It is often convenient to consider its Taylor
expansion with respect to the asymmetry parameter α = N−Z

A [56]:

E(ρ, α) = E(ρ, 0) + S2(ρ)α2 + S4(ρ)α4 + ..., (2.7)

where E(ρ, 0) is the density-dependent energy per nucleon for symmetric matter. Considering
the PDR strength, the most interesting term of the expansion is presented by the symmetry
energy S2(ρ), defined by the properties of the nuclear forces. It could be parametrized in the
following way:

S2(ρ) = a4 +
p0

ρ0

2
(ρ− ρ0) +

∆K0

18ρ2
0

(ρ− ρ0)2 + ... (2.8)

The parameters in this equation are the saturation (equilibrium) density ρ0, the symmetry
energy in pure neutron matter a4, the symmetry energy pressure p0, and, finally, the correction
for incompressibility, ∆K0.

The EoS is pivotal for the description of dense neutron matter, and, particularly, neutron
stars. As all the input parameters of the EoS are identified, the Tolman-Oppenheimer-Volkoff
equations could be used to extract the neutron star radius, moment of inertia, surface red shift
and binding energy [57]. Therefore, any experimental and theoretical nuclear constraints on
the parameters included into the EoS are strongly required to extend it to sufficiently higher
energies. Studies of the PDR strength and the way it evolves and correlates with the neutron
skin thickness could allow us to judge on how the EoS parameters correlate with neutron skin
and, hence, the strength of the PDR.

Indeed, as shown in [56], the neutron skin thickness plotted as a function of a4 for different
mean field models with a good fit to experimental constraints for 208Pb (binding energies, proton
radii, etc.) demonstrates a clear linear trend. The deviating slopes have a purely model-based
reason to occur: as one of the parameters (a4) is varied, the fit to known experimental data
will be inevitably deteriorated and other parameters have to be changed as well. That makes
the whole study of neutron skin thickness as a function of a4 solely quite challenging. A similar
trend was observed for the symmetry-energy pressure and the incompressibility correction ∆K,
implying that all the mentioned parameters are strongly correlated to each other (see Figure
2.8). This linear correlation between Rn − Rp and a4 was lately supported for 130,132Sn on the
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a) b)

Figure 2.8: a) Neutron skin thickness in 208Pb plotted vs. the symmetry energy pressure p0
for several mean-field models. b) Neutron skin thickness in 208Pb plotted vs. the incompress-
ibility parameter p0 for several mean-field models. Figure is taken from Ref.[56].

Figure 2.9: Upper panels: ratio of the PDR to IVGDR strength for 130,132Sn as a function of
the symmetry-energy parameter a4. The dot-dashed and dashed lines denote the experimental
ratio of the strengths for the PDR to the IVGDR with the corresponding errors. Bottom
panels: neutron skin thickness as a function of a4. Figure is taken from Ref. [14].

basis of the RQRPA calculations [14]. The trend was deduced for the relative fraction of the total
PDR strength with respect to the total IVGDR strength (see Figure 2.9). A comparison of the
experimentally measured strengths and theoretical RQRPA predictions yielded an average value
of ā4 = 32.0 ± 1.8 MeV. Furthermore, the correlation between a4 and p0 was established, and
the corresponding value p̄0 = 32.0± 0.8 MeV·fm−3 was obtained. The neutron skin thicknesses
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for both nuclei for a given average value of a4 were deduced to be 0.23± 0.04 fm for 130Sn and
0.24± 0.04 fm for 132Sn.

It should be noticed that this combined theoretical-experimental procedure yields the abso-
lute values of crucial EoS parameters within a certain theoretical framework, if both the pygmy
and giant dipole strengths are measured experimentally. One of the debated applications of this
technique is tightly related to constraining a peculiar cooling mechanism of neutron stars. C.
J. Horowitz and J. Piekarewicz described the so-called direct URCA cooling process in neutron
stars and its relation to the neutron skin thickness in 208Pb [58]. This cooling process implies a
neutrino born in the decay of a baryon or its interaction with a lepton, which carries a certain
energy away from the neutron star, thus, cooling it. A high fraction of protons present in a
neutron star is required for this process to take place. This fraction could be determined from
the EoS, which is on its own turn constrained by the neutron skin thickness, particularly that for
208Pb. It was shown that the direct URCA process is possible for Rn−Rp > 0.25 fm, otherwise
other cooling mechanisms should be involved. Accurate constraints on the 208Pb neutron skin
could, therefore, shed some light on how a neutron star evolves.

2.3.3 Effect on the astrophysical neutron capture rates

An exceptionally good agreement in quantitative conclusions on how the PDR affects radiative
neutron capture rates has been demonstrated in numerous recent works [59, 60]. It has been
shown that the presence of the PDR in the nuclear response would yield an increased (n,γ)
reaction cross-section as compared to predictions where the PDR is disregarded.

The impact of the low-lying dipole strength on (n,γ) cross-sections can be of particular
interest and importance for astrophysical applications. Light and medium mass nuclei up to
nuclei in the iron group (nuclei in the vicinity of 56Fe, 56Ni, including Zn) are formed either
during the burning stages of stellar evolution or in explosive environments. On the other hand,
heavier neutron-rich nuclei could are produced in one of the following neutron capture processes:
the slow neutron capture (s-process) or rapid neutron capture (r-process) 2 [61]. The former
process requires so-called seed nuclei (e.g. 56Fe), and, therefore, is dependent on the products of
the preceding stellar and explosive nucleosynthesis. The s-process is driven by neutron densities
of & 108 cm−3 and lasts from approximately 1 million to 100 million years, depending on the
mass of the star it takes place in. In this case, the neutron capture rate is exceeded by the
β-decay rate of newly formed unstable nuclei. On the contrary, the r-process is indeed worthy
its name: it takes about 1-2 s to form heavy neutron rich-nuclei far away from the valley of
stability. This extremely short time requires a considerably higher neutron density of ≈ 1022

cm−3, which make the neutron capture rates higher than those for the β-decay. As the neutron
flux ceases, the unstable nuclei produced would decay back toward the stability valley, forming
heavy nuclei up to actinides (e.g. U and Th isotopes).

As it was shown by F. Giacoppo et al. [62], the γ-strength functions obtained with the Oslo
method (see Chapter 5) for 195,196Pt revealed a double-humped structure within the 4-8 MeV
exitation energy region. The most prominent resonance was assumed to be attributed to the
PDR. Neutron capture cross-sections were calculated on base of the statistical Hauser-Feshbach
model [63], which exploits the γ-ray strength function as one of the main components. The
calculations with the reaction code TALYS [64] clearly demonstrate an increase of σ(n, γ) (see
Figure 2.10) as compared to the calculations without the experimental low-energy enhancements
included, The obtained cross-section was found to be ≈ 2 times larger than the one without
the PDR, thus, being able to reproduce the experimental values better. A similar increase
in the cross-section was observed in [60], where the Relativistic Quasiparticle Time Blocking
Approximation (RQTBA) was tested alongside different γ-strength function models (see Ref.

2It is sometimes convenient to distinguish the intermediate neutron capture process (i-process), which is
generally similar to the s-process, but requires significantly higher neutron densities and fluxes [61].
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a) b) c)

Figure 2.10: a) Neutron capture cross-sections for 194,195Pt. The blue solid and dashed
magenta lines denote the calculated cross-section including the PDR and without the PDR.
Figure is taken from Ref. [62]. b) r-abundance distributions for a temperature of T = 109

K, neutron density nn = 1020 cm−3, and irradiation time 2.4 s. Three different contributions
are included: the standard IVGDR component, the IVGDR and the PDR strength, and the
damped compound-nucleus model with direct capture included. c) The same calculations for
T = 1.5 · 109 K, neutron density nn = 1028 cm−3, and irradiation time 0.3 s. Figure is taken
from Ref. [59]

therein). The calculations were performed for the neutron deficient 106Sn, stable 116Sn, and
neutron rich 132,140Sn isotopes. All the models revealed no noticeable enhancement in the
vicinity of the neutron separation energy for 106Sn, while both 132Sn and 140Sn displayed a
prominent E1 response only in the RQTBA approach. The radiative neutron capture cross-
sections calculated with the RQTBA E1 strength were found to be larger than the estimates
based on the γ-ray strength functions from other models with no PDR included. This effect
on the cross-section could result in a change in estimated abundances of nuclei produced in the
r-process. As it was demonstrated by S. Goriely [59], the contribution due to the PDR allows to
reach a better agreement between the estimated and the Solar System abundances for elements
with A > 120. It was demonstrated that the IVGDR would generally enable production of
elements with A ∼ 90 − 110, as the PDR would contribute to the overall increase of neutron
capture rates and, thus, the abundances of heavier elements (with A ∼ 130) would also increase.
It is important to notice that these simplified simulations do not necessary represent realistic
astrophysical conditions, e.g. such as for a neutron star merger scenario.

2.4 The PDR in tin isotopes

Theoretical predictions on the evolution of the PDR with increasing number of neutrons as
well as the mixed isoscalar-isovector nature of the low-lying dipole strength have to be either
verified or refuted in a series of consistent experiments. The chain of Sn isotopes is quite unique
in this respect: there are numerous theoretical estimates with various models available, the
experimental base is rich and extended up to the very neutron rich magic 132Sn. In particular,
the latter makes possible to study behavior of the low-lying strength, as a nucleus approaches
the N = 82 shell closure.

One of these systematic studies was performed at the Oslo Cyclotron Laboratory on the
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Figure 2.11: Comparison of the OCL γ-ray strength functions and the strengths obtained
in various (γ,n) experiments for the 116−119,121,122Sn isotopes. “GLO”denotes the Generalized
Lorentzian function, “SLO ”denotes the Standard Lorentzian function. Taken from ref. [21],
for the (γ,n) experiments see references therein.

116−119,121,122Sn isotopes; results were reported in references [65–67] and summarized by H. K.
Toft in [21]. The experiments involved extraction of the γ-ray strength functions and level
densities (described in details it the next chapter) from (3He,αγ) and (3He,3He′γ) reactions by
means of the Oslo method (see Chapter 5). All the strengths extracted are presented in Figure
2.11. All studied isotopes revealed indications of the PDRs appearing in the vicinity of the
neutron separation energies. This study demonstrated several intriguing results. Firstly, the
integrated dipole strength, attributed to the PDR, and the corresponding fraction of the TRK
sum rule were found to be almost constant as one moves from the lightest 116Sn to the heaviest
122Sn isotope. Several contradictory theoretical predictions for the strength evolution were
considered in an attempt to explain these results. In a large number of studies (e.g macroscopic
calculations with the Goldhaber-Teller model by P. Van Isacker et al. [68]), a monotonous
increase of the strength is expected to be observed. In contrary, as already mentioned, the
RHB+RQRPA calculations presented by N. Paar et al. [10] demonstrate a local maximum for
the strength for 124Sn, a monotonous decrease while approaching the N = 82 shell closure,
followed by a strong increase of the strength again. Other studies might confirm the trend seen
in the Oslo experiments, i.e. the strength remains almost constant for the mass region in the
vicinity of A = 120− 126 (see [21] and Ref. therein). In addition to the integrated strength, the
PDR was observed to be shifted towards higher energies, demonstrating a clear linear trend of
the PDR centroid with respect to the mass number A. This result is unexpected as numerous
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a) b)

Figure 2.12: a) Upper panel: differential cross-sections for the excitation of states with
Jπ = 1− in the (α, α′γ) experiment on 124Sn. Lower panel: Distribution of the B ↑ (E1)
strength in the (γ, γ′) experiment on 124Sn. b) RQTBA transition densities in 124Sn for the
excited state at 7.133 MeV and the excited state at 8.580 MeV. Protons and neutrons are
denoted by dashed land solid lines correspondingly. Both figures are taken from Ref. [70].

calculations, such as RHB+RQRPA [10], HFB and QPM [69], predict a monotonous decrease
of the PDR energy. In the perspective of clarifying both these trends, the present study of the
heavier 124Sn might be especially relevant. It presents the heaviest Sn isotope studied so far at
the OCL. The question on the PDR evolution will be discussed in detail in Chapter 7.

The 124Sn isotope has already been considered in several experimental studies with probes of
different nature. The NRF experiment on 124Sn, performed by K. Govaert et al. [43] was already
mentioned in Section 2.2. The comparison of the measured strength distribution, performed by
means of this isovector (γ, γ′) probe, and the later experiment with the isoscalar (α, α′γ) probe
revealed an important feature of the PDR [70]. An abruptly dropping differential cross-section
around Ex ≈ 6 − 8 MeV could be clearly observed in the (α, α′γ) data. In contrary, the NRF
yields a strength distribution up to the neutron separation energy (see Figure 2.12). This
observation is similar to that in other N = 82 isotopes, such as 140Ce (discussed in Section 2.2)
[46] and 138Ba [71]. Subsequent RQTBA calculations of the transition densities for two states in
this energy region confirmed a transition between the PDR and the IVGDR regions. In-phase
oscillations of protons against neutrons with the dominant neutron oscillations on the surface
were revealed for the lower-lying 7.133 MeV state (see Figure 2.12). In contrary, the slight shift
in phases between proton and neutron transition densities for the 8.580 MeV state above the
neutron separation energy indicates that the state could be attributed to the tail region of the
IVGDR rather than the PDR.

A similar disappearance of the low-lying strength was subsequently observed for the (17O,
17O′γ) probe [72]. The differential cross-section attributed to the ground state decay spectrum
demonstrated a splitting of a low-lying strength into a low-energy isoscalar component and a
higher lying group of states with predominantly isovector nature. Comparing all the probes,
the integrated strengths below 7 MeV and above it appear to be quite similar for the NRF
experiment. For the (α, α′γ) and (17O,17O′γ) the majority of strength observed is concentrated
in the lower-lying excitation energy region, while excitations in the higher region are significantly
suppressed.

Finally, a recent (p, p′) experiment performed at the Research Center for Nuclear Physics
(RCNP) in Osaka, revealed an E1 strength distribution similar to that from the NRF experiment
[73] for the even-even isotopes 112,114,116,118,120,124Sn. It displayed a same peak-like structure
in the vicinity of 6.5 MeV for all isotopes, previously unobserved in the OCL experiments.
These data cover the Eγ range above 6 MeV, and the strength obtained in the present (p,p′γ)
experiment will provide an extension of the nuclear response towards lower energies.



Chapter 3
Nuclear properties in the quasi-continuum
energy range

3.1 The nuclear level density

One of the fundamental nuclear properties to be extracted, analyzed and discussed in the pre-
sented work is the nuclear level density. This value was shown to be of particular interest
in various nuclear aspects, especially nuclear structure and reaction models applied to nuclear
astrophysics. This poses new relevant questions and problems, namely what experimental tech-
niques could be used to extract the level densities in a most efficient way and how they could be
approached theoretically. The former would allow us to estimate the way level densities evolves
for the nuclei along the stability line or even for the adjacent β-unstable nuclei. On the other
hand, advanced theoretical approaches would complement experimental data and enable extrap-
olation of our knowledge to the very short-lived exotic nuclei, where experimental information
is mostly absent.

The nuclear level density is defined as the number of excited levels ∆N with a given spin
and parity Jπ per energy bin ∆E, or ρ(E, J, π) = ∆N(E, J, π)/∆E. The total level density
should not be confused with the state density ρst(E), taking into account all available magnetic
substates for the spins J as [74]:

ρst(E) =
∑
J

(2J + 1)ρ(E, J). (3.1)

The inverse of the level density corresponds to the level spacing parameter D = 1/ρ, or the
average distance between the states within ∆E; it could serve as a good scale in a given energy
region. Indeed, one could compare it with the γ-decay widths Γ of the states. Furthermore, the
relation between the lifetime of a state with its width τ = ~/Γ links all these terms together
so that the whole excitation energy region could be split into three approximate regions. The
lowest distinct levels could well characterized by the level spacing parameter being significantly
larger than the widths observed, D � Γ. This corresponds to the discrete levels, easily distin-
guishable in spectroscopic experiments. Further up, towards higher excitation energies, levels
would lie closer to each other, and the average distance between them decreases so that D ≥ Γ.
This energy region, or so-called quasi-continuum, lies beyond the energies where different levels
could be distinguished experimentally, but the levels are still separated. If, thus, one considers
the level density extracted from a direct counting of observed levels (conventional low-energy
spectroscopy), it would underestimate the true level density, which is rather expected to increase
exponentially with excitation energy [75]. For even higher energies, the states begin to overlap

33
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(D ≤ Γ), and the continuum region begins. In the present work a relatively wide range of
energies up to the neutron separation energy would be studied.

3.1.1 Theoretical approaches to the nuclear level density.

Despite the relative simplicity of the definition, an accurate description of the level density,
accounting for different relevant physical phenomena, could be quite challenging. Numerous
theoretical approaches were introduced in the attempt to describe the level densities in various
nuclei. A seminal work was presented by Bethe in 1936 [76]; he approached the level density
calculation statistically by adopting the Fermi gas nuclear model. All A nucleons were assumed
to be non-interacting and contained in a box volume defined by a radius R. The level density
obtained originally in this approach was written as a function of excitation energy E (with
respect to the ground state) [76]:

ρFG(E) =

√
π21/4eã

√
2E

12
√
ãE5/4

=

√
πe2
√
aE

12a1/4E5/4
, (3.2)

where ã = π
√
A/2〈Ef 〉 and 〈Ef 〉 = (34/3π2/3/8)(~2A2/3/MR2) is the average Fermi energy

for protons and neutrons. Due to the independence of nucleons in the Fermi gas level density
expression, it is impossible to explain systematic deviations in level densities for adjacent odd-
odd, odd and even-even nuclei. This effect is primarily due the pairing force between nucleons
resulting in the formation of Cooper pairs of nucleons. As all nucleons would be coupled for
even-even nuclei, they would form more bound nuclear configurations. The Bardeen-Cooper-
Schrieffer theory predicts the excitation energy of the states with two decoupled nucleons to be
defined by pairing gaps 2∆ [77]. This value could be formally considered to be an average energy
needed to decouple two nucleons in a pair. To account for these pairing effects, it was proposed
to shift the excitation energy by pairing energies for protons and neutrons ∆pair defined by
∆p + ∆n in even-even, ∆p,n in odd, and 0 in odd-odd nuclei [78, 79]. This gave rise to the
conventional shifted Fermi gas (FG) model , where the excitation energy is substituted with:

U = E −∆pair. (3.3)

This shift was subsequently revised, and it was suggested to back-shift the excitation energy
[80], introducing U = E − E1 with the energy back-shift parameter E1 and treat both ã and
E1 as free parameters, adjustable to available experimental data. This form of the level density
formula is considered in the present work in the following form (BSFG)[81]:

ρBSFG(E) =
e2
√
aU

12
√

2σa1/4U5/4
. (3.4)

Here, a is the level density parameter and σ is the model-dependent spin-cutoff parameter. In
the BSFG approach, provided by [82], the spin-cutoff parameter is related to the sum of single-
particle level spacings for protons and neutrons, denoted by g, and the mean-square magnetic
quantum number (angular momentum projections) for these single-particle states 〈m2〉:

σ = g〈m2〉T. (3.5)

This formula involves an explicit thermodynamic parameter: the temperature of the nucleus,
T . Equation 3.5 could be further modified by relating the mean-square angular momentum
projections 〈m2〉 and the moment of inertia Θ = g〈m2〉:

σ = ΘT. (3.6)
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Figure 3.1: a). Schematic representation of a level scheme of an arbitrary nucleus, red
arrow denotes the increasing excitation energy. Energy regions for the discrete levels, quasi-
continuum, and continuum are marked by thedifferent relation between the width Γ and level
spacing D. b). Experimental level densities of 164Dy compared with the constant-temperature
(denoted by CT) and the Fermi gas (denoted by FG) level density models. For both cases the
reduced least-χ2 fit is presented.The best fit is achieved for the CT model. Figures are taken
from Ref. [75].

This form of the spin-cutoff parameter allows to account for the enhancements of the level
density due to collective states, which were disregarded by the conventional FG model. Further-
more, the level density parameter a could incorporate shell effects, while effects due to nucleon
pairing and collective effects, missing in the conventional FG model, are often introduced in the
E1 parameter.

The earliest analyses of experimental data provided a strong indication that the cumulative

number of levels for excitation energies up to 10 MeV tends to behave as N(E) = e
E−E0
T .The

level density would be then characterized by the constant temperature formula as [83]:

ρCT (E) =
N(E)

T
=
e
E−E0
T

T
. (3.7)

This forms the core of the constant temperature model (CT) proposed by T. Ericson in 1959
[83] and used by A. Gilbert and A.G.W. Cameron in 1965 [82]. Here, both the energy shift E0

and temperature should also be treated as adjustable parameters. It was emphasized in [82]
that this model could serve as a good substitution for the BSFG approach for the lower energy
region (see Figure 3.1). More precisely, the constant temperature region could be assumed to
cover the energies above ≈ 2∆ and up to the neutron separation energy Sn. This statement
has a descriptive thermodynamic explanation behind [83]: as in a phase transition, where the
temperature holds constant as a medium transforms into another phase, the nuclear temperature
could be assumed to be constant when the pair breaking takes place. If excitation energy exceeds
2∆ a first pair could be broken. Practically, the pair breaking process could continue up to even
higher energies, so that the constant temperature formula for the level density could be applied
for higher excitation energies. Further, as the energy increases and all pairs are broken, the
temperature would inevitably begin to increase, the constant temperature formula could no
longer be applicable, and the BSFG model could be again introduced.
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Further development of the theory behind the expressions for the level density was directed
towards the microscopic interpretation of the energy shift and shell effects incorporated in the
level density parameter. Ideally, it should combine both the shell-driven behavior of single-
particle states and the collective motion of nucleons. The latter were effectively accounted for
by introducing the more realistic super-conductive pairing correlations using the BCS framework
in the Generalized Superfluid Model (GSM) [84]. Here, a critical temperature is introduced: it
indicates a transition between a super-fluid and normal state of a nucleus. Right above the
critical temperature, the BSFG model is used with an energy shift, dependent on the correlation
function. The region below the critical temperature could be described with more convoluted
expressions (see [85] and references therein). Similarly to other semi-phenomenological models,
such as the CT and the BSFG, the GSM implies again a large set of parameters to be adjusted
to achieve a better fit to experimental systematics.

An alternative way of approaching the nuclear level density implies calculations on the single-
particle levels using realistic effective potentials, providing the statistical microscopic description
of the level density. This picture should ideally enable an accurate and reliable calculation of
the level density up to the high excitation energies and for exotic nuclei where no experimental
information is present. Such calculations have been performed with the statistical approach
based on the Hartree-Fock-BCS (HFBCS) ground state properties, including a proper treatment
of both the single-particle level scheme and the pairing force [86]. On the other hand, the
combinatorial approach [87] was also developed to partially eliminate the drawbacks of the
HFBCS: the parity dependence of the level density could be obtained, and the non-statistical
limit for the level density itself could be evaluated. This approach could be further combined
with the mean field Hartree-Fock-Bogolubov model [88]. In addition, numerous applications of
the shell model Monte Carlo approach were shown to be in a good agreement with experimental
data [89].

Despite the large variety of microscopic models available, the simplicity of the BSFG and
CT models makes them considerably more attractive, especially for the interpretation of experi-
mental data close the the valley of stability, where these semi-empirical models are quite reliable
and could be based on the parameters, extracted from a global fit to available experimental
data. In the present work, the analysis is performed with a specific focus on these two models.

3.1.2 Experimental extraction of the level density.

The phenomenological BSFG and CT approaches require a relevant fit to experimental data,
and there are several experimental techniques yielding this information. It has already been
mentioned that the level density could be extracted in spectroscopic studies, allowing to obtain
the levels with assigned spins and parities [90]. The major drawback of this technique is the low
energy region limitation: the unique spin-parity attribution can not be obtained for the higher
energies, and the decreasing level spacing prevents levels to be resolved experimentally. This
technique often implies various probes (e.g. (p,p′),(e,e′), (α′,α′), (3He,3He′), (t,p) for 124Sn)
with the recoil particles studied in the small angles with respect to the beam line.

Neutron resonance counting is another technique the majority of data compilations (e.g. [91])
are based on. If the neutron energies are low, their angular momentum is l = 0, and so-called
s-wave capture takes place. The spin window excited in these reactions is rather narrow and
limited by the levels with It ± 1/2 and the same parity as the ground state of a target nucleus
with spin It. This allows several levels to be observed in a form of resonances in the vicinity
of the neutron binding energy, where nuclear levels are strongly overlapped. Despite that this
does not yield the total level density, it could be further extracted on the base of a known parity
ratio and a spin distribution, if these quantities are known. As the neutron energy increases,
the p-wave resonances could also be populated providing information of the parity ratio [74].

Nuclear level densities have also been obtained in particle evaporation experiments (e.g. [92])
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with protons, neutrons or α particles measured in backward angles to suppress the contribution
from direct reactions. Another technique involves observation of so-called Ericson fluctuations in
a compound nucleus cross-section. These fluctuations arise from the interference of overlapping
states and could be used to extract information on the level densities in a region of several MeV
above the binding energy [83]. As the level density increases, the fluctuations tend to decrease,
making all the information extracted no longer reliable. In addition, the fluctuation analysis
of high-resolution data on electric and magnetic resonances was shown to yield spin and parity
defined level densities [93].

Another effective technique aiming at extracting the level densities is based on the Oslo
method applied to particle-γ coincidence data measured at the Oslo Cyclotron Laboratory (see
Chapter 5 for further details); it was shown to be applicable to a large variety of nuclei to extract
not only the nuclear level densities, but the γ-ray strength functions. However, this method-
ology is model dependent. Simultaneous extraction of these characteristics involves numerous
assumptions to be adopted. In addition, the discrete known levels and the level density at the
binding energy are needed to estimate an absolute value of the level density and trend towards
the neutron separation energy.

3.2 The γ-ray strength function

By analogy with the nuclear level density, introduced to avoid practically impossible considera-
tion of separate nuclear levels, it is often useful to introduce the γ-ray strength function, another
average property used to simplify treatment of individual transition probabilities. In order to
understand the physics behind this function, one should first consider a γ-transition between an
initial state i with spin J and its z-projection m on the symmetry axis and a final state f with
spin J ′ and the corresponding projection m′. The transition probability is directly related to
the corresponding matrix element of the electromagnetic perturbation operator Ĥ coupling the
wave functions of the initial ψi and final state ψf . If the transition is via a photon carrying L
units of angular momentum with a projection M , the transition probability could be expressed
in terms of the partial radiative amplitude, or width [94]:

Γi→fγLM =
8πk2L+1

γ (L+ 1)

L((2L+ 1)!!)2
|〈ψfJ ′m′ |ĤL

TM |ψiJm〉|2, (3.8)

where kγ = ωγ/c = Eγ/~c. Further averaging of the radiative width with respect to all J
projections m = −J,−J + 1, ..., J and summing over all J ′ projections yields:

Γi→fγL =

∑
Mmm′ Γi(γLM)

2J + 1
=

8πk2L+1
γ (L+ 1)

L(2J + 1)((2L+ 1)!!)2
|〈ψfJ ′ ||ĤL

T ||ψiJ〉|2. (3.9)

It was emphasized by J. M. Blatt and V. F. Weisskopf in 1952 [95], that the squared transition
matrix element, mentioned above, is proportional to the level spacing parameter Di for the
initial states with the same spin and parity. Hence, the squared matrix element is inversely
proportional to the corresponding level density ρi = 1/Di. One could combine the level density
and radiative width to describe γ-transitions in the continuum region by the γ-ray strength
function [96]:

f i→fσL (Eγ) =
〈Γi→fγσL〉
E2L+1
γ

ρi(Ei, J, π). (3.10)

Here, the partial width is averaged over the initial states of a given spin and parity Jπ within
a chosen energy bin Ei, energy of a γ-transition Eγ is directly related to the initial Ei and final
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Ef energy bins, and the indexes σL denote the multipole type - E for electric, M for magnetic
transitions with multripolarity L. From now on the upper index i→ f will be omitted.

Another useful characteristic of the γ-emission channel could be related to the γ-ray function
definition: the γ-ray transmission coefficient T XL(Eγ) [85]:

T (Eγ) = 2πE2L+1
γ fXL(Eγ). (3.11)

Both the level density and transmission coefficient (and, thus, the γ-strength function respec-
tively) are two of the major outputs resulting from the Oslo method. In addition, they are two
key ingredients of the Hauser-Feshbach theory applied to neutron capture cross-section calcu-
lations [97].The transmission coefficients could be used to infer information on the competition
between γ-decay and particle emissions. The definition of the γ-strength function, introduced
above, is originally referred to the γ-emission, i.e. γ-decay of an initial state (states within a
given bin) to a set of final states. This is often denoted by the downward γ-strength function, or
fdownσL . On the other hand, the upward γ-strength could be extracted in the opposite, absorption
process as [85]:

fupσL(Eγ) =
〈σσL(Eγ)〉

(2L+ 1)(π~c)2E
(2L−1)
γ

, (3.12)

where 〈σσL(Eγ)〉 is the absorption cross-section, averaged over the initial states and summed over
all possible final states. If the same initial and final states are involved both in γ-absorption and
emission processes, the principle of detailed balance and the Fermi’s Golden Rule (see section
5.3 for further details) predict that the upward and downward strengths should be essentially
the same.

3.2.1 Theoretical description of the γ-strength function

A pioneering attempt to describe the γ-strength function was proposed by Blatt and Weisskopf
simultaneously with introduction of the model independent definition, given by Equation 3.10
[95]. It was based on the single-particle approach and assumed that a nucleus is an exceptionally
convoluted system, for which the reduced widths are distributed randomly. This assumption led
to an energy independent γ-strength function. Later, this approach was shown to be oversim-
plified: a certain degree of randomness for widths could be taken into account for the limited
energy ranges only. First observations of the IVGDR implied that the collectivity of a nucleon
motion could not be omitted. Further attempts to reproduce the IVGDR and the Brink-Axel
hypothesis, assuming independence of the detailed structure of the photoabsorption cross sec-
tion on the properties of the initial state (see section 3.3), led to the Standard Lorentzian (SLO)
form of the strength [85]:

fE1(Eγ)SLO =
1

3π2~2c2

σ0Γ2
0Eγ

(E2
γ − E2

0)2 + Γ2
0E

2
γ

. (3.13)

Here, σ0 is the cross-section at maximum, Γ0 and E0 are the width and centroid of the
resonance. It is a common practice to approximate the most prominent response feature with
the SLO function, e.g. the PDR and the GMDR could be fitted with the SLO. This is still one
of the simplest and widely used approaches to describe the strengths in vicinity of a resonance
maximum for a wide variety of nuclei, except for the light ones. The major drawback is an
overestimation of experimental data and a significant underestimation of the strength in the
very-low energy region.

An alternative approach to deduce an expression for the strength is based on the theory
of Fermi liquids; the width of the IVGDR is energy and temperature dependent and could be
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written for the final states as [85]:

Γ(Eγ , Tf )KMF =
Γ0

E2
0

(E2
γ + 4π2T 2

f ), (3.14)

where the first term in the formula takes into account spreading of particle-hole configurations
over more complicated ones, and the temperature-dependent term includes collisions of quasi-
particles. This forms the core of the Kadmenskij, Markushev and Furman (KMF) model of the
IVGDR strength [98]:

fKMF
E1 (Eγ , Tf ) =

1

3π2~2c2

0.7σ0Γ2
0(E2

γ + 4π2T 2
f )

E0(E2
γ − E2

0)2
. (3.15)

Except for the divergence at Eγ = E0, this model partially eliminates the disagreement between
the model predictions and experimental cross-sections and widths. The idea of the temperature
dependence introduced in this model was further exploited by J. Kopecky and R.E.Chrien to
form the Generalized Lorentzian model (GLO), combining the SLO and KMF approaches [99]:

fGLOE1 (Eγ , Tf ) =
σ0Γ0

3π2~2c2

[
Eγ

ΓKMF (Eγ , Tf )

(E2
γ − E2

0)2 + E2
γΓ2

KMF (Eγ , Tf )
+

0.7ΓKMF (Eγ , Tf )

E3
0

]
. (3.16)

The last term provides a non-zero limit for the strength at Eγ → 0. This model was shown
to give a reasonable description of capture cross-sections and emitted γ-spectra for spherical
nuclei [100]. In order to account for the deformation, causing a splitting of the IVGDR into two
components, the KMF width is modified in the following manner [85]:

Γ(Eγ , Tf )EGLO =

(
κ+ (1− κ)

Eγ − ε0
E0 − ε0

)
Γ0

E2
0

(E2
γ + 4π2T 2

f ) (3.17)

with a level-density dependent factor κ and constant energy shift ε0; this extended form of the
strength is often referred to as the Enhanced Generalized Lorentzian model.

The dominant electric dipole, electric quadrupole and magnetic dipole modes (E1, E2, M1)
observed in the experiments could be well described by the simplest SLO form. Both the SLO
and GLO are widely applicable (especially the SLO, which does not include the model dependent
κ parameter). Further modifications of the width to take one-body effects (fragmentation) into
account (e.g. see [101]) led to further improved forms of the SLO with an additional enhance-
ment factor: the Modified Lorentzian (MLO) [102], and the specific quasi-particle interaction
coefficients included in the Generalized Fermi Liquid (GFL) approach [103].

An alternative way of approaching the description of the γ-ray strength function could be
carried out by microscopic calculations in the framework of the RPA. Such calculations are
essential for understanding the underlying microscopic structure and the way collective effects
could be described in terms of particle (quasi-particle) excitations; the ability of these model
to deepen our understanding on the γ-strength function is of particular interest. Numerous
HFB+QRPA calculations were performed with both the zero-range Skyrme [104] and finite-range
Gogny forces [105]; these microscopic calculations were confirmed to give reasonable predictions
as compared to the experimental photoabsorption cross-sections.

3.2.2 Experimental methods for extracting the γ-strength function

The majority of the experimental benchmarks for the theoretical approaches on the γ-ray
strength functions, described above, were historically obtained in the study of photoabsorp-
tion cross-sections. In the energy range above the neutron separation energy, for medium and
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heavy mass nuclei, the proton decay (or α decay) of the IVGDR is still hindered up to high ex-
citation energies. Therefore, if a nucleus absorbs a photon and deexcites via neutron emission,
the photoneutron cross-section measured serves as a good estimate for the total photonuclear
absorption cross-section. Such experiments could be performed with bremsstrahlung photons
(e.g.[106], here the bremsstrahlung spectra should be taken into account) produced by stopping
accelerated electrons in a high-Z material; the quasi-monoenergetic photon beams are also quite
common for this type of experiments [107]. They could be produced with tagged bremsstrahlung,
in-flight positron annihilation, or in the deexcitation process after a proton or neutron absorp-
tion. In addition, laser photons could be scattered from relativistic electrons; in this case the
inverse Compton scattering takes place, and a beam of close-to monoenergetic photons could be
obtained [108]. However, the mentioned experiments do not allow to investigate the strength
below the neutron separation energy and are limited to long-lived states (ground states and
some isomeric states) of the target nuclei.

Another widely used technique is presented by the NRF, which enables a study in the region
below the neutron separation energy. In this case, the nucleus is first excited with a photon
beam (resonant excitation), and the subsequent γ-rays emitted are registered by high-purity
germanium or scintillator detectors. These experiments provide an efficient model-independent
way to detect low-lying dipole excitations in the strength distribution (the PDR and scissors-
mode [109]). However, the photon probe is highly selective, and some especially weak transitions
can be missing while determining the γ-strength function. On the other hand, the analysis of
the resulting angular distribution of γ-rays facilitates separation of different modes, E1, M1,
and E2. A similar separation could be performed with radiative particle capture (usually proton
or neutron). In this case, the γ-ray spectrum stemming from a compound nucleus decay is
studied; this method is able to yield both the individual strengths and the average radiative
widths [110]. However, it could be applicable only in a limited energy range below the neutron
separation energy.

Alternatively, the γ-strength function could be extracted in different types of radiative neu-
tron (or proton) capture experiments, where the two-step cascade, relating the states of a com-
pound nucleus with a final state, is detected. Fitting the experimental spectrum would depend
on the level density and γ-strength function of the final nucleus, so trial functions could be used
to fit the experimental spectrum (e.g. see [111]). The main source of uncertainty in this case is
the strong model dependence for the level density, which is impossible to avoid.

Finally, the Oslo method (for a detailed method description see Chapter 5) yields both the
γ-strength function below the neutron separation energy and the level density of the studied
nucleus. An overall good agreement with the results, obtained with completely different exper-
imental techniques and analyses, might argue in favor of the Oslo method. However, it is based
on several assumptions, discussed in Chapter 5 and requires additional experimental parameters,
constrained in different experiments, in order to perform the normalization of the resulting γ-ray
strength function.

3.3 A note on the Brink-Axel hypothesis

The Brink-Axel hypothesis, mentioned in the previous section, forms the core assumption for the
procedure of simultaneous extraction of the nuclear level density and γ-ray strength function
from a particle-γ coincidence spectrum in the Oslo method. Originally, this hypothesis was
introduced by D. M. Brink in his doctoral thesis at the Oxford University in 1955 [112]; the
primary idea of this hypothesis implied an independence of the photoabsorption cross-section
in the IVGDR energy range on the detailed structure of the initial state, so that the IVGDR
built on the ground state is approximately the same as the IVGDR built on an excited state.
According to the original formulation, the photo-effect performed on an excited state yields the
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same Lorentzian energy dependence of the cross-section, as for the one performed on the ground
state. This assumption was shown to hold in a relatively wide energy range within ≈ 10 − 20
MeV [1, 113]. Moreover, it was extended by P. Axel to describe emission and absorption of
photons between two resonant states in the framework of detailed balance [114]. The so-called
generalized Brink-Axel hypothesis in the form it is applied in the Oslo method analysis includes
also an independence from spins of initial and final states (with the exception of selection rules
for the dipole transitions).

This hypothesis appears to be crucial for the statistical treatment of γ-transition probabilities
in terms of the γ-ray strength function. Being combined with the statistical model, it might
be exploited for the calculation of stellar reaction rates (e.g. for the slow and rapid neutron
capture processes). Finally, the validity of this hypothesis might allow a significant simplification
of calculations. For example, the Oslo method implies the Brink-Axel hypothesis to be valid in
order to provide the decomposition of the processed coincidence matrix into the nuclear level
density and γ-ray strength function.

The OCL experiments are majorly limited by the neutron separation energy, whilst the
validity of the Brink-Axel hypothesis for this comparatively low energy range poses a complex
question to be disclosed by various theoretical and experimental approaches. The detailed study
of the γ-ray strength function for 238Np, extracted in the 237Np(d,pγ)238Np reaction by means
of the Oslo method, was performed for different initial and final excitation energies [115]. The
results revealed a clear independence of the resulting γ-ray strength functions from these energies
and spins of initial and final states, implying that the Brink-Axel hypothesis holds not only for
a giant resonance structure, but for the strength below the neutron separation energy as well
(see Figure 3.2). Subsequent tests for lighter isotopes, performed by the Oslo group, revealed
different results: for example, the cases of 92Zr [116] and 64,65Ni [117] demonstrated certain
fluctuations of the γ-ray strength functions for different initial states with respect to the functions
obtained with the standard Oslo method. This effect is also especially strong for the strengths
feeding the ground state and the first excited state in 64,65Ni. The latter were principally
explained by the Porter-Thomas fluctuations, or fluctuations of individual radiation widths due
to particular properties of the states involved in the transitions to or from these states [118].
In addition, a certain admixture of quadrupole transitions could not be excluded completely

Figure 3.2: The γ-ray strength functions for different initial excitation energies. Blue line
denotes the γ-ray strength function fron the standard Oslo method. Figure is taken from ref.
[115].
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Figure 3.3: Comparison of the γ-ray strength functions, extracted from the photoabsorb-
tion cross-section fσ (blue markers) and the strength, extracted from the observed primary
transitions 〈fp〉. Figure is taken from ref. [119].

from the analysis. Despite these deviations, the strengths obtained are still fluctuating with
respect to a certain averaged strength, thus, supporting the Brink-Axel hypothesis. In contrary,
the experimental technique presented by J.Isaak et.al. in [119], which does not primarily rely
on the Brink-Axel hypothesis, demonstrated a significant discrepancy between the upward and
downward γ-ray strength functions below the neutron separation energy in 128Te (see Figure
3.3). The strength extracted from the photoabsorbtion cross-section for the incoming quasi-
monochromatic photon beam, was found to be deviating from the strength function extracted
from the average decay intensities for transitions between initial excited states to lower-lying
states. Such large deviations could be explained by neither statistical uncertainties, nor Porter-
Thomas fluctuations solely, indicating a breakdown of the hypothesis for the low-energy range
in the studied nucleus.

All these controversial studies put a certain limitation on the validity of the results presented
in this thesis. Since the Brink-Axel hypothesis is assumed to be valid for the Oslo method to
be used to extract the γ-ray strength functions and level densities, it is crucial to perform an
additional study of the strength as a function of initial and final energy to test this assumption.
This test will be presented in Chapter 7 together with other obtained results.



Chapter 4
The experiment, data calibration and
primary analysis

The present thesis is mainly devoted to the analysis of the 124Sn(p,p′γ)124Sn experiment carried
out in February-March 2019 at the Oslo Cyclotron Laboratory. The following chapter presents
the description of the experimental setup and relevant conditions this experiment was performed
in. Sections 4.1.1 and 4.1.2 describe two detecting systems, the SiRi particle telescope and
the OSCAR scintillator array. One of the first steps of the analysis involves calibration of all
detectors in the setup, this process is outlined in Sections 4.2.1 and 4.2.3 in detail. Finally,
the data selection and extraction of the raw proton-γ coincidence matrix will be presented in
Sections 4.2.2, 4.2.4, and 4.2.5. This matrix serves as the main input for further steps of the
analysis aiming at extraction of the γ-ray strength function and nuclear level density. These
final steps and relevant details could be found in the next Chapter 5.

4.1 The experimental setup at the OCL

The experimental study presented in this thesis was performed at the OCL at the University
of Oslo [120]. The technical core of the laboratory is presented by the MC-35 Scanditronix
cyclotron, the first and one of a few research accelerators in Norway. The cyclotron is set to
exploit pulsed ion beams (e.g. p, d, 3He, 4He) with energy ranging up to 35 MeV in the case
of protons. The OCL has been involved in a wide range of research areas and applications
of accelerated particle beams, such as nuclear physics, nuclear chemistry, hardness tests of
electronics, and nuclear medicine. The latter application, namely the production of medical
isotopes (e.g. 18F, 211At, 205Bi) and proton irradiation of cancer cells, is chiefly driven by
the intensively expanding role of nuclear medicine and urge for a basic research in this field.
However, the major research at the OCL is still focused on the study of nuclear structure
and dynamics, related to extracting and analyzing level densities and γ-ray strength functions.
The results obtained are essential for better understanding of fundamental electromagnetic and
thermodynamic properties of nuclei, estimation of various reaction rates, and behavior of nuclear
matter in a stellar environment.

The OCL is separated into several principal compartments, such as the cyclotron vault, the
experimental hall and the control room (the scheme is presented in Figure 4.1). The cyclotron
accelerates light ions from a source, forming a pulsed beam shaped and focused by series of dipole
(D1,..., D3) and quadrupole (Q1) magnets as well as additional slits throughout the beam line
from the cyclotron to the experimental hall. Being bent by the analyzing magnet by 90◦ with
respect to the initial beam line, charged particles are directed to the experimental hall. After
an additional shaping and focusing (Q2, Q3, D4), particles enter a target chamber surrounded

43
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Figure 4.1: Scheme of the Oslo Cyclotron Laboratory: the cyclotron vault, the experimental
hall and the control room are marked with grey color. The beam types and typical energies
used in the OCL experiments are listed in the upper right corner. The figure is inspired by
[120].

by the LaBr3:Ce OSCAR scintillator array and the silicon particle telescope SiRi placed in the
forward or backward position (see Figure 4.1, upper right corner) and, finally, hit a target set
in the center of the chamber. In addition, two sets of switching magnets are used to direct
the initial beam to other compartments for different, medicine related experiments. All types
of particles, corresponding maximum energies and beam intensities are listed in the upper left
table in Figure 4.1.

4.1.1 The SiRi particle telescope

The facility at the OCL was mainly set for the implementation of the Oslo method, aiming
at the simultaneous extraction of level densities and γ-ray strength functions from particle-γ
coincidence events. Both the particle telescope and photon detection system are incorporated
in the experimental setup. The SiRi particle telescope, mounted in the target chamber, exploits
efficiently the E−∆E type of detecting technique which allows different reaction channels to be
discriminated. For each particle event the corresponding energies and arrival times are recorded.
This information is subsequently used to reconstruct information on excitation energies recoil
nuclei were produced with in a certain reaction.

SiRi comprises of two types of silicon detectors – the thin ∆E detectors with thickness of
130 µm and the 1550 µm thick E detector [121]. As typical semiconductors, they exploit the
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following principle: an ionizing radiation (in our case protons, deuterons, tritons, α, etc) hits the
semiconductor area of a detector, causing series of atomic ionizations on its way. As a certain
voltage is applied to this area, all liberated charge carriers could be collected [122]. If a particle is
stopped within the detection area, the charge collected produces a signal proportional to energy
of the particle entering the detector. The thicknesses of both E and ∆E flat silicon wafers
are optimized for the beam energies achievable at the cyclotron and voltage supplies used. In
addition, a 10.5 µm thick aluminum foil is placed in front of ∆E detectors to reduce the amount
of δ-electrons produced during the passage of incident ions through the target matter. Since
the silicon detectors require depletion for an efficient operation, high depletion voltage (< 300
V) is applied and moderated by 18 guard rings covering the edges of active areas in all detector
segments.

An accurate measurement of excitation energy implies knowledge on both energetic char-
acteristics (beam energy, Q-value of the reaction, energy of an outgoing light ion) and angular
distribution of light ions. This determines the design of the detector; SiRi detectors are pre-
sented in form of modules (8 modules of E detectors mounted right behind 8 modules of ∆E
detectors) of trapezoidal shape. All the modules are grouped in an approximate ring in the
way that each module is located in 5 cm distance from a chosen target. In order to distinguish
different scattering angles, the ∆E detectors are also segmented into 8 curved pads (see Figure
4.2 b)). The corresponding segmentation of E detectors was omitted to minimize misalignment
of E and ∆E detectors [121]. Each pad corresponds to 2◦ of scattering angle and approxi-
mately 1.7 mm thickness. The total segment of scattering angles, covered by SiRi is optimized
to reduce significant pile-up of events for small scattering angles in forward position and covers
θfor = 47◦±7◦ (with respect to the beam line) in forward angles and, therefore, θback = 133◦±7◦

in backward angles. The typical uncertainty for the angle estimation is ±1◦[121].

The ∆E−E technique implemented in SiRi is based on the energy loss mechanism for charged
particles. Considering the energy loss per unit path length (stopping power) for ions moving
with velocities and energies larger than typical velocities and energies of orbital electrons, the
Bethe-Bloch formula can be applied [122–124]:
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= 2πNar
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where the parameters could be written as [122]:

A− atomic weight of absorber ρ− density of absorber

Z − atomic number of absorber z − charge of an incident particle

Na −Avogadro’s constant β − v/c

me − electron mass γ − Lorentz factor 1/
√

1− β2

re − classical electron radius δ − density correction

I −mean excitation potential C − shell correction

Wmax −maximum energy transfer per collision

For comparatively low energies of incident particles (the logarithmic rise is negligible) the
stopping-power reveals the following dependency on particle’s energy:
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∣∣∣∣ ∼ z2
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∼ mz2

E
, (4.2)
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b)

Figure 4.2: a) The SiRi particle telescope at the Oslo Cyclotron Laboratory for the energy
measurement of charged particles, produced in kinematically allowed channels. b) Illustration
of a frontal ∆E detector, segmented into 8 curved pads, covering different scattering angles
(provided for the forward position. Figure is taken from M. Guttormsen et al. [121].

where m is the mass of a detected particle. This underlies the principal idea of operation
implemented in ∆E − E telescopes, consisting of two detecting layers: this allows ions to lose
a certain amount of energy and pass through a thin silicon detector and to be subsequently
stopped in a thicker detector, providing information on the total energy deposited.

It is possible to measure both the energy loss in a thin frontal layer of absorbing material
(implemented as ∆E detector) and the rest loss in a thicker E detector mounted behind. The
relative dependence of these energy losses would be represented by separated reaction channels
(“banana”-like channels, see Figure 4.5). If an incoming beam energy is high enough for particles
to pass through the whole set of detectors without being stopped, the punch-through is observed
and only a fraction of incident particle energy is measured. Therefore, the first step for planning
an experiment implies the check of suitable kinematics, whether a given beam energy and a
target composition and thickness would allow the total energy to be deposited in the detector
and provide information on energy a light charged particle was scattered or produced with.

According to the Bethe-Bloch relation, the combination of energy deposited in ∆E and E
detectors is characteristic for different light ions, produced in a reaction. This fact implies that
separate reaction channels could be easily distinguished. The lightest particles (the lowest z
and m) deliver the smallest fraction of energy in the first thin detectors and correspondingly
the largest fraction in the backside E detector. For the lightest particle, a proton, detected
by SiRi in the presented experiment, this is reflected by the lowest position of (p,p′) events in
the E − ∆E plot. Indeed, according to Equation 4.2, for a given energy, deposited to a thick
E detector, the lowest energy will be deposited to a ∆E detector by the registered ions with
the smallest product mz2. The successive heavier ions could be found shifted to the higher
∆E with respect to the p-channel. This method allows us to separate particles graphically by
putting corresponding gating conditions on the energy spectrum for each combination of E−∆E
detectors.

4.1.2 OSCAR detector array

The detection of γ-rays and the corresponding energies in the present experiments was carried
out by means of the Oslo SCintillator ARray (OSCAR), officially put into operation at the OCL
in 2018 (see Figure 4.3 a)). The array consists of 30 large volume cylindrical BriLanCeTM 380
LaBr3:Ce scintillating crystals with a Ce dopant. The cylinders are of 3.5 inches in diameter and
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b)a)

Figure 4.3: a) The OSCAR detector array at the Oslo Cyclotron Laboratory for the energy
measurement of γ-quanta, produced in all proton-induced reactions. b) The 124Sn target used
in the 124Sn(p,p’γ) experiment. Both photos were taken directly before the experiment.

8 inches in height each. As scintillator crystals they are able to convert γ-rays hitting the active
volume of the detector into photons in the visible range of the spectrum [122]. Incident γ-rays
excite atoms of a crystal deexciting subsequently with cascades of visible light photons. The
latter are collected by a photocathode coupled to the crystal and undergo transformation into an
electric signal for further amplification in a photomultiplier tube. Each crystal of the OSCAR is
combined with active voltage dividers (LABRVD) and a specially manufactured Hamamatsu’s
R10233-100 photomultiplier tube in an aluminum housing [125]. All the detectors are mounted
in the icosahedron-shaped frame with the distance from the center adjusted by the distance rods
depending on conditions chosen of a current experiment. For the experiment presented in this
thesis the distance was set to be 16 cm.

As compared to the CACTUS detecting array with NaI:Tl crystals operating at the OCL be-
fore 2018, the newest LaBr3:Ce-based detectors introduced numerous advantages for all ongoing
and future experiments. The energy resolution achievable with the new detectors is approxi-
mately two times higher than that for the older CACTUS detector: ≈ 2.7 − 4.3% at 662 keV
γ-rays measured with analogue electronics for LaBr3:Ce as compared to ≈ 7% for NaI:Tl crystals
[126]. The light output achievable with these detectors is high enough (≈63000 photons/MeV)
to yield a relatively high counting rate. In addition, the light pulse decay time is comparatively
short, thus, OSCAR reveals supreme timing properties (intrinsic time resolution < 1 ns vs. ≈ 15
ns in NaI:Tl [127]). The geometrical efficiency was also improved [125]. All these modifications
enable large variety of new experiments to be performed at the OCL, and the current experiment
is one among the first experiments exploiting the OSCAR detector array.

4.1.3 Electronics and data acquisition

All valuable events occurring within the active volumes of detectors should be read out and
processed in a form of electric output. As a particle hits the SiRi detector, charge carriers are
collected to form an electric pulse, similarly, visible light photons are transformed into multiplied
electric signals from OSCAR. All these signals are passing through the digital pulse processors.
At the OCL these digital electronics units have recently substituted older analogue systems,
and the present experiment was one of a few first experiments carried out with the new signal
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processing systems as well.

All the detectors are connected to the Digital Gamma Finders (DGF) manufactured by XIA
[128]. Each finder presents a 16-channel digital waveform acquisition and spectrometer 32-bit
card of Pixie-16 type, able to combine spectroscopy with digitizing and pulse-shape analysis
and supporting coincidence measurements. Each channel is attributed to a separate detector,
meaning that there are 64 channels, accepting signals from 64 ∆E detectors, 8 channels corre-
sponding to 8 E detectors, and 30 channels for 30 separate LaBr3:Ce detectors in the OSCAR
array. DGFs support different rates of event sampling, and the signals from all ∆E and E are
sampled with frequency 250 MSPS (Mega Samples per Second, or MHz), as OSCAR signals are
sampled at the increased rate of 500 MSPS. Signals pass through a net of optic cables to be
stored on the computer disc in the control room. The time stamps exploited by the 500 MSPS
and 250 MSPS cards are of 10 and 8 ns correspondingly.

Each event is stamped with a time it arrives at the system, corrected by the constant
fraction discriminator. The trapezoidal filter was implemented while converting the pulse height
information. In some cases, a light ion might be stopped by a ∆E detector and, therefore, is no
longer able to deposit any energy in a E detector. Such events could not be used for the E−∆E
technique, and the preliminary in-beam data collection included rejection of all ∆E events not
followed by firing of a corresponding backward E detector. As an overall time resolution is
better for ∆E detectors than for E detectors, and an event in ∆E detector was chosen to be
a reference event in the subsequent offline analysis. All the events in E detectors and OSCAR
detectors arriving within a certain time (1 µs ) with respect to a reference ∆E detector are
grouped in a larger event. These combined signals present the raw data to be processed in the
present work.

4.2 The 124Sn(p,p′γ) experiment at the OCL

The experiment the present master thesis is devoted to was carried out on 26-27 February 2019
at the OCL at the University of Oslo as a part of the set of experiments on 117,120,124Sn isotopes.
The study of the PDR in 124Sn isotope in the (p,p′γ) reaction was chosen to be performed with
the proton beam energy of 16 MeV. The beam current was maintained at approximately 4.6
nA throughout the whole experiment. Due to the comparatively high cross-section for inelastic
proton scattering for the chosen proton energy and target, the whole experiment was performed
in less than one day, and this time was found to be sufficient to collect an adequate number of
events (≈ 6× 108 in total) to provide decent statistics for the further processing.

In overall, two targets were exposed to the proton beam. The main self supported 124Sn
target has an isotopic enrichment of 95.3%, sufficient to ignore contributions from other stable
Sn isotopes, and thickness of v 0.47 mg/cm2. The second target exposed was 28Si with thickness
of v 9 mg/cm2; this additional target was used for the scintillator detectors calibration. Both
targets were placed in the holder in the central part of the vacuum target chamber. The SiRi
particle telescope was placed in the backward position with respect to the target, thus, detecting
all charged particles emitted with the azimuthal angle of 126◦ ≤ θ ≤ 140◦. Figure 4.4 represents
the relative positions of the target and detecting systems in the experiment. A proton follows
the beam line and hits the target in the central position. The choice if the backward position
for SiRi implies that the majority of light charged particles observed would be rather from
the compound nucleus decay than direct reaction channels. Indeed, the direct reactions take
place predominantly on the surface of a nucleus and yield a particle distribution peaked in the
forward direction with respect to the beam line. A reaction via a compound nucleus involves
redistribution of absorbed energy, and the particle angular distribution would be rather isotropic
[129].

The kinematics analysis was carried out beforehand to verify that the combination of 16
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Figure 4.4: A principal scheme of the experiment on the 124Sn isotope: a proton beam
is incident on the 124Sn target in the central position, scattered light ions are detected by
the SiRi particle telescope, placed in the backward position (light blue color for both E and
∆E detectors). The target is surrounded by 30 LaBr3:Ce scintillator detectors (grey color),
registering photons produced in the deexcitation of target nuclei.

MeV protons and the backward position of the SiRi detector would lead to observation of
events in the (p,p′γ) channel. This procedure was performed by means of the Qkinz application
created to simulate different kinematic conditions for particles registered in 8 SiRi strips [130].
The application takes into account different target compositions and thicknesses as well. The
calculation predicts 5 reaction channels to be kinematically allowed: elastic and inelastic proton
scattering 124Sn(p,p′)124Sn, 124Sn(p,d)123Sn,124Sn(p,t)122Sn, and 124Sn(p,α)In121. The former
two reaction channels are of particular interest for the present work. Geometry and the beam
energy were conformed to be suitable to avoid punch-through for scattered particles, i.e. energy
would be fully deposited in the E and ∆E detectors. In case of inelastically scattered protons, the
recoil 124Sn would be left in one of the excited states with subsequent deexcitation via emission
of one or several γ-rays. If scattered in the solid angle covered by SiRi, proton is detected
and information on its energy is written on the disc. This information enables calculation of
the excitation energy Ex a target nucleus was left with. On the other hand, photons emitted
are detected in 30 scintillator detectors surrounding the target chamber, their energies Eγ are
recorded as well. If a particle and a photon are recorded in coincidence (within a time interval
short enough to assume that a particle and a photon are emitted in the same event), one might
reconstruct the matrix containing events characterized by uniquely attributed Eγ and Ex values.

4.2.1 Energy calibration of the SiRi particle telescope

As a charged particle ionizes an active volume of a silicon detector and charge carriers are
collected, the total charge recorded would be proportional to the energy deposited in the detector.
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In its turn, the total charge is proportional to the integral of a current pulse observed as an
output of the detector. If the pulse shape does not change significantly [122], one could further
set proportionality between the pulse integral and the pulse height. Thus, the pulse heights
recorded are distributed over 32000 sequential channels and proportional to the energies of
detected particles. However, they do not contain information on the absolute values of these
energies. The overall aim of a detector calibration is to set correspondence between a channel
number and a certain energy. If certain peaks in a spectrum are identified (i.e. the energy it
appears with is known), one could set unique dependence of energy on a channel number.

In case of the SiRi particle telescope 64 combinations of E −∆E detectors might be distin-
guished: 8 strips of each ∆E detector correspond to the same backward E detector, forming 8
different E − ∆E combinations for each of 8 E detector pads. All possible 64 E − ∆E com-
binations have their uniquely attributed energy-channel correspondences due to the different
performances of separated detectors and attached electronics. For each of the E −∆E combi-
nations the simplest linear response is assumed:

E = a ·Nch + b (4.3)

where E is the true energy attributed to the channel number Nch, a is the gain (1/keV) and b
is the corresponding energy shift. Hence, only two channels identified to be related to certain
energies are sufficient to set the linear calibration.

As it was already mentioned, the SiRi telescope exploits the E − ∆E technique, thus, the
energy delivered in the E and ∆E (channel number) is recorded for each hit. As plotted for
each combination of detectors, the E − ∆E spectrum is given in channel units and presents
the so called banana-plot, mentioned in the previous section. According to the Bethe-Bloch
formula 4.1, each banana would be characteristic for the different types of scattered particles

Figure 4.5: The E − ∆E spectrum measured in the 124Sn(p,..) experiment. The x-axis
denotes the energy deposited in the thick E detectors, the y-axis shows the energy deposited
in the thin ∆E detectors. The spectrum is calibrated, and all 64 combinations of the E −∆E
detectors are added.
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Figure 4.6: The E − ∆E spectrum measured in the 124Sn(p,..) experiment for the first
E − ∆E combination, calibrated. The theoretical Qkinz values for all three channels (p,p′),
(p,d) and (p,t) are added.

and different reaction channels can be clearly distinguished. The lightest scattered particle, a
proton with Z = 1, deposits the least energy while passing through the thin ∆E detector and,
thus, all the proton-induced events can be found in the lowest banana (see Figure 4.5). The
next reaction channel to be observed is the (p,d) events. And finally, a shade of the (p,t) banana
could be observed in the upper part of the spectrum in Figure 4.5. As it was mentioned, the
experiment took less than one day, and this time was not sufficient to gain appropriate statistics
for the (p,t) channel or to observe events from the (p,α) channel.

The bright blobs in each channel allow us to indicate either the ground states of recoil nuclei
or their excited states kinematically allowed in the reactions. The majority of the most high
energy particles could be observed as the bright blobs on the right edge of each channel. The
relative intensities of these regions are high enough to claim that the ground states of 124Sn,
123Sn, and 122Sn are strongly populated as compared to the majority of higher-lying excited
states. The prolonged blob of contaminant events (12C and 16O) could be easily seen in the
proton banana. In addition, one could clearly distinguish the first excited state of 124Sn next to
the ground state. These observations imply that the centroids of these peaks (as projected on
the E and ∆E axis) could be used for the calibration. However, the second and the third excited
states of the 123Sn isotope (3/2+ at 24.6 keV and 1/2+ at 150.4 keV [90]) could hinder clear
peak identification. Therefore, three states were identified and used for the linear calibration of
SiRi: the ground state of 124Sn, the first excited 2+ state at 1131.7 keV in the same isotope, and
the ground state of 122Sn. The latter and the former, due to the sufficient difference between
them on the ∆E axis, allow us to cover the suitable energy range for all ∆E detectors.

The Qkinz software package was used to estimate energies delivered by protons in the E and
∆E detectors for the cases of the recoil nucleus to be left in the ground and the first excited
state. Similarly these values were estimated for tritons and the ground state of 122Sn. It was
taken into account that the energy delivered into the detectors vary slightly with the scattering
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Figure 4.7: a) The excitation energy spectra aligned for all detector ID numbers. b) The
excitation energy spectrum for the first combination of E − ∆E detectors, the ground state
peak corresponds to the pronounced peak at 0 keV, the second peak corresponds to the first
excited state of the 124Sn isotope at 1131.739 keV [90]

angle from the innermost to the outermost strips in SiRi. The gains and shifts were calculated
for all 64 combinations of E and ∆E detectors. The fit introduces small uncertainties and shifts
in the vicinity of theoretically predicted values (Qkinz calculations), which are disregarded in the
following analysis. In addition, the Qkinz values could deviate from the real energies deposited
to the detectors due to a certain shift of the proton beam from the true symmetry axis while
tuning. However all these uncertainties lie well within the experimental resolution of ≈ 100 keV,
assumed for the next analysis steps, and will not contribute significantly to the bulk error of the
final results.

One of the calibrated spectra obtained is presented in Figure.4.6, the theoretical Qkinz values
are plotted above the experimental peaks. Some deviations of theoretically estimated points and
experimental values could be seen for the (p,d) and (p,t) channels: the explanation might be
hidden in some nonlinear effects, not accounted for by the linear calibration. However, a good
agreement is observed for the region of the (p,p′) channel, essential for the present work. As all E
and ∆E detectors are calibrated, the total energy could be estimated as E+ ∆E and converted
into the excitation energy of a nucleus. This procedure was again performed by means of the
Qkinz software. The latter allows to estimate the dependence between the energy deposited
to the E and ∆E detectors within one strip and excitation energy of a recoil nucleus, taking
different scattering angles and,thus, different particle paths into account. The excitation energy
spectra versus the detector number (∆E detector) are presented in Figure 4.7. Here, the proton
channel is selected by putting the corresponding energy gate on the lowest banana as well as
the time gate described in the next subsection. In this figure one could clearly distinguish the
ground state peak at 0 keV with the full width half maximum FWHM ≈ 99.45 keV. The next
peak centered at at 1132.13 keV corresponds to the first excited state of 124Sn isotope (2+ state)
[90]. The FWHM≈ 159.11 keV for the corresponding peak could serve as the representative

SiRi resolution at 1131.74 keV for the present experiment, given by r = FWHM
E ≈ 14%.

4.2.2 Event selection for the SiRi detector

In addition to the energy calibration one should also take the time alignment of the E detectors
with respect to the different ∆E reference detectors into account. The time difference between
the E and ∆E detectors for the events in vicinity of the ground state peak were aligned at 0 for
all 64 detector combinations.

Since the primary aim of the preliminary analysis was to select the (p,p′) events, the
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a) b)

Figure 4.8: a) The E − ∆E spectrum with a graphical cut applied for the (p,p′) event
selection. b) The time difference between the E and ∆E detectors vs the energy registered in
the E detectors and the time cut applied.

124Sn(p,p′)124Sn events from the lowest (p,p′) gate have to be selected with one of various
procedures. In case of the present experiment, the (p,p′) channel contains sufficient statistics
and is well energetically separated from the (p,d) and (p,t) channels, located above. This implies
that the (p,p′) events can be confined accurately enough in a graphical cut. These events were
sorted out with a graphical gate represented by the red cut in Figure 4.8 a). In addition, the
energy-dependent time gate was put on the time difference between the E and ∆E signals. This
must be required for the selection of so called true coincidences between the E and ∆E firings. It
takes certain time for a charged particle to penetrate the latter, hit the former and generate the
time difference recorded. The structure of events implies that all the E signals within 1 µs with
respect to a reference ∆E detector are recorded and all random signal coincidences, stemming
from particles in different beam pulses, would be written down alongside the true coincidence
events. The true event selection procedure was also performed with a graphical time gate put on
the time-energy spectrum (see Figure.4.8 b)) for the E detectors. The gate extension towards
higher energies takes into account that the signal arrival time in the E detector might be delayed
by up to 200 ns for the slowest particles. There is an uncertainty in putting a gate in the low
energy region that might lead to a certain loss of true events. However, the statistics gained
in the experiment is large enough to consider that the time gate up to 200 ns will contain the
majority of true events for the further analysis.

Applying the both graphical gates (see Figure 4.8 a) and b)), the events from elastic and
inelastic scattering were selected so that each event is a combined signal from a certain ∆E
detector and the corresponding E detector behind, arising from the same recoil particle born in
the (p,p′) reaction.

4.2.3 The OSCAR energy calibration

Since each event recorded in the OSCAR detector array has an attributed energy information
written in arbitrary channel units, the similar energy calibration procedure must be applied to
each LaBr3:Ce detector. For this purpose an additional run on the 28Si isotope was performed
with the same beam settings as in the main experiment. This isotope was chosen to be the
calibration target owing to a set of well distinguishable γ-rays covering a relatively wide energy
range.

In contrast to the silicon particle detectors, the correlation between energy and a channel
number can not be assumed to be linear for LaBr3:Ce detectors: fast intense signals induced
in an active volume of a detector would inevitably induce high peak currents in the adjacent
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Figure 4.9: The calibrated γ-spectrum obtained for the 28Si for the first LaBr3:Ce detector,
the (p,p′) gate is applied.

photomultiplier tubes, and the pulse height recorded will inherit the non-linear effects. The
LaBr3:Ce crystals similar to those used in the experiment were tested with other Hamamatsu
types of PMTs [131]. It was shown that the deviation from the linear trend might cause a
calibration error larger than 1% and a polynomial calibration was recommended. In the present
work a quadratic calibration was chosen:

E = a0 + a1 ·Nch + a2 ·N2
ch, (4.4)

where E is the energy, Nch is a channel number recorded, a0, a1, a2 are the calibration fit
coefficients. In order to distinguish these transitions from the bulk spectrum containing all
possible γ-transitions, the 28Si data from the particle telescope were calibrated with the gains
and shifts described in the previous section and graphical energy gates were put on several
excited states.

The quadratic fit implies that the number of peaks to be fitted should be large enough, and
energies measured should, in principle, cover the whole range of interest. Therefore, 7 different
gates on peaks and the corresponding γ-transitions were chosen in 28Si. For example, the first
gate covered the first excited state in 28Si. The γ-spectrum obtained with this gate allows to
reveal a peak at ≈ 1779 keV, corresponding to the γ-transition from the first 2+ state to the
ground 0+ state. Other gates along the (p,p′) channel allow to distinguish γ-transitions up to
≈ 8000 keV. Since the γ-energies of interest in 124Sn are expected to cover the range up to
the neutron separation energy Sn(124Sn) = 8489 keV [90], 8 transitions identified should be
sufficient to enable a good γ-energy calibration.The level scheme for this nucleus, containing
all the transitions identified, is presented in Figure.A.1. In addition, similar procedure was
performed for the first excited state in 124Sn providing a calibration point in vicinity of 1 MeV.
The calibrated energy spectra are shown in Figure 4.9 and Figure 4.10, and comparison of the
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Figure 4.10: The calibrated γ-spectrum obtained for the 124Sn for the first LaBr3:Ce detector,
the (p,p′) gate is applied.

a) b)

Figure 4.11: a) The raw γ-spectra obtained for the 28Si vs detector number. b) The cali-
brated γ-spectra obtained for the 28Si vs detector number.

spectra before and after the calibration is presented in Figure 4.11. The full width half maximum
was estimated to be FWHM≈41.27 keV for the first excited 2+ state in 124Sn corresponding to

r = FWHM
E ≈ 3.6%, the typical value expected for the LaBr3:Ce detectors.

4.2.4 The time alignment of the OSCAR detectors and further event selec-
tion

As a charged particle hits one of the ∆E detectors and the corresponding E detector, a photon
stemming from the same reaction might be incident on one the scintillator detectors. All of
them should be treated equally in the sense of timing, i.e. the zero time reference for one
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LaBr3:Ce should coincide with the zero references for other detectors. Initially, a certain shift
between them must be present due to different electronics performance (including the PMTs)
and cable lengths, and, thus, the alignment procedure is required. As it was already mentioned,
in Subsection 4.1.3, time resolution of the ∆E detectors is comparatively better than that for the
E detectors, and if the time difference between signals in ∆E and LaBr3:Ce is considered, the
smaller inherited uncertainty in time can be achieved as compared to taking the E detectors as
a reference. In order to make the zero references match each other, the time shifts between the
prompt peak (stemming from the same pulse burst) for each combination of LaBr3:Ce detector
and ∆E detector (64×30) were taken into account to calibrate the prompt peaks at the 0 time
value. The time spectra for all 30 LaBr3:Ce detectors with respect to the first ∆E detector
before and after the time alignment is presented in Figure.4.12.

The time gap for the sorted events is large enough to include up to several LaBr3:Ce signals,
which do not arise from the same reaction event, as a particle is registered in the reference ∆E
detector. This fact is clearly demonstrated by the Figure 4.13, where the peaks originating from
different beam pulses can be seen. An approximate time difference between beam pulses is of 58
ns, meaning that a significant amount of LaBr3:Ce signals from the reactions induced by protons
from the adjacent pulses will be written in the original event. In order to eliminate them a time
gate on the prompt peak at 0 ns should be applied. The gate was chosen to be of 10 ns in width
and was found to contain a sufficient number of true coincidence events. However, the random
background coincidences are still present within this prompt gate. An additional gate with the

a) b)

Figure 4.12: a) The recorded time difference between a chosen ∆E detector and 30 LaBr3:Ce
detectors before alignment. b) The aligned time difference between a chosen ∆E detector and
30 LaBr3:Ce detectors.

200- 150- 100- 50- 0 50 100 150 200
 t (ns)D

0

1000

2000

3000

4000

5000

6000

7000

8000

N
um

be
r o

f c
ou

nt
s

:Ce
3

Time spectrum for LaBra) b)

Figure 4.13: a) The time spectra (∆E−LaBr3:Ce time,difference) vs Eγ energy, all calibrated
LaBr3:Ce detectors are included. b) Time spectrum, projection at Eγ = 1000 keV. The gates
on the prompt (red color) and side (light blue color) peaks are included.
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same width was set around one of the subsequent beam pulses (±5 ns). The events sorted with
this gate can be considered to be attributed to the background; they were subtracted from the
events within the prompt gate to minimize the random coincidences.

4.2.5 The raw coincidence matrix

Following the preliminary calibration procedures, the final, or so-called raw coincidence matrix
was extracted. The matrix, resulting from the background subtraction, is presented in Figure
4.14. It contains the γ-energy spectra for each excitation energy, corresponding to sequential
excitation energy bins. The calibration quality could be easily checked with a position of a
diagonal line Eγ=Ex which follows the centroids of the outermost diagonal line of the matrix
(see Figure 4.14, yellow line). Additional check is provided by the position of three bright blobs
at 4438.9 keV (gamma transition from the first excited state 2+ to the ground state in 12C),
6048.2 keV and 7115.1 keV (transitions from 0+ and 1− to the ground state in 16O). The neutron
separation energy line was plotted as well at Sn(124Sn)=8489.2 keV [90].

The previous data processing procedure included both energy and time gating on E −∆E
energy spectrum and E and LaBr3:Ce time differences with the ∆E detectors. This implies that
the presented matrix should contain events stemming from a detection of a scattered proton and
a photon or photons, emitted in the same 124Sn(p,p′γ)124Sn reaction for the same nucleus. A
negligible amount of false coincidence events would be still present due to a certain flexibility of
all the gates applied. The harsher gates could be used, but one must be aware of a large number
of valuable true events, which will be inevitably lost in this case.

The final matrix presents the distribution of counts over different excitation energies of

Figure 4.14: The raw γ-p coincidence matrix, yellow dashed lines denote the ground state
transitions Eγ = Ex diagonal and the neutron separation limit Sn.
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target nuclei and γ-energies of photons emitted. The latter could not exceed the excitation
energy of a nucleus due to the energy conservation law and, thus, only a few (dark blue field)
remaining background counts are observed below the diagonal line Ex = Eγ . It can be also
seen that the amount of counts above the neutron separation energy drops significantly; there
are some data at Ex > Sn(124Sn) at the lowest Eγ . This is due to inability to distinguish the
124Sn(p,p′γ)124Sn reactions of interest from 124Sn(p,p′nγ)123Sn. However, both neutron emission
events and the rest of background events will be discarded in the following analysis. Another
complication observed is the three lines at high excitation energies stemming from 12C and 16O
impurities.They are to be smoothed in the proceeding analysis. The coincidence matrix obtained
in this section is the main input for the Oslo method; the next steps of the analysis would be
described and explained in detail in the following chapter.



Chapter 5
The Oslo method: theory and application

It is almost 20 years since the Oslo method was first introduced for the analysis of various
transfer and inelastic scattering reactions (e.g. (3He,αγ), (d,tγ), (p,p′γ), etc.) performed at the
Oslo Cyclotron Laboratory. This method has evolved significantly during the last two decades to
its present form. The primary goal of this method concerns the study on the statistical behavior
of a nuclear matter via simultaneous extraction of the γ-ray strength function and nuclear
level density from particle-γ coincidence events. The methodology involves several successive
steps, namely the unfolding with the folding iteration method, described in Subsection 5.1.1,
the Compton subtraction procedure and extraction of primary γ-rays, outlined in Subsection
5.1.2 and Section 5.2 correspondingly.

As the raw particle-γ coincidence matrix is transformed into the so-called first-generation
matrix, containing the first γ-transitions only for each cascade observed, one could successfully
extract the γ-ray strength function and nuclear level density applying the procedure described
in Sections 5.3 and 5.4. The following chapter provides the recipe generalizing all the steps
mentioned and applied for the analysis of (p,p′γ) reaction in the present work. As almost all
convoluted multistage procedures, the Oslo method is based on several crucial assumptions,
discussed in this chapter. The choice of all input parameters required for the extraction of the
γ-ray strength function and level density and the results obtained will be provided and discussed
in the next chapter.

5.1 Need for detector response correction

The proton-γ coincidence matrix, provided in Subsection 4.2.5, contains the spectra, required
for the extraction of the nuclear level density and γ-ray strength function for γ-energies up to
the neutron separation threshold. However, a reasonable physical interpretation of events and
features, recorded in the matrix, is required to extract these nuclear properties.

The γ-spectra recorded in each bin of excitation energy in the raw coincidence matrix contain
information on how a scintillator detector in the array responds to an incident γ-ray, rather than
pure information on the original γ-ray energy. The detector response is a complex characteristic
attributed to the whole detecting setup; it is sensitive to all the interaction types a particle of a
certain energy is able to undergo in an active volume of a detector for a given geometry, design,
type of the detecting system. Depending on the registration mechanism, different detector
materials might be suitable for some radiation types and energy ranges, but insensitive to others.
As it was already mentioned, the OSCAR scintillator detector is able to measure γ-rays in a
relatively wide energy diapason, ranging beyond the neutron separation energy in 124Sn.

As a photon enters an active volume of a LaBr3:Ce detector in the OSCAR array, it might
interact via one of the following main mechanisms: the coherent Rayleigh and Thomson scatter-

59
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ing, the photoelectric effect, Compton effect and pair production. Practically, only the events
contributing to energy loss would create specific features in a detector response. If a photon
does not lose its energy in an interaction process, it could either escape or proceed moving in
the same detector and undergo further interactions. The latter might performed via two men-
tioned processes: the Rayleigh scattering, implying a coherent re-emission of a photon with no
energy transferred to an atom, and the Thomson scattering, involving an elastic scattering on
the outermost orbital electrons considered as “free”electrons. Both processes, contributing to a
photon propagation, take place for lowest photon energies (significantly beyond 1 MeV) and are
of no practical interest for the detector response. In contrary, the latter three processes could
result in a photon energy transferred partially and, thus, create specific features distorting the
true photon spectrum registered by a detector. Besides the detector material, the relative input
from these processes depends on a photon energy and the response function evolves as we shift
from the lowest to the highest energy bin.

The photoelectric effect has a particularly high cross-section for the low energy photons (
below ≈ 1 MeV) and results in energy transfer to an orbital electron. The initial photon energy
Eγ is then redistributed over the binding energy (tens of keV) of an ejected electron and its kinetic
energy. The momentum conservation law forbids the photoelectric effect on free electrons, and
the cross-section peaks at a photon energy coinciding with the innermost K-electron binding
energy [132]. The electron ejected from an atomic orbital could be subsequently detected and
contribute to a so-called full energy peak, well approximated by the Gaussian function and
centered at approximately Eγ (electron binding energy correction which is usually negligible).

For the comparatively higher photon energies (1 MeV . Eγ . 5 MeV), the Compton scatter-
ing effect becomes dominant. In this case, only a fraction of energy is transferred to an orbital
electron. The recoil photon is scattered at an angle θ with the lower energy E′γ , dependent on
this angle:

E′γ =
Eγ

1 +
Eγ
mec2

(1− cos θ)
. (5.1)

Hence, an electron recorded carries information on only a fraction of the incident photon
energy, as a photon might escape from the detector volume and carry the rest of energy away.
The bulk of the Compton electrons forms the pronounced Compton background below the full
energy peak and could be easily seen in both experimental spectra, presented in the previous
chapter (see Figure 4.9 and Figure 4.10).

If an incident photon energy exceeds two electron masses, Eγ > 2me ≈ 1.022 MeV, the
pair production might take place in the Coulomb field of an atomic nucleus. As a result, the
produced electron can be detected and a positron would annihilate with one of the orbital/free
electrons, present in the detector material. The latter process would subsequently result in two
photons of 0.511 MeV energy with a relative angle of 180◦ between their initial trajectories.
Their energy will not be sufficient to initiate another pair production, but they will still be able
to undergo Compton scattering and photoelectric effect and be eventually registered delivering
their energies. However, one of these 0.511-MeV photons might escape from the detector volume,
and the additional peak, or so-called single escape peak, will be registered at Eγ−0.511 MeV. If
both annihilation photons escape, the double escape peak will be observed at Eγ − 1.022 MeV.
These peaks might be especially prominent for small volume detectors. In addition, the detector
array geometry might enable one of the detectors to capture one of the annihilation photons
escaped from another detector. These photons would then result in the 0.511 MeV annihilation
peak, which will be seen alongside the single and double escape peak built up on the Compton
background (see Figure 5.1 a)).

The energy spectrum registered r(E) could be mathematically related to the true photon
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Figure 5.1: a) Schematic representation of a monoenergetic γ-spectrum for the incident
energy Eγ recorded by a scintillator detector with the three main energy transfer mechanisms
taken into account. b) The ideal monoenergetic γ-spectrum, corresponding to the primary
goal of the unfolding procedure. In both figures the scaling is arbitrary.

energy spectrum u0(E) by the convolution transform [122]:

r(E) =

∫
F (E,E′)u0(E′)dE, (5.2)

where F (E,E′) is the detector response function. It can be measured in the experiments with
monoenergetic photons or simulated with the Geant4 software [133]. The presented experiment
exploits the newest version of the response function obtained in 2018 by means of Geant4
simulations and tested for several observed experimental spectra [134]. From now on, the relation
between the true and observed spectra will be written in the matrix form as:

r = Fu0 =


r1

r2
...
rN

 =


F11 · · · F1n

F21 · · · F2n
...

. . .
...

Fn1 · · · Fnn



u0

1

u0
2
...
u0
n

 . (5.3)

Here, n is the index denoting the maximum number of bins in both the observed r and the
true u0 spectra (shown in Figure 5.1 a) and b) correspondingly). The principal goal of the
procedure described in the next subsection is to obtain the original, or incident, γ-spectrum
with the raw, observed spectrum and modeled response function for the OSCAR array.

5.1.1 Unfolding with the folding iteration method

The convolution of the response function and the true γ-spectrum is often referred as the folding
procedure, and the true γ-spectrum as the unfolded spectrum. However, the opposite process
is of particular interest in this step of the data analysis: the unfolding of the folded spectrum f
with the given response matrix F. The most straightforward way to accomplish this is to invert
the matrix equation (5.3):

u0 = F−1f. (5.4)
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There are several serious drawbacks of this method: as the dimension n involved is large, a com-
puted solution might be unstable as the response matrix might be ill-conditioned. In addition,
it will introduce significant oscillations in the unfolded matrix. The present thesis exploits the
folding iteration method, primarily based on the simplicity of the folding procedure. In contrast
to matrix inversion, this procedure is relatively fast and less sensitive to particular defects of
the raw matrix, e.g. driven by low statistics, which makes it ideal for OCL experiments. The
procedure is performed in series of iterations aiming to approach the true, incident spectrum,
and can be effectively split into several steps as outlined in [135]:

1. A trial function for the unfolded spectrum u0 is chosen. The Oslo method software ([134])
exploits the raw spectrum r as a starting point, but, as a general rule, the choice might
be arbitrary:

u0 = r. (5.5)

2. The trial function u0 is folded with the response function:

f0 = Fu0. (5.6)

3. The difference between the observed spectrum r and the folded spectrum f0 is estimated:
the main goal now is to make the latter approach the former. In practice, this could not
be done with one folding procedure only, and one needs to construct the next, improved,
trial spectrum u1. It could be obtained by taking the difference between the observed and
the first folded spectrum as:

u1 = u0 + (r− f0). (5.7)

4. The folding procedure is repeated; the new folded function f1 is obtained and the next
approximation of the true unfolded spectrum is made as u2 = u1 + (r− f1).

The iterations are performed until the calculated difference between the observed spectrum
and the folded spectrum is commensurable within the experimental uncertainties, i.e. when
r ≈ f is achieved. Some works suggest that the amount of iterations should be large enough to
adjust the current f i to match the observed spectrum. However, the large number of iterations
might result in severe oscillations in the spectra. In addition, the quality of the unfolding
procedure is tightly related to the resolution applied while determining the response function.
This resolution is taken as FWHM ≈ 0.1 FWHMexp to eliminate undershooting of pronounced
peaks in the unfolded spectrum as recommended in [136]. The recommended number of iterations
for the OCL experiments is of 10-20 iterations [135].

The steps of the procedure, described above, were applied consecutively to the raw p-γ
coincidence matrix for 124Sn. The 12C and 16O impurities initially present in the raw matrix
were still present after a smoothing procedure and 20 iterations were found to be insufficient
to eliminate strong oscillations along the corresponding excitation energies. The upper limit of
the number of iterations was set to be i = 300 in the present project; surprisingly, the larger
number allowed to smooth the oscillations without creating significant additional oscillations
of γ-ray spectra. Similar effects were also observed in the preliminary analyses of recent OCL
experiments on other nuclei, for which strong contaminants in the spectra were also present.

5.1.2 The Compton subtraction method

A certain advantage of the unfolding procedure via the iterative folding method is its ability to
reproduce a realistic shape of the unfolded spectrum. Nevertheless, this advantage is partially
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diminished by the strong, possibly artificial oscillations originating from the unfolding procedure
itself. The straightforward smoothing of the unfolded spectrum will raise up some complications
in distinguishing between real physical peaks and remaining smoothed oscillations. One probable
solution to this problem was proposed in [135] in form of the so-called Compton subtraction
method. This method is primarily based on the properties of the Compton background behaving
as a slowly varying function of energy, which could be successfully subtracted from the unfolded
spectrum while being strongly smoothed. If the Compton background is extracted from the
original raw spectrum r, it would contain the same statistical fluctuations, and the following
smoothing aims at eliminating them. This correction method is, thus, based on the physical
principles rather than artificial mathematical procedures and could be described by the following
steps:

1. Monoenergetic γ experiments are carried out in advance in order to construct a response
function and estimate the probabilities for counts to belong to either the full energy peak
(f), single escape peak (se), double escape peak (de), annihilation peak (a) or the Compton
background (cb) as a function of γ-energy. The total probability is then normalized as
[135]:

pf + pse + pde + pa + pcb = 1. (5.8)

Such a separation allows us to estimate the relative contributions from the different pro-
cesses, forming the features of the raw spectrum.

2. The final spectrum obtained in the iterative folding procedure is used as the main input for
the Compton subtraction method. From now on it would be denoted by u. This spectrum
is used to calculate the supplementary spectrum built up by the predicted contributions
from the prominent peaks as:

v(i) = pf (i)u(i) + w(i), (5.9)

here i is the bin number and w(i) = use+ude+ua is the sum of contributions from the single,
double escape and annihilation. These contributions could be defined as use(i− i0.511) =
pse(i)u(i), ude(i − i1.022) = pde(i)u(i), and ua(i0.511) =

∑
i pa(i)u(i) with the bins i0.511

and i1.022, corresponding to 0.511 and 1.022 MeV energies.

3. Each peak is smoothed with the Gaussian distribution. The annihilation peak is smoothed
with the experimental resolution rexp =1 FWHM, whereas the single escape, double escape
and full energy peaks have to be smoothed by both the experimental observed resolution
rexp and the response matrix resolution rrm = 0.1 FWHM, providing an overall resolution
of
√

1.02 − 0.12=0.99 FWHM.

4. The Compton background spectrum is obtained via subtraction of the predicted peak
spectrum v(i) from the observed spectrum r(i):

c(i) = r(i)− v(i). (5.10)

Since the initial raw spectrum r contains typical statistical fluctuations, the same fluctua-
tions will remain in the Compton background spectrum c(i). As it was already mentioned,
this spectrum is assumed to be a slowly varying function of energy and, therefore, could
be subject to the strong smoothing with the experimental resolution of 1 FWHM.

5. Subsequent subtraction of the smoothed peaks w(i) (excluding the full energy peak) and
the smoothed Compton background c(i) from the raw spectrum would yield the new
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spectrum, containing the full energy peaks only, and the artificial bias, inherited due to
the unfolding procedure, will be, thus, suppressed. The true distribution of γ-rays could
be obtained by correcting the obtained spectrum r(i) − c(i) − w(i) for the full energy
detection probability:

ucorr =
1

pf (i)
(r(i)− c(i)− w(i)). (5.11)

6. The final step involves the correction for the total γ-ray efficiency εtot(i) of the OSCAR
detector array

U(i) = ucorr(i)/εtot(i), (5.12)

The final function U(i) is the desired approximation to the true, incident γ-spectrum,
corrected for all the artifacts stemming from the unfolding procedure; this is the starting
point for the the first generation γ extraction, described in the next subsection.

The combination of the iterative folding procedure and the Compton subtraction method
was shown to serve as the good framework for the unfolded spectrum subtraction in numerous
OCL experiments (e.g. see [137]). As the presented experiment was carried out with the quite
similar experimental conditions (with the exception of NaI:Tl detectors substituted with the
LaBr3:Ce detectors, a beam type and energy), it was reasonable to apply these steps of the Oslo
method for the analysis.

5.2 The primary γ extraction procedure

The unfolded matrix contains a set of full energy peaks, corresponding to all possible γ-transitions
in the chain of γ-decays from excited states Ei within an excitation energy bin i down to the
ground state. Let us consider the simplified level scheme involving three excited states E1, E2, E3

and the ground state E0 (see Figure.5.2). One could build up a simplified matrix containing
the corresponding γ-ray spectra for each excitation energy of a nucleus. Gating on the highest
excitation energy E3 would reveal 6 different full energy peaks from the γ-rays emitted in four
possible decay chains from the excited state E3 to the ground state. By gating on the lower-lying
E2 state, only three full energy peaks from two distinct decay paths will be observed. Finally,
only one γ-transition would yield deexcitation from the lowest E1 state to the ground state. The
primary transitions from each state could be also denoted as the first-generation γ-rays. In the
scope of the present project, the main goal is to extract the level density and the γ-strength
function determined by the distribution of these first-generation γ-rays. Therefore, an additional
step is to be performed to transform the obtained matrix U(Ex, Eγ) into the first generation
matrix P(Ex, Eγ).

This step is performed with the extraction procedure proposed by M. Guttormsen et al. in
[138]. The major assumption to be fulfilled for this method to be applicable is that an excited
state, populated in preceding γ-transitions, has the same decay properties as the same excited
state, populated directly in a particle induced reaction. This assumption seems to hold for
most of the range of excitation energy, except for the very low energies [139]. As seen from
the example in Figure.5.2, the cascades towards the ground state originating from E2 and E1

contain the secondary and tertiary transitions from the initial E3 state. If all the cascades from
E2 and E1 are subtracted from the E3-originating cascades, the primary γ-rays in these cascades
could be extracted.

This simple procedure forms the core of the first-generation method. The unfolded spectra
U(i) contain all possible γ-transitions from the excited states Ei within the excitation energy
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Figure 5.2: Schematic representation of various cascades, originating from three excited
states, and the corresponding spectra, obtained by gating on each state.

bin i to the lower-lying excited states and the ground state. The spectrum with U(i−1) contains
the same γ-transitions, except for the primary transitions of U(i). The primary γ-ray spectrum
H(i) is, thus, formed in a subtraction of the weighted spectra U(j) for j < i denoted by G(i)
from the given unfolded spectrum U(i) [138]:

H(i) = U(i)−G(i) = U(i)−
∑
j<i

njwjU(j), (5.13)

here, nj are the correction factors taking into account the difference in cross-sections for the
excited states within the energy bins i and j to be populated. The additional weighting coeffi-
cients wj take into account the γ-energy dependent branching ratios for each excitation energy
bin. In other words, they represent the probability of a decay from the states within the i-th
bin to the states in lower-lying bins, or the distribution of branching ratios for a given bin i over
the considered range of γ-energies.

The nj correction coefficients are primarily defined to have the following property: the area
under the spectrum U(j) multiplied by nj matches the same number of cascades [138]. These
coefficients could be experimentally determined via two different procedures:

1. Singles normalization. The singles spectrum obtained with the particle telescopes repre-
sent the number of counts per an excitation energy bin Ei, i.e. the number of events in
which the excited states in this bin were populated. This value is denoted by S(i); it is
proportional to both the cross-section of this energy bin to be populated and the number
of decay cascades originating from it. Therefore, the nj coefficients are calculated as:

nj =
S(i)

S(j)
, (5.14)

where S(i) and S(j) are experimentally the measured cross-sections, which might be ex-
pressed in terms of the numbers of counts for the excitation energy bins i and j.



66 The Oslo method: theory and application Chapter 5

2. Multiplicity normalization [140]. This method exploits the average γ-ray multiplicity 〈Mi〉
for each excitation energy bin i. If an excited state Ei is populated N times during an
experiment, this would eventually result in N γ-cascades towards the ground state. The
average γ-energy in these cascades could be written as 〈Eiγ〉 and should be related to

the total energy carried by photons NEi and multiplicities for all the cascades M l
i in the

following way:

〈Eiγ〉 =
NEi∑N
l M

l
i

, (5.15)

hence, the average multiplicity for each bin i is given by:

〈Mi〉 =
1

N

N∑
l

M l
i =

Ei
〈Eiγ〉

. (5.16)

The singles-particle cross-section fraction for two energy bins i and j could be easily
found: each cross-section is proportional to the total number of counts in the corresponding
spectrum divided by the average γ-multiplicity U(i)/〈Mi〉. In turn, the total number of
counts is proportional to the area of the corresponding spectrum, which we would denoted
by A(U(i)). Given all the proportionalities, the correction coefficients nj will be defined
as:

nj =
A(U(i))/〈Mi〉
A(U(j))/〈Mj〉

=
A(U(i))〈Mj〉
A(U(j))〈Mi〉

. (5.17)

Both the singles and multiplicity normalization methods give similar results within the ex-
perimental error bars as shown in [139]. However, the presence of long lived isomeric states could
distort the final result, obtained with the singles normalization method. The γ-rays, stemming
from the isomeric states, are emitted within the larger time scales than the narrow primary time
gate, and they will not be detected in a coincidence with a corresponding particle. On the other
hand, the unfolded matrix allows to obtain easily all the variables needed for the multiplicity
normalization method; for the sake of simplicity, it was decided to exploit the latter method in
the present analysis.

Another set of parameters to be determined is the wj factors, normalized as
∑

j wj = 1.
These factors contain information on the branching ratios within a certain energy bin and
correspond directly to the primary spectrum H(i). As shown in [138], the choice of a trial
function, describing these factors, does not affect dramatically the shape of the primary spectra,
but could result in significantly different spectrum areas for different coefficients chosen.

In the ideal case, the wj factors are chosen properly, and the total area of the primary
spectrum A(H(i)) should be equal to the difference between A(U(i)) and A(G(i)). Practically,
deviations might occur due to imperfections in a choice of the wj factors. It is often convenient
to introduce an additional area correction procedure. A correction factor αi is introduced in
order to adjust the difference between two areas so that:

A(H(i)) = A(U(i))− αiA(G(i)). (5.18)

On the other hand, the unfolded spectrum U(i) contains on average 〈Mi〉 decay cascades and,
thus, first generation transitions, and the area of H(i) could be expressed as:

A(H(i)) =
A(U(i))

〈Mi〉
. (5.19)
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Figure 5.3: The α-correction factor, plotted as a function of excitation energy for 124Sn. The
optimal and critical values are marked with the blue and red dashed lines correspondingly.

This could be used to extract the correction factor α, given by:

αi =

(
1− 1

〈Mi〉

)
A(U(i))

A(G(i))
. (5.20)

This correction is assumed to be reasonable if lying within the range of 0.85 < α < 1.15.
Otherwise, the choice of the weighting factors wj is inappropriate and should be modified. The
correct factors could be found in the iterative routine implemented in the Oslo method software
package. Due to direct the relation of wj and the primary spectrum H(i), the iterative procedure
is presented by the following steps:

1. The trial function for wj is chosen: the unfolded spectrum U(i), a theoretical estimate or
a simple constant function could be used.

2. The first primary spectrum H(i) is deduced by implementing these coefficients in the
Equation 5.13.

3. The new wnewj is extracted by normalizing the area of Hi to 1 and applying the same
energy calibration to H(i) as for wj .

4. The new wnewj is compared with the trial function wj : if an approximate equality is reached
for wnewj ≈ wj , the new function is kept; otherwise the steps 2-4 are repeated.

This iterative procedure was shown to be converging fast: for an arbitrary choice of the wj
(e.g. constant function of γ-energy), three iterations were sufficient to reach a good agreement
with the correct spectrum within the experimental errors [138]. In general, 10-20 iterations are
recommended [139]. The area check is performed in each iteration step, and the result of the
procedure is reliable as long as the correction coefficient α lies in the vicinity of α = 1 for a
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a) b)

Figure 5.4: a) The unfolded coincidence matrix for 124Sn(p, p’ γ)124Sn reaction, obtained af-
ter the folding iteration method and the Compton subtraction method. b) The first-generation
matrix, obtained in the first-generation method for the unfolded coincidence matrix. Yellow
dashed lines confine the region chosen for extraction of nuclear level density and γ-ray strength
function.

large range of excitation energies, which can be subsequently used for the level density and γ
-ray strength function extraction.

A study of the area correction parameter was carried out to define the lower limit of the
excitation energy range for the present analysis. The dependence of α on the excitation energy
after 20 iterations is shown in Figure 5.3. This dependence does not change significantly for
a larger number of iterations. It is shown, that the first-generation method fails for excitation
energies lower than ≈3000 keV and remains close to the optimal value above 5000 keV. In
addition, the transitions between the states at sufficiently low excitation energies could not be
treated within the statistical approach and should be excluded.The value of 5000 keV was chosen
to be the lower excitation energy limit Eminx for the further analysis. It could also be noticed
that certain problems with the method for the 7120-7360 keV and 7840-8080 keV ranges occur.
This might be related to artificial fluctuations remaining after eliminating impurities. However,
in the mentioned energy gaps α does not exceed 20%, and the iterations are performed without
any significant failures. The upper excitation energy limit is set to the neutron separation
energy Emaxx = Sn(124Sn)=8489 keV. Despite the small excitation energy ranges affected by
impurities, the rest of the range selected is characterized by the α parameter, lying well within
the acceptable limits.

Figure 5.4 represents the unfolded and the first generation matrices obtained from the raw p-
γ coincidence matrix with all the procedures described above. In addition to the lower and upper
limits of excitation energies, one has to set a lower limit for γ-ray energies. Since the chosen
area should not contain any secondary transitions, but should still have sufficient statistics, the
lower limit was set to be Eminγ = 1600 keV. For the excitation energies within the chosen range,
the first-generation matrix lacks γ transitions below 1600 keV (empty vertical stripes) due to
an over-subtraction of strongly populated states in the unfolded matrix (yellow vertical lines).
The energy ranges Emaxx , Eminx , and Eminγ ensure an exclusion of these low-statistics areas. The
area selected for the extraction of both the level density and γ-ray strength is shown in Figure
5.4.
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5.3 Extraction of the γ-strength function and level density

The application of the procedure described in the previous section results in the distribution of
first generation γ-rays for a wide range of excitation energies grouped together as the matrix
P(Ex, Eγ). It contains essential information on both the γ-strength function and level density
which present the final aim of the whole analysis. The extraction method discussed below is
primarily based on Fermi’s Golden Rule as the pivotal relation [141, 142]:

λi→f =
2π

~
|〈f |Ĥtr|i〉|2ρf . (5.21)

The transition, or decay, rate λi→f (probability of a decay per unit time) is determined by the
transition matrix element between the initial i and final states f and the density of final states
ρf . The major assumption here is that the perturbation due to the transition operator Ĥtr is
small, which holds true for many nuclear physics applications. This relation will now allow us
to consider the following proportionality [143]:

P(Ex, Eγ) ∝ T i→fρf . (5.22)

Indeed, the first generation matrix P(Ex, Eγ) is directly proportional to the decay probability,
hence, the decay rate λi→f as well. Here, the transmission coefficient T would be a function
of both initial and final excited states, as the level density ρf should be referred to the final
excitation energy, also defined as Ef = Ei − Eγ = Ex − Eγ . These functions can be extracted
simultaneously, if is no dependence of the transmission coefficient on the initial and final exci-
tation energies. Here, one of the major assumptions in the analysis, the Brink-Axel hypothesis
[112, 114], is introduced. According to this hypothesis, the γ-ray strength function is essentially
independent on the properties of the initial and final states. As it was mentioned in Section 3.3,
it was initially formulated for the IVGDR, which should have the same energy behavior if built
on a ground state or one of the excited states. In principle, it has a limited application range.
However, it is still widely used as an underlying assumption in the OCL experiment analyses,
where it is assumed to hold below the neutron separation energy and the discrete Ex region.
This hypothesis eliminates the dependence on Ei and Ef in the transmission coefficient, so that
it is transformed into a function of Eγ only:

P(Ex, Eγ) ∝ T (Eγ)ρ(Ef ) = T (Eγ)ρ(Ex − Eγ). (5.23)

This is the core relation for the extraction procedure, first described by L. Henden in [144]. As
was emphasized in [144], such a factorization implies the following for the excitation mechanism
to be valid: full thermalization of a nucleus should take place before γ-emission. In other
words, Equation 5.23 would hold for the compound state decay, i.e. a nucleus is first formed
in a compound, or thermalized, state, where energy is redistributed among nucleons, and then
decays via the final channel decoupled from the initial formation channel. For relatively high
excitation energies, as in the case of the present analysis, it is expected to be the case. Despite
the fact, that the states studied are excited in the direct reaction, characterized by the time
scale of ∼ 10−22 s, the following γ-decay takes place within the time gate of 10−15 s. The latter
provides a considerably larger time scale, as compared to the excitation process, and the excited
nucleus could be assumed thermalized prior to the γ-decay.

If the decomposition, given by Equation 5.23, is justified, one could apply the iterative
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extraction procedure, described in details in [145]; it is based on a χ2 minimization written as:

χ2 =
1

Nfree

Emaxx∑
Ex=Eminx

Ex∑
Eγ=Eminγ

(
Ptheor(Ex, Eγ)−P(Ex, Eγ)

∆P(Ex, Eγ)

)2

, (5.24)

here Nfree indicates the number of degrees of freedom (number of data points in the pri-
mary matrix minus data points in the transmission coefficient and level density functions),
P (Ex, Eγ) is the experimentally obtained first-generation matrix with the corresponding un-
certainty ∆P(Ex, Eγ), Ptheor(Ex, Eγ) is the theoretical estimate calculated with the transmis-
sion coefficient T (Eγ) and level density ρ(Ex − Eγ). The latter is introduced by the following
approximation:

Ptheor(Ex, Eγ) =
ρ(Ex − Eγ)T (Eγ)∑Ex

Eγ=Eminγ
ρ(Ex − Eγ)T (Eγ)

. (5.25)

Before Equation 5.24 is used, the experimental first-generation matrix P(Ex, Eγ) has to be
normalized so that the sum over γ-ray energies, running from a certain minimum limit Eminγ up
to the maximum energy Ex for a given excitation bin, is equal to 1 [145]:

Ex∑
Eγ=Eminγ

P(Ex, Eγ) = 1. (5.26)

After these preparatory steps are performed, one could proceed with the iterative procedure
to extract the level density and the transmission coefficient. First, the zeroth-order estimate is
calculated by assuming the first trial function for the level density to be ρ0 = 1 and applying
it to Equation 5.25. Summing the latter over the excitation energies from Eminx to Emaxx and
taking into account that Eγ ≤ Ex, one could obtain the zeroth estimate for the transmission
coefficient:

T 0(Eγ) =

Emaxx∑
Ex=max(Eminx ,Eγ)

P(Ex, Eγ). (5.27)

These zeroth-order estimates are then used to express the theoretical first-generation matrix
P0(Ex, Eγ) and the corresponding (χ2)0, which should be minimized with respect to both
variables as:

∂χ2

∂T (Eγ)
= 0 ,

∂χ2

∂ρ(Ex − Eγ)
= 0. (5.28)

This would result in the next order estimates T 1(Eγ) and ρ1(Ex − Eγ), which are used again
to calculate (χ2)1; the procedure is performed til the (χ2)n reaches its minimum for the certain
values of T n(Eγ) and ρn(Ex − Eγ).

It has been shown that this iterative procedure is usually converging fast, but in some cases
it might yield failure due to a very shallow χ2 minimum [145]. This implies that an additional
limit on the maximum change of T n(Eγ) and ρn(Ex − Eγ) in one iteration could be put to
improve minimization. This limit depends on the values obtained in the previous iteration, and
affects only a few data points in the high energy region. The minimization procedure in the
present analysis did not require this limitation, but it might be quite useful for other cases (e.g.
strongly oscillating data points in the primary matrix).
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This fitting procedure, however, does not yield unique solutions for the nuclear level density
and the transmission coefficient. As the χ2 is minimized and the corresponding solutions are
found, one could construct an infinite number of different solutions [145], related to the found
values of T (Eγ) and ρ(Ex − Eγ) as:

ρ̃(Ex − Eγ) = Aeα(Ex−Eγ)ρ(Ex − Eγ),

T̃ (Eγ) = BeαEγT (Eγ).
(5.29)

Both generalized solutions share the same slope parameter α and have individual scaling factors
A and B. Therefore, the iterative procedure yields the functional forms of the level density
and the transmission coefficient as functions of Ex − Eγ and Eγ correspondingly, but their
absolute values, giving unique physical solutions in the χ2 minimization procedure, are still to
be constrained by additional theoretically and experimentally estimated parameters.

5.4 Normalization procedure for the level density and γ-ray
strength function

As the set of general solutions, given by Equation 5.29, is obtained for the χ2 minimization, the
physical solution should be fixed by determining the unique slope α and scaling parameters A
and B. Firstly, the normalization of the level density would allow to determine the parameters
α and A. As the slope the same for both the transmission coefficient and level density, the only
parameter to be determined is B.

As the first step, known discrete levels measured at low excitation energy and the level
density at the neutron separation energy should be used for the level density normalization. The
discrete levels measured in various experiments and collected in, e.g. [90], could be considered
complete only up to a certain excitation energy. Further up, the levels become more densely
spaced and the experimental resolution would be insufficient to resolve them. This maximal
energy Umax corresponds to 2.878 MeV for the particular case of 124Sn [91], therefore, the fitting
procedure in the low energy range, exploiting these known states, is valid up to Umax only.
Since the data points for the level density are measured up to the comparatively higher energy
Sn − Eminγ , another reference point for the normalization is the level density at the neutron
separation energy is required. It could be determined on the base of experimental values of
average neutron resonance spacing for s-wave neutrons and p-wave neutrons [146], D0 and D1

correspondingly. The available experimental information on s-wave neutrons is used for the
normalization procedure in the present work.

The average resonance spacing D0 is directly related to the level density at the neutron
separation energy Sn as [139]:

1

D0
=

1

2
(ρ(Sn, J = It + 1/2) + ρ(Sn, J = It − 1/2)) . (5.30)

This expression contains the partial level densities for both spins populated, J = It ± 1/2, for a
given spin It for the target in neutron-capture experiments.The positive and negative parities are
assumed to contribute equally to the level density. In order to extract ρ(Sn) from this relation,
the general form of the back-shifted Fermi gas formula (see [82]) was adopted:

ρ(U, J) = g(J) · ρ(U) =

√
π

12

e2
√
aU

√
2πσa1/4U5/4

· (2J + 1)e−
(J+1/2)2

2σ2

2σ2
, (5.31)

here U = E − E1, a and E1 are the level density and excitation energy back-shift parameters,
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and σ is the spin-cutoff parameter. The latter factor is generalized for the energy dependence of
the spin-cutoff parameter and considered to be the energy dependent spin distribution formula,
implemented in the Oslo method software (determined in both [83, 147]):

g(Ex, J) =
2J + 1

2σ2(Ex)
e
− (J+1/2)2

2σ2(Ex) . (5.32)

Given the BSFG level density in Equation 5.31 and assuming equal contribution from both
parities, one could easily deduce the level density at the separation energy:

ρ(Sn) =
2σ2

D0

1

(It + 1)e−(It+1)2/2σ2 + Ite−I
2
t /2σ

2
. (5.33)

The problem is now reduced to estimating the D0 and the spin-cutoff parameter σ. In
addition, proper extrapolation of the level density towards the neutron separation energy is
required. Here, the constant temperature approach and temperature dependent form of the
spin-cutoff are usually used. As already mentioned, there are certain indications from recent
level density systematics that the temperature could be considered approximately constant in the
energy range between the Ex ≈ 2∆ and the neutron separation energy Sn [75, 148], up to which
the pair breaking process takes place. As it was emphasized in the latter work, the constant
temperature formula could still be applicable for higher energies as well. Nevertheless, the
excitation energy range of interest in the present work is limited by the neutron separation energy.
The constant temperature behavior of the level density up to the neutron separation energy,
combined with the BSFG spin distribution at the separation energy, serves as the framework in
the present study. In order to extract the spin-cutoff parameter σ(E), the linear dependence of
σ2 on the nuclear temperature parameter T could be used as described in [83]:

σ2 = ΘT. (5.34)

In general, the temperature is excitation-energy dependent. Since the temperature is considered
to be constant in the studied range, its value would be fixed. The moment of inertia Θ is model
dependent, and several theoretical approaches were tested in the present work. Firstly, there
are certain arguments in favor of treating a nucleus as a rigid sphere of radius R = 1.25A1/3

[149]. Therefore, the rigid body moment of inertia Θrbm = 0.0146A5/3 (MeV−1) could be used
to calculate the spin-cutoff as proposed in [81]:

σ2
RMI = ΘRMITRMI = 0.0146A5/3 1 +

√
1 + 4aU

2a
, (5.35)

where a is given by the global fit from [81] and U is given by Sn−E1 at the neutron separation
energy. The rigid body approach is, however, able to give solely a crude estimate of the moment
of inertia. The level density obtained in this approach would correspond to the upper limit, as
the rigid body value represents the maximum value for the moment of inertia.

An alternative model tested in the present work exploits the moment of inertia proposed by
A. Gilbert and A. G. W. Cameron [82]:

σ2
G&C = ΘG&CTG&C = 0.0888aA2/3

√
U

a
, (5.36)

where a is again taken from [81] and U = Sn − E1. The spin-cutoff parameter estimated with
this approach is noticeably smaller than the estimate for the rigid body model. Both approaches
were applied for previous OCL experiments, and were chosen to set the lower and upper limits
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Figure 5.5: Theoretical spin distribution for the rigid body spin-cutoff parameter (RMI) and
the spin-cutoff parameter obtained with the Gilbert and Cameron approach. Two spin cuts
are depicted by the red and blue dashed lines.

for the level density in the present work.

To sum up all the steps required for the level density normalization, the discrete level scheme
for the low energy region, the ρ(Sn) value and the constant temperature level density approach
for interpolation between the data points and ρ(Sn) are combined to estimate the slope α and
factor A for the level density. The model dependent spin-cutoff σ2 is calculated to serve as the
input for Equation 5.33. The latter provides an estimate for the ρ(Sn) for a given target spin
and experimentally constrained resonance spacing D0 from neutron capture experiments.

An additional nuance should be taken into account while estimating the level density at the
neutron separation energy. The beam type and energy selected for the experiment were found
to yield only a limited range of spins for the excited states. Previous experiments for similar
proton beam energies (from 6 to 24 MeV) have revealed that the highest spin observed is J = 4
(see [90] for a list of references). Higher spins are characterized by an uncertain spin and parity
attribution. Therefore, for the present work it was assumed two separate approaches for the
spins populated: the first approach implies a maximum spin populated to be Jmax = 4, the
second would correspond to Jmax = 5. A semi-classical estimate confirms the value of maximum
spin between these two values for 16 MeV proton beam for 126◦-140◦, fixed by the SiRi telescope.

The limited range of spins populated in the (p,p′γ) reaction dramatically affects the slope
of the level density. In order to account for this limitation, the spin distributions in the form
of Equation 5.32 were considered for σ2

RMI and σ2
G&C . Due to the different moments of inertia

and temperature formulas, these spin-cutoff parameters yield different spin distributions (see
Figure 5.5). Given these distributions, one might estimate the relative probability for spins up
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to Jmax = 4, 5 to be populated by considering the theoretical fraction:

η =

∫ Jmax=4(5)
J=0 g(Sn, J)dJ∫∞

J=0 g(Sn, J)dJ
, (5.37)

which is practically reduced to summation of g(E, J) over the given range. This fraction is
subsequently used to estimate the reduced level density at the neutron separation energy:

ρ(Sn)red = ηρ(Sn)tot. (5.38)

The normalization of the level density would automatically yield the slope parameter α
for the transmission coefficient. However, an absolute value B is still to be determined to fix
the scaling for both the transmission coefficient and the γ-ray strength function. The scaling
parameter B could be directly obtained from a known (or estimated) average, total radiative
width 〈Γγ〉 from s-wave neutron capture experiments. In general, it is an excitation energy, spin
and parity dependent quantity 〈Γγ(Ex, J, π)〉. In the general form it is written as [100]:

〈Γγ(Ex, J, π)〉 =
1

2πρ(Ex, J, π)

∑
XL

∑
Jf ,πf

∫ Ex

Eγ=0
dEγT (Eγ)ρ(Ex − Eγ , Jf , πf ). (5.39)

The scope of the present work exploits the average total radiative width at the neutron separation
energy 〈Γγ(Sn, If , πf )〉 for the s-wave capture resonances with the accessible spins If = It± 1/2
(see e.g. [91]). Assuming that both parities contribute equally to the level density under the
integral sign and the spin distribution, given by Equation 5.32, one could eliminate dependence
on the final spin and parity. The remaining level density at the neutron separation energy in the
denominator could be directly calculated with experimental values of D0 as ρ(Sn, It± 1/2, π) =
1/D0. Finally, the summation over all multipolarities could be reduced to XL = E1 + M1,
since dipole modes would yield the major contribution to both the transmission coefficient and
strength in the studied energy range. The modified expression for the radiative width could be
expressed as [150]:

〈Γγ(Sn, It ± 1/2, πf )〉 =
D0

4π

∫ Sn

0
dEγT (Eγ)ρ(Sn − Eγ)×

×
1∑

J=−1

g(Sn − Eγ , It ± 1/2 + J).

(5.40)

This expression is partially experimentally constrained and partially model dependent (mainly
due to the form of the spin distribution and its components).

So far, all necessary relations required for the normalization procedure, have been established
and discussed. The experimental values forD0 and 〈Γγ〉, if available for a given nucleus, constrain
the physical solutions for the level density and γ-ray strength function with accumulated errors
due to the statistics, unfolding and the first-generation method procedures and experimental
uncertainties for D0 and 〈Γγ〉. However, there are no available s- or p-wave neutron capture
experimental data on 124Sn as the target nucleus 123Sn is unstable (T1/2 = 129.2 d). All the
values required for 124Sn have to be obtained from available systematics for other Sn isotopes.
This procedure is described in details in the next chapter together with the results, obtained
with all estimated input parameters.
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5.5 Test of the Brink-Axel hypothesis

In the scope of the Oslo method, described in the previous sections, the qualitative test of the
γ-ray strength function dependency on initial and final excitation energies could be carried out.
The relevant procedure was outlined in detail in [115]. The starting point of this study refers
back to the proportionality established in Equation 5.22. The assumption on the transmis-
sion coefficient being dependent on the γ-energy only is still kept, and Equation 5.41 could be
rewritten as:

N(Ei)P(Ei, Eγ) = T (Eγ)ρ(Ei − Eγ), (5.41)

where N(Ei) is the normalization factor solely depending on the γ-ray energy. Integration with
respect to all Eγ yields the following form of the normalization N(Ei):

N(Ei) =

∫ Ei
0 T (Eγ)ρ(Ei − Eγ)dEγ∫ Ei

0 P(Ei, Eγ)dEγ
. (5.42)

Here, ρ(Ei−Eγ) is the level density obtained with the standard Oslo method. This implies that
the transmission coefficient, as well as the γ-ray strength function, could be studied for each
excitation energy bin Ei as a function of Eγ energy:

T (Ei, Eγ) =
N(Ei)P(Ei, Eγ)

ρ(Ei − Eγ)
. (5.43)

This form provides an explicit study of the transmission coefficient for different initial energies
transitions take place from. By analogy with Equation 5.43, the transmission coefficient could
be rewritten as:

T (Ef , Eγ) =
N(Ef + Eγ)P(Ef + Eγ , Eγ)

ρ(Ef )
. (5.44)

Application of this relation results in a set of transmission coefficients, involving transitions to
a chosen final state Ef . The transitions to the ground state and the first excited state in 124Sn
are of particular interest for the comparison with external experimental strengths in the present
thesis. This type of study is still model dependent due to assumption on the transmission
coefficients T (Ei, Eγ) and T (Ef , Eγ), fluctuating with respect to the standard Oslo method
transmission coefficients. In addition, the normalization factor might yield slightly different
absolute values of the γ-ray strength functions as compared to the standard one. Nevertheless,
this approach was shown to provide a qualitatively good study on the validity of the Brink-Axel
hypothesis (see e.g [115]).





Chapter 6
Experimental results

The previous chapter was mainly devoted to the description of all procedures, leading from the
raw p-γ coincidence matrix, obtained in (p,p′γ) experiment on the 124Sn target, up to the final
results on the nuclear level density and γ-ray strength function. The study of the latter is the
primary goal of the present work: it allows us to trace the presence of the PDR in a response of
the 124Sn isotope and extract all bulk characteristics of this resonance mode. Together with the
characteristics of lighter Sn isotopes, previously measured at the OCL, an extended systematic
study of the PDR will be provided. The following Section 6.1 is devoted to the procedure of
collecting the parameters, required for the normalization of both the nuclear level density and
γ-strength function (called from now on γRSF for short).The inherited uncertainty for both
values due uncertainties in the parameter estimation will be discussed together with the final
results in Section 6.2 and Section 6.3. The parameters of all observed features in the nuclear
response from Eγ = 0− 18 MeV are presented and discussed in Section 6.4.

6.1 Extraction of parameters for the normalization procedure

As it was mentioned in the previous chapter, one of the final steps of the Oslo method implies
extraction of the nuclear level density and γRSF parameters, partially constrained with the dif-
ferent model approaches, partially extracted in neutron resonance experiments. Unfortunately,
the experimental values of the level spacing parameter, required to define the level density at
the neutron separation energy (see Eqiation 5.33), is not available for even-even Sn isotopes,
heavier than 120Sn. Therefore, an additional extrapolation towards 124Sn should be performed.

Figire 6.1 shows the systematics for the level density at the neutron separation energy
for even-even Sn isotopes with A = 114, 116, 118 and 120 and even-odd Sn isotopes with
A = 113, 115, ..., 125. Fortunately, there is sufficient information on experimental level spac-
ing parameters D0 to reveal two trends for even-even and odd-even isotopes separately. The
level densities ρ(Sn) were calculated with the experimental values of D0 and spin-cutoff pa-
rameters, defined in the rigid body (marked as RMI for short, Equation 5.35) and Gilbert and
Cameron (G&C, Equation 5.36) approaches. As it was mentioned in Section 5.4, the former
approach would correspond to the upper limit of both the spin-cutoff and level density at the
neutron separation energy. In contrary, the latter would yield the corresponding lower limits.
The experimental values of D0 were taken from the updated version of the atlas of neutron
resonances [151] (data points for ρ(Sn), denoted by Mughabghab) as well as the RIPL-3 library
[91] (RIPL-3 black data points). It was found that the values coincide in majority of cases, but
the latter library is less complete. Therefore, it was decided to focus on the level densities, ob-
tained with the D0 values from Mughabghab library. Alongside these semi-experimental values,
purely theoretical predictions in the framework of the BSFG model are presented in Figure 6.1.

77
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Figure 6.1: a) Experimental systematics for the level density at the neutron separation energy
Sn for even-odd and even-even Sn isotopes, plotted together with the theoretical predictions
with the rigid body approach. b) The same systematics, based on the Gilbert and Cameron
approach. The values theoretically predicted with the BSFG model are denoted as ”Robin”
values. The level densities, obtained with the experimental values of level spacing parameters
D0a and corresponding theoretically predicted spin-cutoff parameters are denoted by d2rho.

Table 6.1: The parameters fixed for all further calculations: the level density parameter a
and the energy back-shift E1 are taken from the interpolations in [81], temperature parameter
is estimated with the corresponding T formulas in [81] and [82].

Model a (MeV−1) E1 (MeV) T (MeV)

RMI 12.922 1.031 0.799
G&C 12.922 1.031 0.759

These values were obtained with the ROBIN code in the Oslo method software and marked as
“Robin”[134]. In overall, they are able to reproduce similar trends, but deviate significantly in
the absolute value, especially in the Gilbert and Cameron approach. The estimate of the level
density in 124Sn could be performed with the linear regression for available even-even Sn isotopes
and subsequent extrapolation towards A = 124. Unfortunately, even though the experimental
errors are small for even-even isotopes, such an extrapolation yields unreasonably large errors
for ρ(Sn) in 124Sn. Attempts to find a scaling parameter for the theoretical Robin values in the
χ2 minimization procedure yielded the errors of the same order of magnitude, as in the previous
approach. Therefore, the linear fit of all available ρ(Sn) values was performed. The trend for
even-odd isotopes is decoupled from that for even-even isotopes. Therefore, the values of bind-
ing energies for 113,115,...,125Sn were corrected for the corresponding ∆n gap parameters [152] to
unite both trends. This procedure allowed to extract the ρ(Sn) for the 124Sn isotope with large,
but more reasonable uncertainties. These uncertainties do not deteriorate the final extracted
level density, since the latter is fitted to both the known levels and the constant temperature
predictions throughout the whole energy range the data are available for. In this sense, the level
density is partially fixed, and if the ρ(Sn) value deviates from the estimated one towards the
upper or the lower limits set by the error bars, the significant deviation from the set temperature
behavior will be observed. The data points, obtained in the interpolation, together with the
interpolation, drawn for the even-even isotope energy range, are marked with light blue stars
and red dashed lines in Figure 6.1.
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Table 6.2: The calculated estimates for the spin-cutoff parameter σ, resonance level spacing
D0 and the level density ρ(Sn) for the RMI, average and G&C approaches. The reduced level
densities are provided for two different spin distribution limits Jmax = 4 and Jmax=5.

Model σ(Sn) D0

(eV)
ρ(Sn)tot · 104

(MeV−1)
η4 ρ(Sn)red4 · 104

(MeV−1)
η5 ρ(Sn)red5 · 104

(MeV−1)

RMI 5.99 65.75 15.16(1114) 0.29 4.46(327) 0.39 5.98(439)
Average 5.36 72.10 12.54(681) – 4.33(233) – 5.70(233)
G&C 4.67 84.25 9.92(784) 0.42 4.19(331) 0.55 5.42(428)

Table 6.1 shows the parameters (level density parameter a, energy back-shift E1, and tem-
perature T , applied for two theoretical frameworks: the RMI and G&C. The first two values
were used to estimate the temperature and the spin-cutoff parameter. Since the RMI presents
the extreme case of a nucleus treated as the rigid body, the G&C yields a significantly smaller
moment of inertia, and it is reasonable to introduce a certain in-between approach to the nuclear
level density. The principal aim of this step was to obtain more moderate values of the level
density, limited by the RMI and G&C approaches, as well as other “averaged”quantities, used in
the Oslo method software. The level density at the separation energy for this averaged approach
was estimated as:

ρavg(Sn) =
1

2
[ρRMI(Sn) + ρG&C(Sn)]. (6.1)

For the estimation of the spin-cutoff parameter for the averaged value, an additional reduction
factor α = 0.8 was introduced to reduce the rigid body moment of inertia to some extent
as compared to the RMI. This moment of inertia corresponds approximately to the averaged
value between the RMI and G&C. The same temperature formula as for the RMI was used to
estimate Tavg= 0,799 MeV. As the level densities at the neutron separation energy and the spin-
cutoff parameters are known for all three approaches, one could also estimate the level spacing
parameter D0 for a neutron capture on unstable 123Sn with It = 5.5, exploiting Equation 5.33.
All parameters used in the present work are presented in Table 6.2. Here, the reduction factors
η were taken into account to obtain the reduced level densities for RMI and G&C for two cases
of maximum spin populated: J = 4 with η4 and J = 5 with η5 (see Equation 5.37 and 5.38).
The reduction of initially different total level densities for RMI and G&C with the corresponding
factors leads to quite close values of ρ(Sn)red. It is important to emphasize, that the average
estimations correspond to the averaged moments of inertia, approximately the averaged spin-
cutoff parameters, and the level densities at the separation energy. The large errors for the RMI
and G&C approaches yield ≈ 50% final errors for the averaged level densities ρ(Sn) for both
spin distribution cuts. This is an appropriate order of error, often used in the analyses of OCL
experiments (see e.g [153]). Estimation of an averaged and two limit level densities allows us to
include an additional systematic uncertainty due to the spread of ρ(Sn) values. This component
of the total error will be discussed in the following section.

The discrete levels and estimated values of the level densities at the neutron separation
energies for all approaches were used to set the absolute values A and slopes α, shared by the
solutions of the χ2 minimization procedure described in Section 5.3. The only unknown left is
the scaling parameter B for the transmission coefficient. According to Equation 5.40, it could be
estimated by dividing the known average total radiative width by the value, determined by the
integrated product of the unscaled transmission coefficient, level density and spin distribution as
well as the resonance spacing D0. For the case of 124Sn, the experimental value of 〈Γγ(Sn, It ±
1/2, πf )〉 (Γγ(Sn) for short) is missing and should be estimated anew from systematics.
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Figure 6.2: The experimental values of the average total radiative widths, [151] and RIPL-3
[91] (not included into analysis. The linear fits of even-even and all isotopes are denoted by
the light blue and red dashed lines. Black and magenta dashed lines correspond to the linear
fits yielding two extreme values of Γγ .

Table 6.3: The interpolated total radiative widths, recommended average, upper and lower
limits are included.

Limit Γγ(Sn) (meV)

Upper 99.54
Average 81.69
Lower 62.11

Figure 6.2 represents the Γγ(Sn) from the neutron resonance capture experiments, taken
from the library [151]. There are a few alternative ways to estimate the corresponding value
for 124Sn. The first method implies a linear regression, involving Γγ(Sn) for even-even isotopes
only. Similarly, a linear regression could be carried out for all Sn isotopes, marked in Figure
6.2. Purely accidental coincidence between the obtained values was observed (Γγ(Sn) = 81.69
meV vs. Γγ(Sn) = 82.17 meV for the linear fit of all Sn isotopes and even-even isotopes
correspondingly). For the present work the interpolated value for the fit of all Sn isotopes
was chosen as the recommended value. It is important to notice, that the Oslo method based
software, used for the analysis, does not include propagation of the error for Γγ(Sn). The
uncertainty of the γRSF due to the spread of Γγ(Sn) values should be included explicitly by
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estimating the upper and lower limits for this value. The clue for estimation of these limits
could be given by the overall trend of Γγ(Sn) for even-even isotopes. The utmost points deviate
from the trend set by the rest three experimental points. Therefore, the largest Γγ(Sn) could be
obtained from the linear fit of the lightest 114,116,118Sn isotopes, as the lower limit is provided
by fitting 116,118,120Sn. The whole procedure yields two almost symmetrical extremes for the
recommended Γγ(Sn) values, reported in Table 6.3.

6.2 The nuclear level density

The parameters, described in the previous section, were exploited to extract the set of nuclear
level densities for all approaches mentioned and two different spin distribution cuts. The effect
of different parameter sets from Table 6.2 is demonstrated by Figure 6.3 a), where three different
level densities are plotted for the RMI, average, and G&C models for the corresponding spin
distribution cut η4. The overall trend is similar to that observed for η5, therefore, only the
lowest cut η4 is shown. The level densities are plotted af the functions of Ex − Eγ , denoted as
the excitation energy Ex from now on for the sake of consistency with the previously published
OCL level densities. The lowest part of the level density is set to fit the known levels in the
energy range, marked by the arrows in Figure 6.3; the upper arrow corresponds to the maximum
energy, for which the level scheme is considered to be complete, Emax = 2.879 MeV [91]. The
high energy part of the level density is set to fit the constant temperature trend of the level
density with the slopes, provided in Table 6.2. The temperature parameter T = 0.8 MeV for
the RMI and averaged model provides a very good fit of experimental data: the experimental
points follow closely the CT slope. The picture is somewhat different for the G&C approach.
The estimated temperature is slightly lower, and, therefore, the slope observed is slightly steeper
that that for, e.g the RMI. This results to imperfections of the corresponding fit at ≈ 4.5 MeV.
The effect of different spin distribution cuts on the average level density is demonstrated in
Figuree 6.3 b). It could be seen that the two cuts η4 and η5 yield slightly diverging solutions,
whereas the trend set by the total level density at the separation energy demonstrates the less
satisfactory fit with the CT line. The effect of the different cuts for the spin distribution will be
discussed in the following Chapter 7.

The most prominent discrepancies between three approaches could be observed for the dis-
crete states (g.s. and the first excited state) and the hight energy tails, approaching ρ(Sn).
In the high energy region, the RMI indeed corresponds to the upper limit of the level density,
whereas the G&C goes somewhat below the average value. This fact could be used to estimate
the thickness of the asymmetric systematic error band. The combined errors for the proposed
average value could be then represented as:

∆ρavg = ρavg

√(
∆ρavg,stat
ρavg

)2

+

(
∆ρavg,syst
ρavg

)2

, (6.2)

where ∆ρavg,stat are the statistical errors, propagating through the unfolding and first gen-
eration procedure together with the extraction of level density via χ2 minimization, described
in great detail in [139]. In principle, the parameters to be varied while estimating different
combinations of level densities are σ, D0, ρ(Sn). All the parameters are tightly related, and one
can not distinguish separate errors due to them. The way the systematic errors were included
in the present work is based on the following equations:

∆ρupperavg = ρavg

√(
∆ρavg,stat
ρavg

)2

+

(
ρRMI − ρavg

ρavg

)2

, (6.3)
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Figure 6.3: a) The calculated level densities obtained with the RMI, average, and G&C
approaches. The interpolated values of ρ(Sn) are plotted together with the CT trends with
the temperatures fixed and presented in Table 6.2. b) The calculated average level densities
obtained for the different spin distribution cuts η4, η5 and for the total level density ρ(Sn).

Figure 6.4: a) The calculated level density for η4 with the total error band due to statistical
and systematic errors. b) The calculated level density for η5 with the total error band due to
statistical and systematic errors.

∆ρloweravg = ρavg

√(
∆ρavg,stat
ρavg

)2

+

(
ρG&C − ρavg

ρavg

)2

. (6.4)
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Therefore, the final resulting level density could be reported in the following form:

ρres(Ex − Eγ) = ρavg(Ex − Eγ)
+∆ρupperavg (Ex−Eγ)

+∆ρloweravg (Ex−Eγ)
. (6.5)

It is interesting to notice, that the RMI level density holds as the upper limit from ≈ 5.5
MeV due to the steeper slope set in this approach. Below this energy the upper limit is defined
by the G&C approach, and this fact is taken into account while calculating the error band.

Figures 6.4 a) and b) represent the average level densities for two spin distribution cuts η4

and η5 with the corresponding accumulated total error bands. The maximum upper limit of
the band (the last high energy data point) reflects ≈ 24% for η4 and ≈ 29% for η5, whereas
the lower limit indicates ≈ 36% and ≈ 34% correspondingly. Indeed, the discrepancy between
the G&C and the average approach is comparatively large, yielding the larger lower error of the
level density. The rest of the range is accompanied by more moderate errors for both cases of
η4 and η5.

6.3 The γ-ray strength function

As the nuclear level density is normalized, it could be used together with other parameters from
Table 6.2 and 6.3 to obtain the correct absolute value of the transmission coefficient T (Eγ),
sharing the same slope as the nuclear level density. For the further analysis, the transmission
coefficient is converted into the γRSF according to:

T (Eγ) = 2πE3
γf(Eγ). (6.6)

Different nuclear level densities at the neutron separation energy were found to have crucial effect
on the slope of the final γRSF, similar to that for the level density. Figure 6.5 a) demonstrates
this effect for the γRSF, calculated with the RMI, G&C, and average approaches for η4. The
RMI again corresponds to the upper limit of the γRSF for the energies Eγ above ≈ 5 MeV. For
the lower energies the trend set by the RMI goes slightly lower than that for the average γRSF
and significantly lower than the G&C strength.

The effect of different slopes due to the different reduced level densities at the neutron
separation energy is shown in Figure 6.5 b): the slopes of the γRSF are obtained with ρ(Sn)red4 ,
ρ(Sn)red5 , and ρ(Sn)tot. Two strengths, based on the reduced level densities, are plotted alongside
the strength function for the level density, expected for all spins populated in (p,p′γ) reaction.
As it will be shown in the next section, both reduced level densities lead to the reasonable
slopes of the γRSF, giving a good agreement with other experimental data. This agreement
is achieved not only within the total error band, but even within the statistical errors only.
The total level density leads to the unrealistically steep slope of the strength, deviating greatly
from experimental slopes of other strengths it is compared with. These facts imply that the
assumption on maximum spin populated in the reaction Jmax = 4− 5 is quite reasonable.

Despite the spread of the γRSF due to different estimated slopes, the largest contribution
to the systematic uncertainty is majorly due to uncertainty in the Γγ estimation, which has
effect on the scaling of the γRSF. Figure 6.6 represents the example of the average γRSF for
η4 with two purely systematic error bands: a) shows the band due to uncertainty of ρ(Sn), b)
corresponds to the band due to the Γγ . The latter is more symmetric, as it would be expected
from the symmetric Γγ limits (see Table 6.3). Here again the average estimate for the γRSF is
chosen to be the reference strength function. The total error of the average strength function is
estimated in the similar manner as for the level density as:
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∆favg = favg

√(
∆favg,stat
favg

)2

+

(
∆favg,syst
favg

)2

, (6.7)

with the statistical error accumulated throughout the whole Oslo method analysis and the
systematic error is now determined as the following combination:

∆fupperavg = favg

√(
∆favg,stat
favg

)2

+

(
fRMI − favg

favg

)2

+

(
fupper − favg

favg

)2

, (6.8)

∆f loweravg = favg

√(
∆favg,stat
favg

)2

+

(
fG&C − favg

favg

)2

+

(
flower − favg

favg

)2

, (6.9)

here fupper indicates the average γRSF scaled with the upper value of Γγ , flower corresponds to
the lower Γγ . The resulting γRSF could be then reported with the total upper and lower errors
as:

fres(Eγ) = favg(Eγ)
+∆fupperavg (Eγ)

+∆f loweravg (Eγ)
. (6.10)

Since the steep slope of the level density affects directly the slope of the γRSF, the RMI
does not provide the upper limit as one approaches the low values of Eγ . The interchanging
character of the RMI and G&C γRSF is taken into account in the error band. Up to this
moment the assumption that the spins populated in the reaction do not exceed Jmax = 4 and
Jmax = 5 results in two separated solutions for the γRSF with slightly deviating slopes. Both
of them are presented together with the corresponding error bands in Figure 6.7. In order to

Figure 6.5: a) The calculated γRSF obtained with the RMI, average, and G&C approaches,
Γγ recommended is fixed. b) The calculated average γRSF with the fixed recommended Γγ ,
three different spin distribution cuts are plotted.
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Figure 6.6: a) The extracted γRSF for η4 with the systematic error band due to ρ(Sn) un-
certainty. b) The extracted γRSF for η4 with the systematic error band due to Γγ uncertainty.

Figure 6.7: a) The final γRSF for η4 with the total error band due to statistical and systematic
errors. b) The final γRSF for η5 with the total error band due to statistical and systematic
errors.

give a preference to one of the solutions, both functions should be compared with the available
experimental data in the same or adjacent region. This and other arguments for one of the
functions will be discussed in the following sections.
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6.4 The PDR and other resonances in 124Sn

The γRSF extracted is solely a part of the dipole response of a nucleus, and it could provide
valuable information on features of this response only if complemented with the previously
measured experimental data for the same and higher-lying energy range. The dominating part
of the strength for Eγ > 8 MeV will be presented by the IVGDR. Indeed, as it can be seen from
the the series of the strength functions, extracted from the (γ,n) reactions ([154], [155], [156],
[157] in Figures 6.8 and 6.9), the broad IVGDR peak is centered at ≈15 MeV. Fortunately, the
recent results on the Coulomb excitation of 124Sn in the (p,p′) reaction [73], also included in
the analysis, cover the larger range from 6 MeV up to highest energies, including the IVGDR.
These data overlap partially with the γRSF in the present work, and together with the (γ,n)
data from H. Utsunomiya [154] the smooth transition between the PDR and the IVGDR could
be observed. The both functions, extracted in the present work, form the very steep left flank of
the total strength. In general, a good agreement with [154] and [73] functions could be observed
within the estimated error bands for both cases of extracted γRSF. For the case with the spin
distribution cut up to Jmax = 4 (Figure 6.8) the γSF sets the slightly lower trend, than the
one set by [73]. The opposite picture could be observed for Jmax = 5 (Figure 6.9): the γRSF
is slightly higher than the data from the RCNP (p,p′) experiment. But in both cases all data
points compared are located well within the error band. The only exception is the peak-like
structure at ≈ 6.5 MeV, which is best reproduced by the γRSF with η5.

In order to obtain the relevant parametrization of the the PDR in 124Sn one has to perform
an accurate global fit of the nuclear response in the available energy range, where the response is
expected to be dipole. The most prominent component of the strength function is the IVGDR,
providing the baseline for the lower-lying PDR and spin-flip M1 resonances, added on top of it.
The total γRSF could be represented as following:

ftot = fIV GDR + fPDR 1 + fPDR 2 + fSF + fup. (6.11)

Here an additional component fup is added to account for the flattening of the γRSF in the
low-energy range below Eγ ≈ 4 MeV.

Since for the semi-magic 124Sn no double-humped structure of the IVGDR is expected [158],
a single-peak function could be sufficient for its description. As it was shown for the lighter
Sn isotopes in the OCL experiments (see [21]), the Standard Lorentzian model (SLO) allows to
reproduce the IVGDR, but demonstrates a notably unsatisfying behavior of the strength below
neutron separation energy. Similar picture was observed for 124Sn, therefore, the Generalized
Lorentzian function was chosen to approximate the IVGDR [99]:

fIV GDR = fGLOE1 =
σE1ΓE1

3π2~2c2

(
EγΓKMF (Eγ , Tf )

(E2
γ − E2

E1)2 + E2
γΓKMF (Eγ , Tf )2

+ 0.7
ΓKMF (Eγ = 0, Tf )

E3
E1

)
,

(6.12)

where EE1 = EIV GDR is the resonance centroid (MeV), σE1 = σIV GDR defines the peak
cross-section (mb), and the temperature dependent width ΓKMF (Eγ , Tf ) is defined according
to [98]:

ΓKMF (Eγ , Tf ) =
ΓE1

E2
E1

(E2
γ + 4π2T 2

f ). (6.13)

From now on ΓE1 is denoted as ΓIV GDR. The resonance centroid, peak cross-section and width
were treated as free parameters during the fitting procedure. The temperature parameter Tf
was observed to have a strong effect on the total fit (and IVGDR particularly) and its ability to
reproduce the low-energy part of the strength. As the γRSF flattens rather than decreases as it
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approaches Eγ , the temperature has to be large enough to reproduce it. On the other hand,the
relatively high temperatures from Table 6.1, while held constant, induce unrealistic overshooting
of the strength at Eγ < 6 MeV. Therefore, the temperature was treated as a free parameter for
the following fitting procedures as well.

For the parametrization of the spin-flip M1 resonance the M1 component of the γRSF
from the same (p,p′) experiment was chosen [73] . The M1 strength distribution demonstrates
two clearly separated peaks (see e.g Figure 6.8), and the separate fit of this strength with the
composition of two SLO functions was carried out:

fSLOSF (Eγ) =
1

3π2~2c2

σSFΓ2
SFEγ

(E2
γ − E2

SF )2 + E2
γΓ2

SF

. (6.14)

The total M1 strength could be then represented as fM1 =
(
fSLOM1

)
1

+
(
fSLOM1

)
2

with the cor-
responding parameters attributed to the first and the second peaks. All fit parameters are
collected in Table 6.4.

As it can be seen from Figure 6.8, the data points from the RCNP experiment [73] reveal
some clear structure at ≈ 6.5 MeV neighboring a broader peak at ≈8 MeV. Both the γSFs,
extracted in the present work, also contain the similar structure at the same energy of ≈ 6.5
MeV. This feature is less prominent, but it was found, that the better approximation could be
obtained if two pygmy structures are included in the total fit. There are several alternative
approaches on how the PDR could be fitted. Numerous works suggest the SLO model (see e.g
[111]), but in the present case the SLO fails completely in simultaneous reproduction of the
very steep left flank of the function and its low energy tail. The Gaussian function was applied
instead for each PDR:

fGaussPDR (Eγ) = CPDR
1√

2πσPDR
e
− (Eγ−EPDR)2

2σ2
PDR . (6.15)

The same approach was used in the analysis of 116−119,121,122Sn isotopes [21]. Finally, the low-
energy tail of the γRSF was reproduced as:

fup(Eγ) = Cupe
−aupEγ . (6.16)

As all the functions of the nuclear response are defined, the total fit with the fixed M1
strength could be performed. The parameters for the fitted IVGDR and PRD for the cases of
γRSF with the spin distribution cut up to Jmax = 4 and Jmax = 5 could be found in Tables
6.5-6.7. In addition, all the fits are plotted in Figures 6.8 and 6.9 together with the experimental
data points. A few strongly deviating data points with the large error bars in [155] (below 10.5
MeV), [157] (below 10.5 MeV), and [156] (below 8.79 MeV) data sets were excluded in order
to avoid distortion of the fits. Moreover, while being in a very good agreement in vicinity of
the centroid, all (γ,n) data demonstrate divergence from the (p,p′) experimental points while
approaching the neutron separation energy. The minimizing routine was found to be especially
sensitive to this region, and it was decided to choose [154] and [73] to be the reference data in

Table 6.4: Extracted parameters for the M1 spin-flip resonance in 124Sn, [73].

E1
SF (MeV) Γ1

SF

(MeV)
σ1
SF (mb) E2

SF

(MeV)
Γ2
SF

(MeV)
σ2
SF (mb)

6.92(4) 0.33(10) 1.07(32) 9.66(13) 2.05(22) 2.69(23)
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Figure 6.8: Average γRSF for 124Sn with the spin distribution cut Jmax = 4, comparison
with the 124Sn(p,p′) data from [73] and 124Sn(γ,n) data from references [154], [155], [156],
[157]. All fitted structures are marked by solid and dashed lines.

Table 6.5: Parameters for the IVGDR in 124Sn.

Model EIV GDR (MeV) ΓIV GDR (MeV) σIV GDR (mb) T (MeV)

Spin distribution cut up to J=4

Average+GLO 15.54+2
−2 5.75+16

−15 268.87+503
−445 0.33+14

−12

G&C+ GLO 15.54+2
−2 5.78+18

−14 267.80+397
−577 0.29+14

−15

Spin distribution cut up to J=5

Average+GLO 15.53+2
−2 5.67+18

−18 271.47+516
−525 0.41+16

−11

G&C+ GLO 15.53+2
−3 5.66+17

−19 271.81+537
−517 0.42+16

−11

the region between 8.6 MeV (end of the present data) and 10.3 MeV (approximate transition
region between the PDR and IVGDR). The main focus was made on achieving the best fit of
the IVGDR and the PDR energy range. As it could be seen, a good fit was found for both cases
of extracted γRSF, reproducing properly the right and the left flanks of the IVGDR. The steep
slope at ≈5.5 MeV is also well reproduced. The upbend function, described by Equation 6.16,
allowed us to reconstruct the low-energy tail of the strength. If not included, the resulting steeply
decreasing strength function would contradict to the low-energy behavior of the experimental
strength. As it is shown in Figures 6.8 and 6.9, the simple exponential function 6.16 gives a
rather satisfactory fit.

In addition, the similar analysis was carried out for the γRSF corrected with η4 and η5 and
based on the G&C approach. This corresponds exactly to the model applied to the lighter Sn
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Figure 6.9: Average γRSF for 124Sn with the spin distribution cut Jmax = 5, comparison
with the 124Sn(p,p′) data from [73] and 124Sn(γ,n) data from references [154], [155], [156],
[157]. All fitted structures are marked by solid and dashed lines.

Table 6.6: Parameters for the low-lying component of the γRSF.

Model Cup · 10−8

(MeV3)
aup (MeV)

Spin distribution cut up to J=4

Average+GLO 2.6+9
−17 0.1+3

−3

G&C+GLO 3.2+13
−12 0.6+2

−2

Spin distribution cut up to J=5

Average+GLO 3.66+24
−14 1.2+7

−9

G&C+GLO 3.6+20
−22 0.9+3

−6

isotopes [21] and allows a further joint analysis of the previously extracted systematics and the
strength for 124Sn in this work. The calculated strengths are presented in Figures 6.10 and 6.11.
The γRSF for the spin distribution cut up to the higher spin was found to be in an exceptionally
good agreement with the corresponding (p,p′) data throughout the whole range of overlapping.
All the parameters could be found in the same Tables 6.5-6.7.

The estimated IVGDR parameters for the GLO model are in a good agreement for the G&C
and average γRSF. All the deviations in the parameters will be mostly driven by the difference in
the low-energy γRSF behavior. However, this difference is negligible within the estimated errors.
Similar could be observed for the centroids of both PDRs: these centroids change negligibly as
one compares all the models used. This holds true especially for the larger component of the
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Figure 6.10: The G&C γRSF for 124Sn with the spin distribution cut Jmax = 4, comparison
with the 124Sn(p,p′) data from [73] and 124Sn(γ,n) data from references [154], [155], [156],
[157]. All fitted structures are marked by solid and dashed lines.

PDR. Despite the fact that the lighter resonance component is shifted slightly towards higher
energies, the corresponding centroids coincide for all models, as the error bars are considered.
On the other hand, the resonance absolute value normalization constants C and widths σ change
more notably as one compares the γRSF with two different spin distribution cuts η4 and η5.
The general trend for all modes is the increase of amplitudes for the smaller and the larger
components, as the spins J = 5 are assumed to be populated. This is accompanied by the
smaller resonance becoming wider and the larger resonance becoming narrower: the strength
is redistributed between both resonances. These changes inevitably affect the total integrated
strength for the PDR, estimated as:

SPDR [mb·MeV] = 3π2~2c2 [mb·MeV2]

∫ ∞
0

dEγ [MeV] Eγ [MeV]C[MeV−2]
1√

2πσ[MeV]
e−

(Eγ−E)2

2σ2 .

(6.17)
These strengths could be compared with the classic electric dipole TRK sum rule:

SE1 = 60
NZ

A
[mb ·MeV] = 1790.32 [mb ·MeV]. (6.18)

All the strengths mentioned are listed in Table 6.7. In addition to the total strengths, the
corresponding fractions of the TRK sum rule were estimated. The errors included in all tables
up to this moment were calculated for each parameter a as:

∆aupper = a

√
∆a2

fit +

(
aρupper − a

a

)2

+

(
aΓ
upper − a

a

)2

, (6.19)
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Figure 6.11: The G&C γRSF for 124Sn with the spin distribution cut Jmax = 5, comparison
with the 124Sn(p,p′) data from [73] and 124Sn(γ,n) data from references [154], [155], [156],
[157]. All fitted structures are marked by solid and dashed lines.

Table 6.7: Parameters for two components of the PDR in 124Sn.

Model EPDR 1

(MeV)
σPDR 1

(MeV)
CPDR 1 ·

10−7

(MeV−2)

EPDR 2

(MeV)
σPDR 2

(MeV)
CPDR 2 ·

10−7

(MeV−2)

Spin distribution cut up to J=4

Average+GLO 6.47+7
−5 0.45+5

−7 0.83+18
−20 8.17+12

−6 0.87+15
−13 2.71+37

−38

G&C+GLO 6.44+8
−3 0.42+8

−3 0.60+25
−11 8.19+11

−9 1.00+8
−10 2.47+21

−20

Spin distribution cut up to J=5

Average+GLO 6.56+5
−8 0.52+4

−5 1.43+26
−36 8.19+5

−5 0.67+12
−8 2.67+25

−27

G&C+GLO 6.52+7
−5 0.49+6

−3 1.16+24
−19 8.17+6

−6 0.73+11
−11 2.58+32

−24

∆alower = a

√
∆a2

fit +

(
aρlower − a

a

)2

+

(
aΓ
lower − a

a

)2

, (6.20)

here ∆afit is the fit-based error, other contributions are stemming from variations of this pa-
rameter due to variation of the level density ρ(Sn) (arho) and Γγ (aΓ).

All the variations in the models or the spin distribution cuts were found to affect the fraction
of the TRK sum rule. The G&C+GLO for the γRSF with η4 yields the lowest fraction of ≈ 1.5%.
This could be expected from the model with the lowest-lying strength. The corresponding



92 Experimental results Chapter 6

Table 6.8: Total intergated strength and the TRK sum fraction for the pygmy dipole strength
in 124Sn.

Model Total integrated
strength

(MeV·mb)

TRK fraction
(%)

Spin distribution cut up to J=4

Average+GLO 32+2
−6 1.8+1

−3

G&C+GLO 28+5
−1 1.5+3

−1

Spin distribution cut up to J=4

Average+GLO 36+2
−4 2.0+1

−2

G&C+GLO 33+4
−2 1.8+2

−1

fractions increase up to ≈ 1.8% as Jmax = 5 is assumed. Finally, the largest fraction is observed
for the averaged γRSFs with η5 with the GLO parametrization of the IVGDR. It is important to
notice that all variations of the γRSF due to the input parameters result in comparatively large
errors for the TRK sum rule fractions, so that a realistic value could be well confined within the
estimated limits.



Chapter 7
Discussion

The following chapter aims at collecting and revising all principal results obtained in the present
work. Particularly, a specific focus will be made on the comparison of the final γ-ray strength
functions, corresponding to three alternative normalizations, with the previously extracted γ-ray
strength functions for the lighter Sn isotopes as well as the strength, obtained in the Coulomb
excitation experiment (p,p′) on 124Sn. Similar comparison will be presented for the nuclear level
densities. An essential part of the analysis involves the test of the Brink-Axel hypothesis for
several chosen excitation energy ranges. Finally, the extracted characteristics of the PDR in
124Sn will be put into more general systematics, and all trends observed will be discussed from
the perspective of the PDR evolution with the increasing number of neutrons.

7.1 Analysis of the nuclear level densities and γ-ray strength
functions

The results of the Oslo method should be carefully constrained with external experimental val-
ues, such as the level density at the neutron separation energy, discrete low-lying levels, average
radiative width. In some particular cases, as in the present case of 124Sn, these values should be
extracted from systematics. In both cases, the quality of the resulting fits and normalizations is
directly related to the values used. Some particular effects of different input parameters as well
as a certain trend with the increasing number of neutrons could be traced in a comparison of
the level densities and γRSF for different isotopes. In case of the studied 124Sn, the consistent
comparison could be provided by the preceding OCL experiments on 116−119,121,122Sn, mentioned
in Section 2.4. Despite that the experiments were performed at the same Oslo Cyclotron Lab-
oratory and the resulting primary matrices were obtained with the same Oslo method, several
instrumentational improvements have been performed before 2019. The CACTUS array with
28 collimated NaI:Tl detectors was exploited for the photon detection. The experiments on the
lightest 117,119Sn isotopes were also performed with the simplest Si telescope, comprising of 8
E −∆E telescopes, grouped in a similar way as the E pads in SiRi. However, no segmentation
of the ∆E detectors was implemented, leading to comparatively worse energy resolution of the
system. In addition, the approaches to the normalization of the resulting strengths and level
densities vary from experiment to experiment.

The first experiments on 116,117Sn were performed with the 38 MeV beam of 3He, and the
corresponding γRSF and level densities were extracted from the (3He,αγ) and (3He,3Heγ) corre-
spondingly [65]. The G&C approach was applied for the estimation of the spin-cutoff parameters,
whilst the BSFG model was adopted for the interpolation between the experimental data and
ρ(Sn). In contrast to the present work, the level density parameter a and the energy back-shift
E1 were adopted from the older version of systematics from T. von Egidy et al. [159]. Moreover,

93
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the level spacings for s- and p-wave resonances D0 and D1 were extracted from the earlier version
of the neutron resonance data compilation [160]. The important detail of this experiments is the
additional study of the spin distribution, carried out for both reactions with an additional Ge
detector. The spins up to J ≈ 6 were populated. Similar approach and experimental conditions
were reported for the analysis of 118,119Sn in [67]. Finally, the latest experiments were performed
with the updated particle telescope SiRi with the same beam parameters and the same approach
to the parametrization of the BSFG, interpolating the experimental data and ρ(Sn) [67].

The nuclear level densities for 116−119,121,122Sn and 124Sn, extracted in the present work, are
shown in Figure 7.1. Since the G&C approach was applied in the normalization procedure in
[21, 65, 67], the total level density corresponding to the same model approach was chosen for
the comparison. The choice of the level density at the neutron separation energy yields the
overall behavior of the level density close to that for even-even isotopes 116,118,122Sn. The trends
demonstrated by these isotopes are in a particularly good agreement for energies above ≈ 3
MeV. Comparison with the even-odd Sn isotopes demonstrates a clear odd-even effect: the level
densities of even-odd Sn isotopes are shifted up as compared to the even-even isotopes, as it is
expected. The improved energy resolution for both the particle and photon detecting system
results in observation of two distinct peaks at Ex = 0 MeV and E = 1.131 MeV, denoting the
ground and the first excited states in 124Sn. Somewhat similar could be also observed for 122Sn,
but not the lighter isotopes, where the level densities were extracted with the strongly smeared
peaks at relatively low energies. As it was reported in [65] and [21, 67], step-like structures
superimposed on the general level density trends were observed for all isotopes in the energy
range from ≈ 2 MeV up to the neutron separation energies.

The clearest step-like behavior was reported for 119Sn. The level density, extracted in the
present work, was also found to demonstrate several steps above ≈2 MeV. It is interesting to
notice, that the bump at ≈ 2.6 MeV is quite close to the bump at ≈ 2.2−2.6 MeV, observed for
117,119Sn and all even-even Sn isotopes. This corresponds directly to the doubled neutron gap

Figure 7.1: a) The level density for 124Sn extracted with the G&C approach; comparison with
the even-even Sn isotopes 116,118,122Sn, reported in [21, 65, 67]. b) The extracted level density
for 124Sn, G&C approach; comparison with the even-odd Sn isotopes 117,119,121Sn, reported in
[21, 65, 67].
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Figure 7.2: a) The extracted γRSF for 124Sn, the G&C approach and the spin distribution
cut up to J = 5 were used; comparison with the even-even Sn isotopes 116,118,122Sn, reported
in [21, 65, 67]. b) The extracted γRSF for 124Sn, G&C approach and the spin distribution cut
up to J = 5; comparison with the even-odd Sn isotopes 117,119,121Sn, reported in [21, 65, 67].

energy 2∆n ≈ 2.6 MeV for 124Sn. Similar structures were earlier explained by the consecutive
breaking of neutron Cooper pairs [161]. Every broken pair is followed by a slight increase of
the level density, as it could be seen from Figure 7.1. The bump at ≈ 5 MeV could be then
attributed to the second neutron pair breaking.

Similar comparison could be performed for the γRSF for the studied isotope 124Sn and
116−119,121,122Sn (see Figure 7.2). Several new features could be distinguished in 124Sn as com-
pared to the lighter isotopes: the presence of a certain enhancement at ≈ 6 MeV and the flatten-
ing of the strength below ≈ 4 MeV. The γRSFs for the lighter isotopes do not demonstrate any
prominent features; the 118Sn data are suffering from scarce statistics so that it becomes impos-
sible to judge on presence of any structures. This might be explained by the comparatively low
energy resolution of both detecting systems - the CACTUS scintallator array (before 2018) and
the Si particle telescope without segmentation into separate strips (before 2011). The improved
resolution enables observation of separate structures of the strength, such as and additional
enhancement at ≈ 6.5 MeV. A similar feature was observed in the data from the (p,p′) Coulomb
excitation experiment at the RCNP [73] for all even-even isotopes 112,114,116,118,120,124Sn. The
low-lying tail of the γRSF for 124Sn differs significantly from those in the lighter isotopes. The
largest difference is observed for the neighboring isotopes 121,122Sn and 124Sn. In contrast to the
trends, set by these isotopes, the γRSF for 124Sn does not approach zero value for Eγ → 0 MeV
and could be rather observed reaching a flat plateau. Similar low-energy behavior, or upbend,
has been observed in other OCL experiments as well. R. Schwengner et al. [162] performed the
microscopic calculations, pointing at the M1 nature of this feature. Strong M1 transitions (and
correspondingly large transition matrix elements) were predicted for 90Zr and 94−96Mo for the
transitions between the initial and final configurations with spins Ji and Jf = Ji ± 1, formed
by recoupling of spins of protons and neutrons from the decoupled pairs at high-j orbitals. Al-
ternatively, the finite-temperature RPA calculations point at the electric dipole nature of the
underlying transitions [163], while the angular distribution study for 56Fe points at the mixture
of M1 and E1 transitions, forming the low-energy tail of the strength [164]. An additional
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study of the angular distribution of emitted photons might be required to reveal whether the
underlying transitions of M1 or E1 nature in 124Sn.

7.2 Study of the γRSF as a function of excitation energy

The Brink-Axel hypothesis, discussed in Section 3.3, is one of the core assumptions in the
present analysis. The reliability of this hypothesis reflects directly the reliability of the obtained
results, and the study of the γRSF as a function of initial excitation energies, involved in the
observed transitions, and final excitation energies, fed by these transitions, was performed. The
procedure, described in Section 5.5 was applied. For the first case, series of γRSF f(Ei, Eγ) were
extracted for each excitation energy bin Ei with the known level density, corresponding to the
spin distribution cut up to Jmax = 5; these functions are built on the specific initial excitation
energies included in a considered bin with no gating put on the final state. The binning was
chosen to be ∆Ex = 160 keV.

The strength functions extracted for each third bin in the energy range between 5.0-8.5 MeV
are shown in Figure 7.3. In addition, the γRSF averaged over this range is compared to each

Figure 7.3: γRSF for several initial excitation energies for 124Sn, the results are compared
with the average γRSF. Binning with the width of 160 keV is applied to the initial excitation
energies.
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Figure 7.4: a) γRSF feeding the ground state in 124Sn, energy marked corresponds to the
center of the energy bin, including the ground state. b) γRSF feeding the first excited 2+ state
in 124Sn, energy bin, including this state is plotted.

strength for the chosen initial energies. The width of the excitation energy gate coincides with
that used in the standard Oslo method analysis (see Chapter 5), and this averaged strength
would correspond to the average γRSF for the spin distribution cut up to Jmax = 5 if corrected
for the difference in the normalization due to the different normalization procedure. An overall
agreement between all extracted strengths could be observed: for each initial excitation energy
the strength is built on, it appears to be fluctuating with respect to the average strength. This
behavior might be explained by the Porter-Thomas fluctuations due to the specific complexity
of the chosen initial states. Nevertheless, the fluctuations do not exceed the statistical errors in
the majority of cases. The assumption of the γRSF being independent of the initial excitation
energies could be a fairly good assumption for the final extracted γRSFs, reported in the previous
chapter. This result is somewhat similar to the conclusion drawn in the study of the lighter
64,65Ni nuclei [117]. In all discussed cases, the Porter-Thomas fluctuations play a significant role
due to the relatively low densities of accessible states (e. g. as compared to the case of 238Np
[115]). The averaging is performed over a relatively smaller amount of transitions for 64,65Ni and
124Sn, and variations in the individual transition widths are more apparent than for the case of
238Np.

The fluctuations were predicted to increase with Eγ [117], and this might also explain some
exceptionally strong fluctuations for the high energy parts of the strengths in Figure 7.3. On the
other hand, the fluctuations of the γRSF in the present work become stronger as one approaches
the neutron separation energy. The case of 64,65Ni demonstrated the opposite tendency, i.e. a
decrease of the role fluctuations play for the highest initial excitation energies. It does not
explain relatively large fluctuations for the highest excitation energy bins (see Figure 7.3 e) and
f)). The reason for it might be related to the remaining weak aluminum contaminants in the
vicinity of the neutron separation energy in the first generation matrix. They generate especially
strong additional structures in the spectra, used for extraction of γRSFs, denoted by e) and f)
in Figure 7.3. This gives an additional complication for the check of the Brink-Axel hypothesis
for the excitation energy bins close to Sn.
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By analogy with the study of the γRSFs for different initial excitation energies, the γRSFs,
feeding different final states, could be investigated. The first generation matrix, discussed in
Chapter 5, contains well-distinguishable transitions to the ground state and the first excited
state (2+ state at ≈ 1.1 MeV), strongly populated in the deexcitation from above-lying excited
states, which makes them a good subject of the study. The procedure, described in Section 5.5,
was exploited to extract series of the γRSF, feeding different final states, as well as the reference
strength, averaged over the same width of the excitation energy range, as the average γRSF,
stemming from the different initial states. The γRSF feeding the ground state and the first
excited state are shown in Figure 7.4. For the ground state γRSF the fluctuations observed are
significantly stronger, than for the previously discussed cases. Moreover, the strong deviation
from the reference γRSF below Eγ ≈ 5.5 MeV could be observed. Since the final state is
fixed, for each Eγ the initial state could be unambiguously defined as Ei = Ef + Eγ . The least
deviations are observed for Eγ >5 MeV, covering the same range of excitation energies as the one
chosen for the standard Oslo method analysis (Chapter 5), confirming the reasonable choice of
the excitation energy range for the previously discussed strengths. Strong discrepancy between
the ground state and the average strengths might arise from several reasons. Firstly, it might be
driven by the strong Porter-Thomas fluctuations. Indeed, relatively few transitions populating
the ground state are involved in the averaging procedure yielding the reference γRSF (black line
in Figure 7.4). This does not accord with the statistical picture, assumed by the standard Oslo
method procedure. Another factor contributing to the deviation is the large amount of electric
quadrupole γ-transitions below Ex ≈ 3 MeV. The encoded γRSF extraction procedure assumes
all transitions to be of the dipole nature, implying that the E2 transitions will be found shifted
by the factor of E2·2+1

γ /E2·1+1
γ = E2

γ . The additional strong deep in the ground state γRSF at
≈ 8 MeV correlates with the deep in the ground state diagonal in Figure 5.4 b). The suppressed
amount of 1+ and 1− states populated in this energy range and the absence of the corresponding
transitions reflects directly the drop of the γRSF. Similar deep at Eγ ≈ 7 MeV could be observed
for the γRSF for the transitions landing on the first excited state (see Figure 7.4 b). In contrast
to the ground state γRSF, the overall agreement with the average strength function is better due
to the partial reduction of fluctuations below 5 MeV. As compared to the study of the γRSF as
a function of initial energy, the two γRSFs, corresponding to two specified final excited states,
demonstrate larger local deviations from the average strength. Since these deviations could be
explained by numerous reasons, the check of the Brink-Axel hypothesis validity is obscured. For
the higher-lying energy bins above the first excited state the overall agreement with the average
strength becomes more clear as compared to the ground state and the first excited state γRSFs.
The low-energy tails would still contain a considerable fraction of E2 transitions, which question
reliability of the low-energy trends set by the γRSF. However, this problem was avoided in the
final results on the γRSFs from the standard Oslo method by limiting the low part of range for
Eγ by 1.6 MeV (see discussion of the chosen region in Section 5.2).

In addition, the downward γRSF, extracted in the present work, was used to estimate the
B ↓ (E1) strength distribution and compare it with the upward strength B ↑ (E1), obtained
in the RCNP (p,p′) experiment. In order to perform the comparison on the same footing, it
was taken into account that the normalization used for the extraction of the ground state γRSF
requires an adjustment. The ground state strength was, therefore, scaled to correspond to the
RCNP strength at the 6.4 MeV peak (lower-lying pygmy component). In principle, such scaling
includes an additional relation between the strengths, which should be also taken into account
for the transitions between Ei < Ef with spins Ji = 0 and Jf = 1 (see Equation 2.1):

B ↑
B ↓

=
B(i→ f)

B(f → i)
=

2Jf + 1

2Ji + 1
= 3. (7.1)

The comparison of the strengths is shown in Figure 7.5. Both distributions are in a very good
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Figure 7.5: B(E1) strength distribution for 124Sn, extracted in the present work and the
RCNP (p,p′) experiment [73].

agreement for energies up to Eγ = 7 MeV, i.e. all the features observed in the RCNP strength
are well reproduced in the present experiment. However, strong deviations are observed for the
energies above 7 MeV up to the neutron separation energy. The present strength demonstrates
two strong peaks at ≈ 7.2 MeV and 8.2 MeV with the dropping strength in between. I general,
these features correlate with the distribution of counts in the high-energy tail of the ground
state diagonal in the primary matrix, but the origin of these two strong peaks and significant
deviation from the RCNP strength distribution requires an additional and more thorough study.
In contrast to the ground state strength, corresponding to the transitions from the states with
spin and parity J = 1± and the ground state Jg.s. = 0+, the average strength, discussed in
the previous chapter involves the dipole transitions from the states, populated in the reaction,
which would, on average, have the non-zero spins larger than J = 1. Let us assume that the
average spin populated is Jf = 4. The allowed dipole transitions to Ji = 3, 4, 5 could lead to the
crude simplification of Jf = 4→ Ji = 4, implying that the upward and the downward strengths
satisfy an approximate equality B ↑≈ B ↓. Thus, the corresponding γRSFs yield f ↑≈ f ↓.
To a certain extent, this simplification makes the joint analysis of the strengths, discussed in
Chapter 6 possible.

7.3 Evolution of the PDR in 116−119,121,122,124Sn isotopes.

The γRSFs, extracted and discussed in the previous chapter, were combined with the strengths
from the (γ,n) and (p,p′) experiments in order to complete the response of a nucleus to an
external excitation (by photons and protons). The more complete response allows us to estimate
several bulk parameters, characterizing the PDR in 124Sn, such as the energy centroid, integrated
strength and the fraction it exhausts in the TRK sum. All relevant parameters were provided in
Chapter 6, and Figures 6.8-6.11 show four alternative approaches, stemming from the different
approaches to the normalization procedure. The reliability of the normalization could be verified
by the comparison with other experimental strengths. In case of 124Sn the maximum overlap in
Eγ was provided by the Coulomb excitation (p,p′) experiment from [73]. As it could be inferred
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Figure 7.6: Comparison of the RCNP (p,p′) experiment with the extracted γRSF: a) average
strength for Jmax = 4, b) average strength for Jmax = 5, c) G&C strength for Jmax = 5.

from Figure 6.10, the G&C γRSF with the spin cut up to J = 4 demonstrates unrealistically
low absolute value and deviates dramatically from the another (p,p′) and (γ,n) experiments.
This strength could be safely excluded from the consideration. On the other hand, two average
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γRSF for Jmax = 4, 5 and the G&C γRSF for Jmax = 5 demonstrate fairly good agreement
with the RCNP (p,p′) experiment (see Figure 7.6). Close examination of the primary matrix
reveals several low-Eγ transitions, stemming from the populated excited states with the spin
J = 5. This fact argues for the validity of the γRSF, obtained for the spin distribution cut up
to J = 5. The corresponding average γRSF could be proposed as the recommended value for
the present thesis (Figure 7.6 b)). On the other hand, the G&C strength would be proposed
for the consistent comparison with the extracted PDR parameters in the lighter PDR isotopes.
Another question to be raised is the actual form of the spin distribution, exploited in the present
work. The fact that the γRSF for Jmax = 4 is also in a fairly good agreement with the RCNP
γRSF might also imply that other forms of the spin distribution might be tested in an additional
study. Even though the average γRSF for Jmax = 5 is proposed as the recommended value for
a present stage of the analysis, the γRSF for Jmax = 4 should not be completely disregarded;
all PDR characteristics will be provided for this solution as well.

The estimated fraction of the TRK sum,exhausted by the PDR in 124Sn is shown in Figure
7.7. It is interesting to notice, that the value, extracted for the G&C γRSF, i.e. with the similar
approach as the one applied for the lighter Sn isotopes, indeed confirms the conclusion in Ref.
[21]: both the integrated strength and the TRK sum fraction do not change significantly with
the increasing neutron number N . Both the value for the average strength for Jmax = 4 and
G&C strength for Jmax = 5 for 124Sn isotope proceed the trend, set by the lighter isotopes.
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Figure 7.7: The estimated TRK fraction, exhausted by the PDR in 116−119,121,122Sn isotopes
[21], plotted together with the values, estimated on the base of the average γRSF for Jmax = 4, 5
and G&C γRSF for Jmax = 5. Comparison with the theoretical prediction [68] (red line,
normalized to the 116Sn isotope).
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Figure 7.8: a) Energy centroids for the PDR in 116−119,121,122Sn, for the 124Sn the cen-
troid of the higher-lying PDR component is used.b) Energy energy centroids for the PDR in
116−119,121,122Sn, the weighted centroid for two PDR components is used for the 124Sn.

This is in a contradiction with the macroscopic predictions of P. Van Isacker [68] (marked with
the red line in Figure 7.7) and microscopic predictions, mentioned in Section 2.4. However, this
might be well in accordance with the constant trend, predicted by I. Daoutidis for the mass
range A = 120 − 126 (see [21] and references therein). In contrary, the value obtained with
the γRSF, recommended in this work, could be found at ≈ 2% ot the TRK sum rule, which
is by ≈ 0.2% larger, than for the lighter Sn isotopes. Thus, the recommended value sets some
trend towards the increasing TRK sum fraction, exhausted by the PDR. The systematic errors,
however, are too large and the separate variations in the strength from isotope to isotope are
to small to draw any solid conclusions on the increase of the strength of the PDR with the
neutron number N . It is also important to mention, that the correct identification of the spin-
flip M1 resonance, included in the total fit of the strength, might affect the PDR strength. The
present work exploits the most resent data on this excitation mode from the RCNP experiment,
in contrast to the previous studies, involving the M1 parameters, based on the systematics
for the neighboring nuclei. In some cases, these systematics might underestimate the strength,
attributed to the spin-flip mode, thus, overestimating the strength, attributed to the PDR. This
might lead to a more clear trend in the evolution of the integrated strength for the PDR and
the TRK sum rule fraction exhausted.

As compared to the 116,124Sn(γ, γ′) experiment, reported in [43], the TRK sum fraction for
the PDR was estimated to be ≈ 0.4− 0.6% [21], which is considerably lower, that the proposed
estimate for the 124Sn isotope. This discrepancy might be due to the presence of unresolved
strength in the (γ, γ′) experiment, which was excluded from the calculation. This strength
might contribute to the significant increase of the estimated fraction, making it comparable with
the corresponding value for 124Sn. Another estimate for the TRK sum fraction for 124Sn was
proposed on the base of the strength,extracted in the (α, α′γ) experiment [72]. The percentage
isoscalar EWSR was estimated to be ≈ 1.5(2)%, which is comparable with the recommended
value in the present work. However, the latter did not involve separation into the isoscalar
and isovector components of the total observed strength, and it would be more reasonable to
compare it with ≈ 2.2(3)%, extracted from the total measured strength in the discrete peaks.
This value does not include the unresolved strength, but is in a very good agreement within the
errors with the recommended value in the present work.

Another bulk property to be examined is the energy centroid of the observed PDR. Since
the γRSFs were fitted with the two Gaussian functions, this could be either associated with the
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centroid if the largest higher-lying component (see Figure 7.8 a)) or the centroid, weighted as:

EC =
EPDR 1SPDR 1 + EPDR 2SPDR 2

SPDR 1 + SPDR 2
, (7.2)

where S denotes the integrated strength for each component. This value is shown in Figure 7.8
b) together with the energy centroids of the lighter isotopes. In both cases, the considerable
shift towards low energies is observed for 124Sn. This deviates strongly from the trend towards
higher energies, set by the lighter Sn isotopes in the previous works, contradicting to, e.g the
RHB + RQRPA predictions in [10]. In this case again the revision of the M1 resonances might
also affect the positions of the PDR significantly. Nevertheless, the absolute value of the centroid
for the largest PDR component is in a relatively good agreement with the ≈ 8.4 MeV, predicted
in [10].

As it was shown in this work, the final parameters, describing the PDR are quite sensitive
to the detals of the noralization procedure of the γRSF. The preliminary reevaluation of the in-
tegrated strengths and centroids for the PDR with the RCNP data chosen for the description of
the IVGDR and M1 component of the dipole nuclear response for several lighter Sn isotopes in-
dicated that the centroids of the resonances would change insignificantly, whereas the integrated
strengths might drop or increase significantly for some cases (e.g. in 116Sn). It implies that the
deviations from the almost constant TRK sum rule fraction might be expected. However, for
the present stage of the analysis, the G&C γRSF confirms the constant trend of the TRK sum
fraction, observed for the lighter Sn isotopes, and points to the deviation from the further shift
of the pygmy dipole strength towards higher γ-energies.





Chapter 8
Summary and outlook

8.1 Summary

This thesis was majorly motivated by numerous theoretical predictions and questions on how the
PDR evolves with neutron number for nuclei approaching the edge of the valley of stability and
the need for a systematic experimental approach to these questions. The work is devoted to the
experimental study of the PDR in 124Sn using the (p,p′γ) reaction. The γ-ray strength function
and the level density were extracted from the p-γ coincidence data by means of the Oslo method,
and constrained with parameters estimated from systematics on neutron-resonance experiments
for the neighboring Sn isotopes. The uncertainties of these parameters were used to estimate the
systematic uncertainties of the γRSF and level density. They were subsequently combined with
the errors propagated in the Oslo method to estimate the total uncertainties for both extracted
quantities.

The level density in 124Sn revealed several clear peaks corresponding to the low-lying discrete
levels and several step-like structures in the quasi-continuum region which might be attributed
to breaking of neutron pairs. In overall, the level density demonstrates an exponential increase
with excitation energy and could be well described by the constant temperature approach.
Three different normalizations were tested for the γRSF. The average strength, lying within
the limits set by the rigid body approach and the approach proposed by Gilbert and Cameron
[82], was chosen to represent one of the normalization cases. The range of the spins populated
in the reaction was found to be limited. Therefore, two probable maximum spins Jmax = 4
and Jmax = 5 were assumed, and the γRSFs were corrected for the spin distribution cut up to
these spins. This correction yielded two slightly deviating strength functions considered in this
work. The third γRSF was obtained with the approach of Gilbert and Cameron for Jmax = 5.
All three γRSFs were found to flatten strongly in the low γ-energy range below ≈ 4 MeV. At
≈ 6.5 MeV, a peak-like structure was observed. Within the estimated uncertainties, all three
strengths, especially the strength based on the Gilbert and Cameron approach, are in good
agreement with the external (p,p′) and (γ,n) experimental data.

The integrated strength, the TRK sum fraction, and energy centroid were estimated by fitting
the extracted strengths together with the external data covering the range of the IVGDR. The
strength with the spin distribution cut up to Jmax = 5 was found to yield the strongest PDR
among the Sn nuclei studied at the Oslo Cyclotron Laboratory (2% of the TRK sum rule),
indicating an increase of the integrated strength with neutron number. However, the strength
obtained with the Gilbert and Cameron approach does not demonstrate an enhanced PDR as
compared to the lighter Sn isotopes: the TRK sum fraction exhausted by the PDR remains
almost unchanged as one moves from the lightest studied 116Sn to the heaviest 124Sn. Such a
behavior deviates from the one predicted by several macroscopic and microscopic approaches.
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In all studied cases for 124Sn, the PDR was found to be shifted towards lower γ-energies as
compared to other Sn isotopes, which is opposite to an overall shift of the PDR towards higher
γ-energies with the increasing neutron number as shown for 116−119,121,122Sn.

An additional study was carried out to test the applicability of the generalized Brink-Axel
hypothesis for the case of 124Sn. The γ-ray strength was shown to fluctuate with respect to the
average value as different initial excitation states were considered, confirming an approximate
independence of the strength from the initial excitation energy. The γ-ray strength feeding the
ground state and the first excited state demonstrate more significant deviations from the average
strength. Since there are several physical reasons for these deviations to occur, the Brink-Axel
is not expected to hold in these cases. However, the ground state strength function corrected
for initial and final spins populated is in a very good agreement with the upward strength
distribution from the RCNP experiment [73] in the energy range from Eγ ≈ 6 to 7 MeV.

8.2 Outlook

One of the major concerns remaining in the present work is the uncertainty in the estimate of
the spins populated in the reaction for a given spin distribution. Both the choice of the spin
range and the form of the corresponding spin distribution adopted for the analysis in the present
work might be questioned. These factors might strongly affect the normalization of the obtained
γRSF. Some of these effects were demonstrated in the present work. The solution of this problem
could involve an alternative technique for a model-independent extraction of the γRSF from the
primary matrix. Such a technique was proposed by M. Wiedeking et al. in 2012 [165]. It allows
to relate the intensities of observed dipole transitions and cross-sections for different excited
states to be populated with the γRSF. This method does not involve any assumptions on the
spin distribution, does not require the preceding extraction of the level density, and results in a
direct extraction of the slope for the γRSF.

An additional study to be performed involves reevaluation of the normalizations for the
γRSF in the lighter Sn isotopes as well as the fit parameters of the PDR. As discussed in
Chapter 6, a correctly constrained fit for the PDR requires knowledge on both the strength
in the IVGDR energy range and the distribution of the M1 strength in the energy region
of the PDR. The present work exploits the E1 and M1 strengths obtained recently in the
(p,p′) RCNP experiment, whereas the analyses on the lighter Sn isotopes included the M1
strength constrained by systematics. In cases of some nuclei this M1 strength might be under-
or overestimated, and the resulting integrated PDR strength would be over- or underestimated.
A preliminary analysis for 116Sn demonstrated that the resulting TRK sum fraction might
increase by several tenths of percent if the RCNP data are used in the fit.

Finally, the γRSF and nuclear level density presented in this work might be subsequently
used for estimating the radiative neutron capture cross-section in the 123Sn(n,γ)124Sn reaction
with the nuclear reaction simulation code TALYS. An impact of the PDR on this cross-section
could be studied directly in comparison with theoretical predictions disregarding the PDR as
an additional component of the electric dipole response of 124Sn. The cross-section constrained
with the experimental nuclear input could be subsequently implemented in s-process reaction
network calculations for estimating abundances of elements produced in this process. Despite
that the impact of the PDR on the neutron capture cross-section for the branching point nucleus
123Sn might be relatively small, it could still affect the abundances of elements produced in the
s-process in this mass region.



Appendix A

Figure A.1: The level scheme of 28Si including all γ-transitions used for LaBr3:Ce calibration,
[90].
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