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Abstract

For decades, the improvement of cancer research has relied on in vivo represen-
tations for analyzing cancer development and treatment. Particularly, one of
the main reasons why zebrafishes are suitable for studying a wide variety of can-
cer types is the dynamic visualization of tumor growth in vivo. We can observe
tumor cells spreading locally into nearby healthy tissues, or globally through
lymph and blood vessels. In the blood vessels, abnormally high permeability
of the vessel walls can result in blood eruptions, consequently causing leakage
of tumor cells into the surrounding tissue. In this thesis, we aim to model
this phenomenon by means of partial differential equations. Different governing
equations for flow modeling are proposed for different domains. Flow in the
blood vessel (viscous domain) is modeled by simplified Navier-Stokes equations,
while Darcy’s law is representing the flow in the tissue (porous domain). To-
gether, coupled Darcy-Stokes equations will be used as an approximation of the
flow within and between the two domains. The advantage of this modeling is
the possibility to observe eruptions that emerge at the interface (endothelial
cells) between the domains. The results generated in this thesis illustrate the
evolution of the eruption from various values of permeability in a simplified ge-
ometry. The accuracy of the simulated results have been verified by comparing
them with available experimental data.
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List of Abbreviations and
Notation

Boldface character denotes a vector. Moreover, the following list of abbrevia-
tions and symbols are used.

Abbreviations
FEM Finite Element Method
PDE Partial differential equitation
CO2 Carbon dioxide
cP Centipoise, measurement unit for viscosity
hpf hours post-fertilization
dpf days post-fertilization
Pa · s Pascal-second,measurement unit for dynamic viscosity
Re Reynolds number
MMS Method of Manufactured Solutions
UFL Unified Form Language
VTK Visualization Toolkit
PTV Particle tracking velocimetry

Symbols
u Velocity field
p Pressure
γ Shear rate
τ Shear stress
ρ Density
µ Dynamic viscosity
i Imaginary Number
∆p Pressure gradient
κ Flow consistency index
A Cross section
Q Volumetric flow rate
r Radius
α Womersley number, represented as : α = a

√
nω
ν

ν Kinematic viscosity
ω Angular frequency
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Jβ Bessel functions of the first kind of order β
Yβ Bessel functions of the second kind of order β
Rn Set of the n-tuples of real numbers
Ω The domain of interest, an open subset of Rn
Ωs Stokes part of the domain
Ωd Darcy part of the domain
σ(u, p) Cauchy stress tensor
ε(·) Symmetric strain rate tensor
Γ Interface between Ωs and Ωd
〈·, ·〉 L2-inner product
I Identity matrix
φ Porosity, a measure of the void spaces in a material
ns Unit normal vector exterior to ∂Ωs
nd Unit normal vector exterior to ∂Ωd
τ Unit tangential vector
K Scalar permeability
K Tensor permeability
α Beavers-Joseph-Saffmann coefficient
∀ For all
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Chapter 1

Introduction

Cancer was recognized several thousand years ago, and is now one of the diseases
which cause most deaths. The modern research and methods to study cancer
have expanded since the end of the 19th-century [58]. A tumor manifests when
the cells reproduce more than they should (or at an abnormal rate) without
apparent purpose. Cancer is a particularly threatening type of tumor that has
grown out-of-control (defined in [5]).

Zebrafish (Danio rerio) emerges as a powerful model to study human diseases
and is serving as an alternative platform in cancer research. Zebrafish are used
to study different varieties of tumors in nearly all organs, with features match-
ing human tumors [24]. There are numerous methods to reproduce cancer in
zebrafish, one of the main techniques are genetically manufacturing (reviewed
in [61]). The biological features in zebrafish make it possible to study hu-
man cancer, for example, closed circulations system, visual blood at relatively
low magnification, and the molecular mechanisms underlying vessel formation
[16, 35]. The cancer cells spread locally by moving into nearby healthy tissues.
On the global scale, the lymph and blood vessels are some of the transportation
possibilities for the cancer cells to spread throughout the body [8]. Within the
blood vessels, a single layer of endothelial cells constitutes the blood vessels
walls, which controls the passage for cell-to-cell junction. Vascular permeability
indicates the capacity in the intersections. Healthy tissues sustain vascular per-
meability at a low level, while increased vascular permeability results in plasma
leakage, which will lead to various diseases [33, 45, 50]. If a blood vessel is
transporting cancer cells, they may invade the blood vessel walls and increase
vascular permeability. This can result in vigorous blood flow bursts, named
eruptions, into the surrounding tissues.

Mathematical modeling is often used to simulate natural and medical phenom-
ena. This can improve the understanding of complex processes and lead to
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better engineering techniques. Simultaneous flow in both viscous and porous
flow occurs in various fields. In geomechanics, applications such as groundwater
flow across a soil or oil and gas flow in a permeable reservoir containing cracks.
In biomechanics, the flows appear, for example, in the modeling of the inter-
action of blood flow surrounded by permeable tissues. The flow inside a blood
vessel is represented as a viscous flow, while the covering tissues are represented
as porous media. It is often easier to implement a numerical method for solving
a coupled viscous and porous flow. Then the exact calculation which requires
advanced experiments or images processing. The numerical methods are used
to simulate medical procedures or complicated natural processes, which leads
to an enhanced understanding of the processes and result in better engineering
techniques. Stokes equations and Darcy’s equation are used as the mathemat-
ical representation of the viscous and porous flow. This combination of flow is
referred to as coupled Darcy-Stokes flow, connected with an interface.

In recent years, several methods for solving biomedical problems have been
introduced. The papers by Dal et al. [7], Fullstone et al. [14], Gore et al.
[16], Majno et al. [32], Matsumoto et al. [33] implies that the cause of endothelial
cell contractions is increased permeability, which then supports the emigration
of leukocytes and plasma proteins, or even the spread of diseases. One of the
methods utilized for visualizing the events, is injecting nanoparticles into an
appropriate area, and study the outcome with electron microscopy. In the paper
by Dal et al. [7], a more sophisticated method has been presented for analyzing
important parameters of nanoparticles behavior, especially interactions with
the endothelial cells. However, in [14, 16, 32, 33], a standard injection method
of nanoparticles are introduced. In the images by Resseguier [41, 42, 43, 44],
nanoparticles are used for visualizing an inflammation. These images, together
with the calculations performed by Vollestad [56, 57], will be compared with
the simulations in the thesis.

One of the main approaches found in the literature to solve the coupled Darcy-
Stokes equations is by the Finite Element Method (FEM) in either with the
decoupled or unified strategy. The decoupled method consists of using one dis-
cretization for the Stokes equation and another one for the Darcy equation,
which is connected through additional interface laws [46]. Conversely, a unified
approach consists of solving the problem in the same finite element space. This
method is introduced in the following papers [1, 3, 10, 11, 21]. The technique
presented in this thesis is a steady-state unified strategy. We will consider a
weak formulation (L2-formulation) of the Darcy-Stokes equations, which will
be discretized using the uniformly stable Taylor-hood elements, described in
[11, 21]. We will simulate the eruption that occurs at the interface between the
viscous and porous domains with increased permeability. The Stokes equation
will be used for describing the blood flow in the blood vessel, while the Darcy
equation describes the flow in the surrounding tissue.

This thesis has been organized as follows. In chapter 2, the necessary anatom-
ical and physiological background is provided, and an in-depth explanation of
the medical problem. The mathematical model is presented in chapter 3. In
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chapter 4, the finite element method and the implementation in FEniCS is in-
troduced. The simulations and results are shown in chapter 5. In chapter 6, the
results are summarized and discussed.

The automated software for solving partial differential equations (PDE), FEn-
iCS [60], version 2019.1.0, is used for the numerical experiments. Gmsh [15] has
been used as the finite element mesh generator software.
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Chapter 2

Medical Background

In this chapter, a general description of the circulatory system in mammals and
fish are introduced, and an approach to illustrate the different characteristics
of blood flow. Furthermore, available experimental data provided by Vollestad
[56, 57] and Resseguier [41, 42, 43, 44] are integrated into the thesis.

2.1 The Circulatory System
The circulatory system is a vast network of organs and blood vessels which pro-
vides oxygen and other nutrients to tissues in the body, and removes unneces-
sary waste outputs. In this section, the general understanding of the circulatory
system in mammals and fish are explained individually.

2.1.1 Mammals
The heart is a very complex muscle that pumps the blood into three systems;
the coronary, pulmonary, and systemic circuit (see fig. 2.1.1). Each of these
systems performs an essential function for the circulatory system.

The coronary circulation is located in the heart, where it takes blood directly
from the main artery surrounding the heart. Then it diverges into capillaries,
which supply the heart muscles with oxygen, and the cardiac veins drain the
blood once it has been deoxygenated. The next system in the circulation is the
pulmonary circuit. The pulmonary circulations work only between the heart
and lungs. The deoxygenated blood will travel to the lungs where it will absorb
oxygen and release the carbon dioxide (CO2), eventually bring the oxygenated
blood back to the heart [34]. The systemic circuit utilizes the arteries as trans-
ports system for the blood to the organs and tissues. The arteries will split
into arterioles, before it then divides into more capillaries. The capillaries will
provide oxygen and nutrients to the tissues, while the waste and carbon dioxide
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will be picked up by the venules. At this step, the circulatory system are com-
pleted, and the venues will bring the waste back to the pulmonary system (see
fig. 2.1.1).

Figure 2.1.1: An illustration of the pulmonary and systemic circuits, with a
view of the amount of oxygen and waste. Image from [54].

2.1.2 Zebrafish
The circulatory system in a fish is divided into gill, systemic and coronary
circulation, shown in fig. 2.1.2.

Figure 2.1.2: An illustration of the circulatory system in fish. Image from [[34],
Chapter 20.2].

The heart consists of four parts: sinus venosus, atrium, ventricle, and bulbus
arteriosus. The sinus venosus acts like a storage chamber for the oxygenated
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blood. The sinus venosus contains the pacemaker cells responsible for initiating
the contractions, such that the blood pumps into the atrium. Then the atrium
generates weak contractions such that the blood is pushed into the ventricle.
The ventricle transports the blood directed into the bulbus arteriosus, which is
a small chamber that contains elastic components, but not many muscles. The
atrium and ventricle have different attributes. The atrium will collect the blood
that has returned from the body, while the ventricle will pump the blood to the
gills. The ventricle is responsible for the generating of enough pressure, such
that the blood can travel throughout the entire body. Bulbus arteriosus has few
purposes, where it includes damping the pressure from the ventricle, such that
there is no damage to the thin-walled gills under the circulations. The gills are
the primary respiratory organs of fish. The gill consists of branched tissues richly
supplied with blood vessels, especially near the gill surface. The gill also assists
the progress of exchanging oxygen and carbon dioxide with the surrounding
water. Then systemic circulation transports the oxygenated blood and provides
oxygen and other nutrients to the cells. It also absorbs carbon dioxide and
waste materials, which is carried to sinus venosus before it is transported into
coronary circulation [19].

Figure 2.1.3: The different systems in a fish heart; bulbus arteriosus, atrium,
ventricle, and sinus venosus. Image from [19].

2.1.3 Similarities Between Mammals and Fish
The general differences between mammals and fish are given as follows:

• The mammals have a double circulation, whereas fishes have a single cir-
culation.

• Mammals have lungs, whereas fishes have gills.

Another difference that we have not focused on is the temperature. The fish
are cold-blooded, and mammals are warm-blooded. The fish’s overall body
temperature dramatically varies due to environmental changes, while mammals
always try to keep the body at the same temperature. The blood flow in our
circulation will always be the same temperature, while the fish will change the
temperature with the environment.
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There is some similarity between the circulation system in fish and mammals,
despite the gills and the lungs are very different when it comes to a physical
standpoint, they still have some of the same functionality. They pull oxygen
from the surrounding air or water and insert it into the bloodstream. Both
circulate the deoxygenated blood to the gills or lungs, where they get dumped.
The functionality of the heart is roughly the same, with the primary goal to
pump blood throughout the entire body.

2.2 Flow in Blood Vessels
Now that we have a general view of how the circulation work, we can start with
implementing some simple mathematical equation to describe the flow in the
blood vessel.

The blood flow goes through three segments: arteries, capillaries, and veins.
Arteries contribute blood to the entire body, losing very little pressure, and the
diameter is almost uniform all over. After contributing the blood, capillaries will
collect all that nutrients and wastes, which are exchanged between the blood and
body tissues. The veins will dispose of the waste. From the introduction (see
chapter 1), we explained that the blood vessels was one of the leading transit
operator for cancer cells. The cancer cells travel through the arteries, and spread
to random locations in the body. The interior surface of a blood vessel is formed
by endothelial cells. Endothelial cells form a barrier that controls the flow of
substances and fluid in and out of a tissue. The structure of a blood vessel is
explained more thoroughly in the paper by Betts et al. [2].

Figure 2.2.4: An illustration of the structure in an artery wall. Image from [17].

2.2.1 A Real Case of an Eruption
In this section, we will analyze the pictures provided by Resseguier [41, 42, 43,
44], where a healthy zebrafish have been injected with nanoparticles, which have
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been used for illustrating tumor carrying particles.

The images that we will study in this section shows us how the cell structure is
inside a zebrafish. The images are taken from the same zebrafish, where they
illustrate different states of inflammation in an arbitrary area. Figures 2.2.7
and 2.2.8 are obtained from an area in proximity to the disease (granuloma).
The cross-section in each image are chosen such that we get a view over three
vessels in each case. Figure 2.2.5 shows cells and vessels of a healthy part of
zebrafish, with a system of tissues/muscles around the vessels. An accurate
description of the parts in the images is that the porous media are represented
with tissues/muscles, while viscous media are represented with the flow in the
vessel. The porous and viscous domain are described thoroughly in chapter 3.
The images below show different steps of an eruption in healthy and infected
zebrafish. Some of the injected nanoparticles will leak with the eruption, and
spread by the junctions. Note that the eruptions also occur on a lesser am-
plitude. The spread of an eruption acts differently for each image, shown in
figs. 2.2.5 to 2.2.8.

Figure 2.2.5: A description of the different parts in a healthy zebrafish. The cell
junctions separate the cells, and the blood vessel are represented with circles.
Image from [41].

Figure 2.2.6: An illustration of the beginning of an eruption. The nanoparticles
have started to burst out from the blood vessels, and the spreading has started
from the left and right blood vessels. We see some signs of a granuloma on the
top right corner. Image from [42].
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Figure 2.2.7: This image illustrates a developt eruption case on a much bigger
scale. The eruption has spread, and numerous cells have been infected. There is
still a visible blood vessel, while the other vessels have dissolved. The granuloma
has taken over most of the cells, especially those located on the top left corner.
Image from [43].

Figure 2.2.8: An illustration of fully dissolved blood vessels. The inflammation
has reached most of the cells. Image from [44].

Figures 2.2.7 and 2.2.8 shows signs of granuloma, which is formed during the
inflammation. Figures 2.2.5 to 2.2.8, provides information on how nanoparticles
spread from a blood vessel into the tissues in an observed experiment. We will
analyze another experiment where eruptions occur, section 2.4.2, which will be
associated with the images shown in this section.

2.2.2 Viscosity
Viscosity is a valuable fluid property for analyzing the fluids behavior and fluid
motion near solid boundaries. Viscosity is referred to as the quantity that de-
scribes a fluid’s resistance. It will decide the energy that is required to make the
fluid move. Liquids that flow very slowly have high viscosity, while liquids with
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low viscosity flow much faster. Viscosity at a molecular level can be described
as an interaction between the different molecules or friction within a fluid.

Blood viscosity is used to measure the thickness and stickiness of an individ-
uals blood. The viscosity is usually expressed in centipoise (cP), which is the
equivalent to 1 millipascal second (mPa s). Measuring the blood viscosity on a
micro-scale level is a challenging task. Thus results from the paper by Lee et al.
[27] will be introduced for the blood viscosity alternatively. In the article, the
blood viscosity is generated with the use of a microfluidic viscometer driven by
surface tension. The result from the paper are shown in fig. 2.2.9. The scalar
viscosity used throughout the thesis is the one closest to the fertilization stage,
thus two days post-fertilization (dpf).

Figure 2.2.9: The development of blood viscosity from 2 dpf to an adult fish.
Image from [27]

2.2.3 Poiseuille’s Equation and Laminar Flow
Laminar flow is a reasonable flow conditions used for approximating the blood
flow through some parts in the circulatory system. A Laminar flow can be de-
scribed as a parabolic flow profile once it is fully developed. We assume large
and straight blood vessels under steady condition, which result in an incom-
pressible Newtonian fluid. The Poiseuille’s equation will be introduced in this
section for the calculation of the pressure difference for a laminar flow in a blood
vessel.

The principles of conservation of mass, momentum, and energy need to be ful-
filled for a blood flow, which states that whatever flows in must flow out. The
conservation of mass and energy states that the total mass and energy in a sys-
tem remain constant. The conservation of momentum states that momentum
cannot be changed without any external force. The flows are drive by the grav-
itation and pressure gradient. It is essential to understand that the pressure
gradient is the cause of blood move, and not the pressure itself. The forces
that defy the flow are shear stresses due to the blood viscosity. The blood cells
that are rolling and translation (tangential force) over the endothelial cells, will
obtain shear stress at the boundary. The speed of the fluid at the endothelial
cells is zero, relative to the boundary. The velocity increases from zero at the
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wall to a maximum, in some height from the boundary (see fig. 2.2.10). Shear
rate describes the rate of the neighboring layers of fluid moving concerning each
other. Furthermore, this leads to a model of the velocity profile and result in the
formulation of the velocity gradient. The pressure change is a valuable physical
quantity that describes which direction and at what rate the pressure increases
The next step is to introduce a method to calculate the pressure gradient. Con-

Figure 2.2.10: An Illustration of the velocity for different shear rates in a cylin-
drical tube. Image from [38].

sidering the blood vessel as a straight, cylindrical tube with a solid wall, then
the shear rate is given as following [38]:

γ = du

dr
(2.1)

Where u represent the fluid velocity, and r is the radius of the cylindrical tube.
The unit used for shear rate is 1

s , where s stands for seconds. The equation
applied for calculating the average shear stress is given by:

τ = F

A

τ denotes the shear stress, F the applied force, and A denotes the cross-section
area of the material, parallel to the applied force vector. The connection between
shear stress and shear rate deepens on the fluid, which is the next step in the
calculation.

The Ostwald de Waele equation [51] is introduced as a type of generalized
Newtonian fluid, where the shear stress is presented as:

τ = κ · γn = κ · (du
dr

)n (2.2)

Where κ is the fluid internal properties, and n is the flow behavior index. Dif-
ferent values of n give different type of fluid:

n < 1 Non-Newtonian (Shear-thinning)
n = 1 Newtonian
n > 1 Non-Newtonian (Shear thickening)

Newton’s viscosity laws are introduced to generate the shear stress for a stream-

11



ing Newtonian fluid:

τ = µ
du

dr

The shear stress, τ is measured in Pascal (presented in eq. (2.1)), the fluid
velocity is denoted as u, dudr is the velocity gradient in the horizontal direction
of the flow (shear rate), and µ is the kinetic viscosity which is measured in
pascal-seconds (Pa · s).

In nature, a flow can be laminar, transitional, or turbulent. Turbulent flow
defines a chaotic change in pressure and velocity, in both space and time. Lam-
inar flow (or streamline flow) is the opposite, which occurs when fluids streams
in parallel layers, with no interruption. This results in particles that flow in
straight lines, parallel to the wall. The transitional flow is a mixture of laminar
and turbulent flows. A way to calculate the fluid type, is to introduce Reynolds
number:

Re = ρvL

µ

Where L is the length of the tube, ρ is the density, v is the velocity, and µ is
the dynamic viscosity of the fluid. Different values of Reynolds number results
in different types of fluid flow:

Re < 2300 Laminar flow
2300 < Re < 4000 Transition flow

Re > 4000 Turbulent flow ( not necessarily)

The connection between pressure, flow, and resistance can be described as hemo-
dynamic. Hemodynamics is based on a fundamental law of physics, namely
Ohm’s law:

I = ∆V
R

Ohm’s law is used to calculate the relationship between voltage differences (∆V ),
current (I), and resistance (R). The Ohm’s law are related to a fluid flow, where
the voltage difference is the pressure difference, the current is the blood flow,
and the resistance can be related to the resistance to flow, which is granted by
the blood vessel and its interaction with the flowing blood [23]. The connections
can be reviewed as following:

Q = ∆p
R

= P − P0

R
(2.3)

P −P0 is the pressure difference at the start to end, Q is the flow rate, and R is
the resistance. Proposing that the electric and fluid resistance is proportional
to the length of the system, and we have a non-slip condition at the wall. Thus
a difference will occur in the electric and fluid. The fluid resistance is given by:

R = 8µL
πr4 (2.4)
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µ denotes the dynamic viscosity, L the length of the pipe, and r is the radius
of the pipe. With some rewriting and insertion of eq. (2.4) into eq. (2.3) we get
the Poiseuille’s equation:

∆p = 8µLQ
πr4 (2.5)

Now that we have calculated the Poiseuille’s equation and accomplished a con-
nection to the flow inside a blood vessel, we can start to calculate the pressure
gradient for the circulatory system in a zebrafish. The viscosity measurements
of a zebrafish, two days post-fertilization are introduced in the article by Chou
et al. [4] (see fig. 2.2.9), where he concludes that the viscosity is µ = 4.96 cP at
27°C. The volumetric flow rate Q can be described by:

Q = v ·A

where v denotes the flow velocity, and A is the cross-sectional vector area/sur-
face, which can be described as πr2.

The flow velocity inside the blood vessel is studied and calculated in the paper by
Vollestad [56], where PTV (particle tracking velocimetry) is introduced to follow
nanoparticles through a zebrafish embryo. PTV is implemented for calculation
of experiments with different sizes of nanoparticles in a zebrafish, with numerical
methods, resulting in an overview of the velocity. In conclusion, the value
v = 300µms , which we will accept as a standard value for velocity inside the
blood vessel in a zebrafish.

The last variables we need to verify before calculating the pressure change, is
the radius of a blood vessel, since this value varies, a mean value will be used.
The diameter of the blood vessels can be measured from the images provided by
Resseguier [41, 42, 43, 44], shown in section 2.2. To get the right scaling, we will
use ImageJ [49]. ImageJ is a software used for image processing and analyzing.
The length of a fish at this stage is around 6 mm (obtained from Resseguier
[41, 42, 43, 44]), and since the blood vessel circulates back to the heart, we will
assume the length of the circulation is around 12 mm.
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Figure 2.2.11: Visulsaiong of different diameter in some healthy blood vessels.
The scaling bar is set to µm.

The next step is to implement the values into the Poiseuille’s equation and
calculate the pressure gradient:

∆p = 8µLQ
πr4 = 8µLvπr2

πr2 = 8µLv
r2

=
8 · 4.96 · 10−3 kg

ms · 0.012m · 300 · 10−6m
s

(15 · 10−6m)2

∆p = 634 kg

ms2 = 634 Pa (2.6)

With the blood vessel diameter set to 15 µm, and the length of the circulation
system in the zebrafish set to 0.012 µm, results in a pressure gradient 634Pa.

2.3 Permeability
Vascular permeability determines the capacity of a blood vessel wall, which
allows for the flow of small molecules or even tumor cells in and out of the vessel.
The blood cell wall (recognized as endothelial cells) have small gaps between the
cells that are strictly regulated depending on the physiological state and type of
the tissue. The endothelial barrier function is increased or decreased based on
several mediators, which control the dynamically endothelial permeability. In
healthy tissues, endothelial cells conserve basal vascular permeability at a low
level, standard. When the infection starts, a messenger, inflammatory mediator,
promotes an inflammatory response, which increases vascular permeability to
induce plasma leakage [16, 33].

The permeability of tumor cell infected blood vessels includes a dynamic phe-
nomenon characterized by vascular bursts followed by the brief, vigorous out-
ward flow of fluid into the interstitial tumor space. The burst of fluid is often
named eruptions, which are used throughout the thesis. The speculation behind
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an eruption of fluid that burst into the interstitial space is the rapid increase of
blood flow and the increase of permeability. A description of the different cases
with increasing permeability is in Figure 2.3.12.

Figure 2.3.12: An illustration of endothelial permeability. The junctions are
tight when it comes to low permeability, but increasing permeability will cause
plasma leakage and, in the worst-case scenario, go over to hyperpermeability,
where the separation between the junctions will lead to chronic inflammation,
asthma, cancer, and other diseases. Image from [45]

2.4 Eruptions in Blood Vessels
In this section, we will look at some eruptions obtained by Vollestad [57]. The
results in the report will have a big role in the thesis. They will be used for
comparison with the numerical simulations accomplished in chapter 5.

2.4.1 Eruption
The vascular endothelial cells in the interior surface of blood vessels, behaves
like a barrier between the viscous and porous domain. The viscous and porous
domains are described in chapter 3. Abnormal vascular walls with leaky cell-
to-cell junctions results in enhanced permeability. This will form temporary
openings and closings between the endothelial cells. Furthermore, in healthy
blood vessels, the endothelial cells receive signals such that entrances are formed
in the vasculature as nutrients and oxygen are transported into the stromal space
(porous domain) [48]. In a tumor infected blood vessel, fake signals will be sent
and lead to leakage of tumor cells in the stromal space. The post-capillary
venules reabsorb most of the fluid that leaks from the blood vessel. While in an
unhealthy zebrafish, a portion of the fluid will filter through and leak into the
tissues. This describes how tumors or other diseases spread in the body. An
increase of fluid will occur when the zebrafish has received tumor cells. Thus
more interstitial fluid will erupt into the healthy tissues. A stationary model of
the development of eruption is described in figs. 2.2.5 to 2.2.8

A better representation of the eruption with nanoparticles can be seen in Vollestad
[57]. The images used for calculations are received from the scanning light-sheet
video by Julien Resseguier (described in [57]). Where nanoparticle burst fol-
lowing the extrusion of a white blood cell from a nano-fish blood vein has been
observed. The images show a blood vessel in a healthy zebrafish that is infected
by cancer cells, before and after an eruption occurs. Figure 2.4.13 and 2.4.14
demonstrate two different cases, where an arbitrary eruption emerges in the
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blood vessel. The goal is to introduce a way to calculate the pressure difference
for an eruption.

Figure 2.4.13: Time development of a laminar burst in a blood vessel. Image
from [57].

Figure 2.4.14: Time development of a radial burst in a blood vessel. Image from
[57]

2.4.2 Laminar Eruption
Figure 2.4.13 illustrates one arbitrary eruptions. Image a) shows a normal blood
vessel, where nanoparticles are shown as white. The tissues are shown as black,
surrounding the blood vessel. When the time surpasses 20 seconds, the eruption
starts to develop, which indicates that the permeability probably has increased,
and the event where contraction between endothelial cells starts to take action,
which we explained in section 2.3. The eruption will expand into the porous
domain gradually. When the time hits around 80 seconds, the eruption starts to
stabilize, and the junction starts to close up [33]. We assume that the eruptions
have leaked out into a cell-to-cell junction between the tissues, which results
in the straight expansion. Those cell-to-cell junctions are visible in the images
shown in section 2.2.1.

Three-dimensional conversion of the first and last time-step of fig. 2.4.13:
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Figure 2.4.15: A 3D conversion of the laminar case. Image from [57]

Considering the eruptions expand out in only y-direction, we can model the
fully developed eruption, in this case, a incompressible, Newtonian fluid with a
laminar flow. This eruption can be represented weakly with a Poiseuille’s flow.
Importing the images into ImageJ, will let us measure the length and diameter
of the eruption shown in fig. 2.4.15. The diameter development through the
eruption is shown in fig. 2.4.16. The length of the eruption is 30 µm, which is
the final length for the eruption.

Figure 2.4.16: Diameter development through the stabilized eruption.

This provides us with the mean diameter equal to 5.4µm, and the mean ve-
locity equal to 0.22µs . The mean velocity is calculated with the same method
performed for the diameter. These estimations are calculated from values ob-
tained from the report by Vollestad [57]. We assume the eruption is tube-shaped
when it is fully developed. Hence the Poiseuille’s equation (eq. (2.5)) can be
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applied to calculate the pressure difference.

∆p = 8µLQ
πr4 = 8µLvπr2

πr2 = 8µLv
r2

=
8 · 4.96 · 10−3 mg

µms · 30µm · 0.22µms
(2.8µm)2

∆p = 0.03340 mg

µms2 = 0.03340 Pa (2.7)

The pressure difference in the eruption is around 0.03340Pa. This value will be
used for comparison with the numerical experiments in chapter 5.

2.4.3 Radial Eruption
Figure 2.4.14 shows another potential eruption development that could occur.
We refer to this as a radial eruption. A few more calculations need to be
taken into consideration before we can calculate the pressure gradient. The 3D
conversion of the first and last timestamp for this case is given by:

Figure 2.4.17: A 3D conversion of the first and last step of a radial eruption.
Image from [57]

Womersley Flow

The goal is to generate a realistic inflow boundary condition which can apply for
the radial eruption, when the pressure gradient is unknown. We assume a flow
with periodic variations, known as pulsatile flow, or as Womersley flow [39]. A
pulsatile flow implies that the pressure gradient varies periodically in time; this
can be used for mimicking a blood flow in the arteries. We simplify the problem
with the following assumption:

• Homogeneous, incompressible and Newtonian fluid.

• Circular and rigid wall tube.

• No gravitation force on the fluid.
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• Axisymmetry at the center and no-slip on the wall, boundary condition.

Those assumptions will give us the simplified Navier-Stokes and continuity equa-
tion:

µ
(∂2w

∂r2 + 1
r

∂w

∂r

)
− ∂p

∂x
= ρ

∂w

∂t
(2.8)

∂w

∂x
= 0

w represents the longitudinal velocity of the fluid at a distance 0 ≤ r ≤ a, a
represents the most distant radius from the center. We assume that the pressure
gradient is periodic in time and of the form:

∂p

∂x
= −Aeinωt

with i =
√
−1, n is a positive integer, t as time. A and ω are positive real

numbers. We can decompose the velocity similarly, with separation of variables:

w(r, t) = u(r)einωt (2.9)

Inserting this into (2.8) gives us the Navier-Stokes equation for each harmonic:(∂2u

∂r2 + 1
r

∂u

∂r

)
einωt + A

ν
einωt = inω

ν
ueinωt

∂2u

∂r2 + 1
r

∂u

∂r
+ A

ν
= inω

ν
u (2.10)

where ν = µ
ρ represents the kinematic viscosity. The boundary conditions are

satisfied, with the axisymetic boundary condition ∂u
∂r |r=0 = 0, results in:

u(r) = A

inω

[
1−

J0
(
r
√

i3nω
ν

)
J0
(
a
√

i3nω
ν

)
]

J0 represents a first-order Bessel function. This will leads to the Womersley
equation with the Womersley number α = a

√
nω
ν :

w(r, t) = A

inω

[
1−

J0
(
βny

)
J0
(
βn
) ] (2.11)

βn = αn
√
i3 and y = r

a . We need to apply some modifications to (2.11) since it
requires that we know the pressure gradient as a function of time. A periodic
function Q can be used as an approximation, with N complex Fourier models
{Qn}, this can only be done if we consider a case where the flow rate Q(t) is a
periodic function of time with period T :

ω = 2π
T

, Q(t) =
N∑
n=0

Qne
inωt (2.12)
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Now we will assume a solution on the form:

v(t, y) =
N∑
n=0

CnQn

(
1−

J0
(
βny

)
J0
(
βn
) )einωt

Cn needs to be chosen such that the flow rate function is reproduced:
∫

Γ vds =
Q(t). Hence we have the identity:

N∑
n=0

(
CnQn2πa2einωt

∫ 1

0
y(1−

(
J0
(
βny

)
J0
(
βn
) )drdθ) = Q(t)

Since we have a complex exponential that are orthogonal in time:

Cn2πa2
∫ 1

0
ydy−Cn2πa2

∫ 1

0
y

(
J0
(
βny

)
J0
(
βn
) )dy = 1

Cnπa
2−Cn2πa2

∫ 1

0
y

(
J0
(
βny

)
J0
(
βn
) )dy = 1

1
Cn

= πa2
(

1− 2
J0
(
βn
) ∫ 1

0
y
(
J0
(
βny

))
dy

)
(2.13)

1
Cn

= πa2
(

1−
2J1
(
βn
)

βnJ0
(
βn
)) (2.14)

The transaction between (2.13) and (2.14) is done by the Bessel property:

d

dx
[xJ1(ax)] = axJ0(ax)

hence we have the final solution, from the given flow rate function Q(t):

Vw(t, y) = 2Q0

πa2 (1− y2) +
N∑
n=0

Qn
πa2

1− J0

(
βny
)

J0

(
βn

)
1− 2J1

(
βn

)
βnJ0

(
βn

) einωt (2.15)

(2.15) is the best realistic inflow boundary condition we can apply for the radial
eruption, when the only known data is the volumetric flow rate. The volumetric
flow rate for Figure 2.4.17 can easly be calculated using the results from [57].
(2.15) is the best realistic inflow boundary condition we can apply for the radial
eruption, when the only known data is the volumetric flow rate.
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Chapter 3

Mathematical Model

In this chapter, we will present the mathematical model applied for coupled
Darcy-Stokes flow. Considering flow in a domain Ω ∈ <2, which is separated
into two non-overlapping subdomain. Porous domain denoted as Ωd, and viscous
domain denoted as Ωs, with the interface Γ.

3.1 Viscous Flow
The blood flows inside a vessel are initially represented as non-Newtonian fluid,
however the mathematical aspect for this very complicated. However, In this
thesis, the blood flow is assumed to be a Newtonian fluid, which makes the
mathematical model much simpler. This was also introduced in section 2.2.3.
However, this is still valid, since the blood flow inside a large vessel acts like a
Newtonian fluid. The mathematical equation describing the flow in the viscous
domain is derived from the Navier-Stokes equation.

3.1.1 The Navier-Stokes Equation
Navier-Stokes equations are used to describe the motion of an incompressible
Newtonian fluid. In a Newtonian fluid, the connection between shear stress
and shear rate is proportional. Hence, the viscosity is constant. Incompressible
fluid states that the fluid density (ρ) is constant. For the full derivations of the
Navier-Stokes equation, see, e.g. [[59] chapter 2].

ρ
∂u

∂t
+ (u · ∇)u = ∇ · σ(u, p) + f (3.1)

∇ · u = 0 (3.2)

ρ represents the density of the fluid, µ denotes the viscosity, f the body forces.
The variables that we are interested in are the velocity field, and the pressure
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field denoted as u and p, respectively. σ(u, p) is the Cauchy stress tensor, which
is presented as:

σ(u, p) = 2µε(u)− pI (3.3)

ε(·) represents the symmetric strain rate tensor:

ε(·) = 1
2

(
∇(·) + (∇(·))T

)
(3.4)

Equation (3.1) is referred to as the equation of motion. Equation (3.2) is derived
from the conservation of mass within the system and is referred to as the equation
of continuity.

3.1.2 Stokes Equation
Stokes flow is described as a fluid with low Reynolds numbers (Re � 1), where
the convective term (u · ∇)u, are assumed to be neglected compared to the
viscous forces. Since we are assuming a stationary problem, we get that ∂u

∂t = 0.
As a result, we are left with a simplification of the Navier-Stokes equation, i.e.,
the linear stationary Stokes equations:

−2µ∇ · ε(u) +∇p = f in Ωs (3.5)
∇ · u = 0 in Ωs (3.6)

u = 0 on ∂ΩDs (3.7)
(2µε(u) + pI)n = 0 on ∂ΩNs (3.8)

Denoting viscosity as µ, strain-rate tensor as ε, the body force as f , velocity
field as u and the pressure as p. n is the unit outward normal vector on the
boundary. The Dirichlet condition defines the value on the surface, which is set
in eq. (3.7). The Neumann condition is set in eq. (3.8), specifying the normal
derivatives of the function at the surface. Equation (3.7) is set to zero, since we
are assuming no slip at boundaries. I represent the identity matrix:

I =
[
1 0
0 1

]

3.2 Porous Flow
Porous media are solid materials that are composed of pore structures with an
interconnected void, which allows fluid to pass through. A porous medium is
connected with an extensive network of pores with the complex flow, and this
makes it impossible to achieve a detailed description of the flow field. The tissue
surrounding a blood vessel can be classified as a porous media. An example
of cells with junction in zebrafish are shown in section 2.2.1. The fluid flow
through the porous media pursues the same principals as a free viscous flow,
and the guiding equation can be obtained from the Navier–Stokes equation
via homogenization. Darcy’s equation is generally accepted as the macroscopic
equation of motion for Newtonian fluids in porous media at small Reynolds
numbers (Stokes flow). For the full derivations of Darcy’s law, see [36].
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3.2.1 Darcy’s Equation
Darcy’s law representing the incompressible porous media flow:

q = −K
µ
∇p (3.9)

The equation presents a proportional relationship between the volumetric flux
q, referred to as the Darcy flux, and ∇p denotes the pressure difference. µ
denotes the viscosity of the fluid, and K denotes the permeability tensor. The
permeability tensor is used to measuring the ability for a porous material to
permit fluid to pass through it. For simplicity, the porous medium is assumed to
be homogeneous and isotropic, which allows the permeability to be represented
by a scalar K. In reality, most porous materials are both heterogeneous and
anisotropic. q denotes the Darcy flux (or Darcy velocity). The relation between
the velocity and flux is defined by the porosity (φ):

u = q

φ
(3.10)

The motion of an incompressible fluid through a saturated porous medium is
described as a combination of Darcy’s law (3.9), and the equation of continuity
(3.2). This results in the Darcy’s equation:

µ

K
u+∇p = f in Ωd (3.11)

∇ · u = f2 in Ωd (3.12)
p = 0 on ∂ΩDd (3.13)

u · n = 0 on ∂ΩNd (3.14)

The source term f has been added to Darcy’s equation, such that we can take
body force into account, n denotes the unit outward normal vector at the bound-
ary, which has non-overlapping decomposition. The Dirichlet condition is set in
(3.13) and Neumann condition is set in (3.14), they have be set for the exterior
boundaries. We assume that the source term f2 satisfies the condition specified
in eq. (3.15), hence f2 are set to zero eq. (3.12).∫

Ω
f2 dΩ = 0 (3.15)

This makes physical sense due to u · n = 0 (no flow), and also satisfies the
interface condition shown in eq. (3.20).
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Figure 3.2.1: An illustration of the split domain with viscous and porous domain.

3.3 Coupled Darcy–Stokes Flow
The coupled Darcy-Stokes flow consists of the viscous and porous domain Ω =
Ωd ∪Ωs, where the porous region Ωd is dependent by Darcy’s equation, and the
open viscous region Ωs is dependent by the linear stationary Stokes equations.
The coupled Darcy–Stokes problem which is to find (u, p) ∈ V x Q such that:

−2µ∇ · ε(u) +∇p = f in Ωs (3.16)
∇ · u = 0 in Ωs

(3.17)
µ

K
u+∇p = f in Ωd (3.18)

∇ · u = 0 in Ωd (3.19)

denoting viscosity by µ, strain-rate tensor by ε, the body force by f and the
scalar permeability by K. The solution space for the velocity u is V , and the
solution space for the pressure p is Q. The domains are coupled at the interface
Γ = ∂Ωd ∩ ∂Ωs. Following boundary conditions are stated at the interface:

us · ns = ud · nd on Γ (3.20)
2µns · ε(us) · ns = ps − pd on Γ (3.21)

2ns · ε(us) · τ = αK−
1
2us · τ on Γ (3.22)
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Equation (3.20) and (3.21) represent the mass conservation and the continuity of
the normal stress, respectively. Equation (3.22) represent the Beavers-Joseph-
Saffmann condition [20]. τ dontes the unit tangential vector at Γ, ns and nd
is the unit normal vector exterior to Ωs and Ωd, α is a dimensionless coefficient
determined by the structure near the interface. The us and ps represent the
velocity and pressure in the open region Ωs while ud and pd represent the
velocity and pressure in the porous region Ωd.

In fig. 3.3.2, the two domains are illustrated with an overview of the interior
boundary conditions and interface conditions:

Figure 3.3.2: The domain is split into the viscous Ωs and porous Ωd subdomains,
by the interface Γ.

The domain shown in fig. 3.3.2, consists of a porous and viscous subdomain rep-
resented with Ωd and Ωs, with the coupled interface conditions Γ from eqs. (3.20)
to (3.22). The inlet and outlet Dirichlet conditions are represented as vin and
pout.

The geometry of the domain is generated to imitate the images shown in figs. 2.2.5
to 2.2.8. Note that the images are shown from a different angle. The red square
in fig. 3.3.3, symbolizes the boundary of the simulations done later in this thesis
(in chapter 5).
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Figure 3.3.3: Illustration of a region in a zebrafish, from section 2.2.1. We will
focus on the area inside the red square, which is simplified, as shown in fig. 3.3.2.
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Chapter 4

Numerical Methods

Solving complex elliptic and parabolic partial differential equations (PDEs) an-
alytical is a challenging task, for example, the coupled Darcy-Stokes equation.
Thus, numerical approximations are introduced. The numerical method used in
this paper is the finite element method (FEM), which is one of the main tools
for solving numerical problems [29]. The programming langue used to solve
the FEM is FEniCS [60], which is a software package designed to solve PDEs
with high-level Python and C++. The theories presented in this chapter are
collected from the work by Logg et al. [30], Ciarlet [6], and Elman et al. [12].

4.1 The Finite Element Method
A finite element method is a numerical technique introduced to form an ap-
proximate solution for partial differential equation problems. FEM can handle
complicated geometries and boundaries with relative ease, which makes it a
convenient method for flow simulations. Some advantages in the FEM:

• Modeling a complex physical deformation analytical can be ineffective, by
hand. However, a high order of accuracy can be concluded when intro-
ducing the finite element method.

• The modeling of complex structure becomes easy in FEM. Thus, we can
easily observe how critical factors affects the model.

• Useful for time-dependent simulations, such that the deformation in dif-
ferent areas can be observed.

• Boundary continuous are easily integrated in FEM.
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However, there are a few disadvantages. Some examples, a large amount of data
is required, high computational time usage, and only an approximate solution
is obtained.

There are four steps in solving a PDE with FEM.

• Initialize the strong form of our problem.

• Define the weak form of the PDE.

• Discretize the domain.

• Choose the finite-dimensional function space.

The Poisson equation will be used as an example in the first part of this chapter
to get an overview of the finite element method. The Poisson’s equation is the
simplest and the most well-known elliptic partial differential equation. Consid-
ering Ω ∈ <n with the boundary ∂Ω = ΓD ∪ ΓN . The subscripts D and N
represents the Dirichlet and Neuman boundary, respectively.

−∆u = −∇2u = f in Ω ε <2 (4.1)
u = u0 on ΓD (4.2)

∇u · n = g on ΓN (4.3)

f and g are given functions, u is some unknown field, n is the outward unit
normal vector on the boundary, and ∇2 is the Laplace operator. The Dirichlet
boundary (4.3), defines a guiding value for the unknown field. While the Neu-
mann boundary condition (4.2), defines a guiding value for the normal deriva-
tive. Equation (4.1) is referred to as the strong form of Poisson’s equation.

4.1.1 Sobolev Spaces
One of the fundamental tools used for analyzing partial differential equations
and the finite element method is Sobolev space. For more details of the weak
derivative and general concept of Sobolev spaces, are shown in the textbook by
Evans [13].

Definition 4.1.1. (Lp-spaces [[13], Appendix D]) Let Ω be an open subset of
Rn. For 1 ≤ p ≤ ∞, Lp(Ω) is defined as:

Lp(Ω) = {u ∈ Ω→ R : (
∫

Ω
|u|pdx)

1
p <∞} (4.4)

with the corresponding norm ||u||Lp(Ω) = (
∫

Ω |u|
pdx)

1
p

Definition 4.1.2. Sobolev space [[13], Section 5.2]) Let Ω be an open subset of
Rn. For a non-negative integer m where α = (α1, ..., αn) denotes a multi-index,
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the Sobolev space Hm(Ω):

Hm(Ω) = u ∈ Ω→ R :
( ∑
|α|≤m

∫
Ω
|Dαu|2dx

) 1
2
<∞ (4.5)

with the corresponding norm ||u||Hm(Ω) = (
∑
|α|≤m

∫
Ω |D

αu|2dx) 1
2

Dαu denotes the α − derivatives of u. Using functions from these spaces,
clarifies that the integrals involved in the variational form are bounded.

4.1.2 Weak Formulation
The solution u is ideal only if it has continuous second derivatives in Ω, which
states that u is in C2(Ω) and continuous up to the boundary. In the case where
we have non-smooth boundaries or discontinuous source function, the function
u is not sufficiently smooth to hold the requirements of the strong solution.
The weak form is then introduced to work with less restrictive problems. A test
function v ∈ V̂ is introduced to derive the weak formulation of the problem.

Multiplying the Poisson equation (4.1) with the test function and integrating
the product of the strong form, results in the weak form:

−
∫

Ω
∇2uv dx =

∫
Ω
fv dx (4.6)

In this case, integration by part and the divergence theorem is essential for
eq. (4.6). Introducing v = 0 on the Dirichlet boundary ΓD.

−
∫

Ω
∇2uv dx =

∫
Ω
∇u · ∇v dx+

∫
Ω
∇ · v∇u dx (4.7)

=
∫

Ω
∇u · ∇v dx+

∫
∂Ω
v
∂u

∂n
ds (4.8)

Applying the boundary condition for Neumann in eq. (4.1), we will result in:
find u ∈ V such that∫

Ω
∇u · ∇v dx =

∫
Ω
fv dx−

∫
ΓN

gv ds ∀ v ∈ V̂ (4.9)

Equation (4.9) is referred to as the weak formulation, also known as the varia-
tional formulation for Poisson’s equation. In generic form the Poisson equation
can be written as follows:

a(u,v) = L(v) (4.10)

A common choice of the test and trial space V̂ and V are defined by:

V := {u ∈ H1(Ω) : u = u0 on ∂ΩD} (4.11)
V̂ := {v ∈ H1(Ω) : v = 0 on ∂ΩD} (4.12)

The test space V̂ (4.11) is defined similar to the trial space V (4.12), but with
a substituted Dirichlet condition.
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4.1.3 Discretization
In order to solve the problem numerically, we need to discretize the variational
problemby seeking an approximation, uh ≈ u, restricted to a finite-dimensional
subspace V h ⊂ V . The test function v is restricted to V̂ h ⊂ V̂ . This results
in the discrete variational problem: find uh ∈ V h such that∫

Ω
∇uh · ∇v dx =

∫
Ω
fv dx−

∫
ΓN

gv ds ∀ v ∈ V̂ h ⊂ V̂ (4.13)

I order to solve the discrete variational problem, we need to introduce the basis
functions, {φj}Nj=1 and {φ̂i}Ni=1, with an N = dim(V h), which denotes the degree
of freedom. The basis functions can be used to span over the subspace:

V h = span{φ1(x), ..., φN (x)}
V̂h = span{φ̂1(x), ..., φ̂N (x)}

The approximation uh can be written as:

uh(x) =
N∑
j=1

Ujφj(x) (4.14)

where Uj are coefficients, defining the degrees of freedom. However, requiring
that (4.13) applies for all v ∈ V̂ is equivalent to expecting that it apply for all
basis functions.∫

Ω
∇
( N∑
j=1

Ujφj

)
· ∇φ̂idx =

∫
Ω
fφ̂idx−

∫
ΓN

gφ̂ids, i = 1, 2, ..., N

N∑
j=1

Uj

∫
Ω
∇φj · ∇φ̂idx =

∫
Ω
fφ̂idx−

∫
ΓN

gφ̂ids, i = 1, 2, ..., N (4.15)

uh has been replaced by eq. (4.14). We assume a linear PDE such that the
generic form a(u,v) is linear in u, for simplicity. Hence the equation can be
written in bilinear form by:

N∑
j=1

a(φj , φ̂i)Uj = L(φ̂i), i = 1, 2, ..., N (4.16)

eq. (4.16) is identified as a linear algebraic system of eq. (4.15). Solving this is
equivalent to solvingthe matrix equation:

AU = b (4.17)

Aij =
∫

Ω
∇φj · ∇φ̂idx (4.18)

bi =
∫

Ω
fφ̂idx−

∫
ΓN

gφ̂ids (4.19)
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U is a vector consisting of components Ui for j = 1,2, ... . N , Amatrix with
the dimensions N ×N , and b is avector. This problem is solved efficiently by a
large variety of numerical methods. We will look into this in section 4.2.

4.1.4 Finite Elements
Finite element methods use piecewise polynomials to approximate solutions. A
set of finite elements are introduced to defines the approximation space and
their basis functions. The finite element definition by Ciarlet [6] states:

Definition 4.1.3. (Finite elements [[6], Chapter 2]) A finite element is a triple
(T,V,L), where

• The domain T is bounded, closed subset of Rd (for d=1,2,3) with nonempty
interior and piecewise smooth boundary.

• The space V = V(T) is a finite dimensional function space on T of dimen-
sion n.

• The set of degrees of freedom L = {l1, l2, ..., ln} is a basis for the dual
space V ′ , that is, the space of bounded linear functionals on V.

T is a line, triangle or tetrahedron. V is the second-degree polynomials on T .
L is point evaluation at the vertices and edge midpoints. Introducing a nodal
basis for V will simplify the way we are expressing finite element solutions in
V h. This is done in the form of basis functions for the local function space V:

Definition 4.1.4. (Nodal basis [[6], Chapter 2]) The nodal basis {φ1, φ2, ..., φn}
for a finite elment (T,V,L) is the unique basis satisfying:

li(φj) = δij , i, j = 1, 2, ..., n (4.20)

Finite elements determine the shape of polynomial approximation over each
cell, and how those are connected at the cell boundaries. Lagrange elements
are one of the most common choices of elements. For the Lagrange elements
(Taylor-Hood elements), basis functions are generated by continuous, piecewise
polynomial approximations. The solution domain consists of non-overlapping
cells, merged into a mesh. The Taylor-Hood elements are used for discretization
in this thesis. The cells used to generate the mesh is quite simple in the case
of Lagrange elements, i.e., triangles in a two-dimensional mesh, tetrahedrons in
3D, etc. The nodes determine the degrees of freedom through a set of spatial
points.
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Figure 4.1.1: An illustration of the degrees of freedom for two Taylor-Hood
elements in 2D. Linear element (left image) denoted with P1, for the pressure p
and quadratic element (right image) denoted with P2, for the displacement u.

Figure 4.1.2: An illustration of the degrees of freedom for two Taylor-Hood
elements in 3D. Linear element (left image) for the pressure p and quadratic
conforming element (right image) for the displacements u on a tetrahedron.
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Figure 4.1.3: Crouzeix-Raviart element in 2D. Constant element (left image) for
the pressure p and mid-point linear element (right image) for the displacement
of u. The displacement is continuous on the mid-points of each element side,
while the constant element is discontinuous.
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4.2 FEniCS
FEniCS [60] is a modern computing platform with the common goal to enable
automated solutions of partial differential equations (PDEs) by the finite ele-
ment method (FEM). In this thesis, we will use FEniCS version 2019.1.0; hence
code implemented may need some changes to work with other versions. This
section will start with basic usage and understanding of FEniCS with the imple-
mentation of the Poisson problem, before advancing to the coupled Darcy-Stokes
problem.

4.2.1 Basic FEniCS Usage
Some preliminaries needs to be clarified before implementing the Poisson prob-
lem. Poisson problem was defined thoroughly with the usage of the finite el-
ement method in section 4.1, which will be reused in this example with some
modifications. The weak formulation:∫

Ω
∇u · ∇v dx =

∫
Ω
fv dx−

∫
ΓN

∂u

∂n
v ds (4.21)

The Neumann boundary condition ΓN is obtained from eq. (4.3), where ∂u
∂n is

the derivative of u in the outward normal direction at the boundary.

We assume that the test function v is equal to zero in the entire boundary
Γ. This is explained thoroughly in the book by Langtangen and Mardal [25].
The removal of the test function at the boundary will result in following weak
formulation for the Poisson problem:∫

Ω
∇u · ∇v dx =

∫
Ω
fv dx (4.22)

Next step is to rewrite the problem to a bilinear form, a(u,v) = L(v) for all
v ∈ V̂ , where we need to find u ∈ V . The bilinear form and linear form are
represented as:

a(u, v) =
∫

Ω
∇u · ∇v dx (4.23)

L(v) =
∫

Ω
fv dx (4.24)

We will consider the following definitions for our problem:

• A 2D problem.

• A simple unit square domain Ω = [0, 1]× [0, 1].

• An exact solution: u0 = 1 + x+ 2y2.
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• Inserting the exact solution into the Poisson problem illustrated in eq. (4.1)
provides us with the following source term:

– f(x, y) = −6

– u(x, y) = u0 = 1 + x+ 2y2

The method of manufactured solutions, have been used for calculation of the
source term. This method is described thorough in section 5.2.

4.2.2 The Complete Fenics Program
The full FEniCS program for solving the Poisson equation in 2D, is introduced
in listing 4.1. The code will be explained thoroughly in this section.

Before we can start using the FEniCS problem-solving environment, we need to
import the DOLFIN library:

from dolfin import *

The next step is to define a mesh. FEniCS have built-in meshes that can be used.
In this problem we will be using a very standard uniform mesh, unit square mesh
on [0, 1] × [0, 1], listed as UnitSquareMesh(). The arguments for the function
are the number of cells in horizontal and vertical directions, where each square
divides into two triangles, 20×20 squares will be used in this problem. The
last argument in UnitSquareMesh() function is optional which indicates the
direction of the diagonals, the possibilities are ’crossed,’ ’left ’right,’ ’left/right’
and ’right/left,’ but we will discard this argument, and the default direction
’right’ will be used.

mesh = UnitSquareMesh(20, 20)

We define a FunctionSpace(), represents a finite element function space. The
mesh is implemented as the first argument, the next argument specifies the
element family, and the degree of the element is inserted as the last argument.
Linear Lagrange element family are used for this problem.

V = FunctionSpace(mesh, 'Lagrange', 1)

Defining the Dirchlet boundary u0 = 1 + x+ 2y2, as follow:
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u0 = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]', degree=2)

The expression is written with C++ syntax, where the independent variables
(coordinates) x, y, and z are represented as x[0], x[1], and x[2]. An extra ar-
gument is needed to specify the dimension of the expression; in our case, this
argument is set to degree = 2, since we have a 2D problem.

There are two ways to implement the boundary conditions:

def boundary(x, on_boundary):
return on_boundary

The function boundary will be used to tell the program where the boundary
condition u0 yield. The function will return True or False depending on if the
given function lies on the Dirichlet boundary or not. This function will be called
for every discrete point in the mesh. In our case, we will return True in every
point around the mesh.

Another way to implement the boundary conditions is by introducing the near
function.

def boundary(x):
return (near(x[0], 0.0)) or (near(x[0], 1.0)) or

(near(x[1], 0.0)) or (near(x[1], 1.0))

The function near will secure that rounding-off errors do not occur, with a small
epsilon as the third argument (near(x, x0, eps=3e-16)). Now the Dirichlet
boundary condition can be created using the DirichletBC:

bc = DirichletBC(V, u0, boundary)

Where the Function space, boundary condition, and where we assume that the
boundary condition applies, are used as arguments.

The next step is to define the trial u and v test function in the function space
V . This is defined by a TrialFunction and a TestFunction on the Function-
Space V . Furthermore, the variational problem is defined using FEniCS Unified
Form Language (UFL), which is a domain-specific language for declaration of
finite element discretizations of variational forms. Hence we can implement the
bilinear form a and the linear form L.
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u = TrialFunction(V)
v = TestFunction(V)
f = Constant(−6.0)
a = inner(grad(u), grad(v))*dx
L = f * v * dx

The syntax can be compared to eqs. (4.23) to (4.24). Before we can compute
the solution, we need to define a Function u (a function that lives in a finite
element function space) to represent the solution:

u = Function(V)

Since we have defined a, L, u, and the boundary conditions in bc, we can solve
the problem with the solve function. The solutions will be saved to specified
Function u. Furthermore, we can save the solution to Visualization Toolkit
(VTK) format such that software like ParaView [18] can be used for a quick
visualization of the solution.

solve(a == L, u, bc)

file = File("poisson.pvd")
file << u

Now that we have a good understanding of how the program is produced, we
can start executing the program and examine some different plots:

37



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.2.4: The generated mesh with the Lagrange elements used for the
Poisson equation.

Figure 4.2.5: The solution for u in this basic Poisson example looks as follows.
The scaling bar indicates the velocity throughout the domain.

Listing 4.1: Implementasion of Poisson problem in FEniCS

from dolfin import *

# Creating the mesh
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mesh = UnitSquareMesh(20, 20)

#Defining the function space
V = FunctionSpace(mesh, 'Lagrange', 1)

# Defining the boundary conditions
u0 = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]', degree=2)

def boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u0, boundary)

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(−6.0)
a = inner(grad(u), grad(v))*dx
L = f * v * dx

# Computing the solution
u = Function(V)
solve(a == L, u, bc)

# Saving the solution to a VTK format for ParaView
file = File("poisson.pvd")
file << u

4.3 Advanced FEniCS
The next step is to proceed with the FEM and implementation of coupled Darcy-
Stokes equation. A more advanced FEniCS process is introduced for this.

4.3.1 Mesh Generating Software
In this section, we will introduce a mesh generating software Gmsh [15]. This
is a three-dimensional finite element mesh generator, which includes advanced
visualization techniques. The domain that we are going to generate will imitate
the images described in section 2.4, in 2D. Figure 4.3.7 is generated in Gmsh
with elementary entities and physical groups. The size of the domain is set to
100 × 100 µm.

The next step is to convert the generated mesh into FEniCS for implementation
with the coupled problem. The Python script DOLFIN-CONVERT will be used
for converting a mesh file from msh format to an xml format, which is suitable
for FEniCS, This script is created by Logg [28]. This is executed with a simple
command:

> dolfin−convert gmsh_file.msh xml_file.xml

which converts a .msh file into three .xml files:
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• xml_file.xml which includes all the info of the Mesh.

• xml_file_facet_region.xm which includes all the info of the boundaries in
the Mesh.

• xml_file_physical_region.xml which includes all the info of the domains
in the Mesh.

Another way to convert .msh files are using the msh2xdmf.py program made
by Loiseau [31], where meshio is used, which is a python package for smooth
reading and converting between generated mesh files. With this program, the
.msh file will be converted to a more compact file .xdmf. The generated file can
be used in serial and parallel runs. The execution of this is straightforward:

> python3 msh2xdmf.py −d 2 mesh.msh
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| GMSH label | MeshFunction value |
+−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−+
| right_boundary | 5 |
| bottom_boundary | 6 |
| left_boundary | 7 |
| top_boundary | 8 |
| v_inflow | 9 |
| v_outflow | 10 |
| interface_boundary | 11 |
| wall_domain | 1 |
| p_domain | 2 |
| v_domain | 3 |
| interface_domain | 4 |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

This will output the MeshFunction values, used for masking in FEniCS. The
connection between the mask and the mesh is illustrated in fig. 4.3.7.

The correlation between the different converting methods can be tested with a
simple timing test for a small mesh, for serial and parallel runs. Note that the
mesh size used for time testing is minimal, while a larger and more complex
mesh will be used for the final computation, where each run will take up to
several hours or days.
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Figure 4.3.6: Serial and parallel time usage for different permeability values.
The parallel run is executed with two processors. The different converting meth-
ods, .xml and .xdmf, are shown in the figure.

We will use the converting method by Loiseau [31] for large meshes, with parallel
runs. The converting method by Logg [28] will be used for small testing meshes,
with serial runs.

The domain generated with Gmsh, will separate into the porous and vicious
domains, with an interface domain defined as the blood vessel wall. The bound-
ary conditions shown in fig. 3.3.2 will also be set in Gmsh. This results in
a nicely generated mesh, which can be transformed to FEniCS for numerical
implementation. FEniCS provides a variety of possibilities when it comes to
testing different boundary conditions. The different domains shown in fig. 4.3.7
are represented with MeshFunction value from 1 to 4.

1. The viscous domain where Stokes flow will be implemented.

2. The porous domain where Darcy flow will be implemented.

3. The wall domain which will be used for stopping the unwanted eruption.

4. Interface domain, where wanted eruption will occur.

When it comes to the boundaries, they have been added for the porous and
viscous domain. The boundaries around the porous domains are marked as 5
to 8. The inflow and outflow boundaries for the viscous domain are marked as
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9 and 10.

Figure 4.3.7: An illustration of the 2D domain that has been generated with
Gmsh and will be used as the simulation domain. The physical surfaces are
given as 1 - 4, and the physical curves are given as 5 - 11.

The implementation of the mesh and the splitting of the physical surface and
curve are imported to FEniCS by:

mesh = Mesh('xml_file.xml')
sub_domains = MeshFunction("size_t", mesh,

"xml_file_physical_region.xml")
boundaries = MeshFunction("size_t", mesh,

"xml_file_facet_region.xml")

mark = { "v_domain": 3,
"p_domain": 2,
"v_inflow": 9,
"v_outflow": 10,
"right_boundary": 5,
"bottom_boundary" : 6,
"left_boundary": 7,
"top_boundary": 8,
"interface_domain": 4,
"wall_domain": 1,
"interface_boundary": 11,
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}

Marked boundaries/domains associates with the numbers shown in fig. 4.3.7.
The marking will be used throughout the code as a definition of the parts in
the mesh.

4.3.2 Geometry Storing
The measurements in FEniCS is predefined by dx, ds, and dS, which repre-
sents the integration over cells, exterior facets, and interior facets, respectively.
When we want to work on different subdomains, integer labels for the different
domains or boundaries will be used as arguments. A mapping of the geometry
information needs to be stored in the mesh function. This is accomplished with:

dx = dx(domain = mesh, subdomain_data=sub_domains)
ds = ds(domain = mesh, subdomain_data=boundaries)

For instance, if we want to calculate an equation for the v_domain, following
code will be implemented:

a = inner(u,v)*dx(mark["v_domain"])

4.3.3 Dirichlet Boundaries
To specify the Dirichlet boundary conditions for the mesh, we can use mesh
functions over each exterior part. An example for implementation of the Dirich-
let boundaries, using the marks specified in section 4.3.1:

inflow = Expression(("0", "(6−x[0])*(7.5−x[0])"), degree=2)
bc0 = DirichletBC(W.sub(0), inflow, boundaries, mark["v_inflow"])

noslip = Constant((0, 0))
bc1 = DirichletBC(W.sub(0),noslip,boundaries,mark["top_boundary"])
bc2 = DirichletBC(W.sub(0),noslip,boundaries,mark["right_boundary"])
bc3 = DirichletBC(W.sub(0),noslip,boundaries,mark["left_boundary"])
bc4 = DirichletBC(W.sub(0),noslip,boundaries,mark["bottom_boundary"])

The inflow has been chosen such that we have a parabolic Poiseuille flow at
the right spot. The Expression is implemented for the inflow, and no-slip
conditions for the boundaries. To collect the boundary conditions, we will use:

bcs = [bc0, bc1, bc2, bc3, bc4]
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4.3.4 Mixed Elements
Next, we need to define the function spaces. They are defined separately, before
combined into a mixed function space W:

V = VectorElement("Lagrange", mesh.ufl_cell(), 2)
Q = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
TH = V * Q
W = FunctionSpace(mesh, TH)

The first argument to FunctionSpace specifies the type of finite element family.
The Taylor-Hood elements are chosen in this thesis. The next step is to define
the trial and test functions.

(u, p) = TrialFunctions(W)
(v, q) = TestFunctions(W)

We have now generated the foundation of the code. The bilinear form a is
specified in eqs. (4.38) to (4.40) and the linear form L is specified in eq. (4.41).
After these are implemented, a storing function are introduced with the function
Function, and the actual computation are executed with solve.

w = Function(W)

solve(a == L, w, bcs)

The last step is to split up the velocity and pressure in the solution storing
function w, before saving for future analysis in ParaView.

(u, p) = w.split(True)

ufile_pvd = File("velocity.pvd")
ufile_pvd << u
pfile_pvd = File("pressure.pvd")
pfile_pvd << p

This will generate four new files: velocity.pvd, velocity000000.vtu, pressure.pvd
and pressure000000.vtu, which can be imported to ParaView.

4.3.5 ParaView
ParaView is a multi-platform data analysis and a visualization application. Par-
aView can be used to build a visualization of the data using approximation
techniques. This will be used throughout the thesis for the visualization of the
generated solutions.
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Figure 4.3.8: An illustration of the velocity field in ParaView. The scaling bar
shows the velocity through the domain.

ParaView will provide a detailed visualization of the computation executed in
FEniCS. Different techniques and method provided by ParaView, makes the
visualization and understanding of the generated solutions in FEniCs much
easier.

4.4 Unified Discretizations of coupled
Darcy–Stokes flow

We have described coupled Darcy-Stokes flow in eq. (3.16) and 3.18. In this
section, we will introduce a discretization method for the coupled Darcy-Stokes
equation using the finite element method with ideas by Karper et al. [21]. Two
weak formulations are introduced in this paper, H(div)-formulation and L2-
formulation. In this thesis, we will use the L2-formulation.

4.4.1 The L2-Formulation
In the L2-formulation, we define the function spaces for velocity and pressure
as V 2 and Q2. When we use this alternative formulation, all the interface con-
ditions represented in eqs. (3.20) to (3.22) are expressed weakly. The subscript
s and d represents Stokes and Darcy. The function spaces are described as
following:

V 2 = V 2(Ω) = {v ∈ L2 : vs,d ∈H1(Ωs,d)} (4.25)
Q2 = Q2(Ω) = {q ∈ L2

0 : qs,d ∈ H1(Ωs,d)} (4.26)
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with the corresponding norms:

||u||2V 2(Ω) = ||u||2L2(Ω) + ||∇u||2L2(Ωs,d) (4.27)
||q||2Q2(Ω) = ||q||2L2(Ω) + ||∇q||2L2(Ωs,d) (4.28)

This formulation will be discretized using Taylor-Hood elements, described in
section 4.1.4. When using Taylor-Hood elements, we will get a stable mixed
problem, where we have P2 elements for the velocity and P1 elements for the
pressure. These elements are shown in fig. 4.1.1. Taylor-Hood elements results
in a discrete function spaces V h ∈ V 2 and Qh ∈ Q2. Furthermore, the elements
are conforming, which states that the edges and faces of neighboring elements
match exactly.

Inner Product Notation

Inner products will be denoted with 〈·, ·〉. The L2 inner product of u and v,
where u and v is either scalar function or vector-valued, on a measure space Ω,
is defined as:

〈u,v〉Ω =
∫

Ω
u · v dΩ (4.29)

Unified Variational Formulation

The goal of this section is to formulate the L2-formulation of the coupled Stokes-
Darcy equation and find the functions (u, p) ∈ V 2×Q2 such that for all (v, q) ∈
V̂ 2 × Q̂2:

a(u,v) + b(p,v) = l1(v) (4.30)
b(q,u) = 0

a(·, ·) and b(·, ·) represents the bilinear forms, while l1(·) represents the linear
form.

We will start by multiplying the momentum equation eq. (3.5) and Darcy equa-
tions (3.11),with the test function v. q will be multiplied with the continuity
equations defined in eq. (3.6) and (3.14).

Stokes and Darcy domains will be represented as Ωs and Ωd. The equations
represented in (3.5) - (3.8) for Stokes system and (3.11) - (3.14) for Darcy
system will be used for the calculations of the unified variational formulation,
with the following interface condition:

us · ns = ud · nd on Γ (4.31)
2µns · ε(us) · ns = ps − pd on Γ (4.32)

2ns · ε(us) · τ = αK−
1
2us · τ on Γ (4.33)
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The next step is to integrate the equations and represented the integrals with
the L2-inner product notation over the entire domain Ω.

−2µ〈∇ · ε(u),v〉Ωs
+ 〈∇p,v〉Ωs

= 〈f ,v〉Ωs

〈∇ · u, q〉Ωs
= 0

µ

K
〈u,v〉Ωd

− 〈∇p,v〉Ωd
= 〈f,v〉Ωd

〈∇ · u, q〉Ωd
= 0

Now that we have rearranged the equations, we will combine them, such that
we can view the problem as coupled Darcy-Stokes:

−2µ〈∇ · ε(u),v〉Ωs
+ µ

K
〈u,v〉Ωd

+ 〈∇p,v〉Ω = 〈f ,v〉Ω

〈∇ · u, q〉Ω = 0

Integrating by part will be calculated for almost each term. We will go through
each part step by step:

−2µ〈∇ · ε(u),v〉Ωs
= 2µ〈ε(u), ε(v)〉Ωs

− 2µ〈ns · ε(u)ns,v · ns〉Γs
(4.34)

− 2µ〈ns · ε(u) · τ ,v · τ 〉Γs

= 2µ〈ε(u), ε(v)〉Ωs
− 〈ps − pd, v · ns〉Γs

− µ〈αK 1
2u · τ ,v · τ 〉Γs

(4.35)

The interface conditions (4.32) and (4.33) have been inserted for second and
third term, which is reviewed in the article by Layton et al. [26]. The second
term in eq. (4.35) will cancel out by using the Taylor-Hood elements. The
results from Drøsdal [10] concludes that the Beavers-Joseph-Saffman condition
(4.35) can be removed from the variational formulation. This simplification will
give an advantage when working on a complex geometry, as it is challenging to
implement the tangent vector in FEniCS.

Given the following notation:

∇u =
∑
ij

∫
Ω

∂ui
∂xj

dΩ , (∇u)T =
∑
ij

∫
Ω

∂uj
∂xi

dΩ
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The equivalence between 〈ε(u), ε(v)〉 and 〈ε(u),∇v〉 are given as following:

〈ε(u), ε(v)〉 =
∑
ij

∫
Ω

1
4

( ∂ui
∂xj

+ ∂uj
∂xi

)( ∂vi
∂xj

+ ∂vj
∂xi

)
dΩ

= 1
4
∑
ij

∫
Ω

[ ∂ui
∂xj

∂vi
∂xj

+ ∂ui
∂xj

∂vj
∂xi

+ ∂uj
∂xi

∂vi
∂xj

+ ∂uj
∂xi

∂vj
∂xi

]
dΩ

= 1
4

[∑
ij

∫
Ω

∂ui
∂xj

∂vi
∂xj

dΩ +
∑
ij

∫
Ω

∂uj
∂xi

∂vi
∂xj

dΩ

+
∑
ij

∫
Ω

∂uj
∂xi

∂vi
∂xj

dΩ +
∑
ij

∫
Ω

∂ui
∂xj

∂vi
∂xj

dΩ
]

= 2
4

[∑
ij

∫
Ω

∂ui
∂xj

∂vi
∂xj

dΩ +
∑
ij

∫
Ω

∂uj
∂xi

∂vi
∂xj

]
dΩ

= 1
2

(∑
ij

∫
Ω

∂ui
∂xj

+ ∂uj
∂xi

) ∂vi
∂xj

dΩ = 〈ε(u),∇v〉Ω

Integrating by parts on the terms that contains pressure:

〈∇p,v〉Ω = 〈∇p,v〉Ωd
− 〈p,∇ · v〉Ωs + 〈p,v · ns〉Γ∂s

(4.36)

To achieve symmetry, we will replace p̂ = −p for the pressure in the Stokes
domain, and p̂ is presented as p throughout the thesis. The only term we have
left now is the equations of continuity for each flow:

〈∇ · u, q〉Ω = 〈∇ · u, q〉Ωd
+ 〈∇ · u, q〉Ωs (4.37)

The considerations above give rise to the variational formulation given at equa-
tion (4.30), with the bilinear forms a(u,v), b(p,v) and b(q,u) is given as:

a(u,v) = 2µ〈ε(u), ε(v)〉Ωs
+ µ

K
〈u,v〉Ωd

(4.38)

b(p,v) = 〈∇p,v〉Ωd
+ 〈p,∇ · v〉Ωs + 〈p,v · ns〉Γ∂s

(4.39)
b(q,u) = 〈∇ · u, q〉Ωd

+ 〈∇ · u, q〉Ωs (4.40)

and the linear form l1(v) is given as:

l1(v) = 〈f ,v〉Ωs
+ 〈f ,v〉Ωd

(4.41)

Collecting the forms in the coupled Darcy-Stokes formulation, gives us the vari-
ational formulation: Find (u, p) ∈ V 2 ×Q2, such that

a(u,v) + b(p,v) = l1(v) (4.42)
b(q,u) = 0 (4.43)

for all (v , q) ∈ V̂ 2 × Q̂2.
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The Continuous Case

We will now establish the existence, uniqueness, and stability for saddle point
problems on the form eqs. (4.42) to (4.43). We will introduce four conditions,
which need to be satisfied in order to have a well-posed problem, i.e., a problem
that allows a unique solution. A more extensive explanation of the conditions
is shown in the paper by Logg and Mardal [29].

The continuity/boundedness of a:

a(u,v) ≤ C1‖u‖V ‖v‖V , ∀u ∈ V ,∀v ∈ V (4.44)

The continuity/boundedness of b:

b(u, q) ≤ C2‖u‖V ‖q‖Q, ∀u ∈ V ,∀ q ∈ Q (4.45)

The coercivity of a

a(u,u) ≥ C3‖u‖2V , ∀u ∈ Z (4.46)

Where Z = {u ∈ V ‖b(u, q) = 0, ∀q ∈ Q},

The surjectivity of b, also called inf-sup condition:

sup
u∈V

b(u, q)
‖u‖V

≥ C4‖u‖2V , ∀ q ∈ Q (4.47)

The Discrete Case

The next step is to discretize the system (4.30), with the Taylor-Hood element
we discussed in section 4.1.4. This results in the discrete saddle point problem:
find uh ∈ V and ph ∈ Qh, such that:

a(uh,vh) + b(ph,vh) = l1(vh) (4.48)
b(qh,uh) = 0

for all vh ∈ V̂ h and qh ∈ Q̂h.

Similar to the continuous case in section 4.4.1, the finite element spaces V h and
Qh needs to be satisfied for the conditions shown in eqs. (4.44) to (4.47). These
conditions will satisfy for the discretized space, considering that we are working
with Taylor-Hood elements. This indicates that the discrete problem is well-
posed (has unique solutions) and that the solution converges to the continuous
solution when h → 0. This is explained more thoroughly in the paper by
Ellingsrud [11].

A Priori Error Estimates

To examine the error in the finite element, we need to compare the solutions
of the system in eq. (4.30) and (4.48). Under the assumption that we have a
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stable scheme, a priori error estimate can be obtained:

‖u− uh‖V + ‖p− ph‖Q ≤ C
(

inf
V h∈V

‖u− vh‖V + inf
QH∈Q

‖p− qh‖Q
)

(4.49)

We will assume that the velocity is represented with one order higher than the
pressure. In Taylor-Hood elements, the velocity is approximated with quadratic
polynomial, and the pressure is approximated with a linear function. This will
simplify the error estimate of the coupled Darcy-Stokes to:

‖u− uh‖H1 + ‖p− ph‖L2 ≤ Ch3
(
‖u− vh‖H3 + ‖p− qh‖H2

)
(4.50)

This is implemented and tested in the paper by Ellingsrud [11].

Development of Pressure and Velocity

The goal is to analyze the progression of the pressure and velocity change in
each experiment with increasing permeability, such that it can be compared
to the calculated cases shown in section 2.4.1. This results in an overview of
development in pressure and velocity throughout the different choices of perme-
ability executed in chapter 5. Following methods are introduced for studying
the development: ∫

Ω
ph dΩ (4.51)

This will be used for modeling the pressure over a domain, and for the velocity
we will use: ∫

Ω
uh · uh dΩ (4.52)

Those methods of calculations will be implemented in FEniCS, and we will
study the changes in each domain for each tested permeability.

4.4.2 Implementation in FEniCS
The FEniCS implementation of the coupled Darcy-Stokes scheme, for the varia-
tional form, is included in listing 4.2. The code shows a general way to compute
the coupled scheme. Few conditions needs to be noted:

• The domain is divided into four subdomains: viscous, porous, wall, and
interface, marked in FEniCS by:

– Viscous domain: ’v_domain’.

– Porous domain: ’p_domain’.

– Interface domain: ’interface_domain’.

– wall domain: ’wall_domain’.

50



• The boundaries have also been marked (shown in section 4.3.1).

Listing 4.2) has been used to generate the simulations that we are going to study
in chapter 5. Note that the code shown below only holds for the generalized
case.

Listing 4.2: The implementation of the variation form of coupled scheme

from dolfin import *
mesh = Mesh('mesh.xml')
sub_domains = MeshFunction("size_t", mesh,

"mesh_physical_region.xml")
boundaries = MeshFunction("size_t", mesh,

"mesh_facet_region.xml")

mark = { "v_domain": 3,
"p_domain": 2,
"v_inflow": 9,
"v_outflow": 10,
"right_boundary": 5,
"bottom_boundary" : 6,
"left_boundary": 7,
"top_boundary": 8,
"interface_domain": 4,
"wall_domain": 1,
}

dx = dx(domain = mesh,subdomain_data=sub_domains)
ds = ds(domain = mesh,subdomain_data=boundaries)

# Function spaces
V = VectorElement("Lagrange", mesh.ufl_cell(), 2)
Q = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
TH = V * Q
W = FunctionSpace(mesh, TH)

# VISCOUS FLOW −− DIRICHLET BOUNDARIES −−

# Inflow boundary condition for velocity
inflow = Expression(("0", "(6−x[0])*(7.5−x[0])"), degree=2)
bc1_v = DirichletBC(W.sub(0), inflow,

boundaries, mark["v_inflow"])

# Boundary condition for pressure at outflow
p0 = Constant((0.0))
bc2_v = DirichletBC(W.sub(1), p0, boundaries, mark["v_outflow"])

# POROUS FLOW −− Dirichlet BOUNDARIES −−
# Boundary conditions
noslip = Constant((0, 0))
bc0_p = DirichletBC(W.sub(0), noslip,

boundaries, mark["top_boundary"])
bc1_p = DirichletBC(W.sub(0), noslip,

boundaries, mark["right_boundary"])
bc2_p = DirichletBC(W.sub(0), noslip,

boundaries, mark["left_boundary"])
bc3_p = DirichletBC(W.sub(0), noslip,

boundaries, mark["bottom_boundary"])
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# Collected conditions
bcs = [bc1_v, bc2_v, bc0_p, bc1_p, bc2_p, bc3_p]

# Permeability and viscosity
K_p = Constant(1.36 * 10**(−9))
K_interface = Constant(1.36 * 10**(−9))
K_wall = Constant(1.36 * 10**(−9))
mu = Constant(0.00496 )

def epsilon(u):
return 0.5*(nabla_grad(u) + nabla_grad(u).T)

f_p = Expression(("0", "mu/K_p*(6−x[0])*(7.5−x[0])"),
mu = mu,K_p = K_p, degree=2)

f_v = Constant((0, 0))

# Define variational problem
(u, p) = TrialFunctions(W)
(v, q) = TestFunctions(W)

a = (2*mu*inner(epsilon(u), epsilon(v)) + div(v) * p
+ q * div(u)) * dx(mark["v_domain"])
+ ((mu/ K_p) * inner(u, v) + inner(grad(p), v)
+ q * div(u)) * dx(mark["p_domain"])
+ ((mu/ K_wall) * inner(u, v) + inner(grad(p), v)
+ q * div(u)) * dx(mark["wall_domain"])
+ ((mu/ K_interface) * inner(u, v) + inner(grad(p), v)
+ q * div(u)) * dx(mark["interface_domain"])

L = inner(f_p, v) * ds(mark["p_domain"])
+ inner(f_v, v) * ds(mark["v_domain"])

# Compute solution
w = Function(W)
solve(a == L, w, bcs)

# Split the mixed solution using deepcopy
(u, p) = w.split(True)

# Saving the plots for Paraview
ufile_pvd = File("velocity.pvd")
ufile_pvd << u
pfile_pvd = File("pressure.pvd")
pfile_pvd << p
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Chapter 5

Numerical Experiments

In this chapter, we will edit/configure listing 4.2), with a goal to simulate the
experiments described in section 2.4.1, with different criteria.

5.1 Element Scaling
Scaling is an essential part of the grid generation, so that it can be compared
to the real-life case. An illustration of the mesh generated in Gmsh, with the
different measurements, is shown in fig. 5.1.1. The entire grid is enclosed in a
100x100 µm2 area. A scaling bar set to 10 µm is shown in the figure. The sizes
calculated from chapter 2, and other measurement used in the implementation
are given by:

Table 5.1: A list of measurements used for generating the grid
Permeability ( resting condition ) 1.36 · 10−9µm2

Viscosity 0.00496 Pa·s
Length ( viscous domain ) 130 µm
Diameter ( viscous domain ) 15 µm
Gap size( interface domain ) 2.8 µm to 4 µm

Diameter of the wall 0.6 µm

The chosen permeability for healthy tissues is proposed by Smith and Humphrey
[52]. The noted gap size is chosen temporarily. A smaller and more accurate size
is also implemented later in section 5.3.3. The measurement for permeability
and gap size measurements are not fixed, as we will simulate for increased
permeability with different gap sizes.
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Figure 5.1.1: An illustration of the grid with a scale bar set to 10 µm. The
range of the x- and y-axis goes from 0 to 10.

5.1.1 Mesh
Choosing the right mesh size is a challenging part of FEM. Too large finite
element size will lead to inaccurate results, but too smaller finite element size
becomes computationally expensive. We need to choose an element size that is
possible to compute and gives an accurate visualization of the flow.

The domain shown in fig. 4.3.7, has been chosen as the domain for the coupled
Darcy-Stokes scheme. The size of the elements has been set using Gmsh. The
element distribution in Gmsh are chosen by:

• Computing element sizes using point values.

• Increased amount of element around boundaries.

• Frontal-Delaunay [40] has been used as a two-dimensional algorithm for
the calculation of the elements.

This will generate triangles between each point that are specified on the domain.
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The variables that are changed to get an optimal element distribution is the
element size factor, which scales the triangles to even smaller triangles. The
scaling process of a triangles are shown in fig. 5.1.2. The element that has not
been scaled have a baseline of around 1 µm (image a) in fig. 5.1.2).

Figure 5.1.2: An illustration of different scaled elements sizes. a) No scaling,
with a baseline equal to 1 µm, b) scale 0.1, c) scale 0.01, d) scale 0.004, e) is a
close up of a small area of d).

In order to generate a suitable finite element size for our problem, the following
tests are performed:

• Execute the analysis for several different finite element sizes.

• Take note of the high deformations, and refine the mesh in these areas.

• Collect the outcomes, number of nodes, computing time, etc. from each
test.

The cells and vertices distribution for the different meshes are shown in table 5.2.
ParaView is used for analyzing the different sized meshes. The function plot
over line in ParaView will be used to illustrate the development throughout
the meshes. This function generates an diagonal line across the mesh. This is
shown in fig. 5.1.3.

Table 5.2: A View over the size of the scaled meshes
Scaling factors Vertices Cells

0.009 1 435 536 2 866 617
0.005 4 635 786 9 263 570
0.004 7 248 609 14 487 216

55



Figure 5.1.3: Scaling factor 0.004 is shown in a), scaling factor 0.09 is shown
in b). The white lines in a) and b) illustrate where the velocity development is
measured. c) shows the velocity development for scaling factor 0.004, 0.005 and
0.009 along the line (the label indicates which element scale each line represents).
The permeability is set to 1.36 · 10−5µm2 for all testes.

From fig. 5.1.3 a), we see that the smallest element sizes with a scaling of 0.004
provides a good view of the velocity around the compact area. The simulations
from the zoomed-in images shown in fig. 5.1.3 a) and b), we see the deformation
becomes more detailed as the scaling factor decreases. This choice of element
size indicates that we get a lot more information around the compact and small
gap area. Generating a finite elements scaled smaller than 0.004, becomes too
computationally heavy. Therefore, scaling factor 0.004 will be used for the rest
of the simulations. The full mesh is illustrated in fig. 5.1.4.
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Figure 5.1.4: An overview of the final mesh. a) The entire domain with a finite
element scaling of 0.004. b) A closeup view over the size of the elements in the
compact area.

5.2 The Method of Manufactured Solutions
The method of manufactured solutions (MMS) is a method for verifying the
accuracy of the generated analytical solution in the numerical experiments. The
MMS is executed with the following steps:

• Assuming a function is a solution to the problem.

• Plugin the solution function into the equation to get the source and bound-
ary terms.

• Solve the problem with those conditions as a guide for the simulation tool.

• Compare the numerical result with the chosen analytical (manufactured)
solution.

The steps are described more detailed in [22],[47] and [37]. The concept of MMS
is to use the manufactured solution as an exact solution to a PDE or a set of
PDEs, which have been constructed by solving a given problem backward. This
is done by fitting the boundary condition and the source terms according to the
chosen solution. The source term is then added to the original PDE, such that
the assumed function in the solution satisfies the new PDE exactly. The solution
that has been generated using the manufactured solution is used for comparison
against the numerical solution. The chosen solutions are generated when the
parameter h tends to zero in the saddle point problem (4.48). Furthermore, a
measurement of the error is obtained. The accuracy of the code is determined
by running the problem on refined grids. A verification test using the method
of manufactured solutions provides the precise result as to whether or not the

57



numerical method implemented is correct.

After the manufactured solution is introduced, the source terms are adjusted.
fv and fp represents the source terms in the momentum equation for the vis-
cous (3.16) and the Darcy’s equation for the porous region (3.18). The source
term in the continuity equation is zero because of the divergence-free velocity,
eq. (3.17), and (3.19). Calculation of the source term is done by inserting the ex-
act solutions in eq. (3.5) and (3.11). The MMS are executed for each numerical
experiments, separately, shown in section 5.3.2 and 5.3.3.

5.3 Numerical Experiments
In this section, we will simulate low permeability, increased permeability, and
hyperpermeability in a two-dimensional blood flow model. Solutions generated
from the numerical method will be used for comparison with the eruptions
that are described in section 2.4.1. The goal is to reproduce the images by
simulating the stationary problem with increased permeability rather than the
non-stationary development. We will also test how accuracy is affected by the
physical parameters and boundary conditions.

5.3.1 Simulation Around the Interface
We assume that the burst develops simultaneously with increased permeability.
The endothelial cell will contract and lead to vascular leakage into the porous
domain with increased permeability. After a while, the flow will be stabilized,
and there will be no more drastic changes to the leakage at the interface, this
is where we can assume that the cells have closed up. The endothelial cell con-
traction size and the endothelial cell surrounding the viscous domain is referred
to as a gap and a wall, respectively, for the rest of the thesis.

The simulations are shown with scaled velocity vectors that indicate the direc-
tion of the stream. The plot over line function is introduced for visualization
of the velocity development diagonally on the domain. The pressure develop-
ment is described with a color map.

It is important to remember that we only look at the magnitude of the pressure
profile. This will give us a view over how the increasing permeability affects the
development of the gap. Each step in the axis that is shown in the simulations
represents 10 µm in x- and y-direction. We have tried to be consecutive with
the size of the scale bar and the amount of velocity vectors.

5.3.2 Simulation: Eruption in a Closed Grid
In this section, we will try to simulate how the eruption occurs in the enclosed
grid, to replicate the phenomena inside the red rectangle shown in fig. 3.3.3.
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Preliminaries

The permeabilities are evenly distributed between 1.36·10−9 µm2 and 1.36·10−1

µm2 for mimic the development through time, as shown in fig. 2.4.13 chapter 2.
The following boundary conditions are used for this simulation:

• vin at the inflow boundary.

• No flow conditions, u · n = 0, around the porous domain.

• pout = 0 at the outflow boundary.

The flow starts from the top in the viscous domain, represented as v_in in
fig. 3.3.2 and flow through the vicious domain. These conditions are set such
that we can reproduce the real case problem discussed in chapter 2.

The manufactured solutions are given by:

ue =
(

0
(6− x)(7.5− x)

)
, pe = 6.87 (5.1)

fv = −2µ∇ · ε(ue) +∇p = (0, 0) (5.2)

fp = µ

κ
ue −∇p = (0, µ

κ
(6− x)(7.5− x)) (5.3)

The exact solution for pressure pe is calculated from section 2.2.3 for a 130 µm
long vessel.

The domain is chosen, so the grid is covered by a solid substance, which prevents
flow from streaming any further.

Simulation

Now that we have defined the boundary conditions, the method of manufactured
solutions, and stated the area we want to reproduce, listing 4.2 can modify. The
following modification to the code has been implemented:

inflow = Expression(("0", "180*(6−x[0])*(7.5−x[0])"), degree=2)
bc3_v = DirichletBC(W.sub(0), inflow, boundaries_mf, mark["v_inflow"])

noslip = Constant((0, 0))
bc0_p = DirichletBC(W.sub(0), noslip,

boundaries_mf, mark["top_boundary"])
bc1_p = DirichletBC(W.sub(0), noslip,

boundaries_mf, mark["right_boundary"])
bc2_p = DirichletBC(W.sub(0), noslip,

boundaries_mf, mark["left_boundary"])
bc3_p = DirichletBC(W.sub(0), noslip,

boundaries_mf, mark["bottom_boundary"])

# Collected conditions
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bcs = [bc3_v, bc0_p, bc1_p, bc2_p, bc3_p]

and the source terms:

f_p = Expression(("0", "mu/K_p*(6−x[0])*(7.5−x[0])"),
mu = mu, K_p = K_p, degree=2)

f_v = Constant((0, −6.87))

Case 1: Low Permeability

We need to ensure that we have a resting case, such that the comparison with
the fig. 2.4.13, where the time is equal to zero, becomes as accurate as possible.
For this to occur, we need to choose low permeability for walls around the
viscous domain and in the gap between the viscous and porous domains. This
will make sure that the wall is closed up for all bursts. The boundary condition
is set so that the flow is enclosed in the 100 × 100 µm2 area. These conditions
enable us to study the eruption in a small area without any further leakage.

Figure 5.3.5: Left: Simulation of viscous and porous flow in an enclosed mesh
with very low permeability. In this case, the gap does not affect the flow at all.
Right: development of velocity in the simulation. The y-axis shows the velocity
magnitude, and the x-axis represents the position of the line.

This simulates a default 2D flow in a blood vessel without an eruption. The
permeability is set to 1.36 · 10−9 µm2. With some assumptions, this can be
represented as blood flow in a healthy zebrafish. The line shown in fig. 5.3.5 is
set to go straight through the area where an eruption is expected. This line will
be used in the other simulations to analyze the velocity development.
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Case 2: Increased Permeability

In this case, the permeability is increased, such that we can study the beginning
of an eruption. We are simulating the start of an eruption and a few steps after
the eruption has occurred. Remember that we use a gap that has an opening
in the viscous domain equal to 2.8 µm and expands to a 4 µm.

We assume that this is related to the case where the blood cells start to leak
through the walls, and the eruptions start to build up. The simulations can be
compared to the eruption that is illustrated in fig. 2.4.13), in the time frame of 30
to 50 seconds. A magnitude profile with for different permeability is illustrated
as following:

Figure 5.3.6: A zoomed-in view of the simulations for the coupled flow in an
enclosed mesh. Left: simulation with permeability: 1.36 · 10−5µm2, right: sim-
ulation with permeability: 1.36 · 10−4µm2.

This simulates a specific outburst with the variables reviewed in table 5.1 and
section 5.3.2. From the left image in fig. 5.3.6, the gap has opened up, and the
eruption starts. The closed mesh causes the pressure to build up.
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Figure 5.3.7: A zoomed-in view of the line plot, with the same line as in fig. 5.3.5.

The profile for permeability equal to 1.36 · 10−5µm2 and 1.36 · 10−4µm2 are
represented with the purple and green line in fig. 5.3.7. We can see that there
is some development around the gap. The maximum values calculated with the
Plot over line function in ParaView for the velocity magnitude at the gap,
are around 56 µ

s and 360 µ
s for permeability 1.36 ·10−5µm2 and 1.36 ·10−4µm2.

Case 3: Hyperpermeability

The last case that we are going to study is the hyperpermeability, which is
equivalent to a fully developed eruption. The permeabilities are between 1.36 ·
10−3µm2 and 1.36 · 10−2µm2. Increasing the permeability more than this will
not affect the velocity at the gap. The simulations for permeability higher than
this are shown in appendix A. With these permeabilities, we can assume this is
how the eruption acts in the last timestamp of the burst. The simulation can
be compared to fig. 2.4.13, around 60 to 80 seconds after burst.
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Figure 5.3.8: Simulation of the coupled flow in an enclosed mesh. Left: perme-
ability 1.36 · 10−3µm2, right: permeability 1.36 · 10−2µm2.

Figure 5.3.9: A zoomed-in view of the line plot, with the same line as in fig. 5.3.5.

The maximum value of the velocity magnitude at the gaps are 810µs and 925µs
for permeability set to 1.36 · 10−3 µm2 and 1.36 · 10−2 µm2. There are minimal
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changes in the velocity for in the simulations with permeability equal to 1.36 ·
10−3 µm2 and 1.36 · 10−2 µm2, shown in fig. 5.3.8. We will assume that the
flow has started to stabilize at this point. Hyperpermeability is achieved.

5.3.3 Simulation: Eruption in a Open Grid
Now that we have studied a general eruption within a closed grid, the next step
is to look at an open grid. We will assume that the leak can stream further
than the red rectangle shown in fig. 3.3.3. In section 3.2, we concluded that the
fluid flow between the cell-to-cell junction pursues the same principals as a free
viscous flow. We will rewrite our code such that stokes flow is implemented in
the junction in the porous domain.

Preliminaries

The permeability is evenly distributed between 1.36 · 10−9 µm2 and 1.36 · 10−2

µm2. There is a significant change to the Dirichlet conditions, such that the
streamlines can flow more freely out of the grid. The only boundary set for
this case is, Stokes flow at vin. The no-slip conditions are removed from the
boundaries in the porous domain. These conditions will produce the same man-
ufactured solution as in eqs. (5.1) to (5.3).

There is limited research on the gap size of an eruption inside an infected ze-
brafish. However, there have been quite a few experiments for the same phe-
nomena in mice. In the paper by Stefan Wilhelm et al. [53], they conclude that
the endothelial cell contractions are around 100nm− 500nm.

The mesh has been reproduced with a gap set to 300nm, which expands to
1400nm at the porous end.

Simulations

The assumptions done for this simulation gives a drastic change to the listing 4.2.
The p_domain in the bilinear form will be changed, to Stokes flow. The no-slip
Dirichlet boundaries will be removed, and we will get the following boundary
conditions:

inflow = Expression(("0", "180*(6−x[0])*(7.5−x[0])"), degree=2)
bc3_v = DirichletBC(W.sub(0), inflow, boundaries_mf, mark["v_inflow"])

bcs = [bc3_v]

The method of manufactured solutions is the same as for the previous experi-
ment 5.3.2, and we will continue to work on a two-dimensional mesh.

Case 1: Low Permeability

A simulation of the resting case in an open grid, with the permeability set to
1.36 · 10−9µm2, are shown in the figure below.
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Figure 5.3.10: Left: Simulation of viscous and porous flow in an open mesh
with low permeability. In this case, the gap does not affect the flow at all.
Right: development of velocity in the simulation. The y-axis shows the velocity
magnitude, and the x-axis represents the position of the line.

This gives a simulation of a steady flow with no eruption. The choice of perme-
ability leads to a closed gap.

Case 2: Increased Permeability

Simulations of increased permeability, where the gap starts to open up slowly.
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Figure 5.3.11: A zoomed-in view of the simulations for the coupled flow in an
open mesh. Left: simulation with permeability: 1.36 · 10−5, right: simulation
with permeability: 1.36 · 10−4.

In the left image in fig. 5.3.11, the gap has opened up, and the flow starts to
leaks into the porous media.

Figure 5.3.12: Plot over line for the simulations in fig. 5.3.11, with the line
at the same location as in fig. 5.3.10.
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The profile for permeability equal to 1.36 · 10−5µm2 and 1.36 · 10−4µm2 are
represented with purple and green lines. From fig. 5.3.12, we observe that the
Plot over line shows an increase of velocity vectors further away from the
gap.

We will look closer into the velocity development of the eruption in section 5.4.1.

Case 3: Hyperpermeability

The last simulations show the behavior of the leakage close to a stabilized erup-
tion. This occurs when hyperpermeability is archived.

Figure 5.3.13: Simulation of the coupled flow in an open mesh. Left: perme-
ability 1.36 · 10−3µm2, right: permeability 1.36 · 10−2µm2.

We assume that the simulation to the right in fig. 5.3.13, illustrate a fully evolved
eruption. Increasing the permeability will not affect the eruption.
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Figure 5.3.14: plot over line for the simulations in Figure 5.3.13.

From fig. 5.3.14, we observe that there are minimal changes to the velocity
development between permeability 1.36 · 10−3µm2 and 1.36 · 10−2µm2.

5.4 Results
In this section, we will compare the stationary results from the simulations
with the non-stationary observations provided by Vollestad [57]. The method
described in section 4.4.1 will be used for the comparisons.

5.4.1 Velocity Development in the Coupled Scheme
The inflow has been chosen, so the velocity in the viscous domain is comparable
with the results from section 2.2.3 in chapter 2. By increasing the permeability
for both scenarios, we get the following velocity:
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Figure 5.4.15: Velocity development inside the simulated blood vessel with in-
creasing permeability. Note that there are small changes to the values on the
y-axis.

The mean velocity equals to 314 µm
s for an open grid and 303 µm

s a closed grid.
The values agree with the velocity calculated in section 2.2.3.

Since we assume that the gap closes after it reaches hyperpermeability, indicates
that this is the last step of the development. The eruption is fully developt at this
point. The top image in fig. 5.4.16 shows the velocity development in the porous
and interface domain. The values have been calculated from the mathematical
expression for velocity in section 4.4.1 for each experiment with permeability.
We will study the development in the closed grid first. The velocity in the
simulated cases provides a representation of how the development is in the real-
life case. However, the velocity development does not match the results provided
by Vollestad [57]. The difference in gap sizes causes the mismatch. The velocity
has a much bigger amplitude than the calculated velocity.
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Figure 5.4.16: Top: Velocity development in porous and interface domain, when
permeability increases. Bottom: calculated velocity development over time with
laminar eruption from the paper by [57].

The next step is to look at the velocity development for an open grid, which
represents the case where the flow can stream out of the 100 × 100 µm area.
The same velocity developments will be studied for this case. The development
of velocity throughout increased permeability in the interface and the porous
domain is shown in fig. 5.4.17. The velocity in the simulated cases provides an
excellent representation of the development in a real-life case.
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Figure 5.4.17: Top: Velocity development in porous and interface domain, when
permeability increases, for an open grid with a gap size of 300nm. Bottom:
calculated velocity development over time with laminar eruption from the paper
by [57].

The amplitude for the simulated case is closer to the calculated case provided
by Vollestad [57], compared to the closed grid.

5.4.2 Pressure Development in the Coupled Scheme
We have calculated the analytical solution to a laminar case, shown in eq. (2.7),
where we show the pressure change for the entire eruption. The calculated value
will be used for comparison with the numerical results that we have collected.

The mathematical expression, shown in section 4.4.1, is used to calculate the
pressure for each simulation. This is plotted against the increased permeability
in. The pressure change in the viscous domain for both cases are given by:

71



Figure 5.4.18: Pressure development against increased permeability in the vis-
cous domain. Note that the changes in the y-axis are small.

We will separate the results for pressure in the other domains since the calculated
ratio between a closed and open grids are significant. Since we have a closed
grid, the pressure will accumulate.

Figure 5.4.19: Pressure development against increased permeability in the in-
terface and porous domain for closed grid. The changes in the y-axis are repre-
sented logarithmically.

The pressure development generated in the closed grid is unrealistically large.
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An open grid results in a better representation of the pressure development.

The results in the porous and interface domain are shown separately.

Figure 5.4.20: Pressure development against increased permeability in the in-
terface domain for an open grid.

Since the interface domain is located between the viscous and porous domains,
the flow passing through the interface domain result in a negative pressure
difference.
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Figure 5.4.21: Pressure development against increased permeability in the
porous domain for an open grid. Note that the changes in the y-axis are small.

The comparison between simulated and calculated pressure changes are reviewed
in the discussion.
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Chapter 6

Summary and Discussion

In this thesis, we have simulated a model for the evolution of a burst in a blood
vessel covered by tissues, using a unified mixed discretization of the coupled
Darcy–Stokes problem. The goal was to simulate a stationary eruption with
increased permeability, and compare it to the theoretical assumption done in
section 2.3, with the burst described in section 2.4.1.

In this chapter, we will summarize and discuss how each part has effected our
results and describe how this can be improved in further work.

6.1 Summary
6.1.1 The Coupled Darcy-Stokes Equation
The coupled Darcy-Stokes scheme is generated with a unified strategy, repre-
sented weakly with L2-formulation, which was discretized with the Taylor-hood
elements. Implementing this method is straightforward in FEniCS software and
has a low computationally expensive when we work on a two-dimensional space
with the right choice of mesh. This has made possible to test many different
cases and adjust the Dirichlet and Neumann conditions to generate the simu-
lations. However, Taylor-Hood elements are unable to reproduce the physical
pressure discontinuity at the interface between the viscous and porous domains.

The numerical and mathematical techniques used in this thesis are comparable
with the research done by Karper et al. [21], Abouorm et al. [1], and Ellingsrud
[11]. The papers solve the coupled Darcy-Stokes problem, with the same L2-
formulation as in this thesis. The Taylor-Hood element discretization is also
introduced in Ellingsrud [11], Karper et al. [21].
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6.1.2 The Domain
Each blood vessel has a unique geometry, surrounded by different shapes of
cells. Throughout the thesis, we have held to the same geometry, where we
show the simulations in a 100x100 µm area. The most notable changes done to
the domain are testing with different gap sizes and boundary conditions, such
that we get a clear view of how these changes can influence the problem.

We have done simulation for two different gap sizes, with roughly the same
numerical method. The gaps have been generated such that they have an oblique
growth outwards, which ensures that the fluid gets a smooth transaction from
the viscous domain and out to the porous domain. The location of the gaps
has been chosen carefully around the center of the bend in the vessel. The
large-scaled gap in section 5.3.2 gives a clear view of how the flow behaves
around the gap. Another experiment with a large-scaled gap with an open grid
is shown appendix A. However, this is an unrealistic choice of gap size. The
smaller gap size in section 5.3.3 is chosen based on the research in the paper
by Stefan Wilhelm et al. [53]. Implementing those circumstances will generate
simulations which can be related to real case scenarios discussed in chapter 2.

6.1.3 Boundaries
In section 2.2.1, we looked at different types of observed eruptions in a stationary
case, emerged from some arbitrary part in the zebrafish body. These illustrations
show different types of eruptions. Simulating a precise case is a difficult task,
considering that each eruption occurs uniquely. However, introducing the right
preliminaries results in useful simulations.

The preliminaries shown in section 5.3.2 and 5.3.3 for the boundaries have been
chosen carefully. They show different layouts for the surrounding tissues. The
boundary conditions for simulations shown in section 5.3.2 illustrates a blood
vessel in an enclosed surrounding. This prevents the leakage from expanding
any further. While in section 5.3.3, we simulated the eruption for an open grid.
However, the conditions are set such that the leakage can continue steaming in
the cell-to-cell junctions in the porous domain. The conditions introduced for
an open grid in section 5.3.3 generated good simulation for comparison with the
calculations and studies shown in section 2.4.1.

The simulations executed in chapter 5 only show the development in a 100x100
µm area, which makes it challenging to study leakages further than the grid.

6.1.4 Simulations
The first numerical experiment (section 5.3.2) shows a simulation of an eruption
into a tissue using a closed grid. This shows how the eruption behaves in a
compact location in the circulation, with tight tissue structure.

In the textbook by Molnar and Gair [34] the relationships between velocity and
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pressure in the circulations have been studied. By using the results provided
by the paper and the results from section 5.3, we can relate the grid used in
the numerical experiments to a suitable vessel. To do this, we need to assume
that the numerical experiments agree with the physiology of the tissue and blood
vessels in a zebrafish. In the closed grid, the changes in pressure and velocity are
large. From the textbook by Molnar and Gair [34] we know that this behavior
occurs in the transaction from the artery to capillary close to the heart. The
case with an open grid gives us a significantly smaller pressure change, while
the velocity sustained the same as in the closed grid. We can therefore assume
that this grid can be located in the veins.

From the research by Stefan Wilhelm et al. [53], we know that the gap size
should be between 100 and 500. By using a gap size equal to 300, we see that
the numerical experiments match with the calculations (shown in section 6.1.5).

The simulation has been done for permeabilities between 1.36 · 10−9µm2 and
1.36 · 10−2µm2. For each experiment, the permeability is multiplied by ten,
until we achieve a stable velocity and pressure. From the simulations, we see
that the eruptions stabilizes around permeability 1.36 · 10−2µm2. This case
represents a fully evolved eruption. Simulations for permeability higher than
this are added in appendix A. These simulations confirm that there are no
significant changes to the eruption when increasing the permeability further than
1.36 · 10−2µm2. Hence our simulations illustrate the evolution of an eruption
from the beginning to a stable state. This can be compared with the experiment
shown in section 2.4.2, where the laminar flow was fully evolved after 80 seconds,
before it stabilizes.

As mentioned in [16, 32, 55], the cause of endothelial cell contractions, is in-
creased permeability. The results from the stationary experiments with in-
creased permeability supports the hypothesis introduced in these reports.

6.1.5 Velocity and Pressure Development
In chapter 5, numerical calculations for velocity and pressure development in a
formed eruption was accomplished. Using the results from the experiment in
section 5.3.3 and the calculation in section 5.4.1, we can determine a reasonable
relation between the velocity development in time and the numerical experi-
ments with increased permeability. The evolution of an eruption over time are
illustrated thoroughly in section 2.4.1, and in the paper by Vollestad [57]. With
these correlations, the stationary development of velocity in an open grid can
be compared with the eruption emerging over time. This is shown in table 6.1.

Table 6.1: Comparison between the increased permeability used in the simu-
lations of an eruption, shown in section 5.3.3, and the time-evolving eruption
represented in section 2.4.2.
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Permeability Time
1.36 ·10−9µm2 0 s
1.36 ·10−6µm2 40 s
1.36 ·10−5µm2 50 s
1.36 ·10−4µm2 60 s
1.36 ·10−3µm2 80 s
1.36 ·10−2µm2 100 s
1.36 ·10−1µm2 120 s

We used the same approach to analyze the pressure development. The results
submitted in section 5.4.2 shows the pressure development for increased per-
meability in the numerical experiments. The pressure difference obtained by
the numerical experiment in the open grid ( in the porous domain ) is 0.014
Pa, shown in fig. 5.4.21. This value is relatively close to the calculations done
for a pressure difference in an eruption in a physical experiment, which results
in 0.03340 Pa, shown in eq. (2.7). This value has been governed from the
experiments performed by Vollestad [57]. Furthermore, we can conclude that
the numerical calculations executed for the pressure difference and velocity is a
reasonable estimate.

6.2 Limitations
Because of limited memory resources, the generated mesh size resulted in high
deformation near the gap. This yields particularly for the simulations shown in
fig. 5.3.6. ParaView was used for visualizing the velocity and pressure. However,
The resulting images obtained from the numerical experiment are large (several
GB), and manipulating with such data is difficult on a standard computer with
8 or 16 GB of RAM. Hence memory issues prevent us from analyzing the data
with specific techniques that are provided in ParaView. Furthermore, using
FEniCS on grids with a large number of elements resulted in memory issues.
The simulations for permeability higher than 1.36·10−2µm2, in some cases, were
not possible to obtain. There is some disadvantage when Taylor-Hood finite
elements are implemented. There is no element-wise mass conservation for the
continuous pressure space. Taylor-hood elements are not pointwise divergence-
free.

6.3 Further Work
The goal in this thesis was to simulate the simultaneous flow in both viscous and
porous flow with increased permeability for the blood vessel wall (endothelial
cells), which resulted in a model for the development in an eruption. However,
we only simulated the experiment using a simple two-dimensional geometry.

In this experiment, the permeability is increased for each experiment with a
factor of 10. Each simulations show the results in an equilibrium stage. However,
increasing permeability with a smaller factor would give a detailed view of the
eruption in a much smaller stage, or even converting over to a non-stationary
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problem. The next step is to use the numerical scheme to solve the problem on a
more realistic three-dimensional geometry. Moreover, extending the conditions
in the Stokes equation to the Navier-Stokes equations, such that we can apply
the Navier-Stokes-Darcy model [9].

6.4 Conclusion
In this thesis, a stationary L2-formulation of coupled Darcy-Stokes discretized
with Taylor-Hood elements was implemented on a two-dimensional mesh, illus-
trating a blood vessel and its surrounding. This resulted in a simplified model
that can be used to represents complicated natural and medical phenomena.

One of the most critical values in this thesis was permeability, which has an
essential impact on eruption development. The numerical method in this thesis
presents the possibility to study the growth of a burst throughout increasing the
permeability. Furthermore, analyzing the velocity and pressure of an eruption
in stationary simulations generated a robust model of how the fluid behaves.

In the simulations and during the result-analysis, we noticed that our numerical
methods introduce an excellent method for visualization of an eruption, which
occurs from arbitrary contractions in endothelial cells. A relatively good com-
parison with the calculations done by Vollestad [56, 57] has been accomplished.
Furthermore, a good understanding of what the generated simulation has in
common with the experiments provided by Resseguier [41, 42, 43, 44].
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Appendix A

Additional simulations

In this appendix, additional simulations are introduced. When it comes to
visualizing of the simulations, the same properties as in section 5.3.2 and Sec-
tion 5.3.3 have been used.

High permeability simulations for
an open grid and 300nm gap size
The figure below shows the simulations for the stabilized eruption in section 5.3.3,
which clarifies that increasing permeability does not affect the eruption.
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(a) Permeability: 1.36 · 10−1µm2 (b) Permeability: 1.36 · 100µm2

(c) Permeability: 1.36 · 101µm2 (d) Permeability: 1.36 · 102µm2

Figure 1.0.1: The stabilized simulations of an eruption in an open grid.
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Figure 1.0.2: Plot over line in for permeabilities: 1.36 · 10−1µm2 - 1.36 · 102µm2

in an open grid and 300nm gap size. All the values overlap; hence there is no
change to the velocity. Furthermore, there are no changes to the pressure.

Simulations for
a closed grid and 300nm gap size
The presented simulations have the same eruption gap as the simulations shown
in section 5.3.3, with the boundary condition in section 5.3.2. The simulations
are shown below.

83



(a) Permeability: 1.36 · 10−9µm2 (b) Permeability: 1.36 · 10−8µm2

(c) Permeability: 1.36 · 10−7µm2 (d) Permeability: 1.36 · 10−6µm2
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Figure 1.0.4: Plot over line for permeability: 1.36 · 10−9µm2 - 1.36 · 10−6µm2 in
an closed grid and 300nm gap size.
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(a) Permeability: 1.36 · 10−5µm2 (b) Permeability: 1.36 · 10−4µm2

(c) Permeability: 1.36 · 10−3µm2 (d) Permeability: 1.36 · 10−2µm2
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Figure 1.0.6: Plot over line for permeability: 1.36 · 10−5µm2 - 1.36 · 10−2µm2 in
an closed grid and 300nm gap size.
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Velocity and Pressure Development
The following figures illustrate the velocity and pressure development in a closed
grid and 300nm gap size, for each subdomain.

Figure 1.0.7: The velocity development for each subdomain in a closed grid and
300nm gap size. Note the small changes in the y-axis.
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Figure 1.0.8: The pressure development for each subdomain in a closed grid and
300nm gap size. Note the small changes in the y-axis.

Simulations for
a open grid and 4µm gap size
The presented simulations have the same eruption gap as the simulations shown
in section 5.3.2 with the boundary condition in section 5.3.3. The simulations
are shown below.
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(a) Permeability: 1.36 · 10−9µm2 (b) Permeability: 1.36 · 10−8µm2

(c) Permeability: 1.36 · 10−7µm2 (d) Permeability: 1.36 · 10−6µm2
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Figure 1.0.10: Plot over line for permeability: 1.36 · 10−9µm2 - 1.36 · 10−6µm2

in an open grid and 4µm gap size.
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(a) Permeability: 1.36 · 10−5µm2 (b) Permeability: 1.36 · 10−4µm2

(c) Permeability: 1.36 · 10−3µm2 (d) Permeability: 1.36 · 10−2µm2
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Figure 1.0.12: A better view of the simulation with permeability equal to 1.36 ·
10−2µm2 in an open grid and 4µm gap size.
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Figure 1.0.13: A zoomed view of plot over line for the simulation in an open
grid and 4µm gap size. The maximum velocity magnitude that are outside the
view are: 250 µ

s , 310
µ
s , 350

µ
s and 410 µ

s for the permeabilities 1.36 · 10−5 -
1.36 · 10−2, repectively.
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Velocity and Pressure Development
The following figures illustrate the velocity and pressure development in an open
grid and 4µm gap size, for each subdomain.

Figure 1.0.14: The velocity development for each subdomain in an open grid
and 4µm gap size.
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Figure 1.0.15: The pressure development for each subdomain in an open grid
and 4µm gap size.

Time usage
The time used for the numerical experiments, where we have executed the code
for each permeability separately:
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Figure 1.0.16: A view of time used against permeability for each experiments.
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