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Abstract

Information security needs to ensure the safety of an increasingly complex
and connected technology structure. The demand for robust and secure IT
systems is more critical than ever before. Early identification of vulnera-
bilities in software is an important measure to meet the high and justified
security standards for modern-day information systems. This master thesis
investigates the possibilities and limitations of applying a celebrated machine
learning paradigm to software vulnerability detection.

We propose a novel approach by applying Supervised Learning using a Re-
current Neural Network constructed by layers of Long Short Term Memory
cells. We have limited our research to one of the most relevant and arguably
most dangerous class of vulnerabilities, the Stack-Based Buffer Overflow. We
have carefully generated and engineered data for training and testing in order
to replicate software in the "real world".

We run several experiments using our data and our models in order to validate
specific hypotheses about the neural network. We designed each experiment
with the intent to unveil whether or not necessary attributes for the neural
network are achievable. E.g., accuracy, effectiveness, and sensitivity to low
variance data.

Our research indicates that there is indeed some merit to our approach.
Even with a "shallow" neural network architecture, our models were able
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to perform surprisingly well. As data complexity increased, so did the re-
quired training time for our models before converging to a sufficient level of
accuracy. Our research also indicates that for complex data distributions,
hyperparameter optimization is increasingly challenging.

We conclude that Recurrent Neural Networks are capable of and succeed in
differentiating between benign and vulnerable software. Our research has
several limitations and a narrow scope. However, it aims to determine a
proof of concept. Thus, we believe that our conclusion holds. Further re-
search is needed to discover the potential of using machine learning as an
accommodating tool for discovering vulnerabilities in software.

All findings are restricted to our environment and the limitations of our study.
We do not attempt to extrapolate results beyond this exact scope.
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Chapter 1
Introduction

In this chapter, we will provide a short description of the area of research, the
research problem, and our novel approach towards it. We are to present the
underlying issues and challenges which sparked our interest in using classical
deep learning techniques for vulnerability detection. We will also introduce
the objective of our thesis as well as our motivation grounded in these chal-
lenges. In the last section of this chapter, we will lay out an overview of our
dissertation to ease further reading and provide a general overview of our
work.
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1.1 Area of research

This master’s thesis spans two major research fields: Information Security
(Infosec) and Machine Learning (ML). The union of these two areas has be-
come an important research subject as information security has become more
relevant than ever before. We, as well as other researches, are exploring the
possibilities and limitations of extending and supporting information security
through machine learning techniques.

The ISO/IEC definition of information security is "Preservation of confi-
dentiality, integrity, and availability of information" [1], which we believe
encompasses the core of information security in an excellent way. Infosec is a
set of practices intended to keep data secure from unauthorized access or al-
terations. One of these practices is vulnerability assessment, which involves
defining, identifying, and classifying security holes in information technol-
ogy systems. In this master thesis, we are concerned and focused on the
identification or detection of such vulnerabilities in software.

Machine learning is a field of research that is continually evolving and is
in rapid change. Historically we say that Machine Learning is a subset of
Artificial Intelligence (AI) that has revolutionized several fields in the last
few decades. We would like to mention Deep Learning (DL) as well, which is
a branch and broader family of machine learning methods based on artificial
neural networks. We will elaborate on neural networks, machine learning,
and deep learning in our theoretical background chapter.

1.2 Motivation

Our motivation comes from two standpoints: an information security stand-
point and a machine learning standpoint. We will start with our motivation
concerning information security.

One of the many ways to improve software security is to identify and repair
vulnerabilities. Flaws in code is a multi-billion dollar expense yearly. Mal-
ware developed to exploit these vulnerabilities has become an ever-increasing
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problem for users, corporations, and governments worldwide. WannaCry[2],
which is, if not one of the most relevant and dangerous ransomware in re-
cent history, emerged from a Server Message Block (SMB) vulnerability. The
EternalBlue [3] exploit utilized this vulnerability. When the Shadow Brokers
[4] leaked the exploit, it gave rise to the WanaCry ransomware, which alone
ended up costing an estimate of 8 billion USD globally.

Given today’s business priorities, developers are creating software at a fast
pace, which consequently introduces flaws and bugs in code. The number
of vulnerabilities discovered each year has steadily increased over the last
decades, with a record of 16,665 discoveries in 2018. [5] Even though this
could be interpreted as a positive trend, we argue that the overall risk has in-
creased. The impact of a security breach has dramatically increased because
applications are the custodians of more critical data and functions than ever
before.

Software vulnerabilities can stay undiscovered for a long time before they are
detected. Detection usually happens in one of four ways:

1. Accidentally: A use case appears that crash an application.

2. Fuzzing: Providing invalidate data on purpose.

3. Analyzing malware: Reverse engineering malware may give reveal a
used unknown vulnerability.

4. Analyzing software: Scrutinizing software with static or dynamic
code analyzers such as Google CodeSearchDiggity [6], Joern [7] or
Flawfinder [8].

Given the ever-increasing complexity of software structures and its elevated
integration across infrastructure, undiscovered vulnerabilities may lead to
detrimental consequences. As security researchers, we are highly motivated
by the importance of scrutinizing potential additions to the field of study.

From a machine learning standpoint, we are interested in the possibilities
of treating assembly code as a language. For an extended time, Recurrent
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Neural Networks( which is a class of neural networks) have been the state-of-
the-art neural network class for processing sequences of data. Whether it be
text, time-series predictions, handwriting, or speech recognition, RNNs have
proven success in exhibiting temporal dynamic behavior. Our work provides
an excellent opportunity to assess the use of an unconventional class of data
in recurrent neural networks.

Even though our undertaking is complex, we are exceedingly motivated to
contribute to an exciting and evolving bailiwick.

1.3 Thesis objective

This master thesis aims to determine the feasibility and limitations of vul-
nerability detection on binary executables by utilizing a supervised machine
learning technique. We chose to use a Recurrent Neural Network with Long
Short Term Memory(LSTM) cells. This class of artificial neural networks
has an excellent ability to handle input vectors of arbitrary and non-uniform
lengths. RNNs are also well suited for extrapolating context in sequences of
data. RNNs with LSTM cells have proven effective in tasks related to natural
language.

Code or programming languages share some fundamental similarities with
natural languages. Both have syntax, semantics, pragmatics (they are heav-
ily context-dependent), and grammar. Whereas natural language conveys
information between humans, code is concerned with configuring and stat-
ing what a computer should do. These similarities fit our desire to explore
the possibilities of treating assembly code as a natural language and apply
a tried and true machine learning paradigm. There are apparent differences
between code and natural languages, such as simpler syntax or less uncertain
and diverse pragmatics. However, we still believe that the underlying struc-
ture of code is similar enough to natural languages, such that our approach
is worth exploring.

Our research elaborates to prove or disprove whether or not binary classi-
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fication on code files, where the goal is to differentiate between benign and
vulnerable files, is feasible. In turn, the results will allow us to make a
statement about the viability and practicality of our novel approach toward
vulnerability detection.

We expect to unveil the challenges of our novel approach, draw a conclusion
based on our hypothesis, and discover possible extensions of our work through
our research. We acknowledge that our objective is exceedingly difficult to
achieve. Thus, we would like to state that any negative results can be of
use in revealing or disclosing the potential or limitation for parts of or the
entirety of our particular approach. In itself, this information could be useful
for guiding future research in the right direction.

1.4 Research methodology

This section will serve the purpose of a high-level overview of our research
method. Further details and elaborations about each step of our research
methodology recommence in their corresponding chapters. Details include
alternative and available options, the reasoning behind our choices, and run-
through our development pipeline.

We started our research by making a hypothesis; Can Recurrent Neural Net-
works detect software vulnerabilities in code files? Our hypothesis is exten-
sive. To fit the scope of a master’s thesis, we narrowed our research down to
exploring the limitations and possibilities of our approach with a single class
of vulnerabilities.

To evaluate and determine whether our approach of using supervised learning
for vulnerability detection was feasible or not, we set up a series of experi-
ments. We devised each experiment with the intent of unveiling the potential
or limitation of our approach gradually. For each experiment conducted, we
perform an individual evaluation. This way, we can underpin and establish
a basis for an overall evaluation, and eventually draw a conclusion.

We decided to assess our hypothesis in an artificial setup/environment by
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developing a collection of functions divided into two libraries of vulnerable
and benign functions. We used these functions to generate fully functional
and executable code files. In turn, these code files are compiled and trans-
formed into data samples for training and testing our neural network model.
This approach gives us greater control of the data samples concerning size,
complexity, and variance.

We chose to develop our code for the recurrent neural network by using
PyTorch [9], an open-source machine learning library for Python. By de-
signing the architecture, configurations, and developing our neural network
ourselves, we were able to tailor the network to our specific needs. In turn,
by creating everything ourselves, we achieved a deeper understanding of our
neural network’s inner workings and behavior on different configurations and
distributions of training data.

1.5 Implementation overview

In order to conduct our research and test our hypothesis, as described in
the methodology and thesis objective section, we had do develop several
tailored pieces of software. In order to run our experiments, we developed
the following programs:

Function libraries: Two libraries that contain benign and vulnera-
ble functions written in C language code. All vulnerabilities contain
stack-based buffer overflow flaws. Half of the benign library consists of
repaired functions from the vulnerability library.

Generator: A python program which generates fully functional pro-
gram files written in C code. This generator program, in conjunction
with the function libraries, allowed us to generate thousands upon thou-
sands of unique program files. Eventually, these program files are used
to create the datasets we use for our experiments.

Compiler: A python program that compiles all the generated C pro-
grams into assembly programs. We use the GCC compiler with Intel
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style syntax. The compiler was crucial as we were often compiling
thousands of binaries at the time.

Data cleaner: A python program that does the bulk of our feature
engineering. Assembly files are labeled, stripped of superfluous infor-
mation, and written to a training and a testing file. These two files are
input to our neural network.

Neural Network: A python program that consists of all the code for
our neural network implementation. This neural network allows us to
run our experiments various configurations, such as hyperparameters
and training and test data.

Further details, explanations, and code snippets on our software are included
in chapter five. All code associated with our thesis is available at the follow-
ing git repository [10]. A thorough guide on how to perform our experiments
will be provided on this repository.

1.6 Related work

The area of research on vulnerability detection using ML is still uncharted,
so no absolute solution has been determined or discovered yet. Many of the
relevant papers are concerned with malware detection, which is dissimilar to
what we opt to do. However, there are promising investigations and indeed
successful implementations in using machine learning techniques for vulnera-
bility detection. We will elaborate further on the state of the field of research
in our literature review. Our approach is, in many ways, different from the
previous work done. This concerns both data, features, representational level,
and model architecture. We thoroughly elaborate on decisions and choices
in their respective chapters, but we would like to present an overview of the
main dissimilarities:

Data: To begin with, we generate our own data. Other research col-
lected samples from various sources. We argue for the sake of our
objective that the generated data achieve its purpose.
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Features: Like most related research, we are also utilizing static fea-
tures. As we are treating code as a language, this is the natural ap-
proach. We do not analyze any dynamic features as we would like our
model to be able to do vulnerability detection on "cold" binaries, that
is, not executed.

Representational level: Our approach is unique with regard to rep-
resentational level. While other research on static features assumes
available source code, we do not. One objective for our hypothesis is
that we would like to analyze binaries where source code is not avail-
able. However, the assembly instructions we use can be derived by
using various decompilers. In chapter five, we conduct further discus-
sions around the representational level.

Model: Whereas most other approaches assemble multi-layered deep
neural networks in conjunction with or utilizing other advanced ma-
chine learning paradigms. We choose a simplistic and minimalist ap-
proach.

Since the purpose and goal for our master thesis is to research a new and
unexplored approach towards vulnerability detection, it is natural for us to
deviate from the already traversed propositions.

1.7 Structure

Our thesis is divided into eight chapters, including this introduction. The
introductory first chapter has served as a primer and an overview of the main
aspects of our work. It has offered an introduction to our fields of research,
the motivations behind our research, and stated the research objective. The
chapter has also given a high-level explanation of methodology, implementa-
tion, and a comparison with related work.

Theoretical focus and underpinnings can be found in chapter two. We present
four central areas in which we believe the reader should be familiar. These
are, in order: the stack-based buffer overflow vulnerability, a bottom-up per-
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spective on neural networks, an introduction to deep learning, and ultimately
recurrent neural networks. In this chapter, we also provide our reasoning be-
hind using Long Short Term Memory cells in our neural network.

Related sources and taxonomy of our field of research is presented in chapter three.
In this chapter, we provide a comprehensive overview of how far the field of re-
search has advanced by reviewing the most relevant papers for our objective.
This chapter also functions as a guideline for evaluating our findings.

The scope of a master thesis has its boundaries and limitations. In the
fourth chapter, we state our challenges and limitations. They have, in turn,
guided the scope and the design of the thesis objective. We cannot possibly
hope to cover everything, and with our limited resources, we had to make sev-
eral compromises. These compromises span vulnerabilities, data gathering,
and model architecture.

In chapter five, we present our approach and implementation for generating,
compiling, and feature engineering our data. To make this process as intuitive
as possible, we have included a pipeline-like diagram. This chapter also
encompasses an overview of our developed model architecture, code samples,
and discussions around our choices to the aforementioned content.

The core of the thesis are the experiments conducted. We present all ex-
periments, the goal for each of them, their configurations, and datasets in
chapter six. We document the results and individual evaluation with a con-
clusion about whether or not the experiment was successful. At the end of the
chapter, we make a generalized evaluation and assessment of the experiments
and what we can interpret from them.

Concerning our limitation and scope, we have many interesting possible ex-
tensions of our work. The received results have also raised additional ques-
tions and challenges. In chapter seven we discuss these potential expansions.
We hope that these challenges might inspire forthcoming researchers and help
push the field of research further.

In the last chapter, we summarize the problem, our main findings, and make

15



a statement on whether or not our approach holds merit towards our prob-
lem statement. We also take a critical standpoint towards our findings and
consolidate our limitations, research results, and evaluation of experiments
in order to establish a well-grounded conclusion. Finally, we conclude the
chapter with some final thoughts and inspirations for professionals in the
field of research.
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Chapter 2
Theoretical background

This chapter aims to provide the reader with the theoretical foundations of
our dissertation. We are to present three central domains of knowledge that
we believe would benefit the reader. In order, we will establish sufficient
knowledge about stack-based buffer overflows, neural networks, and finally,
deep learning with a particular focus on recurrent neural networks.
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2.1 Stack Based Buffer Overflow

This section of the thesis will provide a brief historical background of the
buffer overflow weakness, a technical explanation, and the motivation for
choosing buffer overflow as a starting point of our vulnerability detection.

We will begin by limiting our model to do training on binaries, either con-
taining or not containing a buffer overflow weakness. Buffer overflow is a bug
that allows writing outside the boundaries of allocated memory, which can
corrupt data, crash the program or cause execution of a crafted payload by
taking control of the stack and base pointer. This is enabled by for exam-
ple misusing various string functions and vulnerable API’s in C / C++ i.e
strcpy(), gets(), scanf() and so on. In general, we separate buffer over-
flows into two main categories; either overflowing the stack (Stack overflow)
or overflowing the heap (Heap overflow) [11]. Stack-based buffer overflows
are more common than heap-based overflows and leverage the stack mem-
ory, which exists during a function’s execution time. Heap-based attacks
are harder to carry out and involve flooding the memory space allocated for
a program beyond memory used for current runtime operations. We have
chosen to limit ourselves to the former, as it is more common, easier to
implement.

2.1.1 History & relevance

Buffer overflows were documented and understood as early as 1972 by the
Computer Security Technology Planning Study [12]. The earliest docu-
mented exploitation buffer overflow was in 1988, where it was one of sev-
eral exploits used by The Morris Worm [13]. By type, buffer overflows takes
the top spot of the most reported incident in the past 25 years. It is also
the highest-ranked category of vulnerabilities concerning "high" or "critical"
severity. Buffer overflows were the top vulnerabilities from 1988 - 2005 and
have been in the top three ever since [14].

Two common defences against buffer overflow attacks are Address space lay-
out randomization (ASLR) and using Data Execution Prevention (DEP).
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ASLR is a defence mechanism in which the locations of system executables
are randomized as they load into memory. DEP prevents applications from
executing code from a non-executable memory location. However, even with
these and other mitigation strategies, buffer overflows are highly relevant to
this day. ASLR and DEP are strong security measures, but some exploits
can bypass each of them [15]. It is also worth noting that even though we
utilize these security measures, they only alter the bug’s consequences. The
application might still crash, which is severe enough in itself. Another reason
why buffer overflows are still relevant is that we still write and probably will
continue to write low-level code (which is more susceptible to stack-based
exploits) for our hardware interfaces and OS libraries.

2.1.2 Buffer overflow explanation

With the relevance and history of the stack-based buffer overflow established,
we would like to provide a general understanding of how stack-based buffer
overflows work. First of all, let us take a look at a simplified memory layout
of a Win32 distribution.
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Figure 2.1: Memory Map

From figure 2.1, provides a rough sketch of how memory is partitioned after
a program loads in memory. We can also observe how these partitions spread
across different addresses. We will focus primarily on the stack, which con-
tains essential variables and addresses used by executables during runtime,
for example, return address, local variables, and function variables. Without
ASLR, it is relatively easy to deduce where a particular buffer will reside on
the stack. A buffer in this context is an implementation of a variable with a
continuous segment of memory allocated to it. It can be of variable length,
depending on what the programmer needs. An example could be a buffer
used to store some user input. If the value assigned to a variable exceeds
the buffer allocated to it, memory locations not allocated to the variable
might be overwritten (we will present an example shortly). Something else
that is important to understand is that, if this overwritten memory location
was allocated to another variable, that other variables value is overwritten.
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These two traits of the stack are what make a stack-based buffer overflow
possible.

f an entity controls the stack with malicious intent, it is easy for the en-
tity to cause severe harm. To provide a more in-depth understanding, we
will examine the system stack and how it operates. When a function call is
made, the stack creates a stack frame. This stack frame contains all func-
tion arguments, return address (location were the function jumps back when
program flow is resumed ), and all the statically allocated buffers. When the
function arrives at the return address, execution continues at that specified
address. Whatever instruction is being pointed at will be executed by the
CPU. The CPU has many registers, but we will focus on the ones important
for us;

EIP:Extended Instruction Pointer
ESP:Extended Stack Pointer
EBP:Extended Base Pointer (frame pointer)

Figure 2 provides an illustration on how a stack frame is layed out:

Figure 2.2: Stack Frame

2.1.3 Sample code & execution

Here is a small example program that expects input from a user. It has
allocated 12 bytes of memory to the variable buf, and it will read and copy
whatever value the user provides into buf.
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1 void copyBuf ( char ∗ s t r ) {
2 char buf [ 1 2 ] ;
3 s t r cpy ( buf , s t r ) ;
4 }
5

6 i n t main ( i n t argc , char ∗∗ argv ) {
7 copyBuf ( argv [ 1 ] ) ;
8 re turn 0 ;
9 }

Listing 2.1: Buffer overflow vulnerable example

If the user provides input within the size limits allocated to our variable, all
is fine and good. However, if a user, for example, provides a lengthy input,
say a series of 24 A’s (see figure 2.4), which is 12 bytes more than expected,
we get a situation where the saved frame pointer, the return address, and
address to argv[1] are overwritten.

Figure 2.3: Safe usage of buf Figure 2.4: Overwritten

If someone is able to overwrite the return address, they control the EIP
when the function returns, which means that they can alter the program
flow. What a malicious entity can do is to fill the buffer with commands
and redirect program execution and we end up with a stack frame looking
something like figure 2.5:
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Figure 2.5: Malicious Buffer Overflow

As one can imagine, these types of attacks are hazardous, as this malicious
code, often called payload, will be executed with the same privilege as the
original program. Our goal for this thesis is not too concerned with the actual
malicious parts of a stack-based buffer overflow, but rather if it is possible to
detect such a weakness in the program code.

With the relevance of the vulnerability established, the second part of the
motivation using buffer overflows in the training data is its ease of implemen-
tation. With a single method and just a few lines of code, we can create an
entirely "functional" buffer overflow vulnerability. It is also one of the easier
to understand and most taught vulnerability that exists to this day. Another
reason is that it is also straightforward to modify these vulnerable functions
and make them benign, which we also need in our training data. Therefore,
buffer overflows are an obvious starting point for our research with respect
to relevance and ease of implementation.
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2.2 Bottom-Up Perspective on a Neural Net-

work

In this section, we present and explain the inner workings and basic logic
parts of a neural network. We would like to explain the foundations of neural
networks and the architectures that are relevant to this dissertation.

2.2.1 The Neuron

Historically, neural networks were inspired by modeling biological neural sys-
tems. The first breakthrough happened in 1943 when Warren S. McCulloch
and Walter H. Pitts successfully modeled an artificial neuron as a mathemat-
ical function [16]. Neurons are the basic computational units of the brain.
Each neuron is connected with other neighbour neurons through synapses.
Each neuron also receives input signals from its dendrites and produces
output signals through its axon. The axon then branches out and connects
to other dendrites through synapses of other neurons [17].

Figure (2.6) and (2.7) shows simplified images of a biological neuron, and its
mathematical model respectively. From the image, we can observe the math-
ematical representation of each basic part of a neuron. We have a signal that
travels along the axon of a neuron, e.g., x0, which interacts multiplicatively,
i.e., a dot product x0w0 with the dendrites, which creates an input signal for
the receiving neuron based on the strength of the synapse w0. The strength
of the synapses between neighbour neurons is where learning happens, both
in the "real world" and in the mathematical model. Each neuron has a set
of n synapses, which we refer to as weights from now on. The weights can
be both positive and negative and influence the neuron in an excitatory or
inhibitory manner. In the basic model below, the dendrites carry the in-
put signals to the neuron, where they are summed up. If the sum of inputs
is above some threshold, the neuron can fire a signal along its axon. The
signals are simplified in the mathematical model, where we only care about
its strength. The amplitude of the neuron’s output signal is calculated by
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a pre-defined activation function f . In addition, each neuron has a bias
b, which acts as a constant value to the activation function to allow better
flexibility and predictions for a model [18]. There exist several different ac-
tivation functions, which all have their strengths and weaknesses. However,
historically the sigmoid function σ(x) is the one most used as it approxi-
mates a simple step function and can be easily derived. We will go into more
detail about both the sigmoid, and the tanh function tanh(x), which are
two commonly used activation functions in recurrent neural networks.

Figure 2.6: Simplified illustration of a neuron

Figure 2.7: Neuron represented as a simplified mathematical model

As we can observe, the mathematical model is quite simplified compared
to the real neuron of a brain. However, it is sufficient at representing and
providing a basic building block of a neural network. In short, each neuron
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performs a dot product with its inputs and weights, adds a bias, and even-
tually applies a non-linear activation function to determine output.

2.2.2 Activation functions

Every activation function takes in a single number input and performs a non-
linear mathematical operation on it. As mentioned, we have many different
activation functions, which all have their place in machine learning and deep
learning. However, we will focus on two of the most relevant for our problem.
Conveniently they are the two most common activation functions. We will
not elaborate on the pros and cons of each of them, but describe them briefly
and present the mathematical formula for both.

Sigmoid or Logistic Activation Function

The sigmoid non-linearity takes a real-valued number and "squashes" it into
a range between 0 and 1. This way, large negative numbers approaches 0, and
large positive numbers approach 1. The sigmoid function is, as mentioned,
one of the most used activation functions, but has recently fallen out of
favor. However, as we will see in the next section, it plays a major role in the
neurons of a recurrent neural network. Mathematically the sigmoid function
has the following form:

σ(x) =
1

1 + e−x
(2.1)

If we take a look at graph, (which shows us the sigmoid non-linearity) we
can see that sigmoid has an S-curve around 0.5, with both ends approaching
0 and 1 for values approaching infinity.

Tanh / hyperbolic tangent Activation Function:

Tanh is also a non-linearity which also takes in a real-valued number. How-
ever, tanh is zero-centered, and "squashes" the value to the range [-1,1]. It
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Figure 2.8: The sigmoid activation function

is usually prefered over sigmoid due to its zero-center and is a crucial part
of recurrent cells. From the graph illustration below, we can observe that
tanh and sigmoid are quite alike. Tanh looks simply as a scaled version of
the sigmoid function. Mathematically, the following holds:

tanh(x) =
2

1 + e−2x
− 1 (2.2)

As we can observe, the tanh function is an extension of the previously men-
tioned sigmoid activation function. On a side-note, some other commonly
used activation functions include: the identity function, The Rectified Lin-
ear Unit (ReLU), leaky ReLU, Exponential Linear Unit (ELU) and SoftPlus
[19].
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Figure 2.9: The tanh activation function

2.2.3 Neural network architecture and deep learning

With the smallest building blocks established, we can take a step back, and
look at how these neurons and weights compose a neural network. For sim-
plicity’s sake, we will start by presenting a vanilla neural network before we
go into the type of architecture we will use for this thesis. The neurons of a
neural network are connected layerwise as an (in most cases, except recurrent
networks) acyclic graph. The most common vanilla architecture is a fully
connected network in which neurons between adjacent layers are fully pair-
wise connected. The output from one layer of neurons is input to the next
layer, and so on until the last layer. It is convention to call the first layer
of neurons: input layer, the middle ones as: hidden layers, and the last
layer: output layer. The networks "prediction" or rather its computation
is output from the last layer.
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Figure 2.10: Simplified model of two Neural Network. [20] Left: Two layer
fully connected Neural Network. Right: Three layer fully connected Neural
Network.

Mathematically we say that: a[l]k is the activation of node k in layer l.

a
[l]
k = g(

n[l−1]∑
j=1

w
[l]
jka

[l−1]
j + b

[l]
k ) (2.3)

Where w[l]
jk are the weights between neuron j in layer l − 1 and neuron k

in layer l, b[l]k is the bias of node k in layer l, and g is the non-linear func-
tion.

The term deep learning refers to the number of layers in an architecture.
The architectures above are simplistic compared to the ones used in deep
learning, which often consist of numerous layers stacked on top of each other.
Some deep learning architectures worth mentioning are: AlexNet[21], VGG
Net[22], Google Net[23] and ResNet[24] just to mention a few.

2.2.4 Loss function and propagation of error

As aforementioned briefly, learning happens in the connections or weights
between the layers and in the added bias. These weights are represented
as matrices of real-value numbers, usually initialized to some small pseudo-
random number. (The act of initializing weights is an entire field of study,
and in many cases, poor choice of initialization can make or break learning
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in a neural net.) When a neural network provided with input, it is propa-
gated forward through the network. Input is multiplied element-wise with
the value of the weights and transformed by the non-linearity, which is input
for the next layer of neurons. This operation is called a forward propa-
gation. The last layer will output some arbitrary real-valued number used
to represent some class score (e.g., classification). This value compared to
"ground truth" (supervised learning), and we apply a loss or error function
to rate or determine the correctness of the prediction. One example of an
error function is the cross-entropy cost function:

L(y(i), ŷ(i)) = −
ny∑
k=1

y
(i)
k log ŷ

(i)
k (2.4)

Here the loss between the true output y(i) and predicted output ŷ(i)for one
class is calculated as a sum of errors over all classes ny. The goal of a neural
network, be it vanilla, recurrent, or convolutional, is to minimize a loss func-
tion. There are numerous different loss functions, many of which are well
suited for specific or more general problems. This error used to update the
weights in the network in a backward pass. The update of weights in a back-
ward pass is called backpropagation and was, in fact, a huge breakthrough
in machine learning, and a crucial part of all deep learning.

Figure 2.11: Forward and backward pass through a neural network

We would like to explain our chosen loss function now that we have es-
tablished a fundamental understanding of loss functions and propagation of
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error. As stated in the problem statement, we are attempting to perform
binary classification. With this in mind, it was natural for us to choose the
Binary Cross-Entropy (BCE) loss function. BCE efficiently penalizes a
neural network for binary classification. Figure (2.12) exhibits the two out-
comes of a logarithmic loss calculated over predicted output.
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Figure 2.12: Binary Cross-Entropy loss

If we imagine that Positive Class represents vulnerable and Negative Class
represents benign we can take a look at how the loss changes following predic-
tions. The plot above gives us a clear picture —as the predicted probability
of the true class gets closer to zero, the loss increases exponentially and a ex-
act correct prediction yields a loss equal to zero. This is due to the fact that
from a classification perspective, 0 and 1 have to be polar opposites since
they each represent completely different classes, i.e whenever the network
predicts a sample to class Y=0 (benign) when Y is 1(vulnerable), the
loss will have to be very high in order for the network to learn its mistakes
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more effectively. This is a desired property of a logarithmic loss function as
we want the loss function to return high values for bad predictions and low
values for good predictions. Mathematically we express BCE loss as:

L(y(i), ŷ(i)) = − 1

N

N∑
k=1

(ỹ
(i)
k · log(ŷ

(i)
k ) + (1− ỹ(i)k ) · log(1− ŷ(i)k )) (2.5)

Where y(i) is the label for a class, and ŷ(i) is the predicted probability of a
data sample belonging to said class over all samples N. The formula describes
that for each vulnerable point (y=1), it adds log(p(y)) to the loss, that is, the
log probability of it being vulnerable. Conversely, it adds log(1-p(y)), that is,
the log probability of it being benign, for each benign point (y=0). Generally,
the BCE loss function is the preferred function for binary classification as
it provides an effective calculation of error when the task is differentiating
between two classes.

2.2.5 Gradient decent and learning through optimiza-

tion

Updating the weights and bias happens through an algorithm called gra-
dient descent. The goal is then to minimize the error that the trainable
parameters are causing. More mathematically, we can say that we want pa-
rameters to converge to a point where the network can minimize errors for
unseen samples of data. Without going too much into details, we can say
that:

θ ← θ − λ∂J
∂θ

(θ) (2.6)

Where J is some objective function we want to optimize (i.e., the example
of cross-entropy-loss presented above), θ is the parameter we want to update
(weight or bias for some neuron k at layer L), and λ is the step length
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(often called learning rate in machine learning environments). ∂J
∂θ

gives us
the direction of steepest ascent at point θk.

Figure 2.13: Gradient decent on parameter θk [25]

Gradient descent through steepest descent is the most naive, gradient de-
scent optimization method. It is mostly suitable for more straightforward
deep learning tasks. As our classification task is very complex, we will have
to choose a better optimization algorithm. The choice of an optimization
algorithm can potentially shave hours and days of the training process, keep-
ing all other parameters equal [26]. For us, it was only natural to elect the
Adam optimization algorithm. Adam is an extension to stochastic gradient
descent and has been adopted to a vast number of different deep learning
applications, including natural language processing.

Diederik Kingma from OpenAI and Jimmy Ba from the University of Toronto
presented Adam in their 2015 paper "Adam: A Method for Stochastic Opti-
mization" [27]. Some of Adam’s benefits include that it is computationally
efficient, has low memory requirements, and is well suited for large-scale
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problems or problems with very noisy or spare gradients( the neural net-
work is not receiving strong enough signals to tune its weights). Adam is
different from classical stochastic gradient descent by and large in two key
properties. First of all, SGD maintains a fixed learning rate for all weight
updates throughout the training phase. Adam maintains a learning rate for
each network weight and separately adapts it as the training unfolds. The
authors describe Adam as combining the advantages of two other extensions
of stochastic gradient descent. Specifically:

• Adaptive Gradient Algorithm: (AdaGrad) that maintains a per-
parameter learning rate that improves performance on problems with
sparse gradients (e.g., natural language and computer vision problems).

• Root Mean Square Propagation: (RMSProp) that also maintains
per-parameter learning rates that are adapted based on the average of
current magnitudes of the gradients for the weight (i.e., how quickly
it is changing). Thus the algorithm performs well on online and non-
stationary problems.

Adam realizes the benefits of both AdaGrad and RMSProp [26]. It is a
consensus within the deep learning community that Adam is one of the
overall best optimization algorithms. Sebastian Ruder has proven this fact
in his comprehensive review of modern gradient descent optimization al-
gorithms[28]. The algorithm has also received an appraisal in the course
"CS231n: Convolutional Neural Networks for Visual Recognition" developed
by Andrej Karpathy, et al. [29]. As we are exploring binary classification by
utilizing natural language processing techniques and process complex data,
the Adam optimization algorithm is a great choice for us.

We will not elaborate further on other optimization techniques in this section.
Our goal was to establish an understanding of the different parts of a neural
network and how they learn through backpropagation.
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2.2.6 Regularization

Regularization is a technique that makes slight modifications to the learn-
ing algorithm such that the model can better generalize. Which, in turn,
improves the model’s performance on the unseen data as well. We are not
going to describe the numerous different regularization techniques that ex-
ist but would like to outline one of them: dropout. There is a consensus
that deep neural networks are able to extract and build better features than
shallow models. They achieve this by using the intermediate hidden layers
to build said features from the input data. However, overfitting is a severe
problem in such networks. By overfitting, we imply a network that has fitted
itself so well to the training data that it will no longer perform well on the
development/validation set or any other unseen data. Deep neural networks
are also slow to train as the number of calculations increases drastically for
each added layer or neuron. Dropout is a technique to address this problem.
It is an extremely effective and straightforward regularization technique in-
troduced by Srivastava et al. [30]. The key idea is to drop a neuron and its
connections during training randomly. With some probability p, a neuron is
kept alive. Otherwise, set to zero.

Figure 2.14: Dropout Neural Net Model [30]. Left: A standard neural net
with 2 hidden layers. Right: An example of a thinned net produced by
applying dropout to the network on the left.
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During training, dropout can be interpreted as sampling a neural network
within the full neural network and only updating the parameters of the sam-
pled network based on the input data. During testing, there is no dropout
applied, with the interpretation of evaluating an averaged prediction across
the exponentially-sized ensemble of all sub-networks. What is important to
note is that by using dropout, the output of neurons during test time must
be adjusted by the dropout probability. We want the outputs of neurons at
test time to be identical to their expected outputs at training time. Con-
sider a dropout p for outputs where p = 0.5 for all outputs x. The expected
output of neurons would then be px+ (1− p)0 as a neuron’s output will be
set to zero with probability 1− p. There are two approaches to adjusting for
dropout, either during training or testing. At test time, when we keep the
neuron always active, we must adjust x→ px to keep the same expected out-
put. Since test-time performance is critical, it is common to do an inverted
dropout that performs output scaling during train time, leaving the forward
pass during test-time untouched.

2.3 Introduction and History of Deep Learn-

ing

This section will provide a brief introduction and understanding of what deep
learning is and cover the major historical events throughout deep learning
history. This section will not cover technical details about different historical
or present mathematical models used in deep learning. Covering all technical
details would quickly fill a whole book and is neither beneficial nor neces-
sary. Technical details about the architecture, model, and techniques we have
chosen to use for our problem will be thoroughly elaborated on later in the
thesis. Figure 2.15 provides a Venn diagram of the different research fields
of artificial intelligence.

We find this introductory section necessary mainly for two reasons. First
and foremost, to gain a general understanding of what deep learning is, its
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history, and how we have ended up with the state of the art architectures and
algorithms used today. Secondly, we think it is essential to give due credit
to the scientists and researchers who have pioneered the field and paved the
way for future generations. We will start by giving an introduction and
provide a general understanding of what machine learning is and how deep
learning is related to machine learning. We will now proceed with a brief
introduction of the history behind machine learning, and from there, present
some benchmarks from deep learning models.

There are many different definitions of Machine Learning. In general, we
can say that ML is the scientific study of algorithms and statistical models
a computer system uses to learn from experience rather than being explic-
itly programmed. Stanford’s definition of Machine Learning is "Machine
learning is the science of getting computers to act without being explicitly
programmed" [31].

Generally, we can divide Deep Learning and Machine Learning into three
main branches. Supervised, semi-supervised, also known as partially super-
vised, and unsupervised learning. Additionally, we have a category called
Reinforcement Learning (RL), often categorized within the scope of semi-
supervised or unsupervised learning. On a side note Spiking Neural Networks
(SNN’s) is also a brain-inspired paradigm within AI. In SNN, neurons are a
function of the width and timing relationships of an input pulse instead of a
single value.

37



Figure 2.15: Deep learning in context of artificial intelligence. [32]

2.3.1 Supervised Learning

Supervised learning is a learning technique that builds a mathematical model
based on labeled data. With a supervised DL approach, a training set of
samples containing input and desired "target" outputs is provided training
data for the model. During training, the agent predicts ŷt = f(xt) and
receives a loss value l(yt, ŷ)t. The agent will iteratively update its parameters
to minimize the given loss function. If the training is successful, the agent
should generalize and respond correctly to unseen examples drawn from the
same distribution. In mathematical notation, we can say that given a training
set Ω with input x and desired output y:

Ωtrain = {(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))} (2.7)

The goal is to create a function f that “approximates” this mapping:

f(x) ≈ y,∀(x, y) ∈ Ωtrain (2.8)
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With the aim that this function f generalizes well to unseen examples:

f(x) = ŷ ≈ y,∀(x, y) ∈ Ωtest (2.9)

Some of the most used approaches within the supervised learning category in-
clude Deep Neural Networks (DNN), Convolutional Neural Network (CNN),
and Recurrent Neural Networks (RNN). Supervised Learning algorithms in-
clude classification and regression. When there is a fixed amount of output
values, e.g., image classification of animals, a classification paradigm is pre-
ferred. When the output can have any numerical value within a range, e.g.,
real estate prices, regression is applied.

2.3.2 Unsupervised learning

Unsupervised learning is quite different from supervised learning, as no la-
beled training data "exists". Instead, the algorithm tries to identify sim-
ilarities or structures in the data. This way, data points are clustered or
grouped in order to find an underlying structure of the data. To present it
in mathematical notation as before, given our training set only consists of
input x:

Ωtrain = {x(1), x(2), ..., x(m)} (2.10)

Since we do not have any targets, unsupervised learning does not apply an
error function on each data sample. Instead it utilizes a clustering error
function to cluster the data. This technique is advantageous when labels for
the training data is hard to obtain, or hard to generate. A typical algorithm
used in Unsupervised Learning is K-means clustering.

Other popular algorithms used in unsupervised learning are Principal Com-
ponent Analysis (PCA) and Stochastic Neighbour Embedding. As it is not a
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central part of this dissertation, we will not elaborate further on unsupervised
learning.

2.3.3 Reinforcement learning

Reinforcement learning is an area of machine learning, where the algorithm
or software agent learns by experiences it gains by interacting with an en-
vironment. "Labels" are quite different from the ones used in SL, i.e., the
agent does not have a "ground truth" about what is the "best" or "correct"
solution is. The agent is instead provided with feedback or a reward/penalty
for chosen actions and states but never suggestions on improvements. The
goal of the agent is to maximize an accumulated reward given by the envi-
ronment.

Gt = Rt + γRt+1 + ... =
∞∑
k=0

γkRt+k (2.11)

Where rewards in later timesteps are penalized by some discount factor γ
:

γ ∈ [0, 1] (2.12)

Due to its generality, typical Reinforcement Learning applications are process
controls, networking, robotics resource management, and game theory. Even
playing games such as chess or more modern video games, just to mention a
few [33].

We will utilize a supervised learning approach for our specific goal as we are
using labeled data to train our model to differentiate between classes.
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2.4 Recurrent neural networks

Up until now, we have talked about different traditional DL approaches, in-
cluding DNN’s and CNN’s. These approaches work well on structured inputs
or when we work on images (CNN’s). What they are not capable of deal-
ing with is understanding words or sentences based on the understanding of
previous words and sentences, i.e., understanding the meaning of something
based on a variable context. (One could argue that CNNs recognize images
in context.) There are two reasons why DNN’s and CNN’s are incapable
of this. First, and most intuitively, these approaches can only deal with an
input vector with a fixed size, and will also produce an output vector of fixed
size. Numbers between 0 and 1 are usually representative of probabilities
for different classes given a classification problem. The second problem is
that DNN’s and CNN’s have a fixed number of computational steps, which
is dependant on the number of layers is the network.

What RNNs allows is the processing of data with unknown length over time.
The idea of RNNs is far from new. The concept was first introduced in 1982
in ’The Hopfield Network" by John Hopfield [34]. The basic idea is that a
Recurrent Cell creates a new state based on both the new input and the old
state of the cell. The cells in a RNN utilize a recurrence formula as follows
:

ht = fW (ht−1, xt) (2.13)

Where ht is the new state, fW is some function with parameters W,ht−1 is
the old state, and xt is the input vector at time step t. This process is the
general form in which a cell can learn something based on context, i.e., not
only new input but also its previous output, which is fed into itself again.
Figure 2.16 provides a simple illustration of a single cell within a recurrent
neural network:
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Figure 2.16: The basic structure of a cell in a RNN

RNN’s are powerful and versatile in an application point of view. They
can solve different types of problems by using different types of architecture.
In figure 2.17, we provide an overview of the different applications available,
with their respective architecture. Each rectangle is a vector, and each arrow
represents functions (e.g., matrix multiplication). The red arrows represent
input vectors, the green arrows hold the cell states, and the output vectors
are blue.

Figure 2.17: Example RNN structures and their application. [35]

One-to-one: Normal feed-forward network, without RNN, fixed-size input,
and fixed-size output. Used in for instance image classification.
One-to-many: network takes an input and produces a series of outputs, for
example, an image captioning problem, where the input is a single image,
and the network produces a sentence of words with context.
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Many-to-one: Network takes a series of inputs and produces a single out-
put. An example could be sentiment analysis, where a sentence is either
classified as positive or negative. Another example could be video classifica-
tion, where the network is fed frame by frame. The RNN would then capture
the order between them for a better classification.

Many-to-many (encoder-decoder): Sequence to sequence learning, for
example, Machine Translation, where the network translates a sentence from
one language to another.
Many-to-many: Also a sequence to sequence learning architecture, but
mostly used for video classification on a frame by frame level, i.e., classify
every single frame in a video [36].

Before we go into why we chose RNN for our problem, let us look more
into detail on how RNN’s work. From a top-down perspective, the network
accepts some input vector x and outputs a vector y. However, as mentioned
above, the crucial part of why RNN’s are so effective is that they are not
influenced only by new input vectors from our current timestep, but also
the entire history of inputs provided earlier. For every timestep, the RNN
has some internal hidden state ht that gets updated. In a Vanilla RNN the
formula for the forward pass looks like this:

ht = tanh(Whhht−1 +Whxxt + b)

yt = Whyht
(2.14)

As we can see, the vanilla RNN’s trainable parameters are the three weight
matrices: Whh,Whx,Why. Notice how the hidden state is calculated with
a non-linearity tanh function that squashes our activations between [-1, 1].
Notice also that the hidden state is dependant on the previous hidden state
h at timestep t − 1 and the new fresh input x at the current timestep t. In
practice, most do not use the vanilla RNN model but rather a more advanced
model called the Long Short Term Memory (LSTM) network and the Gated

43



Recurrent Unit (GRU). Both of which we will touch briefly upon. LSTM and
GRU have proven to work better in practice due to a more powerful update
dynamic.

2.4.1 Long Short Term Memory (LSTM)

To understand how the LSTM updates its state, let us take a look at a LSTM
cell diagram.

Figure 2.18: Diagram for Long Short Term Memory (LSTM). [37]

The LSTM’s remove or add information to the cells state through different
gates: input gate (it), forget gate (ft) and output gate (ot). The output from
these gates are calculated with different non-linearity’s and equations and
they are defined as:
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Input gate: it = σ(Wi · [ht−1, xt] + bi)

Forget gate: ft = σ(Wf · [ht−1, xt] + bf )

Output gate: C̃t = tanh(WC · [hC−1, xt] + bC)

Potential cell memory: Ct = fc ∗ Ct−1 + it ∗ C̃t
Output gate: Ot = σ(WO · [ht−1, xt] + bO)

Final cell state: ht = Ot ∗ tanh(Ct)

(2.15)

The different inputs and outputs to the LSTM cell are:

New cell state: Ct

Cell state / Long-term memory: Ct−1

Output / New hidden state: ht

Hidden state / Short-term memory: ht−1

Input: xt

(2.16)

To bring some further insight into the inner workings of an LSTM cell, we
would like to present a brief explanation of the objective of each gate.

Input gate: The input gate decides what new information to store in the
long term memory. From the equations, we can observe that it only operates
on the current input and short term memory from the previous step. This
gate works like a filter, discarding inept information, and keeping essential
values. The sigmoid function will transform the input values between 0
and 1, where the decimal range decides whether or not the information is
useful. 0 indicates that information is unimportant, and 1 indicates that the
information is useful. From the figure, we can also observe that input is fed
through a second activation function, which is used to regulate the network.
Both outputs from sigmoid and tanh are multiplied together.

Forget gate: The forget gate decides which information from the long-term
memory should be kept or discarded. A decision is made by multiplying
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the incoming long-term memory by a forget vector generated by the current
input and incoming short-term memory. The forget gate also works like a
filter for which information to keep/discard. Outputs from the Input gate
and the Forget gate will undergo a pointwise addition to calculate a new
long-term memory. This new long-term memory is applied in the final gate,
the Output gate.

Output gate: The output gate is responsible for calculating and creating
the new short-term memory and the hidden state, which are passed to the
cell in the next step. These values are calculated by using the current input,
previous short-term memory, and the new long-term memory values. Previ-
ous short-term memory and input will be passed through a sigmoid function
and thus acts as a third filter. The new long-term memory is passed through
a tanh function before both outputs are multiplied together.

The short-term and long-term memory produced by these gates is carried
over to the next cell, and the process will repeat.

2.4.2 Gated Recurrent Unit (GRU)

Figure 2.19: Diagram for Gated Recurrent Unit (GRU). [37]

46



GRU is also a more advanced recurrent unit, and like LSTM it uses gates
to control information flow. As with LSTM, GRU’s are used to improve the
long term dependencies of information. Both of these models have the ability
to add and remove to the state, not just transforming it. In GRU, the gates
and cells are defined as:

Update gate: zt = σ(Wz · [ht−1, xt])

Reset gate: rt = σ(Wr · [ht−1, xt])

Candidate cell: h̃t = tanh(W · [rt ∗ ht−1, xt])

Final cell state: ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

(2.17)

There is no conclusive evidence of whether LSTM or GRU is better for learn-
ing sequences. However, GRU requires fewer network parameters, which
makes training and convergence faster. On the other hand, LSTM provides
better performance, so with enough data and computational power, it is often
preferred. [38]

2.4.3 Why we choose RNN’s

The main reason why RNN is our preferred deep learning strategy is because
of their powerful ability to capture context through data and to process input
vectors of different lengths. We are absolutely dependant on the flexibility
that RNNs can provide us. Especially when we considerer training data of
different variations and lengths. There are many ways to write programs
containing buffer overflow weaknesses. Our neural network must, therefore,
be able to discover a pattern within all these different ways of writing code
and learn from them. The very same holds for the length of our training
data as well. Other deep learning architectures such as CNNs and vanilla
feed-forward networks are dependant on uniform length input vectors.
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2.5 Summary

In this chapter, we have presented the theoretical underpinnings we believe
required to appreciate our dissertation. We have given a thorough elaboration
on stack-based buffer overflows, their history and relevance, and provided a
small example of how this vulnerability works. We continued with a bottom-
up perspective on neural networks where we built up a good intuition of its
inner workings. We started with the atomic parts, which make up a neural
network and gradually pieced everything together to compose a stack of neu-
rons, weights, and layers. We presented the fundamental principles behind
machine learning, which included: activation and loss functions, backpropa-
gation, gradient descent, and regularization. In the following subsection, we
provided an understanding of the main categories of deep learning, how they
differ, and their objectives. Finally, we presented the inner working of a re-
current neural network. We focused on the inner workings of recurrent cells,
their capabilities, and why we choose to use them in our experiments.
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Chapter 3
Literature review and taxonomy

This chapter function as a summary of current and previous work that has
been done in our field of research. As of today only a marginal amount of
study on the possibilities of vulnerability detection through deep learning
has been done. We are to present our inspected papers in a categorical way
in which we sort papers into subsets based on their features and architec-
ture.
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We believe our literature survey is beneficial in multiple ways. First and
foremost, we can take a look at how researchers have chosen to represent
their data, what kind of deep learning architecture they have used, and what
kind of different techniques (activation functions, regularization, optimiza-
tion) have been proven effective. From the few research papers we have
found that explore the same problem as us, we can get an indication of their
success, thus giving us some insight into possible approaches.

Much of the research, as we will soon see, has been done by teams with a vast
amount of resources. Some of the more successful work has been collabora-
tions between multiple scientists who had access to significant computational
power and data. We do not have those kinds of resources available, and since
both computational power and data are the two most important factors of
deep learning, we are somewhat limited. Below we have presented some rel-
evant research papers. We have included a summary of their work, data
representation level, the architecture used, and results achieved.

In this literature review we differentiate between dynamic and static fea-
tures. In this context, static features are extracted without executing a data
sample, i.e., program file. Dynamic features require the execution of the pro-
gram. We have chosen to split the relevant research into four main categories:
Static features with standard ML approaches, Static features with
CNN, Static features with RNN and Dynamic features with stan-
dard ML approaches. This way, we can present the different approaches
within the field of research in a straightforward way.

Paper RL Model Datasize Features Objective
EMBR[39] Extracted

features,
PE
headers

Gradient
boosted
tree

>1,100,000
samples

Static Malware
detection
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TDBP[40] PE
imports,
headers,
byte
entropy &
strings

FCC >430,000
samples

Static Malware
detection

BTDA[41] Binary
code
trans-
formed
into
greyscale
images

k-NN >100,000
samples

Static Malware
classifica-
tion

MIAC[42] Binary
code
trans-
formed
into
greyscale
images

k-NN >9,000
samples

Static Malware
classifica-
tion

DMME[43] Byte
sequence,
DLL’s,
function
calls

RIPPER,
Naive
Bays, MC
system

∼ 5,000
samples

Static Malware
classifica-
tion

VPTA[44] Java
source
code

SMV ∼ 2,300
samples

Static Vulner-
ability
prediction

PVFE[45] Java
source
code

SMV - Static Vulner-
ability
detection
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VEML[46] C source
code

PCA > 6,700
functions

Static Vulner-
ability
detection

MDEE[47] Byte
string

CNN/FCL >2,000,000
samples

Static Malware
detection

MDMD[48] Extracted
features,
PE
headers

FCC,
LSTM,
Extra
tree,
Random
Forest,
LR-3
gram

240,000
samples

Static Malware
detection

VDDR[49] C source
code

Comb.
of BOW,
CNN and
RNN

>

12,000,000
samples

Static Vulner-
ability
detection

VDP[50] C source
code

BLSTM >60,000
samples

Static Vulner-
ability
detection

CAD[51] Network
Packets

RNN
LSTM

<

5,000,000
samples

Static Intrusion
detection

DLCS[52] Kernel
sys calls

FCC,
CNN and
CNN+LSTM

>430,000
samples

Dynamic Malware
classifica-
tion

NGMD[53] N-gram k-NN 2,000
samples

Dynamic Malware
detection
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VDDL[54] Kernel
sys calls

CNN,
LSTM,
CNN+
LSTM

> 9,000
samples

Dynamic Vulner-
ability
detection

VDML[55] C / ASM
source
code

Linear re-
gression,
MLP,
Random
forest

>138,000
samples

Static/
Dynamic

Vulner-
ability
detection

*RL: Representational level

3.1 Static features / standard ML approaches

We would like to start with a section about the standard machine learning ap-
proaches on static features. With standard machine learning approaches, we
include standard feedforward deep neural networks and any machine learn-
ing techniques such as gradient boosted trees, K-NN (k-nearest neighbor
algorithm), and support vector machines (SVM). Refer to [56] for further
enlightenment.

We would like to start our literature review with a project which perhaps
can be said to be the gold standard within the field of research: the EMBER
[39] project. This paper describes the use of a gradient boosted decision tree
to detect malicious Windows portable executable files statically. The EM-
BER dataset consists of features extracted from 1.1 Million binary files with
900,000 training samples (300,000 malicious, 300,000 benign and 300,000 un-
labeled) and 200,000 test samples (100,000 malicious, 100,000 benign). The
samples are structured as JSON objects containing selected features from the
Windows Portable Executable (PE) file format [57], which were hashed for di-
mensional reduction. Some features included general file information, header
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information, imported functions, exported functions, and format-agnostic
histograms of string occurrences. The EMBER dataset is, in fact, the first
large dataset for machine learning malware detection. Results showed that
even without hyperparameter optimization, the baseline EMBER model out-
performed the highly successful MALCONV [47].

One of the only successful uses of a deep, fully connected neural network for
malware detection was the one by Saxe and Berlin. In their paper: Deep neu-
ral network-based malware detection using two-dimensional binary program
features [40], they explored malware identification/classification through stan-
dard deep learning tools. Their network was a basic four-layer deep feedfor-
ward neural network with Parametric Rectified Linear Unit (PReLU) acti-
vation functions in the first two hidden layers. Their benign and malicious
malware were drawn from Invincea’s [58] own computer systems. The final
dataset consisted of a total of 431,926 binaries (81,910 benign and 350,016
malicious). The feature engineering consisted of a Byte/Entropy histogram,
hashed PE import address tables, DLL names, and import functions. These
feature vectors were concatenated into a 1024-dimensional vector, which was
the input to their neural network. Saxe and Berlin also tried to train the
network on a subset of their features to get some insight into which features
that contributed the most (at least by themselves) to the classifier. Impres-
sive results were achieved, and the paper reported the highest accuracy by
using all features and the highest contributing feature being metadata from
the PE headers.

Moving over to k-NN’s, the first paper we would like to present is a com-
parative assessment of malware classification [41]. In this paper, researchers
did not only build a model capable of classifying binaries, but also made a
comparison against classical dynamic classification methods. Their chosen
methodology was to create images or image-like textures from malicious and
benign malware and then to utilize classical image classification techniques.
Their dataset consisted of about 100,000 malware examples divided into six
categories of malware. Nataraj et al. created their features by transforming
each binary malware into a grayscale image and concatenated these images
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with other features. They compared their k-NN classifier against two state-
of-the-art dynamical dataset analyzers: Host-RX and Malheur. The average
accuracies for the k-NN classifier and the dynamic analysis tools were excel-
lent, and they both achieved relatively identical results. Even though the
accuracies were relatively similar, the amount of time required to complete
the feature analysis per binary is approximately 1/4000 of that compared to
the dynamic analysis tools. These are promising results concerning the usage
of deep learning tools as classifiers on binary executables.

Another relevant paper on malware classification using the k-NN algorithm
is [42]. Exploration of effective methods for classifying malware through
grayscale images created directly from the binaries was conducted. Malware
binaries were read as a vector of 8-bit unsigned integers and then organized
into a 2D array (grayscale image) in the range [0-255]. Texture features were
created by using GIST. During development, they experimented with a small
scale dataset consisting of 1,713 malware images split between 8 different
malware families. Their large scale experiment was done on a larger dataset
of 9,458 samples with 25 different malware families. Results were promising,
reaching an exceptionally high accuracy. Interestingly, even obfuscating the
malware by packing it (which is common to avoid detection) did not lower
the accuracy of their classifier. These results are auspicious, as they prove
that machine learning models can achieve not only high accuracy but also
resilience against obfuscated malware.

The last paper on malware classification by using standard machine learning
approaches on static features is about using data mining for malware detec-
tion [43]. Researches explored the possibility of using data mining methods
as classifiers for malware. Their dataset consisted of 4,266 programs split into
3,265 malicious binaries and 1,001 clean programs. All programs were mined
from public sources. Features used for training were extracted from each pro-
gram and included byte sequences (using hex dump), DLL used, DLL func-
tion calls, and the number of times such functions were called. Researchers
explored four different learning algorithms: a signature-based classifier (as
a benchmark), an inductive rule-based learner (RIPPER) [58], a probabilis-
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tic method, and a multi-classifier system that combines the outputs from
several classifiers (voting) to generate a prediction. The signature-based ap-
proach (byte sequences), was the most straightforward implementation and
achieved the lowest results. Their rule-based algorithm had a much higher
detection rate, but the highest false-positive rate. Both the probabilistic and
multi-classifier used the Naive Bayes algorithm, where the multi-classifier
used multiple instances of Naive Bayes. Both approaches had an excellent
detection rate and overall accuracy. Surprisingly their single Naive Bayes
achieved the lowest false positive rate.

Proceeding to vulnerability detection and prediction, which is the most rele-
vant work for this thesis, we would like to introduce a paper that used Java
source code at their representational level. [44] Hovsepyan et al. explored
the ability to do binary classification, i.e., vulnerable, not vulnerable, and
the severity of said vulnerabilities on Java files. Their approach is quite fas-
cinating, as they treat Java files as pure text files. The data used was source
code from 19 different versions of the K9 mail application [59], adding up
to a total of about 2,300 Java files. Samples were labeled by using the For-
tify [60] vulnerability analysis tool. Features were generated by tokenization
over each binary, thus creating a vector representing the occurrence of each
textual "word" in a binary. The way they created feature vectors was by
treating every word in a binary as a feature. The feature vectors were fed
into a SVM for both the training phase where the prediction model is built
and the prediction phase where new feature vectors are classified based on
the previously built prediction model. On average, the SVM model achieved
good accuracy, precision, and recall.

Another paper that used Java source code, as well as a SVM classifier, is
a paper by Pang, Xu, and Namin [45]. They proposed a hybrid technique
based on combining n-gram analysis and features selection algorithms for pre-
dicting vulnerable software components in some commonly and widely used
applications written in Java. Subject programs were "BoardGameGeek",
"Connectbot", "CoolReader", and "AnkiDroid". N-grams were created by
analyzing and building a vector that would hold the frequency of appearances
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of a given token. These features were directly derived from Java source code,
so no execution of the binaries was necessary. Labels for their dataset were
available from previous research done on the same applications. Feature se-
lection methods were based on the Wilcoxon test [61] for reducing space and
dimensions of features. Their actual learner, or model, was elected by com-
paring the performance of six different known classification algorithms. Best
results were achieved with support vector machines, and therefore was the
chosen focus on their larger dataset. The proposed technique could classify
vulnerable classes with high precision, accuracy, and recall.

Concluding the static features on standard machine learning techniques, we
present a paper that uses C source code as representational level. [46] is a pa-
per where researchers proved excellent capabilities and potential of assisted
discovery of vulnerabilities by using a known machine learning technique
known as Principal Component Analysis (PCA). Yamaguchi et al. used a
known vulnerable library called FFmpeg, a library for multimedia process-
ing. Using a known vulnerability as a label, they performed a mapping of
the rest of the source code, which has a total of 6,778 functions. Mapping
was done through four steps: Extracting names of types, names of functions,
and typecasts referred to as API calls. Next, they performed an embed-
ding on API calls to create a vector, where each dimension represents one
API symbol. Before performing the actual vulnerability discovery, they also
used a PCA to enable the model to infer descriptive directions in the vector
space. Their research discovered that their model could detect not only a
previously patched vulnerability but also discovered a new function vulnera-
ble to exploitation. This finding is indeed interesting, as it proves the power
and capability standard machine learning techniques can have in assisted
vulnerability discovery.

3.2 Static features, convolutional networks

Proceeding with static features, we present the only paper which heavily relies
on CNN’s and static features. Paper [47] is also one of the gold standards
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of malware detection. The goal for the Laboratory for Physical Sciences
and NVIDIA was to do malware detection from raw byte sequences. They
performed a static analysis approach, where a higher-level representation
was constructed from the raw byte inputs. The datasets used for training
consisted of 2,011,786 binaries split evenly between malicious and benign
classes. Group B contained binaries ranging from 1MB to 2MB in size. An
anti-virus industry partner provided these binaries. Group A was collected
through data mining for finding new malicious executables and "goodware"
from a clean Microsoft installation. The chosen architecture was tokenized
raw bytes fed into an embedding before Convolution and finishing with a
fully connected layer and softmax. They chose a very shallow architecture
compared to other deep learning architectures. In conclusion, MALCONV
achieves consistent generalization across both test sets, despite the challenges
of learning a sequence problem of unprecedented length.

3.3 Static features RNN

The last sub-category of research which utilizes static features are pure, or
partly recurrent network architectures. These are the most relevant to us
as we opt to explore the same architecture, albeit different representational
levels. Some papers present CNN’s as well, but rather as a benchmark or ex-
perimental architectures in a set of different deep learning approaches. Again,
we will start with malware detection. First is a comprehensive approach with
several architectures. The overall focus of [48] was to explore the possibility
for neural networks to learn its feature representation from raw data. Raw
data in this context was bytes extracted from PE headers as with paper [39].
The general goal was to train a model that could identify and differentiate
between malicious and benign executables. Each input vector consisted of
a 328-byte representation of selected features extracted with the intent to
minimize preprocessing. These features included pointers to the Import ta-
ble and various other information extracted from the PE headers. Training
and testing data were created through a combination of datasets provided
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by Virus Share, Open Malware, and MS Windows. From our perspective,
this paper is very appealing as Raff et al. explored and compared results
from five approaches: Fully connected, LSTM, Extra Tree(Extremely Ran-
domized Tree), Random Forest, and LR 3-grams (which is a form of n-gram).
Interestingly enough, the most successful architecture reported was the fully
connected architecture. The other four architectures performed reasonably
well.

Next up are two papers which are very relevant to us. They use some sort of
RNN, static features, and does vulnerability detection. The first paper [49]
also holds the most considerable sample quantity we have seen so far. Rus-
sell et al. present a machine learning technique for the automated detection
of vulnerabilities in C / C++ source code learned from real-world exam-
ples. In one way, their approach is different from what we try to achieve,
as we simulate the absence of such source code. They created their data
by compiling a vast set dataset of millions of function-level examples of C
and C++ code from the SATE IV Juliet Test Suite, Debian Linux distri-
bution, and public repositories on GitHub. Their total number of functions
included in the dataset exceeded 12 million samples. Input source code was
first filtered through a series of convolutions before being fed into a sequence
of RNN’s. These steps created their learned source features, which were fi-
nally fed through a random forest classifier and fully connected classification
layers. They also trained a RF classifier on a Bag-Of-Words (BOW) rep-
resentation as a benchmark. An additional comparison was made between
three static analyzers and their own implemented architectures. All their ar-
chitectures performed very well and outperformed the static analyzers by a
large margin. The most successful architecture was the RNN + CNN, which
performed outstandingly on both datasets.

Some highly interesting research has been done by using a unique form of
RNN’s, the bi-directional LSTM. The VulDeePecker [50] is a model devel-
oped for vulnerability detection. The team of researchers derived features
directly from C source code. These features were created by extracting li-
brary and function calls. Through these features, they generated assembled

59



slices of code, which they called code "gadgets". These gadgets are seman-
tically related lines of code that were fed through several BLSTM layers,
a fully connected layer, and finally, a softmax layer. Gadgets were gener-
ated from a set of 61,638 code samples provided by the National Institute
of Standards and Technology (NIST)[62] and the Software Assurance Ref-
erence Dataset (SARD)[63] project. The paper reports excellent success,
with low false-positive rates and high overall accuracy. These results were
compared against three other pattern-based vulnerability detection systems:
Flawfinder, RATS, and Checkmarx. All of which yielded inferior results
compared to the VulDeePecker.

Some work has also been done with intrusion detection using RNN and static
features. Even though the work performed in this paper is not as related to
our task in this dissertation, the architecture and techniques used are valu-
able to consider. Cao et al. [51] created a model for intrusion and anomaly
detection using deep learning techniques similar to the ones we opt to imple-
ment. More specifically they utilized a RNN with LSTM cells to detect and
classify neptune DOS attacks[64]. They trained and tested on the KDD
1999 dataset [65], a CSV file of time series, containing a set of standard data
which includes a wide variety of intrusions simulated in a military network
environment. The KDD 1999 consists of almost 5 million entries where each
sample is a feature vector of packet frequencies derived from a tcpdump of
network activity. Their experiments yielded promising results as the model
was able to capture the anomalously high number of SYN_ACK packets as-
sociated with the Neptune DOS attack. It is indeed interesting that RNN
LSTM cells were able to capture this context and differentiate between Nep-
tune DOS attacks, other intrusions, and normal network traffic.

3.4 Dynamic features standard ML approaches

Even though dynamic features are quite the opposite of our static features,
there exists much intriguing research for malware/vulnerability detection and
classification. A quite exciting approach by Kolosnajaji et al. [52] are models
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training on dynamic features extracted from kernel API call sequences. The
system calls were transformed into a unique binary vector for every API
call present in the dataset. The dynamic features were extracted by feeding
each data sample through a dynamic malware analysis tool to gather the
underlying data about malware behavior. Kolosnjaji et al. compared three
types of architectures: a feedforward network, a convolutional network, and a
hybrid neural network made up of a convolution part and a recurrent part. In
the hybrid implementation, outputs from the convolutional part are fed into
a recurrent part consisting of LSTM cells. All the binaries used for training
and testing are gathered from Virus Share, Maltrieve, and private collections.
They created 10 clusters of classes where each cluster consisted of 4,753 data
samples. The researchers were able to achieve good results where the hybrid
ConvNet + LSTM yielded the highest average performance.

Another paper by Santos et al. [53] explored the possibility of using a classic
language recognition technique called n-grams for malware detection. N-
grams are substrings of a larger string of a fixed length n. In total, Santos et
al. used a subset of 1,000 benign and 1,000 malicious software provided to
them by a computer security software company. For classification, they used
a k-NN algorithm on n-grams created from file signatures of a collection
of malware and benign files. The signatures were created dynamically by
running each binary in a safe environment and logging each binary’s behavior.
Researchers tuned the length/size of different n-grams and reported that they
achieved the highest accuracy by setting n-grams to 4, which yielded a high
detection ratio.

Wu et al. [54] explored the possibilities of vulnerability prediction based on
a dynamic analysis of software. They trained three deep learning models:
a convolution neural network, a long short term memory recurrent neural
network, and a hybrid of the two. They also implemented a very basic
Multi-Layer Perceptron (MLP) for benchmarking the other architectures.
Their dataset consisted of a collection of 9,872 sequences of kernel function
calls. Functions were pulled from the /src/bin and /usr/bin directory in
a 32-bit Linux machine. For the CNN architecture, input was a sentence
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comprised of word embeddings. For the LSTM model, the first layer is an
embedding layer that uses ten length vectors to represent each word. For
the hybrid model, input in first fed through a CNN part before it is available
for the LSTM cells. On average, the three models achieved fairly reasonable
results compared to the vanilla MLP model. Once again, the CNN+LSTM
was the most successful architecture, albeit with some small margin.

We conclude this literature review with a paper that uses a riveting represen-
tational level. In this paper, through the use of static and dynamic features,
researchers presented a way to predict if executables contained vulnerable
memory corruptions by using machine learning techniques. They collected
138,308 unique execution traces and statically explored 76,083 different sub-
sequences of function calls. Static features were based on the use patterns
of the C standard library within a binary. Static feature vectors were made
by doing a random walk on parts of the executable and producing feasi-
ble/unfeasible sequences of C library calls. Dynamic features were extracted
by hooking program events and collecting them into a separate sequence.
Grieco et al. [55] explored three different machine learning techniques: a
logistic regression model, a Multi-Layer Perceptron (MLP), and a random
forest, where the latter gave them the highest prediction accuracy. Their ran-
dom forest model managed to predict with reasonable accuracy which pro-
grams contained dangerous memory corruptions. Even though their models’
accuracy was not the most impressive, it still holds as a supporting tool for
vulnerability discovery.
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3.5 Summary

In this chapter we have given a thorough presentation of relevant work in
our field of research. Each paper has been briefly presented with their ap-
proach, data, representational level and findings summarized. We have es-
tablished a understanding of recent and current achievements in malware
detection, malware classification and vulnerability detection using machine
learning techniques. A taxonomy of our chosen papers was created to provide
a quick overview of representational level, models used, size of their datasets,
features used and overall objective.
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Chapter 4
Challenges and Limitations

This chapter will provide insight into an understanding of our limitations.
Our work is only part of a master thesis; thus, our aim is, as expressed in the
motivation section, only to find and draw basic conclusions on whether or
not our approach is meaningful and useful. We do not, in any way, claim that
our work generalizes over other machine learning inspired approaches. Non-
identical data sources, feature engineering, architecture, or neural network
classes could yield entirely different results and conclusions. In the context
of our research method, implementation and limitations, we strive to shed
light on and evaluate the feasibility of our particular approach.
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4.1 Computational limitations

We have been quite limited concerning computational power and the avail-
ability of said resources. At the time of writing, the Abel [66] cluster at UiO
was in the phase of permanently shutting down. We are indeed apprecia-
tive of UNINETT, providing us with high-performance computing and data
storage. Our resources were relatively limited. Even though our resources
were limited, as they are intended for small scale projects [67], we would not
be able to conduct our experiments without them. The lifespan of a SSEW
project with HPC is limited to three months, which is unfortunate. It has
limited our ability to conduct as many experiments and explorations as we
would have wanted. Given the size of each sample, loading and training may
take a long time. We have therefore been obliged to be relatively conser-
vative when deciding the number of functions in each sample and the total
number of samples within a dataset. These computational restrictions have
influenced everything from data gathering, generation, feature engineering,
architecture, and experiments.

4.2 Data limitations

A measure for reducing and limiting our scope is to concentrate on a single
type of vulnerability, buffer overflows. For us, it was a natural choice, as
our research goal is to conclude our approach’s usability. Thus we cannot
draw a generalized conclusion for our model’s capacity to classify other vul-
nerabilities as their code signature might differ severely. This limitation is
directly related to our available resources, both human and computational
alike. As we generate, label, and prepossessing all data by ourselves, it is
essential for us to keep the complexity of our work at a manageable degree.
Even though we are restricting ourselves to a single type of vulnerability, we
would still argue that this approach gives us a sufficient basis for making con-
clusions. Further discussions and settlements about our datasets are found
in the approach and implementation chapter.

65



4.3 Classification limitations

The last category of limitations is the classification task itself. We opt for a
model that would be able to detect whether or not a binary has a vulnera-
bility or not. Which in this context means that we do not concern ourselves
with either counting the number of vulnerabilities a binary has or its position
within the binary. The ability to detect multiple vulnerabilities and pinpoint
their position would be an incredibly complex task, which we neither have
time or resources to implement. Even though this certainly would be an
exciting extension of our work, it is not imperative for our hypothesis.

4.4 Summary

In this short chapter, we presented our limitations and challenges and thus
established our scope of research. Albeit our limitations and said scope, we
argue that our findings still hold merit within the limitations and constraints
defined above.
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Chapter 5
Approach and Implementation

In this chapter, we aim to provide an overview of our approach for creating
the necessary segments to conduct our experiments. This overview includes
detailed steps of how we generate data, how we create features through data
cleaning, and, finally, an overview of our architecture. We have included
multiple listings and figures to ensure a fundamental understanding of our
research method and implementation.
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5.1 Data Generation

As with any deep learning problem, the quality and amount of data available
for training, validation, and testing are critical to the success of a model.
One of the major and perhaps the most significant challenge of our problem
is the lack of such data. As of today, to our knowledge, there does not exist
a database or data collection with the data needed for our purpose. The lack
of such a database is a multifold challenge. First of all, we had to figure out
a way to gather or create this type of data. Secondly, we had to decide how
we want to represent our data in a meaningful, compact way while keeping
the representation as close to runnable code as possible. Lastly, we also need
to categorize/label each dataset so that our model can learn from training
data and categorize/label unseen samples in the future. Let us first examine
the possibilities and limitations of different approaches to creating a suitable
dataset for our model.

5.1.1 Web scraping

The initial idea was to use a web scraper to scrape different C source code
sources, which is considered a reasonable solution in general. Sources to
consider would be public repositories at Github, open-source code for large
software projects, or even code from different open-source operating system
kernels. The positive aspects of this approach are that the code gathered will
have significant variance and be non-homogeneous as developers write code
in different styles and with different conventions. Strictly speaking, non-
homogeneity might be a challenge, but most deep neural networks can deal
with this type of difference quite well. Some of the papers we have explored
utilized this approach to create a large dataset with a massive collection of
samples. These papers were concerned with malware detection.

Another great benefit of gathering data is that this approach will almost
completely negate any unintentional tailoring or bias compared to writing/-
generating the data. Another argument for scraping the web for data is that
the collected data is arguably more "real world" like, and would perhaps
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converge the model towards a more "universal" applicable state. In turn,
the model could be better at classifying unseen examples from very different
sources or code written in unique ways. In general, it is relatively safe to say
that this approach would yield high-quality data samples and, in turn, high-
quality datasets for training and testing the neural network. Even though
there are great benefits to gathering data samples from web/repo/project
scraping, there are some challenges to overcome. First of all, we would have
to create a web-crawler / web-scraper that would have to navigate through
the web, find C code, extract it in a usable, and compilable format (which
can be quite hard for nested calls), and write it to a file.

A significant concern from our part is that there is no guarantee that the
collected data would be of high quality. Indeed there exists a wast amount of
unmaintained code on the web. There is no way for us to know for sure that
code gathered would even compile without us testing each gathered sample.
Quality checking each data sample adds a great deal of work, which can be
avoided using other approaches, which we will present below. Crawling and
extracting data with this approach is quite resource-heavy, but doable. The
greatest and perhaps the most limiting challenge is labeling the gathered
data. For every single data sample, we would have to perform an in-depth
analysis to determine whether or not it contains a buffer overflow vulnera-
bility. Since we are using supervised learning, this is necessary if we want
our data to have any value for our model. There are, in general, two ways
we could go about labeling the scraped functions; manual or with the help
of automatic tools.

A manual approach to labeling

A manual approach of labeling would require months and months of tedious
analysis of source code by a dedicated team of reverse engineers as the amount
of data required for deep learning is vast. Manual labeling of data has been
performed with great success in other datasets, for example, the CIFAR-10
and CIFAR-100 [68] datasets used in image classification. Students manually
labeled both these datasets at Toronto university. CIFAR-10 has 60,000
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image samples over ten different classes, so it is quite large, but not nearly as
large as many other datasets used for deep learning and image classification.
We would argue that compared to image labeling, vulnerability labeling is a
whole different ballpark. Looking at a picture and determining what kind of
animal it is, is relatively trivial for most human beings. Looking at source
code and determining whether or not it contains a particular vulnerability
is quite hard for most of us. Some professional reverse engineers have more
training in this work, and would thus be faster, but obscure examples can fool
even the professionals. The only way to have 100% correct labeling would
be to run the code with different inputs and try to crash or cause a buffer
overflow through each function by writing past allocated memory to smash
the stack. This is an enormous task, and the resources required for this
manual work are not available for our project. In general, it is not a feasible
or even time-effective approach when labeling such complex data.

An automatic approach of labeling

The second way for labeling all collected functions would be to use some au-
tomated vulnerability detection tools. Using detection tools would be much
faster and less resource consuming than the manual way. The challenge with
automated tools is that they, as humans, are prone to error. So even though
a vulnerability detector is a great tool, it is only as good as the engineers
who programmed it. They are prone to do wrong labeling, which would be
detrimental to our deep learning models. A possible solution for this inaccu-
racy would be to do a sort of voting on labels. So if we were to run each data
sample through a set of automatic tools, we could decide the label based on
a majority vote or a certain percentage. The best approach would probably
be to use a set of both static and dynamic analyzers, as both categories have
their strength and weakness. Even though this automatic approach is much
faster than manual labeling, it still takes time for each detector tool to run all
its fuzzing and different inputs for each function/data sample. We would also
argue that a neural network trained on data labeled by a set of automatic
vulnerability detection tools may just end up learning the function encoded
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by the automatic tools. If this scenario emerges, it would be quite useless for
us since there would be no point in training a resource expensive classifier of
a collection when automatic tools would already provide the desired function
just as well.

5.1.2 Generating & creating data

Our approach to the lack of finalized datasets for this type of deep learning
task is to create our dataset. In general, generated data is not considered
quality data in deep learning. However, with code, we would argue that if the
model can infer context over our generated examples, so should the model do
with code created by many different software engineers. A great benefit of
generating our data is that labeling is straightforward. Since we are creating
each function, we know exactly if a sample is vulnerable or not. We also
have full control over the code style used, so our data is more homogeneous,
which can be beneficial for our neural network to converge faster.

Our approach of training our model with synthetic data is a contribution
towards the feasibility of vulnerability detection using Recurrent Neural Net-
works. Synthetic data is thus, in our view, sufficient quality to prove/disprove
our highly non-trivial hypothesis. If we can prove the feasibility grounded in
synthetic data, extending the model to work with more complex and realis-
tic data is mainly an engineering challenge, which again is highly non-trivial.
On the other hand, one of the significant drawbacks is the amount of data
and how varied each sample can be when we choose to write it ourselves.
These drawbacks are mostly due to time constraints, as one person cannot
sit down and write code samples in the 100,000’s size. We chose a different
and interesting approach in which we mitigate these drawbacks.

Let us start by defining what a vulnerable function is for our purpose. For
us, the only vulnerability we focus on is the buffer overflow weakness; this
means that we have only focus on and create functions that are susceptible
to that particular vulnerability. We have also decided that our vulnerable
functions must take some input from the user. Below is an example of such
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a function, and a function which we do not deem vulnerable in our context.
In this example strcpy is used.

1 void notSafeCopy ( char ∗ s r c ) {
2 char des t [ 1 4 ] ;
3 s t r cpy ( dest , s r c ) ;
4 p r i n t f ( "Copied s t r i n g : %s \n" , des t ) ;
5 }

Listing 5.1: Buffer overflow vulnerable data sample

Listing 5.1 presents a vulnerable function, where argument src larger than
14 bytes will overwrite allocated dest memory.

1 void notSafeCopyNoArg ( ) {
2 char ∗ s r c = "This i s a s t r i n g that i s too long f o r

des t "
3 char des t [ 1 4 ] ;
4 s t r cpy ( dest , s r c ) ;
5 p r i n t f ( "Copied s t r i n g : %s \n" , des t ) ;
6 }

Listing 5.2: A crashing function

Listing 5.2 provides a function where, if run, will crash the program that calls
it. We would argue that this function only has a programming error that
will crash the program but is not exploitable by malevolent users. Buffer
overflow vulnerabilities can be written in numerous ways, but in general,
they are produced through unsafe native C system calls. That is, without
doing appropriate buffer length checks. We choose to focus on system calls
that are considered unsafe and use system calls that are considered safe and
perform buffer length checks. Even though the last category is considered
safe, there are ways for the programmer to make mistakes, which will open
up vulnerabilities nonetheless. Here is a list of our chosen system calls by
category, with a short description of its usage, and why it is unsafe:

Copy a string :

strcpy: char *strcpy(char *dest, const char *src); Copies the string
pointed to by src, including the terminating null byte (’\0’), to the
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buffer pointed to by dest. If the destination is not large enough
for the src string, we have a buffer overflow vulnerability [69].

strncpy: char *strncpy(char *dest, const char *src, size_t n); Works
the same way as strcpy but additionally, you can limit the number
of bytes copied through size_t n. However, if size and src are
greater than the bytes allocated for dest, we have a buffer overflow
vulnerability [70].

Concatenate a string :

strcat: char *strcat(char *dest, const char *src); Appends the src
string to the dest string, overwriting the terminating null byte
(’\0’) at the end of dest, and then adds a terminating null byte.
If dest is not large enough for src, we are invoking unpredictable
behavior and creating a buffer overflow vulnerability [71].

Input format conversion from STDIN :

scanf: int scanf(const char *format, ...); Scans and converts input ac-
cording to a specified format, and the results from such conver-
sions, if any, are stored in the locations pointed to by the pointer
arguments. If the result after conversion is larger than the desti-
nation, there is a buffer overflow vulnerability [72].

Formatted output conversion :

sprintf: int sprintf(char *str, const char *format, ...); Is in the printf
family and produce output according to a format. Sprintf assumes
arbitrarily long strings, and this, if the destination buffer is too
small for the input, there is an opening for a buffer overflow vul-
nerability [73].

Input of characters and strings :

gets: char *gets(char *s); Reads a line from stdin into the buffer
pointed to by s until either a terminating newline or EOF, which it
replaces with a null byte. No check for buffer overrun is performed,
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so it is vulnerable. Even though gets is no longer supported, and
is advised to avoid, usage is still present, and we find it valuable
to include to our vulnerable functions [74].

fgets: char *fgets(char *s, int size, FILE *stream) Reads in at most
one less than size characters from stream and stores them into the
buffer pointed to by s. Reading stops after an EOF or a newline.
If a newline is read, it is stored in the buffer. A terminating null
byte (aq\0aq) is stored after the last character in the buffer. Fgets
is considered the safe, updated version of gets(), but it can still
be vulnerable to buffer overflow if the programmer accepts a too
large amount of bytes into the destination buffer [75].

Copy memory area :

memcpy: void *memcpy(void *dest, const void *src, size_t n); Copies
n bytes from memory area src to memory area dest. As with the
other functions, one can specify the number of bytes to copy/read.
The programmer can make an error and accept a too large amount
into a too-small buffer, which opens up the buffer overflow vulner-
ability [76].

We are aware that there are other unsafe system calls in the C library, but we
have limited ourselves to these eight. For each of these eight system calls, we
created 15 different functions, which means we created 120 different vulner-
able functions. These functions had one and only one vulnerability and used
one and only one weak system call. Our reasoning for this is to isolate vulner-
abilities to buffer overflows only and to simulate "real world" data as much
as possible. We strive to have a clean data sample where the vulnerability is
a single type of system call and single vulnerable function.

Some functions use system calls that are considered unsafe concerning stack
smashing but are written and checked in a way that makes them safe. We
wanted to do this to ensure our network would not merely learn that ALL
calls to, for example, strcpy are wrong. It depends on the context as much
as the actual system call itself. We will come back to and use the same
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reasoning when we provide insight and examples of our benign functions. In
5.3, we can see an example of a function that uses an unsafe C system call
and thus has a potential vulnerability. However, the input is handled in a
safe and controlled manner by checking the string length and setting up a
correct size buffer.

1 void safeCopyStrcpy ( char ∗ s r c ) {
2 char des t [ 1 4 ] ;
3 i f ( s t r l e n ( s r c ) > s i z e o f ( des t ) ) {
4 char l onge r [ s t r l e n ( s r c ) ] ;
5 s t r cpy ( longer , s r c ) ;
6 p r i n t f ( "Copied s t r i n g : %s \n" , l onge r ) ;
7 } e l s e {
8 s t r cpy ( dest , s r c ) ;
9 p r i n t f ( "Copied s t r i n g : %s \n" , des t ) ;

10 }
11 }

Listing 5.3: Safe useage of strcpy

Each vulnerable function is unique in the way that they all have some va-
riety in their code running before the vulnerable system call, some other
parameter, or just some other data structure. Our functions, therefore, en-
sures a better variance in the data samples and helps our neural network to
converge to a more generalized state, hopefully. For the benign functions,
we decided to create an equal amount of that to the vulnerable functions.
We also decided to use eight of our vulnerable functions and repair them,
or reprogram them into safe functions. In the listings below we present a
vulnerable function (Listing 5.4), and its benign, safe counterpart (Listing
5.5).

1 void memcpySmallIntoLarge ( char ∗ s ) {
2 char des t [ 2 5 6 ] ;
3 memcpy( dest , s , s t r l e n ( s ) ) ;
4 p r i n t f ( "%s\n" , des t ) ;
5 }

Listing 5.4: A vulnerable function from our dataset
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5.4 shows us how easy it is to unintentionally create a vulnerability by using
the wrong parameter to the C system call.

1 void memcpySmallIntoLarge ( char ∗ s ) {
2 char des t [ 2 5 6 ] ;
3 memcpy( dest , s , s i z e o f ( des t ) ) ;
4 p r i n t f ( "%s\n" , des t ) ;
5 }

Listing 5.5: Repaired version of listing 5.4

The motivation behind this is also to challenge the network. We would
like the network to convergence towards a context-based state instead of a
keyword-based state. With our repaired code, we want to create data samples
where vulnerable operations are performed safely.

5.1.3 Testing vulnerable & benign code

Our goal has always been to prove/disprove a hypothesis, and thus we want
to keep data as simplified as possible. One of the measures already discussed
is the exclusions of all other vulnerabilities other than buffer overflows. Con-
cerning each data sample, we have chosen to keep them, in a way, as atomic
and "simple" as possible. We achieve this by only including a single vulner-
ability per function in our vulnerability library. We also narrow the usage
of system calls to a minimum per function so that each function optimally
has a single vulnerability at a single point from a single vulnerable system
call. This atomic structure means that testing and controlling each data
sample is much easier for us. Our approach to writing and implementing
each vulnerable sample was to choose a system call, write a vulnerable piece
of code, and then vigorously test it before writing a new vulnerable sample.
We base all samples on user input, and the size of the provided input invokes
all vulnerabilities. We followed a unit testing approach to our testing, where
we validate each unit of code through a range of inputs. Unit testing was
done for each vulnerable function during development, before accepting it
into the vulnerability library.
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As mentioned, some functions contain more than one system call with moti-
vations and reasons already mentioned previously. In these cases, testing was
more challenging as we had to make sure that no additional vulnerability was
introduced into the sample. On the opposite side, as mentioned, half of the
benign functions are repaired samples from the vulnerability library. Both
these repaired functions and the new ones we wrote has also been scrutinized
and rigorously tested to make sure that they were vulnerability free. This
way, it is easy for us to assign each data sample to their correct labels. Cor-
rect segregation is essential for correct labeling later on. Now that we have
presented some examples of both vulnerable and benign functions, we would
like to elaborate on how we use these two collections or libraries of functions
to generate data.

5.1.4 Generator script

We developed our generator script in python. It is capable of combining
functions from both the benign and the vulnerable library we wrote to create
new fully compilable and runnable C code. It has some hardcoded string
values, such as headers, the main wrapper, and brackets. In other words,
code that all runnable C programs need. The finalized script will, with some
stochasticity, generate the data samples we need for our problem. Here are
the parameters which can be used and modified:

argv[1]: Number of binaries to create (1-N).

argv[2]: Defines the total amount of functions in a binary.

argv[3]: Define the total number of functions from the library to

include in the generation.

argv[4]: Flag defining chosen class. B-benign, V-vulnerable

Listing 5.6: Arguments for our generator script

We decided that for the vulnerable binaries, we would only include one vul-
nerable function; the rest of the binary would consist of benign functions. So
if we specify:
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python generator.py 100 5 20 V

Listing 5.7: Sample argument stack for generating binaries

Our script will produce 100 binaries, which have five functions, where four
benign functions are chosen from the 120 first functions in the benign library,
and one of the five is a vulnerable function from the 20 first vulnerable
functions in the vulnerability library. Concerning the number of functions
per binary, we wanted to keep it within a reasonable number, not too long,
so that we have a large binary and not too small so that the binary has
some structure and is more like the "real world". We decided that from
three and up to and including six functions per binary was a reasonable
number. When it comes to the number of vulnerable functions included, we
argue that this is how most vulnerable binaries are structured. Many benign
and safe functions, and one that has the vulnerability, and creates all the
fuzz. It is not very likely that we have a situation where a binary consists
of only vulnerable functions. Another supporting argument for structuring
our binaries like this is that our aim for the neural network is to do binary
classification, i.e., to detect if there is a buffer overflow vulnerability. We
are not concerned with how many there are or their locations. Our last
compelling argument for only including a single vulnerable function is that
we believe our classifier will have to be far more sensitive to vulnerabilities
this way. Even though it could make training and converging challenging,
it is in our best interest that our classifier can indeed distinguish the small,
subtle differences existing in a vulnerability hidden in a larger program file.
Now that we have covered the input arguments to our script let us examine
how we create new binaries.

• All the method declarations from both the benign and the vulnerable
library are stored in a list.

• All function calls from both the benign and the vulnerable library in
another list.
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• Full code for each function in both the benign and the vulnerable library
is stored in a 2D list.

These six collections of data values are stored as strings in separate lists for
later processing. All of them, including arguments for how many programs
\binaries we want to create and how many functions that should be included
in each program is passed to thewriteToFile() function. To ease the reading
and capture each declaration, call and function we chose to mark the benign
and the vulnerably library with comment tokens:

• Before all declarations we added a comment: /*Start declaration*/
and at the end a comment /*End declaration*/.

• Before all calls in main we added a comment: /*Call start*/ and at
the end a comment /*Call end*/.

• We also wrapped each function with comments: /*funcstart*/ at the
start and /*funcend*/ at the end.

By using these tokens, it is relatively trivial to append declarations, calls, and
actual function code to separate and ordered lists. This approach is much
more comfortable than the initial idea of using regular expressions (which
works poorly on code with nested curly brackets). Since the code is declared,
called, and implemented in the same order, each index corresponds to the
same tuple. Data is generated correctly by looping over each index in this
manner.

One of the last tasks our generator script executes is changing each function
name to a random string. We realized that we had to do this randomization
of function names, as each vulnerable function maintains its distinct name
in the binary executable. Randomizing function names is critical as we do
not want our model to learn any correlation between a vulnerability and
a function name. If we pass the original function names to our machine
learning model, it is highly likely that the model would learn that there is a
vulnerability for a given function name.

1 notSafeMerging :
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2 endbr64
3 push rbp
4 mov rbp , rsp

Listing 5.8: Function name in the compiled ASM format

1 void notSafeMerging ( char ∗ s ) {
2 char des t [ 1 5 ] = "Test ing second" ;
3 p r i n t f ( "Before : %s " , des t ) ;
4 s t r cpy ( dest , s ) ;
5 p r i n t f ( " After : %s " , des t ) ;
6 }

Listing 5.9: Function name in the original C function

As we can observe in listing (5.9), the name of the function is representative
of what is happening. If we keep the original function name, then it is
very likely that the classifier will recognize and learn classification based on
function names rather than code context. Function names will never indicate
whether or not it is vulnerable in the real world, so this data is undesirable
for us. Therefore, we generate a list of 12 character long randomized strings
and replace each function name in the declaration, call, and actual function.
Since lists are indexed, it is easy for us to tie each random string to this tuple.
This process performed with the generation for each new sample, benign and
vulnerable. This way, we ensure that we do not have duplicate randomized
strings for both a benign and a vulnerable function.

When all the previous steps are completed, our script uses random sampling
to create a list of indexes for which functions to include and write to a
new compilable C program. This way, we ensure that we have a uniform
distribution of functions in the program generation. When the script writes
a new compilable and runnable C program, declarations are written at the
top, function calls within the main function, and the full functions are finally
written at the bottom of the file. We chose to let the main call each function.
This structure is, of course, a simplification compared to "real world" code,
as functions are often called within other functions. However, this way of
structuring our code makes it much easier to generate new samples logically
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and gives our data samples an immaculate and understandable structure.
It is not unreasonable to say that this way of coding/structuring code is
also widespread within software engineering and therefore makes our samples
legitimate with regard to impersonating the "real world" code.

5.1.5 Initial ideas for choosing functions and structuring

them

We tried multiple approaches for generating and combining functions into
unique binaries. In this subsection, we will present some of our initial ideas
and reasons for not choosing them. Lastly, we will discuss our final choice
for generation based on our criteria for this master dissertation.

Cartesian product

The initial idea was actually to use the Cartesian product, where we would
just specify the number of functions used in each binary. The script would
then pull out the said amount of random functions and create binaries that
were the Cartesian product of them. So, for example, if we specified one
function, the script would be able to create 120 pure benign examples and
120 vulnerable examples. For two functions, it would take the Cartesian
product between every two pairs of functions, which would result in 14, 400

pure benign, 14, 400 pure vulnerable, and 14, 400 examples. If we wanted to
do three function samples, we would end up at about 1, 728, 000 unique sam-
ples. The drawback of using the Cartesian product is, of course, that many
functions are repeated in each sample. For instance, with three functions,
we would have samples that would look like this:

1 void inputStrCat ( char ∗ s ) ;
2 void inputStrCat ( char ∗ s ) ;
3 void inputStrCat ( char ∗ s ) ;

Listing 5.10: Uniform function pool from Cartesian product

We would argue that declaring, calling, and writing a single function multiple
times is not something widespread in software engineering in general. Also,
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with the Cartesian product, we would create samples that consisted of N-
amount of vulnerable functions. Binaries containing multiple vulnerabilities
are not something that we want in our training and testing data, as we have
stated that we want our model to detect one single vulnerability. Besides,
as previously stated, the inclusion of multiple vulnerable functions makes
our samples too dissimilar compared to code we would see in the real world.
With this approach, we would then have to write some logic that had to check
each generated sample for repetitions. We would also need logic to remove
any samples which contained multiple vulnerable function calls. On the flip
side of all the limitations of this approach, we can observe that given that
this logic, each function would be used and called the same amount of times,
which would give us a uniform function usage distribution. This distribution
is one of the goals we wanted to fulfill, as we would like our model to train on
all the different benign and vulnerable functions. However, the limitations
outweigh the possibilities, so we eventually scrapped this approach.

Pythons Itertools

The second idea and approach would use pythons itertool [77]. Itertool with
combinations creates r-length tuples, in sorted order, with no repeats. If
we look at a sample implementation below, we can see which kind of tu-
ples itertools.combinations will create. Imagine function number 15, 30, 45
and 60 were chosen at random the following tuples are created by Itertools
(5.11):

(15,) , (30,) , (45,) , (60,) , (15,30) , (15,45) , (15,60) ,

(30,45) , (30,60) , (45,60) , (15, 30, 45) , (15, 30, 60) , (15,

45, 60) , (30, 45, 60) , (15, 30, 45,60)

Listing 5.11: Tuples created by Itertools

With itertools, we could specify the number of functions to choose (in the
example above four functions). For our four function example, we would
get 15 unique tuples with no repeat of function calls. With ten functions,
we would get 1023 samples, and for 20 functions, we would get 1, 048, 575
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samples. First of all, this would give us unique function calls, which is desir-
able, but on the other hand, many of the samples would have far too many
function calls for the limitations we have decided. Programs with 20 function
calls contain much code, and we believe that programs and data samples of
such length are neither necessary nor beneficial for our deep learning model.
As with the Cartesian product approach, we would have to create logic for
injecting vulnerable functions inside the benign samples and vice versa. A
possible solution to both these challenges would be to use a subset of the
tuples. We could limit the generation to a maximum amount of functions in-
cluded in each tuple. With this approach, using all 120 vulnerable functions
and limiting tuple length to be between one and three functions, we could
generate 288, 100 pure vulnerable samples and naturally the same for benign
samples. With a combination of both libraries and the same restrictions on
size, we would generate 2, 304, 200 unique samples. However, the same limi-
tations are present in this approach as with the Cartesian product. We do not
desire multiple vulnerabilities within one data sample. Another limitation
of itertools is, as we can see in listing 5.11, the first functions are also used
more frequently than all the others. As stated earlier, an uneven distribution
over function inclusion is an undesirable distribution for us.

Using np.random.choice

Finally, let us take a look at our chosen approach for choosing functions
within our generator script. The best way, to our knowledge, achieving short,
unique, uniformly distributed, and single vulnerable functions for the vulner-
able samples is through using python’s random.choice [78]. With this library,
we ensure that our script randomly selects multiple functions given param-
eters: number of functions to select from, how many functions we went to
select, and whether or not we would like to have replacement i.e., allow dupli-
cates. We create a list of benign functions with specified length, and a single
randomly chosen vulnerable function. In addition, an index decides where
the vulnerable function is supposed to be placement within the program file.
This randomly generated index means that there is a degree of randomness
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with regard to the placement of the vulnerable function. This randomness
allows our script to create even more unique samples since the vulnerable
function’s placement will vary. For the benign data samples, we create a list
with a specified length in a similar way. This way of using randomness and
choice() we achieve:

1. Random uniform distribution of functions used in our samples, i.e.,
with a large enough quantity of samples, all functions are included an
equal number of times.

2. Vulnerabilities have a randomized placement within a program file,
which is more similar to "real world" code.

3. We generate samples with a single vulnerability.

4. We ensure that within a single data sample, no single function is
called/used twice.

We argue that these four attributes allows us to generate data samples that
are as real world, and as close to how we want our data to be structured as
possible. Below is the mathematical formula for calculating the number of
permutations from a size n set with k number of chosen elements:

P (n, k) = n · (n− 1) · ... · (n− k + 1) =
n!

(n− k)!
(5.1)

If we would like to generate a dataset where we each sample is three functions
long and we would like to include half of each library into the set n we would
be able to generate in total:

Pure benign: P (60, 3) = 60!
(60−3)! = 205320

Vulnerable: P (60, 2) · P (60, 1) = 60!
(60−2)! ·

60!
(60−1)! = 212400

The number of possible combinations is due to sampling without replacement.
With the pure benign, we sample three times. First, on the full distribution.
Secondly, on the full distribution excluding the previously sampled function.
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Lastly, the full distribution excluding the previously sampled functions. With
the vulnerable data samples, we sample a single function from the vulnerable
library as well. Therefore we only have two steps of sampling form the benign
library. The formula extends as the number of functions to include increases.
We have included a full code sample (A.1) in the appendix to make explicit
what a generated program looks like before feature engineering.

In conclusion, not only are the data samples generated closer to "real world"
code samples, but it also allows us to create a great deal of unique data
samples, even with a small number of functions to write per sample. We
hope that with this generation technique, we can create not only the amount
of data needed but also data that has enough variance such that our model
is applicable to unseen samples. In a perfect world, we would have all this
data available, but we will have to make the best use of what we can create
ourselves. This discrepancy between our in-sample data, which is the data
we create and train on, and the out-of-sample data, which is the unseen "real
world" data we want to perform classification on, is unfortunate. However,
our primary focus will still be to discover the ability to do classification on
data samples. If our model can perform classification on our generated data,
there is a good chance that with proper training, our model might work on
more real-world data as well.

5.2 Data representation & cleaning

Cleaning and creating a representation for data is usually one of the most
time-consuming parts of any deep learning process. Together with data gen-
eration, these two parts of our development pipeline were both challenging
and time-consuming. As aforementioned in the previous section, we elabo-
rated a great deal on our decision-making concerning generating data and
how we ended up doing it. This section is about our approach for finalizing
data into a usable format for our deep learning model.
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5.2.1 Representational level

There are multiple ways to represent code. Some of them are language-
specific representations like Java, Python, C, Assembly, or machine code.
Other possible ways are tokenization, decision trees, and even taxonomizing.
The representational level was one of our initial concerns and issues to rea-
son we discussed representational level we had some criteria we wanted to
fulfill:

• First of all, we believe that code, in its logical nature, contains some
structure. We believe that this structure is informative in a similar
way to what we see in written and spoken languages. Therefore we
want to explore the possibility of feeding code "as it is" through some
deep learning model. The deep learning model we have chosen has
historically been used for natural language processing. Our adoption
of such a model creates a premise for us to fit and structure code
in a meaningful way for a deep learning model. Since we choose to
approach code "as is", we do not want to do any taxonomy or other
feature extractions or manipulations in which pure code is disregarded
as a feature in itself.

• Secondly, we wanted our generation and cleaning to be effective. Due to
our limited hardware resources available, as discussed in the previous
section, this is important. Another argument for keeping generation
and cleaning at low cost is time restrictions as the more manipula-
tion and feature extraction we do, the more time consuming our whole
pipeline will become.

• Thirdly, we wanted our model to be as generalized and available as
possible. If we were able to train a model that can indeed make rea-
sonable predictions on our training and testing data, we want it to be
deployable and useable for real-world data with as little overhead as
possible. Therefore, we want to keep generated and finalized data as
similar to a representational level available in real-world data. This
similarity is important to us, as the model reusability and usefulness
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are key characteristics in our validation. In other words, we want our
model to be useable on real-world data with as few data manipulation
prerequisites as possible. If the representational level is in such a way
that new real-world examples need a lot of formatting and cleaning, we
deem the model less successful.

• Fourthly, we want our data to be as compact as possible. Storing and
processing large amounts of data samples is computational heavy, and
even the smallest optimizations may go a long way towards efficiency.

• Lastly, out of sheer curiosity, we wanted to scrutinize a representational
level currently, to our knowledge, still little explored for such purpose
as ours.

With these criteria in mind, our final decision settled at using actual code
as data. More specifically, we settled for assembly code, compiled with Intel
syntax for the 64-bit architecture. We argue that this way of representation
fulfilled our prerequisites aforementioned. Assembly is indeed a language,
and we can assume that though it is not as rich as other programming lan-
guages, or spoken and written language (concerning dictionary size), it should
be a suitable format for a Recurrent Neural Network. It is also relatively easy
and resources efficient for us to generate data samples when we use this kind
of representation level. After generating C code, we simply need to compile
it down to a binary file and pull the pertinent code from it. We will elabo-
rate further on what we consider as applicable code at a later point in this
section.

We also had the option of using C source code as a representational level.
However, we want to develop a model that can perform classification on
executables without available source code. There exist numerous great tools
for analyzing and decompiling binaries, such as the infamous IDA Pro by Hex
Rays [79], Binary Ninja [80], and NSA’s own Ghidra [81]. What is common
for most decompilers is that they are very good at decompiling machine code
and thus provide the user with generated assembly code for a binary file.
However, reverse engineering machine code up to C is not yet successfully
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implemented. Indeed it is a compelling argument that in the real world,
the highest possible code representation obtainable from unknown binaries
is assembly code. This limitation is tied to our third criterion of availability
and generalization. With a model trained on assembly code, it is relatively
trivial to analyze new data samples, as one would only need to extract code
from the disassembly tool and feed it into the trained model.

On a side note, we also considered representing data as machine instructions
as well, that is, sequences of binary numbers. We quickly discarded that idea,
as each data sample would be an unnecessarily long sequence of 0’s and 1’s.
Besides, it is more challenging to develop a deep learning model that would
be able to do any learning and classification on binary data. Also, when
machine code is extracted directly from the binary, a lot of compiler and
architecture-specific code is included, which is not beneficial nor necessary
for our purposes. If we compare the sizes of an assembly dump against a
machine code dump, it is quite clear which representational level is the better
choice if the intended purpose is to keep data as compact as possible. We
chose to use some techniques to identify and remove what we consider inapt
code in the generated data to minimize the size of each data sample.

5.2.2 Cleaning data samples:

There are some substantial challenges for our data cleaning as we, on the one
hand, want to keep data as close to "real world" data samples as possible, and
on the other hand, want to compress it as much as possible. If we keep every
line of code from a binary, we risk including some lines of code that have
no value i.e., redundant or useless information for our model and just slow
down converging. Also, data samples will be much larger, and thus use more
space and computational time to process for our model. Contrarily, if we
remove too much code from the binary data samples, we risk losing context
and create a large gap between our data samples and unseen "real world"
data samples. Both scenarios directly contradict our criteria two, three, and
four. We will now present below: the chosen compiler, compiler flags, which
parts of the compiled binaries that have been modified or removed, and our
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reasoning for our final choices.

Compiler & Flags:

We chose to use the GCC compiler [82]. Our main argument for using it is
that it is cross-platform, initially made for the C programming language, has
many compiler options, and GCC is the conventional compiler today for the
C language family. Since it is cross-platform, it satisfies our criterion about
creating a generalizable model. With the vast choices of compiler options,
we can also compile our binaries as close as possible to how we envision
the final structure of our data samples. We realize that binaries throughout
are compiled with different flags depending on their platform, architecture,
and usage. Even though this may contradict our generalization criterion, we
opted to use a minimal amount of compiler flags to minimize the gap between
generated binaries and "real world" binaries.

Our compiler script compiles every generated C program with the following
options:

gcc -S -fno-asynchronous-unwind-tables -masm=intel ./fileName.c -o

fileName

Listing 5.12: Compiler flags for our generator script

Each compiled binary is moved and separated into directories for benign
and vulnerable data samples. Let us look at the flags, and why we chose
them:

-S: This flag stops after the stage of compilation. That means that the bi-
naries will not be assembled. The output is in the form of an assembler code
file. If we were to discard this flag, we would have to add a disassembler to
our pipeline (which is probably necessary for any real-world binary, but for
our purposes it would only add another step to our pipeline).

-fno-asynchronous-unwind-tables:
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-fno: is simply the negative form of any instructions it is linked with.

-asynchronous-unwind-tables: These directives tell the GNU As-
sembler to emit Dwarf Call Frame Information tags[83]. Both .cfi_*
directives and .The compiler includes lxxx labels by default. The .cfi_*
directives are used for unwinding information more easily and recon-
struct a stack backtrace when a frame pointer is missing [84]. The
.Lxxx labels indicate that the label is local to this file, so it will not
conflict with the same-name labels in other files. Since we are neither
interested in unwinding information nor running multiple binaries at
the same time, both of these labels are redundant to us. When we com-
bine -fno to create a negative form, we effectively ignore these directives
and labels in our final compiled binaries.

-masm=intel:Generates binaries with Intel syntax instead of at&t
syntax. Both syntaxes are equivalent concerning representational ca-
pability, but the Intel syntax is superior for our purposes as it has a
more compact syntax. Most prominently, the use of extra characters
such as ’%’ prepended any register used, and the ’$’ prepended any
numerical value[85]. Since each binary contains multiple lines of as-
sembly instructions using both registers and numerical values, we can
save space and computational expenses by choosing the Intel syntax.

Even though the compiler flags removes a lot of data we deem unessential,
there were still some improvements to be made. With our finalizer script
finalizer.py we start with removing the entire prefix of each binary:

1 . f i l e " test_f i le_3_0 . c"
2 . inte l_syntax_nopre f ix
3 . t ex t
4 . g lob main
5 . type main , @function

Listing 5.13: Prefix for a compiled binary sapmle

The prefix is equal in every way for each binary except the .file name, of
course. Since this is present in every compiled binary, it will not help our
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neural network converge in any way as it contains no variance over each data
sample.

There are also other assembler directives we choose to discard to save space
and keep data samples as short and concise as possible [86]. The .LC direc-
tives containing the subdirectives .string. These directives are for storing any
declared string in the C program. For our vulnerabilities, the actual strings
stored are not part of any buffer overflow vulnerability as they are all based
on the user input to our programs. These directives serve no benefit for our
classifier, and can we can remove them safely. However, we chose to keep
the reference for the string directives whenever they are loaded. By keeping
the references, we aim to maintain as much as possible of the code context.
Listings 5.14 and 5.15 provides an example:

1 .LC0 :
2 . s t r i n g "Enter the s i z e o f input : "
3 .LC1 :
4 . s t r i n g "%d"
5 .LC2 :
6 . s t r i n g "%%%ds"
7 .LC3 :
8 . s t r i n g "Enter input s t r i n g : "

Listing 5.14: Generated assembler directives

1 mov rbx , rax
2 l e a rdi , . LC0 [ r i p ]
3 mov eax , 0
4 c a l l printf@PLT

Listing 5.15: Generated assembler directive references

We chose to remove the .size directives, which are generated by compilers to
include auxiliary debugging information in the symbol table. They are nei-
ther necessary for us nor necessary for the object file. .size is only meaningful
when generating COFF (Common Object File Format) [87] format output.
COFF is a format for executable, object code, and shared library computer
files used on Unix systems, largely replaced by ELF [88] today. Another
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directive we chose to remove was the .ident directive in each binary. This
directive is used by some assemblers to place tags in object files. It simply
accepts the directive for source-file compatibility with such assemblers but
does not emit anything for it. Here is what it looks like:

1 . ident "GCC: (Ubuntu 9.2.1−9 ubuntu2 ) 9 . 2 . 1 20191008"
2 . s e c t i o n . note .GNU−stack , "" , @progbits
3 . s e c t i o n . note . gnu . property , " a"

Listing 5.16: .ident directive and .section directives in a binary

We also removed he .section directives. These directives are only supported
for targets that support arbitrarily named sections; on a.out targets, for
example, it is not accepted, even with a standard a.out section name. Again
this is part of the COFF formatting for executables, and therefore we can
safely discard them. The last part of the binary executables we removed was
the endbr [89] instruction. This instruction stands for "End Branch 64-bit",
or more precisely, Terminate Indirect Branch in 64-bit. It is an instruction
used for marking valid jump target addresses of indirect calls and jumps in
the program for the 64-bit architecture. Since it as well is present in all our
compiled binaries, we chose to remove it.

One of the primary actions done in natural language processing is creating
tokens to represent each symbol, word, or sentence, depending on the goal
of the model. Thorough documentation about tokenization is found in the
section about our deep learning model. However, we would like to mention
our approach to creating an "optimal" vocabulary for our model. Since as-
sembly code is a translation of C code, it is only natural that there will be
many unique lines of code for each data sample. Too many lines pose a chal-
lenge. Tokenization of instructions "as they are" would create an extensive
vocabulary with many single instance tokens. To mitigate this, we choose to
split some of the sub instructions into atomic characters so that we create
a smaller vocabulary. If we use line 5 in listing 5.19, the tokenization will
create tokens:

"mov", "QWORD", "PTR", "-104[rbp]," and "rdi"
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Listing 5.17: Tokenization of a line of code

Special token "-104[rbp]," would most likely be unique for the whole dataset.
Therefore we choose to use several regex expressions to split these combined
instructions into more generalized tokens. Continuing using this same line of
code, the tokenization would instead create tokens:

"mov", "QWORD", "PTR", "-104", "[", "]", ",", "rbp", "rdi"

Listing 5.18: Tokenization of a line of code after regex

We believe that this tokenization also gives more meaning and context to
the usage of these characters, and their combinations throughout all data
samples.

The last tasks our finalizer script executes are labeling each dataset, splitting
it into training and testing collections, and labeling each data sample to the
class in which they belong. Each data sample is prepended with a label that
our model will use to categorize and create label vectors for our supervised
learning. Each new sample is prepended by a label, either:

• __label0__ : for benign data samples, and

• __label1__ : for vulnerable data samples,

Since we have complete control and separate directories for the benign and
vulnerable programs, it is easy to use the file path as a reference for correct
labeling of each sample. These labels are used as feedback by the neural
network during training. During testing, these labels are used to calculate
accuracy.

As we aim to feed our neural network with a single line of instructions at the
time, we chose to keep the newline character ’/n’ to split data into desirable
chunks during training and testing. We could, of course, add another token
for representing a new line of instructions, but it would still result in the same
number of bytes per sample. Either way, we need some way to represent a
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new line of instructions, and the length of each line varies throughout the
executables, as shown in listing 5.19.

1 push r13
2 push r12
3 push rbx
4 sub rsp , 72
5 mov QWORD PTR −104[ rbp ] , r d i
6 mov rax , QWORD PTR f s : 40

Listing 5.19: Various length of each line of instructions

During finalization, we also split all data samples into separate .txt files
(Train.txt and Test.txt) for training and testing. We chose to do a split
where 80% of our samples are for training. The remaining 20% are for test-
ing. The training set will be split again into a validation set used for accuracy
assessment over hyperparameter optimization. We keep the testing samples
unseen for the model during training, as they will be used to measure accu-
racy in the final assessment. Keeping a portion of the data hidden is essential
to prevent our classifier from learning classification on what is supposed to
be unseen test data.

To tie the generation of data together with our chosen representation/clean-
ing and creation of features, we have included a pipeline diagram illustrating
how data samples are created from the function libraries.
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Figure 5.1: Pipeline of data creation
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5.3 Architecture overview

In this section, we would like to present the technical aspects of our deep
learning model. The technical aspects include an architecture overview, a
summary, and an illustration of our architecture. We will also present de-
tails about our implementation and explain how we pass through our layers.
Implementation details include a description of our embedding, tokenization,
and prediction layer. We also elaborate on our choices concerning our prob-
lem statement and our limitations.

As previously stated, our goal in this thesis is to prove/disprove whether or
not recurrent neural networks are capable of performing vulnerability detec-
tion on code files. We are proposing a simple natural language processing
technique and assessing whether it is applicable and useful for classification
on assembly code. As this is a proof of concept, we do not strive for or
have the capacity for developing a generalized model, capable of classifica-
tion over a multiflora of source code. Our goal is instead to strive for some
interpretable results which can sway our judgment of said possibilities. Even
though we opt for a simplified model, we still work to the best of our ability
to achieve as good results as possible.

Compared to the work revised in the literature review, our model is quite
simple. We do not compare our model against other researchers’ work as we
opt for a minimalist approach. We believe it is entirely possible to surpass our
results with deeper networks and more sophisticated hardware. We ended up
creating a fairly shallow and "simple" architecture for our experiments, which
gives us some advantages and disadvantages. Training a shallow model is far
less time consuming than a deep neural network but usually at the cost of
lower performance. For our hardware capacities, a deeper network would be
well-nigh impossible concerning time and computational constraints. Thus,
when designing our architecture, we aimed for these features:

1. A computationally lightweight architecture.

2. Ability to differentiate between vulnerable and benign binaries.
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3. Ability to consider both local and global context while examining the
entire binary.

To achieve 1), we created a neural network with an embedding layer, two
hidden layers of LSTMs followed by a fully connected layer, and a single
output neuron for the network’s prediction. Compared to other successful
models, this is very lightweight, and training/testing such an architecture
is computationally relatively straightforward. Success concerning feature 2)
is revealed in the results section. Feature 3) is achieved with our temporal
dropout and transformation of tensors. Presented below is a simplified figure
of our architecture with detailed explanations about each part of it.
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Figure 5.2: Architecture stack

As explained in earlier sections, input data are whole assembly text files
stripped of what we have defined as redundant or non-critical information.
All these files are read into our program code, which further translates the as-
sembly language to something interpretable for our machine learning model.
The standard way to transform textual data into learnable vectors in deep
learning is a technique called tokenization.

Tokenization:

Tokenization is a standard Natural Language Processing (NLP) task where

98



each sentence is split into individual tokens, which in our case consists of
words, numbers, and single sign characters used in the Intel assembly syntax.
For this process, we use NLTK (Natural Language Toolkit) [90], as it has one
of the faster tokenizers. All words in the data collection are stored into a
dictionary where words are mapped to their number of appearances, creating
a vocabulary of the whole training file.

1 # Dict ionary mapping o f a l l tokens in our t r a i n i n g f i l e
2 words = Counter ( )
3

4 f o r i , l i n e in enumerate ( t r a i n_ f i l e ) :
5 f o r word in n l tk . word_tokenize ( l i n e ) :
6 words . update ( [ word ] )

Listing 5.20: Dictionary mapping

When we later transform training and test data into "sentences", we want to
account for any unseen words and padding. Therefore, we add them to the
vocabulary as well. These will occupy the first two indices in our dictionary.
We then create an additional dictionary with mapping word2idx. This
mapping is used for doing a word2vec transformation of our data.

1 # Sort ing the words accord ing to the number o f appearances
2 # with the most common word being f i r s t
3 words = sor t ed ( words , key=words . get , r e v e r s e=True )
4 words = [ '_PAD ' , '_UNK ' ] + words
5 word2idx = {o : i f o r i , o in enumerate ( words ) }

Listing 5.21: Word to index mapping

Every word in each training and testing sample is converted into integers
corresponding to their index in our vocabulary.

1 # Looking up the mapping d i c t i ona ry and
2 # as s i gn i ng the index to the r e s p e c t i v e words
3 f o r i in range ( l en ( tra in ing_data ) ) :
4 f o r j , s entence in enumerate ( tra in ing_data [ i ] ) :
5 tra in ing_data [ i ] [ j ] = [ word2idx [ word ] i f word in
6 word2idx e l s e 1 f o r word in sentence ]
7
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8 # For t e s t data , we have to token i z e the s en tence s as we l l
9 f o r i in range ( l en ( test_data ) ) :

10 f o r j , s entence in enumerate ( test_data [ i ] ) :
11 test_data [ i ] [ j ] = [ word2idx [ word ] i f word in
12 word2idx e l s e 0 f o r word in sentence ]

Listing 5.22: Assigning index to each word

After tokenization on each sample is completed, we zero pad each sample to
match the longest sample over the whole collection. Our data samples are
dimensionally more complex than samples from "regular" natural language
processing. This increased complexity is due to the fact that in a natural
language, a basic unit is usually a word or a letter, while in our assembly
code, we are operating on basic units as lines of code. Operating on sentences
of code results in an additional dimension for our data samples, which must
be accounted for and transformed in a meaningful way.

Embedding layer: Including an embedding layer to our neural network
is crucial with regard to computational efficiency. This layer allows us to
turn positive integers (in our case indexes) into dense vectors of fixed size.
This is the word2vec operation we mentioned earlier. Embedding in deep
learning is the act of representing or encode a sentence. Input dimensions to
our neural network during a forward phase will look like this:

[batch_size, codefile_size, line_size]

Listing 5.23: Input dimensions

Looking at a single line of a single sample within a batch, we have a raw line
of code:

[mov DWORD PTR -4 [ rbp ] , edi]

Listing 5.24: Raw line of code

Which through our tokenization is represented as a numerical vector:

[3, 46, 8, 76, 6, 5, 7, 2, 77]
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Listing 5.25: Raw code represented as numerical vector

The embedding now creates an embedding matrix based on this numerical
vector, and how many "latent factors" we assign to each index. In our
implementation, we chose latent factors to be equal to the longest line of
code in our data collection. The embedding matrix for this particular vector
will look like this:



[0.380, 2.003, -0.643, 1.288, 0.295, 0.160, -0.023, 0.447, -0.371]

[0.418, -1.453, -1.167, 0.283, -0.738, 0.810, 0.061, 0.959, 1.061]

[0.033, -0.692, -1.704, 0.359, 0.668, 0.683, 0.101, -0.531, -0.776]

[0.508, 0.489, -0.651, 0.382, 0.172, -1.105, 0.485, 0.707, 0.126]

[0.423, 0.488, -1.053, -0.474, 0.471, -1.450, -1.236, -0.107, -0.739]

[0.363, 1.256, 0.557, 1.702, -1.272, -0.409, -0.857, 1.543, 1.404]

[-0.115, -0.451, 0.406, 1.498, 0.873, 0.285, -0.193, 0.572, -0.999]

[0.656, -1.017, 0.087, -0.717, 0.901, -0.457, 2.186, 1.035, 1.712]

[-0.711, 0.442, 0.589, -0.682, -0.491, 0.804, -0.217, -0.428, 0.090]


Since each element/number in the tokenization is represented as a numerical
vector, we had a decision concerning dimensional representation. LSTM lay-
ers will not accept the current (4-dimensional representation): [batch_size,
codefile_size, line_size, embedding_dim]. To transform our representation,
we had two options: do some form of mathematical operation on each vector
to reduce it into a single decimal i.e., some reduction, or flatten the matrix
into a list. Each option is viable and represents data in a slightly different
way. With a reduction, representation would be more focused on a line of
code as a whole. The challenge here is to find some function that reduces our
vectors into something tangible and useable for our neural network. Instead,
we opt to flatten the matrix into a list. With this approach, each instruction
and its context will be the focal point for the neural network. We believe
that this is just as useful as the foremost approach. The negative aspect
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of this approach is that training-time will certainly increase compared to a
reduction operation. By flattening the matrix, we do not reduce the number
of values for a given line of code. After flatting the embedding matrix, a line
of code is represented in a meaningful way for our neural network.

1 de f forward ( s e l f , x , hidden ) :
2 batch_size = x . s i z e (0 )
3 x = x . long ( )
4 embeds = s e l f . embedding (x )
5 embeds = torch . reshape ( embeds , ( batch_size ,
6 longest_sample , embedding_dim∗embedding_dim) )

Listing 5.26: Embedding in the forward phase

Each embedded line of code is fed to our first layer of LSTM cells, which
means that a single line of code at the time is fed into the network during
the forward phase.

1 lstm_out , hidden = s e l f . lstm ( embeds , hidden )

Listing 5.27: Embedding fed into the LSTM layers

The output from our first LSTM layer is forwarded to our second LSTM layer.
After the second layer has finished its computations, a dropout regularization,
with a probability p = 0.5, is performed.

1 out = s e l f . dropout ( lstm_out )

Listing 5.28: Temporal dropout

With our temporal dropout after our LSTM layers, one way to interpret this
network’s function is that the LSTM layers are capable of recognizing local
indicators of vulnerabilities, and the dropout followed by a fully connected
layer assesses the relative strength of those indicators throughout the file and
recognizes significant global combinations.

After the temporal dropout, we connect outputs to our final hidden layer,
which is a 512 dimensional fully connected layer using the sigmoid activation
function, described in the background section.
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1 out = s e l f . f c ( out )

Listing 5.29: Output from the LSTM layers is fed into the FC layer

From these outputs, a loss is calculated by using the binary cross-entropy
loss before the backward phase begins.

1 l o s s = c r i t e r i o n ( output . squeeze ( ) , l a b e l s . f l o a t ( ) )
2 l o s s . backward ( )

Listing 5.30: Loss calculated by criterion (BCE)

We believe that this neural network architecture fulfills our desired features,
and serves as a basic model for assessing our problem statement. As our
computational power is relatively limited, this lightweight network accommo-
dates our hardware architecture in a way that allows us to conduct additional
experiments.
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5.4 Summary

In this chapter, we have elaborated on our approach for generating data, how
we have performed feature engineering on our binaries, and finally presented
an overview of our architecture. For each of the subsections, we have dis-
played a thorough discussion and arguments for choices made with regard
to data, features, and final architecture concerning our research goal. We
have presented which vulnerable system-calls we have focused on and given
code samples of generated functions. In the data generation section, we have
provided a step-by-step walk-through on how we generate data samples from
our function library. We also gave an in-depth description of how features
are extracted and written to file. The aforementioned sections were tied to-
gether with a pipeline diagram exhibiting the whole process. We concluded
this chapter with a presentation of our chosen architecture and the inner
workings of our neural network code.
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Chapter 6
Results and Evaluation

In this chapter, we present our experiments, results, and evaluations of them.
We have been carried experiments out over an array of different parameters
and a variety of generated datasets. We provide detailed descriptions of said
parameters, datasets, and achieved results for these. This chapter is divided
into subsections, encompassing the exploration of specific criteria we would
like our neural network to achieve. By scrutinizing one desired attribute at
a time, we enable a better basis for us to perform correct assumptions. We
have, in total, conducted five experiments with a range of hyperparameter
configurations. Each model has been run several times for validation pur-
poses. We base our evaluation and analysis entirely on these experiments,
their parameters, and datasets. Experiments are listed in order of complex-
ity, where we either decrease the variance over data samples or increase the
number of possible permutations of samples. Our goal is to discover and gain
insight into the capabilities and limitations of our neural network.
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To begin with, we would like to state that this work was extremely challenging
concerning data availability and hardware limitations. We were somewhat
anxious from the starting stage of this master dissertation but excited about
what kind of results we could expect to see. From the get-go, we held a
positive skepticism towards our research.

Optimizing a neural network is no easy task. There is a multifold of hyper-
parameters to tune and tweak. There are entire research fields dedicated to
optimizing and unveiling optimal configurations of every single one of them.
To give a perspective of the possibilities, let us look at one of the most com-
mon parameters: learning rate. At extremes, a learning rate that is too large
will result in weight updates that will be too large, and the performance of
the model (such as its loss on the training dataset) will oscillate over training
epochs. Oscillating performance is said to be caused by diverging weighs. A
learning rate that is too small may never converge or may get stuck on a
suboptimal solution. The consensus is that a reasonable learning rate for
gradient descent learning should fall between 0.1 and 1e−5 [91], which is a
relatively broad range when we consider the possible decimal number in be-
tween extremities. There are also techniques such as scheduled and dynamic
learning rates, which change the learning rate according to predicted neces-
sity and by actual measurement of cost during runtime. An example is the
ADAM optimization algorithm described in the background section.

We generated different collections of training and testing data to assist us
in proving/disproving and scrutinize our problem statement. We varied the
datasets by their size, function distribution, and experiment with a perfectly
imbalanced dataset (single class dataset). The latter is useful in dissecting
whether weights are updating accordingly to loss and that the model does not
overshoot and oscillates too much around a zero loss. We chose to gradually
increase the size and complexity of our data collection to unveil our small
scale RNN LSTM architecture’s capacity and accuracy. The central premise
for our data collection is that we must keep the number of generated samples
below the total amount of permutations available.
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To make this clearer, let us imagine that we would like to create a collection of
data, where each data sample consists of two functions. Let us also limit the
collection to only draw from the first ten benign functions. In total we would
then be able to generate 90 unique samples with our generator script:

P (10, 2) =
10!

(10− 2)!
= 90 (6.1)

We are guaranteed to introduce some duplicates to our collection if we were
to generate more than 90 data samples. This possible duplication of data
samples is a problem. The smaller the difference between the number of
generated samples and possible permutations, the higher probability of a du-
plicate sample in the data distribution. Duplicates, especially ones shared in
both training and test data, results in memorization rather than a general-
ization over features.

By keeping the total amount of data samples well below possible permuta-
tions, we guaranty unique samples in our training and test data.

In the following results section, we will present "subgoals" that we would like
to prove/disprove with configurations, documented experiments, and analyt-
ics of both data and results. We have developed these experiments in a
natural progression from the most basic experiments to the more advanced
ones. Before we present our results, we would like to explain how we measure
and log results. First of all, we are logging results after a predefined number
of "steps", i.e., number of gradient updates. Our models run for a certain
number of predetermined "epochs", i.e., full cycles through the training data.
Batch size is a term used in machine learning and refers to the number of
training examples utilized in one iteration. We plot our results into a figure
for visualization where we table CCR (Correct classification rate [0,1.0]) and
BCEL (Binary cross-entropy loss). We plot the progress of both the training
and development set ( validation set). For some of the experiments, we have
chosen to document some failed configurations as well. Our rationale is to
convey how small changes to configurations can have a drastic impact on
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performance and results. Keep in mind that for the "simpler" experiments,
our network was able to converge for most configurations. In these cases,
parameters mostly impacted the amount of time the neural network needed
to converge to a "sufficient accuracy".

For some of our experiments, we predefined a sufficient accuracy, or rather
loss on the development set before the model is evaluated on the test data.
In some cases, we require the loss to be 0.001 or less. This loss threshold is
arguably too strict and could make the necessary training time for our neural
network too high. However, we have adjusted this threshold for more complex
data. In all experiments, we let the neural network run for an "unlimited"
number of "unsuccessful" epochs and used our threshold on the validation
set to decide when to stop training and start measuring actual accuracy on
the test set. In practice, this means that we allow a certain number of epochs
without improving accuracy over the development set before we terminate
the experiment. In cases where there is no improvement in accuracy, even
after several hundred epochs, we conclude that our hyperparameters were
not optimized, and we terminate training.

For each experiment, we list multiple options for hyperparameters. We have
run models with each possible combination of parameters several times to
validate results and configuration. By and large, the successful hyperpa-
rameter options are the ones documented thoroughly and used for evalua-
tion. Choosing the right hyperparameters is quintessential in almost all deep
learning tasks.

We would like to draw attention to, and state, that we are only concerned
with Learning Hyperparameters. Specifically, initial learning rate and
batch size. These two parameters have a significant impact on performance
and the rate of convergence for a neural network.
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6.1 The network can classify a single class

First, we would like to verify if there are any possibilities of our network
to learn anything from this representational level. We conducted a simple
experiment with an entirely imbalanced dataset i.e., the entire collection of
data consists of one class of data samples. It was essential for us to ensure
that weights were updating correctly according to the learning rate and that
the network would be able to learn some features in the data.

Parameters: generator.py 100 2 12 B

Function range: Benign: B[0...11]

Permutations: 132

Batch size: [2]

Learning rate: [0.0005, 0.001]

Listing 6.1: Configurations.

The dataset is a small set of 100 benign data samples, which is well below
the 132 permutations. We chose the batch size to fit the number of samples
in the validation and testing set. As this experiment is trivial, we did not
bother to test a range of batch sizes or learning rates.
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Figure 6.1: Single class classification, LR:1e−3.

We trained two models on this dataset, one with a learning rate of 5e−4 and
one with 1e−3. Both achieved the same accuracy. Figure 6.1 is a plot of our
model’s progress with the most aggressive learning rate. As we can observe,
the model was updating its weights and quickly learned a 100% accuracy for
a pure benign dataset. The model converged to a loss of 0.0000 and a 1.0
CCR on the development. The convergence happened after about four steps
into the first epoch. The fast convergence is not surprising, yet promising
as it validates our architecture and that there are learnable features directly
from assembly language. To be fair, this test is more a test of the network
itself rather than the networks’ ability to learn from our chosen features and
representation level.
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6.2 The network can detect a single vulnerabil-

ity

To further test our network, we introduce negative or vulnerable data samples
as well. We decided to generate both benign and vulnerable data samples
from the same subset of functions. This distribution results in quite a low
variance in the data collection concerning the benign part of both classes.
For the vulnerable samples, we programmed the generator to draw a single
predefined vulnerably function from the vulnerability library. We position
the vulnerability at the very start of the generated programs. Even though
this is a simplified approach and is not representative of real software, it is a
natural step towards more complex data. The number of generated samples
are well below the total amount of permutations possible, so there are no
exact duplicates across training or testing data.

Parameters: generator.py 2000 3 15 B & generator.py 2000 3 15 V

Function range: Benign: B[0...14] Vulnerable: B[0...14] + V[119]

Permutations: 2730 + 2730 = 5460

Batch size: [20,40,80, 100]

Learning rate: [0.00025, 0.0005, 0.001, 0.002]

Listing 6.2: Configurations.
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Figure 6.2: Single vulnerability classification, LR:5e−4, BS: 80
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Figure 6.3: Single vulnerability classification, LR:1e−3, BS: 80

For this experiment, we trained models with a total of 16 different config-
urations. This experiment is arguably the first real "test" of our network’s
potential to do vulnerability detection. Even though the dataset is quite
limited by only using 15 functions from the benign library and a single vul-
nerability, we can observe that we need a few steps before we start seeing
progress with accuracy and classification rate. The two most successful con-
figurations are observed in 6.2 and 6.3, where the latter outperformed the
former. Both models were able to correctly classify all data samples in the
testing set, reaching a 1.0 CCR on the validation set after 34 and 32 epochs,
respectively. From the two figures, we can also observe that the learning rate
equal to 1e−3 has a faster convergence (1280 steps versus 1360 steps) and is
also far more stable. We can draw this conclusion based on the fluctuations
in figure 6.2.
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We have not included the less successful models with consideration to space.
We will, however, state that for smaller batch sizes, such as 20 or 40, our
model used an increased amount of computational time before achieving suc-
cessful classification. Likewise, with a very modest learning rate, the model
struggled to converge. On the other end of the scale, the highest learning rate
prevented our model from reaching any reliable accuracy before termination.
We will not speculate whether on not this configuration eventually would
reach a sufficient CCR. These results are quite promising as they prove that
our neural network, given the right parameters, is indeed able to differentiate
between two classes.

6.3 The network can detect multiple vulnera-

bilities

In this context, when we are talking about multiple vulnerabilities, we refer
to data samples generated from a set of vulnerable functions, not just one in
the previous experiment. In this experiment, we have included a range of vul-
nerable functions combined with a subset of benign functions. This way, we
can further evaluate our network’s ability to classify over increasingly com-
plex datasets. From a computational standpoint, classification over samples
where the vulnerable function varies is far more complicated than recogniz-
ing a single vulnerability. To make an analogy, in our previous experiment,
we can imagine a classification task between two arbitrary objects. When
we restrict our negative samples to a single vulnerability, we are assigning a
"single" set of features that are unique to one class. In this multiple vulner-
ability experiment, we try to negate this by allowing each negative sample
to draw from a set of vulnerable functions.

Parameters: generator.py 2000 3 15 B & generator.py 2000 3 15 V

Function range: Benign: B[0...14] Vulnerable: B[0..14] +

V[105...119]

Permutations: 2730 + 3150 = 5880

Batch size: [20,40,80, 100]
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Learning rate: [0.00025, 0.0005, 0.001, 0.002]

Listing 6.3: Configurations.

Figure 6.4: Multiple vulnerability classification, LR:5e−4, BS: 80
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Figure 6.5: Multiple vulnerability classification, LR:1e−3, BS: 80

We continued to experiment with a range of parameter combinations, and
it seems like for the dataset of 4000 samples in total, a batch size of 80 is
optimal. We can observe from both figures 6.4 and 6.5 that we were able to
achieve a 1.0 CCR and a very low loss of 0.001 over the validation and test
set. What we can deduce from this experiment is that our neural network
inhibits the capacity to classify without error over a subset of functions. We
would like to point out the differences in the computational effort required to
reach such a state. Observe how a learning rate of 5e−4 requires the network
to train for over twice the number of steps compared to a more aggressive
learning rate.

Similar to our previous experiment, some configurations failed to achieve
desired results before termination. We allowed our models to run for an
increased amount of "failed" epochs before termination, yet most models
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failed. Our configuration of learning rate 1e−3 and batch size 40 was able
to reach the desired CCR. Convergence was very slow, and the model did
not fulfill our requirements before 20,000 steps into training. We believe that
this experiment generalizes over other similar experiments where ranges of
functions are applied.

6.4 The network can differentiate between vul-

nerable and benign counterparts

To aid us in determining our network’s sensitivity concerning low variance
data, we set up this experiment where we only include functions using the
same vulnerable system call. We achieve this by only including vulnerabilities
from a single type of system-call, in this experiment, fgets. For the benign
data, we only allow the repaired counterparts of these vulnerable functions.
These functions are incredibly similar in code, where only one line might
differentiate a benign from a vulnerable sample. All of the benign functions
included here also use fgets; however, in a safe and controlled way. We
chose to keep this experiment relatively small with samples consisting of
three functions and generate 200 samples of both classes. As previously we
conducted, a series of experiments with different configurations.

Parameters: generator.py 200 3 8 B & generator.py 200 3 8 V

Function range: Benign: B[40...48] Vulnerable: B[40...48] + V[90,

91, 92, 94, 96, 97, 98, 99]

Permutations: 336 + 336 = 672

Batch size: [2, 5, 10]

Learning rate: [0.000125, 0.00025, 0.0005, 0.001, 0.002]

Listing 6.4: Configurations.
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Figure 6.6: Vulnerable and benign counterparts, LR:1.25e−4, BS: 10
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Figure 6.7: Vulnerable and benign counterparts, LR:2.5e−4, BS: 10

From figure 6.7 and 6.6 we can observe that our experiment was successful.
These two learning rates were the only successful. Anything above 2.5e−4

often got stuck at and resulted in a 0.5 CCR at termination. We believe
this has to do with the extremely low variance in the data samples. The
data samples are simply too similar for an aggressive learning rate such that
the approximation will alternately over- and undershoot. In some cases, the
model would achieve sufficient accuracy with a 5e−3 learning rate, but on
average, it is far too unstable. In general, a batch size of 10 seems optimal for
this particular experiment as smaller batch sizes simply increased training
time and achieved the same CCR and loss.

Comparing the two plots above, we can see that a lower learning rate, in
this case, is beneficial. The model, more or less, reduces training time by
about 40%. We also did some experiments where we limited the number of
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total epochs to 200. This configuration allowed us to measure the loss values
on the test set after an equal amount of training. It seems like the lowest
learning rate is indeed the most successful and achieves the lowest loss on
the test set.

The only successful configuration was using a learning rate of 1.25e−4 with
a batch size of 10, which yielded a 95 % accuracy and a relatively low loss of
0.176 on the test set. With any other batch size than 10, the model could not
improve accuracy on the development set, even after allowing 200 consecutive
epochs without any improvement. Even though both of the lowest learning
rates achieved 1.0 CCR, the loss is far lower with a 1.25e−4 learning rate.
These findings signify that a lower learning rate is preferable for low-variance
data. We are quite happy with the results for this experiment as it proves our
model is sensitive enough to differentiate between highly similar data.

6.5 Quantitative experiment

In our last experiment, we would like to test our model performance and
accuracy on a larger dataset drawn from an even more extensive range of
functions. As this experiment is quite substantial, we limited ourselves con-
cerning configurations. We set up our models with previously successful
hyperparameters. E.g., a relatively conservative learning rate and a batch
size enabling a good portion of data samples to be feed together through the
network before backpropagation.

The idea behind this experiment is to test the network’s ability to learn fea-
tures from a small subset of possible binaries. The benign functions included
are various functions, which are not part of the repaired vulnerabilities.
That means that the benign functions are quite different from the vulnerable
functions. The reason behind this choice is that software programs gener-
ally contain all kinds of functions and supporting functionality. We strive
to replicate this by concentrating the buffer sensitive operations to a single
function, which we argue resembles "real world" software. Just to be clear,
the negative samples also draw from the same benign function distribution
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as well as the full vulnerable function library.

Parameters: generator.py 5000 3 63 B & generator.py 5000 3 120 V

Function range: Benign: B[57...120] Vulnerable: B[57...120] +

V[0...120]

Permutations: 238266 + 468720 = 706986

Batch size: [100, 200, 250]

Learning rate: [0.00005, 0.0001, 0.0002, 0.0005]

Listing 6.5: Configurations.

As we can observe from this configuration, we have only covered about 1.5%
of the possible permutations of data samples. As before, we chose to use a
single vulnerability randomly placed within the binary in an effort to make
our model learn from context, rather than position. We let the models run
for at most 800 epochs or until sufficient loss on the validation set.

121



Figure 6.8: Quantitative experiment, LR:5e−5, BS: 250

From figure 6.8, we can observe a quite distinct horizontal line for the train-
ing set cost. This stagnation persists up until about 18,000 steps, which
corresponds to about 600 epochs. For this particular model, we utilized the
lowest learning rate of any experiment. At the point of evaluation on the test
set, the model achieved an impressive 99.30% accuracy and 0.040 loss.
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Figure 6.9: Quantitative experiment, LR:1e−4, BS: 250

Even though the model of 6.9 performed best of all configurations in this
experiment, a similar stagnation is observable. The model shows a relatively
stagnated learning phase for 500 epochs before improving its classification
score on the validation set. This model, with a higher learning rate, achieved
better and more stable results. At the time of evaluation, the model achieved
an accuracy of 99.90% and a loss of 0.0013 on the test set.

We believe that the slow and almost non-existent improvement over numerous
epochs is due to the fact that the classes are practically homogeneous. We can
justify this statement by observing that even learning rates as low as 2e−4

were too aggressive. Only the two lowest learning rates allowed the network
to converge to an acceptable loss within the time frame. Interestingly, at some
point, right before reaching a sufficient loss, the model started to deteriorate.
We believe this is due to the learning rate, albeit relatively small, is too
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granular in the final steps. The "aggressive" learning rate makes the neural
network approximate in the direction opposite to the gradient. However,
since we are using the Adam optimizer, the learning rate is adjusted, and the
model can correct itself over time.

We realize this experiment was very sensitive to hyperparameter tuning.
Only a batch size of 250 samples yielded a model that achieved a satis-
factory result within the limited training time. It is interesting to observe
that we had to apply the lowest learning rates throughout our experiment
to achieve any results for this particular assessment. We are, however, very
pleased with the experiment, as it suggests that our neural network architec-
ture is indeed capable of inferring meaningful patterns form more extensive
amounts of data. We can also derive, at least with some certainty, that our
neural network can indeed learn from a small subset of seen samples drawn
from a much broader distribution.
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6.6 Summary

We want to conclude this chapter with an overall evaluation of our exper-
iments. We have already evaluated the experiments individually; now, we
would like to interpret what we can prove and observe from the experiments
wholly. First of all, we are very enthusiastic about our network’s ability to do
successful classifications in our experiments. We have seen success in some
form in all our experiments and explored different learning rates, batch sizes,
and number epochs we allow our neural network to train. Several observa-
tions are made throughout our experiments as a whole.

First and foremost, we can observe that the neural network is sufficiently
capable of differentiating between classes of data, even when the variance
between data samples is minimal. This observation especially holds true for
experiment 6.4, where the difference between classes can be as subtle as
a single if statement. Successful implementation of a vulnerability detector
based on machine learning techniques needs to be sensitive to details and be
able to differentiate on subtle flaws in code. This finding is very encouraging
towards our hypothesis.

A second observation is that the neural network is relatively fast at converging
to sufficient accuracy and loss, given the correct configurations. Generally
speaking, training of deep learning models can take days, weeks, or even
months on highly sophisticated hardware. We were inclined to keep the
architecture shallow and the number of training samples within a reasonable
limit, which has allowed us to run our models over different configurations.
It is good to know that features are learnable within a reasonable time-frame
even though this is not a deep neural network.

We can also observe that our neural network is fully capable of handling a
decent number of data samples. In experiment 6.5, the neural network
was processing 10, 000 data samples and able to converge within an hour
of training. From that very same experiment, we can also observe that the
neural network was able to do correct classification on a dataset where the
distribution of generated samples was substantially smaller than the number
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of permutations.

From a critical point of view, our experiments revealed that for the more
complex assessments, the neural network is increasingly sensitive to hyper-
parameter configurations. In other words, an optimal choice for batch size
and learning rate is increasingly essential in order to achieve good results.
E.g., as stated in the individual evaluations, a too small batch size will in-
crease training time, and a too aggressive learning rate will make the net-
work oscillate. This observation holds for both efficiency and effectiveness of
training. There may be other learning rates and batch sizes that could work
just as well or even better than the ones we have explored. This fact is, of
course, extendable to the architectural choices we have made for our neural
network. The architecture choices refer to the Model Hyperparameters,
which we are not concerned with tuning during our experiments. We have
clearly stated our limitations and possible extensions in the upcoming future
research chapter.

We are aware that it is unfortunate that we are not able to experiment and
tune more parameters for our models and let them run for longer. However,
we believe that we have performed a sufficient exploration of each experiment.
We will admit to a lack of experimentation on large data samples. We had to
account for our limitations and scope for all our experiments when deciding
the size limit for each data sample. With access to additional resources, we
would have run our model on supplementary hyperparameter configurations
and possibly created additional experiments.

Our experiments have succeeded in underpinning and providing us with a
base upon which we can make conclusions. We have also gained additional
ideas about possible extensions of our work.
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Chapter 7
Further research

This chapter will present developments that, with more resources, could be
explored in the future. We will present them in an increasingly complex
order where we start with the most straightforward implementations and
conclude with the most challenging ones. As our field of research is relatively
uncharted, we suggest a plethora of possible extensions. First of all, our
architecture could potentially be more complex by adding LSTM- or other
layers. We also see the potential for adding an attention mechanism that
would allow us to direct focus and greater attention to certain factors (e.g.,
vulnerable system calls) when processing input data. We also acknowledge
the limitations of our dataset and would like to refer to the data generation
section for a thorough discussion on these.
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Deeper network

We acknowledge that our computational capacities are quite limited. Thus
we are not able to conduct as extensive experiments as we would have liked.
An intuitive way of extending our work would be to add consecutive layers
of LSTM cells (or other layers) to achieve a deeper neural network. Conse-
quently, the neural network would be better suited to learn features at the
cost of training time. It would also be interesting to increase the individ-
ual size and number of data samples in a dataset and examine results and
performance on both a shallow and deep recurrent neural network.

Add different types of layers

Another interesting extension of our work would be to add different types of
layers. Since we are only using two LSTM layers and a single FCC, it would
be exciting to experiment with supplementary layers throughout the architec-
ture stack. As elaborated on in our chapter about feature engineering, each
sample is quite extensive already, even for simple code files. An interesting
approach would be to use convolution [92] and pooling layers to compress
input vectors and feed their output into a stack of LSTM layers. Naturally,
it would also be interesting to experiment with a different architecture stack
altogether.

Attention mechanism

There is much exciting research about using attention mechanisms [93] in
sequence transduction. Complex recurrent or convolutional neural networks
by in large dominate this area of NLP. Research states that simple networks
with attention mechanisms may outperform the standard approaches [94].
In short, the idea behind an attention mechanism is that it allows the net-
work to map essential and relevant parts from the input sequence, in our
case the instructions, to the output sequence, and assign higher weights for
these essential sequences. By applying this mapping, the neural network dra-
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matically increases its output prediction accuracy. This accuracy might be
immensely helpful towards successful vulnerability detection as a single line
of code could be the difference between a benign and a vulnerable program.
We will not further elaborate on attention mechanisms, but the two papers
cited in this paragraph are interesting reads.

Complementary and extended data sources

As discussed in our data generation chapter, an extension of our work would
be to explore different code sources for training and testing data. This exten-
sion would, of course, require immense work with gathering and especially
labeling. As we suggested, it could be possible to use a set of static and
dynamic vulnerability detectors for labeling, but we do not possess the re-
sources to carry out such tasks. Another interesting idea would be to create
a dataset consisting of a combination of generated and scraped data samples.
It would also be intriguing to increase the input vectors’ complexity by in-
troducing additional functions, more complex code structure, and recursive
calls.

Classify multiple types of vulnerabilities

Even though buffer errors are the most ubiquitous type of vulnerability for
the last 25 years [14], other vulnerabilities can be equally harmful. Race
conditions, failures to validate input, are all vulnerabilities one would want
to detect as early as possible. An exciting project would be the exploration
of the ability to do multi-class classification between a set of different vul-
nerabilities. We acknowledge that such a task would most likely require
a far more advanced neural network and probably some innovative feature
engineering.
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Pinpoint location of vulnerability

An impressive extension of our work would be if the neural network could
predict where the problem is. This ability would be immensely useful in
practice, especially with large code files. One idea is to have the RNN output
a likelihood of vulnerability over each line of code, thus allowing the network
to highlight where it is more likely to reside. It could also be possible to
output likelihood over code chunks or functions. We argue that this extension
would indeed be the most useful of our mentioned possibilities. It could be
an invaluable tool for detecting and repairing vulnerable software.

Summary

This chapter has been a summary of our directions for the future of vul-
nerability detection by using deep learning techniques. We also provided an
introduction to attention mechanisms.
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Chapter 8
Conclusion

This last chapter summarizes our research goal and main findings deduced
from our experiments. We consolidate our limitations, research results, and
evaluation of experiments in order to establish a well-grounded conclusion.
We close this thesis with some final thoughts and inspirations for professionals
working in the field of research.
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Our research aimed to explore the possibilities and limitations of vulnerabil-
ity detection through Supervised Learning and Recurrent Neural Networks.
In order to prove or disprove the hypothesis, we conducted a set of exper-
iments on binary classification. Based on our qualitative and quantitative
experiments, we can assess the usefulness of our novel approach.

Based on experiment 6.1, we observed some promising indications concerning
learnable features in assembly language code. The experiment also validated
our Neural Network design and implementation.

Experiment 6.2 underpins and proves that learnable features are indeed
present in assembly code. By conducting this experiment, we are also able
to observe that Recurrent Neural Networks exhibit capacity and potential
for differentiating between two data classes. We can also conclude that our
Neural Network is successful in detecting a single vulnerability located at a
fixed position within a program file.

In experiment 6.3, we investigated performance and accuracy over a set of
vulnerable functions. We significantly increased data complexity by allowing
each negative sample to draw from a set of vulnerable functions. The results
and observations reinforce and strengthen our conclusion about Recurrent
Neural Networks’ ability to detect vulnerabilities. We also observed a signif-
icant increase in the required computational efforts needed in order for our
Neural Network to converge to a sufficient accuracy.

We designed experiment 6.4 intending to unveil our Neural Networks per-
formance on low-variance data. We carefully designed a dataset where all
positive and negative samples only consist of functions that use the same
vulnerable C system-call. The benign, or positive samples, are repaired
counterparts of the vulnerable samples. The results and observations indeed
conclude that our approach exhibits high performance on low-variance data.
We also observe the requirements for considerable resources when performing
classification on exceedingly similar data. Even though our Neural Network
trained on a small number of samples (a tenth of data in experiment 6.3),
the required time to reach sufficient accuracy was almost identical.
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Our last experiment, 6.5, further supports and advances previous findings.
We conducted this experiment to establish a conclusion on whether or not
our Neural Network can handle datasets of substantial size. We can draw
several conclusions through the observations of this experiment. First, we
observe that the Neural Network was successful in achieving an impressive
accuracy over the data distribution. A related observation is that the Neural
Network achieved this accuracy even though the number of generated samples
for training and testing were a small subset of the full distribution. Again,
we observe that, as the complexity of our experiments increases, so does the
challenge in hyperparameter optimization.

Our results thoroughly indicate that there is a potential for vulnerability
detection through the use of Recurrent Neural Networks. Our experiments
have proven that Recurrent Neural Networks has excellent capabilities when
it comes to extrapolating context in sequences of data. We have established
that there are enough features in the assembly code language for a Neural
Network to differentiate between two data classes. Through that conclusion,
we can, at least with some certainty, state that there are some underlying
similarities between natural language and programming languages. Thus, a
positive statement for treating code as language follows.

Through our research, we can conclude that Recurrent Neural Networks can
perform binary classification on a single type of vulnerability. Even with our
shallow architecture, the approach holds excellent merit when it comes to
predicting which programs are vulnerable and not. Our Network achieved
high accuracy throughout our experiments. Even when resented with ex-
tremely low-variance data, the Neural Network was able to differentiate be-
tween classes successfully.

Even though our experiments were successful, we observe the increasingly
difficult hyperparameter optimization when the Neural Network is exposed
to increasingly complex datasets. It is indeed worth noting that the Neural
Network is also highly sensitive to these configurations in the latter experi-
ments. The increased sensitivity might indicate that our architecture is too
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shallow, as it struggles to converge unless it is provided with "optimized"
parameters.

We believe that through our research methodology and experiments, we have
been able to establish a sufficient foundation of results to state our conclusion.
Our experiments and approach are simplified and limited compared to the
grand scheme of vulnerability detection. A self-generated dataset limits our
ability to generalize our statement for all "real world" data. However, our
methodology has provided us with unexpected insight into the potential of
Recurrent Neural Networks’ ability to perform vulnerability detection.

As we have conducted experiments with limited resources, further research
is needed to determine the full potential of doing vulnerability detection on
software with machine learning paradigms. However, we firmly believe that
our research has sparked optimism towards further exploration and study of
this field of research.

8.1 Final thoughts and inspirations

Applying machine learning paradigms to vulnerability detection is a chal-
lenging but interesting approach to information security. Our work has been
intriguing, intense, and rewarding. We hope our work may be useful in
furthering research. We encourage researchers to further explore the possi-
bilities and limitations of vulnerability detection through machine learning
paradigms.
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Appendix A
Appendix

Below is an example of a generated program by us:

1 #inc lude <s td i o . h>
2 #inc lude <s t r i n g . h>
3 #inc lude <s t d l i b . h>
4 #inc lude <math . h>
5

6 void yylcvpqcgadf ( ) ;
7 void c ivhs ivrxmhc ( ) ;
8 //Vuln dec l :
9 void oo rh l z sk iw fd ( char ∗ s , i n t n) ;

10

11 i n t main ( i n t argc , char ∗ argv [ ] ) {
12

13 yylcvpqcgadf ( ) ;
14 c ivhs ivrxmhc ( ) ;
15 //Vuln c a l l :
16 oo rh l z sk iw fd ( argv [ 1 ] , s t r t o l ( argv [ 2 ] , NULL, 10) ) ;
17 re turn 0 ;
18 }
19 void yylcvpqcgadf ( char ∗ s ) {
20 char des t [ 1 5 ] = "Test ing second" ;
21 p r i n t f ( "Before : %s " , des t ) ;
22 i f ( s t r l e n ( s ) > s i z e o f ( des t ) ) {
23 char l onge r [ s t r l e n ( s ) ] ;
24 s t r cpy ( longer , s ) ;
25 p r i n t f ( " After : %s \n" , l onge r ) ;
26 } e l s e {
27 s t r cpy ( dest , s ) ;
28 p r i n t f ( " After : %s \n" , des t ) ;
29 }
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30 }
31 void c ivhs ivrxmhc ( ) {
32 i n t n ;
33 p r i n t f ( "Enter number : \n" ) ;
34 s can f ( "%d" , &n) ;
35 i f (n>10){
36 p r i n t f ( "N i s l a r g e r than 10 !\n" ) ;
37 } e l s e {
38 p r i n t f ( "N l e s s than or equal to 10 !\n" ) ;
39 }
40 }
41 //Vuln func t i on :
42 void oo rh l z sk iw fd ( char ∗ s , i n t n) {
43 char des t [ n ] ;
44 s trncpy ( dest , s , s t r l e n ( s ) ) ;
45 p r i n t f ( "Copied s t r i n g : %s \n" , des t ) ;
46 }

Listing A.1: Generated code sample.

Below is assembly code of the generated program above after our feature
engineering is completed.

1 endbr64
2 push rbp
3 mov rbp , rsp
4 sub rsp , 16
5 mov DWORD PTR −4 [ rbp ] , ed i
6 mov QWORD PTR −16 [ rbp ] , r s i
7 mov eax , 0
8 c a l l yy lcvpqcgadf
9 mov eax , 0

10 c a l l c ivhs ivrxmhc
11 mov rax , QWORD PTR −16 [ rbp ]
12 add rax , 16
13 mov rax , QWORD PTR [ rax ]
14 mov edx , 10
15 mov e s i , 0
16 mov rd i , rax
17 c a l l s t r t o l @ PLT
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18 mov edx , eax
19 mov rax , QWORD PTR −16 [ rbp ]
20 add rax , 8
21 mov rax , QWORD PTR [ rax ]
22 mov e s i , edx
23 mov rd i , rax
24 c a l l oo rh l z sk iw fd
25 mov eax , 0
26 l eave
27 r e t

Listing A.2: Main function of A.1 after feature engineering.

Line five of Assembly code from A.2 transformed into a numerical vec-
tor:

[3, 46, 8, 76, 6, 5, 7, 2, 77]

Listing A.3: Assembly code represented as a numerical vector

The numerical vector from A.3 transformed into features for our Recurrent
Neural Network by the embedding layer:

[0.380, 2.003, -0.643, 1.288, 0.295, 0.160, -0.023, 0.447, -0.371]

[0.418, -1.453, -1.167, 0.283, -0.738, 0.810, 0.061, 0.959, 1.061]

[0.033, -0.692, -1.704, 0.359, 0.668, 0.683, 0.101, -0.531, -0.776]

[0.508, 0.489, -0.651, 0.382, 0.172, -1.105, 0.485, 0.707, 0.126]

[0.423, 0.488, -1.053, -0.474, 0.471, -1.450, -1.236, -0.107, -0.739]

[0.363, 1.256, 0.557, 1.702, -1.272, -0.409, -0.857, 1.543, 1.404]

[-0.115, -0.451, 0.406, 1.498, 0.873, 0.285, -0.193, 0.572, -0.999]

[0.656, -1.017, 0.087, -0.717, 0.901, -0.457, 2.186, 1.035, 1.712]

[-0.711, 0.442, 0.589, -0.682, -0.491, 0.804, -0.217, -0.428, 0.090]
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